MPC3301-CI/MS [MICROCHIP]

SUCCESSIVE APPROXIMATION ADC, PDSO8, PLASTIC, MSOP-8;
MPC3301-CI/MS
型号: MPC3301-CI/MS
厂家: MICROCHIP    MICROCHIP
描述:

SUCCESSIVE APPROXIMATION ADC, PDSO8, PLASTIC, MSOP-8

光电二极管 转换器
文件: 总32页 (文件大小:989K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP3301  
13-Bit Differential Input, Low Power A/D Converter  
with SPI Serial Interface  
Features  
General Description  
• Full Differential Inputs  
The MCP3301 13-bit analog-to-digital (A/D) converter  
features full differential inputs and low power consump-  
tion in a small package that is ideal for battery-powered  
systems and remote data acquisition applications.  
• ±1 LSB max DNL  
• ±1 LSB max INL (MCP3301-B)  
• ±2 LSB max INL (MCP3301-C)  
• Single supply operation: 4.5V to 5.5V  
• 100 ksps sampling rate with 5V supply voltage  
• 50 nA typical standby current, 1 µA max  
• 450 µA max active current at 5V  
• Industrial temp range: -40°C to +85°C  
• 8-pin MSOP, PDIP, and SOIC packages  
Incorporating a successive approximation architecture  
with on-board sample and hold circuitry, the 13-bit A/D  
converter is specified to have ±1 LSB Differential Non-  
linearity (DNL) and ±1 LSB Integral Nonlinearity (INL)  
for B-grade devices and ±2 LSB for C-grade devices.  
The industry-standard SPI serial interface enables 13-  
bit A/D converter capability to be added to any PIC®  
microcontroller.  
• Mixed Signal PICtail™ Demo Board (P/N:  
MXSIGDM) compatible  
The MCP3301 features a low current design that per-  
mits operation with typical standby and active currents  
of only 50 nA and 300 µA, respectively. The device is  
capable of conversion rates of up to 100 ksps with  
tested specifications over a 4.5V to 5.5V supply range.  
The reference voltage can be varied from 400 mV to  
5V, yielding input-referred resolution between 98 µV  
and 1.22 mV.  
Applications  
• Remote Sensors  
• Battery-operated Systems  
• Transducer Interface  
Functional Block Diagram  
The MCP3301 is available in 8-pin PDIP, 150 mil SOIC,  
and MSOP packages. The full differential inputs of this  
device enable a wide variety of signals to be used in  
applications such as remote data acquisition, portable  
instrumentation, and battery-operated applications.  
VREF  
VDD VSS  
Package Types  
CDAC  
Comparator  
MSOP, PDIP, SOIC  
VREF  
VDD  
-
8
1
IN+  
IN-  
Sample  
& Hold  
Circuits  
13-Bit SAR  
IN(+)  
IN(-)  
VSS  
CLK  
2
3
4
7
6
5
+
DOUT  
CS/SHDN  
Shift  
Register  
Control Logic  
CS/SHDN CLK  
DOUT  
2001-2011 Microchip Technology Inc.  
DS21700E-page 1  
MCP3301  
*Notice: Stresses above those listed under “Maximum  
ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Maximum Ratings*  
V
...................................................................................7.0V  
DD  
All inputs and outputs w.r.t. V ............... -0.3V to V +0.3V  
SS  
DD  
Storage temperature .....................................-65°C to +150°C  
Ambient temperature with power applied......-65°C to +125°C  
Maximum Junction Temperature ..................................150°C  
ESD protection on all pins (HBM) .................................> 4 kV  
ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise noted, all parameters apply at V = 5V, V = 0V, and V  
= 5V. Full differential  
DD  
REF  
SS  
input configuration (Figure 1-5) with fixed common mode voltage of 2.5V. All parameters apply over temperature with  
T
= -40°C to +85°C (Note 7). Conversion speed (F  
is 100 ksps with FCLK = 17*FSAMPLE  
AMB  
SAMPLE)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Conversion Rate  
Maximum Sampling Frequency  
100  
ksps See FCLK specifications (Note 8)  
FSAMPLE  
Conversion Time  
Acquisition Time  
t
13  
1.5  
CLK  
periods  
CONV  
t
CLK  
ACQ  
periods  
DC Accuracy  
Resolution  
12 data bits + sign  
bits  
Integral Nonlinearity  
INL  
±0.5  
±1  
±1  
±2  
LSB MCP3301-B  
MCP3301-C  
Differential Nonlinearity  
DNL  
±0.5  
±1  
LSB Monotonic with no missing codes over  
temperature  
Positive Gain Error  
-3  
-3  
-3  
-0.75  
-0.5  
+3  
+2  
+2  
+6  
LSB  
LSB  
LSB  
Negative Gain Error  
Offset Error  
Dynamic Performance  
Total Harmonic Distortion  
Signal to Noise and Distortion  
Spurious Free Dynamic Range  
Common-Mode Rejection  
Power Supply Rejection  
THD  
SINAD  
SFDR  
CMRR  
PSR  
-91  
78  
92  
79  
74  
dB  
dB  
dB  
dB  
dB  
Note 3  
Note 3  
Note 3  
Note 6  
Note 4  
Note 1: This specification is established by characterization and not 100% tested.  
2: See characterization graphs that relate converter performance to V level.  
REF  
3:  
4:  
V
V
= 0.1V to 4.9V @ 1 kHz.  
IN  
= 5V DC ±500 mV  
@ 1 kHz, see test circuit Figure 1-4.  
DD  
P-P  
5: Maximum clock frequency specification must be met.  
6: = 400 mV, V = 0.1V to 4.9V @ 1 kHz  
V
REF  
IN  
7: MSOP devices are only specified at 25°C and +85°C.  
8: For slow sample rates, see Section 5.2.1 “Maintaining Minimum Clock Speed” for limitations on clock frequency.  
9: 4.5V - 5.5V is the supply voltage range for specified performance  
DS21700E-page 2  
2001-2011 Microchip Technology Inc.  
MCP3301  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise noted, all parameters apply at V = 5V, V = 0V, and V  
= 5V. Full differential  
DD  
REF  
SS  
input configuration (Figure 1-5) with fixed common mode voltage of 2.5V. All parameters apply over temperature with  
T
= -40°C to +85°C (Note 7). Conversion speed (F  
is 100 ksps with FCLK = 17*FSAMPLE  
SAMPLE)  
AMB  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Reference Input  
Voltage Range  
0.4  
V
V
Note 2  
DD  
Current Drain  
100  
0.001  
150  
3
µA  
µA  
CS = V  
= 5V  
DD  
Analog Inputs  
Full-Scale Input Span  
Absolute Input Voltage  
IN(+)-IN(-)  
IN(+)  
-V  
REF  
V
V
V
REF  
-0.3  
V
V
+ 0.3  
DD  
DD  
IN(-)  
-0.3  
+ 0.3  
V
Leakage Current  
0.001  
1
±1  
µA  
k  
pF  
Switch Resistance  
R
See Figure 5-3  
See Figure 5-3  
S
Sample Capacitor  
C
25  
SAMPLE  
Digital Input/Output  
Data Coding Format  
Binary Two’s Complement  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Output Leakage Current  
Pin Capacitance  
V
0.7 V  
0.3 V  
V
V
IH  
DD  
V
IL  
DD  
V
4.1  
V
I
I
= -1 mA, V  
= 1 mA, V  
= 4.5V  
OH  
OH  
DD  
= 4.5V  
DD  
V
0.4  
10  
10  
10  
V
OL  
OL  
I
-10  
-10  
µA  
µA  
pF  
V
V
= V or V  
SS DD  
LI  
IN  
I
= V  
or V  
SS  
LO  
OUT  
DD  
C
, C  
T
AMB  
= 25°C, f = 1 MHz, Note 1  
IN OUT  
Timing Specifications  
Clock Frequency (Note 8)  
Clock High Time  
0.085  
275  
275  
100  
1.7  
MHz  
ns  
V
= 5V, FSAMPLE = 100 ksps  
DD  
FCLK  
t
Note 5  
Note 5  
HI  
Clock Low Time  
t
ns  
LO  
CS Fall To First Rising CLK Edge  
CLK Fall To Output Data Valid  
t
ns  
SUCS  
t
125  
200  
ns  
ns  
V
V
= 5V, see Figure 1-2  
DO  
DD  
DD  
= 2.7V, see Figure 1-2  
CLK Fall To Output Enable  
t
125  
200  
ns  
ns  
V
V
= 5V, see Figure 1-2  
= 2.7V, see Figure 1-2  
EN  
DD  
DD  
CS Rise To Output Disable  
CS Disable Time  
t
580  
100  
ns  
ns  
ns  
ns  
See test circuits, Figure 1-2; Note 1  
DIS  
t
CSH  
D
D
Rise Time  
