MIC4685-3.3BR [MICROCHIP]

Switching Regulator, Voltage-mode, 1A, 225kHz Switching Freq-Max, PSSO7, SPAK-7;
MIC4685-3.3BR
型号: MIC4685-3.3BR
厂家: MICROCHIP    MICROCHIP
描述:

Switching Regulator, Voltage-mode, 1A, 225kHz Switching Freq-Max, PSSO7, SPAK-7

开关
文件: 总17页 (文件大小:332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC4685  
3A SPAK SuperSwitcher™  
Buck Regulator  
General Description  
Features  
The MIC4685 is a high-efficiency 200kHz stepdown (buck)  
switching regulator. Power conversion efficiency of above  
85% is easily obtainable for a wide variety of applications.  
The MIC4685 achieves 3A of continuous current in the  
7-pin SPAK package.  
Low 2mm prole SPAK package  
3A continuous output current  
Wide 4V to 30V input voltage range (34V transient)  
Fixed 200kHz PWM operation  
Over 85% efciency  
Output voltage adjustable to 1.235V  
All surface mount solution  
Internally compensated with fast transient response  
Over-current protection  
The thermal performance of the SPAK allows it to replace  
TO-220s and TO-263s (D2PAKs) in many applications.  
The SPAK saves board space with a 36% smaller footprint  
than TO-263.  
High-efciency is maintained over a wide output current  
range by utilizing a boost capacitor to increase the voltage  
available to saturate the internal power switch. As a result  
of this high-efciency, only the ground plane of the PCB is  
needed for a heat sink.  
Frequency foldback short-circuit protection  
Thermal shutdown  
The MIC4685 allows for a high degree of safety. It has a  
wide input voltage range of 4V to 30V (34V transient),  
allowing it to be used in applications where input voltage  
transients may be present. Built-in safety features include  
over-current protection, frequency-foldback short-circuit  
protection, and thermal shutdown.  
Applications  
Point-of-load power supplies  
Simple high-efciency step-down regulators  
5V to 3.3V/2A conversion  
12V to 5V/3.3V/2.5V/1.8V 3A conversion  
Dual-output ±5V conversion  
Base stations  
The MIC4685 is available in a 7-pin SPAK package with a  
junction temperature range of –40°C to +125°C.  
Data sheets and support documentation can be found on  
Micrel’s web site at www.micrel.com.  
LCD power supplies  
Battery chargers  
___________________________________________________________________________________________________________  
Typical Application  
VIN  
8V to 30V  
MIC4685_R  
CBS  
2
5
1
6
3
0.33µF/50V  
IN  
EN  
BS  
SW  
FB  
VOUT  
1.8V/3A  
L1  
R1  
3.01k  
39mH  
CIN  
33µF  
35V  
COUT  
330µF  
6.3V  
D1  
R2  
6.49k  
GND  
4, Tab  
3A  
40V  
1.8V Output Converter  
SuperSwitcher is a trademark of Micrel, Inc  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-012610  
January 2010  
1
Micrel, Inc.  
MIC4685  
Ordering Information  
Part Number  
Junction  
Temp. Range  
Voltage  
Package  
Standard  
RoHS Compliant*  
MIC4685BR  
MIC4685WR  
Adj.  
Adj.  
–40° to +125°C  
7-Pin SPAK  
MIC4685WR EV  
Evaluation Board  
* RoHS compliant with ‘high-melting solder’ exemption.  
Pin Configuration  
7
NC  
SW  
EN  
GND  
FB  
6
5
4
3
2
1
IN  
BS  
7-Pin SPAK (R)  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
BS  
