MIC5205-2.8YM5-TR [MICROCHIP]

2.8V FIXED POSITIVE LDO REGULATOR, 0.35V DROPOUT, PDSO5;
MIC5205-2.8YM5-TR
型号: MIC5205-2.8YM5-TR
厂家: MICROCHIP    MICROCHIP
描述:

2.8V FIXED POSITIVE LDO REGULATOR, 0.35V DROPOUT, PDSO5

光电二极管 输出元件 调节器
文件: 总20页 (文件大小:1336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5205  
150 mA Low-Noise LDO Regulator  
Features  
General Description  
• Ultra-Low Noise Output  
The MIC5205 is an efficient linear voltage regulator  
with ultra low-noise output, very low dropout voltage  
(typically 17 mV at light loads and 165 mV at 150 mA),  
and very low ground current (600 µA at 100 mA  
output). The MIC5205 offers better than 1% initial  
accuracy.  
• High Output Voltage Accuracy  
• Guaranteed 150 mA Output  
• Low Quiescent Current  
• Low Dropout Voltage  
• Extremely Tight Load and Line Regulation  
• Very Low Temperature Coefficient  
• Current and Thermal Limiting  
• Reverse-Battery Protection  
• Zero Off-Mode Current  
Designed especially for hand-held, battery-powered  
devices, the MIC5205 includes a CMOS or TTL  
compatible enable/shutdown control input. When shut  
down, power consumption drops nearly to zero.  
Regulator ground current increases only slightly in  
dropout, further prolonging battery life.  
• Logic-Controlled Electronic Enable  
Key MIC5205 features include a reference bypass pin  
to improve its already excellent low-noise performance,  
reversed-battery protection, current limiting, and  
overtemperature shutdown.  
Applications  
• Cellular Telephones  
• Laptop, Notebook, and Palmtop Computers  
• Battery-Powered Equipment  
The MIC5205 is available in fixed and adjustable output  
voltage versions in a small SOT-23-5 package.  
• PCMCIA VCC and VPP Regulation/Switching  
• Consumer/Personal Electronics  
• SMPS Post-Regulator and DC/DC Modules  
• High-Efficiency Linear Power Supplies  
For low-dropout regulators that are stable with ceramic  
output capacitors, see the µCap MIC5245/6/7 family.  
Package Type  
MIC5205  
5-Lead SOT-23 (M5)  
EN GND IN  
EN GND IN  
3
2
1
3
2
1
Part  
Identification  
LBAA  
KBAA  
LBxx  
KBxx  
Pb-Free  
Marking  
4
5
4
5
BYP  
OUT  
ADJ  
OUT  
2017 Microchip Technology Inc.  
DS20005785A-page 1  
MIC5205  
Typical Application Circuit  
MIC5205  
5-Lead SOT-23  
MIC5205-x.xYM5  
VIN  
VOUT  
1
2
3
5
COUT = 2.2μF  
tantalum  
4
Enable  
Shutdown  
Low-Noise Operation:  
EN  
CBYP  
C
BYP = 470pF, COUT 2.2μF  
EN (pin 3) may be  
connected directly  
to IN (pin 1).  
Basic Operation:  
BYP = not used, COUT 1μF  
C
Functional Block Diagrams  
Ultra-Low Noise Fixed Regulator  
OUT  
IN  
VOUT  
COUT  
VIN  
BYP  
CBYP  
(optional)  
Bandgap  
Ref.  
EN  
Current Limit  
Thermal Shutdown  
MIC5205-x.xYM5  
GND  
Ultra-Low Noise Adjustable  
Regulator  
OUT  
IN  
VOUT  
COUT  
VIN  
R1  
R2  
ADJ  
CBYP  
(optional)  
Bandgap  
Ref.  
EN  
VOUT = VREF (1 + R2/R1)  
Current Limit  
Thermal Shutdown  
MIC5205YM5  
GND  
DS20005785A-page 2  
2017 Microchip Technology Inc.  
MIC5205  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Supply Input Voltage (VIN) .......................................................................................................................... –20V to +20V  
Enable Input Voltage (VEN) ......................................................................................................................... –20V to +20V  
Power Dissipation (PD) (Note 1) ............................................................................................................Internally Limited  
Operating Ratings ‡  
Supply Input Voltage (VIN) ......................................................................................................................... +2.5V to +16V  
Enable Input Voltage (VEN) .................................................................................................................................0V to VIN  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated  
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
‡ Notice: The device is not guaranteed to function outside its operating ratings.  
Note 1: The maximum allowable power dissipation at any TA (ambient temperature) is PD(max) = (TJ(max) – TA)/JA  
.
Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the reg-  
ulator will go into thermal shutdown. The JA of the MIC5205-xxYM5 (all versions) is 220°C/W mounted on  
a PC board.  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: VIN = VOUT +1V; IL = 100 µA; CL = 1.0 µF; VEN 2.0V; TJ = +25°C, bold values indicate  
–40°C < TJ < +125°C, unless noted.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units Conditions  
–1  
1
Output Voltage Accuracy  
VO  
%
Variation from specified VOUT  
–2  
2
Output Voltage Temperature  
Coefficient  
VO/T  
VO/VO  
40  
ppm/°C Note 1  
0.004  
0.012  
0.05  
0.2  
0.5  
50  
Line Regulation  
Load Regulation  
%/V  
%
VIN = VOUT + 1V to 16V  
0.02  
VO/VO  
IL = 0.1 mA to 150 mA, Note 2  
IL = 100 µA  
10  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
µA  
70  
110  
150  
230  
250  
300  
275  
350  
1
IL = 50 mA  
Dropout Voltage, Note 3  
Quiescent Current  
VIN – VO  
140  
IL = 100 mA  
165  
IL = 150 mA  
0.01  
VEN 0.4V (shutdown)  
VEN 0.18V (shutdown)  
IGND  
5
µA  
2017 Microchip Technology Inc.  
DS20005785A-page 3  
 
