MIC910BM5TR [MICROCHIP]

Operational Amplifier, 1 Func, 15000uV Offset-Max, PDSO5, SOT-23, 5 PIN;
MIC910BM5TR
型号: MIC910BM5TR
厂家: MICROCHIP    MICROCHIP
描述:

Operational Amplifier, 1 Func, 15000uV Offset-Max, PDSO5, SOT-23, 5 PIN

放大器 光电二极管
文件: 总12页 (文件大小:132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC910  
135MHz Low-Power SOT-23-5 Op Amp  
Final Information  
General Description  
Features  
The MIC910 is a high-speed, unity-gain stable operational  
amplifier. It provides a gain-bandwidth product of 135MHz  
with a very low, 2.4mA supply current, and features the tiny  
SOT-23-5 package.  
• 135MHz gain bandwidth product  
• 2.4mA supply current  
• Unconditionally unity-gain stable  
• SOT-23-5 package  
• 270V/µs slew rate  
• drives any capacitive load  
Supply voltage range is from ±2.5V to ±9V, allowing the  
MIC910 to be used in low-voltage circuits or applications  
requiring large dynamic range.  
Applications  
• Video  
• Imaging  
• Ultrasound  
• Portable equipment  
• Line drivers  
The MIC910 is stable driving any capacitative load and  
achieves excellent PSRR, making it much easier to use than  
most conventional high-speed devices. Low supply voltage ,  
lowpowerconsumption,andsmallpackingmaketheMIC910  
ideal for portable equipment. The ability to drive capacitative  
loads also makes it possible to drive long coaxial cables.  
Ordering Information  
Part Number  
Junction Temp. Range  
Package  
MIC910BM5  
–40°C to +85°C  
SOT-23-5  
Pin Configuration  
Functional Pinout  
IN+ V+ OUT  
IN+ V+ OUT  
3
2
1
3
2
1
Part  
Identification  
A21  
4
5
4
5
IN–  
V–  
IN–  
V–  
SOT-23-5  
SOT-23-5  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
2
3
4
5
OUT  
V+  
Output: Amplifier Output  
Positive Supply (Input)  
Noninverting Input  
IN+  
IN–  
V–  
Inverting Input  
Negative Supply (Input)  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
March 2001  
1
MIC910  
MIC910  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V V )...........................................20V  
Supply Voltage (V ) ....................................... ±2.5V to ±9V  
V+  
V–  
S
Differentail Input Voltage ( V  
V  
) ..........8V, Note 4  
Junction Temperature (T ) ......................... 40°C to +85°C  
IN+  
IN–  
J
Input Common-Mode Range (V , V ) .......... V to V  
Package Thermal Resistance ...............................260°C/W  
IN+  
IN–  
V+  
V–  
Lead Temperature (soldering, 5 sec.) ....................... 260°C  
Storage Temperature (T ) ........................................ 150°C  
S
ESD Rating, Note 3 ................................................... 1.5kV  
Electrical Characteristics (±5V)  
VV+ = +5V, VV= 5V, VCM = 0V, VOUT = 0V; RL = 10M; TJ = 25°C, bold values indicate 40°C TJ +85°C; unless noted.  
Symbol  
VOS  
Parameter  
Condition  
Min  
Typ  
1
Max  
15  
Units  
mV  
Input Offset Voltage  
VOS  
Input Offset Voltage  
Temperature Coefficient  
4
µV/°C  
IB  
Input Bias Current  
3.5  
5.5  
9
µA  
µA  
IOS  
Input Offset Current  
0.05  
3
µA  
VCM  
Input Common-Mode Range  
Common-Mode Rejection Ratio  
CMRR > 60dB  
3.25  
+3.25  
V
CMRR  
2.5V < VCM < +2.5V  
70  
60  
90  
81  
dB  
dB  
PSRR  
AVOL  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
±5V < VS < ±9V  
74  
70  
dB  
dB  
RL = 2k, VOUT = ±2V  
RL = 200, VOUT = ±2V  
positive, RL = 2kΩ  
60  
60  
71  
71  
dB  
dB  
VOUT  
Maximum Output Voltage Swing  
+3.3  
+3.0  
3.5  
V
V
negative, RL = 2kΩ  
positive, RL = 200Ω  
negative, RL = 200Ω  
3.5  
3.2  
3.3  
3.0  
V
V
+3.0  
+2.75  
V
V
2.8  
2.45  
2.2  
V
V
GBW  
BW  
Gain-Bandwidth Product  
3dB Bandwidth  
RL = 1kΩ  
125  
192  
230  
72  
MHz  
MHz  
V/µs  
mA  
AV = 1, RL = 100Ω  
SR  
Slew Rate  
IGND  
Short-Circuit Output Current  
source  
sink  
25  
mA  
IGND  
Supply Current  
2.4  
3.5  
4.1  
mA  
mA  