Bootstrap Voltage Node (External Component): Connect to external boost  
capacitor.  
2
3
IN  
Supply (Input): Unregulated +4V to 30V supply voltage (34V transient)  
FB  
Feedback (Input): Outback voltage feedback to regulator. Connect to 1.235V  
tap of resistive divider.  
4, Tab  
GND  
EN  
Ground  
5
6
Enable (Input): Logic high = enable; logic low = shutdown  
SW  
Switch (Output): Emitter of NPN output switch. Connect to external storage  
inductor and Schottky diode.  
7
NC  
No Connect. Tie this pin-to-ground.  
M9999-012610  
January 2010  
2
Micrel, Inc.  
MIC4685  
Bootstrap (BS, Pin 1)  
Detailed Pin Description  
The bootstrap pin, in conjunction with the external  
bootstrap capacitor, provides a bias voltage higher than  
the input voltage to the MIC4685’s main NPN pass  
element. The bootstrap capacitor sees the dv/dt of the  
switching action at the SW pin as an AC voltage. The  
bootstrap capacitor then couples the AC voltage back to  
the BS pin, plus the dc offset of VIN where it is rectied and  
used to provide additional drive to the main switch; in this  
case, a NPN transistor.  
Switch (SW, Pin 6)  
The switch pin is tied to the emitter of the main internal  
NPN transistor. This pin is biased up to the input voltage,  
minus the VSAT, of the main NPN pass element. The  
emitter is also driven negative when the output inductor’s  
magnetic eld collapses at turn-off. During the OFF time,  
the SW pin is clamped by the output Schottky diode  
typically to a –0.5V.  
This additional drive reduces the NPN’s saturation voltage  
and increases efciency, from a VSAT of 1.8V, and 75%  
Ground (GND, Pin 4, Tab)  
There are two main areas of concern when it comes to the  
ground pin, EMI and ground current. In a buck regulator or  
any other non-isolated switching regulator, the output  
capacitor(s) and diode(s) ground is referenced back to the  
switching regulator’s or controller’s ground pin. Any  
resistance between these reference points causes an  
offset voltage/IR drop proportional to load current and poor  
load regulation. This is why it’s important to keep the  
output grounds placed as close as possible to the  
switching regulator’s ground pin. To keep radiated EMI to  
a minimum, it is necessary to place the input capacitor  
ground lead as close as possible to the switching  
regulator’s ground pin.  
efciency to  
respectively.  
a VSAT of 0.5V and 88% efciency  
Feedback (FB, Pin 3)  
The feedback pin is tied to the inverting side of an error  
amplier. The noninverting side is tied to a 1.235V  
bandgap reference. An external resistor voltage divider is  
required from the output-to-ground, with the center tied to  
the feedback pin. See Tables 1 and 2 for recommended  
resistor values.  
Enable (EN, Pin 5)  
The enable (EN) input is used to turn on the regulator and  
is TTL compatible. Note: connect the enable pin to the  
input if unused. A logic-high enables the regulator. A logic-  
low shuts down the regulator and reduces the stand-by  
quiescent input current to typically 150µA. The enable pin  
has an up-per threshold of 2.0V minimum and lower  
threshold of 0.8V maximum. The hysterisis provided by the  
