MIC5383-SJGYMT-TR [MICROCHIP]

FIXED POSITIVE LDO REGULATOR;
MIC5383-SJGYMT-TR
型号: MIC5383-SJGYMT-TR
厂家: MICROCHIP    MICROCHIP
描述:

FIXED POSITIVE LDO REGULATOR

输出元件 调节器
文件: 总22页 (文件大小:954K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5373/83  
Triple 200mA µCap  
LDO in 2.5mm x 2.5mm Thin MLF®  
General Description  
Features  
The MIC5373/83 is a triple output device with three 200mA  
LDOs which is ideal for application processor support in  
mobile platforms. The MIC5373 provides independent  
control active high enables for each of the 200mA LDOs.  
The MIC5383 provides active low enables. Both the  
MIC5373 and MIC5383 are available in the tiny 2.5mm x  
2.5mm Thin MLF® package.  
1.7V to 5.5V input supply voltage range  
Output current - 200mA LDO1/2/3  
High output accuracy (±2%)  
Independent enable pins  
POR with user-defined voltage monitoring  
POR voltage input  
The MIC5373/83 is designed for high input ripple rejection  
(high PSRR) and provides low output noise making it ideal  
for powering sensitive RF circuitry such as GPS, WiFi and  
Bluetooth applications. The MIC5373/83 also incorporates  
a power-on-reset (POR) supervisor with adjustable delay  
time set by an external capacitor, and an independent  
input pin to monitor any voltage level. Once high, the POR  
output can be asserted low again by enabling the manual  
reset (MR) pin. When the MR pin is restored low, the POR  
output will re-time the delay set by the external delay  
capacitor.  
Adjustable delay time  
Manual reset pin  
Low dropout voltage – 170mV at 150mA  
High PSRR - 55dB at 1kHz on each LDO  
Stable with tiny ceramic output capacitors  
2.5mm x 2.5mm Thin MLF16-pin package  
Thermal-shutdown and current-limit protection  
Applications  
Mobile phones  
GPS receivers  
Application co-processors  
PDAs and handheld devices  
The MIC5373/83 operates with very small ceramic output  
capacitors to reduce board space and component cost. It  
is available in various fixed output voltages. The  
MIC5373/83 has a junction temperature range from 40°C  
to 125°C.  
Datasheets and support documentation can be found on  
Micrel’s web site at: www.micrel.com.  
Typical Application  
Typical MIC5373-xxxYMT Circuit  
(Active High Enable)  
Typical MIC5383-xxxYMT Circuit  
(Active Low Enable)  
MLF and MicroLeadFrame are registered trademarks of Amkor Technology, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-091712  
September 2012  
Micrel, Inc.  
MIC5373/83  
Ordering Information  
Mark  
Code  
Output  
Junction  
Temperature Range  
Part Number  
Package  
Lead Finish  
Voltage(1)  
MIC5373-MG4YMT  
MIC5373-SJGYMT  
MIC5383-MG4YMT  
MIC5383-SJGYMT  
MG4  
SJG  
Z1T  
Z5T  
2.8V/1.8V/1.2V  
3.3V/2.5V/1.8V  
2.8V/1.8V/1.2V  
3.3V/2.5V/1.8V  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
16-Pin 2.5mm x 2.5mm Thin MLF  
16-Pin 2.5mm x 2.5mm Thin MLF  
16-Pin 2.5mm x 2.5mm Thin MLF  
16-Pin 2.5mm x 2.5mm Thin MLF  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Note:  
1. Other voltage options available. Contact Micrel for details.  
2. Lead finish is NiPdAu. Mold compound material is halogen free.  
Pin Configuration  
MIC5373  
16-Pin 2.5mm x 2.5mm Thin MLF (MT)  
(Top View)  
MIC5383  
16-Pin 2.5mm x 2.5mm Thin MLF (MT)  
(Top View)  
M9999-091712  
September 2012  
2
Micrel, Inc.  
MIC5373/83  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
2
3
4
OUT1  
INLDO1/2  
OUT2  
Regulator Output - LDO1.  
Supply Input (LDO1/2).  
Regulator Output – LDO2.  
BIAS  
Internal Bias Supply Voltage. Must be de-coupled to ground with a 0.1µF capacitor.  
Input to POR. Connect directly to output voltage or input voltage that is to be monitored for a 0.9V  
reference, or connect a resistor divider network to this pin to program the POR monitoring voltage.  
