MTD6508-E/NA [MICROCHIP]

BRUSHLESS DC MOTOR CONTROLLER;
MTD6508-E/NA
型号: MTD6508-E/NA
厂家: MICROCHIP    MICROCHIP
描述:

BRUSHLESS DC MOTOR CONTROLLER

电动机控制 光电二极管
文件: 总26页 (文件大小:1623K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MTD6508  
3-Phase Sinusoidal Sensorless Brushless DC Fan Motor Driver  
Features  
Description  
• 180° Sinusoidal Drive for High Efficiency and Low  
Acoustic Noise  
The MTD6508 device is a 3-phase, full-wave  
sensorless driver for brushless DC (BLDC) motors. It  
features a 180° sinusoidal drive, high torque output and  
silent drive. With adaptive features, parameters and a  
wide range of power supplies (2V to 5.5V), the  
MTD6508 is intended to cover a broad range of motor  
characteristics while requiring minimum external  
components. Speed control can be achieved through  
either power supply modulation (PSM) or pulse-width  
modulation (PWM).  
• Position Sensorless BLDC Drivers  
(no Hall Effect Sensor required)  
• Integrated Power Transistors  
• Supports 2V to 5.5V Power Supplies  
• Variable Programming Resistor (RPROG) Setting  
to fit Motor Constant (KM) Range from 3.25 mV/  
Hz to 52 mV/Hz  
• Speed Control through Power Supply Modulation  
(PSM) and/or Pulse-Width Modulation (PWM)  
Compact packaging and a minimal bill of materials  
make the MTD6508 device extremely cost-efficient in  
fan applications. For example, the CPU cooling fans in  
notebook computers require designs that provide low  
acoustic noise, low mechanical vibration and are highly  
efficient. The frequency generator (FG) output enables  
precision speed control in closed-loop applications.  
• Built-in Frequency Generator: FG, FG/3 Output  
Signal (FG/2 and FG/6 Option are available upon  
request)  
• Output PWM Slew Rate Control Programmable  
with an External Resistor for Start-up  
(Adjustable version)  
The MTD6508 device includes Lock-up Protection  
mode to turn off the output current when the motor is in  
a lock condition, with an automatic recovery feature to  
restart the fan when the lock condition is removed.  
Motor overcurrent limitation and thermal shutdown  
protection are included for safety-enhanced operations.  
• Phase Target Selection for Regulation  
(Adjustable Version)  
• Start-up Strength Selection (Adjustable Version)  
• Start-up Output Current Controlled by PWM  
• Output Current Soft Start  
The MTD6508 is available in compact, thermally-  
enhanced, 10-Lead 3 mm x 3 mm x 0.5 mm UDFN  
packages and 16-Lead 4 mm x 4 mm x 0.5 mm  
UQFN packages.  
• Built-in Lock-up Protection and Automatic  
Recovery Circuit  
• Built-in Overcurrent Limitation  
• Built-in Thermal Shutdown Protection  
• Built-in Overvoltage Protection  
• Low Minimal Start-up Speed for Low-Speed  
Operation  
• Packages:  
- 10-Lead 3 mm x 3 mm x 0.5 mm UDFN  
- 16-Lead 4 mm x 4 mm x 0.5 mm UQFN  
(Adjustable version)  
Applications  
• Notebook CPU Cooling Fans  
• 5V 3-Phase BLDC Motors  
2015 Microchip Technology Inc.  
DS20005359A-page 1  
MTD6508  
Package Types  
MTD6508  
4x4 UQFN-16*  
MTD6508  
3x3 UDFN-10*  
16 15 14 13  
FG  
PWM  
10  
1
2
FG  
RT  
12  
1
R
PROG  
FG3_SEL  
9
EP  
11  
R
PWM  
11  
10  
9
2
3
4
PROG  
EP  
17  
V
V
BIAS 3  
8
7
DD  
FG3_SEL  
V
BIAS  
OUT3  
GND  
4
5
OUT1  
OUT2  
V
OUT2  
DD  
6
5
6
7
8
Note: The DIR, SS and RT pins that are not available on UDFN-10 Package are internally pulled down. SR1 and  
SR2 are connected by a fixed internal resistor (25 k).  
*Includes Exposed Thermal Pad (EP); see Table 3-1.  
Functional Block Diagram  
VBIAS  
RT  
SS  
DIR  
VDD  
FG  
OUT3  
OUT2  
OUT1  
PWM  
CPU + Peripherals  
FG3_SEL  
GND  
Motor Phase  
Detection Circuit  
Nonvolatile  
Memory  
SR1  
SR2  
Thermal  
Protection  
Slew Rate  
