MIC5209YU [MICROCHIP]

ADJUSTABLE POSITIVE LDO REGULATOR, 0.6V DROPOUT, PSSO5;
MIC5209YU
型号: MIC5209YU
厂家: MICROCHIP    MICROCHIP
描述:

ADJUSTABLE POSITIVE LDO REGULATOR, 0.6V DROPOUT, PSSO5

输出元件 调节器
文件: 总30页 (文件大小:1510K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5209  
500 mA Low-Noise LDO Regulator  
Features  
General Description  
• Output Voltage Range: 1.8V – 15V  
• Meets Intel® Slot 1 and Slot 2 Requirements  
The MIC5209 is an efficient linear voltage regulator  
with very low dropout voltage, typically 10 mV at light  
loads and less than 500 mV at full load, with better than  
1% output voltage accuracy.  
• Guaranteed 500 mA Output Over the Full  
Operating Temperature Range  
Designed especially for hand-held, battery-powered  
devices, the MIC5209 features low ground current to  
help prolong battery life. An enable/shutdown pin on  
the SOIC-8 and DDPAK versions can further improve  
battery life with near-zero shutdown current.  
• Low 500 mV Maximum Dropout Voltage at Full  
Load  
• Extremely Tight Load and Line Regulation  
• Thermally Efcient Surface-Mount Package  
• Low Temperature Coefcient  
Key features include reversed-battery protection,  
• Current and Thermal Limiting  
current  
limiting,  
overtemperature  
shutdown,  
• Reversed-Battery Protection  
ultra-low-noise capability (SOIC-8 and DDPAK  
versions), and is available in thermally efficient  
packaging. The MIC5209 is available in adjustable or  
fixed output voltages.  
• No-Load Stability  
• 1% Output Accuracy  
• Ultra-Low-Noise Capability in SOIC-8 and DDPAK  
• Ultra-Small 3 mm × 3 mm DFN Package  
Applications  
• Pentium II Slot 1 and Slot 2 Support Circuits  
• Laptop, Notebook, and Palmtop Computers  
• Cellular Telephones  
• Consumer and Personal Electronics  
• SMPS Post-Regulator and DC/DC Modules  
• High-Efficiency Linear Power Supplies  
Typical Application Circuits  
ULTRA-LOW NOISE  
5V REGULATOR  
3.3V NOMINAL INPUT SLOT 1  
POWER SUPPLY  
MIC5209-5.0YM  
MIC5209-2.5YS  
ENABLE  
SHUTDOWN  
1
8
VIN  
6.0V  
VOUT  
5.0V  
7
6
5
2
3
4
1
2
3
VIN  
• 3.0V  
VOUT  
22μF  
TANTALUM  
2.5V 1ꢀ  
470pF  
(OPTIONAL)  
0.1μF  
22μF  
TANTALUM  
2017 Microchip Technology Inc.  
DS20005720A-page 1  
MIC5209  
Package Types  
MIC5209-X.XYS  
SOT-223 (S)  
MIC5209YML  
8-PIN 3X3 DFN (ML)  
FIXED VOLTAGES (TOP VIEW)  
ADJUSTABLE VOLTAGES (TOP VIEW)  
GND  
PART  
IDENTIFICATION  
TAB  
IN  
IN  
1
2
3
4
8
7
6
5
EN  
Y
5209  
YWW  
GND  
ADJ  
NC  
OUT  
OUT  
EP  
1
2
3
IN GND
 
OUT  
MIC5209-X.XYU  
DDPAK (U)  
MIC5209-X.XYM  
SOIC-8 (M)  
FIXED VOLTAGES (TOP VIEW)  
FIXED VOLTAGES (TOP VIEW)  
5 BYP  
EN  
IN  
GND  
GND  
GND  
GND  
1
2
3
4
8
7
6
5
4 OUT  
3 GND  
2 IN  
OUT  
BYP  
1 EN  
MIC5209YU  
DDPAK (U)  
ADJUSTABLE VOLTAGES (TOP VIEW)  
MIC5209YM  
SOIC-8 (M)  
ADJUSTABLE VOLTAGES (TOP VIEW)  
5 ADJ  
4 OUT  
3 GND  
2 IN  
EN  
I
N
N  
GND  
GND  
GND  
GND  
1
2
3
4
8
7
6
5
O
O
U
U
T
T  
A
D
J
J  
1 EN  
DS20005720A-page 2  
2017 Microchip Technology Inc.  
MIC5209  
Functional Diagrams  
LOW-NOISE  
FIXED REGULATOR  
(SOT-223 VERSION ONLY)  
IN  
OUT  
VIN  
VOUT  
COUT  
~2.0V – 2.1V  
–40ºC  
EN  
BANDGAP  
REFERENCE  
CURRENT-LIMIT  
THERMAL SHUTDOWN  
MIC5209-x.xYS  
GND  
ULTRA-LOW-NOISE  
FIXED REGULATOR  
IN  
OUT  
VIN  
VOUT  
COUT  
BYP  
CBYP  
(OPTIONAL)  
BANDGAP  
REFERENCE  
EN  
CURRENT-LIMIT  
THERMAL SHUTDOWN  
MIC5209-x.xYM/U  
GND  
ULTRA-LOW-NOISE  
ADJUSTABLE REGULATOR  
OUT  
IN  
VIN  
VOUT  
COUT  
R1  
ADJ  
CBYP  
(OPTIONAL)  
R2  
BANDGAP  
REFERENCE  
EN  
CURRENT-LIMIT  
THERMAL SHUTDOWN  
MIC5209YM/U (ADJUSTABLE)  
GND  
2017 Microchip Technology Inc.  
DS20005720A-page 3  
 