5
POR_IN  
6
7
POR  
DLY  
Power-on Reset Output. Open drain.  
POR Delay. Connect capacitor to ground to set POR delay time.  
Manual Reset Input. Manually resets output of POR and delay generator. Do not leave floating.  
Not internally connected.  
8
MR  
9
NC  
10  
11  
12  
13  
NC  
Not internally connected.  
INLDO3  
OUT3  
GND  
Supply Input (LDO3).  
Regulator Output – LDO3.  
Ground.  
LDO3 Enable Input. EN (MIC5373): Active High Input. Logic High = On; Logic Low = Off;  
/EN (MIC5383): Active Low Input. Logic High = Off; Logic Low = On; Do not leave floating.  
LDO2 Enable Input. EN (MIC5373): Active High Input. Logic High = On; Logic Low = Off;  
/EN (MIC5383): Active Low Input. Logic High = Off; Logic Low = On; Do not leave floating.  
LDO1 Enable Input. EN (MIC5373): Active High Input. Logic High = On; Logic Low = Off;  
/EN (MIC5383): Active Low Input. Logic High = Off; Logic Low = On; Do not leave floating.  
Exposed Heat Sink Pad. Connect to GND.  
14  
15  
EN3 or /EN3  
EN2 or /EN2  
16  
EN1 or /EN1  
EPAD  
HS Pad  
M9999-091712  
September 2012  
3
Micrel, Inc.  
MIC5373/83  
Absolute Maximum Ratings(1)  
Operating Ratings(4)  
Supply Voltage(5) (VINLDO1/2, INLDO3)..................+1.7V to VBIAS  
Bias Supply Voltage (VBIAS).......................... +2.5V to +5.5V  
Enable Input Voltage (VEN1, EN2, EN3)..................... 0V to VBIAS  
POR Output Voltage (POR).............................. 0V to +5.5V  
POR Input Voltage (POR_IN) ............................. 0V to VBIAS  
MR Voltage (MR) ................................................ 0V to VBIAS  
DLY Voltage (DLY).............................................. 0V to VBIAS  
Junction Temperature (TJ) ........................40°C to +125°C  
Junction Thermal Resistance  
Supply Voltage (VINLDO1/2, INLDO3)...................... 0.3V to +6V  
Bias Supply Voltage (VBIAS)............................. 0.3V to +6V  
Enable Input Voltage (VEN1, EN2, EN3)................. 0.3V to +6V  
POR Output Voltage (POR) ............................ 0.3V to +6V  
POR Input Voltage (POR_IN) ......................... 0.3V to +6V  
MR Voltage (MR) ............................................ 0.3V to +6V  
DLY Voltage (DLY).......................................... 0.3V to +6V  
Power Dissipation ..................................Internally Limited(2)  
Lead Temperature (soldering, 10s)............................ 260°C  
Storage Temperature (Ts) .........................60°C to +150°C  
ESD Rating(3)................................................. ESD Sensitive  
2.5mm x 2.5mm Thin MLF-16L (θJA) ...............100°C/W  
Electrical Characteristics(6)  
(MIC5373) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = VEN1 = VEN2 = VEN3 = 5.5V (ON);  
(MIC5383) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = 5.5V; V/EN1 = V/EN2 = V/EN3 = GND (ON);  
IOUT1 = IOUT2 = IOUT3 = 100µA; COUT1 = COUT2 = COUT3 = 1µF; TA = 25°C, Bold values indicate –40°C TJ +125°C, unless noted.  
Parameter  
Conditions  
Min.  
2.0  
3.0  
Typ.  
Max.  
+2.0  
+3.0  
0.3  
1
Units  
Variation from nominal VOUT1, 2, 3  
Variation from nominal VOUT1, 2, 3  
VIN = VOUT +1V to 5.5V; IOUT = 100µA  
IOUT = 100µA to 150mA;  
Output Voltage Accuracy  
%
Line Regulation  
Load Regulation  
0.02  
0.3  
60  
%/V  
%
IOUT = 50mA; VOUT 2.8V  
IOUT = 150mA; VOUT 2.8V  
IOUT = 50mA; VOUT < 2.8V  
115  
330  
145  
450  
20  
170  
85  
Dropout Voltage  
mV  
I
OUT = 150mA; VOUT < 2.8V  
275  
10  
Input Ground Current  
Bias Ground Current  
EN1 or EN2 or EN3 = ON; Not including IBIAS  
EN1 or EN2 or EN3 = ON  
EN1 = EN2 = EN3 = ON  
EN1 = EN2 = EN3 = OFF  
EN1 = EN2 = EN3 = OFF  
f = 1kHz; COUT = 1.0µF  
µA  
µA  
32  
70  
103  
0.04  
0.02  
55  
160  
2
Shutdown Ground Current  
