MIC5210-5.0BMMT&R [MICROCHIP]

Fixed Positive LDO Regulator, 2 Output, 5V1, 5V2, PDSO8, MSOP-8;
MIC5210-5.0BMMT&R
型号: MIC5210-5.0BMMT&R
厂家: MICROCHIP    MICROCHIP
描述:

Fixed Positive LDO Regulator, 2 Output, 5V1, 5V2, PDSO8, MSOP-8

光电二极管
文件: 总11页 (文件大小:189K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5210  
Dual 150mA LDO Regulator  
General Description  
Features  
The MIC5210 is a dual linear voltage regulator with very  
low dropout voltage (typically 10mV at light loads and  
140mV at 100mA), very low ground current (225µA at  
10mA output), and better than 1% initial accuracy. It also  
features individual logic-compatible enable/shutdown  
control inputs.  
Micrel Mini 8™ MSOP package  
Up to 150mA per regulator output  
Low quiescent current  
Low dropout voltage  
Wide selection of output voltages  
Tight load and line regulation  
Low temperature coefficient  
Current and thermal limiting  
Reversed input polarity protection  
Zero off-mode current  
Both regulator outputs can supply up to 150mA at the  
same time as long as each regulator’s maximum junction  
temperature is not exceeded.  
Key features include an undervoltage monitor with an error  
flag output, a reference bypass pin to improve its already  
low-noise performance (8-pin versions only), reversed-  
battery protection, current limiting, and overtemperature  
shutdown.  
Logic-controlled electronic enable  
Designed especially for hand-held battery powered  
devices, the MIC5210 can be switched by a CMOS or TTL  
compatible logic signal, or the enable pin can be  
connected to the supply input for 3-terminal operation.  
When disabled, power consumption drops nearly to zero.  
Dropout ground current is minimized to prolong battery life.  
Applications  
Cellular telephones  
Laptop, notebook, and palmtop computers  
Battery-powered equipment  
Bar code scanners  
SMPS post-regulator/dc-to-dc modules  
High-efficiency linear power supplies  
Key features include current limiting, overtemperature  
shutdown, and protection against reversed battery.  
The MIC5210 is available in 2.7V, 2.8V, 3.0V, 3.3V, 3.6V,  
4.0V and 5.0V fixed voltage configurations. Other voltages  
are available; contact Micrel for details.  
Data sheets and support documentation can be found on  
Micrel’s web site at www.micrel.com.  
Typical Application  
Low-Noise + Ultralow-Noise (Dual) Regulator  
MM8 and Micrel Mini 8 are trademarks of Micrel, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-090806  
September 2006  
1
Micrel, Inc.  
MIC5210  
Ordering Information  
Part Number  
Marking Pb-Free  
Contact Factory  
Voltage*  
Side A/B  
Junction  
Temp. Range  
Accuracy  
Package  
Standard  
Marking  
MIC5210-2.7BMM  
MIC5210-2.8BMM  
MIC5210-2.9BMM  
MIC5210-3.0BMM  
MIC5210-3.3BMM  
MIC5210-3.6BMM  
MIC5210-4.0BMM  
MIC5210-5.0BMM  
MIC5210-2.8/3.0BMM  
2.7V/2.7V  
2.8V/2.8V  
2.9V/2.9V  
3.0V/3.0V  
3.3V/3.3V  
3.6V/3.6V  
4.0V/4.0V  
5.0V/5.0V  
2.8V/3.0V  
1.0%  
1.0%  
1.0%  
1.0%  
1.0%  
1.0%  
1.0%  
1.0%  
1.0%  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
MIC5210-2.8YMM  
Contact Factory  
MIC5210-3.0YMM  
MIC5210-3.3YMM  
Contact Factory  
Contact Factory  
MIC5210-5.0YMM  
MIC5210-MPYMM**  
MP  
MPY  
* Other voltages available. Contact Micrel for details.  
** Order Entry P/N for Pb-Free has been abbreviated in compliance with Micrel systems. MIC5210-MPYMM = Full P/N: MIC5210-2.8/3.0YMM.  
Voltage Code  
Key  
M
2.8  