MIC5209  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Supply Voltage (VIN).................................................................................................................................... –20V to +20V  
Power Dissipation (PD) (Note 1).............................................................................................................Internally Limited  
ESD Rating (SOT-223)..................................................................................................................... 2 kV HBM/300V MM  
ESD Rating (DFN, SOIC-8).............................................................................................................. 5 kV HBM/100V MM  
Operating Ratings ‡  
Supply Voltage (VIN)...................................................................................................................................+2.5V to +16V  
Adjustable Output Voltage Range (VOUT) ..................................................................................................+1.8V to +15V  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated  
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
‡ Notice: The device is not guaranteed to function outside its operating ratings.  
Note 1: The maximum allowable power dissipation at any TA (ambient temperature) is PD(max) = (TJ(max) – TA) x θJA  
.
Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regula-  
tor will go into thermal shutdown. See Table 4-1 and the Thermal Considerations sub-section in Applications  
Information for details.  
DS20005720A-page 4  
2017 Microchip Technology Inc.  
 
MIC5209  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS (Note 1)  
Electrical Characteristics: VIN = VOUT + 1V; IL = 100 μA; TJ = +25°C, bold values indicate –40°C TJ +125°C  
except 0°C TJ +125°C for 1.8V VOUT 2.5V, unless noted.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
–1  
1
Output Voltage Accuracy  
VOUT  
%
Variation from nominal VOUT  
–2  
2
Output Voltage  
Temperature Coefficient  
VOUT  
T  
/
/
40  
ppm/°C Note 2  
0.009  
0.05  
0.10  
0.5  
0.7  
60  
VOUT  
VOUT  
Line Regulation  
Load Regulation  
%
%
VIN = VOUT + 1V to 16V  
0.05  
VOUT  
VOUT  
/
IL = 100 µA to 500 mA, Note 3  
IL = 100 µA  
10  
80  
115  
175  
250  
300  
400  
500  
600  
130  
170  
650  
900  
2.5  
3.0  
20  
IL = 50 mA  
VIN  
Dropout Voltage, (Note 4)  
mV  
VOUT  
165  
IL = 150 mA  
350  
IL = 500 mA  
80  
VEN 3.0V, IOUT = 100 µA  
VEN 3.0V, IOUT = 50 mA  
VEN 3.0V, IOUT = 150 mA  
VEN 3.0V, IOUT = 500 mA  
µA  
350  
Ground Pin Current  
(Note 5, Note 6)  
IGND  
1.8  
mA  
8
25  
0.05  
0.10  
75  
3
VEN 0.4V (shutdown)  
VEN 0.18V (shutdown)  
f = 120 Hz  
Ground Pin Quiescent  
Current, (Note 6)  
IGND  
PSRR  
ILIMIT  
µA  
dB  
8
Ripple Rejection  
700  
900  
1000  
Current Limit  
mA  
VOUT = 0V  
Note 7  
VOUT  
PD  
/
Thermal Regulation  
0.05  
500  
300  
%/W  
VOUT = 2.5V, IOUT = 50 mA  
COUT = 2.2 µF, CBYP = 0  
Output Noise, (Note 8)  
en  
nV Hz  
IOUT = 50 mA, COUT = 2.2 µF  
CBYP = 470 pF  
2017 Microchip Technology Inc.  
DS20005720A-page 5  
MIC5209  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS (Note 1) (CONTINUED)  
Electrical Characteristics: VIN = VOUT + 1V; IL = 100 μA; TJ = +25°C, bold values indicate –40°C TJ +125°C  
except 0°C TJ +125°C for 1.8V VOUT 2.5V, unless noted.  
Parameter  
Enable Input  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
2.0  
0.4  
0.18  
V
V
VEN = Logic-low (Regulator shutdown)  
Enable Input Logic-Low  
Voltage  
VENL  
V
EN = Logic-high (Regulator enabled)  
0.01  
0.01  
5
–1  
VENL 0.4V  
Enable Input Current  
IENL  
µA  
–2  
V
ENL 0.18V  
ENH 2.0V  
20  
V
25  
IENH  
µA  
30  
VENH 16V  
50  
Note 1: Specification for packaged product only.  
2: Output voltage temperature coefficient is defined as the worst-case voltage change divided by the total  
temperature range.  
3: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are  
tested for load regulation in the load range from 100 µA to 500 mA. Changes in output voltage due to heat-  
ing effects are covered by the thermal regulation specification.  
4: Dropout Voltage is defined as the input to output differential at which the output voltage drops 2% below its  
nominal value measured at 1V differential.  
5: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current  
drawn from the supply is the sum of the load current plus the ground pin current.  
6: VEN is the voltage externally applied to devices with the EN (enable) input pin. SOIC-8 (M) and DDPAK (U)  
packages only.  
7: Thermal regulation is the change in output voltage at a time “t” after a change in power dissipation is  
applied, excluding load or line regulation effects. Specications are for a 500 mA load pulse at VIN = 16V  
for t = 10 ms.  
8: CBYP is an optional, external bypass capacitor connected to devices with a BYP (bypass) or ADJ (adjust)  
pin. SOIC-8 (M) and DDPAK (U) packages only.  
DS20005720A-page 6  
2017 Microchip Technology Inc.  
MIC5209  
TEMPERATURE SPECIFICATIONS (Note 1)  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Storage Temperature Range  
Lead Temperature  
TS  
TJ  
TJ  
–65  
+150  
+260  
+125  
+125  
°C  
°C  
°C  
°C  
Soldering, 5 sec.  
2.5V VOUT 15V  
1.8V VOUT < 2.5V  
Junction Temperature  
–40  
0
Junction Temperature  
Package Thermal Resistance  
θJA  
θJC  
θJA  
θJC  
θJA  
θJC  
θJA  
θJC  
62  
15  
50  
25  
31.4  
3
°C/W EIA/JEDEC  
JES51-751-7,  
Thermal Resistance SOT-223  
Thermal Resistance SOIC-8  
Thermal Resistance DDPAK  
°C/W  
4 Layer Board  
°C/W See Thermal  
Considerations for more  
information.  
°C/W  
°C/W EIA/JEDEC  
JES51-751-7,  
°C/W  
4 Layer Board  
64  
12  
°C/W EIA/JEDEC  
JES51-751-7,  
Thermal Resistance 3 mm x 3 mm  
DFN  
°C/W  
4 Layer Board  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the  
maximum allowable power dissipation will cause the device operating junction temperature to exceed the  
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.  
2017 Microchip Technology Inc.  
DS20005720A-page 7  
 