Electrical Characteristics  
VV+ = +9V, VV= 9V, VCM = 0V, VOUT = 0V; RL = 10M; TJ = 25°C, bold values indicate 40°C TJ +85°C; unless noted  
Symbol  
VOS  
Parameter  
Condition  
Min  
Typ  
1
Max  
15  
Units  
mV  
Input Offset Voltage  
VOS  
Input Offset Voltage  
Temperature Coefficient  
4
µV/°C  
IB  
Input Bias Current  
3.5  
5.5  
9
µA  
µA  
IOS  
Input Offset Current  
0.05  
3
µA  
MIC910  
2
March 2001  
MIC910  
Micrel  
Symbol  
VCM  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Input Common-Mode Range  
Common-Mode Rejection Ratio  
CMRR > 60dB  
6.5V < VCM < 6.5V  
7.25  
+7.25  
V
CMRR  
70  
60  
98  
dB  
dB  
AVOL  
VOUT  
Large-Signal Voltage Gain  
RL = 2k, VOUT = ±6V  
positive, RL = 2kΩ  
60  
73  
dB  
Maximum Output Voltage Swing  
+7.2  
+6.8  
+7.4  
V
V
negative, RL = 2kΩ  
RL = 1kΩ  
7.4  
7.2  
6.8  
V
V
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
135  
270  
90  
MHz  
V/µs  
mA  
IGND  
Short-Circuit Output Current  
source  
sink  
32  
mA  
IGND  
Supply Current  
2.5  
3.7  
4.3  
mA  
mA  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
Note 4. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is  
likely to increase.  
Test Circuits  
VCC  
10µF  
VCC  
0.1µF  
R2  
5k  
50Ω  
BNC  
Input  
10µF  
0.1µF  
2k  
BNC  
R1 5k  
R7c 2k  
10k  
4
3
0.1µF  
4
2
2
Input  
BNC  
BNC  
1
1
MIC910  
Output  
MIC910  
Output  
10k  
3
R7b 200Ω  
R7a 100Ω  
10k  
5
5
0.1µF  
50Ω  
R6  
5k  
0.1µF  
50Ω  
BNC  
R3  
200k  
R5  
5k  
10µF  
Input  
VEE  
All resistors 1%  
0.1µF  
10µF  
R4  
250Ω  
All resistors:  
1% metal film  
R2 R2 +R5 +R4  
V
=V  
1+  
+
OUT  
ERROR  
VEE  
R1  
R7  
CMRR vs. Frequency  
100pF  
R2 4k  
PSRR vs. Frequency  
VCC  
10µF  
10pF  
R1  
20Ω  
R3 27k  
4
0.1µF  
2
BNC  
To  
Dynamic  
Analyzer  
S1  
S2  
1
MIC910  
3
5
0.1µF  
R5  
20Ω  
R4 27k  
10pF  
10µF  
VEE  
Noise Measurement  
March 2001  
3
MIC910  
MIC910  
Micrel  
Electrical Characteristics  
Supply Current  
vs. Temperature  
Offset Voltage  
vs. Temperature  
Supply Current  
vs. Supply Voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
2.5  
2.0  
1.5  
1.0  
3.5  
VSUPPLY = ±5V  
+85°C  
VSUPPLY = ±9V  
3.0  
+25°C  
VSUPPLY = ±5V  
VSUPPLY = ±9V  
2.5  
-40°C  
2.0  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (±V)  
Bias Current  
vs. Temperature  
Offset Voltage  
vs. Common-Mode Voltage  
Offset Voltage  
vs. Common-Mode Voltage  
5
6
5
4
3
2
1
0
5
4
3
2
1
0
VSUPPLY = ±9V  
VSUPPLY = ±5V  
4
3
2
+85°C  
VSUPPLY = ±5V  
+85°C  
-40°C  
-40°C  
+25°C  
VSUPPLY = ±9V  
+25°C  
1
-40 -20  
0
20 40 60 80 100  
-8 -6 -4 -2  
0
2
4
6
8
-5 -4 -3 -2 -1 0 1 2 3 4 5  
TEMPERATURE (°C)  
COMMON-MODE VOLTAGE (V)  
COMMON-MODE VOLTAGE (V)  
Short-Circuit Current  
vs. Temperature  
Short-Circuit Current  
vs. Temperature  
Short-Circuit Current  
vs. Supply Voltage  
95  
90  
85  
80  
75  
70  
65  
60  
55  
-20  
-25  
-30  
-35  
-40  
100  
80  
60  
40  
20  
VSUPPLY = ±9V  
VSUPPLY = ±5V  
-40°C  
+25°C  
+85°C  
SOURCING  
CURRENT  
SINKING  
CURRENT  
VSUPPLY = ±5V  
SOURCING  
CURRENT  
VSUPPLY = ±9V  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (±V)  
Short-Circuit Current  
vs. Supply Voltage  
Output Voltage  
vs. Output Current  
Output Voltage  
vs. Output Current  
-15  
-20  
-25  
-30  
-35  
-40  
10  
9
8
7
6
5
4
3
2
1
0
0
-1  
SINKING  
VSUPPLY = ±9V  
CURRENT  
-40°C  
-2  
-3  
+85°C  
-40°C  
+85°C  
-4  
+25°C  
-5  
+25°C  
-40°C  
-6  
-7  
-8  
+85°C  
+25°C  
SINKING  
SOURCING  
VSUPPLY = ±9V  
-30 -20  
-9  
CURRENT  
CURRENT  
-10  
2
3
4
5
6
7
8
9
10  
0
20  
40  
60  
80  
100  
-40  
-10  
OUTPUT CURRENT (mA)  
0
SUPPLY VOLTAGE (±V)  
OUTPUT CURRENT (mA)  
MIC910  
4
March 2001  
MIC910  
Micrel  
Output Voltage  
vs. Output Current  
Output Voltage  
vs. Output Current  
Gain Bandwidth and  
Phase Margin vs. Load  
150  
