MIC49150-1.2BMMTR [MICROCHIP]

Fixed Positive LDO Regulator, 1.2V, 0.5V Dropout, PDSO8, MSOP-8;
MIC49150-1.2BMMTR
型号: MIC49150-1.2BMMTR
厂家: MICROCHIP    MICROCHIP
描述:

Fixed Positive LDO Regulator, 1.2V, 0.5V Dropout, PDSO8, MSOP-8

光电二极管 输出元件 调节器
文件: 总12页 (文件大小:795K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC49150  
1.5A Low Voltage LDO Regulator w/Dual Input Voltages  
General Description  
Features  
The MIC49150 is a high-bandwidth, low-dropout, 1.5A volt-  
age regulator ideal for powering core voltages of low-power  
microprocessors. The MIC49150 implements a dual supply  
configuration allowing for very low output impedance and  
very fast transient response.  
• Input Voltage Range:  
V : 1.4V to 6.5V  
IN  
V
: 3.0V to 6.5V  
BIAS  
Stable with 1µF ceramic capacitor  
• ±1% initial tolerance  
• Maximum dropout voltage (V –V  
) of 500mV over  
The MIC49150 requires a bias input supply and a main input  
supply,allowingforultra-lowinputvoltagesonthemainsupply  
rail. The input supply operates from 1.4V to 6.5V and the bias  
supply requires between 3V and 6.5V for proper operation.  
The MIC49150 offers fixed output voltages from 0.9V to 1.8V  
and adjustable output voltages down to 0.9V.  
IN  
OUT  
temperature  
Adjustable output voltage down to 0.9V  
• Ultra fast transient response (Up to 10MHz bandwidth)  
• Excellent line and load regulation specifications  
• Logic controlled shutdown option  
• Thermal shutdown and current limit protection  
• Power MSOP-8 and S-Pak packages  
The MIC49150 requires a minimum of output capacitance for  
stability, working optimally with small ceramic capacitors.  
• Junction temperature range: –40°C to 125°C  
The MIC49150 is available in an 8-pin power MSOP pack-  
age and a 5-pin S-Pak. Its operating temperature range is  
–40°C to +125°C.  
Applications  
• Graphics processors  
• PC add-in cards  
• Microprocessor core voltage supply  
• Low voltage digital ICs  
• High efficiency linear power supplies  
• SMPS post regulators  
Typical Application  
Load Transient Response  
MIC49150BR  
VIN = 1.8V  
VOUT = 1.0V  
IN  
OUT  
R1  
R2  
V
BIAS = 3.3V  
CBIAS = 1µ  
BIAS  
ADJ  
VBIAS = 3.3V  
VIN = 1.8V  
VOUT = 1V  
COUT  
Ceramic  
= 1µF  
F
COUT = 1µF ceramic  
GND  
Ceramic  
CIN = 1µ  
F
Ceramic  
Low Voltage,  
Fast Transient Response Regulator  
TIME (10µs/div.)  
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
August 2005  
1
M9999-082505-B  
MIC49150  
Micrel  
Ordering Information  
Part Number  
Output  
Voltage Junction Temp. Range  
Package  
Current  
Standard  
Pb-Free /  
RoHS Compliant  
MIC49150-0.9BMM MIC49150-0.9YMM  
MIC49150-1.2BMM MIC49150-1.2YMM  
MIC49150-1.5BMM MIC49150-1.5YMM  
MIC49150-1.8BMM MIC49150-1.8YMM  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
0.9V  
1.2V  
1.5V  
1.8V  
Adj.  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
Power MSOP-8  
Power MSOP-8  
Power MSOP-8  
Power MSOP-8  
Power MSOP-8  
S-Pak-5  
MIC49150BMM  
MIC49150-0.9BR  
MIC49150-1.2BR  
MIC49150-1.5BR  
MIC49150-1.8BR  
MIC49150BR  
MIC49150YMM  
MIC49150-0.9WR*  
MIC49150-1.2WR*  
MIC49150-1.5WR*  
MIC49150-1.8WR*  
MIC49150WR*  
0.9V  
1.2V  
1.5V  
1.8V  
Adj.  
S-Pak-5  
S-Pak-5  
S-Pak-5  
S-Pak-5  
* RoHS compliant with "high-melting solder" exemption.  
Pin Configuration  
GN  
GN  
GN  
GN  
1
2
3
4
8
7
6
5
EN/ADJ.  
VBIAS  
5
4
3
2
1
VOUT  
VIN  
GND  
VBIAS  
EN/ADJ.  
VIN  
VOUT  
5-Lead S-Pak (R)  
Power MSOP-8 (MM)  
Pin Description  
MIC49150  
MIC49150  
MSOP8  
S-Pak  
Pin Name  
Pin Function  
1
1
Enable  
Enable (Input): CMOS compatible input. Logic high = enable, logic low =  
shutdown.  
ADJ.  
VIN  
