MIC5212-SJYM-TR [MICROCHIP]

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO8;
MIC5212-SJYM-TR
型号: MIC5212-SJYM-TR
厂家: MICROCHIP    MICROCHIP
描述:

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO8

光电二极管 输出元件 调节器
文件: 总18页 (文件大小:1755K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5212  
Dual 500 mA LDO Regulator  
Features  
General Description  
• Fused-Lead Frame SOIC-8  
• Up to 500 mA per Regulator Output  
• Low Quiescent Current  
The MIC5212 is a dual linear voltage regulator with  
very low dropout voltage (typically 10 mV at light loads  
and 350 mV at 500 mA), very low ground current  
(225 μA at 10 mA output), and better than 1% initial  
accuracy.  
• Low Dropout Voltage  
• Tight Load and Line Regulation  
• Low Temperature Coefficient  
• Current and Thermal Limiting  
• Reversed Input Polarity Protection  
Both regulator outputs can supply up to 500 mA at the  
same time as long as each regulator’s maximum  
junction temperature is not exceeded.  
Key features include current limiting, overtemperature  
shutdown, and protection against reversed battery.  
Applications  
The MIC5212 is available in a fixed 3.3V/2.5V output  
voltage configuration. Other voltages are available;  
contact Microchip for details.  
• Hard Disk Drives  
• CD R/W  
• Barcode Scanners  
Package Type  
• SMPS Post Regulator and DC/DC Modules  
• High-Efficiency Linear Power Supplies  
MIC5212  
SOIC-8  
Top View  
2017 Microchip Technology Inc.  
DS20005774A-page 1  
MIC5212  
Typical Application Circuit  
MIC5212  
3.3V/2.5V Dual LDO  
MIC5212-SJYM  
INA OUTA  
INB  
VO1 = 3.3V  
VO2 = 2.5V  
IN = 5V  
4.7µF  
OUTB  
GND  
4.7µF 4.7µF  
Functional Diagram  
DS20005774A-page 2  
2017 Microchip Technology Inc.  
MIC5212  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Supply Input Voltage, (VIN A or B) .............................................................................................................. –20V to +20V  
Power Dissipation ................................................................................................................................. Internally Limited  
Operating Ratings ††  
Supply Input Voltage, (VIN ) ....................................................................................................................... +2.5V to +16V  
† Notice: Exceeding the absolute maximum rating may damage the device.  
†† Notice: The device is not guaranteed to function outside its operating rating.  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, Regulator A and B VIN = VOUT + 1V; IL = 100 μA;  
CL = 4.7 μF; TJ = +25°C, bold values indicate –40°C TJ +125°C.  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
–1  
1
%
%
Variation from specified  
VOUT  
Output Voltage Accuracy  
VO  
–2  
2
Output Voltage  
Temperature Coefficient  
VO/T  
VO/VO  
40  
ppm/°C  
Note 1  
0.009  
0.05  
0.1  
0.7  
1
%/V  
%/V  
%
Line Regulation  
Load Regulation  
VIN = VOUT + 1V to 16V  
0.05  
IL = 0.1 mA to 500 mA,  
Note 2  
VO/VO  
%
175  
275  
350  
500  
600  
2.5  
3.0  
20  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
dB  
IL = 150 mA  
IL = 150 mA  
IL = 150 mA  
IL = 150 mA  
Dropout Voltage, Note 3  
(per regulator)  
VIN – VO  
350  
1.5  
Ground Pin Current,  
Note 4  
(per regulator)  
IGND  
12  
25  
Ripple Rejection  
Current Limit  
PSRR  
ILIMIT  
75  
f = 120 Hz, IL = 150 mA  
VOUT = 0V  
750  
1000  
mA  
VOUT = 2.5V, IOUT = 50 mA,  
COUT = 2.2 μF  
Spectral Noise Density  
500  
nV/Hz  
Note 1: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total  
temperature range.  
2: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are  
tested for load regulation in the load range from 0.1 mA to 500 mA. Changes in output voltage due to  
heating effects are covered by the thermal regulation specification.  
3: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its  
nominal value measured at 1V differential.  
4: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current  
drawn from the supply is the sum of the load current plus the ground pin current.  
2017 Microchip Technology Inc.  
DS20005774A-page 3  
 