upper and lower thresholds acts as an UVLO and prevents  
unwanted turn on of the regulator due to noise.  
Input Voltage (VIN, Pin 2)  
The VIN pin is the collector of the main NPN pass element.  
This pin is also connected to the internal regulator. The  
output diode or clamping diode should have its cathode as  
close as possible to this point to avoid voltage spikes  
adding to the voltage across the collector.  
M9999-012610  
January 2010  
3
Micrel, Inc.  
MIC4685  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (VIN) (1) .................................................+34V  
Enable Voltage (VEN).........................................0.3V to VIN  
Steady-State Output Switch Voltage (VSW)..........1V to VIN  
Feedback Voltage (VFB) ...............................................+12V  
Storage Temperature (Ts) .........................65°C to +150°C  
EDS Rating(3)..................................................................2kV  
Supply Voltage (VIN) (4) ..................................... +4V to +30V  
Junction Temperature (TJ) ........................40°C to +125°C  
Package Thermal Resistance  
SPAK-7 (θJA)...................................................11.8°C/W  
SPAK-7 (θJC).....................................................2.2°C/W  
Electrical Characteristics  
VIN = VEN = 12V; VOUT 5V; IOUT = 500mA; TA = 25°C, bold values indicate –40°C< TJ < +125°C, unless noted.  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
MIC4685 [Adjustable]  
Feedback Voltage  
(±2%)  
(±3%)  
1.210  
1.198  
1.235  
1.235  
1.260  
1.272  
V
V
8V VIN 30V, 0.1A ILOAD 1A, VOUT = 5V, Note 4  
1.186  
1.173  
1.284  
1.297  
V
V
Feedback Bias Current  
Maximum Duty Cycle  
Output Leakage Current  
50  
94  
nA  
%
VFB = 1.0V  
VIN = 30V, VEN = 0V, VSW = 0V  
VIN = 30V, VEN = 0V, VSW = 1V  
VFB = 1.5V  
5
500  
20  
µA  
mA  
mA  
mA  
V
1.4  
6
Quiescent Current  
12  
Bootstrap Drive Current  
Bootstrap Voltage  
VFB = 1.5V, VSW = 0V  
IBS = 10mA, VFB = 1.5V, VSW = 0V  
VFB = 0V  
250  
5.5  
30  
380  
6.2  
70  
Frequency Fold Back  
Oscillator Frequency  
Saturation Voltage  
120  
225  
kHz  
kHz  
V
180  
200  
0.59  
IOUT = 1A  
Short Circuit Current Limit  
Shutdown Current  
VFB = 0V, See Test Circuit  
VEN = 0V  
3.5  
2
6
A
150  
200  
µA  
V
Enable Input Logic Level  
regulator on  
regulator off  
0.8  
50  
V
Enable Pin Input Current  
VEN = 0V (regulator off)  
VEN = 0V (regulator on)  
16  
µA  
mA  
°C  
–1  
–0.83  
160  
Thermal Shutdown @ TJ  
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kin series with 100pF.  
4. 2.5V of headroom is required between VIN and VOUT. The headroom can be reduced by implementing a bootstrap diode as seen on the 5V to 3.3V  
circuit on page 1.  
M9999-012610  
January 2010  
4
Micrel, Inc.  
MIC4685  
Test Circuit  
Device Under Test  
68µH  
+12V  
2
5
6
1
VIN  
SW  
EN  
BS  
I
GND  
FB  
4, Tab 3  
Current Limit Test Circuit  
Shutdown Input Behavior  
ON  
OFF  
0.8V  
1.25V  
2V  
0V  
1.4V  
VIN(max)  
Enable Hysteresis  
M9999-012610  
January 2010  
5
Micrel, Inc.  
MIC4685  
Typical Characteristics  
(TA = 25°C unless otherwise noted)  
Efficiency  
vs. Output Current  
100  
V
IN = 8V  