Adjustable regulator feedback input. Connect to resistor voltage divider.  
Input voltage which supplies current to the output power device.  
Regulator Output.  
3
4
2
4
5
2
VOUT  
VBIAS  
Input Bias Voltage for powering all circuitry on the regulator with the excep-  
tion of the output power device.  
5/6/7/8  
3
GND  
Ground (TAB is connected to ground on S-Pak).  
M9999-082505-B  
2
August 2005  
MIC49150  
Micrel  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (V )........................................................8V  
Supply Voltage (V ).........................................1.4V to 6.5V  
IN  
IN  
Bias Supply Voltage (V  
) ............................................8V  
Bias Supply Voltage (V  
) ................................3V to 6.5V  
BIAS  
BIAS  
Enable Input Voltage (V ) .............................................8V  
Enable Input Voltage (V ) .................................0V to 6.5V  
EN  
EN  
Power Dissipation..................................... Internally Limited  
Junction Temperature Range ..............–40°C ≤T ≤ +125°C  
J
(3)  
ESD Rating ............................................................... 2kV  
Package Thermal Resistance  
....................................................................  
MSOP-8 )  
80°C/W  
JA  
S-PAK) ...........................................................2°C/W  
JC  
Electrical Characteristics(4)  
TA = 25°C with VBIAS = VOUT +2.1V; VIN = VOUT + 1V, unless otherwise specified; bold values indicate –40°C<TJ<+125°C(5)  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Output Voltage Accuracy  
At 25°C  
Over temperature range  
–1  
–2  
+1  
+2  
%
%
Line Regulation  
Load Regulation  
VIN = VOUT +1V to 6.5V  
IL = 0mA to 1.5A  
–0.1  
0.01  
0.2  
+0.1  
%/V  
1
1.5  
%
%
Dropout Voltage (VIN - VOUT  
)
IL = 750mA  
IL = 1.5A  
130  
280  
200  
300  
400  
500  
mV  
mV  
mV  
mV  
Dropout Voltage (VBIAS - VOUT  
Note 5  
)
IL = 750mA  
IL = 1.5A  
1.3  
1.65  
V
V
V
1.9  
2.1  
Ground Pin Current Note 6  
IL = 0mA  
IL = 1.5A  
15  
15  
mA  
mA  
mA  
25  
30  
Ground Pin Current in Shutdown  
Current thru VBIAS  
VEN ≤ 0.6V, (IBIAS + ICC) Note 7  
0.5  
9
1
2
µA  
µA  
IL = 0mA  
15  
25  
mA  
mA  
mA  
IL = 1.5A  
32  
Current Limit  
MIC49150  
1.6  
2.3  
3.5  
4
A
A
Enable Input (Note 7)  
Enable Input Threshold  
(Fixed Voltage only)  
Regulator enable  
Regulator shutdown  
1.6  
V
V
0.6  
Enable Pin Input Current  
Reference  
Independent of state  
0.1  
0.9  
1
µA  
Reference Voltage  
0.891  
0.882  
0.909  
0.918  
V
V
Notes  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
4. Specification for packaged product only.  
5. For VOUT ≤1V, VBIAS dropout specification does not apply due to a minimum 3V VBIAS input.  
6. IGND = IBIAS + (IIN – IOUT). At high loads, input current on VIN will be less than the output current, due to drive current being supplied by VBIAS  
.
7. Fixed output voltage versions only.  
August 2005  
3
M9999-082505-B  
MIC49150  
Micrel  
Functional Diagram  
VBIAS  
VIN  
Ilimit  
VEN ADJ  
/
Fixed  
Bandgap  
Enable  
Adj.  
VOUT  
VIN Open  
Circuit  
R1  
R2  
Fixed  
M9999-082505-B  
4
August 2005  
MIC49150  
Micrel  
Typical Characteristics  
P ower S upply R ejection R atio  
P ower S upply R ejection R atio  
(B ias S uppl  
Dropout Voltage  
(Input S uppl  
(Input S uppl  
y
)
y
)
y)  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
300  
250  
200  
150  
100  
50  
VBIAS = 3.3V  
VIN = 1.8V  
VOUT = 1.0V  
IOUT = 1.5A  
VBIAS = 3.3V  
VIN = 1.8V  
VOUT = 1.0V  
IOUT = 1.5A  
VBIAS = 5V  
VOUT = 1.0V  
C OUT = 1µF ceramic  
C OUT = 1µF ceramic  
0
0.01  
0.1  
1
10  
100 1000  
0.01  
0.1  
1
10  