Fall Time  
t
100  
100  
See test circuits, Figure 1-2; Note 1  
See test circuits, Figure 1-2; Note 1  
OUT  
OUT  
R
t
F
Note 1: This specification is established by characterization and not 100% tested.  
2: See characterization graphs that relate converter performance to V level.  
REF  
3:  
4:  
V
V
= 0.1V to 4.9V @ 1 kHz.  
IN  
= 5V DC ±500 mV  
@ 1 kHz, see test circuit Figure 1-4.  
DD  
P-P  
5: Maximum clock frequency specification must be met.  
6: = 400 mV, V = 0.1V to 4.9V @ 1 kHz  
V
REF  
IN  
7: MSOP devices are only specified at 25°C and +85°C.  
8: For slow sample rates, see Section 5.2.1 “Maintaining Minimum Clock Speed” for limitations on clock frequency.  
9: 4.5V - 5.5V is the supply voltage range for specified performance  
2001-2011 Microchip Technology Inc.  
DS21700E-page 3  
MCP3301  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise noted, all parameters apply at V = 5V, V = 0V, and V  
= 5V. Full differential  
DD  
REF  
SS  
input configuration (Figure 1-5) with fixed common mode voltage of 2.5V. All parameters apply over temperature with  
T
= -40°C to +85°C (Note 7). Conversion speed (F  
is 100 ksps with FCLK = 17*FSAMPLE  
SAMPLE)  
AMB  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Power Requirements  
Operating Voltage  
Operating Current  
V
4.5  
5.5  
V
Note 9  
DD  
I
300  
200  
450  
µA  
V
V
V
= 5V, D  
= 2.7V, D  
unloaded  
unloaded  
OUT  
DD  
DD , REF  
OUT  
, V  
DD REF  
Standby Current  
I
0.05  
1
µA  
CS = V  
DD  
= 5.0V  
DDS  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
T
A
-40  
-40  
-65  
+85  
+85  
°C  
°C  
°C  
T
A
T
A
+150  
206  
85  
°C/W  
°C/W  
°C/W  
JA  
JA  
JA  
163  
Note 1: This specification is established by characterization and not 100% tested.  
2: See characterization graphs that relate converter performance to V level.  
REF  
3:  
4:  
V
V
= 0.1V to 4.9V @ 1 kHz.  
IN  
= 5V DC ±500 mV  
@ 1 kHz, see test circuit Figure 1-4.  
DD  
P-P  
5: Maximum clock frequency specification must be met.  
6: = 400 mV, V = 0.1V to 4.9V @ 1 kHz  
V
REF  
IN  
7: MSOP devices are only specified at 25°C and +85°C.  
8: For slow sample rates, see Section 5.2.1 “Maintaining Minimum Clock Speed” for limitations on clock frequency.  
9: 4.5V - 5.5V is the supply voltage range for specified performance  
.
t
CSH  
CS  
t
SUCS  
t
t
HI  
LO  
CLK  
t
t
t
EN  
DO  
DIS  
t
t
R
F
HI-Z  
HI-Z  
D
LSB  
Sign Bit  
OUT  
Null Bit  
FIGURE 1-1:  
Timing Parameters.  
DS21700E-page 4  
2001-2011 Microchip Technology Inc.  
MCP3301  
1.1  
Test Circuits  
1 k  
1/2 MCP602  
+
-
1.4V  
5V ±500 mVp-p  
To V  
DD  
on DUT  
1 k  
20 k  
3 k  
Test Point  
DOUT  
5V  
1 k  
2.63V  
P-P  
CL = 100 pF  
FIGURE 1-4:  
Power Supply Sensitivity  
FIGURE 1-2:  
Load Circuit for tR, tF tDO.  
,
Test Circuit (PSRR).  
Test Point  
VDD  
V
= 5V  
V
= 5V  
REF  
1 µF  
0.1 µF  
DD  
tDIS Waveform 2  
VDD/2  
3 k  
DOUT  
0.1 µF  
tEN Waveform  
DIS Waveform 1  
5V  
P-P  
100 pF  
t
IN(+)  
IN(-)  
VSS  
V
V
REF DD  
MCP3301  
V
SS  
5V  
P-P  
Voltage Waveforms for tDIS  
VIH  
V
= 2.5V  
CS  
CM  
DOUT  
Waveform 1  
90%  
10%  
*
FIGURE 1-5:  
Full Differential Test  
TDIS  
Configuration Example.  
DOUT  
Waveform 2  
V
=2.5V  
1 µF  
V
=5V  
DD  
REF  
*Waveform 1 is for an output with internal  
conditions such that the output is high, unless  
disabled by the output control.  
0.1 µF  
0.1 µF  
Waveform 2 is for an output with internal  
conditions such that the output is low, unless  
disabled by the output control.  
IN(+)  
V
V
5V  
REF DD  
MCP3301  
P-P  
IN(-)  
V
SS  
FIGURE 1-3:  
TEN  
Load Circuit for TDIS and  
V
=2.5V  
CM  
.
FIGURE 1-6:  
Pseudo Differential Test  
Configuration Example.  
2001-2011 Microchip Technology Inc.  
DS21700E-page 5  
MCP3301  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = VREF = 5V, Full differential input configuration, VSS = 0V, FSAMPLE = 100 ksps,  
FCLK = 17*FSAMPLE, TA = 25°C.  
1.0  
0.8  
0.6  
1.0  
0.8  
0.6  
Positive INL  
Positive INL  
0.4  
0.2  
0.4  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Negative INL  
Negative INL  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
50  
100  
Sample Rate (ksps)  
150  
200  
Temperature(°C)  
FIGURE 2-1:  
Integral Nonlinearity (INL)  
FIGURE 2-4:  
Integral Nonlinearity (INL)  
vs. Sample Rate.  
vs. Temperature.  
1.0  
0.8  
2.0  
1.5  
0.6  
1.0  
0.4  
Positive INL  
Negative INL  
Positive INL  
Negative INL  
0.5  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.5  
-1.0  
-1.5  
-2.0  
0
50  
100  
150  
200  
0
1
2
3
4
5
VREF (V)  
Sample Rate(ksps)  
FIGURE 2-2:  
Integral Nonlinearity (INL)  
FIGURE 2-5:  
Differential Nonlinearity  
vs. VREF.  
(DNL) vs. Sample Rate.  
2.0  
1.5  
1.0  
1
0.8  
0.6  
0.4  
0.2  
0
Positive INL  
0.5  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.5  
-1.0  
-1.5  
-2.0  
Negative INL  
-4096 -3072 -2048 -1024  
0
1024  
2048  
3072  
4096  
0
1
2
3
4
5
6
Code  
VREF (V)  
FIGURE 2-3:  
vs. Code (Representative Part).  
Integral Nonlinearity (INL)  
FIGURE 2-6:  
(DNL) vs. VREF  
Differential Nonlinearity  
.
DS21700E-page 6  
2001-2011 Microchip Technology Inc.  
MCP3301  
Note: Unless otherwise indicated, VDD = VREF = 5V, Full differential input configuration, VSS = 0V, FSAMPLE = 100 ksps,  
FCLK = 17*FSAMPLE, TA = 25°C.  
1
20  
0.8  
18  
0.6  
16  
0.4  
14  
0.2  
12  
0
10  
-0.2  
8
-0.4  
6
-0.6  
4
-0.8  
2
-1  
0
-4096 -3072 -2048 -1024  
0
1024  
2048  
3072  
4096  
150  
6
0
1
2
3
4
5
6
VREF (V)  
Code  
FIGURE 2-7:  
Differential Nonlinearity  
FIGURE 2-10:  
Offset Error vs. VREF.  
(DNL) vs. Code (Representative Part).  
1.0  
0.8  
0.6  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
0.4  
Positive DNL  
0.2  
0.0  
-0.2  
Negative DNL  
-0.4  
-0.6  
-0.8  
-1.0  
-1.8  
-50  
0
50  
100  
150  
-50  
0
50  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-8:  
Differential Nonlinearity  
FIGURE 2-11:  
Temperature.  
Positive Gain Error vs.  
(DNL) vs. Temperature.  
5
4
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
3
2
1
0
-1  
-2  
0
1
0
1
2
3
4
5
10  
100  
VREF (V)  
Input Frequency (kHz)  
FIGURE 2-9:  
Positive Gain Error vs. VREF  
.
FIGURE 2-12:  
Signal to Noise Ratio (SNR)  
vs. Input Frequency.  
2001-2011 Microchip Technology Inc.  
DS21700E-page 7  
MCP3301  
Note: Unless otherwise indicated, VDD = VREF = 5V, Full differential input configuration, VSS = 0V, FSAMPLE = 100 ksps,  
FCLK = 17*FSAMPLE, TA = 25°C.  
80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
70  
60  
50  
40  
30  
20  
10  
0
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
0
1
10  
100  
Input Frequency (kHz)  
Input Signal Level (dB)  
FIGURE 2-13:  
Total Harmonic Distortion  
FIGURE 2-16:  
Signal to Noise and  
(THD) vs. Input Frequency.  
Distortion (SINAD) vs. Input Signal Level.  
3.5  
3
13  
12  
11  
10  
9
2.5  
2
1.5  
1
8
0.5  
0
7
-50  
0
50  
100  
150  
0
1
2
3
4
5
6
Temperature (°C)  
V
REF (V)  
FIGURE 2-14:  
Offset Error vs.  
FIGURE 2-17:  
Effective Number of Bits  
Temperature.  