 
 
 
MIC5212  
TEMPERATURE SPECIFICATIONS (Note 1)  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Storage Temperature Range  
Lead Temperature  
TA  
TJ  
TJ  
–60  
+260  
+150  
°C  
°C  
°C  
Soldering, 5 sec.  
Junction Temperature  
–40  
+125  
Package Thermal Resistances  
JC  
JA  
20  
63  
°C/W  
°C/W  
Thermal Resistance, SOIC-8Ld  
Note 2  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the  
maximum allowable power dissipation will cause the device operating junction temperature to exceed the  
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.  
2: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical  
specifications do not apply when operating the device outside of its operating ratings. The maximum  
allowable power dissipation is a function of the maximum junction temperature, TJ(max), the junc-  
tion-to-ambient thermal resistance, θJA, and the ambient temperature, TA. The maximum allowable power  
dissipation at any ambient temperature is calculated using: PD(max) = (TJ(max) – TA) ÷ θJA. Exceeding the  
maximum allowable power dissipation will result in excessive die temperature, and the regulator will go  
into thermal shutdown. The θJA of the 8-lead SOIC (M) is 63°C/W mounted on a PC board.  
DS20005774A-page 4  
2017 Microchip Technology Inc.  
 
 
MIC5212  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
90  
80  
70  
60  
50  
40  
30  
20 C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
OUT = 10μF Tantulum  
VIN = 4.3V  
COUT = 10μF Tantulum  
VIN = 4.3V  
10 VOUT = 3.3V  
VOUT = 3.3V  
IN = VOUT + 1V  
0 V  
V
IN = VOUT + 1V  
10  
1k  
100  
100k 1M  
10k  
100k  
FREQUENCY (Hz)  
10  
100  
1k  
10k  
1M  
FREQUENCY (Hz)  
FIGURE 2-1:  
Load.  
MIC5212-3.3 PSRR 150 mA  
FIGURE 2-4:  
Load.  
MIC5212-2.5 PSRR 500 mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
14  
500mA  
12  
10  
8
6
300mA  
4
COUT = 10μF Tantulum  
VIN = 4.3V  
OUT = 3.3V  
VIN = VOUT + 1V  
2
V
150mA  
100μA  
0
-40 -20  
0
20 40 60 80 100 120  
100k  
FREQUENCY (Hz)  
10  
100  
1k  
10k  
1M  
TEMPERATURE (°C)  
FIGURE 2-2:  
Load.  
MIC5212-3.3 PSRR 500 mA  
FIGURE 2-5:  
Temperature.  
Ground Current vs.  
90  
80  
70  
60  
50  
40  
30  
800  
700  
600  
500  
400  
300  
200  
100  
0
OUT = 10μF Tantulum  
VIN = 4.3V  
20 C  
10 VOUT = 3.3V  
IN = VOUT + 1V  
0 V  
-40 -20  
0
20 40 60 80 100 120  
10  
10k  
100  
1k  
100k 1M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FIGURE 2-3:  
Load.  
MIC5212-2.5 PSRR 150 mA  
FIGURE 2-6:  
Temperature.  
Short Circuit Current vs.  
2017 Microchip Technology Inc.  
DS20005774A-page 5  
MIC5212  
.
3.320  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
14  
12  
10  
8
6
4
2
3.275  
0
-40 -20  
0
20 40 60 80 100 120  
0
100 200 300 400 500  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
FIGURE 2-7:  
Output Voltage vs.  
FIGURE 2-10:  
Ground Current vs. Load  
Temperature.  
Current.  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500mA  
300mA  
150mA  
500mA  
10mA  
0
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TIME (1ms/div.)  
FIGURE 2-11:  
Output 1 Load Transient  
FIGURE 2-8:  
Dropout Voltage vs.  
Response.  
Temperature.  
350  
300  
250  
200  
150  
100  
50  
500mA  
0
10mA  
OUTPUT CURRENT (mA)  
TIME (1ms/div.)  
FIGURE 2-12:  
Response.  
Output 2 Load Transient  
FIGURE 2-9:  
Current.  
Dropout Voltage vs. Load  
DS20005774A-page 6  
2017 Microchip Technology Inc.  
MIC5212  
7V  
4.3V  
TIME (1ms/div.)  
FIGURE 2-13:  
Line Transient Response.  
6V  
3.5V  
TIME (1ms/div.)  
FIGURE 2-14:  
Line Transient Response.  
3.3V, 500mA  
2.5V, 200mA  
TIME (40μs/div.)  
FIGURE 2-15:  
Turn-On Response.  
2017 Microchip Technology Inc.  
DS20005774A-page 7  
MIC5212  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin Number  
PIN FUNCTION TABLE  
Pin Name  
Description  
1
OUTA  
INA  
Regulator A Output.  
2
Regulator A Input.  
Regulator B Input.  
Regulator B Output.  
Ground.  
3
4
INB  
OUTB  
GND  
5, 6, 7, 8  
DS20005774A-page 8  
2017 Microchip Technology Inc.  
 