100 1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
OUTPUT CURRENT (mA)  
Dropout Voltage  
(B ias S upply)  
Dropout Voltage  
vs . Temperature  
(Input S upply)  
Dropout Voltage  
vs . Temperature  
(B ias S upply)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
400  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
VBIAS = 5V  
IOUT = 1.5A  
VOUT = 1.5V  
VIN = 2.5V  
IOUT = 1.5A  
VOUT = 1.5V  
VIN = 2.5V  
VOUT = 1.5V  
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE(°C)  
TEMPERATURE(°C)  
OUTPUT CURRENT (mA)  
Dropout C haracteris tics  
(Input Voltage)  
Dropout C haracteris tics  
(B ias Voltage)  
L oad R egulation  
1.505  
1.504  
1.503  
1.502  
1.501  
1.500  
1.499  
1.498  
1.497  
1.496  
1.495  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
IOUT = 10mA  
IOUT = 10mA  
IOUT = 1.5A  
IOUT = 1.5A  
VBIAS = 5V  
VIN = 2.5V  
VBIAS = 5V  
VOUT = 1.5V  
VIN = 2.5V  
VOUT = 1.5V  
0
0.5  
1
1.5  
2
2.5  
0
1
2
3
4
5
6
7
INPUT VOLTAGE (V)  
BIAS VOLTAGE (V)  
OUTPUT CURRENT (mA)  
Maximum B ias C urrent  
vs . B ias Voltage  
Maximum B ias C urrent  
vs . Temperature  
B ias C urrent  
vs . Temperature  
45  
40  
35  
30  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VIN = 2.5V  
VOUT = 1.5V  
VBIAS = 5V  
VADJ = 0V  
IOUT = 1.5A  
VIN = 2.5V  
IOUT = 750mA  
VBIAS = 5V  
VADJ = 0V  
VIN = 2.5V  
25  
20  
15  
10  
5
IOUT = 1500mA  
IOUT = 100mA  
*Note: Maximum bias current is bias  
current with input in dropout  
IOUT = 10mA  
20 40 60 80 100 120  
0
0
0
-40 -20  
0
-40 -20  
0
20 40 60 80 100 120  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
TEMPERATURE (°C)  
TEMPERATURE(°C)  
BIAS VOLTAGE (V)  
August 2005  
5
M9999-082505-B  
MIC49150  
Micrel  
B ias C urrent  
vs . Output C urrent  
G round C urrent  
vs . B ias Voltage  
B ias C urrent  
vs . B ias Voltage  
50  
40  
30  
20  
10  
0
14  
12  
10  
8
14  
12  
10  
8
IBIAS  
VBIAS = 5V  
VIN = 2.5V  
VOUT = 1.5V  
IBIAS  
6
6
IOUT = 100mA  
VIN = 2.5V  
VOUT = 1.5V  
IOUT = 0mA  
VIN = 2.5V  
VOUT = 1.5V  
4
4
2
2
0
0
3
3.5  
4
4.5  
5
5.5  
6
6.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
BIAS VOLTAGE (V)  
BIAS VOLTAGE (V)  
OUTPUT CURRENT (mA)  
B ias C urrent  
vs . B ias Voltage  
B ias C urrent  
vs . B ias Voltage  
B ias C urrent  
vs . Input Voltage  
20  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
VBIAS = 5V  
VOUT = 1.5V  
IOUT = 750mA  
VIN = 2.5V  
VOUT = 1.5V  
18  
16  
14  
12  
10  
8
IBIAS  
IOUT = 100mA  
IBIAS  
IOUT = 0mA  
IOUT = 1500mA  
VIN = 2.5V  
VOUT = 1.5V  
6
4
2
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
INPUT VOLTAGE (V)  
BIAS VOLTAGE (V)  
BIAS VOLTAGE (V)  
B ias C urrent  
vs . Input Voltage  
R eference Voltage  
vs . Input Voltage  
R eference Voltage  
vs . B ias Voltage  
0.901  
0.900  
0.899  
0.901  
0.900  
0.899  
300  
VBIAS = 5V  
250 VOUT = 1.5V  
1500mA  
VBIAS = 5V  
VIN = 2.5V  
200  
750mA  
150  
100  
50  
0
0
0.5  
1
1.5  
2
2.5  
1.4  
2.4  
3.4  
4.4  
5.4  
6.4  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
BIAS VOLTAGE (V)  
Output Voltage  
vs . Temperature  
S hort C ircuit C urrent  
vs . Temperature  
E nable Thres hold  
vs . B ias Voltage  
1.55  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VBIAS = 5V  
VIN = 2.5V  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
ON  
OFF  
VBIAS = 5V  
VIN = 2.5V  
VOUT = 0V  
VIN = 2.5V  
0
3
-40 -20  
0
20 40 60 80 100 120  
3.5  
4
4.5  
5
5.5  
6
6.5  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
BIAS VOLTAGE (V)  
TEMPERATURE (°C)  
M9999-082505-B  
6
August 2005  
MIC49150  
Micrel  
E nable Thres hold  
vs . Temperature  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
ON  