MIC5209  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
FIGURE 2-4:  
Ratio.  
Power Supply Rejection  
FIGURE 2-1:  
Ratio.  
Power Supply Rejection  
Power Supply Rejection  
Power Supply Rejection  
FIGURE 2-5:  
Ratio.  
Power Supply Rejection  
FIGURE 2-2:  
Ratio.  
FIGURE 2-6:  
Ratio.  
Power Supply Rejection  
FIGURE 2-3:  
Ratio.  
DS20005720A-page 8  
2017 Microchip Technology Inc.  
MIC5209  
FIGURE 2-10:  
Noise Performance.  
FIGURE 2-7:  
Power Supply Ripple  
Rejection vs. Voltage Drop.  
FIGURE 2-8:  
Power Supply Ripple  
FIGURE 2-11:  
Noise Performance.  
Rejection vs. Voltage Drop.  
FIGURE 2-9:  
Noise Performance.  
FIGURE 2-12:  
Dropout Voltage vs. Output  
Current.  
2017 Microchip Technology Inc.  
DS20005720A-page 9  
MIC5209  
FIGURE 2-13:  
Current.  
Ground Current vs. Output  
Ground Current vs. Supply  
Ground Current vs. Supply  
FIGURE 2-14:  
Voltage.  
FIGURE 2-15:  
Voltage.  
DS20005720A-page 10  
2017 Microchip Technology Inc.  
MIC5209  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin Number Pin Number Pin Number Pin Number  
Pin Name  
Description  
8-Pin DFN  
SOT-223  
SOIC-8  
DDPAK  
1, 2  
7
1
2
2
IN  
Supply Input.  
2, TAB  
5, 6, 7, 8  
3, TAB  
GND  
Ground: SOT-223 Pin 2 and TAB are  
internally connected. SOIC-8 Pins 5  
through 8 are internally connected.  
3, 4  
3
3
4
OUT  
Regulator Output: Pins 3 and 4 must  
be tied together.  
5
8
1
1
NC  
EN  
Not Connected.  
Enable (Input): CMOS-compatible  
control input. Logic-High = Enable;  
Logic-Low = Shutdown.  
4 (Fixed)  
5 (Fixed)  
BYP  
Reference Bypass: Connect external  
470 pF capacitor to GND to reduce  
output noise. Can be left open. For  
1.8V or 2.5V operation, see Application  
Information.  
6
4 (Adjustable) 5 (Adjustable)  
ADJ  
Adjust (Input): Feedback input.  
Connect to resistive voltage-divider  
network.  
EP  
ePad  
Exposed Thermal Pad: Connect to  
GND for best thermal performance.  
2017 Microchip Technology Inc.  
DS20005720A-page 11  
 