Shutdown Bias Current  
Ripple Rejection  
µA  
µA  
2
dB  
Current Limit  
VOUT = 0V  
200  
1.2  
350  
200  
700  
mA  
Output Voltage Noise  
COUT =1µF,10Hz to 100kHz; IOUT = 150mA  
(MIC5373) LDO OFF; (MIC5383) LDO ON  
(MIC5373) LDO ON; (MIC5383) LDO OFF  
VIL 0.2V  
µVRMS  
0.2  
Enable Input Voltage  
Enable Input Current  
V
0.01  
0.01  
80  
µA  
VIH 1.2V  
Turn-On Time  
VPOR  
COUT = 1µF  
200  
0.2  
µs  
V
POR Output Low Voltage  
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The maximum allowable power dissipation of any TA (ambient temperature) is PD(max) = (TJ(max) – TA) / θJA. Exceeding the maximum allowable power  
dissipation will result in excessive die temperature and the regulator will go into thermal shutdown.  
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kin series with 100pF.  
4. The device is not guaranteed to function outside its operating rating.  
5. For VIN range of 1.7V to 2.5V, output current is limited to 30mA.  
6. Specification for packaged product only.  
M9999-091712  
September 2012  
4
Micrel, Inc.  
MIC5373/83  
Electrical Characteristics(6)  
(MIC5373) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = VEN1 = VEN2 = VEN3 = 5.5V (ON);  
(MIC5383) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = 5.5V; V/EN1 = V/EN2 = V/EN3 = GND (ON);  
IOUT1 = IOUT2 = IOUT3 = 100µA; COUT1 = COUT2 = COUT3 = 1µF; TA = 25°C, Bold values indicate –40°C TJ +125°C, unless noted.  
Parameter  
Conditions  
Min.  
0.75  
1.13  
Typ.  
1.25  
1.25  
1
Max.  
2
Units  
µA  
V
DLY Pin Current Source  
VDLY = 0V  
DLY Pin Voltage Threshold  
1.38  
IPOR  
POR Output Leakage Current, VPOR OFF  
POR Undervoltage Threshold  
POR Hysteresis  
µA  
V
VTH  
0.873  
0.9  
34  
0.927  
VHYS  
mV  
µA  
°C  
IPOR_IN  
POR Input Pin Leakage Current  
1
Thermal Shutdown  
Thermal-Shutdown Hysteresis  
155  
10  
°C  
M9999-091712  
September 2012  
5
Micrel, Inc.  
MIC5373/83  
Typical Characteristics  
LDO1 Output Voltage  
vs. Input Voltage  
LDO1 Output Voltage  
vs. Input Voltage  
LDO1 Output Voltage  
vs. Input Voltage  
3.40  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
3.30  
3.20  
3.10  
IOUT = 50mA  
IOUT = 150mA  
IOUT = 100µA  
3.00  
2.90  
2.80  
VBIAS = V  
VBIAS = V  
VBIAS = V  
IN1/2  
IN1/2  
IN1/2  
2.70  
VOUT_NOM = 3.3V  
OUT = 1.0µF  
VOUT_NOM = 3.3V  
VOUT_NOM = 3.3V  
OUT = 1.0µF  
2.60  
C
COUT = 1.0µF  
C
2.50  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LDO2 Output Voltage  
vs. Input Voltage  
LDO2 Output Voltage  
vs. Input Voltage  
LDO2 Output Voltage  
vs. Input Voltage  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
IOUT = 100µA  
IOUT = 50mA  
IOUT = 150mA  
VBIAS = V  
VBIAS = V  
IN  
VBIAS = V  
IN  
IN  
VOUT_NOM = 2.5V  
OUT = 1.0µF  
VOUT_NOM = 2.5V  
COUT = 1.0µF  
VOUT_NOM = 2.5V  
OUT = 1.0µF  
C
C
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LDO3 Output Voltage  
vs. Input Voltage  
LDO3 Output Voltage  
vs. Input Voltage  
LDO3 Output Voltage  
vs. Input Voltage  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
IOUT = 150mA  
A
IOUT = 50mA  
IOUT = 100µ  
VBIAS = 5.5V  
VOUT_NOM = 1.8V  
OUT = 1.0µF  
VBIAS = 5.5V  
OUT_NOM = 1.8V  
COUT = 1.0µF  
VBIAS = 5.5V  
OUT_NOM = 1.8V  
OUT = 1.0µF  
V
V
C
C
1.7 2.2 2.7 3.2 3.7 4.2 4.7 5.2 5.7  
1.7 2.2 2.7 3.2 3.7 4.2 4.7 5.2 5.7  
1.7 2.2 2.7 3.2 3.7 4.2 4.7 5.2 5.7  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
M9999-091712  
September 2012  
6
Micrel, Inc.  
MIC5373/83  
Typical Characteristics (Continued)  
LDO1 Output Voltage  
vs. Output Current  
LDO1 Output Voltage  
vs. Output Current  
LDO1 Output Voltage  
vs. Output Current  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.5V  
VBIAS = V  
VBIAS = V  
IN1/2  
VBIAS = V  
IN1/2  
IN1/2  
VOUT_NOM = 3.3V  