3.0  
P
M9999-090806  
September 2006  
2
Micrel, Inc.  
MIC5210  
Pin Configuration  
MIC5210BMM  
Pin Description  
Pin Number  
Pin Name Pin Function  
1
2
3
4
OUTA  
GND  
Regulator Output A  
Ground  
OUTB  
BYPB  
Regulator Output B  
Reference Bypass B: Connect external 470pF capacitor to GND to reduce  
output noise in regulator “B”. May be left open.  
5
ENB  
Enable/Shutdown B (Input): CMOS compatible input. Logic high = enable, logic  
low or open = shutdown. Do not leave floating.  
6
7
INB  
Supply Input B  
ENA  
Enable/Shutdown A (Input): CMOS compatible input. Logic high = enable, logic  
low or open = shutdown. Do not leave floating.  
8
INA  
Supply Input A  
M9999-090806  
September 2006  
3
Micrel, Inc.  
MIC5210  
Absolute Maximum Ratings  
Operating Ratings  
Supply Input Voltage (VIN).............................. –20V to +20V  
Enable Input Voltage (VEN)............................. –20V to +20V  
Power Dissipation (PD)..............................Internally Limited  
Storage Temperature Range ....................60°C to +150°C  
Lead Temperature (soldering, 5 sec.)........................ 260°C  
Supply Input Voltage (VIN)................................. 2.5V to 16V  
Enable Input Voltage (VEN)................................... 0V to 16V  
Junction Temperature (TJ) ..........................40°C to +85°C  
Thermal Resistance (θJA).......................................... Note 1  
Electrical Characteristics  
VIN = VOUT +1V; IL = 100µA; CL = 1.0µF; VEN 2.0V; TJ = 25°C, bold values indicate –40°C < TJ < +125°C, unless noted.  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VO  
Output Voltage Accuracy  
Variation from specified VOUT  
–1  
–2  
1
2
%
%
VO/T  
VO/VO  
VO/VO  
VIN – VO  
Output Voltage Temperature  
Coefficient  
Note 2  
40  
ppm/°C  
Line Regulation  
VIN = VOUT +1V to 16V  
IL = 0.1mA to 150mA (Note 3)  
0.004  
0.02  
0.012  
0.05  
%/V  
%/V  
Load Regulation  
0.2  
0.5  
%
%
Dropout Voltage, Note 4  
IL = 100µA  
IL = 50mA  
IL = 100mA  
IL = 150mA  
10  
50  
70  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
110  
140  
165  
150  
230  
250  
300  
275  
350  
IGND  
IGND  
Quiescent Current  
V
V
EN 0.4V (shutdown)  
EN 0.18V (shutdown)  
0.01  
1
5
µA  
µA  
Ground Pin Current, Note 5  
(per regulator)  
VEN 2.0V, IL = 100µA  
80  
350  
600  
1300  
125  
150  
600  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
IL = 50mA  
800  
IL = 100mA  
1000  
1500  
1900  
2500  
IL = 150mA  
PSRR  
ILIMIT  
Ripple Rejection  
Current Limit  
Frequency = 100Hz, IL = 100µA  
75  
dB  
mA  
VOUT = 0V  
320  
0.05  
500  
VO/PD  
Thermal Regulation  
Note 6  
%/W  
eno  
Output Noise (Regulator B only) IL = 50mA, CL = 2.2µF,  
470pF from BYPB to GND  
260  
nV/Hz  
M9999-090806  
September 2006  
4
Micrel, Inc.  
MIC5210  
Symbol  
Parameter  
Condition  
Min  
2.0  
Typ  
Max  
Units  
Enable Input  
VIL  
Enable Input Logic-Low Voltage Regulator shutdown  
0.4  
0.18  
V
V
VIH  
Enable Input Logic-High  
Voltage  
Regulator enabled  
V
IIL  
Enable Input Current  
V
V
IL 0.4V  
IL 0.18V  
0.01  
5
–1  
–2  
20  
25  
µA  
µA  
µA  
µA  
IIH  
VIH 2.0V  
IH 2.0V  
V
Notes:  
1. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating  
the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(max), the  
junction-to-ambient thermal resistance, θJA, and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature  