V
IN = 12V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 30V  
Standard  
Configuration  
VOUT = 5.0V  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT CURRENT (A)  
Efficiency  
vs. Output Current  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 8V  
VIN = 24V  
VIN = 30V  
VIN = 12V  
Standard  
Configuration  
VOUT = 1.8V  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT CURRENT (A)  
Efficiency  
vs. Output Current  
Quiescent Current  
vs. Input Voltage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.3  
6.2  
6.1  
6
VIN = 5V  
VIN = 12V  
VIN = 16V  
5.9  
5.8  
5.7  
Bootstrap  
Configuration  
OUT = 1.8V  
VEN= 5V  
V
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT CURRENT (A)  
Minimum Duty Cycle  
vs. Input Voltage  
Bootstrap Drive Current  
vs. Input Voltage  
350  
300  
250  
200  
150  
100  
50  
12  
10  
8
6
4
VIN = 12V  
VFB = 1.5V  
2
VOUT = 1.8V  
0
0
0
2 4 6 8 10 12 14 16 18 20  
0
5
10 15 20 25 30  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
M9999-012610  
January 2010  
6
Micrel, Inc.  
MIC4685  
Feedback Voltage  
vs. Input Voltage  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
IOUT = 10mA  
VOUT = 1.8V  
1.205  
0
5
10 15 20 25 30  
INPUT VOLTAGE (V)  
Feedback Voltage  
vs. Temperature  
1.258  
1.248  
1.238  
1.228  
1.218  
1.208  
1.198  
IOUT = 10mA  
VIN = 12V  
VOUT = 1.8V  
-40-20 0 20 40 60 80 100120140  
TEMPERATURE°(C)  
Enable Threshold  
vs. Temperature  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
Upper Threshold  
Lower Threshold  
VIN = 12V  
VOUT = 5V  
IOUT = 100mA  
TEMPERATURE°(C)  
M9999-012610  
January 2010  
7
Micrel, Inc.  
MIC4685  
Typical Safe Operating Area (SOA)  
(SOA measured on the MIC4685 Evaluation Board*)  
Typical 5V Output SOA  
Standard Configuration  
Typical 3.3V Output SOA  
Typical 2.5V Output SOA  
5.0  
TA = 25°C  
4.5  
TJ = 125°C  
4.0  
D = Max  
3.5  
3.0  
2.5  
2.0  
TA = 60°C  
1.5  
TJ = 125°C  
1.0  
D = Max  
0.5  
0.0  
0
5
10 15 20 25 30 35  
INPUT VOLTAGE (V)  
Typical 5.0V Output SOA  
Typical 1.8V Output SOA  
Standard Configuration  
Typical 3.3V Output SOA  
5.0  
TA = 25°C  
TJ = 125°C  
D = Max  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TA = 60°C  
TJ = 125°C  
D = Max  
0
5
10 15 20 25 30 35  
INPUT VOLTAGE (V)  
Typical 2.5V Output SOA  
Typical 1.8V Output SOA  
* IOUT <3A, D1: Diode Inc. B340 (3A/40V)  
OUT <3A, D1: SBM1040 (10A/40V)  
I
M9999-012610  
January 2010  
8
Micrel, Inc.  
MIC4685  
Functional Characteristics  
Frequency Foldback  
The MIC4685 folds the switching frequency back during  
a hard short circuit condition to reduce the energy per  
cycle and protect the device.  
M9999-012610  
January 2010  
9
Micrel, Inc.  
MIC4685  
Functional Diagram  
VIN  
IN  
Bootstrap  
Charger  
Enable  
Internal  
Regulator  
R1  
R2  
VOUT = VREF  
+1  
VOUT  
R1= R2  
–1  
200kHz  
Oscillator  
Thermal  
Shutdown  
Current  
Limit  
V
REF  
VREF = 1.235V  
Com-  
parator  
VOUT  
COUT  
SW  
FB  
Driver  
Reset  
R1  
R2  
Error  
Amp  
1.235V  
Bandgap  
Reference  
MIC4685  
Figure 1. Adjustable Regulator  
A higher feedback voltage increases the error amplier  