(ENOB) vs. VREF.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0
1
10  
100  
10  
100  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 2-15:  
Signal to Noise and  
FIGURE 2-18:  
Spurious Free Dynamic  
Distortion (SINAD) vs. Input Frequency.  
Range (SFDR) vs. Input Frequency.  
DS21700E-page 8  
2001-2011 Microchip Technology Inc.  
MCP3301  
Note: Unless otherwise indicated, VDD = VREF = 5V, Full differential input configuration, VSS = 0V, FSAMPLE = 100 ksps,  
FCLK = 17*FSAMPLE, TA = 25°C.  
0
-10  
450  
400  
350  
300  
250  
200  
150  
100  
50  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
0
0
5000  
10000  
15000  
20000  
25000  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD (V)  
Frequency (Hz)  
FIGURE 2-19:  
Frequency Spectrum of  
FIGURE 2-22:  
IDD vs. VDD.  
10 kHz Input (Representative Part).  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
13  
12.8  
12.6  
12.4  
12.2  
12  
11.8  
11.6  
11.4  
11.2  
0
0
1
10  
100  
50  
100  
150  
200  
Sample Rate (ksps)  
Input Frequency (kHz)  
FIGURE 2-20:  
Effective Number of Bits  
FIGURE 2-23:  
IDD vs. Sample Rate.  
(ENOB) vs. Input Frequency.  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
345  
340  
335  
330  
325  
320  
315  
310  
305  
300  
295  
-50  
1
10  
100  
1000  
10000  
0
50  
100  
150  
Ripple Frequency (kHz)  
Temperature (°C)  
FIGURE 2-21:  
Power Supply Rejection  
FIGURE 2-24:  
IDD vs. Temperature.  
(PSR) vs. Ripple Frequency. A 0.1 µF bypass  
capacitor is connected to the VDD pin.  
2001-2011 Microchip Technology Inc.  
DS21700E-page 9  
MCP3301  
Note: Unless otherwise indicated, VDD = VREF = 5V, Full differential input configuration, VSS = 0V, FSAMPLE = 100 ksps,  
FCLK = 17*FSAMPLE, TA = 25°C.  
120  
100  
80  
60  
40  
20  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
100  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD (V)  
VDD (V)  
FIGURE 2-25:  
IREF vs. VDD  
.
FIGURE 2-28:  
IDDS vs. VDD.  
100  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1
0.1  
0.01  
0.001  
0
0
-50  
-25  
0
25  
50  
75  
50  
100  
150  
200  
Sample Rate (ksps)  
Temperature (°C)  
FIGURE 2-26:  
IREF vs. Sample Rate.  
FIGURE 2-29:  
IDDS vs. Temperature.  
73.8  
73.6  
73.4  
73.2  
73  
8
7
6
5
4
72.8  
72.6  
72.4  
72.2  
72  
3
2
1
0
-1  
71.8  
-50  
0
1
2
3
4
5
0
50  
100  
150  
VREF (V)  
Temperature (°C)  
FIGURE 2-27:  
IREF vs. Temperature.  
FIGURE 2-30:  
Reference Voltage.  
Negative Gain Error vs.  
DS21700E-page 10  
2001-2011 Microchip Technology Inc.  
MCP3301  
Note: Unless otherwise indicated, VDD = VREF = 5V, Full differential input configuration, VSS = 0V, FSAMPLE = 100 ksps,  
FCLK = 17*FSAMPLE, TA = 25°C.  
80  
1
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-50  
0
50  
100  
150  
1
10  
100  
1000  
Temperature (°C)  
Input Frequency (kHz)  
FIGURE 2-31:  
Negative Gain Error vs.  
FIGURE 2-32:  
Common Mode Rejection  
Temperature.  
vs. Frequency.  
2001-2011 Microchip Technology Inc.  
DS21700E-page 11  
MCP3301  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Name  
MSOP, PDIP,  
SOIC  
Function  
1
2
3
4
5
6
7
8
VREF  
IN(+)  
Reference Voltage Input  
Positive Analog Input  
Negative Analog Input  
Ground  
IN(-)  
VSS  
CS/SHDN  
DOUT  
CLK  
Chip Select / Shutdown Input  
Serial Data Out  
Serial Clock  
VDD  
+4.5V to 5.5V Power Supply  
3.1  
Voltage Reference (V  
)
3.5  
Chip Select/Shutdown (CS/SHDN)  
REF  
This input pin provides the reference voltage for the  
device, which determines the maximum range of the  
analog input signal and the LSB size.  
The CS/SHDN pin is used to initiate communication  
with the device when pulled low. This pin will end a con-  
version and put the device in low power standby when  
pulled high. The CS/SHDN pin must be pulled high  
between conversions and cannot be tied low for  
multiple conversions. See Figure 6-2 for serial  
communication protocol.  
The LSB size is determined by the equation shown  
below. As the reference input is reduced, the LSB size  
is reduced accordingly.  
EQUATION  
3.6  
Serial Data Output (D  
)
OUT  
2 x VREF  
LSB Size =  
The SPI serial data output pin is used to shift out the  
results of the A/D conversion. Data will always change  
on the falling edge of each clock as the conversion  
takes place. See Figure 6-2 for serial communication  
protocol.  
8192  
When using an external voltage reference device, the  
system designer should always refer to the manufac-  
turer’s recommendations for circuit layout. Any instabil-  
ity in the operation of the reference device will have a  
direct effect on the accuracy of the ADC conversion  
results.  
3.7  
Serial Clock (CLK)  
The SPI clock pin is used to initiate a conversion, as  
well as to clock out each bit of the conversion as it takes  
place. See Section 5.2 “Driving the Analog Input”  
for constraints on clock speed, and Figure 6-2 for serial  
communication protocol.  
3.2  
Positive Analog Input (IN+)  
This pin has an absolute voltage range of VSS-0.3V to  
DD+0.3V. The full scale input range is defined as the  
absolute value of (IN+) - (IN-).  
V
3.8  
Power Supply (V  
)
DD  
3.3  
Negative Analog Input (IN-)  
The device can operate from 2.7V to 5.5V, but the per-  
formance is applicable from a 4.5V to 5.5V supply  
range. To ensure accuracy, a 0.1 µF ceramic bypass  
capacitor should be placed as close as possible to the  
pin. See Section 5.6 “Layout Considerations” for  
more information regarding circuit layout.  
This pin has an absolute voltage range of VSS-0.3V to  
VDD+0.3V. The full scale input range is defined as the  
absolute value of (IN+) - (IN-).  
3.4  
Ground Connection (V  
)
SS  
If an analog ground plane is available, it is recom-  
mended that this device be tied to the analog ground  
plane in the circuit. See Section 5.6 “Layout Consid-  
erations”, for more information regarding circuit  
layout.  
DS21700E-page 12  
2001-2011 Microchip Technology Inc.  
MCP3301  
Signal to Noise Ratio - Signal to Noise Ratio (SNR) is  
defined as the ratio of the signal to noise measured at  
the output of the converter. The signal is defined as the  
rms amplitude of the fundamental frequency of the  
input signal. The noise value is dependant on the  
device noise as well as the quantization error of the  
converter and is directly affected by the number of bits  
in the converter. The theoretical signal to noise ratio  
limit based on quantization error only for an N-bit  
converter is defined as:  
4.0  
DEFINITION OF TERMS  
Bipolar Operation - This applies to either a differential  
or single-ended input configuration, where both  
positive and negative codes are output from the A/D  
converter. Full bipolar range includes all 8192 codes.  
For bipolar operation on a single-ended input signal,  
the A/D converter must be configured to operate in  
pseudo differential mode.  
Unipolar Operation - This applies to either a single-  
ended or differential input signal where only one side of  
the device transfer is being used. This could be either  
the positive or negative side, depending on which input  