MIC5209  
CBYP reduces the phase margin, the output capacitor  
should be increased to at least 2.2 µF to maintain  
stability.  
4.0  
4.1  
APPLICATIONS INFORMATION  
Enable/Shutdown  
The start-up speed of the MIC5209 is inversely  
proportional to the size of the reference bypass  
capacitor. Applications requiring a slow ramp-up of  
Enable is not available on devices in the SOT-223 (S)  
package.  
output voltage should consider larger values of CBYP  
Likewise, if rapid turn-on is necessary, consider  
omitting CBYP  
.
Forcing EN (enable/shutdown) high (> 2V) enables the  
regulator. EN is compatible with CMOS logic. If the  
enable/shutdown feature is not required, connect EN to  
IN (supply input).  
.
If output noise is not a major concern, omit CBYP and  
leave BYP open.  
4.2  
Input Capacitor  
4.6  
Thermal Considerations  
A 1 µF capacitor should be placed from IN to GND if  
there is more than 10 inches of wire between the input  
and the AC filter capacitor or if a battery is used as the  
input.  
The SOT-223 has a ground tab that allows it to  
dissipate more power than the SOIC-8 (refer to the  
Slot-1 Power Supply sub-section for details). At +25°C  
ambient, it will operate reliably at 1.6W dissipation with  
“worst-case” mounting (no ground plane, minimum  
trace widths, and FR4 printed circuit board).  
4.3  
Output Capacitor  
An output capacitor is required between OUT and GND  
to prevent oscillation. The minimum size of the output  
capacitor is dependent upon whether a reference  
bypass capacitor is used. 1 µF minimum is  
recommended when CBYP is not used (see Figure 4-1).  
2.2 µF minimum is recommended when CBYP is 470 pF  
(see Figure 4-2). Larger values improve the regulator’s  
transient response.  
Thermal resistance values for the SOIC-8 represent  
typical mounting on a 1”-square, copper-clad, FR4  
circuit board. For greater power dissipation, SOIC-8  
versions of the MIC5209 feature a fused internal lead  
frame and die bonding arrangement that reduces  
thermal resistance when compared to standard SOIC-8  
packages.  
The output capacitor should have an ESR (equivalent  
series resistance) of about 1and a resonant  
frequency above 1 MHz. Ultra-low-ESR and ceramic  
capacitors can cause a low amplitude oscillation on the  
output and/or underdamped transient response. Most  
tantalum or aluminum electrolytic capacitors are  
adequate; lm types will work, but are more expensive.  
Since many aluminum electrolytics have electrolytes  
that freeze at about –30°C, solid tantalums are  
recommended for operation below –25°C.  
TABLE 4-1:  
MIC5209 THERMAL  
RESISTANCE  
Package  
θJA  
θJC  
SOT-223 (S)  
SOIC-8 (M)  
DDPAK (U)  
62°C/W  
50°C/W  
31.4°C/W  
64°C/W  
15°C/W  
25°C/W  
3°C/W  
3x3 DFN (ML)  
12°C/W  
Multilayer boards with a ground plane, wide traces near  
the pads, and large supply-bus lines will have better  
thermal conductivity and will also allow additional  
power dissipation.  
At lower values of output current, less output  
capacitance is needed for output stability. The  
capacitor can be reduced to 0.47 µF for current below  
10 mA or 0.33 µF for currents below 1 mA.  
For additional heat sink characteristics, refer to  
Application Hint 17. For a full discussion of heat sinking  
and thermal effects on voltage regulators, refer to the  
“Regulator Thermals” section of the Designing with  
Low-Dropout Voltage Regulators handbook.  
4.4  
No-Load Stability  
The MIC5209 will remain stable and in regulation with  
no load (other than the internal voltage divider) unlike  
many other voltage regulators. This is especially  
important in CMOSRAM keep-alive applications.  
4.7  
Low-Voltage Operation  
The MIC5209-1.8 and MIC5209-2.5 require special  
consideration when used in voltage-sensitive systems.  
They may momentarily overshoot their nominal output  
voltages unless appropriate output and bypass  
capacitor values are chosen.  
4.5  
Reference Bypass Capacitor  
Reference bypass (BYP) is available only on devices in  
SOIC-8 and DDPAK packages.  
BYP is connected to the internal voltage reference. A  
470 pF capacitor (CBYP) connected from BYP to GND  
quiets this reference, providing a significant reduction  
in output noise (ultra-low-noise performance). Because  
During regulator power up, the pass transistor is fully  
saturated for a short time, while the error amplifier and  
voltage reference are being powered up more slowly  
from the output (see Functional Diagrams). Selecting  
DS20005720A-page 12  
2017 Microchip Technology Inc.  
MIC5209  
larger output and bypass capacitors allows additional  
time for the error amplifier and reference to turn on and  
prevent overshoot.  
4.9  
Adjustable Regulator Applications  
The MIC5209YM, MIC5209YU, and MIC5209YML can  
be adjusted to a specic output voltage by using two  
external resistors (Figure 4-3). The resistors set the  
output voltage based on the equation:  
To ensure that no overshoot is present when starting up  
into a light load (100 µA), use a 4.7 µF output  
capacitance and 470 pF bypass capacitance. This  
slows the turn-on enough to allow the regulator to react  
and keep the output voltage from exceeding its nominal  
EQUATION 4-1:  
value. At heavier loads, use  
a 10 µF output  
capacitance and 470 pF bypass capacitance. Lower  
values of output and bypass capacitance can be used,  
depending on the sensitivity of the system.  
R2  
R1  
VOUT = 1.242V 1 + ------  
Applications that can withstand some overshoot on the  
output of the regulator can reduce the output capacitor  
and/or reduce or eliminate the bypass capacitor.  
Applications that are not sensitive to overshoot due to  
power-on reset delays can use normal output and  
bypass capacitor configurations.  
This equation is correct due to the conguration of the  
bandgap reference. The bandgap voltage is relative to  
the output, as seen in the Functional Diagrams.  
Traditional regulators normally have the reference  
voltage relative to ground; therefore, their equations  
are different from the equation for the MIC5209Y.  
Please note the junction temperature range of the  
regulator with an output less than 2.5V (fixed and  
adjustable) is 0°C to +125°C.  
Although ADJ is a high-impedance input and, for best  
performance, R2 should not exceed 470 k.  
4.8  
Fixed Regulator Applications  
MIC5209YM  
Figure 4-1 shows a basic MIC5209-x.xYM (SOIC-8)  
xed-voltage regulator circuit. See Figure 5 for a similar  
conguration using the more thermally-efcient  
MIC5209-x.xYS (SOT-223). A 1 µF minimum output  
capacitor is required for basic xed-voltage  
applications.  
3
4
2
1
VIN  
VOUT  
IN  
OUT  
ADJ  
R1  
EN  
1μF  
GND  
5 - 8  
R2  
MIC5209-x.xYM  
3
4
2
1
VIN  
VOUT  
IN  
OUT  
FIGURE 4-3:  
Low-Noise  
Adjustable-Voltage Application.  
EN  
BYP  
Figure 4-4 includes the optional 470 pF bypass  
capacitor from ADJ to GND to reduce output noise.  
1μF  
GND  
5 - 8  
MIC5209YM  
3
4
2
1
VIN  
VOUT  
IN  
OUT  
ADJ  
FIGURE 4-1:  
Low-Noise Fixed-Voltage  
Application.  
R1  
R2  
EN  
2.2μF  
Figure 4-2 includes the optional 470 pF noise bypass  
capacitor between BYP and GND to reduce output  
noise. Note that the minimum value of COUT must be  
increased when the bypass capacitor is used.  
GND  
5 - 8  
470pF  
MIC5209-x.xYM  
FIGURE 4-4:  
Application.  
Ultra-Low-Noise Adjustable  
3
4
2
1
VIN  
VOUT  
IN  
OUT  
EN  
BYP  
2.2μF  
4.10 Slot-1 Power Supply  
GND  
5 - 8  
Intel’s Pentium II processors have a requirement for a  
2.5V ±5% power supply for a clock synthesizer and its  
associated loads. The current requirement for the 2.5V  
supply is dependent upon the clock synthesizer used,  
470pF  
FIGURE 4-2:  
Ultra-Low-Noise  
Fixed-Voltage Application.  
2017 Microchip Technology Inc.  
DS20005720A-page 13  
 