COUT = 1.0µF  
VOUT_NOM = 3.3V  
OUT = 1.0µF  
VOUT_NOM = 3.3V  
COUT = 1.0µF  
C
0
20 40 60 80 100 120 140 160 180 200  
0
20 40 60 80 100 120 140 160 180 200  
0
20 40 60 80 100 120 140 160 180 200  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
LDO2 Output Voltage  
vs. Output Current  
LDO2 Output Voltage  
vs. Output Current  
LDO2 Output Voltage  
vs. Output Current  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
VIN = 3.6V  
VIN = 3.0V  
VIN = 5.5V  
VBIAS = V  
VBIAS = V  
IN1/2  
VBIAS = V  
IN1/2  
IN1/2  
VOUT_NOM = 2.5V  
COUT = 1.0µF  
VOUT_NOM = 2.5V  
COUT = 1.0µF  
VOUT_NOM = 2.5V  
COUT = 1.0µF  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
LDO3 Output Voltage  
vs. Output Current  
LDO3 Output Voltage  
vs. Output Current  
LDO3 Output Voltage  
vs. Output Current  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
VIN = 2.5V  
VIN = 3.6V  
VIN = 5.5V  
VBIAS = V  
VBIAS = V  
VBIAS = V  
IN3  
IN3  
IN3  
VOUT_NOM = 1.8V  
VOUT_NOM = 1.8V  
VOUT_NOM = 1.8V  
COUT = 1.0µF  
C
OUT = 1.0µF  
C
OUT = 1.0µF  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
M9999-091712  
September 2012  
7
Micrel, Inc.  
MIC5373/83  
Typical Characteristics (Continued)  
LDO1 Output Voltage  
vs. Temperature  
LDO2 Output Voltage  
vs. Temperature  
LDO3 Output Voltage  
vs. Temperature  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
IOUT = 100µA  
IOUT = 100µA  
IOUT = 50mA  
IOUT = 100µA  
IOUT = 50mA  
IOUT = 50mA  
VOUT_NOM = 3.3V  
COUT = 1.0µF  
IOUT = 150mA  
VOUT_NOM = 2.5V  
COUT = 1.0µF  
VOUT_NOM = 1.8V  
COUT = 1.0µF  
IOUT = 150mA  
IOUT = 150mA  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LDO1 Current Limit  
vs. Input Voltage  
LDO2 Current Limit  
vs. Input Voltage  
LDO3 Current Limit  
vs. Input Voltage  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VBIAS = V  
VBIAS = V  
IN3  
IN1/2  
VBIAS = V  
IN1/2  
VOUT_NOM = 1.8V  
OUT = 1µF  
VOUT_NOM = 3.3V  
OUT = 1µF  
VOUT_NOM = 2.5V  
OUT = 1µF  
C
C
C
0
0
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LDO1/2/3 Current Limit  
vs. Temperature  
LDO1 Dropout Voltage  
vs. Temperature  
LDO2 Dropout Voltage  
vs. Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
200  
180  
160  
140  
120  
100  
80  
240  
200  
160  
120  
80  
IOUT = 150mA  
IOUT = 150mA  
VBIAS = 4.3V  
VOUT_NOM = 2.5V  
COUT = 1µF  
VBIAS = 4.3V  
VOUT_NOM = 3.3V  
C
OUT = 1µF  
IOUT = 50mA  
IOUT = 50mA  
60  
VBIAS = VIN = 4.3V  
VOUT_NOM = 3.3V  
COUT = 1µF  
40  
40  
20  
0
0
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
M9999-091712  
September 2012  
8
Micrel, Inc.  
MIC5373/83  
Typical Characteristics (Continued)  
LDO3 Dropout Voltage  
LDO1/2/3 Total Ground  
LDO1/2/3 Total Ground  
Current vs. Output Current  
vs. Temperature  
Current vs. Input Voltage  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
320  
IOUT = 150mA  
280  
240  
200  
160  
120  
80  
VBIAS = 4.3V  
OUT_NOM = 1.8V  
OUT = 1µF  
V
IOUT = 50mA  
C
VBIAS = VIN1/2 = V  
IN3  
EN1 or EN2 or EN3 = ON  
Including IBIAS  
VIN = VBIAS = 3.6V  
40  
EN1 or EN2 or EN3 = ON  
No Load  
0
0
0
0
25  
50  
75  
100  
125  
150  
-40 -20  
0
20 40 60 80 100 120  
2.5  
3
3.5  
4
4.5  
5
5.5  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
LDO1/2/3 Input Ground  
Current vs. Output Current  
LDO1/2/3 Input Ground  
Current vs. Input Voltage  
LDO1/2/3 Input Ground  
Current vs. Temperature  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
VBIAS = 5.5V  
EN1 or EN2 or EN3 = ON  
No Load  
6
6
6
VBIAS = 5.5V  
VBIAS = 5.5V  
4
4
4
VIN = VOUT + 1V  
EN1 or EN2 or EN3 = ON  
No Load  
2
EN1 or EN2 or EN3= ON  
2
2
0
0
0
0
25  
50  
75  
100  
125  
150  
2.5  
3
3.5  
4
4.5  
5
5.5  
-40 -20  
0
20 40 60 80 100 120  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