output voltage. higher error amplier voltage  
Functional Description  
The MIC4685 is a variable duty cycle switch-mode  
regulator with an internal power switch. Refer to the  
above block diagram.  
A
(comparator inverting input) causes the comparator to  
detect only the peaks of the sawtooth, reducing the duty  
cycle of the comparator output. A lower feedback voltage  
increases the duty cycle. The MIC4685 uses a voltage-  
mode control architecture.  
Supply Voltage  
The MIC4685 operates from a +4V to +30V (34V  
transient) unregulated input. Highest efciency operation  
is from a supply voltage around +12V. See the efciency  
curves in the “Typical Characteristics” section on page 5.  
Output Switching  
When the internal switch is ON, an increasing current  
ows from the supply VIN, through external storage  
inductor L1, to output capacitor COUT and the load.  
Energy is stored in the inductor as the current increases  
with time.  
Enable/Shutdown  
The enable (EN) input is TTL compatible. Tie the input  
high if unused. A logic-high enables the regulator. A  
logic-low shuts down the internal regulator which  
reduces the current to typically 150µA when VEN = 0V.  
When the internal switch is turned OFF, the collapse of  
the magnetic eld in L1 forces current to ow through  
fast recovery diode D1, charging COUT  
.
Feedback  
Output Capacitor  
In the adjustable version, an external resistive voltage  
divider is required from the output voltage to ground,  
center tapped to the FB pin. See Table 1 and Table 2 for  
recommended resistor values.  
External output capacitor COUT provides stabilization and  
reduces ripple.  
Return Paths  
During the ON portion of the cycle, the output capacitor  
and load currents return to the supply ground. During the  
OFF portion of the cycle, current is being supplied to the  
output capacitor and load by storage inductor L1, which  
means that D1 is part of the high-current return path.  
Duty Cycle Control  
A xed-gain error amplier compares the feedback  
signal with a 1.235V bandgap voltage reference. The  
resulting error amplier output voltage is compared to a  
200kHz sawtooth waveform to produce a voltage  
controlled variable duty cycle output.  
M9999-012610  
January 2010  
10  
Micrel, Inc.  
MIC4685  
The efciency is used to determine how much of the  
output power (POUT) is dissipated in the regulator circuit  
(PD).  
Application Information  
Adjustable Regulators  
Adjustable regulators require a 1.235V feedback signal.  
Recommended voltage-divider resistor values for  
common output voltages are detailed in Table 1.  
POUT  
PD  
PD  
=
=
POUT  
η
For other voltages, the resistor values can be  
determined using the following formulas:  
7.5W  
0.84  
7.5W  
R1  
R2  
PD = 1.43W  
A worst-case rule of thumb is to assume that 80% of the  
VOUT = VREF  
+ 1  
total output power dissipation is in the MIC4685 (PD(IC)  
and 20% is in the diode-inductor-capacitor circuit.  
)
VOUT  
VREF  
1  
R1 = R2  
PD(IC) = 0.8 PD  
PD(IC) = 0.8 × 1.43W  
PD(IC) = 1.14W  
V
REF = 1.235V  
Thermal Considerations  
Calculate the worst-case junction temperature:  
TJ = PD(IC) θJC + (TC – TA) + TA(max)  
where:  