 
 
 
MIC5209  
the number of clock outputs, and the type of level  
shifter (from core logic levels to 2.5V levels). Intel  
estimates a “worst-case” load of 320 mA.  
So:  
EQUATION 4-3:  
The MIC5209 was designed to provide the 2.5V power  
requirement for Slot-1 applications. Its guaranteed  
performance of 2.5V ±3% at 500 mA allows adequate  
margin for all systems, and the dropout voltage of  
500 mV means that it operates from a “worst-case”  
3.3V supply where the voltage can be as low as 3.0V.  
3.6V – 2.375V  320mA+ 3.6V 4mA  
Resulting in:  
MIC5209-x.xYS  
1
3
VIN  
VOUT  
IN  
OUT  
EQUATION 4-4:  
CIN  
0.1μF  
COUT  
22μF  
GND  
2, TAB  
PD = 407mW  
Using the maximum junction temperature of +125°C  
and a θJC of 15°C/W for the SOT-223, 25°C/W for the  
SOIC-8, or 3°C/W for the DDPAK package, the  
FIGURE 4-5:  
Slot-1 Power Supply.  
A
Slot-1 power supply (Figure 4-5) is easy to  
implement. Only two capacitors are necessary, and  
their values are not critical. CIN bypasses the internal  
circuitry and should be at least 0.1 µF. COUT provides  
output filtering, improves transient response, and  
compensates the internal regulator control loop. Its  
value should be at least 22 µF. CIN and COUT can be  
increased as much as desired.  
following worst-case heat-sink thermal resistance (θSA  
)
requirements are:  
EQUATION 4-5:  
T
JMAXTA  
JA = -------------------------------  
PD  
4.10.1  
SLOT-1 POWER SUPPLY POWER  
DISSIPATION  
Where: θSA = θJA - θJC  
Powered from a 3.3V supply, the Slot-1 power supply  
illustrated in Figure 4-5 has a nominal efficiency of  
75%. At the maximum anticipated Slot-1 load  
(320 mA), the nominal power dissipation is only  
256 mW.  
Table 4-2 and Figure 4-6 show that the Slot-1 power  
supply application can be implemented with a minimum  
footprint layout.  
TABLE 4-2:  
MAXIMUM ALLOWABLE  
THERMAL RESISTANCE  
The SOT-223 package has sufcient thermal  
characteristics for wide design margins when mounted  
on a single-layer copper-clad printed circuit board. The  
power dissipation of the MIC5209 is calculated using  
the voltage drop across the device output current plus  
supply voltage ground current.  
TA  
+40°C  
+50°C  
+60°C  
+70°C  
θJA Limit 209°C/W 184°C/W 160°C/W 135°C/W  
θSA  
SOT-223  
194°C/W 169°C/W 145°C/W 120°C/W  
184°C/W 159°C/W 135°C/W 110°C/W  
206°C/W 181°C/W 157°C/W 132°C/W  
Considering “worst-case” tolerances, the power  
dissipation could be as high as:  
θSA  
SOIC-8  
EQUATION 4-2:  
θSA  
DDPAK  
Figure 4-6 shows the necessary copper pad area to  
obtain specific heatsink thermal resistance (θSA  
VINMAXVOUTMAX  IOUT + VINMAXIGND  
)
values. The θSA values highlighted in Table 4-2 require  
much less than 500 mm2 of copper and, per Figure 4-6,  
can be easily accomplished with the minimum footprint.  
DS20005720A-page 14  
2017 Microchip Technology Inc.  
 