LDO1/2/3 Bias Ground  
Current vs. Output Current  
LDO1/2/3 Bias Ground  
Current vs. Temperature  
LDO1 Output Noise  
Spectral Density  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
10  
1
Noise (10Hz- 100kHz) = 200µVrms  
0.1  
V
IN = 3.8V  
V
OUT = 2.8V  
VBIAS = 5.5V  
VBIAS = 5.5V  
IN = VOUT + 1V  
EN1 or EN2 or EN3= ON  
C
OUT = 1µF  
0.01  
0.001  
V
IN = VOUT + 1V  
V
C
BIAS = 0.1µF  
EN1 or EN2 or EN3= ON  
Load = 150mA  
0
0
0
20 40 60 80 100 120 140 160 180 200  
-40 -20  
0
20 40 60 80 100 120  
10  
100  
1,000  
10,000  
100,000  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
M9999-091712  
September 2012  
9
Micrel, Inc.  
MIC5373/83  
Typical Characteristics (Continued)  
LDO2 Output Noise  
Spectral Density  
LDO2 Output Noise  
Spectral Density  
LDO3 Output Noise  
Spectral Density  
10  
10  
1
10  
1
Noise (10Hz - 100kHz) = 144µVrms  
Noise (10Hz - 100kHz) = 160µVrms  
Noise (10Hz - 100kHz) = 125µVrms  
1
0.1  
0.1  
V
IN = 4.0V  
V
IN = 4.3V  
V
IN = 4.0V  
VOUT = 1.8V  
COUT = 1µF  
V
OUT = 1.2V  
VOUT = 1.8V  
0.1  
0.01  
0.01  
0.001  
C
OUT = 1µF  
C
OUT = 1µF  
CBIAS = 0.1µF  
Load = 150mA  
C
BIAS = 0.1µF  
CBIAS = 0.1µF  
Load = 100µA  
Load = 100µA  
0.01  
10  
100  
1,000  
10,000  
100,000  
10  
100  
1,000  
10,000  
100,000  
10  
100  
1,000  
10,000  
100,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LDO3 Output Noise  
Spectral Density  
LDO1 PSRR (IOUT = 150mA)  
LDO1 PSRR (IOUT = 100µA)  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
Noise (10Hz - 100kHz) = 105µVrms  
1
0.1  
`
`
V
IN = 3.9V  
V
OUT = 1.2V  
0.01  
0.001  
C
OUT=1µF  
VIN = 4.3V  
VIN = 4.3V  
C
BIAS = 0.1µF  
VOUT = 3.3V  
COUT = 1µF  
VOUT = 3.3V  
COUT = 1µF  
Load = 150mA  
10  
100  
1,000  
10,000  
100,000  
10  
100  
1000  
10000  
100000 1000000  
10  
100  
1000  
10000  
100000 1000000  
FREQUENCY (Hz)  
FREQUENCY(Hz)  
FREQUENCY(Hz)  
LDO2 PSRR (IOUT = 100µA)  
LDO3 PSRR (IOUT = 100µA)  
LDO2 PSRR (IOUT = 150mA)  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
`
`
V
IN = 3.6V  
V
IN = 3.6V  
VIN = 3.6V  
VOUT = 1.8V  
COUT = 1µF  
VOUT = 2.5V  
VOUT = 2.5V  
COUT = 1µF  
COUT = 1µF  
10  
100  
1000  
10000 100000 1000000  
10  
100  
1000  
10000  
100000 1000000  
10  
100  
1000  
10000  
100000 1000000  
FREQUENCY(Hz)  
FREQUENCY (Hz)  
FREQUENCY(Hz)  
M9999-091712  
September 2012  
10  
Micrel, Inc.  
MIC5373/83  
Typical Characteristics (Continued)  
LDO3 PSRR (IOUT = 150mA)  
-100  
-90  
-80  
-70  
-60  
`
-50  
-40  
-30  
VIN = 3.3V  
-20  
VOUT = 1.8V  
-10  
0
COUT = 1µF  
10  
100  
1000  
10000  
100000 1000000  
FREQUENCY(Hz)  
M9999-091712  
September 2012  
11  
Micrel, Inc.  
MIC5373/83  
Functional Characteristics  
M9999-091712  
September 2012  
12  
Micrel, Inc.  
MIC5373/83  
Functional Characteristics (Continued)  
M9999-091712  
September 2012  
13  
Micrel, Inc.  
MIC5373/83  
Functional Characteristics (Continued)  
M9999-091712  
September 2012  
14  
Micrel, Inc.  
MIC5373/83  
Functional Diagram  
MIC5373 Block Diagram (Active High Enable)  
MIC5383 Block Diagram (Active Low Enable)  
M9999-091712  
September 2012  
15  
Micrel, Inc.  
MIC5373/83  
Pin Descriptions  
INLDO  
A delay can be added by placing a capacitor from the  
DLY pin to ground.  
The LDO input pins INLDO1/2 and INLDO3 provide the  
input power to the linear regulators LDO1, LDO2 and  
LDO3. The input operating voltage range is from 1.7V to  
5.5V. For input voltages from 1.7V to 2.5V the output  
current must be limited to 30mA each. Due to line  
inductance a 1µF capacitor placed close to the INLDO  
pins and the GND pin is recommended. Please refer to  
layout recommendations.  
POR_IN  
The power-on-reset input (POR_IN) pin compares any  