(IN+ or IN-) is being used for the DC bias. Full unipolar  
operation is equivalent to a 12-bit converter.  
EQUATION  
SNR = 6.02N + 1.76dB  
For a 13-bit converter, the theoretical SNR limit is  
80.02 dB.  
Full Differential Operation - Applying a full differential  
signal to both the IN(+) and IN(-) inputs is referred to as  
full differential operation. This configuration is  
described in Figure 1-5.  
Total Harmonic Distortion - Total Harmonic Distortion  
(THD) is the ratio of the rms sum of the harmonics to  
the fundamental, measured at the output of the  
converter. For the MCP3301, it is defined using the first  
9 harmonics, as shown in the following equation:  
Pseudo-Differential Operation - Applying a single-  
ended signal to only one of the input channels with a  
bipolar output is referred to as pseudo differential  
operation. To obtain a bipolar output from a single-  
ended input signal the inverting input of the A/D  
converter must be biased above VSS. This operation is  
described in Figure 1-6.  
EQUATION  
V22 + V23 + V24 + ..... + V28 + V29  
THD(-dB) = 20 log-------------------------------------------------------------------------------  
V21  
Integral Nonlinearity - The maximum deviation from a  
straight line passing through the endpoints of the  
bipolar transfer function is defined as the maximum  
integral nonlinearity error. The endpoints of the transfer  
function are a point 1/2 LSB above the first code  
transition (0x1000) and 1/2 LSB below the last code  
transition (0x0FFF).  
Here V1 is the rms amplitude of the fundamental and V2  
through V9 are the rms amplitudes of the second  
through ninth harmonics.  
Signal-to-Noise plus Distortion (SINAD) - Numeri-  
cally defined, SINAD is the calculated combination of  
SNR and THD. This number represents the dynamic  
performance of the converter, including any harmonic  
distortion.  
Differential Nonlinearity - The difference between two  
measured adjacent code transitions and the 1 LSB  
ideal is defined as differential nonlinearity.  
EQUATION  
Positive Gain Error - This is the deviation between the  
last positive code transition (0x0FFF) and the ideal  
voltage level of VREF-1/2 LSB, after the bipolar offset  
error has been adjusted out.  
SINAD(dB) = 20 log 10SNR 10+ 10THD 10  
EffectIve Number of Bits - Effective Number of Bits  
(ENOB) states the relative performance of the ADC in  
terms of its resolution. This term is directly related to  
SINAD by the following equation:  
Negative Gain Error - This is the deviation between  
the last negative code transition (0X1000) and the ideal  
voltage level of -VREF-1/2 LSB, after the bipolar offset  
error has been adjusted out.  
Offset Error - This is the deviation between the first  
positive code transition (0x0001) and the ideal 1/2 LSB  
voltage level.  
EQUATION  
SINAD 1.76  
ENOBN= -----------------------------------  
6.02  
Acquisition Time - The acquisition time is defined as  
the time during which the internal sample capacitor is  
charging. This occurs for 1.5 clock cycles of the  
external CLK as defined in Figure 6-2.  
For SINAD performance of 78 dB, the effective number  
of bits is 12.66.  
Spurious Free Dynamic Range - Spurious Free  
Dynamic Range (SFDR) is the ratio of the rms value of  
the fundamental to the next largest component in the  
output spectrum of the ADC. This is, typically, the first  
harmonic, but could also be a noise peak.  
Conversion Time - The conversion time occurs  
immediately after the acquisition time. During this time,  
successive approximation of the input signal occurs as  
the 13-bit result is being calculated by the internal  
circuitry. This occurs for 13 clock cycles of the external  
CLK as defined in Figure 6-2.  
2001-2011 Microchip Technology Inc.  
DS21700E-page 13  
MCP3301  
5.2  
Driving the Analog Input  
5.0  
5.1  
APPLICATIONS INFORMATION  
The analog input of the MCP3301 is easily driven either  
differentially or single ended. Any signal that is  
common to the two input channels will be rejected by  
the common mode rejection of the device. During the  
charging time of the sample capacitor, a small charging  
current will be required. For low source impedances,  
this input can be driven directly. For larger source  
impedances, a larger acquisition time will be required,  
due to the RC time constant that includes the source  
impedance. For the A/D Converter to meet specifica-  
tion, the charge holding capacitor (CSAMPLE) must be  
given enough time to acquire a 13-bit accurate voltage  
level during the 1.5 clock cycle acquisition period.  
Conversion Description  
The MCP3301MCP3301 A/D converter employs a con-  
ventional SAR architecture. With this architecture, the  
potential between the IN+ and IN- inputs are  
simultaneously sampled and stored with the internal  
sample circuits for 1.5 clock cycles (tACQ). Following  
this sample time, the input hold switches of the  
converter open and the device uses the collected  
charge to produce a serial 13-bit binary two’s  
complement output code. This conversion process is  
driven by the external clock and must include 13 clock  
cycles, one for each bit. During this process, the most  
significant bit (MSB) is output first. This bit is the sign  
bit and indicates whether the IN+ input or the IN- input  
is at a higher potential.  
An analog input model is shown in Figure 5-3. This  
model is accurate for an analog input, regardless of  
whether it is configured as a single-ended input or the  
IN+ and IN- input in differential mode. In this diagram,  
it is shown that the source impedance (RS) adds to the  
internal sampling switch (RSS) impedance, directly  
affecting the time that is required to charge the capaci-  
tor (CSAMPLE). Consequently, a larger source imped-  
ance with no additional acquisition time increases the  
offset, gain, and integral linearity errors of the conver-  
sion. To overcome this, a slower clock speed can be  
used to allow for the longer charging time. Figure 5-2  
shows the maximum clock speed associated with  
source impedances.  
CDAC  
Hold  
IN+  
CSAMP  
+
Comp  
13-Bit SAR  
-
CSAMP  
IN-  
Shift  
Register  
1.8  
1.6  
1.4  
1.2  
1
Hold  
DOUT  
FIGURE 5-1:  
Simplified Block Diagram.  
0.8  
0.6  
0.4  
0.2  
0
100  
1000  
10000  
100000  
Input Resistance (ohms)  
FIGURE 5-2:  
Maximum Clock Frequency  
vs. Source Resistance (RS) to maintain ±1 LSB  
INL.  
DS21700E-page 14  
2001-2011 Microchip Technology Inc.  
MCP3301  
VDD  
Sampling  
Switch  
VT = 0.6V  
VT = 0.6V  
RSS = 1 k  
CHx  
SS  
RS  
CSAMPLE  
= DAC capacitance  
= 25 pF  
CPIN  
7 pF  
ILEAKAGE  
±1 nA  
VA  
VSS  
Legend  
VA  
signal source  
=
=
=
=
=
=
=
=
=
source impedance  
input channel pad  
R
S
CHx  
input pin capacitance  
threshold voltage  
C
PIN  
V
T
leakage current at the pin due to various junctions  
sampling switch  
I
LEAKAGE  
SS  
sampling switch resistor  
R
SS  
SAMPLE  
sample/hold capacitance  
C
Using the values in Figure 5-4, we have a 100 Hz cor-  