 
MIC5209  
70  
60  
50  
40  
30  
20  
10  
0
0
2000  
4000  
6000  
COPPER HEAT SINK AREA (mm2)  
FIGURE 4-6:  
PCB Heatsink Thermal  
Resistance.  
2017 Microchip Technology Inc.  
DS20005720A-page 15  
MIC5209  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Pin SOT-223*  
Example  
5209  
XXXX  
25YS722P  
XXXXYWWP  
SOIC-8 (Fixed)*  
Example  
XXXX  
-X.XXX  
WNNN  
5209  
-3.3YM  
9651  
SOIC-8 (Adj.)*  
Example  
XXX  
XXXXXX  
WNNN  
MIC  
5209YM  
1312  
5-Pin DDPAK (Fixed)*  
Example  
XXXX  
-X.XXX  
5209  
-3.3YU  
5492P  
WNNNP  
5-Pin DDPAK (Adj)*  
Example  
XXX  
XXXXXX  
WNNNP  
MIC  
5209YU  
1975P  
8-Pin DFN*  
Example  
X
XXXX  
NNN  
Y
5209  
916  
DS20005720A-page 16  
2017 Microchip Technology Inc.  
MIC5209  
Legend: XX...X Product code or customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e
3
*
)
e
3
, , Pin one index is identified by a dot, delta up, or delta down (triangle  
mark).  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
Underbar (_) and/or Overbar () symbol may not be to scale.  
2017 Microchip Technology Inc.  
DS20005720A-page 17  
MIC5209  
3-Lead SOT-223 Package Outline and Recommended Land Pattern  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
DS20005720A-page 18  
2017 Microchip Technology Inc.  
MIC5209  
5-Lead DDPAK Package Outline and Recommended Land Pattern  
$ꢀGrhqꢁQyh†‡vpꢁꢂ@Uꢃꢁb99Q6Fd  
I‚‡r) 0ꢐꢋꢂ ꢊꢌꢂ#ꢐꢍ ꢂꢈ&ꢋꢋꢌꢆ ꢂꢒꢉꢈ1ꢉꢅꢌꢂ$ꢋꢉ/ꢄꢆꢅꢍ2ꢂꢒꢑꢌꢉꢍꢌꢂꢍꢌꢌꢂ ꢊꢌꢂꢓꢄꢈꢋꢐꢈꢊꢄꢒꢂ3ꢉꢈ1ꢉꢅꢄꢆꢅꢂꢃꢒꢌꢈꢄꢇꢄꢈꢉ ꢄꢐꢆꢂꢑꢐꢈꢉ ꢌ$ꢂꢉ ꢂ  
ꢊ  ꢒ-44///ꢁ#ꢄꢈꢋꢐꢈꢊꢄꢒꢁꢈꢐ#4ꢒꢉꢈ1ꢉꢅꢄꢆꢅ  
E
E1  
L1  
D
D1  
H
1
N
b
BOTTOM VIEW  
e
TOP VIEW  
CHAMFER  
OPTIONAL  
C2  
A
φ
c
L
A1  
5ꢆꢄ ꢍ  
ꢙ6!7%ꢃ  
ꢏꢄ#ꢌꢆꢍꢄꢐꢆꢂ8ꢄ#ꢄ ꢍ  
ꢓꢙ6  
69ꢓ  
ꢓꢕ:  
6&#;ꢌꢋꢂꢐꢇꢂ3ꢄꢆꢍ  
3ꢄ ꢈꢊ  
6
(
ꢁꢔ<ꢚꢂ,ꢃ!  
9.ꢌꢋꢉꢑꢑꢂ7ꢌꢄꢅꢊ  
ꢃ ꢉꢆ$ꢐꢇꢇꢂꢂ"  
9.ꢌꢋꢉꢑꢑꢂ>ꢄ$ ꢊ  
%'ꢒꢐꢍꢌ$ꢂ3ꢉ$ꢂ>ꢄ$ ꢊ  
ꢓꢐꢑ$ꢌ$ꢂ3ꢉꢈ1ꢉꢅꢌꢂ8ꢌꢆꢅ ꢊ  
9.ꢌꢋꢉꢑꢑꢂ8ꢌꢆꢅ ꢊ  
%'ꢒꢐꢍꢌ$ꢂ3ꢉ$ꢂ8ꢌꢆꢅ ꢊ  
8ꢌꢉ$ꢂꢗꢊꢄꢈ1ꢆꢌꢍꢍ  
3ꢉ$ꢂꢗꢊꢄꢈ1ꢆꢌꢍꢍ  
8ꢌꢉ$ꢂ>ꢄ$ ꢊ  
ꢕꢀ  
%
%ꢀ  
7
ꢏꢀ  
!ꢎ  
;
8
8ꢀ  
ꢁꢀ<ꢔ  
ꢁꢔꢔꢔ  
ꢁ*?ꢔ  
ꢁꢎꢖ(  
ꢁ**ꢔ  
ꢁ(ꢖꢛ  
ꢁꢎꢚꢔ  
ꢁꢔꢀꢖ  
ꢁꢔꢖ(  
ꢁꢔꢎꢔ  
ꢁꢔ<?  
M
M
M
M
M
M
M
M
M
M
M
M
M
M
ꢁꢀꢛꢔ  
ꢁꢔꢀꢔ  
ꢁꢖꢎꢔ  
M
ꢁ*?ꢔ  
ꢁ<ꢎ(  
M
ꢁꢔꢎꢛ  
ꢁꢔ<(  
ꢁꢔ*ꢛ  
ꢁꢀꢀꢔ  
ꢁꢔ<ꢚ  
?ꢜ  
0ꢐꢐ ꢂ8ꢌꢆꢅ ꢊ  
3ꢉ$ꢂ8ꢌꢆꢅ ꢊ  
0ꢐꢐ ꢂꢕꢆꢅꢑꢌ  
ꢔꢜ  
I‚‡r†)  
ꢀꢁ "ꢂꢃꢄꢅꢆꢄꢇꢄꢈꢉꢆ ꢂ!ꢊꢉꢋꢉꢈ ꢌꢋꢄꢍ ꢄꢈꢁ  
ꢎꢁ ꢏꢄ#ꢌꢆꢍꢄꢐꢆꢍꢂꢏꢂꢉꢆ$ꢂ%ꢂ$ꢐꢂꢆꢐ ꢂꢄꢆꢈꢑ&$ꢌꢂ#ꢐꢑ$ꢂꢇꢑꢉꢍꢊꢂꢐꢋꢂꢒꢋꢐ ꢋ&ꢍꢄꢐꢆꢍꢁꢂꢓꢐꢑ$ꢂꢇꢑꢉꢍꢊꢂꢐꢋꢂꢒꢋꢐ ꢋ&ꢍꢄꢐꢆꢍꢂꢍꢊꢉꢑꢑꢂꢆꢐ ꢂꢌ'ꢈꢌꢌ$ꢂꢁꢔꢔ()ꢂꢒꢌꢋꢂꢍꢄ$ꢌꢁ  
*ꢁ ꢏꢄ#ꢌꢆꢍꢄꢐꢆꢄꢆꢅꢂꢉꢆ$ꢂ ꢐꢑꢌꢋꢉꢆꢈꢄꢆꢅꢂꢒꢌꢋꢂꢕꢃꢓ%ꢂ+ꢀꢖꢁ(ꢓꢁ  
,ꢃ!- ,ꢉꢍꢄꢈꢂꢏꢄ#ꢌꢆꢍꢄꢐꢆꢁꢂꢗꢊꢌꢐꢋꢌ ꢄꢈꢉꢑꢑꢘꢂꢌ'ꢉꢈ ꢂ.ꢉꢑ&ꢌꢂꢍꢊꢐ/ꢆꢂ/ꢄ ꢊꢐ& ꢂ ꢐꢑꢌꢋꢉꢆꢈꢌꢍꢁ  
ꢓꢄꢈꢋꢐꢈꢊꢄꢒ ꢈꢊꢆꢐꢑꢐꢅꢘ ꢏꢋꢉ/ꢄꢆꢅ !ꢔꢖꢝꢔꢀꢎ,  
2017 Microchip Technology Inc.  
DS20005720A-page 19  
MIC5209  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005720A-page 20  
2017 Microchip Technology Inc.  
MIC5209  
8-Lead 3 mm x 3 mm DFN Package Outline and Recommended Land Pattern  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
2017 Microchip Technology Inc.  
DS20005720A-page 21  
MIC5209  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
DS20005720A-page 22  
2017 Microchip Technology Inc.  
MIC5209  
8-Lead SOIC Package Outline and Recommended Land Pattern  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
2017 Microchip Technology Inc.  
DS20005720A-page 23  
MIC5209  
NOTES:  
DS20005720A-page 24  
2017 Microchip Technology Inc.  
MIC5209  
APPENDIX A: REVISION HISTORY  
Revision A (February 2017)  
• Converted Micrel document MIC5209 to Micro-  
chip data sheet DS20005720A.  
• Minor text changes throughout.  
• Updated TO-263-5 packaging spec to DDPAK.  
• Updated Thermal Resistance values to be current  
with Microchip packaging.  
2017 Microchip Technology Inc.  
DS20005720A-page 25  
MIC5209  
NOTES:  
DS20005720A-page 26  
2017 Microchip Technology Inc.  
MIC5209  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.  
Examples:  
PART NO.  
Device  
X
X
XX  
X.X  
a) MIC5209-1.8YM-TR:  
b) MIC5209-1.8YM:  