voltage to an internal 0.9V reference. This function can  
be used to monitor any of the LDO outputs or any  
external voltage rail. When the monitored voltage is  
greater than 0.9V, the POR_IN flag will internally trigger  
a 1.25µA source current to charge the external capacitor  
at the DLY pin. A resistor divider network may be used  
to divide down the monitored voltage to be compared  
with the 0.9V at the POR_IN. This resistor network can  
change the trigger point to any voltage level. A small  
decoupling capacitor is recommended between POR_IN  
and ground to reject high frequency noise that might  
interfere with the POR circuit. Do not leave the POR_IN  
pin floating.  
BIAS  
The BIAS pin provides power to the internal reference  
and control sections of the MIC5373/83. A 0.1µF  
ceramic capacitor must be connected from BIAS to GND  
for clean operation.  
EN (MIC5373)  
The enable (EN) pins EN1, EN2 and EN3 provide logic  
level control for the outputs OUT1, OUT2 and OUT3,  
respectively. A logic high signal on an enable pin  
activates the respective LDO. A logic low signal on an  
enable pin deactivates the respective LDO. Do not leave  
the EN pins floating, as it would leave the regulator in an  
unknown state.  
DLY  
The delay (DLY) pin is used to set the POR delay time.  
Adding a capacitor to this pin adjusts the delay of the  
POR signal. When the POR_IN flag is triggered, a  
constant 1.25µA current begins to charge the external  
capacitor tied to the DLY pin. When the capacitor  
reaches 1.25V the POR will be pulled high by the  
external pull up resistor. Equation 1 illustrates how to  
calculate the charge time is shown:  
/EN (MIC5383)  
The enable (EN) pins /EN1, /EN2 and /EN3 provide logic  
level control for the outputs OUT1, OUT2 and OUT3,  
respectively. A logic high signal on an enable pin  
deactivates the respective LDO. A logic low signal on an  
enable pin activates the respective LDO. Do not leave  
the EN pins floating, as it would leave the regulator in an  
unknown state.  
1.25V x C  
DLY  
6  
t
(s) =  
Eq. 1  
DELAY  
1.25x10  
The delay time (t) is in seconds, the delay voltage is  
1.25V internally, and the external delay capacitance  
(CDLY) is in microfarads. For a 1µF delay capacitor, the  
delay time will be 1 second. A capacitor at the DLY pin is  
recommended when the POR function is used in order to  
prevent unexpected triggering of the POR signal in noisy  
systems.  
OUT  
OUT1, OUT2 and OUT3 are the output pins of each  
LDO. A minimum of 1µF capacitor be placed as close as  
possible to each of the OUT pins. A minimum voltage  
rating of 6.3V is recommended for each capacitor.  
GND  
The ground (GND) pin is the ground path for the control  
circuitry and the power ground for all LDOs. The current  
loop for the ground should be kept as short as possible.  
Refer to the layout recommendations for more details.  
MR  
The manual reset (MR) pin resets the output of POR and  
DLY generator regardless if the monitored voltage is in  
regulation or not. Applying a voltage greater than 1.2V  
on the MR pin will cause the POR voltage to be pulled  
low. When a voltage below 0.2V is applied to the MR  
pin, the internal 1.25µA will begin to charge the DLY pin  
until it reaches 1.25V. When the DLY pin reaches  
1.25V, the POR voltage will be pulled high by the pull up  
external resistor again. Do not leave the MR pin floating.  
POR  
The power-on-reset (POR) pin is an open drain output. A  
resistor (10kto 100k) can be used for a pull up to  
either the input or the output voltage of the regulator.  
POR is asserted high when the voltage at DLY reaches  
1.25V.  
M9999-091712  
September 2012  
16  
Micrel, Inc.  
MIC5373/83  
Application Information  
Thermal Considerations  