The MIC4685 is capable of high current due to the  
thermally optimized SPAK package.  
One limitation of the maximum output current on any  
MIC4685 design is the junction-to-ambient thermal  
resistance (θJA) of the design (package and ground  
plane).  
TJ = MIC4685 junction temperature  
PD(IC) = MIC4685 power dissipation  
θJC = junction-to-case thermal resistance.  
Examining θJA in more detail:  
The θJC for the MIC4685’s 7-pin SPAK is approximately  
2.2°C/W.  
θ
JA = (θJC + θCA)  
TC = “pin” temperature measurement taken at  
the Tab.  
where:  
θ
θ
JC = junction-to-case thermal resistance  
CA = case-to-ambient thermal resistance  
TA = ambient temperature  
TA(max) = maximum ambient operating temp-  
erature for the specic design.  
θJC is a relatively constant 2.2°C/W for a 7-pin SPAK.  
θCA is dependent upon layout and is primarily governed  
by the connection of pins 4, and Tab to the ground  
plane. The purpose of the ground plane is to function as  
a heat sink.  
Calculating the maximum junction temperature given a  
maximum ambient temperature of 60°C:  
TJ = 1.14 × 2.2°C + (46°C – 25°C) + 60°C  
TJ = 83.5°C  
Checking the Maximum Junction Temperature:  
This value is within the allowable maximum operating  
junction temperature of 125°C as listed in “Operating  
Ratings.” Typical thermal shutdown is 160°C and is  
listed in “Electrical Characteristics.” Also refer to the  
“Typical Safe Operating Area (SOA)” graphs in this  
document.  
For this example, with an output power (POUT) of 7.5W,  
(5V output at 1.5A with VIN = 12V) and 60°C maximum  
ambient temperature, what is the junction temperature?  
Referring to the “Typical Characteristics: 5V Output  
Efciency” graph, read the efciency (η) for 1.5A output  
current at VIN = 12V or perform you own measurement.  
η = 84%  
M9999-012610  
January 2010  
11  
Micrel, Inc.  
MIC4685  
Layout Considerations  
Bootstrap Diode  
Layout is very important when designing any switching  
regulator. Rapidly changing currents, through the printed  
circuit board traces and stray inductance, can generate  
voltage transients which can cause problems.  
The bootstrap diode provides an external bias source  
directly to the main pass element, this reduces VSAT thus  
allowing the MIC4685 to be used in very low head-room  
applications i.e., 5VIN to 3.3VOUT with high efciencies.  
Bootstrap diode not for use if VIN exceeds 16V, VIN. See  
Figure 2.  
To minimize stray inductance and ground loops, keep  
trace lengths as short as possible. For example, keep  
D1 close to pin 6 and pin 4, and Tab, keep L1 away from  
sensitive node FB, and keep CIN close to pin 2 and pin 4,  
and Tab. See “Applications Information: Thermal  
Considerations” for ground plane layout.  
The feedback pin should be kept as far way from the  
switching elements (usually L1 and D1) as possible.  
A circuit with sample layouts are provided. See Figure 6.  
Gerber les are available upon request.  
VIN  
+4V to +30V  
MIC4685_R  
(34V transient)  
2
5
1
6
IN  
EN  
BS  
L1  
VOUT  
R1  
SW  
CIN  
39µH  
COUT  
3
FB  
7-pin  
SPAK  
GND  
D1  
4,Tab  
R2  
4, Tab  
GND  
Figure 2. Critical Traces for Layout  
M9999-012610  
January 2010  