MIC5212  
4.4  
Dual-Supply Operation  
4.0  
4.1  
DEVICE OVERVIEW  
Input Capacitor  
When used in dual supply systems where the regulator  
load is returned to a negative supply, the output voltage  
must be diode clamped to ground.  
A 1 μF capacitor should be placed from IN to GND if  
there is more than 10 inches of wire between the input  
and the AC filter capacitor or if a battery is used as the  
input.  
4.4.1  
POWER SO-8 THERMAL  
CHARACTERISTICS  
One of the secrets of the MIC5212’s performance is its  
power SO-8 package featuring half the thermal  
resistance of a standard SO-8 package. Lower thermal  
resistance means more output current or higher input  
voltage for a given package size.  
4.2  
Output Capacitor  
An output capacitor is required between OUT and GND  
to prevent oscillation. 1.0 μF minimum is  
recommended. Larger values improve the regulator’s  
transient response. The output capacitor value may be  
increased without limit.  
Lower thermal resistance is achieved by joining the  
four ground leads with the die attach paddle to create a  
single-unit electrical and thermal conductor. This  
concept has been used by MOSFET manufacturers for  
years, proving very reliable and cost effective for the  
user.  
The output capacitor should have an ESR (Effective  
Series Resistance) of about 5or less and a resonant  
frequency above 1 MHz. Ultra-low-ESR capacitors  
may cause  
a
low-amplitude oscillation and/or  
Thermal resistance consists of two main elements, θJC  
underdamped transient response. Most tantalum or  
aluminum electrolytic capacitors are adequate; film  
types will work, but are more expensive. Since many  
aluminum electrolytic capacitors have electrolytes that  
freeze at about –30°C, solid tantalum capacitors are  
recommended for operation below –25°C.  
(junction-to-case thermal resistance) and θCA  
(case-to-ambient thermal resistance). See Figure 4-1.  
θJC is the resistance from the die to the leads of the  
package. θCA is the resistance from the leads to the  
ambient air and it includes θCS (case-to-sink thermal  
resistance) and θSA (sink-to-ambient thermal  
resistance).  
At lower values of output current, less output  
capacitance is required for output stability. The  
capacitor can be reduced to 0.47 μF for current below  
10 mA or 0.33 μF for currents below 1 mA.  
4.3  
No-Load Stability  
SO-8  
The MIC5212 will remain stable and in regulation with  
no load (other than the internal voltage divider) unlike  
many other voltage regulators. This is especially  
important in CMOS RAM keep-alive applications.  
θJA  
ground plane  
heat sink area  
θJC  
θCA  
AMBIENT  
printed circuit board  
FIGURE 4-1:  
Thermal Resistance.  
Using the power SO-8 reduces the θJC dramatically  
and allows the user to reduce θCA. The total thermal  
resistance,  
θJA  
(junction-to-ambient  
thermal  
resistance) is the limiting factor in calculating the  
maximum power dissipation capability of the device.  
Typically, the power SO-8 has a θJC of 20°C/W, this is  
significantly lower than the standard SO-8 which is  
typically 75°C/W. θCA is reduced because pins 5  
through 8 can now be soldered directly to a ground  
plane which significantly reduces the case-to-sink  
thermal resistance and sink to ambient thermal  
resistance.  
These low dropout linear regulators are rated to a  
maximum junction temperature of 125°C. It is important  
not to exceed this maximum junction temperature  
2017 Microchip Technology Inc.  
DS20005774A-page 9  
 