ner frequency. See Figure 5-2 for the relationship  
between input impedance and acquisition time.  
FIGURE 5-3:  
5.2.1  
Analog Input Model.  
MAINTAINING MINIMUM CLOCK  
SPEED  
When the MCP3301 initiates, charge is stored on the  
sample capacitor. When the sample period is complete,  
the device converts one bit for each clock that is  
received. It is important for the user to note that a slow  
clock rate will allow charge to bleed off the sample  
capacitor while the conversion is taking place. For  
MCP3301 devices, the recommended minimum clock  
speed during the conversion cycle (tCONV) is 85 kHz.  
Failure to meet this criteria may introduce linearity  
errors into the conversion outside the rated specifica-  
tions. It should be noted that, during the entire conver-  
sion cycle, the A/D converter does not have  
requirements for clock speed or duty cycle, as long as  
all timing specifications are met.  
V
= 5V  
DD  
0.1 µF  
C
10 µF  
IN+  
IN-  
V
IN  
MCP3301  
1 k  
R
V
REF  
V
V
IN  
OUT  
5.3  
Biasing Solutions  
MCP1525  
0.1 µF  
1 µF  
For pseudo-differential bipolar operation, the biasing  
circuit shown in Figure 5-4 shows a single-ended input  
AC coupled to the converter. This configuration will give  
a digital output range of -4096 to +4095. With the 2.5V  
reference, the LSB size is equal to 610 µV.  
FIGURE 5-4:  
Pseudo-differential biasing  
circuit for bipolar operation.  
Although the ADC is not production tested with a 2.5V  
reference as shown, linearity will not change more than  
0.1 LSB. See Figure 2-2 and Figure 2-6 for INL and  
DNL errors versus VREF at VDD = 5V. A trade-off exists  
between the high-pass corner and the acquisition time.  
The value of C will need to be quite large in order to  
bring down the high-pass corner. The value of R needs  
to be 1 kor less, since higher input impedances  
require additional acquisition time.  
2001-2011 Microchip Technology Inc.  
DS21700E-page 15  
MCP3301  
Using an external operational amplifier on the input  
allows for gain and buffers the input signal from the  
input to the ADC, allowing for a higher source  
impedance. This circuit is shown in Figure 5-5.  
5.4  
Common Mode Input Range  
The common mode input range has no restriction and  
is equal to the absolute input voltage range: VSS -0.3V  
to VDD + 0.3V. However, for a given VREF, the common  
mode voltage has a limited swing if the entire range of  
the A/D converter is to be used. Figure 5-7 and  
Figure 5-8 show the relationship between VREF and the  
common mode voltage. A smaller VREF allows for wider  
flexibility in a common mode voltage. VREF levels,  
down to 400 mV, exhibit less than 0.1 LSB change in  
INL and DNL.  
V
= 5V  
DD  
10 k  
0.1 µF  
MCP6022  
1 k  
-
IN+  
IN-  
V
+
MCP3301  
IN  
For characterization graphs that show this performance  
relationship, see Figure 2-2 and Figure 2-6.  
1 µF  
V
REF  
1 M  
V
= 5V  
DD  
V
V
OUT  
IN  
5
4
MCP1525  
4.05V  
0.95V  
1 µF  
0.1 µF  
2.8V  
2.3V  
3
2
1
0
FIGURE 5-5:  
Adding an amplifier allows  
for gain and also buffers the input from any high  
impedance sources.  
This circuit shows that some headroom will be lost due  
to the amplifier output not being able to swing all the  
way to the rail. An example would be for an output  
swing of 0V to 5V. This limitation can be overcome by  
supplying a VREF that is slightly less than the common  
mode voltage. Using a 2.048V reference for the A/D  
converter, while biasing the input signal at 2.5V solves  
the problem. This circuit is shown in Figure 5-6.  
-1  
0.25  
1.0  
5.0  
2.5  
4.0  
V
(V)  
REF  
FIGURE 5-7:  
Common Mode Range of  
Full Differential input signal versus VREF  
.
V
= 5V  
DD  
V
= 5V  
DD  
5
10 k  
0.1 µF  
4.05V  
4
2.8V  
2.3V  
MCP606  
1 k  
3
2
-
IN+  
IN-  
V
+
MCP3301  
IN  
1 µF  
V
REF  
1 M  
1
0.95V  
10 k  
0
2.048V  
-1  
0.25  
0.5  
2.5  
1.25  
(V)  
2.0  
V
V
V
REF  
OUT  
IN  
1 µF  
MCP1525  
0.1 µF  
FIGURE 5-8:  
Common Mode Range  
versus VREF for Pseudo Differential Input.  
FIGURE 5-6:  
Circuit solution to overcome  
amplifier output swing limitation.  
DS21700E-page 16  
2001-2011 Microchip Technology Inc.  
MCP3301  
5.5  
Buffering/Filtering the Analog  
Inputs  
5.6  
Layout Considerations  
When laying out a printed circuit board for use with  
analog components, care should be taken to reduce  
noise wherever possible. A bypass capacitor from VDD  
to ground should always be used with this device and  
should be placed as close as possible to the device pin.  
A bypass capacitor value of 0.1 µF is recommended.  
Inaccurate conversion results may occur if the signal  
source for the A/D converter is not a low impedance  
source. Buffering the input will solve the impedance  
issue. It is also recommended that an analog filter be  
used to eliminate any signals that may be aliased back  
into the conversion results. Using an op amp to drive  
the analog input of the MCP3301 is illustrated in  
Figure 5-9. This amplifier provides a low impedance  
source for the converter input and low pass filter, which  
eliminates unwanted high frequency noise. Values  
shown are for a 10 Hz Butterworth Low pass filter.  
Digital and analog traces should be separated as much  
as possible on the board with no traces running  
underneath the device or bypass capacitor. Extra  
precautions should be taken to keep traces with high  
frequency signals (such as clock lines) as far as  
possible from analog traces.  
Low pass (anti-aliasing) filters can be designed using  
Microchip’s interactive FilterLab® software. FilterLab  
will calculate capacitor and resistor values as well as  
determine the number of poles that are required for the  
application. For more information on filtering signals,  
see AN-699 “Anti-Aliasing Analog Filters for Data  
Acquisition Systems”.  
Use of an analog ground plane is recommended in  
order to keep the ground potential the same for all  
devices on the board. Providing VDD connections to  
devices in a “star” configuration can also reduce noise  
by eliminating current return paths and associated  
errors (Figure 5-10). For more information on layout  
tips when using the MCP3301 or other ADC devices,  
refer to AN-688 “Layout Tips for 12-Bit A/D Converter  
Applications”.  
V
DD  
10 µF  
4.096V  
Reference  
V
DD  
Connection  
1 µF  
0.1 µF  
MCP1541  
C
L
0.1 µF  
V
REF  
IN+  
MCP3301  
IN-  
2.2 µF  
MCP601  
7.86 k  
IN  
Device 4  
V
+
-
14.6 k  
1 µF  
Device 1  
FIGURE 5-9:  
The MCP601 Operational  
Amplifier is used to implement a 2nd order anti-  
aliasing filter for the signal being converted by  
the MCP3301.  
Device 3  
Device 2  
FIGURE 5-10:  
VDD traces arranged in a  
‘Star’ configuration in order to reduce errors  
caused by current return paths.MCP3301  
2001-2011 Microchip Technology Inc.  
DS21700E-page 17  
MCP3301  
6.0  
6.1  
SERIAL COMMUNICATIONS  
Output Code Format  
The output code format is a binary two’s complement  
scheme with a leading sign bit that indicates the sign of  
the output. If the IN+ input is higher than the IN- input,  