is calculated using: PD(max) = (T J(max) – TA) / θJA. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the  
regulator will go into thermal shutdown. The θJA of the 8-pin MSOP (MM) is 200°C/W mounted on a PC board (see “Thermal Considerations” section  
for further details).  
2. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.  
3. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range  
from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.  
4. Dropout Voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.  
5. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load  
current plus the ground pin current.  
6. Thermal regulation is defined as the change in output voltage at a time “t” after a change in power dissipation is applied, excluding load or line  
regulation effects. Specifications are for a 150mA load pulse at VIN = 16V for t = 10ms.  
M9999-090806  
September 2006  
5
Micrel, Inc.  
MIC5210  
Typical Characteristics  
Power Supply  
Power Supply  
Power Supply  
Rejection Ratio  
Rejection Ratio  
Rejection Ratio  
0
0
-20  
0
-20  
VIN = 6V  
VOUT = 5V  
VIN = 6V  
VOUT = 5V  
VIN = 6V  
OUT = 5V  
V
-20  
-40  
-60  
-40  
-40  
-60  
-60  
-80  
-80  
-80  
IOUT = 100µA  
OUT = 1µF  
IOUT = 1mA  
IOUT = 10mA  
COUT = 1µF  
C
COUT = 1µF  
-100  
-100  
-100  
1E+11E+21E1k+311E0+k41E+51E1M+6 E+7  
1E+11E+21E1k+311E0+k41E+51E1M+6 E+7  
1E+11E+21E1k+311E0+k41E+51E1M+6 E+7  
10 100k 10M  
100  
10  
100k  
10M  
10  
100k  
10M  
100  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
0
0
0
VIN = 6V  
OUT = 5V  
V
IN = 6V  
VIN = 6V  
VOUT = 5V  
V
VOUT = 5V  
-20  
-40  
-20  
-40  
-20  
-40  
-60  
-60  
-60  
IOUT = 1mA  
OUT = 2.2µF  
CBYP = 0.01µF  
IOUT = 100µA  
OUT = 2.2µF  
CBYP = 0.01µF  
IOUT = 100mA  
COUT = 1µF  
C
-80  
-80  
-80  
C
-100  
-100  
-100  
1E+11E+21E1k+311E0+k41E+51E1M+6 E+7  
1E+11E+21E1k+311E0+k41E+51E1M+6 E+7  
1E+11E+21E1k+311E0+k41E+51E1M+6 E+7  
10 10M  
100  
10  
100k  
10M  
10  
100k  
10M  
100k  
FREQUENCY (Hz)  
100  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Power Supply  
Rejection Ratio  
Turn-On Time  
vs. Bypass Capacitance  
Power Supply Ripple Rejectio  
vs. Voltage Drop  
0
10000  
60  
VIN = 6V  
OUT = 5V  
50  
V
-20  
-40  
1mA  
40  
1000  
100  
10  
30  
20  
10  
0
10mA  
IOUT = 100mA  
COUT = 1µF  
-60  
IOUT = 10mA  
OUT = 2.2µF  
BYP = 0.01µF  
-80  
C
C
-100  
1E+11E+21E1k+311E0+k41E+51E1M+6 E+7  
10  
100k  
FREQUENCY (Hz)  
10M  
100  
10  
100  
1000  
10000  
0
0.1  
0.2  
0.3  
0.4  
CAPACITANCE (pF)  
VOLTAGE DROP (V)  
Power Supply  
Power Supply Ripple Rejection  
vs. Voltage Drop  
Rejection Ratio  
Noise Performance  
0
-20  
100  
10  
1
V
IN = 6V  
VOUT = 5V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10mA, COUT = 1µF  
1mA  
-40  
0.1  
1mA  
COUT = 1µF  
BYP = 10nF  
(Reg. B only)  
IOUT = 100mA  
COUT = 2.2µF  
C
-60  
0.01  
0.001  
0.0001  
10mA  
IOUT = 100mA  
COUT = 2.2µF  
BYP = 0.01µF  
-80  
CBYP = 0.01µF  
VOUT = 5V  
C
-100  
1E+11E+21E1k+311E0+k41E+51E1M+6 E+7  
10  
100  
100k  
10M  
10  
1E+11E+21E+31E+41E+51E+61E+7  
1k  
0
0.1  
0.2 0.3  
0.4  
100  
10k 100k 1M 10M  
FREQUENCY (Hz)  
VOLTAGE DROP (V)  
FREQUENCY (Hz)  
M9999-090806  
September 2006  
6
Micrel, Inc.  
MIC5210  
Noise Performance  
(Regulator B)  
Noise Performance  
(Regulator B)  
Noise Performance  
10  
1
10  
1
100mA  
100mA  
10mA  
10mA  
0.1  
0.1  
100mA  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
1mA  
VOUT = 5V  