c) MIC5209-2.5YU-TR:  
d) MIC5209-2.5YU:  
e) MIC5209-3.0YS-TR:  
f) MIC5209-3.0YS:  
500 mA Low-Noise LDO  
Regulator, 1.8V Voltage,  
–40°C to +125°C Temp. Range,  
8-Lead SOIC, 2,500/Reel  
Media Type  
Temperature Package  
Voltage  
Device:  
MIC5209:  
500 mA Low Noise LDO Regulator  
500 mA Low-Noise LDO  
Regulator, 1.8V Voltage,  
–40°C to +125°C Temp. Range,  
8-Lead SOIC, 95/Tube  
Voltage:  
(blank) = Adjustable  
1.8  
2.5  
3.0  
3.3  
3.6  
4.2  
5.0  
=
=
=
=
=
=
=
1.8V  
2.5V  
3.0V  
3.3V  
3.6V  
4.2V  
5.0V  
500 mA Low-Noise LDO  
Regulator, 2.5V Voltage,  
–40°C to +125°C Temp. Range,  
5-Lead DDPAK, 750/Reel  
500 mA Low-Noise LDO  
Regulator, 2.5V Voltage,  
–40°C to +125°C Temp. Range,  
5-Lead DDPAK, 50/Tube  
Temperature:  
Package:  
Y
=
–40°C to +125°C  
500 mA Low-Noise LDO  
Regulator, 3.0V Voltage,  
–40°C to +125°C Temp. Range,  
3-Lead SOT-223, 2,500/Reel  
M
ML  
S
=
=
=
=
8-Lead SOIC  
8-Lead DFN  
3-Lead SOT-223  
5-Lead DDPAK  
U
500 mA Low-Noise LDO  
Media Type:  
TR  
TR  
TR  
T5  
=
=
=
=
2,500/Reel (SOIC, SOT-223)  
750/Reel (DDPAK)  
5,000/Reel (DFN)  
Regulator, 3.0V Voltage,  
–40°C to +125°C Temp. Range,  
3-Lead SOT-223, 78/Tube  
500/Reel (DFN)  
(blank)= 50/Tube (DDPAK)  
(blank)= 78/Tube (SOT-223)  
(blank)= 95/Tube (SOIC)  
g) MIC5209YML-TR:  
h) MIC5209YML-T5:  
500 mA Low-Noise LDO  
Regulator, Adj. Voltage,  
–40°C to +125°C Temp. Range,  
8-Lead DFN, 5,000/Reel  
500 mA Low-Noise LDO  
Regulator, Adj. Voltage,  
–40°C to +125°C Temp. Range,  
8-Lead DFN, 500/Reel  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier is  
used for ordering purposes and is not printed on  
the device package. Check with your Microchip  
Sales Office for package availability with the  
Tape and Reel option.  
2017 Microchip Technology Inc.  
DS20005720A-page 27  
MIC5209  
NOTES:  
DS20005720A-page 28  
2017 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,  
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,  
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST  
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, CryptoAuthentication, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology  
Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
CERTIFIEDBYDNVꢀ  
© 2017, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-1417-9  
== ISO/TS16949==ꢀ  
2017 Microchip Technology Inc.  
DS20005720A-page 29  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Finland - Espoo  
Tel: 358-9-4520-820  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
France - Saint Cloud  
Tel: 33-1-30-60-70-00  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Garching  
Tel: 49-8931-9700  
Germany - Haan  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
Tel: 49-2129-3766400  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
China - Dongguan  
Tel: 86-769-8702-9880  
Germany - Karlsruhe  
Tel: 49-721-625370  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Israel - Ra’anana  
Tel: 972-9-744-7705  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Detroit  
Novi, MI  
Tel: 248-848-4000  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Houston, TX  
Tel: 281-894-5983  
Italy - Padova  
Tel: 39-049-7625286  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-3326-8000  
Fax: 86-21-3326-8021  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Norway - Trondheim  
Tel: 47-7289-7561  
Los Angeles  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Poland - Warsaw  
Tel: 48-22-3325737  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Romania - Bucharest  
Tel: 40-21-407-87-50  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Raleigh, NC  
Tel: 919-844-7510  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
DS20005720A-page 30  
2017 Microchip Technology Inc.  
11/07/16  