125  
100  
75  
46  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-4.5  
SINKING  
CURRENT  
VSUPPLY = ±5V  
44  
42  
40  
38  
36  
34  
-40°C  
+25°C  
VSUPPLY = ±5V  
+25°C  
50  
+85°C  
-40°C  
25  
SOURCING  
CURRENT  
+85°C  
VSUPPLY = ±5V  
0
0
20  
40  
60  
80  
-30 -25 -20 -15 -10 -5  
OUTPUT CURRENT (mA)  
0
0
200 400 600 800 1000  
CAPACITIVE LOAD (pF)  
OUTPUT CURRENT (mA)  
Gain Bandwidth and  
Phase Margin vs. Load  
Gain Bandwidth and  
Phase Margin vs. Supply Voltage  
Common-Mode  
Rejection Ratio  
150  
125  
100  
75  
46  
150  
125  
100  
75  
54  
52  
50  
48  
46  
44  
42  
120  
100  
80  
60  
40  
20  
0
44  
42  
40  
38  
36  
34  
VSUPPLY = ±9V  
50  
50  
VSUPPLY = ±9V  
25  
25  
0
0
0
200 400 600 800 1000  
CAPACITIVE LOAD (pF)  
2
3
4
5
6
7
8
9
10  
SUPPLY VOLTAGE (±V)  
FREQUENCY (Hz)  
Common-Mode  
Rejection Ratio  
Negative Power Supply  
Rejection Ratio  
Positive Power Supply  
Rejection Ratio  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VSUPPLY = ±9V  
VSUPPLY = ±9V  
VSUPPLY = ±5V  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Positive Power Supply  
Rejection Ratio  
Negative Power Supply  
Rejection Ratio  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VSUPPLY = ±5V  
VSUPPLY = ±5V  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
March 2001  
5
MIC910  
MIC910  
Micrel  
Closed-Loop  
Frequency Response  
Test Circuit  
Closed-Loop  
Frequency Response  
Open-Loop  
Frequency Response  
50  
40  
50  
40  
225  
VCC  
180  
135  
90  
RL=100  
10µF  
30  
30  
20  
20  
10  
10  
45  
0.1µF  
0
0
0
No Load  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-45  
-90  
-135  
-180  
-225  
FET probe  
MIC910  
VCC = ±2.5V  
VCC = ±5V  
CL  
RF  
1
10  
100 200  
1
10  
100 200  
50Ω  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
10µF  
VEE  
Closed-Loop  
Frequency Response  
Open-Loop  
Frequency Response  
50  
40  
50  
40  
225  
180  
135  
90  
RL=100Ω  
30  
30  
20  
20  
10  
10  
45  
No Load  
0
0
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-45  
-90  
-135  
-180  
-225  
VCC = ±5V  
VCC = ±9V  
1
10  
100 200  
1
10  
100 200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Voltage  
Noise  
Positive  
Slew Rate  
Negative  
Slew Rate  
120  
100  
80  
60  
40  
20  
0
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
VCC = ±5V  
VCC = ±5V  
0
0
0
200 400 600 800 1000  
LOAD CAPACITANCE (pF)  
0
200 400 600 800 1000  
LOAD CAPACITANCE (pF)  
FREQUENCY (Hz)  
Current  
Noise  
Positive  
Slew Rate  
Negative  
Slew Rate  
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VCC = ±9V  
VCC = ±9V  
0
0
0
200 400 600 800 1000  
LOAD CAPACITANCE (pF)  
0
200 400 600 800 1000  
LOAD CAPACITANCE (pF)  
FREQUENCY (Hz)  
MIC910  
6
March 2001  
MIC910  
Micrel  
Small-Signal  
Small-Signal  
Pulse Response  
Pulse Response  
VCC = ±9V  
AV = 1  
CL = 1.7pF  
RL = 10MΩ  
VCC = ±5V  
AV = 1  
CL = 1.7pF  
RL = 10MΩ  
Small-Signal  
Pulse Response  
Small-Signal  
Pulse Response  
VCC = ±9V  
AV = 1  
CL = 100pF  
RL = 10MΩ  
VCC = ±5V  
AV = 1  
CL = 100pF  
RL = 10MΩ  
Small-Signal  
Pulse Response  
Small-Signal  
Pulse Response  
VCC = ±9V  
AV = 1  
CL = 1000pF  
RL = 10MΩ  
VCC = ±5V  
AV = 1  
CL = 1000pF  
RL = 10MΩ  
March 2001  
7
MIC910  
MIC910  
Micrel  
Large-Signal  
Pulse Response  
Large-Signal  
Pulse Response  
VCC = ±5V  
AV = 1  
CL = 1.7pF  
VCC = ±9V  
AV = 1  
CL = 1.7pF  
V = 5.68V  
t = 24.5ns  
V = 5.64V  
t = 21ns  
Large-Signal  
Pulse Response  
Large-Signal  
Pulse Response  
VCC = ±5V  
AV = 1  
V = 5.84V  
t = 22.5ns  
CL = 100pF  
V = 5.84V  
t = 26ns  
VCC = ±9V  
AV = 1  
CL = 100pF  
Large-Signal  
Pulse Response  
Large-Signal  
Pulse Response  
VCC = ±5V  
AV = 1  
CL = 1000pF  
V = 5.88V  
t = 70ns  
V = 5.48V  
t = 95ns  
VCC = ±9V  
AV = 1  
CL = 1000pF  