COUT = 10µF  
electrolytic  
VOUT = 5V  
OUT = 22µF  
tantalum  
CBYP = 10nF  
VOUT = 5V  
OUT = 10µF  
electrolytic  
1mA  
C
1mA  
C
10mA  
C
BYP = 100pF  
10  
1k  
10  
1k  
10  
1k  
10k100k1M10M
1E+11E+21E+311E0+k411E0+05k1E1M+611E0+M7  
1E+11E+21E+311E0+k411E00+5k1E1M+611E0+M7  
100  
100  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Noise Performance  
Noise Performance  
Dropout Voltage  
vs. Output Current  
(Regulator B)  
(Regulator B)  
10  
10  
320  
280  
240  
200  
160  
120  
80  
1
0.1  
1
10mA  
100mA  
+125°C  
100mA  
+25°C  
0.1  
1mA  
0.01  
0.01  
1mA  
VOUT = 5V  
COUT = 10µF  
electrolytic  
VOUT = 5V  
COUT = 10µF  
electrolytic  
CBYP = 10nF  
–40°C  
10mA  
0.001  
0.001  
40  
CBYP = 1nF  
0.0001  
0.0001  
0
10  
1k  
10  
1E+11E+21E+311E0+k411E0+05k1E1M+611E0+M7  
1E+111E0+021E1k+311E0+k41E+51E+611E0+M7  
0
40  
80  
120  
160  
100  
100k 1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
M9999-090806  
September 2006  
7
Micrel, Inc.  
MIC5210  
Block Diagram  
M9999-090806  
September 2006  
8
Micrel, Inc.  
MIC5210  
No-Load Stability  
Application Information  
The MIC5210 will remain stable and in regulation with no  
load (other than the internal voltage divider) unlike many  
other voltage regulators. This is especially important in  
CMOS RAM keep-alive applications.  
Enable/Shutdown  
Forcing EN (enable/shutdown) high (> 2V) enables the  
regulator. EN is compatible with CMOS logic gates.  
If the enable/shutdown feature is not required, connect  
EN to IN (supply input).  
Dual-Supply Operation  
When used in dual supply systems where the regulator  
load is returned to a negative supply, the output voltage  
must be diode clamped to ground.  
Input Capacitor  
A 1µF capacitor should be placed from IN to GND if  
there is more than 10 inches of wire between the input  
and the ac filter capacitor or if a battery is used as the  
input.  
Thermal Considerations  
Multilayer boards having a ground plane, wide traces  
near the pads, and large supply bus lines provide better  
thermal conductivity.  
Reference Bypass Capacitor  
BYPB (reference bypass) is connected to the internal  
voltage reference of regulator B. A 470pF capacitor  
(CBYP) connected from BYPB to GND quiets this  
reference, providing a significant reduction in output  
noise. CBYP reduces the regulator phase margin; when  
using CBYP, output capacitors of 2.2µF or greater are  
generally required to maintain stability.  
The MIC5210-xxBMM (8-pin MSOP) has a thermal  
resistance of 200°C/W when mounted on a FR4 board  
with minimum trace widths and no ground plane.  
PC Board  
Dielectric  
θJA  
FR4  
200°C/W  
The start-up speed of the MIC5210 is inversely  
proportional to the size of the reference bypass  
capacitor. Applications requiring a slow ramp-up of  
MSOP Thermal Characteristics  
output voltage should consider larger values of CBYP  
Likewise, if rapid turn-on is necessary, consider omitting  
CBYP  
.
For additional heat sink characteristics, please refer to  
Micrel Application Hint 17, “Calculating P.C. Board Heat  
Sink Area For Surface Mount Packages”.  
.
If output noise is not a major concern, omit CBYP and  
leave BYPB open.  
Thermal Evaluation Examples  
For example, at 50°C ambient temperature, the  
maximum package power dissipation is:  
Output Capacitor  
An output capacitor is required between OUT and GND  
to prevent oscillation. The minimum size of the output  