MIC5373/83 is a triple output device with three 200mA  
LDOs. The MIC5373/83 incorporates a POR function  
with the capability to monitor any voltage using POR_IN.  
The monitored voltage can be set to any voltage  
threshold level to trigger the POR flag. A delay on the  
POR flag may also be set with an external capacitor at  
the DLY pin. All the LDOs have current limit and thermal  
shutdown protection to prevent damage from fault  
conditions. MIC5373 has active high enables while the  
MIC5383 has active low enables.  
The MIC5373/83 is designed to provide three outputs up  
to 200mA each of continuous current in a very small  
package. Maximum ambient operating temperature can  
be calculated based on the output current and the  
voltage drop across the part. For example if the input  
voltages are 3.6V and the output voltages are 3.3V,  
2.5V, and 1.8V each with an output current = 150mA.  
The actual power dissipation of the regulator circuit can  
be determined using Equation 2:  
Input Capacitor  
PD = (VINLDO1/2 – VOUT1) I OUT1  
(VINLDO1/2 – VOUT2) I OUT2  
+
The MIC5373/83 is a high-performance, high-bandwidth  
device. An input capacitor of 1µF from the input pin to  
ground is required to provide stability. Low-ESR ceramic  
capacitors provide optimal performance in small board  
area. Additional high-frequency capacitors, such as  
small valued NPO dielectric type capacitors, help filter  
out high-frequency noise and are good practice in any  
RF-based circuit. X5R or X7R dielectrics are  
recommended for the input capacitor. Y5V dielectrics  
lose most of their capacitance over temperature and are  
therefore not recommended.  
+
(VINLDO3 – VOUT3) I OUT3 + VIN x IGND  
Eq. 2  
As the MIC5373/83 is a CMOS device, the ground current  
is typically <100µA over the load range, the power  
dissipation contributed by the ground current is <1% and  
may be ignored for this calculation, as illustrated in  
Equation 3:  
PD (3.6V – 2.8V)150mA+(3.6V-1.8V)150mA+  
Output Capacitor  
(3.6V-1.2V)150mA  
The MIC5373/83 requires an output capacitor of 1µF or  
greater to maintain stability. The design is optimized for  
use with low-ESR ceramic chip capacitors. High-ESR  
capacitors may cause high-frequency oscillation. The  
output capacitor can be increased, but performance has  
been optimized for a 1µF ceramic output capacitor and  
does not improve significantly with larger capacitance.  
PD 0.75W  
Eq. 3  
To determine the maximum ambient operating  
temperature of the package, use the junction to ambient  
thermal resistance of the device and Equation 4:  
X7R and X5R dielectric ceramic capacitors are  
T
TA  
J(MAX)  
recommended  
because  
of  
their  
temperature  
PD(MAX)  
=
Eq. 4  
performance. X7R capacitors change capacitance by  
15% over their operating temperature range and are the  
most stable type of ceramic capacitors. Z5U and Y5V  
dielectric capacitors change value by as much as 50%  
and 60% respectively over their operating temperature  
ranges. To use a ceramic chip capacitor with Y5V  
dielectric the value must be much higher than an X7R  
ceramic capacitor to ensure the same minimum  
capacitance over the equivalent operating temperature  
range.  
θJA  
TJ(MAX) = 125°C  
θ
JA = 100°C/W  
Substituting PD for PD(max) and solving for the ambient  
operating temperature will give the maximum operating  
conditions for the regulator circuit.  
The maximum power dissipation must not be exceeded  
for proper operation.  
No Load Stability  
Unlike many other voltage regulators, the MIC5373/83  
will remain stable and in regulation with no load.  
M9999-091712  
September 2012  
17  
Micrel, Inc.  
MIC5373/83  
For example, when operating the MIC5373-MG4YMT at  
an input voltage of 3.6V and 150mA load on LDO1,  