MIC5205  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: VIN = VOUT +1V; IL = 100 µA; CL = 1.0 µF; VEN 2.0V; TJ = +25°C, bold values indicate  
–40°C < TJ < +125°C, unless noted.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units Conditions  
80  
125  
150  
600  
800  
1000  
1500  
1900  
2500  
µA  
VEN 2.0V, IL = 100 µA  
µA  
µA  
350  
IL = 50 mA  
IL = 100 mA  
IL = 150 mA  
µA  
Ground Pin Current, Note 4  
IGND  
600  
µA  
µA  
1300  
µA  
µA  
Ripple Rejection  
Current Limit  
PSRR  
ILIMIT  
75  
dB  
Frequency = 100 Hz, IL = 100 µA  
320  
0.05  
500  
mA  
%/W  
VOUT = 0V  
Note 5  
Thermal Regulation  
VO/PD  
IL = 50 mA, CL = 2.2 µF, 470 pF  
from BYP to GND  
Output Noise  
eNO  
260  
nV/Hz  
ENABLE Input  
0.4  
Enable Input Logic-Low  
Voltage  
VIL  
VIH  
IIL  
V
V
Regulator shutdown  
0.18  
Enable Input Logic-High  
Voltage  
2.0  
Regulator enabled  
2
0.01  
–1  
–2  
20  
25  
VIL 0.4V  
VIL 0.18V  
Enable Input Current  
µA  
5
VIL = 2.0V  
VIL = 2.0V  
IIH  
Note 1: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total  
temperature range.  
2: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are  
tested for load regulation in the load range from 0.1 mA to 150 mA. Changes in output voltage due to heat-  
ing effects are covered by the thermal regulation specification.  
3: Dropout Voltage is defined as the input to output differential at which the output voltage drops 2% below its  
nominal value measured at 1V differential.  
4: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current  
drawn from the supply is the sum of the load current plus the ground pin current.  
5: Thermal regulation is defined as the change in output voltage at a time “t” after a change in power dissipa-  
tion is applied, excluding load or line regulation effects. Specifications are for a 150 mA load pulse at VIN  
16V for t = 10 ms.  
=
DS20005785A-page 4  
2017 Microchip Technology Inc.  
 