MIC910  
8
March 2001  
MIC910  
Micrel  
Power Supply Bypassing  
Applications Information  
Regular supply bypassing techniques are recommended. A  
10µF capacitor in parallel with a 0.1µF capacitor on both the  
positive and negative supplies are ideal. For best perfor-  
mance all bypassing capacitors should be located as close to  
the op amp as possible and all capacitors should be low ESL  
(equivalent series inductance), ESR (equivalent series resis-  
tance). Surface-mount ceramic capacitors are ideal.  
The MIC910 is a high-speed, voltage-feedback operational  
amplifier featuring very low supply current and excellent  
stability. This device is unity gain stable and capable of  
driving high capacitance loads.  
Driving High Capacitance  
The MIC910 is stable when driving any capacitance (see  
Typical Characteristics: Gain Bandwidth and Phase Margin  
vs. LoadCapacitance)makingitidealfordrivinglongcoaxial  
cables or other high-capacitance loads.  
Thermal Considerations  
The SOT-23-5 package, like all small packages, has a high  
thermal resistance. It is important to ensure the IC does not  
exceed the maximum operating junction (die) temperature of  
85°C. The part can be operated up to the absolute maximum  
temperature rating of 125°C, but between 85°C and 125°C  
performance will degrade, in particular CMRR will reduce.  
Phase margin remains constant as load capacitance is  
increased. Most high-speed op amps are only able to drive  
limited capacitance.  
Note: increasing load capacitance does reduce the  
speed of the device (see Typical Characteris-  
tics: Gain Bandwidth and Phase Margin vs.  
Load). In applications where the load capaci-  
tance reduces the speed of the op amp to an  
unacceptable level, the effect of the load capaci-  
tance can be reduced by adding a small resistor  
(<100) in series with the output.  
A MIC910 with no load, dissipates power equal to the quies-  
cent supply current * supply voltage  
P
= V V  
I
S
(
)
D(noload)  
V+  
V−  
When a load is added, the additional power is dissipated in  
the output stage of the op amp. The power dissipated in the  
device is a function of supply voltage, output voltage and  
output current.  
Feedback Resistor Selection  
Conventional op amp gain configurations and resistor selec-  
tion apply, the MIC910 is NOT a current feedback device.  
Resistor values in the range of 1k to 10k are recommended.  
PD(output stage) = V VOUT  
I
OUT  
(
)
V+  
Layout Considerations  
Total Power Dissipation = P  
+P  
D(output stage)  
D(noload)  
All high speed devices require careful PCB layout. The high  
stability and high PSRR of the MIC910 make this op amp  
easier to use than most, but the following guidelines should  
be observed: Capacitance, particularly on the two inputs pins  
will degrade performance; avoid large copper traces to the  
inputs. Keep the output signal away from the inputs and use  
a ground plane.  
Ensure the total power dissipated in the device is no greater  
than the thermal capacity of the package. The SOT23-5  
package has a thermal resistance of 260°C/W.  
TJ(max) TA(max)  
Max.AllowablePower Dissipation =  
260W  
It is important to ensure adequate supply bypassing capaci-  
tors are located close to the device.  
March 2001  
9
MIC910  
MIC910  
Micrel  
MIC910  
10  
March 2001  
MIC910  
Micrel  
Package Information  
1.90 (0.075) REF  
0.95 (0.037) REF  
1.75 (0.069) 3.00 (0.118)  
1.50 (0.059) 2.60 (0.102)  
DIMENSIONS:  
MM (INCH)  
1.30 (0.051)  
0.90 (0.035)  
3.02 (0.119)  
2.80 (0.110)  
0.20 (0.008)  
0.09 (0.004)  
10°  
0°  
0.15 (0.006)  
0.00 (0.000)  
0.50 (0.020)  
0.35 (0.014)  
0.60 (0.024)  
0.10 (0.004)  
SOT-23-5 (M5)  
March 2001  
11  
MIC910  
MIC910  
Micrel  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2001 Micrel Incorporated  
MIC910  
12  
March 2001  