Control  
Adjustable KM  
Overcurrent  
Protection  
Short-Circuit  
Protection  
RPROG  
RPROG Sense  
DS20005359A-page 2  
2015 Microchip Technology Inc.  
MTD6508  
Typical Application  
VLOGIC  
VLOGIC  
VLOGIC  
KM0  
KM1, 2  
VBIAS  
KM3  
VBIAS  
VLOGIC  
PWM input  
VLOGIC  
(1-100 kHz)  
16 15 14 13  
FG  
RPROG  
VBIAS  
OUT2  
RT  
1
2
3
4
12  
11  
10  
9
PWM  
VBIAS  
EP  
17  
FG3_SEL  
VDD  
VDD  
C1  
C2  
5
6
7
8
Legend  
VLOGIC = VBIAS or VDD  
= Optional  
Recommended External Components for Typical Application  
Element  
Type/Value  
Comment  
C1  
C2  
1 µF  
1 µF  
Connect as close as possible to IC input pin  
Connect as close as possible to IC input pin  
RFG  
10 kΩ  
Connect to Vlogic on microcontroller side (FG Pull-Up)  
Connect to Vlogic on microcontroller side (PWM Pull-Up)  
Select appropriate programming resistor value, see Table 4-1  
Select appropriate output PWM slew rate, see Table 4-2  
RPWM  
RPROG  
RSR  
100 kΩ  
3.9 kor 24 kΩ  
4.7 k-47 kΩ  
2015 Microchip Technology Inc.  
DS20005359A-page 3  
MTD6508  
NOTES:  
DS20005359A-page 4  
2015 Microchip Technology Inc.  
MTD6508  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only, and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification  
is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
Power Supply Voltage (V  
) ...................... -0.7 to +7.0V  
DD_MAX  
Maximum Output Voltage (V  
)............... -0.7 to +7.0V  
OUT_MAX  
(1)  
Maximum Output Current (I  
)
....................1000 mA  
OUT_MAX  
Note 1: IOUT is also internally limited, according  
to the limits defined in the Electrical  
Characteristics table.  
FG Maximum Output Voltage (V  
) ........... -0.7 to +7.0V  
FG_MAX  
FG Maximum Output Current (I  
) ......................5.0 mA  
FG_MAX  
V
Maximum Voltage (V  
) ................ -0.7 to +4.0V  
BIAS  
BIAS_MAX  
PWM_MAX  
2: Reference Printed Circuit Board (PCB)  
according to JEDEC standard EIA/JESD  
51-9.  
PWM Maximum Voltage (V  
) ................ -0.7 to +7.0V  
(2)  
Allowable Power Dissipation (P  
)
........................1.5W  
D_MAX  
Maximum Junction Temperature (T )..........................+150°C  
J
ESD protection on all pins2 kV  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits are established for VDD = 2.0V to 5.5V, TA = +25°C  
Parameters  
Power Supply Voltage  
Power Supply Current  
Standby Current  
Sym.  
VDD  
Min.  
2
Typ.  
Max.  
5.5  
10  
Units  
V
Conditions  
IVDD  
5
mA  
µA  
VDD = 5V  
IVDD_STB  
15  
25  
PWM = 0V, VDD = 5V  
(Standby mode)  
OUTX High Resistance  
OUTX Low Resistance  
OUTX Total Resistance  
RON(H)  
RON(L)  
RON(H+L)  
VBIAS  
0.75  
0.75  
1.5  
3
IOUT = 0.5A, VDD = 5V  
IOUT = 0.5A, VDD = 5V  
IOUT = 0.5A, VDD = 5V  
VDD = 3.2V to 5.5V  
VDD < 3.2V  
VBIAS Internal  
V
Supply Voltage  
V
DD – 0.2  
V
PWM Input Frequency  
PWM Input H Level  
fPWM  
1
0.55 VDD  
0
100  
kHz  
V
VPWM_H  
VPWM_L  
VDD  
VDD 4.5V  
VDD 4.5V  
VDD 4.5V  
VDD 4.5V  
IFG = -1 mA  
PWM Input L Level  
0.2 VDD  
VBIAS  
0.2 VDD  
0.25  
V
FG3_SEL Input H Level  
FG3_SEL Input L Level  
VFG3_SEL_H VBIAS – 0.5  
V
VFG3_SEL_L  
VOL_FG  
0
V
FG Output Pin Low-Level  
Voltage  
V
FG Output Pin Leakage  
Current  
ILH_FG  
TRUN  
-10  
10  
1
µA  
s
VFG = 5.5V  
Lock Protection  
Operating Time  
0.5  
Lock Protection Waiting Time  
Overcurrent Protection  
TWAIT  
5
5.5  
6
s
Note 1  
Note 2  
IOC_MOT  
750  
mA  
Note 1: Related to the internal oscillator frequency (see Figure 2-1)  
2: 750 mA is the standard option for MTD6508. Additional overcurrent protection levels are available upon  
request. Please contact factory for different overcurrent protection values.  
2015 Microchip Technology Inc.  
DS20005359A-page 5  
 
 
 
 
 
MTD6508  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits are established for VDD = 2.0V to 5.5V, TA = +25°C  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Overvoltage Protection  
VOV  
7.2  
V
Short Protection on High Side IOC_SW_H  
2.57  
-2.83  
170  
A
A
Short Protection on Low Side  
Thermal Shutdown  
IOC_SW_L  
TSD  
°C  
Thermal Shutdown Hysteresis TSD_HYS  
25  
°C  
Note 1: Related to the internal oscillator frequency (see Figure 2-1)  
2: 750 mA is the standard option for MTD6508. Additional overcurrent protection levels are available upon  
request. Please contact factory for different overcurrent protection values.  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise specified, all limits are established for VDD = 2.0V to 5.5V, TA = +25°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Temperature Ranges  
Operating Temperature  
TOPR  
TSTG  
-40  
-55  
+125  
+150  
°C  
°C  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 10L-UDFN, 3x3  
JA  
JC  
JA  
JC  
68  
11  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance, 16L-UQFN, 4x4  
31.8  
10  
DS20005359A-page 6  
2015 Microchip Technology Inc.  
MTD6508  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless indicated, TA = +25°C, VDD = 2.0V to 5.5V, OUT1, 2, 3 and PWM open.  
1
2.5  
VDD = 5.5V  
0.5  
VDD=5.5V  
0
-0.5  
-1  
2
1.5  
1
VDD = 2V  
-1.5  
-2  
-2.5  
-3  
VDD = 2V  
0.5  
0
-3.5  
-4  
-4.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-1:  
Oscillator Frequency  
FIGURE 2-4:  
Inputs (PWM) VIL vs.  
Deviation vs. Temperature.  
Temperature.  
3.08  
3.06  
3
2.5  
2
VDD = 5.5V  
VDD = 5.5V  
3.04  
1.5  
1
VDD = 2V  
3.02  
3
0.5  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-2:  
Internal Regulated Voltage  
FIGURE 2-5:  
Inputs (PWM) VIH vs.  
(VBIAS) vs Temperature.  
Temperature.  
3.5  
3
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.5  
2
VDD = 5.5V  
1.5  
1
0.5  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Temperature (°C)  
VDD(V)  
FIGURE 2-3:  
Internal Regulated Voltage  
FIGURE 2-6:  
Outputs RON High-Side  
(VBIAS) vs Supply Voltage (VDD).  
Resistance vs. Temperature.  
2015 Microchip Technology Inc.  
DS20005359A-page 7  
MTD6508  
Note: Unless indicated, TA = +25°C, VDD = 2.0V to 5.5V, OUT1, 2, 3 and PWM open.  
2.5  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2
1.5  
1
VDD = 5.5V  
VDD = 5.5V  
VDD = 2V  
0.5  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-7:  
Outputs RON Low-Side  
FIGURE 2-10:  
DIR, SS and RT Pins VIL (V)  
Resistance vs. Temperature.  
vs. Temperature.  
2.5  
2
7
6
VDD = 5.5V  
5
VDD = 5.5V  
1.5  
1
4
VDD = 2V  
3
2
1
0
0.5  
0
VDD = 2V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-8:  
Supply Current vs.  
FIGURE 2-11:  
DIR, SS and RT Pins VIH (V)  
Temperature.  
vs. Temperature.  
40  
30  
20  
VDD = 5.5V  
10  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-9:  
Standby Current vs.  
FIGURE 2-12:  
Typical Outputs on Closed  
Temperature.  
Loop.  
DS20005359A-page 8  
2015 Microchip Technology Inc.  
MTD6508  
FIGURE 2-13:  
Typical Output Current on  
Start-up.  
FIGURE 2-14:  
Typical Outputs on Locked  
Motor While Running.  
2015 Microchip Technology Inc.  
DS20005359A-page 9  
MTD6508  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MTD6508  
PIN FUNCTION TABLE  
Name  
Type  
Function  
3x3  
4x4  
UDFN UQFN  
1
2
3
5
6
4
6
7
8
9
1
2
FG  
RPROG  
VBIAS  
OUT2  
GND  
O
I
Motor Speed Indication Output Pin  
KM Parameter Setting with External Resistors Pin (do not leave floating)  
3V Internal Regulator Output Pin (for decoupling only)  
Single-Phase Coil Output Pin  
3
O
O
P
O
P
O
P
I
4
5
Negative Voltage Supply Pin (ground)  
6
OUT1  
GND  
Single-Phase Coil Output Pin  
7
Negative Voltage Supply Pin (ground)  
8
OUT3  
VDD  
Single-Phase Coil Output Pin  
9
Positive Voltage Supply for Motor Driver Pin  
10  
FG3_SEL  
FG Frequency Divider Selection Pin:  
- FG signal divided by three: connect this pin to VBIAS  
- FG normal signal: connect this pin to GND or leave floating  
PWM Input Signal for Close-Loop Speed Control Pin (do not leave floating)  
Regulation Target Pin – phase target selection for regulation:  
- Normal regulation: connect this pin to GND or leave floating  
- Low load regulation: connect this pin to VBIAS or VDD  
10  
11  
12  
PWM  
RT  
I
I
- Pin not available on UDFN-10 option; selection fixed to normal  
regulation  
13  
SS  
I
Strong Start Pin – start-up strength selection:  
- Soft open-loop start-up (reduced current) – during the start-up open-  
loop, the output amplitude is defined by the input PWM duty cycle:  
connect this pin to GND or leave floating  
- Strong open-loop start-up – during the start-up open-loop, the output  
amplitude is fixed to 100%: connect this pin to VBIAS or VDD  
- Pin not available on UDFN-10 option; selection fixed to soft  
open-loop start-up  
14  
15  
16  
SR2  
SR1  
DIR  
O
I
Start-up Output PWM Slew Rate Control Pin 2 (High side)  
- Pin not available on UDFN-10 option; selection fixed to 250 ns (25 k)  
Start-up Output PWM Slew Rate Control Pin 1 (Low side)  
- Pin not available on UDFN-10 option; selection fixed to 250 ns (25 k)  
Motor Rotation Direction Pin (DIR function):  
I
- Forward direction: connect this pin to GND or leave floating  
- Reverse direction: connect this pin to VBIAS or VDD  
- Pin not available on UDFN-10 option; selection fixed to forward  
direction  
11  
17  
EP  
N/A Exposed Pad Pin; connect to ground plane on the PCB for enhanced thermal  
performance  
Note:  
I = Input, O = Output, P = Power  
DS20005359A-page 10  
2015 Microchip Technology Inc.  
 
MTD6508  
If the FG3_SEL pin is enabled, the rotor speed rotation  
per minute (RPM) has to be multiplied by three, because  
the FG signal frequency will be divided by three.  
4.0  
FUNCTIONAL DESCRIPTION  
The MTD6508 generates a full-wave signal to drive a  
3-phase BLDC motor. High efficiency and low power  
consumption are achieved due to CMOS transistors  
and a synchronous rectification drive type.  
OUT1  
FG  
4.1  
Speed Control  
FG/3  
The rotational speed of the motor can be controlled  
either through the PWM digital input signal or by acting  
directly on the power supply (VDD). When the PWM  
signal is High, the motor rotates at full speed. When the  
PWM signal is low, the IC outputs are set to high-  
impedance and the motor is stopped.  
FIGURE 4-1:  
FG and FG/3 Waveform.  
4.3  
Lock-Up Protection and Automatic  
Restart  
By changing the PWM duty cycle, the speed can be  
adjusted. Thus, the user has maximum freedom to  
choose the PWM system frequency within a wide range  
(from 1 kHz to 100 kHz).  
If the motor is blocked and cannot rotate freely, a lock-  
up protection circuit detects it and disables the driver by  
setting its outputs to high-impedance to prevent the  
motor coil from burnout. After a “waiting time” (TWAIT),  
the lock-up protection is released and normal operation  
resumes for a given time (TRUN). If the motor is still  
blocked, a new period of waiting time is started. TWAIT  
and TRUN timings are fixed internally so that no external  
capacitor is required.  
The PWM pin should not be floating. It can be connected  
to an external pull-up resistor connected to VDD  
.
When the PWM duty cycle is below 5%, MTD6508  
directly stops the drive (output High Z) and will restart  
only if the PWM duty cycle is above 5%. If MTD6508 is  
not in standby mode (PWM duty cycle = 0%), it will not  
restart unless a “waiting time” (TWAIT) has been spent  
in order to allow the fan to break enough before the  
next start-up. TWAIT begins as soon as the PWM duty  
cycle falls below 5%.  
4.4  
Overcurrent Protection  
The motor peak current is limited by the driver to  
750 mA (standard value), thus limiting the maximum  
power dissipation in the coils.  
The output transistor activation always occurs at a fixed  
rate of 30 kHz, which is outside the range of audible  
frequencies.  
4.5  
Thermal Shutdown  
The MTD6508 has a thermal protection function which  
detects when the die temperature exceeds  
TJ = +170°C. When this temperature is reached, the  
circuit enters the Thermal Shutdown mode and the  
outputs OUT1, OUT2 and OUT3 are disabled (high-  
impedance): avoiding the IC destruction and allowing  
the circuit to cool down. When the junction temperature  
(TJ) drops below +145°C, normal operation resumes.  
Note 1: The PWM frequency has no direct effect  
on the motor speed, and is asynchronous  
with the activation of the output transistors.  
4.2  
Frequency Generator Function  
The Frequency Generator output (FG) is a Hall effect  
sensor equivalent digital output, giving information to  
an external controller about the speed and phase of the  
motor. The FG pin is an open-drain output connecting  
to a logical voltage level through an external pull-up  
resistor. When a lock or an out-of-sync situation is  
detected by the driver, this output is set to high-  
impedance until the motor is restarted. The pin should  
be left open when it is not used.  
The thermal detection circuit has +25°C hysteresis.  
Thermal shutdown  
Normal  
operation  
EQUATION 4-1:  
FG 720  
P S  
----------------------- = R o t o r s p e e d R P M  
TJ  
+145°  
FIGURE 4-2:  
Hysteresis.  
+170°  
Thermal Protection  
Where:  
P
S
= Total number of poles in the motor  
= Total number of slots in the motor  
2015 Microchip Technology Inc.  
DS20005359A-page 11  
MTD6508  
4.6  
Overvoltage Shutdown  
4.9  
Start-up Output PWM Slew Rate  
Control  
The MTD6508 has an overvoltage protection function  
which detects when the VDD voltage exceeds  
VOV = +7.2V. In Overvoltage condition, outputs OUT1,  
OUT2 and OUT3 are disabled (high impedance).  
In order to reduce vibration, the output PWM slew rate  
can be adjusted with RSR during start-up. Refer to  
Table 4-2 when choosing the RSR value. A rate that is  
too slow can decrease the efficiency of the IC. The  
recommended RSR range is from 4.7 kto 47 k. The  
RSR will be connected between pins SR1 and SR2.  
Once the start-up open loop is finished, the MTD6508  
4.7  
Internal Voltage Regulator  
VBIAS voltage is generated internally and is used to  
supply internal logical blocks. The VBIAS pin is used to  
connect an external decoupling capacitor (1 µF or  
higher). Notice that this pin is for IC internal use, and is  
not designed to supply DC current to external blocks.  
will automatically switch to  
corresponding to 10 kor 100 ns (typical).  
a fixed slew rate,  
TABLE 4-2:  
SLEW RATE SETTINGS  
Output PWM  
Transition Time  
for 10 to 90%  
4.8  
Back Electromotive Force (BEMF)  
Coefficient Setting  
RSR.  
Value  
Comment  
KM is the electromechanical coupling coefficient of the  
motor (also referred to as “motor constant” or “BEMF  
constant”). Depending on the conventions in use, the  
exact definition of KM and its measurement criteria can  
vary among motor manufacturers. To accommodate  
various motor applications, the MTD6508 provides  
options to facilitate various BEMF coefficients.  
Rising/Falling edge  
x kΩ  
x 10.64 ns  
Transition rate  
equation  
4.7 kΩ  
10 kΩ  
47 kΩ  
50 ns  
100 ns  
500 ns  
Fast transition  
Typical transition  
Slow transition  
The MTD6508 defines the BEMF coefficient (KM) as  
the peak value of the phase-to-phase BEMF voltage,  
normalized to the electrical speed of the motor. The  
following table offers methods to set the KM value for  
the MTD6508 device.  
Note:  
Slew rate adjustment on start-up can only  
be done in the adjustable version of the  
MTD6508.  
4.10 Motor Rotation Direction Pin (DIR)*  
TABLE 4-1:  
KM SETTINGS  
The current-carrying order of the outputs depends on  
the DIR pin state “Rotation Direction”, and is described  
in Table 4-3. The DIR pin level is latched after power-  
on or after exiting standby mode. The DIR pin is not  
designed for dynamic direction change during  
operation. The pin is internally connected to GND on  
the non-adjustable version.  
KM (mV/Hz) Range  
Phase-to-Phase  
KM  
Option  
RPROG  
Min.  
Max.  
KM0  
KM1  
KM2  
KM3  
3.25  
6.5  
13  
6.5  
13  
26  
52  
GND  
24 kΩ  
3.9 kΩ  
VBIAS  
TABLE 4-3:  
MOTOR ROTATION  
DIRECTION OPTIONS  
26  
RPROG sensing is actually a sequence that is controlled  
by the firmware. For any given RPROG, the internal  
control block will output the corresponding KM range.  
Rotation  
Direction  
Outputs Activation  
Sequence  
DIR Pin State  
Connected to  
Forward OUT1 -> OUT2 -> OUT3  
GND or Floating  
Connected to  
VBIAS or VDD  
Reverse OUT3 -> OUT2 -> OUT1  
*On adjustable version only  
DS20005359A-page 12  
2015 Microchip Technology Inc.  
 
 
MTD6508  
4.11 Strong Start Pin (SS)*  
The sinusoidal start-up open-loop phase current  
amplitude can be defined by the PWM input duty cycle  
or fixed at 100%. Table 4-4 describes both start-up  
options. This pin is internally connected to GND on the  
non-adjustable version.  
TABLE 4-4:  
START-UP OPEN-LOOP CURRENT AMPLITUDE OPTIONS  
Start-up Open-Loop Current Amplitude  
SS Pin State  
Connected to GND or Floating Soft open-loop start-up (reduced current) – during the start-up open loop, the output  
amplitude is defined by the input PWM duty cycle (start-up without speed overshoot,  
with respect to the target speed set by PWM).  
Connected to VBIAS or VDD  
Strong open-loop start-up – during the start-up open loop, the output amplitude is  
fixed at 100% (start-up with maximal torque.  
*On adjustable version only  
4.12  
Regulation Target Pin (RT)*  
The RT pin adjusts the phase regulation parameters  
to allow more stability in applications using 3-Phase  
BLDC motors attached to a light load. The low-load  
phase regulation option reduces the speed correction  
gain by 75% in order to produce smoother behavior.  
Table 4-5 describes the phase regulation options.  
The RT pin is internally connected to GND on the  
non-adjustable version.  
TABLE 4-5:  
PHASE REGULATION  
OPTIONS  
Phase Regulation  
Target Options  
RT Pin State  
Connected to GND or Floating Optimized for typical  
load (Fan, Pump)  
Connected to VBIAS or VDD  
Optimized for low  
load (Motor with light  
rotor and low air  
resistance while  
operating)  
*On adjustable version only  
2015 Microchip Technology Inc.  
DS20005359A-page 13  
 
 
MTD6508  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead UDFN (3x3x0.5 mm)  
Example  
AAAL  
1441  
256  
XXXX  
YYWW  
NNN  
PIN 1  
PIN 1  
16-Lead UQFN (4x4x0.5 mm)  
Example  
MTD  
6508  
PIN 1  
PIN 1  
e
3
I/JQ
441256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS20005359A-page 14  
2015 Microchip Technology Inc.  
MTD6508  
2015 Microchip Technology Inc.  
DS20005359A-page 15  
MTD6508  
DS20005359A-page 16  
2015 Microchip Technology Inc.  
MTD6508  
2015 Microchip Technology Inc.  
DS20005359A-page 17  
MTD6508  
16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
B
E
N
NOTE 1  
1
2
(DATUM B)  
(DATUM A)  
2X  
0.20 C  
2X  
TOP VIEW  
0.20 C  
0.10 C  
A1  
C
A
SEATING  
PLANE  
16X  
(A3)  
0.08 C  
C A B  
SIDE VIEW  
0.10  
D2  
0.10  
C A B  
E2  
2
1
e
2
NOTE 1  
K
N
L
16X b  
0.10  
C A B  
e
BOTTOM VIEW  
Microchip Technology Drawing C04-257A Sheet 1 of 2  
DS20005359A-page 18  
2015 Microchip Technology Inc.  
MTD6508  
16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Pins  
Pitch  
Overall Height  
Standoff  
Terminal Thickness  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Terminal Width  
Terminal Length  
N
16  
0.65 BSC  
0.50  
e
A
A1  
A3  
E
E2  
D
D2  
b
L
0.45  
0.00  
0.55  
0.05  
0.02  
0.127 REF  
4.00 BSC  
2.60  
4.00 BSC  
2.60  
2.50  
2.70  
2.50  
0.25  
0.30  
0.20  
2.70  
0.35  
0.50  
-
0.30  
0.40  
-
Terminal-to-Exposed-Pad  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-257A Sheet 2 of 2  
2015 Microchip Technology Inc.  
DS20005359A-page 19  
MTD6508  
16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body  
[UQFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
C1  
X2  
16  
1
2
C2 Y2  
Y1  
X1  
E
SILK SCREEN  
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
E
MILLIMETERS  
NOM  
0.65 BSC  
MIN  
MAX  
Contact Pitch  
Optional Center Pad Width  
Optional Center Pad Length  
Contact Pad Spacing  
Contact Pad Spacing  
Contact Pad Width (X16)  
Contact Pad Length (X16)  
X2  
Y2  
C1  
C2  
X1  
Y1  
2.70  
2.70  
4.00  
4.00  
0.35  
0.80  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-2257A  
DS20005359A-page 20  
2015 Microchip Technology Inc.  
MTD6508  
APPENDIX A: REVISION HISTORY  
Revision A (April 2015)  
• Original release of this document.  
2015 Microchip Technology Inc.  
DS20005359A-page 21  
MTD6508  
NOTES:  
DS20005359A-page 22  
2015 Microchip Technology Inc.  
MTD6508  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
PART NO.  
Device  
T
-X  
/XX  
Examples:  
a)  
MTD6508-ADJE/JQ Extended Temperature  
Tape & Reel Temperature Package  
16LD 4x4 UQFN package  
b)  
MTD6508T-E/NA Tape and Reel,  
Extended Temperature  
10LD 3x3 UDFN package  
Device:  
MTD6508: 3-Phase Brushless DC, Sinusoidal Sensorless  
Fan Motor Driver  
Temperature  
Range:  
E
=
-40°C to +125°C (Extended)  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identi-  
fier is used for ordering purposes and is nto  
printed on the device package. Check with  
your Microchip Sales Office for package  
availability with the Tape and Reel option.  
Package:  
JQ  
NA  
=
=
Ultra Thin Plastic Quad Flat, No-Lead  
Package (JQ) – 4x4x0.5 mm Body, 16-Lead UQFN  
Ultra-thin Dual Flatpack, No-Lead Package  
(NA[Y]) – 3x3x0.5 mm Body, 10-Lead UDFN  
2015 Microchip Technology Inc.  
DS20005359A-page 23  
MTD6508  
NOTES:  
DS20005359A-page 24  
2015 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,  
LANCheck, MediaLB, MOST, MOST logo, MPLAB,  
32  
OptoLyzer, PIC, PICSTART, PIC logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
The Embedded Control Solutions Company and mTouch are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit  
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,  
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2015, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
ISBN: 978-1-63277-347-0  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2015 Microchip Technology Inc.  
DS20005359A-page 25  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Pforzheim  
Tel: 49-7231-424750  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
UK - Wokingham  
Tel: 44-118-921-5800  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Tel: 248-848-4000  
Fax: 44-118-921-5820  
Houston, TX  
Tel: 281-894-5983  
Indianapolis  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Noblesville, IN  
Tel: 317-773-8323  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Fax: 317-773-5453  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
San Jose, CA  
Tel: 408-735-9110  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
01/27/15  
DS20005359A-page 26  
2015 Microchip Technology Inc.  

相关型号:

MTD6508T-E/JQ

BRUSHLESS DC MOTOR CONTROLLER
MICROCHIP

MTD6508T-E/NA

BRUSHLESS DC MOTOR CONTROLLER
MICROCHIP

MTD6508T-FG2E/NA

Brushless DC Motor Controller, 1A, CMOS, PDSO10
MICROCHIP

MTD655

5 Port 10M/100M Hub With 2 port Switch
ETC

MTD658

8 Port 10M/100M Hub With 2 port Switch
ETC

MTD658E

5/8 Port 10/100 Hub Build_in Bridge And Memory
ETC

MTD6N08

Power Field-Effect Transistor, 6A I(D), 80V, 0.25ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252
MOTOROLA

MTD6N08-1

6A, 80V, 0.25ohm, N-CHANNEL, Si, POWER, MOSFET, TO-251
MOTOROLA

MTD6N10

POWER FIELD EFFECT TRANSISTOR, N-CHANNEL ENHANCEMENT-MODE SILICON GATE, DPAK FOR SURFACE MOUNT OR INSERTION MOUNT
MOTOROLA

MTD6N10-1

Power Field-Effect Transistor, 6A I(D), 100V, 0.25ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-251
MOTOROLA

MTD6N10E

TMOS POWER FET 6.0 AMPERES 100 VOLTS RDS(on) = 0.400 OHM
MOTOROLA

MTD6N10E

TRANSISTOR,MOSFET,N-CHANNEL,100V V(BR)DSS,6A I(D),TO-252AA
ONSEMI