the sign bit will be a zero. If the IN- input is higher, the  
sign bit will be a ‘1’.  
The diagram shown in Figure 6-1 shows the output  
code transfer function. In this diagram, the horizontal  
axis is the analog input voltage and the vertical axis is  
the output code of the ADC. It shows that when IN+ is  
equal to IN-, both the sign bit and the data word are  
zero. As IN+ gets larger, with respect to IN-, the sign bit  
is a zero and the data word gets larger. The full scale  
output code is reached at +4095 when the input [(IN+)  
- (IN-)] reaches VREF - 1 LSB. When IN- is larger than  
IN+, the two’s complement output codes will be seen  
with the sign bit being a one. Some examples of analog  
input levels and corresponding output codes are shown  
in Table 6-1.  
TABLE 6-1:  
BINARY TWO’S COMPLEMENT OUTPUT CODE EXAMPLES.  
Sign  
Bit  
Decimal  
DATA  
Analog Input Levels  
Binary Data  
Full Scale Positive  
(IN+)-(IN-) = VREF-1 LSB  
(IN+)-(IN-) = VREF-2 LSB  
IN+ = (IN-) +2 LSB  
IN+ = (IN-) +1 LSB  
IN+ = IN-  
0
0
0
0
0
1
1
1
1
1111 1111 1111  
1111 1111 1110  
0000 0000 0010  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
1111 1111 1110  
0000 0000 0001  
0000 0000 0000  
+4095  
+4094  
+2  
+1  
0
IN+ = (IN-) - 1 LSB  
IN+ = (IN-) - 2 LSB  
IN+ - IN- = VREF+1 LSB  
IN+ - IN- = -VREF  
-1  
-2  
-4095  
-4096  
Full Scale Negative  
DS21700E-page 18  
2001-2011 Microchip Technology Inc.  
MCP3301  
Output  
Code  
Positive Full  
Scale Output = VREF -1 LSB  
0 + 1111 1111 1111 (+4095)  
0 + 1111 1111 1110 (+4094)  
0 + 0000 0000 0011 (+3)  
0 + 0000 0000 0010 (+2)  
0 + 0000 0000 0001 (+1)  
Analog Input  
IN+ > IN-  
0 + 0000 0000 0000 (0)  
Voltage  
IN+ - IN-  
IN+ < IN-  
1 + 1111 1111 1111 (-1)  
1 + 1111 1111 1110 (-2)  
1 + 1111 1111 1101 (-3)  
-VREF  
VREF  
1 + 0000 0000 0001 (-4095)  
1 + 0000 0000 0000 (-4096)  
Negative Full  
Scale Output = -VREF  
FIGURE 6-1:  
Output Code Transfer Function.  
2001-2011 Microchip Technology Inc.  
DS21700E-page 19  
MCP3301  
12 remaining data bits, as shown in Figure 6-2. Data is  
always output from the device on the falling edge of the  
clock. If all 13 data bits have been transmitted and the  
device continues to receive clocks while the CS is held  
low, the device will output the conversion result LSB  
first, as shown in Figure 6-3. If more clocks are  
provided to the device while CS is still low (after the  
LSB first data has been transmitted), the device will  
clock out zeros indefinitely.  
6.2  
Communicating with the MCP3301  
Communication with the device is completed using a  
standard SPI compatible serial interface. Initiating com-  
munication with the MCP3301 begins with the CS  
going low. If the device was powered up with the CS pin  
low, it must be brought high and back low to initiate  
communication. The device will begin to sample the  
analog input on the first rising edge of CLK after CS  
goes low. The sample period will end in the falling edge  
of the second clock, at which time the device will output  
a low null bit. The next 13 clocks will output the result  
of the conversion with the sign bit first, followed by the  
t
SAMPLE  
t
CSH  
CS  
Power  
Down  
t
SUCS  
CLK  
t
**  
DATA  
t
t
CONV  
ACQ  
HI-Z  
HI-Z  
NULL  
BIT  
NULL  
BIT  
SB B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0*  
D
SB B11 B10 B9  
OUT  
* After completing the data transfer, if further clocks are applied with CS low, the ADC will output LSB first data,  
followed by zeros indefinitely. See Figure 6-2 below.  
** t  
: during this time, the bias current and the comparator power down and the reference input becomes a  
high impedance node, leaving the CLK running to clock out the LSB-first data or zeros.  
DATA  
FIGURE 6-2:  
Communication with MCP3301 (MSB first Format).  
t
SAMPLE  
t
CSH  
CS  
t
SUCS  
Power Down  
CLK  
t
ACQ  
t
**  
t
DATA  
CONV  
NULL  
BIT SB  
HI-Z  
HI-Z  
D
SB*  
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
OUT  
* After completing the data transfer, if further clocks are applied with CS low, the ADC will output zeros indefi-  
nitely.  
** t  
: during this time, the bias current and the comparator power down and the reference input becomes a  
high impedance node, leaving the CLK running to clock out the LSB-first data or zeros.  
DATA  
FIGURE 6-3:  
Communication with MCP3301 (LSB first Format).  
DS21700E-page 20  
2001-2011 Microchip Technology Inc.  
MCP3301  
falling edge of the third clock pulse, followed by the  
remaining 12 data bits (MSB first). Once the first eight  
clocks have been sent to the device, the microcon-  
troller’s receive buffer will contain two unknown bits (for  
the first two clocks, the output is high impedance),  
followed by the null bit, the sign bit and the highest  
order four bits of the conversion. After the second eight  
clocks have been sent to the device, the MCU receive  
register will contain the lowest order 8 data bits. Notice  
that, on the falling edge of clock 16, the ADC has begun  
to shift out LSB first data.  
6.3  
Using the MCP3301 with  
Microcontroller (MCU) SPI Ports  
With most microcontroller SPI ports, it is required to  
clock out eight bits at a time. Using a hardware SPI port  
with the MCP3301 is very easy because each conver-  
sion requires 16 clocks. For example, Figure 6-4 and  
Figure 6-5 show how the MCP3301 can be interfaced  
to a microcontroller with a standard SPI port. Since the  
MCP3301 always clocks data out on the falling edge of  
clock, the MCU SPI port must be configured to match  
this operation. SPI Mode 0,0 (clock idles low) and SPI  
Mode 1,1 (clock idles high) are both compatible with  
the MCP3301. Figure 6-4 depicts the operation shown  
in SPI Mode 0,0, which requires that the CLK from the  
microcontroller idles in the ‘low’ state. As shown in the  
diagram, the sign bit is clocked out of the ADC on the  
Figure 6-5 shows the same scenario in SPI Mode 1,1,  
which requires that the clock idles in the high state. As  
with mode 0,0, the ADC outputs data on the falling  
edge of the clock and the MCU latches data from the  
ADC in on the rising edge of the clock.  
CS  
MCU latches data from ADC  
on rising edges of SCLK  
1
2
3
4
5
6
7
8
CLK  
9
10 11 12  
14 15 16  
13  
Data is clocked out of  
ADC on falling edges  
HI-Z  
HI-Z  
NULL  
BIT  
B7  
B6 B5 B4 B3 B2 B1 B0 B1  
SB B11 B10 B9  
B8  
D
OUT  
LSB first data begins  
to come out  
SB B11 B10 B9 B8  
?
?
0
B0  
B7 B6 B5 B4 B3 B2 B1  
X = Don’t Care Bits  
? = Unknown Bits  
Data stored into MCU receive register  
after transmission of first 8 bits  
Data stored into MCU receive register  
after transmission of second 8 bits  
FIGURE 6-4:  
SPI Communication with the MCP3301 using 8-bit segments  
(Mode 0,0: SCLK idles low).  
CS  
MCU latches data from ADC  
on rising edges of SCLK  
1
2
3
4
5
6
7
8
CLK  
9
10 11 12 13 14 15 16  
Data is clocked out of  
ADC on falling edges  
HI-Z  
HI-Z  
NULL  
BIT  
B7 B6 B5 B4 B3 B2 B1  
B0  
SB B11 B10 B9  
B8  
D
OUT  
LSB first data begins  
to come out  
SB B11 B10 B9 B8  
?
?
0
B7 B6 B5 B4 B3 B2 B1 B0  
Data stored into MCU receive register  
after transmission of first 8 bits  
Data stored into MCU receive register  
after transmission of second 8 bits  
X = Don’t Care Bits  
? = Unknown Bits  
FIGURE 6-5:  
SPI Communication with the MCP3301 using 8-bit segments  
(Mode 1,1: SCLK idles high).  
2001-2011 Microchip Technology Inc.  
DS21700E-page 21  
MCP3301  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead MSOP (3x3 mm)  
Example  
3301CI  
130256  
8-Lead PDIP (300 mil)  
Example  
XXXXXXXX  
XXXXXNNN  
3301-BI  
3
I/P 256  
1130  
YYWW  
8-Lead SOIC (3.90 mm)  
Example  
3301-BI  
3
SN 1130  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available characters  
for customer-specific information.  
DS21700E-page 22  
2001-2011 Microchip Technology Inc.  
MCP3301  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢋꢌꢎꢏꢆꢐꢑꢄꢈꢈꢆꢒꢓꢊꢈꢋꢔꢃꢆꢇꢄꢌꢕꢄꢖꢃꢆꢗꢍꢐꢘꢆꢙꢍꢐꢒꢇꢚ  
ꢛꢏꢊꢃꢜ 3ꢌꢊꢅ&ꢎꢉꢅ'ꢌ!&ꢅꢍ"ꢊꢊꢉꢄ&ꢅꢑꢇꢍ4ꢇꢔꢉꢅ#ꢊꢇ*ꢃꢄꢔ!(ꢅꢑꢈꢉꢇ!ꢉꢅ!ꢉꢉꢅ&ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ4ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ%ꢃꢍꢇ&ꢃꢌꢄꢅꢈꢌꢍꢇ&ꢉ#ꢅꢇ&ꢅ  
ꢎ&&ꢑ255***ꢁ'ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ'5ꢑꢇꢍ4ꢇꢔꢃꢄꢔ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ+ꢘ+ꢙꢖ  
ꢐꢃ'ꢉꢄ!ꢃꢌꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
89ꢒ  
ꢒꢕ:  
8"')ꢉꢊꢅꢌ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢍꢎ  
8
;
ꢓꢁ=,ꢅ0ꢖ1  
9ꢆꢉꢊꢇꢈꢈꢅ?ꢉꢃꢔꢎ&  
ꢒꢌꢈ#ꢉ#ꢅꢂꢇꢍ4ꢇꢔꢉꢅꢘꢎꢃꢍ4ꢄꢉ!!  
ꢖ&ꢇꢄ#ꢌ%%ꢅ  
9ꢆꢉꢊꢇꢈꢈꢅBꢃ#&ꢎ  
ꢒꢌꢈ#ꢉ#ꢅꢂꢇꢍ4ꢇꢔꢉꢅBꢃ#&ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅ7ꢉꢄꢔ&ꢎ  
3ꢌꢌ&ꢅ7ꢉꢄꢔ&ꢎ  
M
ꢓꢁꢛ,  
ꢓꢁꢓꢓ  
M
ꢓꢁ;,  
ꢀꢁꢀꢓ  
ꢓꢁꢜ,  
ꢓꢁꢀ,  
ꢕꢏ  
ꢕꢀ  
+
+ꢀ  
M
ꢗꢁꢜꢓꢅ0ꢖ1  
-ꢁꢓꢓꢅ0ꢖ1  
-ꢁꢓꢓꢅ0ꢖ1  
ꢓꢁ=ꢓ  
7
ꢓꢁꢗꢓ  
ꢓꢁ;ꢓ  
3ꢌꢌ&ꢑꢊꢃꢄ&  
3ꢌꢌ&ꢅꢕꢄꢔꢈꢉ  
7ꢀ  
ꢓꢁꢜ,ꢅꢙ+3  
M
ꢓꢝ  
;ꢝ  
7ꢉꢇ#ꢅꢘꢎꢃꢍ4ꢄꢉ!!  
7ꢉꢇ#ꢅBꢃ#&ꢎ  
)
ꢓꢁꢓ;  
ꢓꢁꢏꢏ  
M
M
ꢓꢁꢏ-  
ꢓꢁꢗꢓ  
ꢛꢏꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ!"ꢇꢈꢅꢃꢄ#ꢉ$ꢅ%ꢉꢇ&"ꢊꢉꢅ'ꢇꢋꢅꢆꢇꢊꢋ(ꢅ)"&ꢅ'"!&ꢅ)ꢉꢅꢈꢌꢍꢇ&ꢉ#ꢅ*ꢃ&ꢎꢃꢄꢅ&ꢎꢉꢅꢎꢇ&ꢍꢎꢉ#ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢃ'ꢉꢄ!ꢃꢌꢄ!ꢅꢐꢅꢇꢄ#ꢅ+ꢀꢅ#ꢌꢅꢄꢌ&ꢅꢃꢄꢍꢈ"#ꢉꢅ'ꢌꢈ#ꢅ%ꢈꢇ!ꢎꢅꢌꢊꢅꢑꢊꢌ&ꢊ"!ꢃꢌꢄ!ꢁꢅꢒꢌꢈ#ꢅ%ꢈꢇ!ꢎꢅꢌꢊꢅꢑꢊꢌ&ꢊ"!ꢃꢌꢄ!ꢅ!ꢎꢇꢈꢈꢅꢄꢌ&ꢅꢉ$ꢍꢉꢉ#ꢅꢓꢁꢀ,ꢅ''ꢅꢑꢉꢊꢅ!ꢃ#ꢉꢁ  
-ꢁ ꢐꢃ'ꢉꢄ!ꢃꢌꢄꢃꢄꢔꢅꢇꢄ#ꢅ&ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ+ꢅ/ꢀꢗꢁ,ꢒꢁ  
0ꢖ12 0ꢇ!ꢃꢍꢅꢐꢃ'ꢉꢄ!ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ&ꢃꢍꢇꢈꢈꢋꢅꢉ$ꢇꢍ&ꢅꢆꢇꢈ"ꢉꢅ!ꢎꢌ*ꢄꢅ*ꢃ&ꢎꢌ"&ꢅ&ꢌꢈꢉꢊꢇꢄꢍꢉ!ꢁ  
ꢙ+32 ꢙꢉ%ꢉꢊꢉꢄꢍꢉꢅꢐꢃ'ꢉꢄ!ꢃꢌꢄ(ꢅ"!"ꢇꢈꢈꢋꢅ*ꢃ&ꢎꢌ"&ꢅ&ꢌꢈꢉꢊꢇꢄꢍꢉ(ꢅ%ꢌꢊꢅꢃꢄ%ꢌꢊ'ꢇ&ꢃꢌꢄꢅꢑ"ꢊꢑꢌ!ꢉ!ꢅꢌꢄꢈꢋꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ*ꢃꢄꢔ 1ꢓꢗꢞꢀꢀꢀ0  
2001-2011 Microchip Technology Inc.  
DS21700E-page 23  
MCP3301  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21700E-page 24  
2001-2011 Microchip Technology Inc.  
MCP3301  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢝꢓꢄꢈꢆꢞꢔꢁꢂꢋꢔꢃꢆꢗꢇꢘꢆꢟꢆꢠꢡꢡꢆꢑꢋꢈꢆꢢꢏꢅꢣꢆꢙꢇꢝꢞꢇꢚ  
ꢛꢏꢊꢃꢜ 3ꢌꢊꢅ&ꢎꢉꢅ'ꢌ!&ꢅꢍ"ꢊꢊꢉꢄ&ꢅꢑꢇꢍ4ꢇꢔꢉꢅ#ꢊꢇ*ꢃꢄꢔ!(ꢅꢑꢈꢉꢇ!ꢉꢅ!ꢉꢉꢅ&ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ4ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ%ꢃꢍꢇ&ꢃꢌꢄꢅꢈꢌꢍꢇ&ꢉ#ꢅꢇ&ꢅ  
ꢎ&&ꢑ255***ꢁ'ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ'5ꢑꢇꢍ4ꢇꢔꢃꢄꢔ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
6ꢄꢃ&!  
ꢚ81?+ꢖ  
ꢐꢃ'ꢉꢄ!ꢃꢌꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
89ꢒ  
;
ꢁꢀꢓꢓꢅ0ꢖ1  
M
ꢁꢀ-ꢓ  
M
ꢁ-ꢀꢓ  
ꢁꢏ,ꢓ  
ꢁ-=,  
ꢁꢀ-ꢓ  
ꢁꢓꢀꢓ  
ꢁꢓ=ꢓ  
ꢁꢓꢀ;  
M
ꢒꢕ:  
8"')ꢉꢊꢅꢌ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢍꢎ  
ꢑꢅ&ꢌꢅꢖꢉꢇ&ꢃꢄꢔꢅꢂꢈꢇꢄꢉ  
ꢒꢌꢈ#ꢉ#ꢅꢂꢇꢍ4ꢇꢔꢉꢅꢘꢎꢃꢍ4ꢄꢉ!!  
0ꢇ!ꢉꢅ&ꢌꢅꢖꢉꢇ&ꢃꢄꢔꢅꢂꢈꢇꢄꢉ  
ꢖꢎꢌ"ꢈ#ꢉꢊꢅ&ꢌꢅꢖꢎꢌ"ꢈ#ꢉꢊꢅBꢃ#&ꢎ  
ꢒꢌꢈ#ꢉ#ꢅꢂꢇꢍ4ꢇꢔꢉꢅBꢃ#&ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅ7ꢉꢄꢔ&ꢎ  
8
ꢕꢏ  
ꢕꢀ  
+
+ꢀ  
7
)ꢀ  
)
ꢉ0  
M
ꢁꢏꢀꢓ  
ꢁꢀꢜ,  
M
ꢁꢀꢀ,  
ꢁꢓꢀ,  
ꢁꢏꢜꢓ  
ꢁꢏꢗꢓ  
ꢁ-ꢗ;  
ꢁꢀꢀ,  
ꢁꢓꢓ;  
ꢁꢓꢗꢓ  
ꢁꢓꢀꢗ  
M
ꢁ-ꢏ,  
ꢁꢏ;ꢓ  
ꢁꢗꢓꢓ  
ꢁꢀ,ꢓ  
ꢁꢓꢀ,  
ꢁꢓꢛꢓ  
ꢁꢓꢏꢏ  
ꢁꢗ-ꢓ  
ꢘꢃꢑꢅ&ꢌꢅꢖꢉꢇ&ꢃꢄꢔꢅꢂꢈꢇꢄꢉ  
7ꢉꢇ#ꢅꢘꢎꢃꢍ4ꢄꢉ!!  
6ꢑꢑꢉꢊꢅ7ꢉꢇ#ꢅBꢃ#&ꢎ  
7ꢌ*ꢉꢊꢅ7ꢉꢇ#ꢅBꢃ#&ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅꢙꢌ*ꢅꢖꢑꢇꢍꢃꢄꢔꢅꢅꢟ  
ꢛꢏꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ!"ꢇꢈꢅꢃꢄ#ꢉ$ꢅ%ꢉꢇ&"ꢊꢉꢅ'ꢇꢋꢅꢆꢇꢊꢋ(ꢅ)"&ꢅ'"!&ꢅ)ꢉꢅꢈꢌꢍꢇ&ꢉ#ꢅ*ꢃ&ꢎꢅ&ꢎꢉꢅꢎꢇ&ꢍꢎꢉ#ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢟꢅꢖꢃꢔꢄꢃ%ꢃꢍꢇꢄ&ꢅ1ꢎꢇꢊꢇꢍ&ꢉꢊꢃ!&ꢃꢍꢁ  
-ꢁ ꢐꢃ'ꢉꢄ!ꢃꢌꢄ!ꢅꢐꢅꢇꢄ#ꢅ+ꢀꢅ#ꢌꢅꢄꢌ&ꢅꢃꢄꢍꢈ"#ꢉꢅ'ꢌꢈ#ꢅ%ꢈꢇ!ꢎꢅꢌꢊꢅꢑꢊꢌ&ꢊ"!ꢃꢌꢄ!ꢁꢅꢒꢌꢈ#ꢅ%ꢈꢇ!ꢎꢅꢌꢊꢅꢑꢊꢌ&ꢊ"!ꢃꢌꢄ!ꢅ!ꢎꢇꢈꢈꢅꢄꢌ&ꢅꢉ$ꢍꢉꢉ#ꢅꢁꢓꢀꢓFꢅꢑꢉꢊꢅ!ꢃ#ꢉꢁ  
ꢗꢁ ꢐꢃ'ꢉꢄ!ꢃꢌꢄꢃꢄꢔꢅꢇꢄ#ꢅ&ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ+ꢅ/ꢀꢗꢁ,ꢒꢁ  
0ꢖ12ꢅ0ꢇ!ꢃꢍꢅꢐꢃ'ꢉꢄ!ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ&ꢃꢍꢇꢈꢈꢋꢅꢉ$ꢇꢍ&ꢅꢆꢇꢈ"ꢉꢅ!ꢎꢌ*ꢄꢅ*ꢃ&ꢎꢌ"&ꢅ&ꢌꢈꢉꢊꢇꢄꢍꢉ!ꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ*ꢃꢄꢔ 1ꢓꢗꢞꢓꢀ;0  
2001-2011 Microchip Technology Inc.  
DS21700E-page 25  
MCP3301  
Note: ꢠor the most current package drawingsꢡ please see the ꢢicrochip Packaging Specification located at  
httpꢣꢤꢤwww.microchip.comꢤpackaging  
DS21700E-page 26  
2001-2011 Microchip Technology Inc.  
MCP3301  
Note: ꢠor the most current package drawingsꢡ please see the ꢢicrochip Packaging Specification located at  
httpꢣꢤꢤwww.microchip.comꢤpackaging  
2001-2011 Microchip Technology Inc.  
DS21700E-page 27  
MCP3301  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢐꢑꢄꢈꢈꢆꢒꢓꢊꢈꢋꢔꢃꢆꢗꢐꢛꢘꢆꢟꢆꢛꢄꢎꢎꢏꢤꢥꢆꢠꢦꢧꢡꢆꢑꢑꢆꢢꢏꢅꢣꢆꢙꢐꢒꢞꢨꢚ  
ꢛꢏꢊꢃꢜ 3ꢌꢊꢅ&ꢎꢉꢅ'ꢌ!&ꢅꢍ"ꢊꢊꢉꢄ&ꢅꢑꢇꢍ4ꢇꢔꢉꢅ#ꢊꢇ*ꢃꢄꢔ!(ꢅꢑꢈꢉꢇ!ꢉꢅ!ꢉꢉꢅ&ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ4ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ%ꢃꢍꢇ&ꢃꢌꢄꢅꢈꢌꢍꢇ&ꢉ#ꢅꢇ&ꢅ  
ꢎ&&ꢑ255***ꢁ'ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ'5ꢑꢇꢍ4ꢇꢔꢃꢄꢔ  
DS21700E-page 28  
2001-2011 Microchip Technology Inc.  
MCP3301  
APPENDIX A: REVISION HISTORY  
Revision E (November 2011)  
Updated Product Identification System.  
Corrected MSOP marking drawings.  
Updated Package Specification Drawings with new  
additions.  
Revision D (April 2011)  
The following is the list of modifications:  
1. Updated the content to illustrate that the devices  
now have tested specifications in the 4.5V to  
5.5V supply range.  
2. Removed figures 2-4 to 2-6, 2-10 to 2-12, 2-16  
and 2-17.  
Revision C (January 2007)  
This revision includes updates to the packaging  
diagrams.  
Revision B (February 2002)  
Undocumented changes.  
Revision A (December 2001)  
Original Release of this Document.  
2001-2011 Microchip Technology Inc.  
DS21700E-page 29  
MCP3301  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact the local Microchip sales office.  
PART NO.  
Device  
X
X
/XX  
Examples:  
Grade Temperature Package  
Range  
a)  
b)  
c)  
MCP3301-BI/P: ±1 LSB INL, Industrial  
Temperature, PDIP package  
MCP3301-BI/SN: ±1 LSB INL, Industrial  
Temperature, SOIC package  
Device:  
Grade:  
MCP3301: 13-Bit Serial A/D Converter  
MCP3301T: 13-Bit Serial A/D Converter (Tape and Reel)  
MCP3301-CI/MS: ±2 LSB INL, Industrial  
Temperature, MSOP package  
B
C
=
=
±1 LSB INL  
±2 LSB INL  
Temperature Range:  
Package:  
I
=
-40°C to +85°C  
MS  
P
SN  
=
=
=
Plastic MSOP, 8-lead  
Plastic DIP (300 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 8-lead  
DS21700E-page 30  
2001-2011 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2001-2011, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-61341-756-0  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2001-2011 Microchip Technology Inc.  
DS21700E-page 31  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/02/11  
DS21700E-page 32  
2001-2011 Microchip Technology Inc.  

相关型号:

MPC3301-CI/P

SUCCESSIVE APPROXIMATION ADC, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8
MICROCHIP

MPC3301T-BI/MS

SUCCESSIVE APPROXIMATION ADC, PDSO8, PLASTIC, MSOP-8
MICROCHIP

MPC3301T-CI/MS

SUCCESSIVE APPROXIMATION ADC, PDSO8, PLASTIC, MSOP-8
MICROCHIP

MPC3301T-CI/SN

SUCCESSIVE APPROXIMATION ADC, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8
MICROCHIP

MPC332V1600BI

CAPACITOR, METALLIZED FILM, POLYPROPYLENE, 1600V, 3300uF, THROUGH HOLE MOUNT, RADIAL LEADED
KEMET

MPC333J1250AMK

Film Capacitor, Polypropylene, 1250V, 5% +Tol, 5% -Tol, 0.033uF, Through Hole Mount, RADIAL LEADED
KEMET

MPC333J315BF

CAPACITOR, METALLIZED FILM, POLYPROPYLENE, 315V, 0.033uF, THROUGH HOLE MOUNT, RADIAL LEADED
KEMET

MPC333J400AD

CAPACITOR, METALLIZED FILM, POLYPROPYLENE, 400V, 0.033uF, THROUGH HOLE MOUNT, RADIAL LEADED
KEMET

MPC333K1600AMK

Film Capacitor, Polypropylene, 1600V, 10% +Tol, 10% -Tol, 0.033uF, Through Hole Mount, RADIAL LEADED
KEMET

MPC333K630AD

Film Capacitor, Polypropylene, 630V, 10% +Tol, 10% -Tol, 0.033uF, Through Hole Mount, RADIAL LEADED
KEMET

MPC333V800BMK

Film Capacitor, Polypropylene, 800V, 3% +Tol, 3% -Tol, 0.033uF, Through Hole Mount, RADIAL LEADED
KEMET

MPC334H315AFK

Film Capacitor, Polypropylene, 315V, 3% +Tol, 3% -Tol, 0.33uF, Through Hole Mount, RADIAL LEADED
KEMET