OFF  
VBIAS = 5V  
VIN = 2.5V  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
August 2005  
7
M9999-082505-B  
MIC49150  
Micrel  
Functional Characteristics  
Load Transient Response  
Bias Voltage  
Line Transient Response  
VBIAS = 3.3V  
VIN = 1.8V  
VOUT = 1V  
VBIAS = 6.5V  
COUT = 1µF ceramic  
VBIAS = 3.3V  
VIN = 1.8V  
VOUT = 1V  
COUT = 1µF ceramic  
IOUT = 1.5A  
TIME (10µs/div.)  
TIME (400µs/div.)  
Input Voltage  
Line Transient Response  
VIN = 6.5V  
VIN = 1.8V  
VBIAS = 3.3V  
VOUT = 1V  
COUT = 1µF ceramic  
IOUT = 1.5A  
TIME (400µs/div.)  
M9999-082505-B  
8
August 2005  
MIC49150  
Micrel  
Input Capacitor  
Applications Information  
An input capacitor of 1µF or greater is recommended when  
the device is more than 4" away from the bulk supply capaci-  
tance, or when the supply is a battery. Small, surface-mount,  
ceramic chip capacitors can be used for the bypassing. The  
capacitor should be placed within 1" of the device for optimal  
performance. Larger values will help to improve ripple rejec-  
tion by bypassing the input to the regulator, further improving  
the integrity of the output voltage.  
The MIC49150 is an ultra-high performance, low-dropout  
linear regulator designed for high current applications requir-  
ing fast transient response. The MIC49150 utilizes two input  
supplies, significantly reducing dropout voltage, perfect for  
low-voltage, DC-to-DC conversion. The MIC49150 requires  
a minimum of external components and obtains a bandwidth  
of up to 10MHz. As a µCap regulator, the output is tolerant  
of virtually any type of capacitor including ceramic type and  
tantalum type capacitors.  
Thermal Design  
The MIC49150 regulator is fully protected from damage due  
to fault conditions, offering linear current limiting and thermal  
shutdown.  
Linear regulators are simple to use. The most complicated  
design parameters to consider are thermal characteristics.  
Thermal design requires the following application-specific  
parameters:  
Bias Supply Voltage  
• Maximum ambient temperature (T )  
V
, requiring relatively light current, provides power to the  
A
BIAS  
controlportionoftheMIC49150.V  
requiresapproximately  
• Output current (I  
)
BIAS  
OUT  
33mA for a 1.5A load current. Dropout conditions require  
higher currents. Most of the biasing current is used to supply  
the base current to the pass transistor. This allows the pass  
element to be driven into saturation, reducing the dropout to  
300mV at a 1.5A load current. Bypassing on the bias pin is  
recommended to improve performance of the regulator dur-  
ing line and load transients. Small ceramic capacitors from  
• Output voltage (V  
)
)
OUT  
• Input voltage (V )  
IN  
• Ground current (I  
GND  
First,calculatethepowerdissipationoftheregulatorfromthese  
numbers and the device parameters from this datasheet.  
P = V × I + V  
× I  
– V  
× I  
D
IN  
IN  
BIAS  
BIAS  
OUT OUT  
V
to ground help reduce high frequency noise from being  
BIAS  
The input current will be less than the output current at high  
output currents as the load increases. The bias current is  
a sum of base drive and ground current. Ground current  
is constant over load current. Then the heat sink thermal  
resistance is determined with this formula:  
injected into the control circuitry from the bias rail and are  
good design practice. Good bypass techniques typically in-  
cludeonelargercapacitorsuchasa1µFceramicandsmaller  
valued capacitors such as 0.01µF or 0.001µF in parallel with  
that larger capacitor to decouple the bias supply. The V  
BIAS  
T
T  
A
input voltage must be 1.6V above the output voltage with a  
J(MAX)  
    