 
MIC5205  
TEMPERATURE SPECIFICATIONS (Note 1)  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Junction Operating Temperature  
Range  
TJ  
–40  
+125  
°C  
Storage Temperature Range  
Lead Temperature  
TS  
–65  
+150  
+260  
°C  
°C  
Soldering, 5s  
Package Thermal Resistances  
Thermal Resistance SOT-23-5  
JA  
JC  
220  
130  
°C/W Note 2  
°C/W  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the  
maximum allowable power dissipation will cause the device operating junction temperature to exceed the  
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.  
2: The maximum allowable power dissipation at any TA (ambient temperature) is PD(max) = (TJ(max) – TA)/JA  
.
Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the reg-  
ulator will go into thermal shutdown. The JA of the MIC5205-xxYM5 (all versions) is 220°C/W mounted on  
a PC board.  
2017 Microchip Technology Inc.  
DS20005785A-page 5  
 
 
MIC5205  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
0
-20  
0
-20  
VIN = 6V  
OUT = 5V  
VIN = 6V  
VOUT = 5V  
V
-40  
-40  
-60  
-60  
-80  
-80  
IOUT = 100μA  
OUT = 1μF  
IOUT = 1mA  
COUT = 1μF  
C
-100  
-100  
1E+11E+21E1+k31E+41E+51E+6 E+7  
1E+11E+21E1+k31E+41E+51E+6 E+7  
10k 1M 10M  
100k  
10k  
1M 10M  
10 100  
100k  
10 100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 2-1:  
Power Supply Rejection  
FIGURE 2-4:  
Power Supply Rejection  
Ratio.  
Ratio.  
0
0
VIN = 6V  
OUT = 5V  
VIN = 6V  
VOUT = 5V  
V
-20  
-20  
-40  
-60  
-40  
-60  
IOUT = 1mA  
IOUT = 100μA  
-80  
-80  
C
C
OUT = 2.2μF  
BYP = 0.01μF  
C
C
OUT = 2.2μF  
BYP = 0.01μF  
-100  
-100  
1E+11E+21E1+k31E+41E+51E+6 E+7  
1E+11E+21E1+k31E+41E+51E+6 E+7  
10k 1M 10M  
100k  
10k  
1M 10M  
10 100  
100k  
10 100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 2-2:  
Power Supply Rejection  
FIGURE 2-5:  
Power Supply Rejection  
Ratio.  
Ratio.  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
1mA  
1mA  
IOUT = 100mA  
10mA  
IOUT = 100mA  
10mA  
COUT = 2.2μF  
COUT = 1μF  
CBYP = 0.01μF  
0
0.1  
0.2  
0.3  
0.4  
0
0.1  
0.2  
0.3  
0.4  
VOLTAGE DROP (V)  
VOLTAGE DROP (V)  
FIGURE 2-3:  
Power Supply Ripple  
FIGURE 2-6:  
Power Supply Ripple  
Rejection vs. Voltage Drop.  
Rejection vs. Voltage Drop.  
DS20005785A-page 6  
2017 Microchip Technology Inc.  
MIC5205  
0
-20  
0
-20  
VIN = 6V  
VOUT = 5V  
VIN = 6V  
OUT = 5V  
V
-40  
-40  
-60  
-60  
IOUT = 100mA  
-80  
-80  
IOUT = 10mA  
OUT = 1μF  
C
OUT = 1μF  
C
-100  
-100  
1E+11E+21E+31E+41E+51E+6 E+7  
1E+11E+21E+31E+41E+51E+6 E+7  
1k  
10k 1M 10M  
10  
100  
1k 10k  
1M  
10 100  
100k  
10M  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 2-7:  
Power Supply Rejection  
FIGURE 2-10:  
Power Supply Rejection  
Ratio.  
Ratio.  
0
-20  
0
VIN = 6V  