相关型号:

MIC910YM5

135MHz, Low-Power SOT-23-5 Op Amp
MICREL

MIC910_01

135MHz Low-Power SOT-23-5 Op Amp
MICREL

MIC910_14

135MHz, Low-Power SOT-23-5 Op Amp
MICREL

MIC911

105MHz Low-Power SOT-23-5 Op Amp
MICREL

MIC911BM5

105MHz Low-Power SOT-23-5 Op Amp
MICREL

MIC911BM5TR

OP-AMP, 10000uV OFFSET-MAX, 95MHz BAND WIDTH, PDSO5, SOT-23, 5 PIN
ROCHESTER

MIC911YM5

105MHz Low-Power SOT23-5 Op Amp
MICREL

MIC911YM5-TR

OP-AMP, 10000uV OFFSET-MAX, 95MHz BAND WIDTH, PDSO5
MICROCHIP

MIC911YM5TR

OP-AMP, 10000uV OFFSET-MAX, 95MHz BAND WIDTH, PDSO5, LEAD FREE, SOT-23, 5 PIN
MICREL

MIC911_07

105MHz Low-Power SOT23-5 Op Amp
MICREL

MIC912

200MHz Low-Power SOT-23-5 Op Amp
MICREL

MIC912BM5

200MHz Low-Power SOT-23-5 Op Amp
MICREL