12  
Micrel, Inc.  
MIC4685  
Recommended Components for a Given Output Voltage (Bootstrap Configuration)  
VOUT  
IOUT  
*
R1  
R2  
VIN  
C1  
D1  
D2  
L1  
C4  
5.0V  
2.1A  
3.01k  
976Ω  
7.5V – 16V  
47µF, 20V  
Vishay-Dale  
595D476X0020D2T + Vishay  
B330A  
3A, 30V  
Schottky  
1A, 20V  
Schottky  
B120-E3  
39µH  
Sumida  
CDRH127R-390MC  
330µF, 6.3V  
Vishay-Dale  
594D337X06R3D2T  
3.3V  
2.5V  
1.8V  
2.2A  
2.0A  
2.0A  
3.01k  
3.01k  
3.01k  
1.78k  
2.94k  
6.49k  
6.0V – 16V  
5.0V – 16V  
5.0V – 16V  
47µF, 20V  
Vishay-Dale  
595D476X0020D2T B330A  
3A, 30V  
Schottky  
1A, 20V  
Schottky  
B120-E3  
39µH  
Sumida  
CDRH127R-390MC  
330µF, 6.3V  
Vishay-Dale  
594D337X06R3D2T  
47µF, 20V  
Vishay-Dale  
595D476X0020D2T B330A  
3A, 30V  
Schottky  
1A, 20V  
Schottky  
B120-E3  
39µH  
Sumida  
CDRH127R-390MC  
330µF, 6.3V  
Vishay-Dale  
594D337X06R3D2T  
47µF, 20V  
Vishay-Dale  
595D476X0020D2T + Vishay  
B330A  
3A, 30V  
Schottky  
1A, 20V  
Schottky  
B120-E3  
39µH  
Sumida  
CDRH127R-390MC  
330µF, 6.3V  
Vishay-Dale  
594D337X06R3D2T  
*
Maximum output current at minimum input voltage. See SOA curves for maximum output current vs. Input voltage.  
Table 1. Recommended Components for Common Output Voltages  
D2  
MBRX120  
1A/20V  
JP3  
L1  
39µH  
J1  
J2  
U1 MIC4685_R  
VIN  
VOUT  
2
5
6
IN  
SW  
C3  
0.33µF  
50V  
1
3
C2  
0.1µF  
50V  
BS  
FB  
C4*  
optional  
R1  
R2  
C1  
ON  
47µF  
20V  
J3  
GND  
EN  
C5  
330µF  
6.3V  
C7  
0.1µF  
50V  
OFF  
D1  
GND  
4, Tab  
B330A  
or  
SS33  
J4  
GND  
* C4 can be used to provide additional stability  
and improved transient response.  
Note: optimized for 5VOUT  
Figure 3. Schematic Diagram  
M9999-012610  
January 2010  
13  
Micrel, Inc.  
MIC4685  
Recommended Components for a Given Output Voltage (Standard Configuration)  
VOUT  
IOUT  
*
R1  
R2  
VIN  
C1  
D1  
L1  
C5  
5.0V  
2.0A  
3.01k  
976Ω  
8V – 30V  
33µF, 35V  
Vishay-Dale  
3A, 40V  
Schottky  
39µH  
Sumida  
330µF, 6.3V  
Vishay-Dale  
595D336X0035R2T B340A-E3 CDRH127-390MC  
594D337X06R3D2T  
3.3V  
2.5V  
1.8V  
2.4A  
3.01k  
3.01k  
3.01k  
1.78k  
2.94k  
6.49k  
8V – 26V  
7V – 23V  
6V – 16V  
33µF, 35V  
Vishay-Dale  
3A, 40V  
Schottky  
39µH  
Sumida  
330µF, 6.3V  
Vishay-Dale  
594D337X06R3D2T  
595D336X0035R2T B340A-E3 CDRH127-390MC  
2.35A  
2.0A  
33µF, 35V  
Vishay-Dale  
3A, 40V  
Schottky  
39µH  
Sumida  
330µF, 6.3V  
Vishay-Dale  
594D337X06R3D2T  
595D336X0035R2T B340A-E3 CDRH127-390MC  
33µF, 35V  
Vishay-Dale  
3A, 40V  
Schottky  
39µH  
Sumida  
330µF, 6.3V  
Vishay-Dale  
595D336X0035R2T + Vishay  
B340A-E3  
CDRH127-390MC  
594D337X06R3D2T  
*
Maximum output current at minimum input voltage. See SOA curves for maximum output current vs. Input voltage.  
Table 2. Recommended Components for Common Output Voltages  
D2***  
B340  
JP3  
J1  
VIN  
J2  
VOUT  
2A  
L1  
39µH  
U1 MIC4685_R  
(34V transient)  
2
5
6
IN  
SW  
C3  
0.33µF  
50V  
1
3
C2  
0.1µF  
50V  
BS  
FB  
C4*  
R1  
optional  
C1  
33µF  
35V  
J3  
GND  
3.01k  
ON  
EN  
C5  
330µF  
6.3V  
C7  
0.1µF  
50V  
OFF  
D1  
B340A  
R2  
6.49k  
R3  
2.94k  
R4  
1.78k  
R5  
C6**  
GND  
4, Tab  