OUT = 5V  
VIN = 6V  
OUT = 5V  
V
V
-20  
-40  
-40  
-60  
-60  
IOUT = 100mA  
IOUT = 10mA  
-80  
-80  
C
C
OUT = 2.2μF  
BYP = 0.01μF  
C
C
OUT = 2.2μF  
BYP = 0.01μF  
-100  
-100  
1E+11E+21E+31E+41E+51E+6 E+7  
1k 10k  
1M  
10M  
10 100  
100k  
FREQUENCY (Hz)  
1E+11E+21E+31E+41E+51E+6 E+7  
1k 10k  
1M  
10M  
10 100  
100k  
FREQUENCY (Hz)  
FIGURE 2-11:  
Ratio.  
Power Supply Rejection  
FIGURE 2-8:  
Ratio.  
Power Supply Rejection  
320  
280  
240  
200  
160  
120  
80  
10000  
+125°C  
+25°C  
1000  
100  
10  
–40°C  
40  
0
0
40  
80  
120  
160  
10  
100  
1000  
10000  
OUTPUT CURRENT (mA)  
CAPACITANCE (pF)  
FIGURE 2-12:  
Current.  
Dropout Voltage vs. Output  
FIGURE 2-9:  
Capacitance.  
Turn-On Time vs. Bypass  
2017 Microchip Technology Inc.  
DS20005785A-page 7  
MIC5205  
10  
1
10  
1
10mA, COUT = 1μF  
100mA  
0.1  
0.01  
0.1  
1mA  
OUT = 1μF  
BYP = 10nF  
C
C
0.01  
0.001  
0.0001  
1mA  
10mA  
VOUT = 5V  
OUT = 10μF  
electrolytic  
BYP = 100pF  
C
0.001  
C
VOUT = 5V  
0.0001  
1E1+011E+21E+31E+41E+51E+61E+7  
1E10+11E+21E1k+31E+41E+51E1M+61E+7  
100  
10k 100k 10M  
1k  
100  
10k 100k 1M 10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 2-13:  
Noise Performance.  
FIGURE 2-16:  
Noise Performance.  
10  
10  
1
0.1  
1
0.1  
100mA  
10mA  
10mA  
100mA  
0.01  
0.01  
1mA  
VOUT = 5V  
OUT = 10μF  
electrolytic  
BYP = 1nF  
C
VOUT = 5V  
OUT = 10μF  
electrolytic  
1mA  
0.001  
0.001  
C
C
0.0001  
0.0001  
1E10+11E+21E1k+31E+41E+51E1M+61E+7  
100  
10k 100k  
FREQUENCY (Hz)  
10M  
1E10+11E+21E1k+31E+41E+51E1M+61E+7  
100  
10k 100k  
10M  
FREQUENCY (Hz)  
FIGURE 2-17:  
Noise Performance.  
FIGURE 2-14:  
Noise Performance.  
10  
10  
1
0.1  
1
0.1  
100mA  
1mA  
10mA  
100mA  
0.01  
0.01  
VOUT = 5V  
VOUT = 5V  
OUT = 22μF  
tantalum  
BYP = 10nF  
C
OUT = 10μF  
C
10mA  
1mA  
0.001  
0.0001  
0.001  
electrolytic  
C
BYP = 10nF  
C
0.0001  
1E1+011E+21E+31E+41E+51E+61E+7  
100 1k 10k 100k  
10M  
1M  
1E10+11E+21E1k+31E+41E+51E1M+61E+7  
100  
10k 100k  
FREQUENCY (Hz)  
10M  
FREQUENCY (Hz)  
FIGURE 2-18:  
Noise Performance.  
FIGURE 2-15:  
Noise Performance.  
DS20005785A-page 8  
2017 Microchip Technology Inc.  
MIC5205  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin Number  
Pin Number  
Fixed Version  
Pin Name  
Description  
Adj. Version  
1
2
3
1
2
3
IN  
GND  
EN  
Supply Input  
Ground  
Enable/Shutdown (Input): CMOS compatible input. Logic-high =  
enable, logic-low or open = shutdown  
4
5
4
BYP  
ADJ  
OUT  
Reference Bypass: Connect external 470 pF capacitor to GND to  
reduce output noise. May be left open.  
Adjust (Input): Adjustable regulator feedback input. Connect to  
resistor voltage divider.  
5
Regulator Output  
2017 Microchip Technology Inc.  
DS20005785A-page 9  
 