MIC5212  
during operation of the device. To prevent this  
maximum junction temperature from being exceeded,  
the appropriate ground plane heat sink must be used.  
With a common 5V input, a 3.3V, 300 mA output on  
LDO 1 and a 2.5V, 150 mA output on LDO 2, power  
dissipation is as follows:  
EQUATION 4-4:  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
5V – 3.3V  300mA + 5V 5mA  
+ 5V – 2.5V  150mA + 5V 1.8mA  
PD  
PD  
=
=
0.919W  
From Figure 4-2, the minimum amount of copper  
required to operate this application at a T of 75°C is  
500 mm2.  
4.4.2  
QUICK METHOD  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
Determine the power dissipation requirements for the  
design along with the maximum ambient temperature  
at which the device will be operated. Refer to  
Figure 4-3, which shows safe operating curves for  
three different ambient temperatures: 25°C, 50°C and  
85°C. From these curves, the minimum amount of  
copper can be determined by knowing the maximum  
power dissipation required. If the maximum ambient  
temperature is 50°C and the power dissipation is as  
above, 920 mW, the curve in Figure 4-3 shows that the  
required area of copper is 500 mm2.  
FIGURE 4-2:  
Power Dissipation (T ).  
Copper Area vs. Power-SO  
JA  
Figure 4-2 shows copper area versus power  
dissipation with each trace corresponding to a different  
temperature rise above ambient.  
From these curves, the minimum area of copper  
necessary for the part to operate safely can be  
determined. The maximum allowable temperature rise  
must be calculated to determine operation along which  
curve.  
The θJA of this package is ideally 63°C/W, but it will  
vary depending upon the availability of copper ground  
plane to which it is attached.  
EQUATION 4-1:  
T = TJmaxTAmax  
900  
T
= 125°C  
85°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
J
Where:  
50°C 25°C  
TJ(max)  
TA(max)  
= 125°C  
= Maximum ambient operating  
temperature  
For example, the maximum ambient temperature is  
50°C, the T is determined as shown in Equation 4-2.  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
EQUATION 4-2:  
T  
T  
=
=
125°C – 50°C  
75°C  
FIGURE 4-3:  
Power Dissipation (T ).  
Copper Area vs. Power-SO  
A
Using Figure 4-2, the minimum amount of required  
copper can be determined based on the required  
power dissipation.  
Power dissipation in a linear regulator is calculated as  
shown in Equation 4-3.  
EQUATION 4-3:  
PD = VIN1 VOUT1  IOUT1 + VIN1 IGND1  
+ VIN2 VOUT2  IOUT2 + VIIN2 IGND2  
DS20005774A-page 10  
2017 Microchip Technology Inc.  
 
 
 