LDO2 and LDO3 with a minimum layout footprint, the  
maximum ambient operating temperature TA can be  
determined as illustrated Equation 5:  
0.75W = (125°C – TA) / (100°C/W)  
TA = 50°C  
Eq. 5  
Therefore the maximum ambient operating temperature  
of 50°C is allowed in a 2.5mm x 2.5mm Thin MLF  
package for the voltage options specified and at the  
maximum load of 150mA on each output. For a full  
discussion of heat sinking and thermal effects on voltage  
regulators, refer to the “Regulator Thermals” section of  
Micrel’s Designing with Low-Dropout Voltage Regulators  
handbook. This information can be found on Micrel's  
website at:  
http://www.micrel.com/_PDF/other/LDOBk_ds.pdf  
M9999-091712  
September 2012  
18  
Micrel, Inc.  
MIC5373/83  
Typical Circuit (MIC5373-xxxYMT)  
Bill of Materials  
Item  
Part Number  
Manufacturer Description  
Qty.  
1
C1  
C1005X5R1A104K  
C1005X5R1A105K  
Optional  
TDK(1)  
Capacitor, 0.1µF Ceramic, 10V, X5R, Size 0402  
C2,C3, C5, C6, C7  
TDK  
Capacitor, 1µF Ceramic, 10V, X5R, Size 0402  
5
C9  
1
C10  
R4  
C1005C0G1H151J  
CRCW0402100KFKED  
Optional  
TDK  
Vishay(2)  
Vishay  
Capacitor, 150pF Cermaic, 50V, C0G, Size 0402  
1
100k, 1%, 0402  
Optional  
1
R5, R6  
R10  
U1  
2
CRCW040210KFKED  
MIC5373-xxxYMT  
Vishay  
Micrel, Inc.(3)  
10k, 1%, 0402  
1
High-Performance Active-High Enable Triple LDO  
1
Notes:  
1. TDK: www.tdk.com.  
2. Vishay: www.vishay.com.  
3. Micrel, Inc.: www.micrel.com.  
M9999-091712  
September 2012  
19  
Micrel, Inc.  
MIC5373/83  
Typical Circuit (MIC5383-xxxYMT)  
Bill of Materials  
Item  
Part Number  
Manufacturer Description  
Qty.  
1
C1  
C1005X5R1A104K  
C1005X5R1A105K  
Optional  
TDK(1)  
Capacitor, 0.1µF Ceramic, 10V, X5R, Size 0402  
C2,C3, C5, C6, C7  
TDK  
Capacitor, 1µF Ceramic, 10V, X5R, Size 0402  
5
C9  
1
C10  
R4  
C1005C0G1H151J  
CRCW0402100KFKED  
Optional  
TDK  
Vishay(2)  
Vishay  
Capacitor, 150pF Cermaic, 50V, C0G, Size 0402  
1
100k, 1%, 0402  
Optional  
1
R5, R6  
R10  
U1  
2
CRCW040210KFKED  
MIC5383-xxxYMT  
Vishay  
Micrel, Inc.(3)  
10k, 1%, 0402  
1
High-Performance Active-Low Enable Triple LDO  
1
Notes:  
1. TDK: www.tdk.com.  
2. Vishay: www.vishay.com.  
3. Micrel, Inc.: www.micrel.com.  
M9999-091712  
September 2012  
20  
Micrel, Inc.  
MIC5373/83  
PCB Layout Recommendations  
Recommended Top Layout  
Recommended Bottom Layout  
M9999-091712  
September 2012  
21  
Micrel, Inc.  
MIC5373/83  
Package Information  
16-Pin 2.5mm x 2.5mm Thin MLF (MT)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This  
information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry,  
specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Micrel’s terms and conditions of sale for such products, Micrel assumes no liability  
whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties  
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2010 Micrel, Incorporated.  
M9999-091712  
September 2012  
22  

相关型号:

MIC5384-MG44YMT

Triple 200mA μCap LDO and 1mA RTC LDO in 2.5mm x 2.5mm Thin MLF?
MICREL

MIC5385

Ultra Small Triple 150mA Output LDO
MICREL

MIC5385-SGFYMT

TRIPLE OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO8
MICROCHIP

MIC5385-SGFYMT-TR

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MIC5387

Ultra-Small Triple 150mA Output LDO
MICREL

MIC5387-GMGYMT

Ultra-Small Triple 150mA Output LDO
MICREL

MIC5387-GMMYMT

Ultra-Small Triple 150mA Output LDO
MICREL

MIC5387-GMMYMT-TR

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MIC5387-SG4YMT

Ultra-Small Triple 150mA Output LDO
MICREL

MIC5387-SG4YMT-TR

TRIPLE OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO6
MICROCHIP

MIC5387-SGFYMT

Ultra-Small Triple 150mA Output LDO
MICREL

MIC5387-SGFYMT-TR

FIXED POSITIVE LDO REGULATOR
MICROCHIP