相关型号:

MIC5209YUTR

ADJUSTABLE POSITIVE LDO REGULATOR, 0.6V DROPOUT, PSSO5, LEAD FREE, TO-263, 5 PIN
MICREL

MIC5209_04

500mA Low-Noise LDO Regulator
MICREL

MIC5210

Dual 150mA LDO Regulator Preliminary Information
MICREL

MIC5210-1

Dual 100mA LDO Regulator Advance Information
MICREL

MIC5210-2.7BMM

Dual 150mA LDO Regulator Preliminary Information
MICREL

MIC5210-2.7BMMTR

Fixed Positive LDO Regulator, 2 Output, 2.7V1, 2.7V2, PDSO8, MSOP-8
MICROCHIP

MIC5210-2.8/3.0BMM

Dual 150mA LDO Regulator
MICREL

MIC5210-2.8/3.0BMM

Fixed Positive LDO Regulator, 2 Output, 2.8V1, 3V2, BIPolar, PDSO8, MSOP-8
MICROCHIP

MIC5210-2.8/3.0YMM

IC,VOLT REGULATOR,FIXED,+2.8V & +3.0V,BIPOLAR,TSSOP,8PIN,PLASTIC
MICROCHIP

MIC5210-2.8BMM

Dual 150mA LDO Regulator Preliminary Information
MICREL

MIC5210-2.8BMM

Fixed Positive LDO Regulator, 2 Output, 2.8V1, 2.8V2, BIPolar, PDSO8, MSOP-8
MICROCHIP

MIC5210-2.8BMM

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO8, MSOP-8
ROCHESTER