SA  
JC  
CS  
minimum V  
input voltage of 3 volts.  
BIAS  
P
D
Input Supply Voltage  
The heat sink may be significantly reduced in applications  
where the maximum input voltage is known and large com-  
pared with the dropout voltage. Use a series input resistor  
to drop excessive voltage and distribute the heat between  
this resistor and the regulator. The low-dropout properties  
of the MIC49150 allow significant reductions in regulator  
power dissipation and the associated heat sink without com-  
promising performance. When this technique is employed,  
a capacitor of at least 1µF is needed directly between the  
input and regulator ground. Refer to “Application Note 9” for  
further details and examples on thermal design and heat  
sink specification.  
V
provides the high current to the collector of the pass  
IN  
transistor. The minimum input voltage is 1.4V, allowing con-  
version from low voltage supplies.  
Output Capacitor  
The MIC49150 requires a minimum of output capacitance  
to maintain stability. However, proper capacitor selection  
is important to ensure desired transient response. The  
MIC49150 is specifically designed to be stable with virtually  
any capacitance value and ESR. A1µF ceramic chip capaci-  
tor should satisfy most applications. Output capacitance can  
be increased without bound. See “Typical Characteristic” for  
examples of load transient response.  
Minimum Load Current  
X7Rdielectricceramiccapacitorsarerecommendedbecause  
oftheirtemperatureperformance.X7R-typecapacitorschange  
capacitance by 15% over their operating temperature range  
and are the most stable type of ceramic capacitors. Z5U  
and Y5V dielectric capacitors change value by as much as  
50% and 60% respectively over their operating temperature  
ranges. To use a ceramic chip capacitor with Y5V dielectric,  
the value must be much higher than an X7R ceramic or a  
tantalumcapacitortoensurethesamecapacitancevalueover  
theoperatingtemperaturerange.Tantalumcapacitorshavea  
very stable dielectric (10% over their operating temperature  
range) and can also be used with this device.  
The MIC49150, unlike most other high current regulators,  
does not require a minimum load to maintain output voltage  
regulation.  
Power MSOP-8 Thermal Characteristics  
One of the secrets of the MIC49150’s performance is its  
powerMSOP-8packagefeaturinghalfthethermalresistance  
of a standard MSOP-8 package. Lower thermal resistance  
means more output current or higher input voltage for a given  
package size.  
August 2005  
9
M9999-082505-B  
MIC49150  
Micrel  
ꢈ��  
ꢇ��  
ꢆ��  
ꢅ��  
ꢄ��  
ꢃ��  
ꢂ��  
ꢁ��  
ꢀ��  
Lower thermal resistance is achieved by joining the four  
ground leads with the die attach paddle to create a single-  
piece electrical and thermal conductor. This concept has  
been used by MOSFET manufacturers for years, proving  
very reliable and cost effective for the user.  
Thermal resistance consists of two main elements, θ (junc-  
JC  
tion-to-case thermal resistance) and θ (case-to-ambient  