MIC5205  
At lower values of output current, less output  
capacitance is required for output stability. The  
capacitor can be reduced to 0.47 µF for current below  
10 mA or 0.33 µF for currents below 1 mA.  
4.0  
4.1  
APPLICATION INFORMATION  
Enable/Shutdown  
Forcing EN (enable/shutdown) high (greater than 2V)  
enables the regulator. EN is compatible with CMOS  
logic gates.  
4.5  
No-Load Stability  
The MIC5205 will remain stable and in regulation with  
no load (other than the internal voltage divider) unlike  
many other voltage regulators. This is especially  
important in CMOS RAM keep-alive applications.  
If the enable/shutdown feature is not required, connect  
EN (pin 3) to IN (supply input, pin 1). See Figure 4-1.  
4.2  
Input Capacitor  
4.6  
Thermal Considerations  
A 1 µF capacitor should be placed from IN to GND if  
there are more than 10 inches of wire between the  
input and the AC filter capacitor or if a battery is used  
as the input.  
The MIC5205 is designed to provide 150 mA of  
continuous current in a very small package. Maximum  
power dissipation can be calculated based on the  
output current and the voltage drop across the part. To  
determine the maximum power dissipation of the  
package, use the junction-to-ambient thermal  
resistance of the device and the following basic  
equation:  
4.3  
Reference Bypass Capacitor  
BYP (reference bypass) is connected to the internal  
voltage reference. 470 pF capacitor (CBYP  
A
)
connected from BYP to GND quiets this reference,  
providing a significant reduction in output noise. CBYP  
EQUATION 4-1:  
reduces the regulator phase margin; when using CBYP  
,
output capacitors of 2.2 µF or greater are generally  
required to maintain stability.  
TJMAXTA  
PDMAX= ------------------------------------  
JA  
The start-up speed of the MIC5205 is inversely  
proportional to the size of the reference bypass  
capacitor. Applications requiring a slow ramp-up of  
output voltage should consider larger values of CBYP  
Likewise, if rapid turn-on is necessary, consider  
omitting CBYP  
.
TJ(MAX) is the maximum junction temperature of the  
die, 125°C, and TA is the ambient operating  
temperature. θJA is layout dependent; Table 4-1 shows  
examples of junction-to-ambient thermal resistance for  
the MIC5205.  
.
If output noise is not a major concern, omit CBYP and  
leave BYP open.  
4.4  
Output Capacitor  
TABLE 4-1:  
SOT-23-5 THERMAL  
RESISTANCE  
An output capacitor is required between OUT and GND  
to prevent oscillation. The minimum size of the output  
capacitor is dependent upon whether a reference  
bypass capacitor is used. 1.0 µF minimum is  
recommended when CBYP is not used (see Figure 4-2).  
2.2 µF minimum is recommended when CBYP is 470 pF  
(see Figure 4-1). Larger values improve the regulator’s  
transient response. The output capacitor value may be  
increased without limit.  
θ
JA Rec. θJA Square  
Package  
Min.  
Footprint  
Copper  
Clad  
θJC  
SOT-23-5  
(M5)  
220°C/W  
170°C/W  
130°C/W  
The actual power dissipation of the regulator circuit can  
be determined using the equation:  
The output capacitor should have an ESR (effective  
series resistance) of about 5or less and a resonant  
frequency above 1 MHz. Ultra-low-ESR capacitors can  
cause a low amplitude oscillation on the output and/or  
underdamped transient response. Most tantalum or  
aluminum electrolytic capacitors are adequate; film  
types will work, but are more expensive. Because  
many aluminum electrolytics have electrolytes that  
freeze at about –30°C, solid tantalums are  
recommended for operation below –25°C.  
EQUATION 4-2:  
PD = VIN VOUT  IOUT + VIN IGND  
Substituting PD(MAX) for PD and solving for the  
operating conditions that are critical to the application  
will give the maximum operating conditions for the  
DS20005785A-page 10  
2017 Microchip Technology Inc.  
 
MIC5205  
regulator circuit. For example, when operating the  
MIC5205-3.3YM5 at room temperature with a minimum  
footprint layout, the maximum input voltage for a set  
output current can be determined as follows:  
4.7  
Fixed Regulator Applications  
Figure 4-1 includes a 470 pF capacitor for low-noise  
operation and shows EN (pin 3) connected to IN (pin 1)  
for an application where enable/shutdown is not  
required. COUT = 2.2 µF minimum.  
EQUATION 4-3:  
MIC5205-x.xYM5  
VIN  
VOUT  
2.2μF  
470pF  
1
2
3
5
125C – 25C  
PDMAX= --------------------------------------- = 455mW  
220C/W  
4
The junction-to-ambient thermal resistance for the  
minimum footprint is 220°C/W, from Table 4-1. The  
maximum power dissipation must not be exceeded for  
proper operation. Using the output voltage of 3.3V and  
an output current of 150 mA, the maximum input  
voltage can be determined. From the Electrical  
Characteristics table, the maximum ground current for  
150 mA output current is 2500 µA or 2.5 mA.  
FIGURE 4-1:  
Voltage Application.  
Ultra-Low Noise Fixed  
Figure 4-2 is an example of a low-noise configuration  
where CBYP is not required. COUT = 1 µF minimum.  
MIC5205-x.xYM5  
VIN  
VOUT  
1.0μF  
1
2
3
5
EQUATION 4-4:  
4
Enable  
Shutdown  
EN  
455mW = VIN – 3.3V  150mA + VIN 2.5mA  
FIGURE 4-2:  
Application.  
Low Noise Fixed Voltage  
4.8  
Adjustable Regulator Applications  
EQUATION 4-5:  
The MIC5205YM5 can be adjusted to a specific output  
voltage by using two external resistors (Figure 4-3).  
The resistors set the output voltage based on the  
following equation:  
455mW = VIN 150mA – 495mW + VIN 2.5mA  
EQUATION 4-7:  
R2  
R1  
EQUATION 4-6:  
VOUT = 1.242V ------ + 1  
950mW = VIN 152.5mA  
This equation is correct due to the configuration of the  
bandgap reference. The bandgap voltage is relative to  
the output, as seen in the block diagram. Traditional  
regulators normally have the reference voltage relative  
to ground and have a different VOUT equation.  
VIN(MAX) then equates out to 6.23V. Therefore, a 3.3V  
application at 150 mA of output current can accept a  
maximum input voltage of 6.2V in a SOT-23-5 package.  
For a full discussion of heat sinking and thermal effects  
on voltage regulators, refer to the Regulator Thermals  
section of Microchip’s Designing with Low-Dropout  
Voltage Regulators handbook.  
Resistor values are not critical because ADJ (adjust)  
has a high input impedance, but for best results use  
resistors of 470 kor less. A capacitor from ADJ to  
ground provides greatly improved noise performance.  
2017 Microchip Technology Inc.  
DS20005785A-page 11  
 
 
MIC5205  
MIC5205YM5  
VIN  
VOUT  
2.2μF  
1
2
3
5
R1  
R2  
4
470pF  
FIGURE 4-3:  
Ultra-Low Noise.  
4.9  
Adjustable Voltage Application  
Figure 4-3 includes the optional 470 pF noise bypass  
capacitor from ADJ to GND to reduce output noise.  
4.10 Dual-Supply Operation  
When used in dual supply systems where the regulator  
load is returned to a negative supply, the output voltage  
must be diode clamped to ground.  
DS20005785A-page 12  
2017 Microchip Technology Inc.  
 
MIC5205  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SOT-23*  
(Fixed)  
Example  
KB33  
943  
XXXX  
NNN  
5-Lead SOT-23*  
(Adjustable)  
Example  
KBAA  
102  
XXXX  
NNN  
Legend: XX...X Product code or customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC® designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
e
3
)
, , Pin one index is identified by a dot, delta up, or delta down (triangle  
mark).  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
Underbar (_) and/or Overbar () symbol may not be to scale.  
2017 Microchip Technology Inc.  
DS20005785A-page 13  
MIC5205  
5-Lead SOT-23 Package Outline and Recommended Land Pattern  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
DS20005785A-page 14  
2017 Microchip Technology Inc.  
MIC5205  
APPENDIX A: REVISION HISTORY  
Revision A (May 2017)  
• Converted Micrel document MIC5205 to Micro-  
chip data sheet DS20005785A.  
• Minor text changes throughout.  
2017 Microchip Technology Inc.  
DS20005785A-page 15  
MIC5205  
DS20005785A-page 16  
2017 Microchip Technology Inc.  
MIC5205  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.  
Examples:  
PART NO.  
Device  
–X.  
X
X
XX  
–XX  
a) MIC5205YM5-TX:  
150 mA Low-Noise LDO  
Regulator, Adjustable Voltage,  
–40°C to +125°C, 5-Lead  
SOT-23, 3k/Reel (Rev. Pin 1)  
Voltage  
Temperature Package Media Type  
Device:  
Voltage:  
MIC5205:  
150 mA Low-Noise LDO Regulator  
b) MIC5205-3.0YM5-TR:  
c) MIC5205-2.8YM5-TX:  
d) MIC5205-4.0YM5-TR:  
e) MIC5205-2.5YM5-TX:  
150 mA Low-Noise LDO  
Regulator, 3.0V,  
–40°C to +125°C, 5-Lead  
SOT-23, 3k/Reel  
<blank>= Adjustable  
2.5  
2.5  
2.8  
=
=
=
2.5V  
2.7V  
2.8V  
2.85V  
2.9V  
3.0V  
3.1V  
3.2V  
3.3V  
3.6V  
3.8V  
4.0V  
5.0V  
150 mA Low-Noise LDO  
Regulator, 2.8V,  
2.85 =  
–40°C to +125°C, 5-Lead  
SOT-23, 3k/Reel (Rev. Pin 1)  
2.9  
3.0  
3.1  
3.2  
3.3  
3.6  
3.8  
4.0  
5.0  
=
=
=
=
=
=
=
=
=
150 mA Low-Noise LDO  
Regulator, 4.0V,  
–40°C to +125°C, 5-Lead  
SOT-23, 3k/Reel  
150 mA Low-Noise LDO  
Regulator, 2.5V,  
–40°C to +125°C, 5-Lead  
SOT-23, 3k/Reel (Rev. Pin 1)  
Temperature:  
Package:  
Y
=
=
–40°C to +125°C  
5-Lead SOT-23  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier is  
used for ordering purposes and is not printed on  
the device package. Check with your Microchip  
Sales Office for package availability with the  
Tape and Reel option.  
M5  
Media Type:  
TX  
TR  
=
=
3,000/Reel (Reverse Pin 1)  
3,000/Reel  
2017 Microchip Technology Inc.  
DS20005785A-page 17  
MIC5205  
NOTES:  
DS20005785A-page 18  
2017 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,  
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,  
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST  
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, CryptoAuthentication, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology  
Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
CERTIFIEDBYDNVꢀ  
© 2017, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-1767-5  
== ISO/TS16949==ꢀ  
2017 Microchip Technology Inc.  
DS20005785A-page 19  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Finland - Espoo  
Tel: 358-9-4520-820  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
France - Saint Cloud  
Tel: 33-1-30-60-70-00  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Garching  
Tel: 49-8931-9700  
Germany - Haan  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
Tel: 49-2129-3766400  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
China - Dongguan  
Tel: 86-769-8702-9880  
Germany - Karlsruhe  
Tel: 49-721-625370  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Israel - Ra’anana  
Tel: 972-9-744-7705  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Detroit  
Novi, MI  
Tel: 248-848-4000  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Houston, TX  
Tel: 281-894-5983  
Italy - Padova  
Tel: 39-049-7625286  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-3326-8000  
Fax: 86-21-3326-8021  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Norway - Trondheim  
Tel: 47-7289-7561  
Los Angeles  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Poland - Warsaw  
Tel: 48-22-3325737  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Romania - Bucharest  
Tel: 40-21-407-87-50  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Raleigh, NC  
Tel: 919-844-7510  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
DS20005785A-page 20  
2017 Microchip Technology Inc.  
11/07/16  

相关型号:

MIC5205-2.8YM5TR

2.8V FIXED POSITIVE LDO REGULATOR, 0.35V DROPOUT, PDSO5, LEAD FREE, SOT-23, 5 PIN
MICROCHIP

MIC5205-2.9BM5

150mA Low-Noise LDO Regulator
MICREL

MIC5205-2.9BM5

2.9V FIXED POSITIVE LDO REGULATOR, 0.35V DROPOUT, PDSO5, SOT-23, 5 PIN
ROCHESTER

MIC5205-2.9BM5

Fixed Positive LDO Regulator, 2.9V, 0.35V Dropout, BIPolar, PDSO5, SOT-23, 5 PIN
MICROCHIP

MIC5205-2.9BM5TR

Fixed Positive LDO Regulator, 2.9V, 0.35V Dropout, PDSO5, SOT-23, 5 PIN
MICROCHIP

MIC5205-2.9YM5

150mA Low-Noise LDO Regulator
MICREL

MIC5205-2.9YM5

2.9V FIXED POSITIVE LDO REGULATOR, 0.35V DROPOUT, PDSO5, LEAD FREE, SOT-23, 5 PIN
ROCHESTER

MIC5205-2.9YM5

2.9V FIXED POSITIVE LDO REGULATOR, 0.35V DROPOUT, PDSO5
MICROCHIP

MIC5205-2.9YM5-TR

2.9V FIXED POSITIVE LDO REGULATOR, 0.35V DROPOUT, PDSO5
MICROCHIP

MIC5205-2.9YM5-TX

Fixed Positive LDO Regulator
MICROCHIP

MIC5205-2.9YM5TR

2.9V FIXED POSITIVE LDO REGULATOR, 0.35V DROPOUT, PDSO5, LEAD FREE, SOT-23, 5 PIN
MICROCHIP

MIC5205-3.0BM5

150mA Low-Noise LDO Regulator
MICREL