976W  
1
2
3
5
7
JP1a  
1.8V  
JP1b  
2.5V  
JP1c  
3.3V  
JP1d  
5.0V  
J4  
GND  
8
4
6
* C4 can be used to provide additional stability  
and improved transient response.  
Note: optimized for 5VOUT  
** C6 Optional  
*** D2 is not used for standard configuration and JP3 is open.  
Figure 4. Evaluation Board Schematic Diagram  
M9999-012610  
January 2010  
14  
Micrel, Inc.  
MIC4685  
Printed Circuit Board  
Figure 5a. Top Layer  
Figure 5b. Bottom Layer  
M9999-012610  
January 2010  
15  
Micrel, Inc.  
MIC4685  
Abbreviated Bill of Materials (Critical Components)  
Item  
C1  
Part Number  
594D336X0035R2T  
VJ0805Y104KXAAB  
GRM426X7R334K50  
VJ1206Y334KXAAT  
Optional  
Manufacturer  
Vishay Sprague(1)  
Vitramon  
Description  
33µF 35V  
Qty.  
1
2
C2, C7  
0.1µF 50V  
Murata(5)  
Vishay(1)  
0.33µF, 50V ceramic capacitor  
0.33µF, 50V ceramic capacitor  
1800pF, 50V ceramic  
330µF, 6.3V, tantalum  
Schottky 3A 40V  
C3  
C4*  
C5  
1
1
1
1
1
1
1
594D337X06R3D2T  
B340A  
Vishay Sprague(1)  
Diode Inc(2)  
Vishay(1)  
B340LA-EA  
Schottky 3A 40V  
D1  
SSA34A  
Vishay(1)  
Vishay(1)  
Vishay(1)  
Schottky 3A 40V  
B340A  
Schottky 3A 40V  
B120-EA  
Schottky 3A 40V  
D2  
B340A  
Diode Inc(2)  
Micro Commercial Component(4)  
Sumida(3)  
Schottky 3A 40V  
1
MBRX120  
Schottky 1A 20V  
L1  
R1  
R2  
R3  
R4  
R5  
U1  
CDRH127-390MC  
CRCW08053011FKEY3  
CRCW08056491FKEY3  
CRCW08052941FKEY3  
CRCW08051781FKEY3  
CRCW08051781FKEY3  
MIC4685BR/WR  
39µH  
1
1
1
1
1
1
1
Vishay(1)  
Vishay(1)  
Vishay(1)  
Vishay(1)  
Vishay(1)  
Micrel, Inc.(6)  
3K01, 1%, 1/10W, 805  
6K49, 1%, 1/10W, 805  
2K94, 1%, 1/10W, 805  
1K78, 1%, 1/10W, 805  
976, 1%, 1/10W, 805  
3A 200kHz SPAK Buck Regulator  
Notes:  
1. Vishay Sprague, Inc.: www.vishay.com  
2. Diodes Inc.: www.diodes.com  
3. Sumida: www.sumida.com  
4. Micro Commercial Component: www.mccsemi.com  
5. Murata: www.murata.com  
6. Micrel, Inc.: www.website.com  
M9999-012610  
January 2010  
16  
Micrel, Inc.  
MIC4685  
Package Information  
7-SPAK (R)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its  
use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2004 Micrel, Incorporated.  
M9999-012610  
January 2010  
17  

相关型号:

MIC4685-3.3WR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7
MICROCHIP

MIC4685-3.3YR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7
MICROCHIP

MIC4685-5.0BR

Switching Regulator, Voltage-mode, 1A, 225kHz Switching Freq-Max, PSSO7, SPAK-7
MICROCHIP

MIC4685-5.0WR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7
MICROCHIP

MIC4685BR

3A SPAK SuperSwitcher⑩ Buck Regulator
MICREL

MIC4685BR

Switching Regulator, Voltage-mode, 1A, 225kHz Switching Freq-Max, PSSO7, SPAK-7
MICROCHIP

MIC4685BR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7, SPAK-7
ROCHESTER

MIC4685BRTR

SWITCHING REGULATOR, 225 kHz SWITCHING FREQ-MAX, PSSO7, SPAK-7
ROCHESTER

MIC4685WR

3A SPAK SuperSwitcher Buck Regulator
MICREL

MIC4685WR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7
MICROCHIP

MIC4685WR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7, ROHS COMPLIANT, SPAK-7
ROCHESTER

MIC4685WR-TR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7
MICREL