CA  
thermal resistance). See Figure 1. θ is the resistance from  
JC  
the die to the leads of the package. θ is the resistance  
CA  
�ꢉꢁꢄ �ꢉꢄ� �ꢉꢆꢄ ꢀꢉ�� ꢀꢉꢁꢄ ꢀꢉꢄ�  
ꢌꢋꢔꢍꢎꢏꢕꢖꢗꢗꢖꢌꢐꢘꢖꢋꢙꢏꢑꢔꢓ  
from the leads to the ambient air and it includes θ (case-  
CS  
to-sink thermal resistance) and θ (sink-to-ambient thermal  
resistance).  
SA  
Figure 2. Copper Area vs. Power-MSOP  
Power Dissipation (T  
ꢈ��  
)
Using the power MSOP-8 reduces the θ dramatically and  
JA  
JC  
allows the user to reduce θ . The total thermal resistance,  
CA  
ꢏꢛꢏꢀꢁꢄꢊ  
ꢇꢄꢊ  
ꢇ��  
ꢆ��  
ꢅ��  
ꢄ��  
ꢃ��  
ꢂ��  
ꢁ��  
ꢀ��  
θ
(junction-to-ambient thermal resistance) is the limiting  
JA  
ꢄ�ꢁꢄꢊ  
factor in calculating the maximum power dissipation capabil-  
ity of the device. Typically, the power MSOP-8 has a θ of  
JA  
80°C/W, this is significantly lower than the standard MSOP-8  
which is typically 160°C/W. θ is reduced because pins 5  
CA  
through 8 can now be soldered directly to a ground plane  
whichsignificantlyreducesthecase-to-sinkthermalresistance  
and sink to ambient thermal resistance.  
�ꢉꢁꢄ �ꢉꢄ� �ꢉꢆꢄ ꢀꢉ�� ꢀꢉꢁꢄ ꢀꢉꢄ�  
ꢌꢋꢔꢍꢎꢏꢕꢖꢗꢗꢖꢌꢐꢘꢖꢋꢙꢏꢑꢔꢓ  
Low-dropout linear regulators from Micrel are rated to a  
maximumjunctiontemperatureof125°C.Itisimportantnotto  
exceed this maximum junction temperature during operation  
of the device. To prevent this maximum junction temperature  
frombeingexceeded, theappropriategroundplaneheatsink  
must be used.  
Figure 3. Copper Area vs. Power-MSOP  
Power Dissipation (T )  
A
ΔT = T  
– T  
A(max)  
J(max)  
T
T
= 125°C  
J(max)  
= maximum ambient operating temperature  
A(max)  
MSOP-8  
For example, the maximum ambient temperature is 50°C,  
the ΔT is determined as follows:  
ΔT = 125°C – 50°C  
ΔT = 75°C  
JA  
Using Figure 2, the minimum amount of required copper can  
bedeterminedbasedontherequiredpowerdissipation.Power  
dissipation in a linear regulator is calculated as follows:  
ground plane  
heat sink area  
CA  
JC  
AMBIENT  
P = V × I + V  
× I  
– V  
× I  
D
IN  
IN  
BIAS  
BIAS  
OUT OUT  
printed circuit board  
Using a typical application of 750mA output current, 1.2V  
output voltage, 1.8V input voltage and 3.3V bias voltage, the  
power dissipation is as follows:  
Figure 1. Thermal Resistance  
Figure 2 shows copper area versus power dissipation with  
each trace corresponding to a different temperature rise  
above ambient.  
P = (1.8V) × (730mA) + 3.3V(30mA) – 1.2V(750mA)  
D
At full current, a small percentage of the output current is  
supplied from the bias supply, therefore the input current is  
less than the output current.  
Fromthesecurves,theminimumareaofcoppernecessaryfor  
the part to operate safely can be determined. The maximum  
allowable temperature rise must be calculated to determine  
operation along which curve.  
P = 513mW  
D
From Figure 2, the minimum current of copper required to op-  
2
erate this application at a T of 75°C is less than 100mm .  
M9999-082505-B  
10  
August 2005  
MIC49150  