 
MIC5212  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
8-lead SOIC*  
Example  
XXXX  
-XXXX  
5212  
-SJYM  
YYWW  
1784  
Legend: XX...X Product code or customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC® designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
e
3
)
, , Pin one index is identified by a dot, delta up, or delta down (triangle  
mark).  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
Underbar (_) and/or Overbar () symbol may not be to scale.  
2017 Microchip Technology Inc.  
DS20005774A-page 11  
MIC5212  
8-Lead SOICN Package Outline & Recommended Land Pattern  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
DS20005774A-page 12  
2017 Microchip Technology Inc.  
MIC5212  
APPENDIX A: REVISION HISTORY  
Revision A (June 2017)  
• Converted Micrel document MIC5212 to Micro-  
chip data sheet template DS20005774A.  
• Minor grammatical text changes throughout.  
2017 Microchip Technology Inc.  
DS20005774A-page 13  
MIC5212  
NOTES:  
DS20005774A-page 14  
2017 Microchip Technology Inc.  
MIC5212  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.  
Examples:  
-X  
-XX  
PART NO.  
Device  
X
X
XX  
a) MIC5212-SJYM:  
Dual 500 mA LDO Regulator,  
3.3V/2.5V Output Voltage,  
1% Accuracy, –40°C to +125°C  
Temperature Range, 8-Lead  
SOIC, 95/Tube  
Fixed  
Output  
Voltage  
Media  
Type  
Accuracy Temperature Package  
Range  
Device:  
MIC5212:  
Dual 500 mA LDO Regulator  
3.3V/2.5V  
b) MIC5212-SJYM-TR: Dual 500 mA LDO Regulator,  
3.3V/2.5V Output Voltage,  
Fixed Output  
Voltage:  
S
=
1% Accuracy, –40°C to +125°C  
Temperature Range, 8-Lead  
SOIC, 2,500/Reel  
Accuracy  
J
=
=
1.0%  
Temperature  
Range:  
Y
–40C to +125C (RoHS Compliant)  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier is  
used for ordering purposes and is not printed on  
the device package. Check with your Microchip  
Sales Office for package availability with the  
Tape and Reel option.  
Package:  
M
=
=
8-Lead SOIC  
2,500/Reel  
Media Type:  
TR  
<blank>= 95/Tube  
2017 Microchip Technology Inc.  
DS20005774A-page 15  
MIC5212  
NOTES:  
DS20005774A-page 16  
2017 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,  
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,  
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST  
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, CryptoAuthentication, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology  
Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
CERTIFIEDBYDNVꢀ  
© 2017, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-1786-6  
== ISO/TS16949==ꢀ  
2017 Microchip Technology Inc.  
DS20005774A-page 17  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Finland - Espoo  
Tel: 358-9-4520-820  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
France - Saint Cloud  
Tel: 33-1-30-60-70-00  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Garching  
Tel: 49-8931-9700  
Germany - Haan  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
Tel: 49-2129-3766400  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
China - Dongguan  
Tel: 86-769-8702-9880  
Germany - Karlsruhe  
Tel: 49-721-625370  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Israel - Ra’anana  
Tel: 972-9-744-7705  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Detroit  
Novi, MI  
Tel: 248-848-4000  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Houston, TX  
Tel: 281-894-5983  
Italy - Padova  
Tel: 39-049-7625286  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-3326-8000  
Fax: 86-21-3326-8021  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Norway - Trondheim  
Tel: 47-7289-7561  
Los Angeles  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Poland - Warsaw  
Tel: 48-22-3325737  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Romania - Bucharest  
Tel: 40-21-407-87-50  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Raleigh, NC  
Tel: 919-844-7510  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
DS00000A-page 18  
2017 Microchip Technology Inc.  
11/07/16  

相关型号:

MIC5212-SJYMTR

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO8, LEAD FREE, SOIC-8
MICROCHIP

MIC5213

Teeny⑩ SC-70 レCap Low-Dropout Regulator Advance Information
MICREL

MIC5213-2.5BC5

Teeny⑩ SC-70 レCap Low-Dropout Regulator Advance Information
MICREL

MIC5213-2.5BC5TR

Fixed Positive LDO Regulator, 2.5V, 0.6V Dropout, PDSO5, SC-70, 5 PIN
MICROCHIP

MIC5213-2.5YC5

Teeny SC-70 μCap Low-Dropout Regulator
MICREL

MIC5213-2.5YC5

2.5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO5
MICROCHIP

MIC5213-2.5YC5-TR

2.5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO5
MICROCHIP

MIC5213-2.5YC5TR

暂无描述
MICREL

MIC5213-2.6BC5

Teeny SC-70 μCap Low-Dropout Regulator
MICREL

MIC5213-2.6BC5TR

Fixed Positive LDO Regulator, 2.6V, 0.6V Dropout, PDSO5, SC-70, 5 PIN
MICROCHIP

MIC5213-2.6YC5

Teeny SC-70 μCap Low-Dropout Regulator
MICREL

MIC5213-2.6YC5TR

2.6V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO5, LEAD FREE, SC-70, 5 PIN
MICREL