capacitor is dependent upon whether a reference bypass  
capacitor is used. 1.0µF minimum is recommended  
when CBYP is not used (see Figure 2). 2.2µF minimum is  
recommended when CBYP is 470pF (see Figure 1).  
Larger values improve the regulator’s transient  
response. The output capacitor value may be increased  
without limit.  
PD(max) = (125°C – 50°C) / 200°C/W  
= 375mW  
If the intent is to operate the 5V version from a 6V supply  
at the full 150mA load for both outputs in a 50°C  
maximum ambient temperature, make the following  
calculation:  
PD(each regulator) = (VIN – VOUT) × IOUT + (VIN × IGND)  
= (6V – 5V) × 150mA + (6V × 2.5mA)  
= 165mW  
The output capacitor should have an ESR (effective  
series resistance) of about 5or less and a resonant  
frequency above 1MHz. Ultralow-ESR capacitors may  
cause a low-amplitude oscillation and/or underdamped  
transient response. Most tantalum or aluminum  
electrolytic capacitors are adequate; film types will work,  
but are more expensive. Since many aluminum  
electrolytic capacitors have electrolytes that freeze at  
PD(both regulators) = 2 regulators × 165mW  
= 330mW  
The actual total power dissipation of 330mW is below  
the 375mW package maximum, therefore, the regulator  
can be used.  
Note that both regulators cannot always be used at their  
maximum current rating. For example, in a 5V input to  
3.3V output application at 50°C, if one regulator supplies  
150mA, the other regulator is limited to a much lower  
current. The first regulator dissipates:  
about  
–30°C,  
solid  
tantalum  
capacitors  
are  
recommended for operation below –25°C.  
At lower values of output current, less output  
capacitance is required for output stability. The capacitor  
can be reduced to 0.47µF for current below 10mA or  
0.33µF for currents below 1mA.  
PD = (5V – 3.3V) 150 + 2.5mA (5V)  
PD = 267.5mW  
M9999-090806  
September 2006  
9
Micrel, Inc.  
MIC5210  
Then, the load that the remaining regulator can dissipate  
must not exceed:  
Taking advantage of the extremely low-dropout voltage  
characteristics of the MIC5210, power dissipation can be  
reduced by using the lowest possible input voltage to  
minimize the input-to-output voltage drop.  
375mW – 267.5mW = 107.5mW  
This means, using the same 5V input and 3.3V output  
voltage, the second regulator is limited to about 60mA.  
M9999-090806  
September 2006  
10  
Micrel, Inc.  
MIC5210  
Package Information  
8-Pin MSOP (MM)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its  
use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2003 Micrel, Incorporated.  
M9999-090806  
September 2006  
11  

相关型号:

MIC5210-5.0YMM

Dual 150mA LDO Regulator
MICREL

MIC5210-5.0YMM

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO8
MICROCHIP

MIC5210-5.0YMMTR

暂无描述
MICREL

MIC5210-MPYMM

Dual 150mA LDO Regulator
MICREL

MIC5210_06

Dual 150mA LDO Regulator
MICREL

MIC5211

Dual レCap 80mA LDO Regulator Preliminary Information
MICREL

MIC5211-1.8/2.5BM6

Dual レCap 80mA LDO Regulator Preliminary Information
MICREL

MIC5211-1.8/2.5YM6

Dual μCap 80mA LDO Regulator
MICREL

MIC5211-1.8/3.3BM6

Dual レCap 80mA LDO Regulator Preliminary Information
MICREL

MIC5211-1.8/3.3YM6

Dual μCap 80mA LDO Regulator
MICREL

MIC5211-1.8BM6

Dual レCap 80mA LDO Regulator Preliminary Information
MICREL

MIC5211-1.8BM6TR

Fixed Positive LDO Regulator, 2 Output, 1.8V1, 1.8V2, PDSO6, MO-193, SOT-23, 6 PIN
MICREL