Micrel  
Quick Method  
Enable  
Determine the power dissipation requirements for the design  
along with the maximum ambient temperature at which the  
device will be operated. Refer to Figure 3, which shows safe  
operating curves for three different ambient temperatures:  
25°C, 50°C and 85°C. From these curves, the minimum  
amount of copper can be determined by knowing the maxi-  
mum power dissipation required. If the maximum ambient  
temperature is 50°C and the power dissipation is as above,  
513mW, the curve in Figure 3 shows that the required area  
ThexedoutputvoltageversionsoftheMIC49150featurean  
active high enable input (EN) that allows on-off control of the  
regulator. Current drain reduces to “zero” when the device is  
shutdown, with only microamperes of leakage current. The  
EN input has TTL/CMOS compatible thresholds for simple  
logic interfacing. EN may be directly tied to V and pulled  
IN  
up to the maximum supply voltage  
2
of copper is less than 100mm .  
The θ of this package is ideally 80°C/W, but it will vary  
JA  
depending upon the availability of copper ground plane to  
which it is attached.  
Adjustable Regulator Design  
The MIC49150 adjustable version allows programming the  
output voltage anywhere between 0.9Vand 5V. Two resistors  
areused.TheresistorvaluebetweenV  
andtheadjustpin  
OUT  
should not exceed 10k. Larger values can cause instability.  
The resistor values are calculated by:  
V
OUT  
R1R2   
1  
0.9  
Where V  
is the desired output voltage.  
OUT  
August 2005  
11  
M9999-082505-B  
MIC49150  
Micrel  
Package Information  
0.122 (3.10)  
0.112 (2.84)  
0.199 (5.05)  
0.187 (4.74)  
DIMENSIONS:  
INCH (MM)  
0.120 (3.05)  
0.116 (2.95)  
0.036 (0.90)  
0.032 (0.81)  
0.043 (1.09)  
0.038 (0.97)  
0.007 (0.1  
0.005 (0.1  
0.012 (0.30) R  
0.008 (0.20)  
0.004 (0.10)  
5 MAX  
0 MIN  
0.012 (0.3)  
0.012 (0.03)  
0.039 (0.99)  
0.0256 (0.65) TYP  
0.035 (0.89)  
0.021 (0.53)  
8-Lead MSOP (MM)  
5-Lead S-Pak (R)  
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com  
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's  
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2005 Micrel Incorporated  
M9999-082505-B  
12  
August 2005  

相关型号:

MIC49150-1.2BR

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-1.2BRTR

暂无描述
MICREL

MIC49150-1.2WR

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-1.2WR-TR

IC REG LDO 1.2V 1.5A SPAK-5
MICROCHIP

MIC49150-1.2YMM

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-1.2YMMTR

1.2V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO8, ROHS COMPLIANT, POWER, MSOP-8
MICROCHIP

MIC49150-1.5BMM

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-1.5BMMTR

Fixed Positive LDO Regulator, 1.5V, 0.5V Dropout, PDSO8, MSOP-8
MICROCHIP

MIC49150-1.5BR

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-1.5WR

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-1.5WR-TR

IC REG LDO 1.5V 1.5A SPAK-5
MICROCHIP

MIC49150-1.5YMM

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL