PIC12F615T-I/MF [MICROCHIP]

8-Pin, Flash-Based 8-Bit CMOS Microcontrollers; 8引脚,基于闪存的8位CMOS微控制器
PIC12F615T-I/MF
型号: PIC12F615T-I/MF
厂家: MICROCHIP    MICROCHIP
描述:

8-Pin, Flash-Based 8-Bit CMOS Microcontrollers
8引脚,基于闪存的8位CMOS微控制器

闪存 微控制器和处理器 外围集成电路 光电二极管 时钟
文件: 总212页 (文件大小:1724K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC12F609/615/617  
PIC12HV609/615  
Data Sheet  
8-Pin, Flash-Based 8-Bit  
CMOS Microcontrollers  
*8-bit, 8-pin Devices Protected by Microchip’s Low Pin Count Patent: U.S. Patent No. 5,847,450. Additional U.S. and  
foreign patents and applications may be issued or pending.  
2010 Microchip Technology Inc.  
DS41302D  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
32  
PICtail, PIC logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS41302D-page 2  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
8-Pin Flash-Based, 8-Bit CMOS Microcontrollers  
High-Performance RISC CPU:  
Peripheral Features:  
• Only 35 Instructions to Learn:  
- All single-cycle instructions except branches  
• Operating Speed:  
• Shunt Voltage Regulator (PIC12HV609/615 only):  
- 5 volt regulation  
- 4 mA to 50 mA shunt range  
• 5 I/O Pins and 1 Input Only  
- DC – 20 MHz oscillator/clock input  
- DC – 200 ns instruction cycle  
• High Current Source/Sink for Direct LED Drive  
• Interrupt Capability  
- Interrupt-on-pin change or pins  
- Individually programmable weak pull-ups  
• 8-Level Deep Hardware Stack  
• Direct, Indirect and Relative Addressing modes  
• Analog Comparator module with:  
- One analog comparator  
- Programmable on-chip voltage reference  
(CVREF) module (% of VDD)  
- Comparator inputs and output externally  
accessible  
Special Microcontroller Features:  
• Precision Internal Oscillator:  
- Factory calibrated to ±1%, typical  
- Software selectable frequency: 4 MHz or  
8 MHz  
- Built-In Hysteresis (software selectable)  
• Timer0: 8-Bit Timer/Counter with 8-Bit  
Programmable Prescaler  
• Power-Saving Sleep mode  
• Voltage Range:  
• Enhanced Timer1:  
- PIC12F609/615/617: 2.0V to 5.5V  
- 16-bit timer/counter with prescaler  
- External Timer1 Gate (count enable)  
- Option to use OSC1 and OSC2 in LP mode  
as Timer1 oscillator if INTOSC mode  
selected  
- Option to use system clock as Timer1  
• In-Circuit Serial ProgrammingTM (ICSPTM) via Two  
- PIC12HV609/615: 2.0V to user defined  
maximum (see note)  
• Industrial and Extended Temperature Range  
• Power-on Reset (POR)  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
Pins  
• Brown-out Reset (BOR)  
PIC12F615/617/HV615 ONLY:  
• Watchdog Timer (WDT) with independent  
Oscillator for Reliable Operation  
• Enhanced Capture, Compare, PWM module:  
• Multiplexed Master Clear with Pull-up/Input Pin  
• Programmable Code Protection  
• High Endurance Flash:  
- 16-bit Capture, max. resolution 12.5 ns  
- Compare, max. resolution 200 ns  
- 10-bit PWM with 1 or 2 output channels, 1  
output channel programmable “dead time,”  
max. frequency 20 kHz, auto-shutdown  
- 100,000 write Flash endurance  
- Flash retention: > 40 years  
• A/D Converter:  
• Self Read/ Write Program Memory (PIC12F617  
only)  
- 10-bit resolution and 4 channels, samples  
internal voltage references  
Low-Power Features:  
• Timer2: 8-Bit Timer/Counter with 8-Bit Period  
Register, Prescaler and Postscaler  
• Standby Current:  
- 50 nA @ 2.0V, typical  
• Operating Current:  
- 11 A @ 32 kHz, 2.0V, typical  
- 260 A @ 4 MHz, 2.0V, typical  
• Watchdog Timer Current:  
- 1 A @ 2.0V, typical  
Note:  
Voltage across the shunt regulator should  
not exceed 5V.  
2010 Microchip Technology Inc.  
DS41302D-page 3  
PIC12F609/615/617/12HV609/615  
Program  
Memory  
Data Memory  
Self Read/  
Self Write  
10-bit A/D  
(ch)  
Timers  
8/16-bit  
Device  
I/O  
Comparators ECCP  
Voltage Range  
Flash  
(words)  
SRAM (bytes)  
PIC12F609  
PIC12HV609  
PIC12F615  
PIC12HV615  
PIC12F617  
1024  
1024  
1024  
1024  
2048  
64  
64  
5
5
5
5
5
0
0
4
4
4
1
1
1
1
1
1/1  
1/1  
2/1  
2/1  
2/1  
2.0V-5.5V  
2.0V-user defined  
2.0V-5.5V  
64  
YES  
YES  
YES  
64  
2.0V-user defined  
2.0V-5.5V  
128  
YES  
8-Pin Diagram, PIC12F609/HV609 (PDIP, SOIC, MSOP, DFN)  
VDD  
GP5/T1CKI/OSC1/CLKIN  
GP4/CIN1-/T1G/OSC2/CLKOUT  
GP3/MCLR/VPP  
VSS  
8
7
6
5
1
2
GP0/CIN+/ICSPDAT  
GP1/CIN0-/ICSPCLK  
GP2/T0CKI/INT/COUT  
PIC12F609/  
HV609  
3
4
TABLE 1:  
I/O  
PIC12F609/HV609 PIN SUMMARY (PDIP, SOIC, MSOP, DFN)  
Pin  
Comparators  
Timer  
Interrupts  
Pull-ups  
Basic  
GP0  
GP1  
GP2  
GP3(1)  
GP4  
GP5  
7
6
5
4
3
2
1
8
CIN+  
CIN0-  
COUT  
IOC  
IOC  
INT/IOC  
IOC  
IOC  
IOC  
Y
Y
ICSPDAT  
ICSPCLK  
T0CKI  
Y
Y(2)  
MCLR/VPP  
OSC2/CLKOUT  
OSC1/CLKIN  
VDD  
CIN1-  
T1G  
T1CKI  
Y
Y
VSS  
Note 1: Input only.  
2: Only when pin is configured for external MCLR.  
DS41302D-page 4  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
8-Pin Diagram, PIC12F615/617/HV615 (PDIP, SOIC, MSOP, DFN)  
VDD  
GP5/T1CKI/P1A*/OSC1/CLKIN  
VSS  
8
7
6
5
1
2
GP0/AN0/CIN+/P1B/ICSPDAT  
GP1/AN1/CIN0-/VREF/ICSPCLK  
GP2/AN2/T0CKI/INT/COUT/CCP1/P1A  
PIC12F615/  
617/HV615  
GP4/AN3/CIN1-/T1G/P1B*/OSC2/CLKOUT  
GP3/T1G*/MCLR/VPP  
3
4
*
Alternate pin function.  
TABLE 2:  
PIC12F615/617/HV615 PIN SUMMARY (PDIP, SOIC, MSOP, DFN)  
Comparator  
I/O  
Pin  
Analog  
Timer  
CCP  
Interrupts Pull-ups  
Basic  
s
GP0  
GP1  
GP2  
GP3(1)  
GP4  
GP5  
7
6
5
4
3
2
1
8
AN0  
AN1  
AN2  
CIN+  
CIN0-  
COUT  
P1B  
IOC  
IOC  
INT/IOC  
IOC  
IOC  
IOC  
Y
Y
ICSPDAT  
ICSPCLK/VREF  
T0CKI  
T1G*  
T1G  
T1CKI  
CCP1/P1A  
Y
Y(2)  
MCLR/VPP  
OSC2/CLKOUT  
OSC1/CLKIN  
VDD  
AN3  
CIN1-  
P1B*  
P1A*  
Y
Y
VSS  
*
Alternate pin function.  
Note 1: Input only.  
2: Only when pin is configured for external MCLR.  
2010 Microchip Technology Inc.  
DS41302D-page 5  
PIC12F609/615/617/12HV609/615  
Table of Contents  
1.0 Device Overview ......................................................................................................................................................................... 7  
2.0 Memory Organization................................................................................................................................................................ 11  
3.0 Flash Program Memory Self Read/Self Write Control (PIC12F617 only).................................................................................. 27  
4.0 Oscillator Module ....................................................................................................................................................................... 37  
5.0 I/O Port ...................................................................................................................................................................................... 43  
6.0 Timer0 Module .......................................................................................................................................................................... 53  
7.0 Timer1 Module with Gate Control .............................................................................................................................................. 57  
8.0 Timer2 Module (PIC12F615/617/HV615 only) .......................................................................................................................... 65  
9.0 Comparator Module ................................................................................................................................................................... 67  
10.0 Analog-to-Digital Converter (ADC) Module (PIC12F615/617/HV615 only) ............................................................................... 79  
11.0 Enhanced Capture/Compare/PWM (With Auto-Shutdown and Dead Band) Module (PIC12F615/617/HV615 only) ............... 89  
12.0 Special Features of the CPU ................................................................................................................................................... 107  
13.0 Voltage Regulator .................................................................................................................................................................... 127  
14.0 Instruction Set Summary ........................................................................................................................................................ 129  
15.0 Development Support ............................................................................................................................................................. 139  
16.0 Electrical Specifications ........................................................................................................................................................... 143  
17.0 DC and AC Characteristics Graphs and Tables ...................................................................................................................... 171  
18.0 Packaging Information ............................................................................................................................................................ 195  
Appendix A: Data Sheet Revision History ......................................................................................................................................... 203  
®
Appendix B: Migrating from other PIC Devices ............................................................................................................................... 203  
Index ................................................................................................................................................................................................. 205  
The Microchip Web Site .................................................................................................................................................................... 209  
Customer Change Notification Service ............................................................................................................................................. 209  
Customer Support ............................................................................................................................................................................. 209  
Reader Response ............................................................................................................................................................................. 210  
Product Identification System ............................................................................................................................................................ 211  
Worldwide Sales and Service ........................................................................................................................................................... 212  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of  
silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
• Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS41302D-page 6  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
Block Diagrams and pinout descriptions of the devices  
are as follows:  
1.0  
DEVICE OVERVIEW  
The PIC12F609/615/617/12HV609/615 devices are  
covered by this data sheet. They are available in 8-pin  
PDIP, SOIC, MSOP and DFN packages.  
• PIC12F609/HV609 (Figure 1-1, Table 1-1)  
• PIC12F615/617/HV615 (Figure 1-2, Table 1-2)  
FIGURE 1-1:  
PIC12F609/HV609 BLOCK DIAGRAM  
INT  
Configuration  
13  
8
GPIO  
Data Bus  
Program Counter  
GP0  
Flash  
GP1  
GP2  
GP3  
GP4  
GP5  
1K X 14  
Program  
Memory  
RAM  
64 Bytes  
File  
Registers  
8-Level Stack  
(13-Bit)  
Program  
Bus  
14  
RAM Addr  
9
Addr MUX  
Instruction Reg  
Indirect  
Addr  
7
Direct Addr  
8
FSR Reg  
STATUS Reg  
8
3
Power-up  
Timer  
MUX  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
ALU  
Power-on  
Reset  
8
Watchdog  
Timer  
OSC1/CLKIN  
Timing  
Generation  
W Reg  
Brown-out  
Reset  
OSC2/CLKOUT  
Internal  
Oscillator  
Block  
Shunt Regulator  
(PIC12HV609 only)  
VDD  
VSS  
MCLR  
T1G  
T1CKI  
T0CKI  
Timer0  
Timer1  
Comparator Voltage Reference  
Absolute Voltage Reference  
Analog Comparator  
and Reference  
2010 Microchip Technology Inc.  
DS41302D-page 7  
PIC12F609/615/617/12HV609/615  
FIGURE 1-2:  
PIC12F615/617/HV615 BLOCK DIAGRAM  
INT  
Configuration  
13  
8
GPIO  
Data Bus  
Program Counter  
Flash  
GP0  
GP1  
GP2  
GP3  
GP4  
GP5  
1K X 14  
and  
2K X 14**  
Program  
Memory  
RAM  
64 Bytes and  
128 Bytes**  
File  
8-Level Stack  
(13-Bit)  
Registers  
Program  
Bus  
14  
RAM Addr  
9
Addr MUX  
Instruction Reg  
Indirect  
Addr  
7
Direct Addr  
8
FSR Reg  
STATUS Reg  
8
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
ALU  
Power-on  
Reset  
8
Watchdog  
Timer  
OSC1/CLKIN  
Timing  
Generation  
W Reg  
Brown-out  
Reset  
OSC2/CLKOUT  
Internal  
Oscillator  
Shunt Regulator  
T1G*  
Block  
(PIC12HV615 only)  
VDD  
VSS  
MCLR  
T1G  
T1CKI  
T0CKI  
Timer0  
Timer1  
Timer2  
Comparator Voltage Reference  
Absolute Voltage Reference  
Analog Comparator  
and Reference  
Analog-To-Digital Converter  
ECCP  
*
Alternate pin function.  
** For the PIC12F617 only.  
DS41302D-page 8  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 1-1:  
PIC12F609/HV609 PINOUT DESCRIPTION  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
GP0/CIN+/ICSPDAT  
GP1/CIN0-/ICSPCLK  
GP2/T0CKI/INT/COUT  
GP0  
CIN+  
TTL  
AN  
ST  
CMOS General purpose I/O with prog. pull-up and interrupt-on-change  
Comparator non-inverting input  
ICSPDAT  
GP1  
CMOS Serial Programming Data I/O  
TTL  
AN  
ST  
CMOS General purpose I/O with prog. pull-up and interrupt-on-change  
CIN0-  
ICSPCLK  
GP2  
Comparator inverting input  
Serial Programming Clock  
ST  
CMOS General purpose I/O with prog. pull-up and interrupt-on-change  
T0CKI  
INT  
ST  
Timer0 clock input  
External Interrupt  
ST  
COUT  
GP3  
CMOS Comparator output  
GP3/MCLR/VPP  
TTL  
ST  
General purpose input with interrupt-on-change  
MCLR  
VPP  
Master Clear w/internal pull-up  
Programming voltage  
HV  
TTL  
AN  
GP4/CIN1-/T1G/OSC2/  
CLKOUT  
GP4  
CMOS General purpose I/O with prog. pull-up and interrupt-on-change  
Comparator inverting input  
Timer1 gate (count enable)  
CIN1-  
T1G  
ST  
OSC2  
CLKOUT  
GP5  
XTAL Crystal/Resonator  
CMOS FOSC/4 output  
GP5/T1CKI/OSC1/CLKIN  
TTL  
ST  
CMOS General purpose I/O with prog. pull-up and interrupt-on-change  
T1CKI  
OSC1  
CLKIN  
VDD  
Timer1 clock input  
XTAL  
ST  
Crystal/Resonator  
External clock input/RC oscillator connection  
Positive supply  
VDD  
VSS  
Power  
Power  
VSS  
Ground reference  
Legend: AN=Analog input or output  
ST=Schmitt Trigger input with CMOS levels  
CMOS= CMOS compatible input or output HV= High Voltage  
TTL = TTL compatible input XTAL=Crystal  
2010 Microchip Technology Inc.  
DS41302D-page 9  
PIC12F609/615/617/12HV609/615  
TABLE 1-2:  
PIC12F615/617/HV615 PINOUT DESCRIPTION  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
GP0/AN0/CIN+/P1B/ICSPDAT  
GP0  
TTL  
CMOS General purpose I/O with prog. pull-up and interrupt-on-  
change  
AN0  
CIN+  
AN  
AN  
A/D Channel 0 input  
Comparator non-inverting input  
P1B  
CMOS PWM output  
ICSPDAT  
GP1  
ST  
TTL  
CMOS Serial Programming Data I/O  
GP1/AN1/CIN0-/VREF/ICSPCLK  
CMOS General purpose I/O with prog. pull-up and interrupt-on-  
change  
AN1  
CIN0-  
VREF  
AN  
AN  
AN  
ST  
ST  
A/D Channel 1 input  
Comparator inverting input  
External Voltage Reference for A/D  
Serial Programming Clock  
ICSPCLK  
GP2  
GP2/AN2/T0CKI/INT/COUT/CCP1/  
P1A  
CMOS General purpose I/O with prog. pull-up and interrupt-on-  
change  
AN2  
T0CKI  
INT  
AN  
ST  
ST  
A/D Channel 2 input  
Timer0 clock input  
External Interrupt  
COUT  
CCP1  
P1A  
CMOS Comparator output  
ST  
CMOS Capture input/Compare input/PWM output  
CMOS PWM output  
GP3/T1G*/MCLR/VPP  
GP3  
TTL  
ST  
ST  
HV  
TTL  
General purpose input with interrupt-on-change  
Timer1 gate (count enable), alternate pin  
Master Clear w/internal pull-up  
T1G*  
MCLR  
VPP  
Programming voltage  
GP4/AN3/CIN1-/T1G/P1B*/OSC2/  
CLKOUT  
GP4  
CMOS General purpose I/O with prog. pull-up and interrupt-on-  
change  
AN3  
CIN1-  
T1G  
AN  
AN  
A/D Channel 3 input  
Comparator inverting input  
ST  
Timer1 gate (count enable)  
P1B*  
CMOS PWM output, alternate pin  
XTAL Crystal/Resonator  
CMOS FOSC/4 output  
OSC2  
CLKOUT  
GP5  
GP5/T1CKI/P1A*/OSC1/CLKIN  
TTL  
CMOS General purpose I/O with prog. pull-up and interrupt-on-  
change  
T1CKI  
P1A*  
OSC1  
CLKIN  
VDD  
ST  
Timer1 clock input  
CMOS PWM output, alternate pin  
XTAL  
ST  
Crystal/Resonator  
External clock input/RC oscillator connection  
Positive supply  
VDD  
VSS  
Power  
Power  
VSS  
Ground reference  
*
Alternate pin function.  
Legend: AN=Analog input or output  
ST=Schmitt Trigger input with CMOS levels TTL = TTL compatible input  
CMOS=CMOS compatible input or output HV= High Voltage  
XTAL=Crystal  
DS41302D-page 10  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 2-2:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC12F617  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The PIC12F609/615/617/12HV609/615 has a 13-bit  
program counter capable of addressing an 8K x 14  
program memory space. Only the first 1K x 14 (0000h-  
03FFh) for the PIC12F609/615/12HV609/615 is  
physically implemented. For the PIC12F617, the first  
2K x 14 (0000h-07FFh) is physically implemented.  
Accessing a location above these boundaries will  
cause a wrap-around within the first 1K x 14 space for  
PIC12F609/615/12HV609/615 devices, and within the  
first 2K x 14 space for the PIC12F617 device. The  
Reset vector is at 0000h and the interrupt vector is at  
0004h (see Figure 2-1).  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Reset Vector  
0000h  
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
Interrupt Vector  
Page 0  
0004h  
0005h  
PIC12F609/615/12HV609/615  
On-Chip  
Program  
Memory  
07FFh  
0800h  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
Wraps to 0000h-07FFh  
1FFFh  
Stack Level 1  
Stack Level 2  
2.2  
Data Memory Organization  
The data memory (see Figure 2-3) is partitioned into two  
banks, which contain the General Purpose Registers  
(GPR) and the Special Function Registers (SFR). The  
Special Function Registers are located in the first 32  
locations of each bank. Register locations 40h-7Fh in  
Bank 0 are General Purpose Registers, implemented as  
static RAM. For the PIC12F617, the register locations  
20h-7Fh in Bank 0 and A0h-EFh in Bank 1 are general  
purpose registers implemented as Static RAM. Register  
locations F0h-FFh in Bank 1 point to addresses 70h-7Fh  
in Bank 0. All other RAM is unimplemented and returns  
0’ when read. The RP0 bit of the STATUS register is the  
bank select bit.  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory  
03FFh  
0400h  
RP0  
Wraps to 0000h-03FFh  
0
1
Bank 0 is selected  
Bank 1 is selected  
1FFFh  
Note:  
The IRP and RP1 bits of the STATUS  
register are reserved and should always be  
maintained as ‘0’s.  
2010 Microchip Technology Inc.  
DS41302D-page 11  
PIC12F609/615/617/12HV609/615  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
FIGURE 2-3:  
DATA MEMORY MAP OF  
THE PIC12F609/HV609  
The register file is organized as 64 x 8 in the  
PIC12F609/615/12HV609/615, and as 128 x 8 in the  
PIC12F617. Each register is accessed, either directly  
or indirectly, through the File Select Register (FSR)  
(see Section 2.4 “Indirect Addressing, INDF and  
FSR Registers”).  
File  
Address  
File  
Address  
Indirect Addr.(1)  
Indirect Addr.(1)  
OPTION_REG  
PCL  
00h  
01h  
02h  
80h  
81h  
82h  
TMR0  
PCL  
STATUS  
FSR  
STATUS  
FSR  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
2.2.2  
SPECIAL FUNCTION REGISTERS  
GPIO  
TRISIO  
The Special Function Registers are registers used by  
the CPU and peripheral functions for controlling the  
desired operation of the device (see Table 2-1). These  
registers are static RAM.  
The special registers can be classified into two sets:  
core and peripheral. The Special Function Registers  
associated with the “core” are described in this section.  
Those related to the operation of the peripheral features  
are described in the section of that peripheral feature.  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
TMR1L  
TMR1H  
T1CON  
PCON  
OSCTUNE  
WPU  
IOC  
VRCON  
CMCON0  
CMCON1  
ANSEL  
9Fh  
A0h  
3Fh  
40h  
General  
Purpose  
Registers  
64 Bytes  
EFh  
F0h  
6Fh  
70h  
Accesses 70h-7Fh  
Bank 1  
Accesses 70h-7Fh  
Bank 0  
7Fh  
FFh  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
DS41302D-page 12  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 2-4:  
DATA MEMORY MAP OF  
THEPIC12F615/617/HV615  
File  
File  
Address  
Address  
Indirect Addr.(1)  
Indirect Addr.(1)  
OPTION_REG  
PCL  
00h  
01h  
02h  
80h  
81h  
82h  
TMR0  
PCL  
STATUS  
FSR  
STATUS  
FSR  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
GPIO  
TRISIO  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
TMR1L  
TMR1H  
PCON  
T1CON  
OSCTUNE  
TMR2  
T2CON  
PR2  
CCPR1L  
CCPR1H  
CCP1CON  
PWM1CON  
ECCPAS  
APFCON  
WPU  
IOC  
PMCON1(2)  
PMCON2(2)  
PMADRL(2)  
PMADRH(2)  
PMDATL(2)  
PMDATH(2)  
ADRESL  
VRCON  
CMCON0  
CMCON1  
ADRESH  
ADCON0  
ANSEL  
9Fh  
A0h  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
96 Bytes from  
20h-7Fh(2)  
32 Bytes(2)  
Unimplemented for  
PIC12F615/HV615  
Unimplemented for  
PIC12F615/HV615  
BFh  
C0h  
3Fh  
40h  
General  
Purpose  
Registers  
64 Bytes  
6Fh  
70h  
EFh  
F0h  
Accesses 70h-7Fh  
Bank 0  
Accesses 70h-7Fh  
Bank 1  
7Fh  
FFh  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
2: Used for the PIC12F617 only.  
2010 Microchip Technology Inc.  
DS41302D-page 13  
PIC12F609/615/617/12HV609/615  
TABLE 2-1:  
PIC12F609/HV609 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
INDF  
TMR0  
PCL  
STATUS  
FSR  
GPIO  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module’s Register  
xxxx xxxx 25, 115  
xxxx xxxx 53, 115  
0000 0000 25, 115  
0001 1xxx 18, 115  
xxxx xxxx 25, 115  
--x0 x000 43, 115  
Program Counter’s (PC) Least Significant Byte  
IRP(1)  
RP1(1)  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
GP5  
GP4  
GP3  
GP2  
GP1  
GP0  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIR1  
PEIE  
T0IE  
Write Buffer for upper 5 bits of Program Counter  
---0 0000 25, 115  
0000 0000 20, 115  
GIE  
INTE  
GPIE  
CMIF  
T0IF  
INTF  
GPIF  
TMR1IF ---- 0--0 22, 115  
Unimplemented  
TMR1L  
TMR1H  
T1CON  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx 57, 115  
xxxx xxxx 57, 115  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS TMR1ON 0000 0000 62, 115  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
CMVREN  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
Legend:  
VRCON  
CMCON0  
VRR  
FVREN  
CMPOL  
VR3  
VR2  
VR1  
VR0  
0-00 0000 76, 116  
0000 -0-0 72, 116  
CMON  
COUT  
CMOE  
CMR  
CMCH  
CMCON1  
T1ACS  
CMHYS  
T1GSS  
CMSYNC ---0 0-10 73, 116  
Unimplemented  
Unimplemented  
Unimplemented  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
IRP and RP1 bits are reserved, always maintain these bits clear.  
Read only register.  
1:  
2:  
DS41302D-page 14  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 2-2:  
PIC12F615/617/HV615 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module’s Register  
xxxx xxxx 25, 116  
xxxx xxxx 53, 116  
0000 0000 25, 116  
0001 1xxx 18, 116  
xxxx xxxx 25, 116  
--x0 x000 43, 116  
TMR0  
PCL  
Program Counter’s (PC) Least Significant Byte  
STATUS  
FSR  
IRP(1)  
RP1(1)  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
GPIO  
GP5  
GP4  
GP3  
GP2  
GP1  
GP0  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIR1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000 25, 116  
0000 0000 20, 116  
GIE  
PEIE  
ADIF  
T0IE  
INTE  
GPIE  
CMIF  
T0IF  
INTF  
GPIF  
CCP1IF  
TMR2IF  
TMR1IF -00- 0-00 22, 116  
Unimplemented  
TMR1L  
TMR1H  
T1CON  
TMR2(3)  
T2CON(3)  
CCPR1L(3)  
CCPR1H(3)  
CCP1CON(3)  
PWM1CON(3)  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx 57, 116  
xxxx xxxx 57, 116  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS TMR1ON 0000 0000 62, 116  
Timer2 Module Register  
0000 0000 65, 116  
12h  
13h  
14h  
15h  
16h  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 66, 116  
Capture/Compare/PWM Register 1 Low Byte  
Capture/Compare/PWM Register 1 High Byte  
XXXX XXXX 90, 116  
XXXX XXXX 90, 116  
P1M  
DC1B1  
PDC5  
DC1B0  
PDC4  
CCP1M3  
PDC3  
CCP1M2  
PDC2  
CCP1M1  
PDC1  
CCP1M0 0-00 0000 89, 116  
PRSEN  
PDC6  
PDC0  
0000 0000  
105,  
116  
17h  
ECCPAS(3)  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1  
Unimplemented  
PSSAC0  
PSSBD1  
PSSBD0 0000 0000  
102,  
116  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
VRCON  
CMCON0  
CMVREN  
CMON  
VRR  
FVREN  
CMPOL  
VR3  
VR2  
VR1  
VR0  
0-00 0000 76, 116  
0000 -0-0 72, 116  
COUT  
CMOE  
CMR  
CMCH  
CMCON1  
T1ACS  
CMHYS  
T1GSS  
CMSYNC ---0 0-10 73, 116  
Unimplemented  
ADRESH(2, 3) Most Significant 8 bits of the left shifted A/D result or 2 bits of right shifted result  
ADCON0(3)  
ADFM VCFG CHS2 CHS1 CHS0 GO/DONE  
xxxx xxxx 85, 116  
00-0 0000 84, 116  
ADON  
Legend:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Note 1:  
IRP and RP1 bits are reserved, always maintain these bits clear.  
2:  
3:  
Read only register.  
PIC12F615/617/HV615 only.  
2010 Microchip Technology Inc.  
DS41302D-page 15  
PIC12F609/615/617/12HV609/615  
TABLE 2-3:  
PIC12F609/HV609 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 1  
80h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
xxxx xxxx 25, 116  
1111 1111 19, 116  
81h  
OPTION_RE  
G
T0SE  
PSA  
PS2  
PS1  
PS0  
GPPU  
INTEDG  
T0CS  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
PCL  
STATUS  
FSR  
TRISIO  
Program Counter’s (PC) Least Significant Byte  
IRP(1) RP1(1)  
RP0 TO  
Indirect Data Memory Address Pointer  
0000 0000 25, 116  
0001 1xxx 18, 116  
xxxx xxxx 25, 116  
PD  
Z
DC  
C
TRISIO5  
TRISIO4 TRISIO3(4) TRISIO2  
TRISIO1  
TRISIO0 --11 1111 44, 116  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIE1  
PEIE  
T0IE  
Write Buffer for upper 5 bits of Program Counter  
---0 0000 25, 116  
0000 0000 20, 116  
GIE  
INTE  
GPIE  
CMIE  
T0IF  
INTF  
GPIF(3)  
TMR1IE ---- 0--0 21, 116  
Unimplemented  
PCON  
POR  
BOR  
---- --qq 23, 116  
Unimplemented  
OSCTUNE  
TUN4  
TUN3  
TUN2  
TUN1  
TUN0  
---0 0000 41, 116  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
WPU(2)  
IOC  
WPU5  
IOC5  
WPU4  
IOC4  
WPU2  
IOC2  
WPU1  
IOC1  
WPU0  
IOC0  
--11 -111 46, 116  
--00 0000 46, 116  
IOC3  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ANSEL  
ANS3  
ANS1  
ANS0  
---- 1-11 45, 117  
Legend:  
Note 1:  
2:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
IRP and RP1 bits are reserved, always maintain these bits clear.  
GP3 pull-up is enabled when MCLRE is ‘1’ in the Configuration Word register.  
3:  
MCLR and WDT Reset does not affect the previous value data latch. The GPIF bit will clear upon Reset but will set again if the mismatch  
exists.  
4:  
TRISIO3 always reads as ‘1’ since it is an input only pin.  
DS41302D-page 16  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 2-4:  
PIC12F615/617/HV615 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 1  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
xxxx xxxx 25, 116  
1111 1111 19, 116  
0000 0000 25, 116  
0001 1xxx 18, 116  
xxxx xxxx 25, 116  
OPTION_REG  
PCL  
GPPU  
Program Counter’s (PC) Least Significant Byte  
IRP(1) RP1(1)  
RP0 TO  
Indirect Data Memory Address Pointer  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
STATUS  
FSR  
PD  
Z
DC  
C
TRISIO  
TRISIO5  
TRISIO4 TRISIO3(4) TRISIO2  
TRISIO1  
TRISIO0 --11 1111 44, 116  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIE1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000 25, 116  
0000 0000 20, 116  
GIE  
PEIE  
ADIE  
T0IE  
INTE  
GPIE  
CMIE  
T0IF  
INTF  
GPIF(3)  
CCP1IE  
TMR2IE  
TMR1IE -00- 0-00 21, 116  
Unimplemented  
PCON  
POR  
BOR  
---- --qq 23, 116  
Unimplemented  
OSCTUNE  
TUN4  
TUN3  
TUN2  
TUN1  
TUN0  
---0 0000 41, 116  
Unimplemented  
PR2  
Timer2 Module Period Register  
1111 1111 65, 116  
P1ASEL ---0 --00 21, 116  
APFCON  
T1GSEL  
P1BSEL  
Unimplemented  
WPU(2)  
IOC  
WPU5  
IOC5  
WPU4  
IOC4  
WPU2  
IOC2  
WPU1  
IOC1  
WPU0  
IOC0  
--11 -111 46, 116  
--00 0000 46, 116  
IOC3  
Unimplemented  
29  
PMCON1(7)  
PMCON2(7)  
PMADRL(7)  
PMADRH(7)  
PMDATL(7)  
PMDATH(7)  
ADRESL(5, 6)  
ANSEL  
WREN  
WR  
RD  
---- -000  
---- ----  
Program Memory Control Register 2 (not a physical register).  
PMADRL7 PMADRL6 PMADRL5 PMADRL4 PMADRL3 PMADRL2 PMADRL1 PMADRL0 0000 0000  
PMADRH2 PMADRH1 PMADRH0 ---- -000  
PMDATL7 PMDATL6 PMDATL5 PMDATL4 PMDATL3 PMDATL2 PMDATL1 PMDATL0 0000 0000  
Program Memory Data Register High Byte. --00 0000  
Least Significant 2 bits of the left shifted result or 8 bits of the right shifted result  
ADCS2 ADCS1 ADCS0 ANS3 ANS2  
28  
28  
28  
28  
xxxx xxxx 85, 117  
-000 1111 45, 117  
ANS1  
ANS0  
Legend:  
Note 1:  
2:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
IRP and RP1 bits are reserved, always maintain these bits clear.  
GP3 pull-up is enabled when MCLRE is ‘1’ in the Configuration Word register.  
3:  
MCLR and WDT Reset does not affect the previous value data latch. The GPIF bit will clear upon Reset but will set again if the mismatch  
exists.  
4:  
5:  
6:  
7:  
TRISIO3 always reads as ‘1’ since it is an input only pin.  
Read only register.  
PIC12F615/617/HV615 only.  
PIC12F617 only.  
2010 Microchip Technology Inc.  
DS41302D-page 17  
PIC12F609/615/617/12HV609/615  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not  
affecting any Status bits, see the Section 14.0  
“Instruction Set Summary”.  
2.2.2.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
• the bank select bits for data memory (RAM)  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: Bits IRP and RP1 of the STATUS register  
are not used by the PIC12F609/615/617/  
12HV609/615 and should be maintained  
as clear. Use of these bits is not recom-  
mended, since this may affect upward  
compatibility with future products.  
2: The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction. See the SUBLW and SUBWF  
instructions for examples.  
For example, CLRF STATUS,will clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu(where u= unchanged).  
REGISTER 2-1:  
STATUS: STATUS REGISTER  
Reserved  
IRP  
Reserved  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
IRP: This bit is reserved and should be maintained as ‘0’  
RP1: This bit is reserved and should be maintained as ‘0’  
RP0: Register Bank Select bit (used for direct addressing)  
1= Bank 1 (80h – FFh)  
0= Bank 0 (00h – 7Fh)  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions), For Borrow, the polarity is  
reversed.  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
bit 0  
C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order  
bit of the source register.  
DS41302D-page 18  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
2.2.2.2  
OPTION Register  
Note:  
To achieve a 1:1 prescaler assignment for  
Timer0, assign the prescaler to the WDT  
by setting PSA bit to ‘1’ of the OPTION  
register. See Section 6.1.3 “Software  
Programmable Prescaler”.  
The OPTION register is a readable and writable  
register, which contains various control bits to  
configure:  
• Timer0/WDT prescaler  
• External GP2/INT interrupt  
• Timer0  
• Weak pull-ups on GPIO  
REGISTER 2-2:  
OPTION_REG: OPTION REGISTER  
R/W-1  
GPPU  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
GPPU: GPIO Pull-up Enable bit  
1= GPIO pull-ups are disabled  
0= GPIO pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of GP2/INT pin  
0= Interrupt on falling edge of GP2/INT pin  
T0CS: Timer0 Clock Source Select bit  
1= Transition on GP2/T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on GP2/T0CKI pin  
0= Increment on low-to-high transition on GP2/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
BIT VALUE TIMER0 RATE WDT RATE  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 1  
1 : 2  
1 : 8  
1 : 4  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
2010 Microchip Technology Inc.  
DS41302D-page 19  
PIC12F609/615/617/12HV609/615  
2.2.2.3  
INTCON Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear  
prior to enabling an interrupt.  
The INTCON register is a readable and writable  
register, which contains the various enable and flag bits  
for TMR0 register overflow, GPIO change and external  
GP2/INT pin interrupts.  
REGISTER 2-3:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
GPIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-0  
GPIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: GP2/INT External Interrupt Enable bit  
1= Enables the GP2/INT external interrupt  
0= Disables the GP2/INT external interrupt  
GPIE: GPIO Change Interrupt Enable bit(1)  
1= Enables the GPIO change interrupt  
0= Disables the GPIO change interrupt  
T0IF: Timer0 Overflow Interrupt Flag bit(2)  
1= Timer0 register has overflowed (must be cleared in software)  
0= Timer0 register did not overflow  
INTF: GP2/INT External Interrupt Flag bit  
1= The GP2/INT external interrupt occurred (must be cleared in software)  
0= The GP2/INT external interrupt did not occur  
GPIF: GPIO Change Interrupt Flag bit  
1= When at least one of the GPIO <5:0> pins changed state (must be cleared in software)  
0= None of the GPIO <5:0> pins have changed state  
Note 1: IOC register must also be enabled.  
2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before  
clearing T0IF bit.  
DS41302D-page 20  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
2.2.2.4  
PIE1 Register  
The PIE1 register contains the Peripheral Interrupt  
Enable bits, as shown in Register 2-4.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 2-4:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
U-0  
R/W-0  
ADIE(1)  
R/W-0  
CCP1IE(1)  
U-0  
R/W-0  
CMIE  
U-0  
R/W-0  
TMR2IE(1)  
R/W-0  
TMR1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIE: A/D Converter (ADC) Interrupt Enable bit(1)  
1= Enables the ADC interrupt  
0= Disables the ADC interrupt  
bit 5  
CCP1IE: CCP1 Interrupt Enable bit(1)  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CMIE: Comparator Interrupt Enable bit  
1= Enables the Comparator interrupt  
0= Disables the Comparator interrupt  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR2IE: Timer2 to PR2 Match Interrupt Enable bit(1)  
1= Enables the Timer2 to PR2 match interrupt  
0= Disables the Timer2 to PR2 match interrupt  
bit 0  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
Note 1: PIC12F615/617/HV615 only. PIC12F609/HV609 unimplemented, read as ‘0’.  
2010 Microchip Technology Inc.  
DS41302D-page 21  
PIC12F609/615/617/12HV609/615  
2.2.2.5  
PIR1 Register  
The PIR1 register contains the Peripheral Interrupt flag  
bits, as shown in Register 2-5.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 2-5:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
U-0  
R/W-0  
ADIF(1)  
R/W-0  
CCP1IF(1)  
U-0  
R/W-0  
CMIF  
U-0  
R/W-0  
TMR2IF(1)  
R/W-0  
TMR1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIF: A/D Interrupt Flag bit(1)  
1= A/D conversion complete  
0= A/D conversion has not completed or has not been started  
CCP1IF: CCP1 Interrupt Flag bit(1)  
bit 5  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CMIF: Comparator Interrupt Flag bit  
1= Comparator output has changed (must be cleared in software)  
0= Comparator output has not changed  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR2IF: Timer2 to PR2 Match Interrupt Flag bit(1)  
1= Timer2 to PR2 match occurred (must be cleared in software)  
0= Timer2 to PR2 match has not occurred  
bit 0  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= Timer1 register overflowed (must be cleared in software)  
0= Timer1 has not overflowed  
Note 1: PIC12F615/617/HV615 only. PIC12F609/HV609 unimplemented, read as ‘0’.  
DS41302D-page 22  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
2.2.2.6  
PCON Register  
The Power Control (PCON) register (see Table 12-2)  
contains flag bits to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Watchdog Timer Reset (WDT)  
• External MCLR Reset  
The PCON register also controls the software enable of  
the BOR.  
The PCON register bits are shown in Register 2-6.  
REGISTER 2-6:  
PCON: POWER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-0(1)  
BOR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: Reads as ‘0’ if Brown-out Reset is disabled.  
2010 Microchip Technology Inc.  
DS41302D-page 23  
PIC12F609/615/617/12HV609/615  
2.2.2.7  
APFCON Register  
(PIC12F615/617/HV615 only)  
The Alternate Pin Function Control (APFCON) register  
is used to steer specific peripheral input and output  
functions between different pins. For this device, the  
P1A, P1B and Timer1 Gate functions can be moved  
between different pins.  
The APFCON register bits are shown in Register 2-7.  
REGISTER 2-7:  
APFCON:ALTERNATE PIN FUNCTION REGISTER(1)  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
T1GSEL  
P1BSEL  
P1ASEL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
T1GSEL: TMR1 Input Pin Select bit  
1= T1G function is on GP3/T1G(2)/MCLR/VPP  
0= T1G function is on GP4/AN3/CIN1-/T1G/P1B(2)/OSC2/CLKOUT  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
P1BSEL: P1B Output Pin Select bit  
1= P1B function is on GP4/AN3/CIN1-/T1G/P1B(2)/OSC2/CLKOUT  
0= P1B function is on GP0/AN0/CIN+/P1B/ICSPDAT  
bit 0  
P1ASEL: P1A Output Pin Select bit  
1= P1A function is on GP5/T1CKI/P1A(2)/OSC1/CLKIN  
0= P1A function is on GP2/AN2/T0CKI/INT/COUT/CCP1/P1A  
Note 1: PIC12F615/617/HV615 only.  
2: Alternate pin function.  
DS41302D-page 24  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
2.3.2  
STACK  
2.3  
PCL and PCLATH  
The PIC12F609/615/617/12HV609/615 Family has an  
8-level x 13-bit wide hardware stack (see Figure 2-1).  
The stack space is not part of either program or data  
space and the Stack Pointer is not readable or writable.  
The PC is PUSHed onto the stack when a CALL  
instruction is executed or an interrupt causes a branch.  
The stack is POPed in the event of a RETURN, RETLW  
or a RETFIE instruction execution. PCLATH is not  
affected by a PUSH or POP operation.  
The Program Counter (PC) is 13 bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<12:8>) is not directly  
readable or writable and comes from PCLATH. On any  
Reset, the PC is cleared. Figure 2-5 shows the two  
situations for the loading of the PC. The upper example  
in Figure 2-5 shows how the PC is loaded on a write to  
PCL (PCLATH<4:0> PCH). The lower example in  
Figure 2-5 shows how the PC is loaded during a CALLor  
GOTOinstruction (PCLATH<4:3> PCH).  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 2-5:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Instruction with  
Note 1: There are no Status bits to indicate stack  
12  
8
7
0
PCL as  
overflow or stack underflow conditions.  
Destination  
PC  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions or the vectoring to an  
interrupt address.  
8
PCLATH<4:0>  
PCLATH  
5
ALU Result  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO, CALL  
2.4  
Indirect Addressing, INDF and  
FSR Registers  
PCLATH<4:3>  
PCLATH  
11  
2
OPCODE <10:0>  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
Indirect addressing is possible by using the INDF  
register. Any instruction using the INDF register  
actually accesses data pointed to by the File Select  
Register (FSR). Reading INDF itself indirectly will  
produce 00h. Writing to the INDF register indirectly  
results in a no operation (although Status bits may be  
affected). An effective 9-bit address is obtained by  
concatenating the 8-bit FSR and the IRP bit of the  
STATUS register, as shown in Figure 2-6.  
2.3.1  
MODIFYING PCL  
Executing any instruction with the PCL register as the  
destination simultaneously causes the Program  
Counter PC<12:8> bits (PCH) to be replaced by the  
contents of the PCLATH register. This allows the entire  
contents of the program counter to be changed by  
writing the desired upper 5 bits to the PCLATH register.  
When the lower 8 bits are written to the PCL register,  
all 13 bits of the program counter will change to the  
values contained in the PCLATH register and those  
being written to the PCL register.  
A simple program to clear RAM location 40h-7Fh using  
indirect addressing is shown in Example 2-1.  
EXAMPLE 2-1:  
INDIRECT ADDRESSING  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). Care should be  
exercised when jumping into a look-up table or  
program branch table (computed GOTO) by modifying  
the PCL register. Assuming that PCLATH is set to the  
table start address, if the table length is greater than  
255 instructions or if the lower 8 bits of the memory  
address rolls over from 0xFF to 0x00 in the middle of  
the table, then PCLATH must be incremented for each  
address rollover that occurs between the table  
beginning and the target location within the table.  
MOVLW  
MOVWF  
0x40  
FSR  
;initialize pointer  
;to RAM  
NEXT  
CLRF  
INCF  
BTFSS  
GOTO  
INDF  
FSR  
;clear INDF register  
;inc pointer  
FSR,7  
NEXT  
;all done?  
;no clear next  
;yes continue  
CONTINUE  
For more information refer to Application Note AN556,  
Implementing a Table Read” (DS00556).  
2010 Microchip Technology Inc.  
DS41302D-page 25  
PIC12F609/615/617/12HV609/615  
FIGURE 2-6:  
DIRECT/INDIRECT ADDRESSING PIC12F609/615/617/12HV609/615  
Direct Addressing  
Indirect Addressing  
(1)  
(1)  
From Opcode  
7
RP1  
RP0  
6
0
0
IRP  
File Select Register  
Bank Select  
180h  
Location Select  
Bank Select  
Location Select  
00h  
00  
01  
10  
11  
(2)  
Data  
Memory  
NOT USED  
7Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
For memory map detail, see Figure 2-3.  
Note 1: The RP1 and IRP bits are reserved; always maintain these bits clear.  
2: Accesses in this area are mirrored back into Bank 0 and Bank 1.  
DS41302D-page 26  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
3.1  
PMADRH and PMADRL Registers  
3.0  
FLASH PROGRAM MEMORY  
SELF READ/SELF WRITE  
CONTROL (FOR PIC12F617  
ONLY)  
The PMADRH and PMADRL registers can address up  
to a maximum of 8K words of program memory.  
When selecting a program address value, the Most  
Significant Byte (MSB) of the address is written to the  
PMADRH register and the Least Significant Byte  
(LSB) is written to the PMADRL register.  
The Flash program memory is readable and writable  
during normal operation (full VDD range). This memory  
is not directly mapped in the register file space.  
Instead, it is indirectly addressed through the Special  
Function Registers (see Registers 3-1 to 3-5). There  
are six SFRs used to read and write this memory:  
3.2  
PMCON1 and PMCON2 Registers  
PMCON1 is the control register for the data program  
memory accesses.  
• PMCON1  
• PMCON2  
• PMDATL  
• PMDATH  
• PMADRL  
• PMADRH  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set in  
software. They are cleared in hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental premature  
termination of a write operation.  
When interfacing the program memory block, the  
PMDATL and PMDATH registers form a two-byte word  
which holds the 14-bit data for read/write, and the  
PMADRL and PMADRH registers form a two-byte  
word which holds the 13-bit address of the Flash loca-  
tion being accessed. These devices have 2K words of  
program Flash with an address range from 0000h to  
07FFh.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear.  
PMCON2 is not a physical register. Reading PMCON2  
will read all ‘0’s. The PMCON2 register is used  
exclusively in the Flash memory write sequence.  
The program memory allows single word read and a  
by four word write. A four word write automatically  
erases the row of the location and writes the new data  
(erase before write).  
The write time is controlled by an on-chip timer. The  
write/erase voltages are generated by an on-chip  
charge pump rated to operate over the voltage range  
of the device for byte or word operations.  
When the device is code-protected, the CPU may  
continue to read and write the Flash program memory.  
Depending on the settings of the Flash Program  
Memory Enable (WRT<1:0>) bits, the device may or  
may not be able to write certain blocks of the program  
memory, however, reads of the program memory are  
allowed.  
When the Flash program memory Code Protection  
(CP) bit in the Configuration Word register is enabled,  
the program memory is code-protected, and the  
device programmer (ICSP™) cannot access data or  
program memory.  
2010 Microchip Technology Inc.  
DS41302D-page 27  
PIC12F609/615/617/12HV609/615  
REGISTER 3-1:  
R/W-0  
PMDATL: PROGRAM MEMORY DATA REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PMDATL7  
bit 7  
PMDATL6  
PMDATL5  
PMDATL4  
PMDATL3  
PMDATL2  
PMDATL1  
PMDATL0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
PMDATL<7:0>: 8 Least Significant Address bits to Write or Read from Program Memory  
REGISTER 3-2:  
R/W-0  
PMADRL: PROGRAM MEMORY ADDRESS REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PMADRL7  
bit 7  
PMADRL6  
PMADRL5  
PMADRL4  
PMADRL3  
PMADRL2  
PMADRL1  
PMADRL0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
PMADRL<7:0>: 8 Least Significant Address bits for Program Memory Read/Write Operation  
REGISTER 3-3:  
PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PMDATH5  
PMDATH4  
PMDATH3  
PMDATH2  
PMDATH1  
PMDATH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
PMDATH<5:0>: 6 Most Significant Data bits from Program Memory  
REGISTER 3-4:  
PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PMADRH2  
PMADRH1  
PMADRH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 3  
Unimplemented: Read as ‘0’  
PMADRH<2:0>: Specifies the 3 Most Significant Address bits or high bits for program memory reads.  
bit 2-0  
DS41302D-page 28  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
REGISTER 3-5:  
PMCON1 – PROGRAM MEMORY CONTROL REGISTER 1 (ADDRESS: 93h)  
U-1  
U-0  
U-0  
U-0  
U-0  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
bit 7  
bit 0  
bit 7  
Unimplemented: Read as ‘1’  
Unimplemented: Read as ‘0’  
bit 6-3  
bit 2  
WREN: Program Memory Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the EEPROM  
bit 1  
bit 0  
WR: Write Control bit  
1= Initiates a write cycle to program memory. (The bit is cleared by hardware when write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle to the Flash memory is complete  
RD: Read Control bit  
1= Initiates a program memory read (The read takes one cycle. The RD is cleared in hardware; the RD bit  
can only be set (not cleared) in software).  
0= Does not initiate a Flash memory read  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
1 = bit is set  
U = Unimplemented bit, read as ‘0’  
0 = bit is cleared x = bit is unknown  
2010 Microchip Technology Inc.  
DS41302D-page 29  
PIC12F609/615/617/12HV609/615  
3.3  
Reading the Flash Program  
Memory  
To read a program memory location, the user must  
write two bytes of the address to the PMADRL and  
PMADRH registers, and then set control bit RD  
(PMCON1<0>). Once the read control bit is set, the  
program memory Flash controller will use the second  
instruction cycle after to read the data. This causes the  
second instruction immediately following the “BSF  
PMCON1,RD” instruction to be ignored. The data is  
available in the very next cycle in the PMDATL and  
PMDATH registers; it can be read as two bytes in the  
following instructions. PMDATL and PMDATH regis-  
ters will hold this value until another read or until it is  
written to by the user (during a write operation).  
EXAMPLE 3-1:  
FLASH PROGRAM READ  
BANKSELPM_ADR  
; Change STATUS bits RP1:0 to select bank with PMADRL  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MS_PROG_PM_ADDR  
PMADRH  
LS_PROG_PM_ADDR  
PMADRL  
;
; MS Byte of Program Address to read  
;
; LS Byte of Program Address to read  
; Bank to containing PMCON1  
; PM Read  
BANKSELPMCON1  
BSF  
NOP  
NOP  
PMCON1, RD  
; First instruction after BSF PMCON1,RD executes normally  
; Any instructions here are ignored as program  
; memory is read in second cycle after BSF PMCON1,RD  
;
BANKSELPMDATL  
; Bank to containing PMADRL  
MOVF  
MOVF  
PMDATL, W  
PMDATH, W  
; W = LS Byte of Program PMDATL  
; W = MS Byte of Program PMDATL  
DS41302D-page 30  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FLASH PROGRAM MEMORY READ CYCLE EXECUTION  
FIGURE 3-1:  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Flash ADDR  
Flash DATA  
PC  
PC + 1  
PMADRH,PMADRL  
PC+3  
PC + 4  
PC + 5  
INSTR (PC)  
INSTR (PC + 1)  
PMDATH,PMDATL  
INSTR (PC + 3)  
INSTR (PC + 4)  
BSF PMCON1,RD  
Executed here  
INSTR (PC - 1)  
Executed here  
INSTR (PC + 1)  
Executed here  
NOP  
Executed here  
INSTR (PC + 3)  
Executed here  
INSTR (PC + 4)  
Executed here  
RD bit  
PMDATH  
PMDATL  
Register  
PMRHLT  
2010 Microchip Technology Inc.  
DS41302D-page 31  
PIC12F609/615/617/12HV609/615  
which the erase takes place (i.e., the last word of the  
sixteen-word block erase). This is not Sleep mode as  
the clocks and peripherals will continue to run. After  
the four-word write cycle, the processor will resume  
operation with the third instruction after the PMCON1  
write instruction. The above sequence must be  
repeated for the higher 12 words.  
3.4  
Writing the Flash Program  
Memory  
A word of the Flash program memory may only be  
written to if the word is in an unprotected segment of  
memory.  
Flash program memory must be written in four-word  
blocks. See Figure 3-2 and Figure 3-3 for more details.  
3.5  
Protection Against Spurious Write  
A
block consists of four words with sequential  
addresses, with a lower boundary defined by an  
address, where PMADRL<1:0> = 00. All block writes to  
program memory are done as 16-word erase by four-  
word write operations. The write operation is edge-  
aligned and cannot occur across boundaries.  
There are conditions when the device should not write  
to the program memory. To protect against spurious  
writes, various mechanisms have been built in. On  
power-up, WREN is cleared. Also, the Power-up Timer  
(64 ms duration) prevents program memory writes.  
To write program data, it must first be loaded into the  
buffer registers (see Figure 3-2). This is accomplished  
by first writing the destination address to PMADRL and  
PMADRH and then writing the data to PMDATL and  
PMDATH. After the address and data have been set  
up, then the following sequence of events must be  
executed:  
The write initiate sequence and the WREN bit help  
prevent an accidental write during brown-out, power  
glitch or software malfunction.  
3.6  
Operation During Code-Protect  
When the device is code-protected, the CPU is able to  
read and write unscrambled data to the program  
memory. The test mode access is disabled.  
1. Write 55h, then AAh, to PMCON2 (Flash  
programming sequence).  
2. Set the WR control bit of the PMCON1 register.  
3.7  
Operation During Write Protect  
All four buffer register locations should be written to  
with correct data. If less than four words are being  
written to in the block of four words, then a read from  
the program memory location(s) not being written to  
must be performed. This takes the data from the  
program location(s) not being written and loads it into  
the PMDATL and PMDATH registers. Then the  
sequence of events to transfer data to the buffer  
registers must be executed.  
When the program memory is write-protected, the  
CPU can read and execute from the program memory.  
The portions of program memory that are write pro-  
tected can be modified by the CPU using the PMCON  
registers, but the protected program memory cannot  
be modified using ICSP mode.  
To transfer data from the buffer registers to the program  
memory, the PMADRL and PMADRH must point to the  
last location in the four-word block (PMADRL<1:0> =  
11). Then the following sequence of events must be  
executed:  
1. Write 55h, then AAh, to PMCON2 (Flash pro-  
gramming sequence).  
2. Set control bit WR of the PMCON1 register to  
begin the write operation.  
The user must follow the same specific sequence to  
initiate the write for each word in the program block,  
writing each program word in sequence (000, 001,  
010, 011). When the write is performed on the last  
word (PMADRL<1:0> = 11), a block of sixteen words is  
automatically erased and the content of the four-word  
buffer registers are written into the program memory.  
After the “BSF PMCON1,WR” instruction, the processor  
requires two cycles to set up the erase/write operation.  
The user must place two NOPinstructions after the WR  
bit is set. Since data is being written to buffer registers,  
the writing of the first three words of the block appears  
to occur immediately. The processor will halt internal  
operations for the typical 4 ms, only during the cycle in  
DS41302D-page 32  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 3-2:  
BLOCK WRITES TO 2K FLASH PROGRAM MEMORY  
7
5
0
0 7  
If at a new row  
sixteen words of  
Flash are erased,  
then four buffers  
are transferred  
to Flash  
PMDATH  
6
PMDATL  
8
automatically  
after this word  
is written  
First word of block  
to be written  
14  
14  
14  
14  
PMADRL<1:0> = 00  
Buffer Register  
PMADRL<1:0> = 01  
Buffer Register  
PMADRL<1:0> = 10  
Buffer Register  
PMADRL<1:0> = 11  
Buffer Register  
Program Memory  
FIGURE 3-3:  
FLASH PROGRAM MEMORY LONG WRITE CYCLE EXECUTION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PMADRH,PMADRL  
PMDATH,PMDATL  
PC + 1  
PC + 2  
PC + 3  
PC + 4  
Flash  
ADDR  
INSTR  
(PC + 1)  
ignored  
read  
INSTR  
(PC)  
Flash  
DATA  
INSTR (PC+3)  
INSTR (PC+2)  
(INSTR (PC + 2)  
NOP  
Executed here  
Processor halted  
PM Write Time  
BSF PMCON1,WR  
Executed here  
INSTR (PC + 1)  
Executed here  
INSTR (PC + 3)  
Executed here  
NOP  
Executed here  
Flash  
Memory  
Location  
WR bit  
PMWHLT  
2010 Microchip Technology Inc.  
DS41302D-page 33  
PIC12F609/615/617/12HV609/615  
An example of the complete four-word write sequence  
is shown in Example 3-2. The initial address is loaded  
into the PMADRH and PMADRL register pair; the eight  
words of data are loaded using indirect addressing.  
EXAMPLE 3-2:  
WRITING TO FLASH PROGRAM MEMORY  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  
; This write routine assumes the following:  
;
;
;
;
A valid starting address (the least significant bits = '00')  
is loaded in ADDRH:ADDRL  
ADDRH, ADDRL and DATADDR are all located in data memory  
BANKSEL PMADRH  
MOVF  
MOVWF  
MOVF  
MOVWF  
MOVF  
ADDRH,W  
PMADRH  
ADDRL,W  
PMADRL  
; Load initial address  
;
;
;
DATAADDR,W ; Load initial data address  
MOVWF  
MOVF  
MOVWF  
INCF  
MOVF  
MOVWF  
INCF  
FSR  
;
LOOP  
INDF,W  
PMDATL  
FSR,F  
INDF,W  
PMDATH  
FSR,F  
; Load first data byte into lower  
;
; Next byte  
; Load second data byte into upper  
;
;
BANKSEL PMCON1  
BSF  
PMCON1,WREN ; Enable writes  
BCF  
INTCON,GIE ; Disable interrupts (if using)  
BTFSC  
GOTO  
INTCON,GIE ; See AN576  
$-2  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  
;
Required Sequence  
; Start of required write sequence:  
; Write 55h  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
55h  
PMCON2  
0AAh  
PMCON2  
PMCON1,WR  
;
; Write 0AAh  
; Set WR bit to begin write  
; Required to transfer data to the buffer  
; registers  
NOP  
NOP  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  
BCF  
BSF  
PMCON1,WREN ; Disable writes  
INTCON,GIE ; Enable interrupts (comment out if not using interrupts)  
BANKSEL PMADRL  
MOVF  
PMADRL, W  
INCF  
ANDLW  
SUBLW  
PMADRL,F  
0x03  
0x03  
; Increment address  
; Indicates when sixteen words have been programmed  
;
;
;
;
0x0F = 16 words  
0x0B = 12 words  
0x07 = 8 words  
0x03 = 4 words  
BTFSS  
GOTO  
STATUS,Z  
LOOP  
; Exit on a match,  
; Continue if more data needs to be written  
DS41302D-page 34  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 3-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH PROGRAM MEMORY  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
PMCON1  
WREN  
WR  
RD  
---- -000  
---- -000  
PMCON2 Program Memory Control Register 2 (not a physical register)  
---- ----  
0000 0000  
---- ----  
0000 0000  
---- -000  
0000 0000  
--00 0000  
PMADRL  
PMADRH  
PMDATL  
PMDATH  
Legend:  
PMADRL7 PMADRL6 PMADRL5 PMADRL4 PMADRL3 PMADRL2 PMADRL1 PMADRL0  
PMADRH2 PMADRH1 PMADRH0 ---- -000  
PMDATL7 PMDATL6 PMDATL5  
PMDATL4  
PMDATL3 PMDATL2 PMDATL1 PMDATL0  
0000 0000  
--00 0000  
PMDATH5 PMDATH4 PMDATH3 PMDATH2 PMDATH1 PMDATH0  
x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by Program Memory module.  
2010 Microchip Technology Inc.  
DS41302D-page 35  
PIC12F609/615/617/12HV609/615  
NOTES:  
DS41302D-page 36  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
The Oscillator module can be configured in one of eight  
clock modes.  
4.0  
4.1  
OSCILLATOR MODULE  
3. EC – External clock with I/O on OSC2/CLKOUT.  
4. LP – 32 kHz Low-Power Crystal mode.  
Overview  
The Oscillator module has a wide variety of clock  
sources and selection features that allow it to be used  
in a wide range of applications while maximizing perfor-  
mance and minimizing power consumption. Figure 4-1  
illustrates a block diagram of the Oscillator module.  
5. XT – Medium Gain Crystal or Ceramic Resonator  
Oscillator mode.  
6. HS – High Gain Crystal or Ceramic Resonator  
mode.  
7. RC – External Resistor-Capacitor (RC) with  
FOSC/4 output on OSC2/CLKOUT.  
Clock sources can be configured from external  
oscillators, quartz crystal resonators, ceramic resonators  
and Resistor-Capacitor (RC) circuits. In addition, the  
system clock source can be configured with a choice of  
two selectable speeds: internal or external system clock  
source.  
8. RCIO – External Resistor-Capacitor (RC) with  
I/O on OSC2/CLKOUT.  
9. INTOSC – Internal oscillator with FOSC/4 output  
on OSC2 and I/O on OSC1/CLKIN.  
10. INTOSCIO – Internal oscillator with I/O on  
OSC1/CLKIN and OSC2/CLKOUT.  
Clock Source modes are configured by the FOSC<2:0>  
bits in the Configuration Word register (CONFIG). The  
Internal Oscillator module provides  
a selectable  
system clock mode of either 4 MHz (Postscaler) or  
8 MHz (INTOSC).  
FIGURE 4-1:  
PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
FOSC<2:0>  
IOSCFS<7>  
(Configuration Word Register)  
External Oscillator  
OSC2  
OSC1  
Sleep  
LP, XT, HS, RC, RCIO, EC  
INTOSC  
System Clock  
(CPU and Peripherals)  
Internal Oscillator  
INTOSC  
8 MHz  
Postscaler  
4 MHz  
2010 Microchip Technology Inc.  
DS41302D-page 37  
PIC12F609/615/617/12HV609/615  
4.2  
Clock Source Modes  
4.3  
External Clock Modes  
Clock Source modes can be classified as external or  
internal.  
4.3.1 OSCILLATOR START-UP TIMER  
(OST)  
• External Clock modes rely on external circuitry for  
the clock source. Examples are: Oscillator mod-  
ules (EC mode), quartz crystal resonators or  
ceramic resonators (LP, XT and HS modes) and  
Resistor-Capacitor (RC) mode circuits.  
If the Oscillator module is configured for LP, XT or HS  
modes, the Oscillator Start-up Timer (OST) counts  
1024 oscillations from OSC1. This occurs following a  
Power-on Reset (POR) and when the Power-up Timer  
(PWRT) has expired (if configured), or a wake-up from  
Sleep. During this time, the program counter does not  
increment and program execution is suspended. The  
OST ensures that the oscillator circuit, using a quartz  
crystal resonator or ceramic resonator, has started and  
is providing a stable system clock to the Oscillator  
module. When switching between clock sources, a  
delay is required to allow the new clock to stabilize.  
These oscillator delays are shown in Table 4-1.  
• Internal clock sources are contained internally  
within the Oscillator module. The Oscillator  
module has two selectable clock frequencies:  
4 MHz and 8 MHz  
The system clock can be selected between external or  
internal clock sources via the FOSC<2:0> bits of the  
Configuration Word register.  
TABLE 4-1:  
Switch From  
OSCILLATOR DELAY EXAMPLES  
Switch To  
Frequency  
125 kHz to 8 MHz  
Oscillator Delay  
Sleep/POR  
Sleep/POR  
Sleep/POR  
INTOSC  
EC, RC  
Oscillator Warm-Up Delay (TWARM)  
2 instruction cycles  
DC – 20 MHz  
LP, XT, HS  
32 kHz to 20 MHz  
1024 Clock Cycles (OST)  
4.3.2  
EC MODE  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source. When  
operating in this mode, an external clock source is  
connected to the OSC1 input and the OSC2 is available  
for general purpose I/O. Figure 4-2 shows the pin  
connections for EC mode.  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC® MCU design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
FIGURE 4-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
OSC1/CLKIN  
Clock from  
Ext. System  
PIC® MCU  
(1)  
I/O  
OSC2/CLKOUT  
Note 1: Alternate pin functions are listed in the  
Section 1.0 “Device Overview”.  
DS41302D-page 38  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
4.3.3  
LP, XT, HS MODES  
Note 1: Quartz crystal characteristics vary according  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
OSC1 and OSC2 (Figure 4-3). The mode selects a low,  
medium or high gain setting of the internal inverter-  
amplifier to support various resonator types and speed.  
to type, package and manufacturer. The  
user should consult the manufacturer data  
sheets for specifications and recommended  
application.  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
LP Oscillator mode selects the lowest gain setting of  
the internal inverter-amplifier. LP mode current  
consumption is the least of the three modes. This mode  
is designed to drive only 32.768 kHz tuning-fork type  
crystals (watch crystals).  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
• AN849, “Basic PIC® Oscillator Design”  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is best suited to drive resonators with a  
medium drive level specification.  
HS Oscillator mode selects the highest gain setting of  
the internal inverter-amplifier. HS mode current  
consumption is the highest of the three modes. This  
mode is best suited for resonators that require a high  
drive setting.  
Analysis and Design” (DS00943)  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
FIGURE 4-4:  
CERAMIC RESONATOR  
OPERATION  
Figure 4-3 and Figure 4-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
(XT OR HS MODE)  
FIGURE 4-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
PIC® MCU  
OSC1/CLKIN  
C1  
PIC® MCU  
To Internal  
Logic  
OSC1/CLKIN  
(3)  
(2)  
RP  
RF  
Sleep  
C1  
To Internal  
Logic  
Quartz  
Crystal  
(2)  
OSC2/CLKOUT  
(1)  
C2  
RF  
Sleep  
RS  
Ceramic  
Resonator  
Note 1: A series resistor (RS) may be required for  
OSC2/CLKOUT  
(1)  
C2  
RS  
ceramic resonators with low drive level.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 Mto 10 M.  
Note 1: A series resistor (RS) may be required for  
quartz crystals with low drive level.  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 Mto 10 M.  
2010 Microchip Technology Inc.  
DS41302D-page 39  
PIC12F609/615/617/12HV609/615  
4.3.4  
EXTERNAL RC MODES  
4.4  
Internal Clock Modes  
The external Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required. There are two modes: RC and RCIO.  
The Oscillator module provides a selectable system  
clock source of either 4 MHz or 8 MHz. The selectable  
frequency is configured through the IOSCFS bit of the  
Configuration Word.  
The frequency of the internal oscillator can be trimmed  
with a calibration value in the OSCTUNE register.  
In RC mode, the RC circuit connects to OSC1. OSC2/  
CLKOUT outputs the RC oscillator frequency divided  
by 4. This signal may be used to provide a clock for  
external circuitry, synchronization, calibration, test or  
other application requirements. Figure 4-5 shows the  
external RC mode connections.  
4.4.1 INTOSC AND INTOSCIO MODES  
The INTOSC and INTOSCIO modes configure the  
internal oscillators as the system clock source when  
the device is programmed using the oscillator selection  
or the FOSC<2:0> bits in the Configuration Word  
register (CONFIG). See Section 12.0 “Special  
Features of the CPU” for more information.  
FIGURE 4-5:  
EXTERNAL RC MODES  
VDD  
PIC® MCU  
In INTOSC mode, OSC1/CLKIN is available for general  
purpose I/O. OSC2/CLKOUT outputs the selected  
internal oscillator frequency divided by 4. The CLKOUT  
signal may be used to provide a clock for external  
circuitry, synchronization, calibration, test or other  
application requirements.  
REXT  
OSC1/CLKIN  
Internal  
Clock  
CEXT  
VSS  
In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT  
are available for general purpose I/O.  
(1)  
FOSC/4 or  
I/O  
OSC2/CLKOUT  
(2)  
Recommended values: 10 k  REXT 100 k, <3V  
3 k  REXT 100 k, 3-5V  
CEXT > 20 pF, 2-5V  
Note 1: Alternate pin functions are listed in  
Section 1.0 “Device Overview”.  
2: Output depends upon RC or RCIO Clock  
mode.  
In RCIO mode, the RC circuit is connected to OSC1.  
OSC2 becomes an additional general purpose I/O pin.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) values  
and the operating temperature. Other factors affecting  
the oscillator frequency are:  
• threshold voltage variation  
• component tolerances  
• packaging variations in capacitance  
The user also needs to take into account variation due  
to tolerance of external RC components used.  
DS41302D-page 40  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
The default value of the OSCTUNE register is ‘0’. The  
value is a 5-bit two’s complement number.  
4.4.1.1  
OSCTUNE Register  
The oscillator is factory calibrated but can be adjusted  
in software by writing to the OSCTUNE register  
(Register 4-1).  
When the OSCTUNE register is modified, the frequency  
will begin shifting to the new frequency. Code execution  
continues during this shift. There is no indication that the  
shift has occurred.  
REGISTER 4-1:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
TUN<4:0>: Frequency Tuning bits  
01111= Maximum frequency  
01110=  
00001=  
00000= Oscillator module is running at the calibrated frequency.  
11111=  
10000= Minimum frequency  
TABLE 4-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(2)  
CONFIG  
IOSCFS  
CP  
MCLRE PWRTE  
TUN4  
WDTE  
TUN3  
FOSC2  
TUN2  
FOSC1  
TUN1  
FOSC0  
TUN0  
OSCTUNE  
---0 0000 ---u uuuu  
Legend:  
x= unknown, u= unchanged, = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: See Configuration Word register (Register 12-1) for operation of all register bits.  
2010 Microchip Technology Inc.  
DS41302D-page 41  
PIC12F609/615/617/12HV609/615  
NOTES:  
DS41302D-page 42  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
Reading the GPIO register (Register 5-1) reads the  
status of the pins, whereas writing to it will write to the  
5.0  
I/O PORT  
There are as many as six general purpose I/O pins  
available. Depending on which peripherals are enabled,  
some or all of the pins may not be available as general  
purpose I/O. In general, when a peripheral is enabled,  
the associated pin may not be used as a general  
purpose I/O pin.  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then  
written to the PORT data latch. GP3 reads ‘0’ when  
MCLRE = 1.  
The TRISIO register controls the direction of the  
GPIO pins, even when they are being used as analog  
inputs. The user must ensure the bits in the TRISIO  
register are maintained set when using them as analog  
inputs. I/O pins configured as analog input always read  
0’.  
5.1  
GPIO and the TRISIO Registers  
GPIO is a 6-bit wide port with 5 bidirectional and 1 input-  
only pin. The corresponding data direction register is  
TRISIO (Register 5-2). Setting a TRISIO bit (= 1) will  
make the corresponding GPIO pin an input (i.e., disable  
the output driver). Clearing a TRISIO bit (= 0) will make  
the corresponding GPIO pin an output (i.e., enables  
output driver and puts the contents of the output latch on  
the selected pin). The exception is GP3, which is input  
only and its TRIS bit will always read as ‘1’. Example 5-  
1 shows how to initialize GPIO.  
Note:  
The ANSEL register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’ and cannot generate an interrupt.  
EXAMPLE 5-1:  
INITIALIZING GPIO  
BANKSEL GPIO  
;
CLRF  
GPIO  
;Init GPIO  
BANKSEL ANSEL  
;
Note:  
GPIO = PORTA  
TRISIO = TRISA  
CLRF  
ANSEL  
;digital I/O, ADC clock  
;setting ‘don’t care’  
;Set GP<3:2> as inputs  
;and set GP<5:4,1:0>  
;as outputs  
MOVLW  
MOVWF  
0Ch  
TRISIO  
REGISTER 5-1:  
GPIO: GPIO REGISTER  
U-0  
U-0  
R/W-x  
GP5  
R/W-x  
GP4  
R-x  
R/W-x  
GP2  
R/W-x  
GP1  
R/W-x  
GP0  
GP3  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
GP<5:0>: GPIO I/O Pin bit  
1= GPIO pin is > VIH  
0= GPIO pin is < VIL  
2010 Microchip Technology Inc.  
DS41302D-page 43  
PIC12F609/615/617/12HV609/615  
REGISTER 5-2:  
TRISIO: GPIO TRI-STATE REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R-1  
R/W-1  
R/W-1  
R/W-1  
TRISIO5  
TRISIO4  
TRISIO3  
TRISIO2  
TRISIO1  
TRISIO0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TRISIO<5:0>: GPIO Tri-State Control bit  
1= GPIO pin configured as an input (tri-stated)  
0= GPIO pin configured as an output  
Note 1: TRISIO<3> always reads ‘1’.  
2: TRISIO<5:4> always reads ‘1’ in XT, HS and LP Oscillator modes.  
For enabled interrupt-on-change pins, the values are  
compared with the old value latched on the last read of  
GPIO. The ‘mismatch’ outputs of the last read are OR’d  
together to set the GPIO Change Interrupt Flag bit  
(GPIF) in the INTCON register (Register 2-3).  
5.2  
Additional Pin Functions  
Every GPIO pin on the PIC12F609/615/617/12HV609/  
615 has an interrupt-on-change option and a weak pull-  
up option. The next three sections describe these  
functions.  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, clears the  
interrupt by:  
5.2.1  
ANSEL REGISTER  
The ANSEL register is used to configure the Input  
mode of an I/O pin to analog. Setting the appropriate  
ANSEL bit high will cause all digital reads on the pin to  
be read as ‘0’ and allow analog functions on the pin to  
operate correctly.  
a) Any read of GPIO AND Clear flag bit GPIF. This  
will end the mismatch condition;  
OR  
b) Any write of GPIO AND Clear flag bit GPIF will  
end the mismatch condition;  
The state of the ANSEL bits has no affect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
A mismatch condition will continue to set flag bit GPIF.  
Reading GPIO will end the mismatch condition and  
allow flag bit GPIF to be cleared. The latch holding the  
last read value is not affected by a MCLR nor BOR  
Reset. After these resets, the GPIF flag will continue to  
be set if a mismatch is present.  
5.2.2  
WEAK PULL-UPS  
Note:  
If a change on the I/O pin should occur  
when any GPIO operation is being  
executed, then the GPIF interrupt flag may  
not get set.  
Each of the GPIO pins, except GP3, has an individually  
configurable internal weak pull-up. Control bits WPUx  
enable or disable each pull-up. Refer to Register 5-5.  
Each weak pull-up is automatically turned off when the  
port pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset by the GPPU bit of the  
OPTION register). A weak pull-up is automatically  
enabled for GP3 when configured as MCLR and  
disabled when GP3 is an I/O. There is no software  
control of the MCLR pull-up.  
5.2.3  
INTERRUPT-ON-CHANGE  
Each GPIO pin is individually configurable as an  
interrupt-on-change pin. Control bits IOCx enable or  
disable the interrupt function for each pin. Refer to  
Register 5-6. The interrupt-on-change is disabled on a  
Power-on Reset.  
DS41302D-page 44  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
REGISTER 5-3:  
ANSEL: ANALOG SELECT REGISTER (PIC12F609/HV609)  
U-0  
U-0  
U-0  
U-0  
R/W-1  
ANS3  
U-0  
R/W-1  
ANS1  
R/W-1  
ANS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
ANS3: Analog Select Between Analog or Digital Function on Pin GP4  
(1)  
1= Analog input. Pin is assigned as analog input  
.
0= Digital I/O. Pin is assigned to port or special function.  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
ANS1: Analog Select Between Analog or Digital Function on Pin GP1  
(1)  
1= Analog input. Pin is assigned as analog input.  
0= Digital I/O. Pin is assigned to port or special function.  
bit 0  
ANS0: Analog Select Between Analog or Digital Function on Pin GP0  
0= Digital I/O. Pin is assigned to port or special function.  
1= Analog input. Pin is assigned as analog input.  
(1)  
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on-  
change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of  
the voltage on the pin.  
REGISTER 5-4:  
ANSEL: ANALOG SELECT REGISTER (PIC12F615/617/HV615)  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
ANS3  
R/W-1  
ANS2  
R/W-1  
ANS1  
R/W-1  
ANS0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADCS<2:0>: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
x11= FRC (clock derived from a dedicated internal oscillator = 500 kHz max)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
bit 3-0  
ANS<3:0>: Analog Select Between Analog or Digital Function on Pins GP4, GP2, GP1, GP0, respectively.  
(1)  
1= Analog input. Pin is assigned as analog input  
.
0= Digital I/O. Pin is assigned to port or special function.  
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on-  
change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of  
the voltage on the pin.  
2010 Microchip Technology Inc.  
DS41302D-page 45  
PIC12F609/615/617/12HV609/615  
REGISTER 5-5:  
WPU: WEAK PULL-UP GPIO REGISTER  
U-0  
U-0  
R/W-1  
WPU5  
R/W-1  
WPU4  
U-0  
R/W-1  
WPU2  
R/W-1  
WPU1  
R/W-1  
WPU0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
WPU<5:4>: Weak Pull-up Control bits  
1= Pull-up enabled  
0= Pull-up disabled  
bit 3  
WPU<3>: Weak Pull-up Register bit(3)  
bit 2-0  
WPU<2:0>: Weak Pull-up Control bits  
1= Pull-up enabled  
0= Pull-up disabled  
Note 1: Global GPPU must be enabled for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISIO = 0).  
3: The GP3 pull-up is enabled when configured as MCLR in the Configuration Word, otherwise it is disabled  
as an input and reads as ‘0’.  
4: WPU<5:4> always reads ‘1’ in XT, HS and LP Oscillator modes.  
REGISTER 5-6:  
IOC: INTERRUPT-ON-CHANGE GPIO REGISTER  
U-0  
U-0  
R/W-0  
IOC5  
R/W-0  
IOC4  
R/W-0  
IOC3  
R/W-0  
IOC2  
R/W-0  
IOC1  
R/W-0  
IOC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IOC<5:0>: Interrupt-on-change GPIO Control bit  
1= Interrupt-on-change enabled  
0= Interrupt-on-change disabled  
Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.  
2: IOC<5:4> always reads ‘1’ in XT, HS and LP Oscillator modes.  
DS41302D-page 46  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
5.2.4  
PIN DESCRIPTIONS AND  
DIAGRAMS  
5.2.4.2  
GP1/AN1(1)/CIN0-/VREF(1)/ICSPCLK  
Figure 5-1 shows the diagram for this pin. The GP1 pin  
is configurable to function as one of the following:  
Each GPIO pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the Comparator or the ADC, refer to the  
appropriate section in this data sheet.  
• a general purpose I/O  
(1)  
• an analog input for the ADC  
• an analog inverting input to the comparator  
(1)  
• a voltage reference input for the ADC  
5.2.4.1  
GP0/AN0(1)/CIN+/P1B(1)/ICSPDAT  
• In-Circuit Serial Programming clock  
Figure 5-1 shows the diagram for this pin. The GP0 pin  
is configurable to function as one of the following:  
Note 1: PIC12F615/617/HV615 only.  
• a general purpose I/O  
(1)  
• an analog input for the ADC  
• an analog non-inverting input to the comparator  
(1)  
• a PWM output  
• In-Circuit Serial Programming data  
FIGURE 5-1:  
BLOCK DIAGRAM OF GP<1:0>  
Analog(1)  
Input Mode  
VDD  
Data Bus  
D
Q
Q
Weak  
CK  
WR  
WPU  
GPPU  
VDD  
RD  
WPU  
D
Q
Q
I/O Pin  
WR  
CK  
GPIO  
VSS  
D
Q
Q
WR  
TRISIO  
CK  
RD  
TRISIO  
Analog(1)  
Input Mode  
RD  
GPIO  
D
Q
Q
Q
Q
D
CK  
WR  
IOC  
Q1  
EN  
RD  
IOC  
D
S(2)  
R
EN  
Q
Interrupt-on-  
Change  
From other  
GP<5:0> pins (GP0)  
GP<5:2, 0> pins (GP1)  
RD GPIO  
To Comparator  
To A/D Converter(3)  
Write ‘0’ to GBIF  
Note 1: Comparator mode and ANSEL determines Analog Input mode.  
2: Set has priority over Reset.  
3: PIC12F615/617/HV615 only.  
2010 Microchip Technology Inc.  
DS41302D-page 47  
PIC12F609/615/617/12HV609/615  
5.2.4.3  
GP2/AN2(1)/T0CKI/INT/COUT/  
CCP1(1)/P1A(1)  
Note 1: PIC12F615/617/HV615 only.  
Figure 5-2 shows the diagram for this pin. The GP2 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
(1)  
• an analog input for the ADC  
• the clock input for TMR0  
• an external edge triggered interrupt  
• a digital output from Comparator  
(1)  
• a Capture input/Compare input/PWM output  
(1)  
• a PWM output  
FIGURE 5-2:  
BLOCK DIAGRAM OF GP2  
Analog(1)  
Input Mode  
VDD  
Data Bus  
D
Q
Q
Weak  
CK  
WR  
WPU  
C1OE  
Enable  
GPPU  
VDD  
RD  
WPU  
C1OE  
1
0
D
Q
Q
I/O Pin  
WR  
CK  
VSS  
GPIO  
D
Q
Q
WR  
TRISIO  
CK  
RD  
TRISIO  
Analog(1)  
Input Mode  
RD  
GPIO  
D
Q
Q
Q
D
D
CK  
WR  
IOC  
Q1  
EN  
RD  
IOC  
Q
S(2)  
R
EN  
Q
Interrupt-on-  
Change  
From other  
GP<5:3, 1:0> pins  
RD GPIO  
To Timer0  
To INT  
Write ‘0’ to GBIF  
To A/D Converter(3)  
Note 1: Comparator mode and ANSEL determines Analog Input mode.  
2: Set has priority over Reset.  
3: PIC12F615/617/HV615 only.  
DS41302D-page 48  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
5.2.4.4  
GP3/T1G(1, 2)/MCLR/VPP  
Figure 5-3 shows the diagram for this pin. The GP3 pin  
is configurable to function as one of the following:  
• a general purpose input  
(1, 2)  
• a Timer1 gate (count enable), alternate pin  
• as Master Clear Reset with weak pull-up  
Note 1: Alternate pin function.  
2: PIC12F615/617/HV615 only.  
FIGURE 5-3:  
BLOCK DIAGRAM OF GP3  
VDD  
MCLRE  
Weak  
Data Bus  
MCLRE  
Reset  
Input  
Pin  
RD  
TRISIO  
VSS  
MCLRE  
VSS  
RD  
GPIO  
D
Q
Q
Q
Q
D
CK  
WR  
IOC  
Q1  
EN  
RD  
IOC  
D
(1)  
Q
S
EN  
Interrupt-on-  
Change  
From other  
GP<5:4, 2:0> pins  
R
RD GPIO  
Write ‘0’ to GBIF  
Note 1: Set has priority over Reset  
2010 Microchip Technology Inc.  
DS41302D-page 49  
PIC12F609/615/617/12HV609/615  
(1, 2)  
GP4/AN3(2)/CIN1-/T1G/  
P1B(1, 2)/OSC2/CLKOUT  
• PWM output, alternate pin  
5.2.4.5  
• a crystal/resonator connection  
• a clock output  
Figure 5-4 shows the diagram for this pin. The GP4 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
Note 1: Alternate pin function.  
2: PIC12F615/617/HV615 only.  
(2)  
• an analog input for the ADC  
• Comparator inverting input  
• a Timer1 gate (count enable)  
FIGURE 5-4:  
BLOCK DIAGRAM OF GP4  
(3)  
Analog  
Input Mode  
(1)  
CLK  
Modes  
Data Bus  
D
Q
Q
VDD  
WR  
WPU  
CK  
Weak  
GPPU  
RD  
WPU  
Oscillator  
Circuit  
OSC1  
VDD  
CLKOUT  
Enable  
FOSC/4  
1
0
D
Q
Q
I/O Pin  
WR  
CK  
GPIO  
CLKOUT  
Enable  
VSS  
D
Q
Q
INTOSC/  
(2)  
RC/EC  
WR  
TRISIO  
CK  
CLKOUT  
Enable  
RD  
TRISIO  
Analog  
Input Mode  
RD  
GPIO  
D
Q
Q
Q
D
D
CK  
WR  
IOC  
Q1  
EN  
RD  
IOC  
Q
(4)  
EN  
Q
S
Interrupt-on-  
Change  
From other  
GP<5, 3:0> pins  
R
RD GPIO  
To T1G  
To A/D Converter  
Write ‘0’ to GBIF  
(5)  
Note 1: CLK modes are XT, HS, LP, TMR1 LP and CLKOUT Enable.  
2: With CLKOUT option.  
3: Analog Input mode comes from ANSEL.  
4: Set has priority over Reset.  
5: PIC12F615/617/HV615 only.  
DS41302D-page 50  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
5.2.4.6  
GP5/T1CKI/P1A(1, 2)/OSC1/CLKIN  
Note 1: Alternate pin function.  
2: PIC12F615/617/HV615 only.  
Figure 5-5 shows the diagram for this pin. The GP5 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a Timer1 clock input  
(1, 2)  
• PWM output, alternate pin  
• a crystal/resonator connection  
• a clock input  
FIGURE 5-5:  
BLOCK DIAGRAM OF GP5  
INTOSC  
Mode  
(1)  
TMR1LPEN  
Data Bus  
D
VDD  
Q
Q
WR  
CK  
Weak  
WPU  
GPPU  
RD  
WPU  
Oscillator  
Circuit  
OSC2  
VDD  
D
Q
Q
WR  
GPIO  
CK  
I/O Pin  
D
Q
Q
WR  
TRISIO  
CK  
VSS  
INTOSC  
Mode  
RD  
TRISIO  
RD  
GPIO  
D
Q
Q
Q
D
D
CK  
WR  
IOC  
Q1  
EN  
RD  
IOC  
Q
(2)  
EN  
Q
S
Interrupt-on-  
Change  
From other  
GP<4:0> pins  
R
RD GPIO  
Write ‘0’ to GBIF  
To Timer1  
Note 1: Timer1 LP Oscillator enabled.  
2: Set has priority over Reset.  
2010 Microchip Technology Inc.  
DS41302D-page 51  
PIC12F609/615/617/12HV609/615  
TABLE 5-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH GPIO  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSEL  
CMCON0  
INTCON  
IOC  
CMON  
GIE  
ADCS2(1) ADCS1(1) ADCS0(1)  
ANS3  
ANS2(1)  
CMR  
ANS1  
ANS0  
CMCH  
GPIF  
-000 1111  
0000 -0-0  
0000 0000  
--00 0000  
-000 1111  
0000 -0-0  
0000 0000  
--00 0000  
COUT  
PEIE  
CMOE  
T0IE  
CMPOL  
INTE  
GPIE  
IOC3  
T0IF  
INTF  
IOC1  
IOC5  
IOC4  
IOC2  
IOC0  
OPTION_REG  
GPIO  
GPPU  
INTEDG  
T0CS  
GP5  
T0SE  
GP4  
PSA  
GP3  
PS2  
GP2  
PS1  
GP1  
PS0  
GP0  
1111 1111  
--xx xxxx  
--11 1111  
--11 1111  
0000 0000  
0-00 0000  
---0 --00  
1111 1111  
--u0 u000  
--11 1111  
--11 -111  
uuuu uuuu  
0-00 0000  
---0 --00  
TRISIO  
TRISIO5  
WPU5  
TRISIO4  
WPU4  
TRISIO3  
WPU3  
TRISIO2  
WPU2  
TRISIO1  
WPU1  
TRISIO0  
WPU0  
WPU  
T1CON  
T1GINV TMR1GE TICKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
CCP1CON(1)  
APFCON(1)  
P1M  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2 CCP1M1 CCP1M0  
P1BSEL P1ASEL  
T1GSEL  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by GPIO.  
Note 1:  
PIC12F615/617/HV615 only.  
DS41302D-page 52  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
6.1  
Timer0 Operation  
6.0  
TIMER0 MODULE  
When used as a timer, the Timer0 module can be used  
as either an 8-bit timer or an 8-bit counter.  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
• 8-bit timer/counter register (TMR0)  
6.1.1  
8-BIT TIMER MODE  
• 8-bit prescaler (shared with Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
When used as a timer, the Timer0 module will  
increment every instruction cycle (without prescaler).  
Timer mode is selected by clearing the T0CS bit of the  
OPTION register to ‘0’.  
Figure 6-1 is a block diagram of the Timer0 module.  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
Note:  
The value written to the TMR0 register can  
be adjusted, in order to account for the two  
instruction cycle delay when TMR0 is  
written.  
6.1.2  
8-BIT COUNTER MODE  
When used as a counter, the Timer0 module will  
increment on every rising or falling edge of the T0CKI  
pin. The incrementing edge is determined by the T0SE  
bit of the OPTION register. Counter mode is selected by  
setting the T0CS bit of the OPTION register to ‘1’.  
FIGURE 6-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
FOSC/4  
Data Bus  
0
1
8
1
Sync  
TMR0  
2 TCY  
T0CKI  
pin  
0
0
1
Set Flag bit T0IF  
on Overflow  
T0CS  
T0SE  
8-bit  
Prescaler  
PSA  
8
PSA  
1
PS<2:0>  
WDT  
Time-out  
Watchdog  
Timer  
0
WDTE  
PSA  
Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register.  
2: WDTE bit is in the Configuration Word register.  
2010 Microchip Technology Inc.  
DS41302D-page 53  
PIC12F609/615/617/12HV609/615  
When changing the prescaler assignment from the  
WDT to the Timer0 module, the following instruction  
sequence must be executed (see Example 6-2).  
6.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
A single software programmable prescaler is available  
for use with either Timer0 or the Watchdog Timer  
(WDT), but not both simultaneously. The prescaler  
assignment is controlled by the PSA bit of the OPTION  
register. To assign the prescaler to Timer0, the PSA bit  
must be cleared to a ‘0’.  
EXAMPLE 6-2:  
CHANGING PRESCALER  
(WDT TIMER0)  
CLRWDT  
;Clear WDT and  
;prescaler  
;
BANKSEL OPTION_REG  
There are 8 prescaler options for the Timer0 module  
ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION register.  
In order to have a 1:1 prescaler value for the Timer0  
module, the prescaler must be assigned to the WDT  
module.  
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11110000’ ;Mask TMR0 select and  
OPTION_REG,W ;prescaler bits  
b’00000011’ ;Set prescale to 1:16  
OPTION_REG  
;
6.1.4  
TIMER0 INTERRUPT  
The prescaler is not readable or writable. When  
assigned to the Timer0 module, all instructions writing to  
the TMR0 register will clear the prescaler.  
Timer0 will generate an interrupt when the TMR0  
register overflows from FFh to 00h. The T0IF interrupt  
flag bit of the INTCON register is set every time the  
TMR0 register overflows, regardless of whether or not  
the Timer0 interrupt is enabled. The T0IF bit must be  
cleared in software. The Timer0 interrupt enable is the  
T0IE bit of the INTCON register.  
When the prescaler is assigned to WDT, a CLRWDT  
instruction will clear the prescaler along with the WDT.  
6.1.3.1  
Switching Prescaler Between  
Timer0 and WDT Modules  
Note:  
The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
As a result of having the prescaler assigned to either  
Timer0 or the WDT, it is possible to generate an  
unintended device Reset when switching prescaler  
values. When changing the prescaler assignment from  
Timer0 to the WDT module, the instruction sequence  
shown in Example 6-1, must be executed.  
6.1.5  
USING TIMER0 WITH AN  
EXTERNAL CLOCK  
When Timer0 is in Counter mode, the synchronization  
of the T0CKI input and the Timer0 register is  
accomplished by sampling the prescaler output on the  
Q2 and Q4 cycles of the internal phase clocks.  
Therefore, the high and low periods of the external  
clock source must meet the timing requirements as  
shown in Section 16.0 “Electrical Specifications”.  
EXAMPLE 6-1:  
CHANGING PRESCALER  
(TIMER0 WDT)  
BANKSEL TMR0  
CLRWDT  
;
;Clear WDT  
;Clear TMR0 and  
;prescaler  
CLRF  
TMR0  
BANKSEL OPTION_REG  
;
BSF  
OPTION_REG,PSA ;Select WDT  
CLRWDT  
;
;
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11111000’  
OPTION_REG,W  
b’00000101’  
OPTION_REG  
;Mask prescaler  
;bits  
;Set WDT prescaler  
;to 1:32  
DS41302D-page 54  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
REGISTER 6-1:  
OPTION_REG: OPTION REGISTER  
R/W-1  
GPPU  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
GPPU: GPIO Pull-up Enable bit  
1= GPIO pull-ups are disabled  
0= GPIO pull-ups are enabled by individual PORT latch values in WPU register  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
BIT VALUE TMR0 RATE WDT RATE  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
TABLE 6-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0  
Timer0 Module Register  
xxxx xxxx uuuu uuuu  
0000 000x 0000 000x  
1111 1111 1111 1111  
INTCON  
OPTION_REG  
TRISIO  
GIE  
PEIE  
T0IE  
INTE  
T0SE  
GPIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
GPIF  
PS0  
GPPU INTEDG  
T0CS  
TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111  
Legend:  
– = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Timer0  
module.  
2010 Microchip Technology Inc.  
DS41302D-page 55  
PIC12F609/615/617/12HV609/615  
NOTES:  
DS41302D-page 56  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
7.2  
Clock Source Selection  
7.0  
TIMER1 MODULE WITH GATE  
CONTROL  
The TMR1CS bit of the T1CON register is used to select  
the clock source. When TMR1CS = 0, the clock source  
is FOSC/4. When TMR1CS = 1, the clock source is  
supplied externally.  
The Timer1 module is a 16-bit timer/counter with the  
following features:  
• 16-bit timer/counter register pair (TMR1H:TMR1L)  
• Programmable internal or external clock source  
• 3-bit prescaler  
Clock Source  
TMR1CS  
T1ACS  
• Optional LP oscillator  
FOSC/4  
FOSC  
0
0
1
0
1
x
• Synchronous or asynchronous operation  
• Timer1 gate (count enable) via comparator or  
T1G pin  
T1CKI pin  
• Interrupt on overflow  
• Wake-up on overflow (external clock,  
Asynchronous mode only)  
• Time base for the Capture/Compare function  
• Special Event Trigger (with ECCP)  
• Comparator output synchronization to Timer1  
clock  
Figure 7-1 is a block diagram of the Timer1 module.  
7.1  
Timer1 Operation  
The Timer1 module is a 16-bit incrementing counter  
which is accessed through the TMR1H:TMR1L register  
pair. Writes to TMR1H or TMR1L directly update the  
counter.  
When used with an internal clock source, the module is  
a timer. When used with an external clock source, the  
module can be used as either a timer or counter.  
2010 Microchip Technology Inc.  
DS41302D-page 57  
PIC12F609/615/617/12HV609/615  
FIGURE 7-1:  
TIMER1 BLOCK DIAGRAM  
TMR1GE  
T1GINV  
TMR1ON  
Set flag bit  
TMR1IF on  
Overflow  
To Comparator Module  
Timer1 Clock  
(2)  
TMR1  
TMR1H  
Synchronized  
clock input  
0
EN  
TMR1L  
1
Oscillator  
(1)  
T1SYNC  
OSC1/T1CKI  
1
(3)  
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
0
OSC2/T1G  
2
T1CKPS<1:0>  
TMR1CS  
0
1
INTOSC  
Without CLKOUT  
1
0
FOSC  
1
0
T1OSCEN  
FOSC/4  
Internal  
Clock  
COUT  
(2)  
T1GSEL  
T1GSS  
T1ACS  
(4, 5)  
GP3/T1G  
Note 1: ST Buffer is low power type when using LP oscillator, or high speed type when using T1CKI.  
2: Timer1 register increments on rising edge.  
3: Synchronize does not operate while in Sleep.  
4: Alternate pin function.  
5: PIC12F615/617/HV615 only.  
DS41302D-page 58  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
7.2.1  
INTERNAL CLOCK SOURCE  
7.5  
Timer1 Operation in  
Asynchronous Counter Mode  
When the internal clock source is selected, the  
TMR1H:TMR1L register pair will increment on multiples  
of TCY as determined by the Timer1 prescaler.  
If control bit T1SYNC of the T1CON register is set, the  
external clock input is not synchronized. The timer  
continues to increment asynchronous to the internal  
phase clocks. The timer will continue to run during  
Sleep and can generate an interrupt on overflow,  
which will wake-up the processor. However, special  
precautions in software are needed to read/write the  
timer (see Section 7.5.1 “Reading and Writing  
Timer1 in Asynchronous Counter Mode”).  
7.2.2  
EXTERNAL CLOCK SOURCE  
When the external clock source is selected, the Timer1  
module may work as a timer or a counter.  
When counting, Timer1 is incremented on the rising  
edge of the external clock input T1CKI. In addition, the  
Counter mode clock can be synchronized to the  
microcontroller system clock or run asynchronously.  
Note:  
When switching from synchronous to  
asynchronous operation, it is possible to  
skip an increment. When switching from  
asynchronous to synchronous operation,  
it is possible to produce a single spurious  
increment.  
If an external clock oscillator is needed (and the  
microcontroller is using the INTOSC without CLKOUT),  
Timer1 can use the LP oscillator as a clock source.  
In Counter mode, a falling edge must be registered by  
the counter prior to the first incrementing rising edge  
after one or more of the following conditions:  
Note:  
In asynchronous counter mode or when  
using the internal oscillator and T1ACS=1,  
Timer1 can not be used as a time base for  
the capture or compare modes of the  
ECCP module (for PIC12F615/617/  
HV615 only).  
• Timer1 is enabled after POR or BOR Reset  
• A write to TMR1H or TMR1L  
• T1CKI is high when Timer1 is disabled and when  
Timer1 is re-enabled T1CKI is low. See Figure 7-2.  
7.3  
Timer1 Prescaler  
7.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
Timer1 has four prescaler options allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits of the  
T1CON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMR1H or TMR1L.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself poses certain problems, since the  
timer may overflow between the reads.  
7.4  
Timer1 Oscillator  
A low-power 32.768 kHz crystal oscillator is built-in  
between pins OSC1 (input) and OSC2 (output). The  
oscillator is enabled by setting the T1OSCEN control  
bit of the T1CON register. The oscillator will continue to  
run during Sleep.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMR1H:TTMR1L register  
pair.  
The Timer1 oscillator is shared with the system LP  
oscillator. Thus, Timer1 can use this mode only when  
the primary system clock is derived from the internal  
oscillator or when in LP oscillator mode. The user must  
provide a software time delay to ensure proper  
oscillator start-up.  
TRISIO5 and TRISIO4 bits are set when the Timer1  
oscillator is enabled. GP5 and GP4 bits read as ‘0’ and  
TRISIO5 and TRISIO4 bits read as ‘1’.  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to enabling Timer1.  
2010 Microchip Technology Inc.  
DS41302D-page 59  
PIC12F609/615/617/12HV609/615  
7.6  
Timer1 Gate  
7.9  
ECCP Capture/Compare Time  
Base (PIC12F615/617/HV615 only)  
Timer1 gate source is software configurable to be the  
T1G pin (or the alternate T1G pin) or the output of the  
Comparator. This allows the device to directly time  
external events using T1G or analog events using the  
Comparator. See the CMCON1 Register (Register 9-2)  
for selecting the Timer1 gate source. This feature can  
simplify the software for a Delta-Sigma A/D converter  
and many other applications. For more information on  
Delta-Sigma A/D converters, see the Microchip web site  
(www.microchip.com).  
The ECCP module uses the TMR1H:TMR1L register  
pair as the time base when operating in Capture or  
Compare mode.  
In Capture mode, the value in the TMR1H:TMR1L  
register pair is copied into the CCPR1H:CCPR1L  
register pair on a configured event.  
In Compare mode, an event is triggered when the value  
CCPR1H:CCPR1L register pair matches the value in  
the TMR1H:TMR1L register pair. This event can be a  
Special Event Trigger.  
Note:  
TMR1GE bit of the T1CON register must  
be set to use either T1G or COUT as the  
Timer1 gate source. See Register 9-2 for  
more information on selecting the Timer1  
gate source.  
For more information, see Section 11.0 “Enhanced  
Capture/Compare/PWM (With Auto-Shutdown and  
Dead Band) Module (PIC12F615/617/HV615 only)”.  
Timer1 gate can be inverted using the T1GINV bit of  
the T1CON register, whether it originates from the T1G  
pin or the Comparator output. This configures Timer1  
to measure either the active-high or active-low time  
between events.  
7.7  
Timer1 Interrupt  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit of the PIR1 register is  
set. To enable the interrupt on rollover, you must set  
these bits:  
• Timer1 interrupt enable bit of the PIE1 register  
• PEIE bit of the INTCON register  
• GIE bit of the INTCON register  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
Note:  
The TMR1H:TTMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
7.8  
Timer1 Operation During Sleep  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
• TMR1ON bit of the T1CON register must be set  
• TMR1IE bit of the PIE1 register must be set  
• PEIE bit of the INTCON register must be set  
The device will wake-up on an overflow and execute  
the next instruction. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine (0004h).  
DS41302D-page 60  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
For more information, see Section 11.0 “Enhanced  
Capture/Compare/PWM (With Auto-Shutdown and  
Dead Band) Module (PIC12F615/617/HV615 only)”.  
7.10 ECCP Special Event Trigger  
(PIC12F615/617/HV615 only)  
If a ECCP is configured to trigger a special event, the  
trigger will clear the TMR1H:TMR1L register pair. This  
special event does not cause a Timer1 interrupt. The  
ECCP module may still be configured to generate a  
ECCP interrupt.  
7.11 Comparator Synchronization  
The same clock used to increment Timer1 can also be  
used to synchronize the comparator output. This  
feature is enabled in the Comparator module.  
In this mode of operation, the CCPR1H:CCPR1L  
register pair effectively becomes the period register for  
Timer1.  
When using the comparator for Timer1 gate, the  
comparator output should be synchronized to Timer1.  
This ensures Timer1 does not miss an increment if the  
comparator changes.  
Timer1 should be synchronized to the FOSC to utilize  
the Special Event Trigger. Asynchronous operation of  
Timer1 can cause a Special Event Trigger to be  
missed.  
For more information, see Section 9.0 “Comparator  
Module”.  
In the event that a write to TMR1H or TMR1L coincides  
with a Special Event Trigger from the ECCP, the write  
will take precedence.  
FIGURE 7-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of  
the clock.  
2010 Microchip Technology Inc.  
DS41302D-page 61  
PIC12F609/615/617/12HV609/615  
7.12 Timer1 Control Register  
The Timer1 Control register (T1CON), shown in  
Register 7-1, is used to control Timer1 and select the  
various features of the Timer1 module.  
REGISTER 7-1:  
T1CON: TIMER 1 CONTROL REGISTER  
R/W-0  
T1GINV(1)  
R/W-0  
TMR1GE(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
T1GINV: Timer1 Gate Invert bit(1)  
1= Timer1 gate is active-high (Timer1 counts when gate is high)  
0= Timer1 gate is active-low (Timer1 counts when gate is low)  
TMR1GE: Timer1 Gate Enable bit(2)  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 is on if Timer1 gate is active  
0= Timer1 is on  
bit 5-4  
bit 3  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale Value  
10= 1:4 Prescale Value  
01= 1:2 Prescale Value  
00= 1:1 Prescale Value  
T1OSCEN: LP Oscillator Enable Control bit  
If INTOSC without CLKOUT oscillator is active:  
1= LP oscillator is enabled for Timer1 clock  
0= LP oscillator is off  
For all other system clock modes:  
This bit is ignored. LP oscillator is disabled.  
bit 2  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from T1CKI pin (on the rising edge)  
0= Internal clock (FOSC/4) or system clock (FOSC)(3)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Note 1: T1GINV bit inverts the Timer1 gate logic, regardless of source.  
2: TMR1GE bit must be set to use either T1G pin or COUT, as selected by the T1GSS bit of the CMCON1  
register, as a Timer1 gate source.  
3: See T1ACS bit in CMCON1 register.  
DS41302D-page 62  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 7-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
APFCON(1)  
CMOE  
T1GSEL  
CMPOL  
T1ACS  
INTE  
CMR  
P1BSEL  
P1ASEL  
CMCH  
---0 --00  
0000 -0-0  
---0 0-10  
0000 000x  
-00- 0-00  
-00- 0-00  
xxxx xxxx  
xxxx xxxx  
---0 --00  
0000 -0-0  
---0 0-10  
0000 000x  
-00- 0-00  
-00- 0-00  
uuuu uuuu  
uuuu uuuu  
CMCON0  
CMCON1  
INTCON  
PIE1  
CMON  
COUT  
CMHYS  
GPIE  
CMIE  
CMIF  
T1GSS  
INTF  
TMR2IE(1)  
TMR2IF(1)  
CMSYNC  
GPIF  
GIE  
PEIE  
ADIE(1)  
ADIF(1)  
T0IE  
T0IF  
CCP1IE(1)  
CCP1IF(1)  
TMR1IE  
TMR1IF  
PIR1  
TMR1H  
TMR1L  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
T1CON  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS  
TMR1ON  
0000 0000  
uuuu uuuu  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
Note 1: PIC12F615/617/HV615 only.  
2010 Microchip Technology Inc.  
DS41302D-page 63  
PIC12F609/615/617/12HV609/615  
NOTES:  
DS41302D-page 64  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
The TMR2 and PR2 registers are both fully readable  
and writable. On any Reset, the TMR2 register is set to  
00h and the PR2 register is set to FFh.  
8.0  
TIMER2 MODULE  
(PIC12F615/617/HV615 ONLY)  
The Timer2 module is an 8-bit timer with the following  
features:  
Timer2 is turned on by setting the TMR2ON bit in the  
T2CON register to a ‘1’. Timer2 is turned off by clearing  
the TMR2ON bit to a ‘0’.  
• 8-bit timer register (TMR2)  
• 8-bit period register (PR2)  
The Timer2 prescaler is controlled by the T2CKPS bits  
in the T2CON register. The Timer2 postscaler is  
controlled by the TOUTPS bits in the T2CON register.  
The prescaler and postscaler counters are cleared  
when:  
• Interrupt on TMR2 match with PR2  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
See Figure 8-1 for a block diagram of Timer2.  
• A write to TMR2 occurs.  
• A write to T2CON occurs.  
8.1  
Timer2 Operation  
• Any device Reset occurs (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset, or Brown-out  
Reset).  
The clock input to the Timer2 module is the system  
instruction clock (FOSC/4). The clock is fed into the  
Timer2 prescaler, which has prescale options of 1:1,  
1:4 or 1:16. The output of the prescaler is then used to  
increment the TMR2 register.  
Note:  
TMR2 is not cleared when T2CON is  
written.  
The values of TMR2 and PR2 are constantly compared  
to determine when they match. TMR2 will increment  
from 00h until it matches the value in PR2. When a  
match occurs, two things happen:  
• TMR2 is reset to 00h on the next increment cycle.  
• The Timer2 postscaler is incremented  
The match output of the Timer2/PR2 comparator is  
then fed into the Timer2 postscaler. The postscaler has  
postscale options of 1:1 to 1:16 inclusive. The output of  
the Timer2 postscaler is used to set the TMR2IF  
interrupt flag bit in the PIR1 register.  
FIGURE 8-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
bit TMR2IF  
Output  
TMR2  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS<1:0>  
4
TOUTPS<3:0>  
2010 Microchip Technology Inc.  
DS41302D-page 65  
PIC12F609/615/617/12HV609/615  
REGISTER 8-1:  
T2CON: TIMER 2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3  
TOUTPS2  
TOUTPS1  
TOUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
TOUTPS<3:0>: Timer2 Output Postscaler Select bits  
0000=1:1 Postscaler  
0001=1:2 Postscaler  
0010=1:3 Postscaler  
0011=1:4 Postscaler  
0100=1:5 Postscaler  
0101=1:6 Postscaler  
0110=1:7 Postscaler  
0111=1:8 Postscaler  
1000=1:9 Postscaler  
1001=1:10 Postscaler  
1010=1:11 Postscaler  
1011=1:12 Postscaler  
1100=1:13 Postscaler  
1101=1:14 Postscaler  
1110=1:15 Postscaler  
1111=1:16 Postscaler  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00=Prescaler is 1  
01=Prescaler is 4  
1x=Prescaler is 16  
TABLE 8-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
T0IE  
INTE  
GPIE  
CMIE  
CMIF  
T0IF  
INTF  
GPIF  
0000 0000  
-00- 0-00  
-00- 0-00  
1111 1111  
0000 0000  
-000 0000  
0000 0000  
-00- 0-00  
-00- 0-00  
1111 1111  
0000 0000  
-000 0000  
ADIE(1)  
ADIF(1)  
CCP1IE(1)  
CCP1IF(1)  
TMR2IE(1)  
TMR2IF(1)  
TMR1IE  
TMR1IF  
PIR1  
PR2(1)  
TMR2(1)  
T2CON(1)  
Timer2 Module Period Register  
Holding Register for the 8-bit TMR2 Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as ‘0’. Shaded cells are not used for Timer2 module.  
Note 1:  
For PIC12F615/617/HV615 only.  
DS41302D-page 66  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
than the analog voltage at VIN-, the output of the  
9.0  
COMPARATOR MODULE  
comparator is a digital low level. When the analog  
voltage at VIN+ is greater than the analog voltage at  
VIN-, the output of the comparator is a digital high level.  
The comparator can be used to interface analog  
circuits to a digital circuit by comparing two analog  
voltages and providing a digital indication of their  
relative magnitudes. The comparator is a very useful  
mixed signal building block because it provides analog  
functionality independent of the program execution.  
The Analog Comparator module includes the following  
features:  
FIGURE 9-1:SINGLE COMPARATOR  
VIN+  
VIN-  
+
Output  
• Programmable input section  
• Comparator output is available internally/externally  
• Programmable output polarity  
• Interrupt-on-change  
VIN-  
• Wake-up from Sleep  
VIN+  
• PWM shutdown  
• Timer1 gate (count enable)  
• Output synchronization to Timer1 clock input  
• Programmable voltage reference  
• User-enable Comparator Hysteresis  
Output  
9.1  
Comparator Overview  
Note:  
The black areas of the output of the  
comparator represents the uncertainty  
due to input offsets and response time.  
The comparator is shown in Figure 9-1 along with the  
relationship between the analog input levels and the  
digital output. When the analog voltage at VIN+ is less  
FIGURE 9-2:  
COMPARATOR SIMPLIFIED BLOCK DIAGRAM  
CMPOL  
To  
D
Q
Data Bus  
Q1  
EN  
RD_CMCON0  
CMCH  
Set CMIF  
D
Q
Q3*RD_CMCON0  
Reset  
EN  
CL  
(1)  
CMON  
GP1/CIN0-  
0
CMVIN-  
CMVIN+  
MUX  
To PWM Auto-Shutdown  
CMOE  
GP4/CIN1-  
1
CMSYNC  
CMPOL  
0
MUX  
(4)  
COUT  
CMR  
D
Q
1
GP0/CIN+  
0
MUX  
1
From Timer1  
Clock  
FixedRef  
0
SYNCCMOUT  
To Timer1 Gate  
CMVREF  
MUX  
CVREF  
1
CMVREN  
Note 1: When CMON = 0, the comparator will produce a ‘0’ output to the XOR Gate.  
2: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
3: Q1 is held high during Sleep mode.  
4: Output shown for reference only. See I/O port pin diagram for more details.  
2010 Microchip Technology Inc.  
DS41302D-page 67  
PIC12F609/615/617/12HV609/615  
9.2  
Analog Input Connection  
Considerations  
Note 1: When reading a GPIO register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert as an analog input, according to  
the input specification.  
A simplified circuit for an analog input is shown in  
Figure 9-3. Since the analog input pins share their  
connection with a digital input, they have reverse  
biased ESD protection diodes to VDD and VSS. The  
analog input, therefore, must be between VSS and VDD.  
If the input voltage deviates from this range by more  
than 0.6V in either direction, one of the diodes is  
forward biased and a latch-up may occur.  
2: Analog levels on any pin defined as a  
digital input, may cause the input buffer to  
consume more current than is specified.  
A
maximum source impedance of 10 kis  
recommended for the analog sources. Also, any  
external component connected to an analog input pin,  
such as a capacitor or a Zener diode, should have very  
little leakage current to minimize inaccuracies  
introduced.  
FIGURE 9-3:  
ANALOG INPUT MODEL  
VDD  
VT 0.6V  
RIC  
RS < 10K  
To Comparator  
AIN  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT 0.6V  
VSS  
Legend: CPIN  
= Input Capacitance  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
VT  
= Threshold Voltage  
DS41302D-page 68  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
9.3.5  
COMPARATOR OUTPUT POLARITY  
9.3  
Comparator Control  
Inverting the output of the comparator is functionally  
equivalent to swapping the comparator inputs. The  
polarity of the comparator output can be inverted by  
setting the CMPOL bit of the CMCON0 register. Clear-  
ing CMPOL results in a non-inverted output. A com-  
plete table showing the output state versus input  
conditions and the polarity bit is shown in Table 9-1.  
The comparator has two control and Configuration  
registers: CMCON0 and CMCON1. The CMCON1  
register is used for controlling the interaction with  
Timer1 and simultaneously reading the comparator  
output.  
The CMCON0 register (Register 9-1) contain the  
control and Status bits for the following:  
• Enable  
TABLE 9-1:  
OUTPUT STATE VS. INPUT  
CONDITIONS  
• Input selection  
• Reference selection  
• Output selection  
• Output polarity  
Input Conditions  
CMPOL  
COUT  
CMVIN- > CMVIN+  
CMVIN- < CMVIN+  
CMVIN- > CMVIN+  
CMVIN- < CMVIN+  
0
0
1
1
0
1
1
0
9.3.1  
COMPARATOR ENABLE  
Setting the CMON bit of the CMCON0 register enables  
the comparator for operation. Clearing the CMON bit  
disables the comparator for minimum current  
consumption.  
Note:  
COUT refers to both the register bit and  
output pin.  
9.4  
Comparator Response Time  
9.3.2  
COMPARATOR INPUT SELECTION  
The comparator output is indeterminate for a period of  
time after the change of an input source or the selection  
of a new reference voltage. This period is referred to as  
the response time. The response time of the compara-  
tor differs from the settling time of the voltage refer-  
ence. Therefore, both of these times must be  
considered when determining the total response time  
to a comparator input change. See Section 16.0  
“Electrical Specifications” for more details.  
The CMCH bit of the CMCON0 register directs one of  
four analog input pins to the comparator inverting input.  
Note:  
To use CIN+ and CIN- pins as analog  
inputs, the appropriate bits must be set in  
the ANSEL register and the corresponding  
TRIS bits must also be set to disable the  
output drivers.  
9.3.3  
COMPARATOR REFERENCE  
SELECTION  
Setting the CMR bit of the CMxCON0 register directs  
an internal voltage reference or an analog input pin to  
the non-inverting input of the comparator. See  
Section 9.10 “Comparator Voltage Reference” for  
more information on the internal voltage reference  
module.  
9.3.4  
COMPARATOR OUTPUT  
SELECTION  
The output of the comparator can be monitored by  
reading either the COUT bit of the CMCON0 register. In  
order to make the output available for an external  
connection, the following conditions must be true:  
• CMOE bit of the CMxCON0 register must be set  
• Corresponding TRIS bit must be cleared  
• CMON bit of the CMCON0 register must be set.  
Note 1: The CMOE bit overrides the PORT data  
latch. Setting the CMON has no impact  
on the port override.  
2: The internal output of the comparator is  
latched with each instruction cycle.  
Unless otherwise specified, external  
outputs are not latched.  
2010 Microchip Technology Inc.  
DS41302D-page 69  
PIC12F609/615/617/12HV609/615  
FIGURE 9-4:  
COMPARATOR  
9.5  
Comparator Interrupt Operation  
INTERRUPT TIMING W/O  
CMCON0 READ  
The comparator interrupt flag can be set whenever  
there is a change in the output value of the comparator.  
Changes are recognized by means of a mismatch  
circuit which consists of two latches and an exclusive-  
or gate (see Figure 9-4 and Figure 9-5). One latch is  
updated with the comparator output level when the  
CMCON0 register is read. This latch retains the value  
until the next read of the CMCON0 register or the  
occurrence of a Reset. The other latch of the mismatch  
circuit is updated on every Q1 system clock. A  
mismatch condition will occur when a comparator  
output change is clocked through the second latch on  
the Q1 clock cycle. At this point the two mismatch  
latches have opposite output levels which is detected  
by the exclusive-or gate and fed to the interrupt  
circuitry. The mismatch condition persists until either  
the CMCON0 register is read or the comparator output  
returns to the previous state.  
Q1  
Q3  
CIN+  
TRT  
COUT  
Set CMIF (edge)  
CMIF  
reset by software  
FIGURE 9-5:  
COMPARATOR  
INTERRUPT TIMING WITH  
CMCON0 READ  
Q1  
Q3  
CIN+  
TRT  
Note 1: A write operation to the CMCON0 register  
COUT  
will also clear the mismatch condition  
Set CMIF (edge)  
CMIF  
because all writes include  
a
read  
operation at the beginning of the write  
cycle.  
cleared by CMCON0 read  
reset by software  
2: Comparator interrupts will operate  
correctly regardless of the state of  
CMOE.  
Note 1: If a change in the CMCON0 register  
(COUT) should occur when a read  
operation is being executed (start of the  
Q2 cycle), then the CMIF of the PIR1  
register interrupt flag may not get set.  
The comparator interrupt is set by the mismatch edge  
and not the mismatch level. This means that the  
interrupt flag can be reset without the additional step of  
reading or writing the CMCON0 register to clear the  
mismatch registers. When the mismatch registers are  
cleared, an interrupt will occur upon the comparator’s  
return to the previous state, otherwise no interrupt will  
be generated.  
2: When a comparator is first enabled, bias  
circuitry in the comparator module may  
cause an invalid output from the  
comparator until the bias circuitry is  
stable. Allow about 1 s for bias settling  
then clear the mismatch condition and  
Software will need to maintain information about the  
status of the comparator output, as read from the  
CMCON1 register, to determine the actual change that  
has occurred.  
interrupt  
flags  
before  
enabling  
comparator interrupts.  
The CMIF bit of the PIR1 register is the Comparator  
Interrupt flag. This bit must be reset in software by  
clearing it to ‘0’. Since it is also possible to write a '1' to  
this register, an interrupt can be generated.  
The CMIE bit of the PIE1 register and the PEIE and GIE  
bits of the INTCON register must all be set to enable  
comparator interrupts. If any of these bits are cleared,  
the interrupt is not enabled, although the CMIF bit of  
the PIR1 register will still be set if an interrupt condition  
occurs.  
DS41302D-page 70  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
9.6  
Operation During Sleep  
The comparator, if enabled before entering Sleep  
mode, remains active during Sleep. The additional  
current consumed by the comparator is shown  
separately  
in  
the  
Section 16.0  
“Electrical  
Specifications”. If the comparator is not used to wake  
the device, power consumption can be minimized while  
in Sleep mode by turning off the comparator. The  
comparator is turned off by clearing the CMON bit of the  
CMCON0 register.  
A change to the comparator output can wake-up the  
device from Sleep. To enable the comparator to wake  
the device from Sleep, the CMIE bit of the PIE1 register  
and the PEIE bit of the INTCON register must be set.  
The instruction following the SLEEPinstruction always  
executes following a wake from Sleep. If the GIE bit of  
the INTCON register is also set, the device will then  
execute the Interrupt Service Routine.  
9.7  
Effects of a Reset  
A device Reset forces the CMCON1 register to its  
Reset state. This sets the comparator and the voltage  
reference to the OFF state.  
2010 Microchip Technology Inc.  
DS41302D-page 71  
PIC12F609/615/617/12HV609/615  
REGISTER 9-1:  
CMCON0: COMPARATOR CONTROL REGISTER 0  
R/W-0  
CMON  
bit 7  
R-0  
R/W-0  
CMOE  
R/W-0  
U-0  
R/W-0  
CMR  
U-0  
R/W-0  
CMCH  
COUT  
CMPOL  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
CMON: Comparator Enable bit  
1= Comparator is enabled  
0= Comparator is disabled  
COUT: Comparator Output bit  
If C1POL = 1(inverted polarity):  
COUT = 0when CMVIN+ > CMVIN-  
COUT = 1when CMVIN+ < CMVIN-  
If C1POL = 0(non-inverted polarity):  
COUT = 1when CMVIN+ > CMVIN-  
COUT = 0when CMVIN+ < CMVIN-  
bit 5  
bit 4  
CMOE: Comparator Output Enable bit  
1= COUT is present on the COUT pin(1)  
0= COUT is internal only  
CMPOL: Comparator Output Polarity Select bit  
1= COUT logic is inverted  
0= COUT logic is not inverted  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CMR: Comparator Reference Select bit (non-inverting input)  
1= CMVIN+ connects to CMVREF output  
0= CMVIN+ connects to CIN+ pin  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
CMCH: Comparator C1 Channel Select bit  
0= CMVIN- pin of the Comparator connects to CIN0-  
1= CMVIN- pin of the Comparator connects to CIN1-  
Note 1: Comparator output requires the following three conditions: CMOE = 1, CMON = 1and corresponding port  
TRIS bit = 0.  
DS41302D-page 72  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
9.8  
Comparator Gating Timer1  
9.9  
Synchronizing Comparator Output  
to Timer1  
This feature can be used to time the duration or interval  
of analog events. Clearing the T1GSS bit of the  
CMCON1 register will enable Timer1 to increment  
based on the output of the comparator. This requires  
that Timer1 is on and gating is enabled. See  
Section 7.0 “Timer1 Module with Gate Control” for  
details.  
The comparator output can be synchronized with  
Timer1 by setting the CMSYNC bit of the CMCON1  
register. When enabled, the comparator output is  
latched on the falling edge of the Timer1 clock source.  
If a prescaler is used with Timer1, the comparator  
output is latched after the prescaling function. To  
prevent a race condition, the comparator output is  
latched on the falling edge of the Timer1 clock source  
and Timer1 increments on the rising edge of its clock  
source. See the Comparator Block Diagram (Figure 9-  
2) and the Timer1 Block Diagram (Figure 7-1) for more  
information.  
It is recommended to synchronize the comparator with  
Timer1 by setting the CMSYNC bit when the  
comparator is used as the Timer1 gate source. This  
ensures Timer1 does not miss an increment if the  
comparator changes during an increment.  
REGISTER 9-2:  
CMCON1: COMPARATOR CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
T1ACS  
CMHYS  
T1GSS  
CMSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
T1ACS: Timer1 Alternate Clock Select bit  
1= Timer 1 Clock Source is System Clock (FOSC)  
0= Timer 1 Clock Source is Instruction Clock (FOSC\4)  
bit 3  
CMHYS: Comparator Hysteresis Select bit  
1 = Comparator Hysteresis enabled  
0 = Comparator Hysteresis disabled  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
T1GSS: Timer1 Gate Source Select bit(1)  
1= Timer 1 Gate Source is T1G pin (pin should be configured as digital input)  
0= Timer 1 Gate Source is comparator output  
bit 0  
CMSYNC: Comparator Output Synchronization bit(2)  
1= Output is synchronized with falling edge of Timer1 clock  
0= Output is asynchronous  
Note 1: Refer to Section 7.6 “Timer1 Gate”.  
2: Refer to Figure 9-2.  
2010 Microchip Technology Inc.  
DS41302D-page 73  
PIC12F609/615/617/12HV609/615  
9.10.3  
OUTPUT CLAMPED TO VSS  
9.10 Comparator Voltage Reference  
The CVREF output voltage can be set to Vss with no  
power consumption by configuring VRCON as follows:  
The Comparator Voltage Reference module provides  
an internally generated voltage reference for the  
comparators. The following features are available:  
• FVREN = 0  
• Independent from Comparator operation  
• 16-level voltage range  
This allows the comparator to detect a zero-crossing  
while not consuming additional CVREF module current.  
• Output clamped to VSS  
9.10.4  
OUTPUT RATIOMETRIC TO VDD  
• Ratiometric with VDD  
The comparator voltage reference is VDD derived and  
therefore, the CVREF output changes with fluctuations in  
VDD. The tested absolute accuracy of the Comparator  
Voltage Reference can be found in Section 16.0  
“Electrical Specifications”.  
• Fixed Reference (0.6)  
The VRCON register (Register 9-3) controls the  
Voltage Reference module shown in Register 9-6.  
9.10.1  
INDEPENDENT OPERATION  
9.10.5  
FIXED VOLTAGE REFERENCE  
The comparator voltage reference is independent of  
the comparator configuration. Setting the VREN bit of  
the VRCON register will enable the voltage reference.  
The fixed voltage reference is independent of VDD, with  
a nominal output voltage of 0.6V. This reference can be  
enabled by setting the FVREN bit of the VRCON  
register to ‘1’. This reference is always enabled when  
the HFINTOSC oscillator is active.  
9.10.2  
OUTPUT VOLTAGE SELECTION  
The CVREF voltage reference has 2 ranges with 16  
voltage levels in each range. Range selection is  
controlled by the VRR bit of the VRCON register. The  
16 levels are set with the VR<3:0> bits of the VRCON  
register.  
9.10.6  
FIXED VOLTAGE REFERENCE  
STABILIZATION PERIOD  
When the Fixed Voltage Reference module is enabled,  
it will require some time for the reference and its  
amplifier circuits to stabilize. The user program must  
include a small delay routine to allow the module to  
settle. See Section 16.0 “Electrical Specifications”  
for the minimum delay requirement.  
The CVREF output voltage is determined by the  
following equations:  
EQUATION 9-1:  
CVREF OUTPUT VOLTAGE  
VRR = 1 (low range):  
CVREF = (VR<3:0>/24) VDD  
VRR = 0 (high range):  
CVREF = (VDD/4) +  
9.10.7  
VOLTAGE REFERENCE  
SELECTION  
(VR<3:0> VDD/32)  
Multiplexers on the output of the Voltage Reference  
module enable selection of either the CVREF or fixed  
voltage reference for use by the comparators.  
The full range of VSS to VDD cannot be realized due to  
the construction of the module. See Figure 9-6.  
Setting the CMVREN bit of the VRCON register  
enables current to flow in the CVREF voltage divider  
and selects the CVREF voltage for use by the Compar-  
ator. Clearing the CMVREN bit selects the fixed voltage  
for use by the Comparator.  
When the CMVREN bit is cleared, current flow in the  
CVREF voltage divider is disabled minimizing the power  
drain of the voltage reference peripheral.  
DS41302D-page 74  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 9-6:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
16 Stages  
8R  
R
R
R
R
VDD  
VRR  
8R  
Analog  
MUX  
CMVREN  
15  
0
(1)  
CVREF  
To Comparators  
and ADC Module  
(1)  
VR<3:0>  
4
FVREN  
Sleep  
HFINTOSC enable  
EN  
FixedRef  
0.6V  
Fixed Voltage  
Reference  
To Comparators  
and ADC Module  
Note 1: Care should be taken to ensure CVREF remains within the comparator common mode input range. See  
Section 16.0 “Electrical Specifications” for more detail.  
2010 Microchip Technology Inc.  
DS41302D-page 75  
PIC12F609/615/617/12HV609/615  
REGISTER 9-3:  
VRCON: VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
CMVREN  
bit 7  
U-0  
R/W-0  
VRR  
R/W-0  
R/W-0  
VR3  
R/W-0  
VR2  
R/W-0  
VR1  
R/W-0  
VR0  
FVREN  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CMVREN: Comparator Voltage Reference Enable bit(1, 2)  
1= CVREF circuit powered on and routed to CVREF input of the Comparator  
0= 0.6 Volt constant reference routed to CVREF input of the Comparator  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
VRR: CVREF Range Selection bit  
1= Low range  
0= High range  
bit 4  
FVREN: 0.6V Reference Enable bit(2)  
1= Enabled  
0= Disabled  
bit 3-0  
VR<3:0>: Comparator Voltage Reference CVREF Value Selection bits (0 VR<3:0> 15)  
When VRR = 1: CVREF = (VR<3:0>/24) * VDD  
When VRR = 0: CVREF = VDD/4 + (VR<3:0>/32) * VDD  
Note 1: When CMVREN is low, the CVREF circuit is powered down and does not contribute to IDD current.  
2: When CMVREN is low and the FVREN bit is low, the CVREF signal should provide Vss to the comparator.  
DS41302D-page 76  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
Figure 9-7 shows the relationship between the analog  
9.11 Comparator Hysteresis  
input levels and digital output of a comparator with and  
without hysteresis. The output of the comparator  
changes from a low state to a high state only when the  
analog voltage at VIN+ rises above the upper  
hysteresis threshold (VH+). The output of the  
comparator changes from a high state to a low state  
only when the analog voltage at VIN+ falls below the  
lower hysteresis threshold (VH-).  
Each comparator has built-in hysteresis that is user  
enabled by setting the CMHYS bit of the CMCON1  
register. The hysteresis feature can help filter noise and  
reduce multiple comparator output transitions when the  
output is changing state.  
FIGURE 9-7:  
COMPARATOR HYSTERESIS  
VIN+  
VIN-  
+
Output  
V+  
VH+  
VIN-  
VH-  
VIN+  
Output  
(Without Hysteresis)  
Output  
(With Hysteresis)  
Note:  
The black areas of the comparator output represents the uncertainty due to input offsets and response time.  
2010 Microchip Technology Inc.  
DS41302D-page 77  
PIC12F609/615/617/12HV609/615  
TABLE 9-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND  
VOLTAGE REFERENCE MODULES  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSEL  
CMCON0  
CMCON1  
INTCON  
PIE1  
CMON  
ADCS2(1) ADCS1(1) ADCS0(1)  
ANS3  
ANS2(1)  
CMR  
ANS1  
ANS0  
CMCH  
CMSYNC  
GPIF  
-000 1111  
0000 -000  
0000 0000  
0000 000x  
-00- 0-00  
-00- 0-00  
--xx xxxx  
--11 1111  
0-00 0000  
-000 1111  
0000 -000  
0000 0000  
0000 000x  
-00- 0-00  
-00- 0-00  
--uu uuuu  
--11 1111  
0-00 0000  
COUT  
CMOE  
CMPOL  
T1ACS  
INTE  
CMHYS  
GPIE  
CMIE  
CMIF  
GP3  
T1GSS  
GIE  
PEIE  
ADIE(1)  
ADIF(1)  
T0IE  
T0IF  
INTF  
CCP1IE(1)  
CCP1IF(1)  
GP5  
TMR2IE(1)  
TMR2IF(1)  
GP1  
TMR1IE  
TMR1IF  
GP0  
PIR1  
GPIO  
GP4  
GP2  
TRISIO  
TRISIO5  
VRR  
TRISIO4 TRISIO3 TRISIO2  
FVREN VR3 VR2  
TRISIO1  
VR1  
TRISIO0  
VR0  
VRCON  
CMVREN  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used for comparator.  
Note 1: For PIC12F615/617/HV615 only.  
DS41302D-page 78  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
10.0 ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
(PIC12F615/617/HV615 ONLY)  
Note:  
The ADRESL and ADRESH registers are  
Read Only.  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 10-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates a 10-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result registers (ADRESL and ADRESH).  
The ADC voltage reference is software selectable to  
either VDD or a voltage applied to the external reference  
pins.  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
Figure 10-1 shows the block diagram of the ADC.  
FIGURE 10-1:  
ADC BLOCK DIAGRAM  
VDD  
VCFG = 0  
VCFG = 1  
VREF  
000  
001  
010  
011  
100  
101  
110  
GP0/AN0  
GP1/AN1/VREF  
GP2/AN2  
GP4/AN3  
A/D  
CVREF  
10  
GO/DONE  
ADON  
0.6V Reference  
1.2V Reference  
0= Left Justify  
ADFM  
1= Right Justify  
10  
CHS  
ADRESH ADRESL  
VSS  
2010 Microchip Technology Inc.  
DS41302D-page 79  
PIC12F609/615/617/12HV609/615  
10.1.3  
ADC VOLTAGE REFERENCE  
10.1 ADC Configuration  
The VCFG bit of the ADCON0 register provides control  
of the positive voltage reference. The positive voltage  
reference can be either VDD or an external voltage  
source. The negative voltage reference is always  
connected to the ground reference.  
When configuring and using the ADC the following  
functions must be considered:  
• Port configuration  
• Channel selection  
• ADC voltage reference selection  
• ADC conversion clock source  
• Interrupt control  
10.1.4  
CONVERSION CLOCK  
The source of the conversion clock is software  
selectable via the ADCS bits of the ANSEL register.  
There are seven possible clock options:  
• Results formatting  
10.1.1  
PORT CONFIGURATION  
• FOSC/2  
The ADC can be used to convert both analog and digital  
signals. When converting analog signals, the I/O pin  
should be configured for analog by setting the associated  
TRIS and ANSEL bits. See the corresponding port  
section for more information.  
• FOSC/4  
• FOSC/8  
• FOSC/16  
• FOSC/32  
• FOSC/64  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input  
buffer to conduct excess current.  
• FRC (dedicated internal oscillator)  
The time to complete one bit conversion is defined as  
TAD. One full 10-bit conversion requires 11 TAD periods  
as shown in Figure 10-3.  
10.1.2  
CHANNEL SELECTION  
For correct conversion, the appropriate TAD specification  
must be met. See A/D conversion requirements in  
Section 16.0 “Electrical Specifications” for more  
information. Table 10-1 gives examples of appropriate  
ADC clock selections.  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
When changing channels, a delay is required before  
starting the next conversion. Refer to Section 10.2  
“ADC Operation” for more information.  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
DS41302D-page 80  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 10-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES (VDD > 3.0V)  
ADC Clock Period (TAD)  
ADC Clock Source ADCS<2:0>  
Device Frequency (FOSC)  
20 MHz  
8 MHz  
4 MHz  
1 MHz  
FOSC/2  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/32  
FOSC/64  
FRC  
000  
100  
001  
101  
010  
110  
x11  
100 ns(2)  
200 ns(2)  
400 ns(2)  
800 ns(2)  
1.6 s  
250 ns(2)  
500 ns(2)  
1.0 s(2)  
2.0 s  
500 ns(2)  
1.0 s(2)  
2.0 s  
2.0 s  
4.0 s  
8.0 s(3)  
16.0 s(3)  
32.0 s(3)  
64.0 s(3)  
2-6 s(1,4)  
4.0 s  
4.0 s  
8.0 s(3)  
16.0 s(3)  
2-6 s(1,4)  
3.2 s  
2-6 s(1,4)  
8.0 s(3)  
2-6 s(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The FRC source has a typical TAD time of 4 s for VDD > 3.0V.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the  
conversion will be performed during Sleep.  
FIGURE 10-2:  
ANALOG-TO-DIGITAL CONVERSION TAD CYCLES  
TCY to TAD  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
b9  
b8  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Conversion Starts  
Holding Capacitor is Disconnected from Analog Input (typically 100 ns)  
Set GO/DONE bit  
ADRESH and ADRESL registers are loaded,  
GO bit is cleared,  
ADIF bit is set,  
Holding capacitor is connected to analog input  
10.1.5  
INTERRUPTS  
The ADC module allows for the ability to generate an  
interrupt upon completion of an Analog-to-Digital  
conversion. The ADC interrupt flag is the ADIF bit in the  
PIR1 register. The ADC interrupt enable is the ADIE bit  
in the PIE1 register. The ADIF bit must be cleared in  
software.  
Note:  
The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEP  
instruction is always executed. If the user is attempting  
to wake-up from Sleep and resume in-line code  
execution, the global interrupt must be disabled. If the  
global interrupt is enabled, execution will switch to the  
Interrupt Service Routine.  
Please see Section 10.1.5 “Interrupts” for more  
information.  
2010 Microchip Technology Inc.  
DS41302D-page 81  
PIC12F609/615/617/12HV609/615  
10.1.6  
RESULT FORMATTING  
The 10-bit A/D conversion result can be supplied in two  
formats, left justified or right justified. The ADFM bit of  
the ADCON0 register controls the output format.  
Figure 10-4 shows the two output formats.  
FIGURE 10-3:  
10-BIT A/D CONVERSION RESULT FORMAT  
ADRESH  
ADRESL  
(ADFM = 0)  
MSB  
bit 7  
LSB  
bit 0  
bit 0  
bit 7  
bit 7  
bit 0  
10-bit A/D Result  
Unimplemented: Read as ‘0’  
(ADFM = 1)  
MSB  
LSB  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
10-bit A/D Result  
10.2.4  
ADC OPERATION DURING SLEEP  
10.2 ADC Operation  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. When the FRC clock source is selected, the  
ADC waits one additional instruction before starting the  
conversion. This allows the SLEEP instruction to be  
executed, which can reduce system noise during the  
conversion. If the ADC interrupt is enabled, the device  
will wake-up from Sleep when the conversion  
completes. If the ADC interrupt is disabled, the ADC  
module is turned off after the conversion completes,  
although the ADON bit remains set.  
10.2.1  
STARTING A CONVERSION  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the GO/  
DONE bit of the ADCON0 register to a ‘1’ will start the  
Analog-to-Digital conversion.  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 10.2.6 “A/D Conver-  
sion Procedure”.  
When the ADC clock source is something other than  
10.2.2  
COMPLETION OF A CONVERSION  
FRC,  
a SLEEP instruction causes the present  
When the conversion is complete, the ADC module will:  
conversion to be aborted and the ADC module is  
turned off, although the ADON bit remains set.  
• Clear the GO/DONE bit  
• Set the ADIF flag bit  
10.2.5  
SPECIAL EVENT TRIGGER  
• Update the ADRESH:ADRESL registers with new  
conversion result  
The ECCP Special Event Trigger allows periodic ADC  
measurements without software intervention. When  
this trigger occurs, the GO/DONE bit is set by hardware  
and the Timer1 counter resets to zero.  
10.2.3  
TERMINATING A CONVERSION  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared in software. The  
ADRESH:ADRESL registers will not be updated with  
the partially complete Analog-to-Digital conversion  
sample. Instead, the ADRESH:ADRESL register pair  
will retain the value of the previous conversion. Addi-  
tionally, a 2 TAD delay is required before another acqui-  
sition can be initiated. Following this delay, an input  
acquisition is automatically started on the selected  
channel.  
Using the Special Event Trigger does not assure  
proper ADC timing. It is the user’s responsibility to  
ensure that the ADC timing requirements are met.  
See Section 11.0 “Enhanced Capture/Compare/  
PWM (With Auto-Shutdown and Dead Band)  
Module (PIC12F615/617/HV615 only)” for more  
information.  
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
DS41302D-page 82  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
10.2.6  
A/D CONVERSION PROCEDURE  
EXAMPLE 10-1:  
A/D CONVERSION  
This is an example procedure for using the ADC to  
perform an Analog-to-Digital conversion:  
;This code block configures the ADC  
;for polling, Vdd reference, Frc clock  
;and GP0 input.  
;
1. Configure Port:  
• Disable pin output driver (See TRIS register)  
• Configure pin as analog  
;Conversion start & polling for completion  
; are included.  
;
2. Configure the ADC module:  
• Select ADC conversion clock  
• Configure voltage reference  
• Select ADC input channel  
• Select result format  
BANKSEL TRISIO  
;
BSF  
TRISIO,0  
;Set GP0 to input  
;
BANKSEL ANSEL  
MOVLW  
IORWF  
BANKSEL ADCON0  
B’01110001’ ;ADC Frc clock,  
ANSEL  
; and GP0 as analog  
;
• Turn on ADC module  
MOVLW  
MOVWF  
CALL  
BSF  
BTFSC  
GOTO  
BANKSEL ADRESH  
MOVF  
MOVWF  
BANKSEL ADRESL  
B’10000001’ ;Right justify,  
ADCON0  
;Vdd Vref, AN0, On  
;Acquisiton delay  
;Start conversion  
;Is conversion done?  
;No, test again  
;
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
SampleTime  
ADCON0,GO  
ADCON0,GO  
$-1  
• Enable ADC interrupt  
• Enable peripheral interrupt  
• Enable global interrupt(1)  
4. Wait the required acquisition time(2)  
ADRESH,W  
RESULTHI  
;Read upper 2 bits  
;Store in GPR space  
;
.
5. Start conversion by setting the GO/DONE bit.  
MOVF  
MOVWF  
ADRESL,W  
RESULTLO  
;Read lower 8 bits  
;Store in GPR space  
6. Wait for ADC conversion to complete by one of  
the following:  
• Polling the GO/DONE bit  
• Waiting for the ADC interrupt (interrupts  
enabled)  
7. Read ADC Result  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: See Section 10.3 “A/D Acquisition  
Requirements”.  
2010 Microchip Technology Inc.  
DS41302D-page 83  
PIC12F609/615/617/12HV609/615  
10.2.7  
ADC REGISTER DEFINITIONS  
The following registers are used to control the operation of the ADC.  
REGISTER 10-1: ADCON0: A/D CONTROL REGISTER 0  
R/W-0  
ADFM  
R/W-0  
VCFG  
U-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
ADFM: A/D Conversion Result Format Select bit  
1= Right justified  
0= Left justified  
VCFG: Voltage Reference bit  
1= VREF pin  
0= VDD  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-2  
CHS<2:0>: Analog Channel Select bits  
000= Channel 00 (AN0)  
001= Channel 01 (AN1)  
010= Channel 02 (AN2)  
011= Channel 03 (AN3)  
100= CVREF  
101= 0.6V Reference  
110= 1.2V Reference  
111= Reserved. Do not use.  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
Note 1: When the CHS<2:0> bits change to select the 1.2V or 0.6V reference, the reference output voltage will  
have a transient. If the Comparator module uses this 0.6V reference voltage, the comparator output may  
momentarily change state due to the transient.  
DS41302D-page 84  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
REGISTER 10-2: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0 (READ-ONLY)  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
ADRES9  
ADRES8  
ADRES7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADRES<9:2>: ADC Result Register bits  
Upper 8 bits of 10-bit conversion result  
REGISTER 10-3: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0 (READ-ONLY)  
R-x  
R-x  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ADRES1  
ADRES0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
ADRES<1:0>: ADC Result Register bits  
Lower 2 bits of 10-bit conversion result  
Unimplemented: Read as ‘0’  
REGISTER 10-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1 (READ-ONLY)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-x  
R-x  
ADRES9  
ADRES8  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1-0  
Unimplemented: Read as ‘0’  
ADRES<9:8>: ADC Result Register bits  
Upper 2 bits of 10-bit conversion result  
REGISTER 10-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1 (READ-ONLY)  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
ADRES7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
ADRES1  
ADRES0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
Lower 8 bits of 10-bit conversion result  
2010 Microchip Technology Inc.  
DS41302D-page 85  
PIC12F609/615/617/12HV609/615  
an A/D acquisition must be done before the conversion  
10.3 A/D Acquisition Requirements  
can be started. To calculate the minimum acquisition  
time, Equation 10-1 may be used. This equation  
assumes that 1/2 LSb error is used (1024 steps for the  
ADC). The 1/2 LSb error is the maximum error allowed  
for the ADC to meet its specified resolution.  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The Analog  
Input model is shown in Figure 10-4. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge the  
capacitor CHOLD. The sampling switch (RSS) impedance  
varies over the device voltage (VDD), see Figure 10-4.  
The maximum recommended impedance for analog  
sources is 10 k. As the source impedance is  
decreased, the acquisition time may be decreased.  
After the analog input channel is selected (or changed),  
EQUATION 10-1: ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10k5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2µs + TC + Temperature - 25°C0.05µs/°C  
The value for TC can be approximated with the following equations:  
1
2047  
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED1 ----------- = VCHOLD  
TC  
---------  
RC  
;[2] VCHOLD charge response to VAPPLIED  
VAPPLIED 1 e  
= VCHOLD  
Tc  
--------  
RC  
1
;combining [1] and [2]  
= VAPPLIED1 -----------  
2047  
VAPPLIED 1 e  
Solving for TC:  
TC = CHOLDRIC + RSS + RSln(1/2047)  
= 10pF1k+ 7k+ 10kln(0.0004885)  
= 1.37µs  
Therefore:  
TACQ = 2µs + 1.37µs + 50°C- 25°C0.05µs/°C  
= 4.67µs  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin  
leakage specification.  
DS41302D-page 86  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 10-4:  
ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
Sampling  
Switch  
ANx  
SS  
RIC 1k  
Rss  
Rs  
CPIN  
5 pF  
VA  
I LEAKAGE  
± 500 nA  
CHOLD = 10 pF  
VSS/VREF-  
VT = 0.6V  
6V  
5V  
RSS  
VDD 4V  
3V  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
2V  
I LEAKAGE = Leakage current at the pin due to  
various junctions  
RIC  
SS  
CHOLD  
= Interconnect Resistance  
= Sampling Switch  
= Sample/Hold Capacitance  
5 6 7 8 9 1011  
Sampling Switch  
(k)  
FIGURE 10-5:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
3FFh  
3FEh  
3FDh  
3FCh  
3FBh  
1 LSB ideal  
Full-Scale  
Transition  
004h  
003h  
002h  
001h  
000h  
Analog Input Voltage  
1 LSB ideal  
Zero-Scale  
Transition  
VDD/VREF+  
VSS/VREF-  
2010 Microchip Technology Inc.  
DS41302D-page 87  
PIC12F609/615/617/12HV609/615  
TABLE 10-2: SUMMARY OF ASSOCIATED ADC REGISTERS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0(1)  
ANSEL  
ADRESH(1,2) A/D Result Register High Byte  
ADRESL(1,2) A/D Result Register Low Byte  
ADFM  
VCFG  
CHS2  
CHS1  
ANS3  
CHS0  
GO/DONE ADON 00-0 0000 00-0 0000  
ADCS2(1) ADCS1(1) ADCS0(1)  
ANS2  
ANS1  
ANS0  
-000 1111 -000 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--x0 x000 --x0 x000  
0000 0000 0000 0000  
(1)  
GPIO  
GIE  
GP5  
T0IE  
GP4  
INTE  
GP3  
GPIE  
CMIE  
CMIF  
GP2  
T0IF  
GP1  
INTF  
GP0  
INTCON  
PIE1  
PEIE  
GPIF  
(1)  
(1)  
(1)  
(1)  
(1)  
ADIE  
ADIF  
CCP1IE  
CCP1IF  
TMR2IE  
TMR2IF  
TMR1IE -00- 0-00 -00- 0-00  
TMR1IF -00- 0-00 -00- 0-00  
(1)  
PIR1  
TRISIO  
Legend:  
TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111  
x= unknown, u= unchanged, = unimplemented read as ‘0’. Shaded cells are not used for ADC module.  
Note 1: For PIC12F615/617/HV615 only.  
2: Read Only Register.  
DS41302D-page 88  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
event when a predetermined amount of time has  
expired. The PWM mode can generate a Pulse-Width  
Modulated signal of varying frequency and duty cycle.  
11.0 ENHANCED CAPTURE/  
COMPARE/PWM (WITH AUTO-  
SHUTDOWN AND DEAD BAND)  
MODULE (PIC12F615/617/  
HV615 ONLY)  
Table 11-1 shows the timer resources required by the  
ECCP module.  
TABLE 11-1: ECCP MODE – TIMER  
RESOURCES REQUIRED  
The Enhanced Capture/Compare/PWM module is a  
peripheral which allows the user to time and control  
different events. In Capture mode, the peripheral  
allows the timing of the duration of an event.The  
Compare mode allows the user to trigger an external  
ECCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
REGISTER 11-1: CCP1CON: ENHANCED CCP1 CONTROL REGISTER  
R/W-0  
P1M  
U-0  
R/W-0  
R/W-0  
DC1B0  
R/W-0  
R/W-0  
R/W-0  
CCP1M1  
R/W-0  
DC1B1  
CCP1M3  
CCP1M2  
CCP1M0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
P1M: PWM Output Configuration bits  
If CCP1M<3:2> = 00, 01, 10:  
x= P1A assigned as Capture/Compare input; P1B assigned as port pins  
If CCP1M<3:2> = 11:  
0= Single output; P1A modulated; P1B assigned as port pins  
1= Half-Bridge output; P1A, P1B modulated with dead-band control  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-4  
DC1B<1:0>: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0  
CCP1M<3:0>: ECCP Mode Select bits  
0000=Capture/Compare/PWM off (resets ECCP module)  
0001=Unused (reserved)  
0010=Compare mode, toggle output on match (CCP1IF bit is set)  
0011=Unused (reserved)  
0100=Capture mode, every falling edge  
0101=Capture mode, every rising edge  
0110=Capture mode, every 4th rising edge  
0111=Capture mode, every 16th rising edge  
1000=Compare mode, set output on match (CCP1IF bit is set)  
1001=Compare mode, clear output on match (CCP1IF bit is set)  
1010=Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected)  
1011=Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1 or TMR2 and starts  
an A/D conversion, if the ADC module is enabled)  
1100=PWM mode; P1A active-high; P1B active-high  
1101=PWM mode; P1A active-high; P1B active-low  
1110=PWM mode; P1A active-low; P1B active-high  
1111=PWM mode; P1A active-low; P1B active-low  
2010 Microchip Technology Inc.  
DS41302D-page 89  
PIC12F609/615/617/12HV609/615  
11.1.2  
TIMER1 MODE SELECTION  
11.1 Capture Mode  
Timer1 must be running in Timer mode or Synchronized  
Counter mode for the CCP module to use the capture  
feature. In Asynchronous Counter mode, the capture  
operation may not work.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin CCP1. An event is defined as one of the  
following and is configured by the CCP1M<3:0> bits of  
the CCP1CON register:  
11.1.3  
SOFTWARE INTERRUPT  
• Every falling edge  
• Every rising edge  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCP1IE interrupt enable bit of the PIE1 register clear to  
avoid false interrupts. Additionally, the user should  
clear the CCP1IF interrupt flag bit of the PIR1 register  
following any change in operating mode.  
• Every 4th rising edge  
• Every 16th rising edge  
When a capture is made, the Interrupt Request Flag bit  
CCP1IF of the PIR1 register is set. The interrupt flag  
must be cleared in software. If another capture occurs  
before the value in the CCPR1H, CCPR1L register pair  
is read, the old captured value is overwritten by the new  
captured value (see Figure 11-1).  
11.1.4  
CCP PRESCALER  
There are four prescaler settings specified by the  
CCP1M<3:0> bits of the CCP1CON register.  
Whenever the CCP module is turned off, or the CCP  
module is not in Capture mode, the prescaler counter  
is cleared. Any Reset will clear the prescaler counter.  
11.1.1  
CCP1 PIN CONFIGURATION  
In Capture mode, the CCP1 pin should be configured  
as an input by setting the associated TRIS control bit.  
Switching from one capture prescaler to another does not  
clear the prescaler and may generate a false interrupt. To  
avoid this unexpected operation, turn the module off by  
clearing the CCP1CON register before changing the  
prescaler (see Example 11-1).  
Note:  
If the CCP1 pin is configured as an output,  
a write to the port can cause a capture  
condition.  
FIGURE 11-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
EXAMPLE 11-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
BANKSELCCP1CON  
;Set Bank bits to point  
;to CCP1CON  
;Turn CCP module off  
Set Flag bit CCP1IF  
(PIR1 register)  
Prescaler  
1, 4, 16  
CLRF  
CCP1CON  
MOVLW  
NEW_CAPT_PS;Load the W reg with  
; the new prescaler  
CCP1  
pin  
CCPR1H  
CCPR1L  
; move value and CCP ON  
Capture  
Enable  
MOVWF  
CCP1CON  
;Load CCP1CON with this  
; value  
and  
Edge Detect  
TMR1H  
TMR1L  
CCP1CON<3:0>  
System Clock (FOSC)  
DS41302D-page 90  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 11-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CCP1CON  
CCPR1L  
P1M  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0-00 0000 0-00 0000  
xxxx xxxx uuuu uuuu  
Capture/Compare/PWM Register 1 Low Byte  
CCPR1H Capture/Compare/PWM Register 1 High Byte  
xxxx xxxx uuuu uuuu  
INTCON  
PIE1  
GIE  
PEIE  
T0IE  
INTE  
GPIE  
CMIE  
CMIF  
T0IF  
INTF  
GPIF  
0000 0000 0000 0000  
ADIE(1) CCP1IE(1)  
ADIF(1) CCP1IF(1)  
TMR2IE(1) TMR1IE -00- 0-00 -00- 0-00  
TMR2IF(1) TMR1IF -00- 0-00 -00- 0-00  
PIR1  
T1CON  
TMR1L  
TMR1H  
TRISIO  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
0000 0000 uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Capture.  
Note 1: For PIC12F615/617/HV615 only.  
2010 Microchip Technology Inc.  
DS41302D-page 91  
PIC12F609/615/617/12HV609/615  
11.2.2  
TIMER1 MODE SELECTION  
11.2 Compare Mode  
In Compare mode, Timer1 must be running in either  
Timer mode or Synchronized Counter mode. The  
compare operation may not work in Asynchronous  
Counter mode.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the CCP1 module may:  
Toggle the CCP1 output.  
• Set the CCP1 output.  
11.2.3  
SOFTWARE INTERRUPT MODE  
• Clear the CCP1 output.  
When Generate Software Interrupt mode is chosen  
(CCP1M<3:0> = 1010), the CCP1 module does not  
assert control of the CCP1 pin (see the CCP1CON  
register).  
• Generate a Special Event Trigger.  
• Generate a Software Interrupt.  
The action on the pin is based on the value of the  
CCP1M<3:0> control bits of the CCP1CON register.  
11.2.4  
SPECIAL EVENT TRIGGER  
All Compare modes can generate an interrupt.  
When Special Event Trigger mode is chosen  
(CCP1M<3:0> = 1011), the CCP1 module does the  
following:  
FIGURE 11-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
• Resets Timer1  
• Starts an ADC conversion if ADC is enabled  
CCP1CON<3:0>  
Mode Select  
The CCP1 module does not assert control of the CCP1  
pin in this mode (see the CCP1CON register).  
Set CCP1IF Interrupt Flag  
The Special Event Trigger output of the CCP occurs  
immediately upon a match between the TMR1H,  
TMR1L register pair and the CCPR1H, CCPR1L  
register pair. The TMR1H, TMR1L register pair is not  
reset until the next rising edge of the Timer1 clock. This  
allows the CCPR1H, CCPR1L register pair to  
effectively provide a 16-bit programmable period  
register for Timer1.  
(PIR1)  
4
CCP1  
Pin  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
Match  
TMR1H TMR1L  
TRIS  
Output Enable  
Special Event Trigger  
Note 1: The Special Event Trigger from the CCP  
module does not set interrupt flag bit  
TMRxIF of the PIR1 register.  
Special Event Trigger will:  
Clear TMR1H and TMR1L registers.  
NOT set interrupt flag bit TMR1IF of the PIR1 register.  
Set the GO/DONE bit to start the ADC conversion.  
2: Removing the match condition by  
changing the contents of the CCPR1H  
and CCPR1L register pair, between the  
clock edge that generates the Special  
Event Trigger and the clock edge that  
generates the Timer1 Reset, will preclude  
the Reset from occurring.  
11.2.1  
CCP1 PIN CONFIGURATION  
The user must configure the CCP1 pin as an output by  
clearing the associated TRIS bit.  
Note:  
Clearing the CCP1CON register will force  
the CCP1 compare output latch to the  
default low level. This is not the PORT I/O  
data latch.  
DS41302D-page 92  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CCP1CON  
CCPR1L  
P1M  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0-00 0000 0-00 0000  
xxxx xxxx uuuu uuuu  
Capture/Compare/PWM Register 1 Low Byte  
CCPR1H Capture/Compare/PWM Register 1 High Byte  
xxxx xxxx uuuu uuuu  
INTCON  
PIE1  
GIE  
PEIE  
T0IE  
INTE  
GPIE  
CMIE  
CMIF  
T0IF  
INTF  
GPIF  
0000 0000 0000 0000  
ADIE(1) CCP1IE(1)  
ADIF(1) CCP1IF(1)  
TMR2IE(1) TMR1IE -00- 0-00 -00- 0-00  
TMR2IF(1) TMR1IF -00- 0-00 -00- 0-00  
PIR1  
T1CON  
TMR1L  
TMR1H  
TMR2  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Timer2 Module Register  
0000 0000 uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
TRISIO  
TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Compare.  
Note 1: For PIC12F615/617/HV615 only.  
2010 Microchip Technology Inc.  
DS41302D-page 93  
PIC12F609/615/617/12HV609/615  
The PWM output (Figure 11-4) has a time base  
(period) and a time that the output stays high (duty  
cycle).  
11.3 PWM Mode  
The PWM mode generates a Pulse-Width Modulated  
signal on the CCP1 pin. The duty cycle, period and  
resolution are determined by the following registers:  
FIGURE 11-4:  
CCP PWM OUTPUT  
• PR2  
Period  
• T2CON  
• CCPR1L  
• CCP1CON  
Pulse Width  
TMR2 = PR2  
TMR2 = CCPRxL:CCPxCON<5:4>  
In Pulse-Width Modulation (PWM) mode, the CCP  
module produces up to a 10-bit resolution PWM output  
on the CCP1 pin. Since the CCP1 pin is multiplexed  
with the PORT data latch, the TRIS for that pin must be  
cleared to enable the CCP1 pin output driver.  
TMR2 = 0  
Note:  
Clearing the CCP1CON register will  
relinquish CCP1 control of the CCP1 pin.  
Figure 11-3 shows a simplified block diagram of PWM  
operation.  
Figure 11-4 shows a typical waveform of the PWM  
signal.  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 11.3.7  
“Setup for PWM Operation”.  
FIGURE 11-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
CCPR1H(2) (Slave)  
Comparator  
CCP1  
R
S
Q
(1)  
TMR2  
TRIS  
Comparator  
PR2  
Clear Timer2,  
toggle CCP1 pin and  
latch duty cycle  
Note 1: The 8-bit timer TMR2 register is concatenated  
with the 2-bit internal system clock (FOSC), or  
2 bits of the prescaler, to create the 10-bit time  
base.  
2: In PWM mode, CCPR1H is a read-only register.  
DS41302D-page 94  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
11.3.1  
PWM PERIOD  
EQUATION 11-2: PULSE WIDTH  
The PWM period is specified by the PR2 register of  
Timer2. The PWM period can be calculated using the  
formula of Equation 11-1.  
Pulse Width = CCPR1L:CCP1CON<5:4>  
TOSC (TMR2 Prescale Value)  
EQUATION 11-1: PWM PERIOD  
EQUATION 11-3: DUTY CYCLE RATIO  
PWM Period = PR2+ 1  4 TOSC   
(TMR2 Prescale Value)  
CCPR1L:CCP1CON<5:4>  
Duty Cycle Ratio = -----------------------------------------------------------------------  
4PR2 + 1  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
• TMR2 is cleared  
• The CCP1 pin is set. (Exception: If the PWM duty  
cycle = 0%, the pin will not be set.)  
The 8-bit timer TMR2 register is concatenated with  
either the 2-bit internal system clock (FOSC), or 2 bits of  
the prescaler, to create the 10-bit time base. The system  
clock is used if the Timer2 prescaler is set to 1:1.  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H.  
Note:  
The Timer2 postscaler (see Section 8.1  
“Timer2 Operation”) is not used in the  
determination of the PWM frequency.  
When the 10-bit time base matches the CCPR1H and  
2-bit latch, then the CCP1 pin is cleared (see Figure 11-  
3).  
11.3.2  
PWM DUTY CYCLE  
11.3.3  
PWM RESOLUTION  
The PWM duty cycle is specified by writing a 10-bit  
value to multiple registers: CCPR1L register and  
DC1B<1:0> bits of the CCP1CON register. The  
CCPR1L contains the eight MSbs and the DC1B<1:0>  
bits of the CCP1CON register contain the two LSbs.  
CCPR1L and DC1B<1:0> bits of the CCP1CON  
register can be written to at any time. The duty cycle  
value is not latched into CCPR1H until after the period  
completes (i.e., a match between PR2 and TMR2  
registers occurs). While using the PWM, the CCPR1H  
register is read-only.  
The resolution determines the number of available duty  
cycles for a given period. For example, a 10-bit resolution  
will result in 1024 discrete duty cycles, whereas an 8-bit  
resolution will result in 256 discrete duty cycles.  
The maximum PWM resolution is 10 bits when PR2 is  
255. The resolution is a function of the PR2 register  
value as shown by Equation 11-4.  
EQUATION 11-4: PWM RESOLUTION  
log4PR2 + 1  
Resolution = ----------------------------------------- bits  
log2  
Equation 11-2 is used to calculate the PWM pulse  
width.  
Equation 11-3 is used to calculate the PWM duty cycle  
ratio.  
Note:  
If the pulse width value is greater than the  
period the assigned PWM pin(s) will  
remain unchanged.  
TABLE 11-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)  
PWM Frequency  
1.22 kHz  
4.88 kHz  
19.53 kHz  
78.12 kHz  
156.3 kHz  
208.3 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
6.6  
Maximum Resolution (bits)  
TABLE 11-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)  
PWM Frequency  
1.22 kHz  
4.90 kHz  
19.61 kHz  
76.92 kHz  
153.85 kHz 200.0 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0x65  
8
4
0x65  
8
1
0x65  
8
1
0x19  
6
1
0x0C  
5
1
0x09  
5
Maximum Resolution (bits)  
2010 Microchip Technology Inc.  
DS41302D-page 95  
PIC12F609/615/617/12HV609/615  
11.3.4  
OPERATION IN SLEEP MODE  
11.3.7  
SETUP FOR PWM OPERATION  
In Sleep mode, the TMR2 register will not increment  
and the state of the module will not change. If the CCP1  
pin is driving a value, it will continue to drive that value.  
When the device wakes up, TMR2 will continue from its  
previous state.  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Disable the PWM pin (CCP1) output drivers by  
setting the associated TRIS bit.  
2. Set the PWM period by loading the PR2 register.  
3. Configure the CCP module for the PWM mode  
by loading the CCP1CON register with the  
appropriate values.  
11.3.5  
CHANGES IN SYSTEM CLOCK  
FREQUENCY  
The PWM frequency is derived from the system clock  
frequency. Any changes in the system clock frequency  
will result in changes to the PWM frequency. See  
Section 4.0 “Oscillator Module” for additional  
details.  
4. Set the PWM duty cycle by loading the CCPR1L  
register and DC1B bits of the CCP1CON register.  
5. Configure and start Timer2:  
• Clear the TMR2IF interrupt flag bit of the PIR1  
register.  
11.3.6  
EFFECTS OF RESET  
• Set the Timer2 prescale value by loading the  
T2CKPS bits of the T2CON register.  
Any Reset will force all ports to Input mode and the  
CCP registers to their Reset states.  
• Enable Timer2 by setting the TMR2ON bit of  
the T2CON register.  
6. Enable PWM output after a new PWM cycle has  
started:  
• Wait until Timer2 overflows (TMR2IF bit of the  
PIR1 register is set).  
• Enable the CCP1 pin output driver by clearing  
the associated TRIS bit.  
DS41302D-page 96  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
The PWM outputs are multiplexed with I/O pins and are  
11.4 PWM (Enhanced Mode)  
designated P1A and P1B. The polarity of the PWM pins  
is configurable and is selected by setting the CCP1M  
bits in the CCP1CON register appropriately.  
The Enhanced PWM Mode can generate a PWM signal  
on up to four different output pins with up to 10-bits of  
resolution. It can do this through four different PWM  
output modes:  
Table 11-6 shows the pin assignments for each  
Enhanced PWM mode.  
• Single PWM  
Figure 11-5 shows an example of a simplified block  
diagram of the Enhanced PWM module.  
• Half-Bridge PWM  
To select an Enhanced PWM mode, the P1M bits of the  
CCP1CON register must be set appropriately.  
Note:  
To prevent the generation of an  
incomplete waveform when the PWM is  
first enabled, the ECCP module waits until  
the start of a new PWM period before  
generating a PWM signal.  
FIGURE 11-5:  
EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE  
CCP1<1:0>  
P1M<1:0>  
CCP1M<3:0>  
4
Duty Cycle Registers  
2
CCPR1L  
(APFCON<0>)  
P1ASEL  
CCP1/P1A  
CCP1/P1A*  
0
CCPR1H (Slave)  
Comparator  
CCP1/P1A  
TRISIO2  
TRISIO5  
1
R
S
Q
Output  
Controller  
(1)  
TMR2  
(APFCON<1>)  
P1BSEL  
P1B  
0
1
Comparator  
PR2  
Clear Timer2,  
toggle PWM pin and  
latch duty cycle  
TRISIO0  
TRISIO4  
P1B  
P1B*  
PWM1CON  
*
Alternate pin function.  
The 8-bit timer TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit time base.  
Note 1:  
Note 1: The TRIS register value for each PWM output must be configured appropriately.  
2: Clearing the CCP1CON register will relinquish ECCP control of all PWM output pins.  
3: Any pin not used by an Enhanced PWM mode is available for alternate pin functions.  
TABLE 11-6: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES  
ECCP Mode  
P1M<1:0>  
CCP1/P1A  
P1B  
Single  
00  
10  
Yes(1)  
Yes  
Yes(1)  
Yes  
Half-Bridge  
2010 Microchip Technology Inc.  
DS41302D-page 97  
PIC12F609/615/617/12HV609/615  
FIGURE 11-6:  
EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH  
STATE)  
PR2+1  
Pulse  
Width  
0
Signal  
P1M<1:0>  
Period  
P1A Modulated  
(Single Output)  
00  
10  
Delay(1)  
Delay(1)  
P1A Modulated  
P1B Modulated  
(Half-Bridge)  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (PWM1CON<6:0>)  
Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.4.6 “Programmable Dead-Band Delay  
mode”).  
FIGURE 11-7:  
EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)  
PR2+1  
Pulse  
Width  
0
Signal  
P1M<1:0>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
(Single Output)  
00  
10  
Delay(1)  
Delay(1)  
(Half-Bridge)  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (PWM1CON<6:0>)  
Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.4.6 “Programmable Dead-Band Delay  
mode”).  
DS41302D-page 98  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
Since the P1A and P1B outputs are multiplexed with  
the PORT data latches, the associated TRIS bits must  
be cleared to configure P1A and P1B as outputs.  
11.4.1  
HALF-BRIDGE MODE  
In Half-Bridge mode, two pins are used as outputs to  
drive push-pull loads. The PWM output signal is output  
on the CCP1/P1A pin, while the complementary PWM  
output signal is output on the P1B pin (see Figure 11-8).  
This mode can be used for Half-Bridge applications, as  
shown in Figure 11-9, or for Full-Bridge applications,  
where four power switches are being modulated with  
two PWM signals.  
FIGURE 11-8:  
EXAMPLE OF HALF-  
BRIDGE PWM OUTPUT  
Period  
Period  
Pulse Width  
(2)  
(2)  
P1A  
In Half-Bridge mode, the programmable dead-band delay  
can be used to prevent shoot-through current in Half-  
Bridge power devices. The value of the PDC<6:0> bits of  
the PWM1CON register sets the number of instruction  
cycles before the output is driven active. If the value is  
greater than the duty cycle, the corresponding output  
remains inactive during the entire cycle. See  
Section 11.4.6 “Programmable Dead-Band Delay  
mode” for more details of the dead-band delay  
operations.  
td  
td  
P1B  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
2: Output signals are shown as active-high.  
FIGURE 11-9:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
-
P1A  
Load  
FET  
Driver  
+
-
P1B  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
FET  
Driver  
FET  
Driver  
P1A  
Load  
FET  
FET  
Driver  
Driver  
P1B  
2010 Microchip Technology Inc.  
DS41302D-page 99  
PIC12F609/615/617/12HV609/615  
11.4.2  
START-UP CONSIDERATIONS  
When any PWM mode is used, the application  
hardware must use the proper external pull-up and/or  
pull-down resistors on the PWM output pins.  
Note:  
When the microcontroller is released from  
Reset, all of the I/O pins are in the high-  
impedance state. The external circuits  
must keep the power switch devices in the  
OFF state until the microcontroller drives  
the I/O pins with the proper signal levels or  
activates the PWM output(s).  
The CCP1M<1:0> bits of the CCP1CON register allow  
the user to choose whether the PWM output signals are  
active-high or active-low for each PWM output pin (P1A  
and P1B). The PWM output polarities must be selected  
before the PWM pin output drivers are enabled.  
Changing the polarity configuration while the PWM pin  
output drivers are enable is not recommended since it  
may result in damage to the application circuits.  
The P1A and P1B output latches may not be in the proper  
states when the PWM module is initialized. Enabling the  
PWM pin output drivers at the same time as the  
Enhanced PWM modes may cause damage to the  
application circuit. The Enhanced PWM modes must be  
enabled in the proper Output mode and complete a full  
PWM cycle before configuring the PWM pin output  
drivers. The completion of a full PWM cycle is indicated  
by the TMR2IF bit of the PIR1 register being set as the  
second PWM period begins.  
11.4.3  
OPERATION DURING SLEEP  
When the device is placed in sleep, the allocated timer  
will not increment and the state of the module will not  
change. If the CCP1 pin is driving a value, it will  
continue to drive that value. When the device wakes  
up, it will continue from this state.  
DS41302D-page 100  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
A shutdown condition is indicated by the ECCPASE  
(Auto-Shutdown Event Status) bit of the ECCPAS  
register. If the bit is a ‘0’, the PWM pins are operating  
normally. If the bit is a ‘1’, the PWM outputs are in the  
shutdown state. Refer to Figure 1.  
11.4.4  
ENHANCED PWM AUTO-  
SHUTDOWN MODE  
The PWM mode supports an Auto-Shutdown mode that  
will disable the PWM outputs when an external  
shutdown event occurs. Auto-Shutdown mode places  
the PWM output pins into a predetermined state. This  
mode is used to help prevent the PWM from damaging  
the application.  
When a shutdown event occurs, two things happen:  
The ECCPASE bit is set to ‘1’. The ECCPASE will  
remain set until cleared in firmware or an auto-restart  
occurs (see Section 11.4.5 “Auto-Restart Mode”).  
The auto-shutdown sources are selected using the  
ECCPASx bits of the ECCPAS register. A shutdown  
event may be generated by:  
The enabled PWM pins are asynchronously placed in  
their shutdown states. The state of P1A is determined by  
the PSSAC bit. The state of P1B is determined by the  
PSSBD bit. The PSSAC and PSSBD bits are located in  
the ECCPAS register. Each pin may be placed into one  
of three states:  
• A logic ‘0’ on the INT pin  
• Comparator  
• Setting the ECCPASE bit in firmware  
• Drive logic ‘1’  
• Drive logic ‘0’  
• Tri-state (high-impedance)  
FIGURE 11-10:  
AUTO-SHUTDOWN BLOCK DIAGRAM  
ECCPAS<2:0>  
111  
110  
101  
100  
011  
010  
001  
000  
INT  
PSSAC<0>  
1
P1A_DRV  
0
From Comparator  
PRSEN  
PSSAC<1>  
R
D
S
P1A  
TRISx  
From Data Bus  
ECCPASE  
Q
Write to ECCPASE  
PSSBD<0>  
P1B_DRV  
1
0
PSSBD<1>  
TRISx  
P1B  
2010 Microchip Technology Inc.  
DS41302D-page 101  
PIC12F609/615/617/12HV609/615  
REGISTER 11-2: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN  
CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ECCPASE  
ECCPAS2  
ECCPAS1  
ECCPAS0  
PSSAC1  
PSSAC0  
PSSBD1  
PSSBD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
ECCPASE: ECCP Auto-Shutdown Event Status bit  
1= A shutdown event has occurred; ECCP outputs are in shutdown state  
0= ECCP outputs are operating  
bit 6-4  
ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits  
000=Auto-Shutdown is disabled  
001=Comparator output change  
010=Auto-Shutdown is disabled  
011=Comparator output change(1)  
100=VIL on INT pin  
101=VIL on INT pin or Comparator change  
110=VIL on INT pin(1)  
111=VIL on INT pin or Comparator change  
bit 3-2  
bit 1-0  
PSSAC<1:0>: Pin P1A Shutdown State Control bits  
00= Drive pin P1A to ‘0’  
01= Drive pin P1A to ‘1’  
1x= Pin P1A tri-state  
PSSBD<1:0>: Pin P1B Shutdown State Control bits  
00= Drive pin P1B to ‘0’  
01= Drive pin P1B to ‘1’  
1x= Pin P1B tri-state  
Note 1: If CMSYNC is enabled, the shutdown will be delayed by Timer1.  
Note 1: The auto-shutdown condition is a level-  
based signal, not an edge-based signal.  
As long as the level is present, the auto-  
shutdown will persist.  
2: Writing to the ECCPASE bit is disabled  
while an auto-shutdown condition  
persists.  
3: Once the auto-shutdown condition has  
been removed and the PWM restarted  
(either through firmware or auto-restart)  
the PWM signal will always restart at the  
beginning of the next PWM period.  
DS41302D-page 102  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 11-11:  
PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PRSEN = 0)  
Shutdown Event  
ECCPASE bit  
PWM Activity  
PWM Period  
ECCPASE  
Cleared by  
Firmware  
Event Occurs Event Clears  
Start of  
PWM Period  
Shutdown  
Shutdown  
PWM  
Resumes  
11.4.5  
AUTO-RESTART MODE  
The Enhanced PWM can be configured to automati-  
cally restart the PWM signal once the auto-shutdown  
condition has been removed. Auto-restart is enabled by  
setting the PRSEN bit in the PWM1CON register.  
If auto-restart is enabled, the ECCPASE bit will remain  
set as long as the auto-shutdown condition is active.  
When the auto-shutdown condition is removed, the  
ECCPASE bit will be cleared via hardware and normal  
operation will resume.  
FIGURE 11-12:  
PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1)  
Shutdown Event  
ECCPASE bit  
PWM Activity  
PWM Period  
Shutdown  
Event Occurs Event Clears  
Shutdown  
PWM  
Resumes  
Start of  
PWM Period  
2010 Microchip Technology Inc.  
DS41302D-page 103  
PIC12F609/615/617/12HV609/615  
11.4.6  
PROGRAMMABLE DEAD-BAND  
DELAY MODE  
FIGURE 11-13:  
EXAMPLE OF HALF-  
BRIDGE PWM OUTPUT  
In Half-Bridge applications where all power switches  
are modulated at the PWM frequency, the power  
switches normally require more time to turn off than to  
turn on. If both the upper and lower power switches are  
switched at the same time (one turned on, and the  
other turned off), both switches may be on for a short  
period of time until one switch completely turns off.  
During this brief interval, a very high current (shoot-  
through current) will flow through both power switches,  
shorting the bridge supply. To avoid this potentially  
destructive shoot-through current from flowing during  
switching, turning on either of the power switches is  
normally delayed to allow the other switch to  
completely turn off.  
Period  
Period  
Pulse Width  
(2)  
(2)  
P1A  
td  
td  
P1B  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
2: Output signals are shown as active-high.  
In Half-Bridge mode, a digitally programmable dead-  
band delay is available to avoid shoot-through current  
from destroying the bridge power switches. The delay  
occurs at the signal transition from the non-active state  
to the active state. See Figure 11-13 for illustration. The  
lower seven bits of the associated PWMxCON register  
(Register 11-3) sets the delay period in terms of  
microcontroller instruction cycles (TCY or 4 TOSC).  
FIGURE 11-14:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
V
-
P1A  
Load  
FET  
Driver  
+
V
-
P1B  
V-  
DS41302D-page 104  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
REGISTER 11-3: PWM1CON: ENHANCED PWM CONTROL REGISTER  
R/W-0  
R/W-0  
PDC6  
R/W-0  
PDC5  
R/W-0  
PDC4  
R/W-0  
PDC3  
R/W-0  
PDC2  
R/W-0  
PDC1  
R/W-0  
PDC0  
PRSEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
PRSEN: PWM Restart Enable bit  
1= Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes  
away; the PWM restarts automatically  
0= Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM  
bit 6-0  
PDC<6:0>: PWM Delay Count bits  
PDCn =Number of FOSC/4 (4 * TOSC) cycles between the scheduled time when a PWM signal should  
transition active and the actual time it transitions active  
TABLE 11-7: SUMMARY OF REGISTERS ASSOCIATED WITH PWM  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
APFCON  
CCP1CON(1)  
T1GSEL  
DC1B0  
P1BSEL P1ASEL ---0 --00 ---0 --00  
P1M  
DC1B1  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0-00 0000 0-00 0000  
xxxx xxxx uuuu uuuu  
CCPR1L(1) Capture/Compare/PWM Register 1 Low Byte  
CCPR1H(1) Capture/Compare/PWM Register 1 High Byte  
xxxx xxxx uuuu uuuu  
CMCON0  
CMCON1  
ECCPAS(1)  
PWM1CON  
INTCON  
PIE1  
CMON  
COUT  
CMOE  
CMPOL  
T1ACS  
CMR  
CMCH  
0000 -0-0 0000 -0-0  
CMHYS  
T1GSS CMSYNC ---0 0-10 ---0 0-10  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 0000 0000 0000 0000  
PRSEN  
GIE  
PDC6  
PEIE  
PDC5  
T0IE  
PDC4  
INTE  
PDC3  
GPIE  
CMIE  
CMIF  
PDC2  
T0IF  
PDC1  
INTF  
PDC0  
GPIF  
0000 0000 0000 0000  
0000 0000 0000 0000  
ADIE(1)  
ADIF(1)  
CCP1IE(1)  
CCP1IF(1)  
TMR2IE(1) TMR1IE -00- 0-00 -00- 0-00  
TMR2IF(1) TMR1IF -00- 0-00 -00- 0-00  
PIR1  
T2CON(1)  
TMR2(1)  
TRISIO  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Module Register  
0000 0000 0000 0000  
TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the PWM.  
Note 1: For PIC12F615/617/HV615 only.  
2010 Microchip Technology Inc.  
DS41302D-page 105  
PIC12F609/615/617/12HV609/615  
NOTES:  
DS41302D-page 106  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
12.1 Configuration Bits  
12.0 SPECIAL FEATURES OF THE  
CPU  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’) to select various  
device configurations as shown in Register 12-1.  
These bits are mapped in program memory location  
2007h.  
The PIC12F609/615/617/12HV609/615 has a host of  
features intended to maximize system reliability,  
minimize cost through elimination of external  
components, provide power-saving features and offer  
code protection.  
Note:  
Address 2007h is beyond the user program  
memory space. It belongs to the special  
configuration memory space (2000h-  
3FFFh), which can be accessed only during  
programming. See Memory Programming  
These features are:  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
Specification  
(DS41204)  
for more  
information.  
• Watchdog Timer (WDT)  
• Oscillator selection  
• Sleep  
• Code protection  
• ID Locations  
• In-Circuit Serial Programming  
The PIC12F609/615/617/12HV609/615 has two timers  
that offer necessary delays on power-up. One is the  
Oscillator Start-up Timer (OST), intended to keep the  
chip in Reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 64 ms (nominal) on power-up only,  
designed to keep the part in Reset while the power  
supply stabilizes. There is also circuitry to reset the  
device if a brown-out occurs, which can use the Power-  
up Timer to provide at least a 64 ms Reset. With these  
three functions-on-chip, most applications need no  
external Reset circuitry.  
The Sleep mode is designed to offer a very low-current  
Power-Down mode. The user can wake-up from Sleep  
through:  
• External Reset  
• Watchdog Timer Wake-up  
• An interrupt  
Several oscillator options are also made available to  
allow the part to fit the application. The INTOSC option  
saves system cost while the LP crystal option saves  
power. A set of Configuration bits are used to select  
various options (see Register 12-1).  
2010 Microchip Technology Inc.  
DS41302D-page 107  
PIC12F609/615/617/12HV609/615  
REGISTER 12-1: CONFIG: CONFIGURATION WORD REGISTER (ADDRESS: 2007h) FOR  
PIC12F609/615/HV609/615 ONLY  
U-1 U-1 U-1  
U-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
(1)  
(1)  
(2)  
(3)  
BOREN1  
BOREN0  
IOSCFS CP  
MCLRE  
PWRTE WDTE FOSC2 FOSC1 FOSC0  
bit 13  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
P = Programmable  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
-n = Value at POR  
bit 13-10  
bit 9-8  
Unimplemented: Read as ‘1’  
(1)  
BOREN<1:0>: Brown-out Reset Selection bits  
11= BOR enabled  
10= BOR enabled during operation and disabled in Sleep  
0x= BOR disabled  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
IOSCFS: Internal Oscillator Frequency Select bit  
1= 8 MHz  
0= 4 MHz  
(2)  
CP: Code Protection bit  
1= Program memory code protection is disabled  
0= Program memory code protection is enabled  
(3)  
MCLRE: MCLR Pin Function Select bit  
1= MCLR pin function is MCLR  
0= MCLR pin function is digital input, MCLR internally tied to VDD  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
FOSC<2:0>: Oscillator Selection bits  
111=RC oscillator: CLKOUT function on GP4/OSC2/CLKOUT pin, RC on GP5/OSC1/CLKIN  
110=RCIO oscillator: I/O function on GP4/OSC2/CLKOUT pin, RC on GP5/OSC1/CLKIN  
101=INTOSC oscillator: CLKOUT function on GP4/OSC2/CLKOUT pin, I/O function on  
GP5/OSC1/CLKIN  
100= INTOSCIO oscillator: I/O function on GP4/OSC2/CLKOUT pin, I/O function on  
GP5/OSC1/CLKIN  
011=EC: I/O function on GP4/OSC2/CLKOUT pin, CLKIN on GP5/OSC1/CLKIN  
010=HS oscillator: High-speed crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN  
001= XT oscillator: Crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN  
000= LP oscillator: Low-power crystal on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN  
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.  
2: The entire program memory will be erased when the code protection is turned off.  
3: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  
DS41302D-page 108  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
REGISTER 12-2: CONFIG – CONFIGURATION WORD (ADDRESS: 2007h) FOR PIC12F617 ONLY  
U-1  
U-1  
R/P-1 R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
CP  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1 R/P-1  
WRT1 WRT0 BOREN1 BOREN0 IOSCFS  
MCLRE PWRTE WDTE FOSC2 F0SC1 F0SC0  
bit 0  
bit  
13  
bit 13-12  
bit 11-10  
Unimplemented: Read as ‘1’  
WRT<1:0>: Flash Program Memory Self Write Enable bits  
11= Write protection off  
10= 000h to 1FFh write protected, 200h to 7FFh may be modified by PMCON1 control  
01= 000h to 3FFh write protected, 400h to 7FFh may be modified by PMCON1 control  
00= 000h to 7FFh write protected, entire program memory is write protected.  
bit 9-8  
BOREN<1:0>: Brown-out Reset Enable bits  
11= BOR enabled  
10= BOR disabled during Sleep and enabled during operation  
0X= BOR disabled  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
IOSCFS: Internal Oscillator Frequency Select  
1= 8 MHz  
0= 4 MHz  
CP: Code Protection  
1= Program memory is not code protected  
0= Program memory is external read and write protected  
MCLRE: MCLR Pin Function Select  
1= MCLR pin is MCLR function and weak internal pull-up is enabled  
0= MCLR pin is alternate function, MCLR function is internally disabled  
(1)  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
FOSC<2:0>: Oscillator Selection bits  
000=LP oscillator: Low-power crystal on RA5/T1CKI/OSC1/CLKIN and RA4/AN3/T1G/OSC2/CLKOUT  
001=XT oscillator: Crystal/resonator on RA5/T1CKI/OSC1/CLKIN and RA4/AN3/T1G/OSC2/CLKOUT  
010=HS oscillator: High-speed crystal/resonator on RA5/T1CKI/OSC1/CLKIN and RA4/AN3/T1G/OSC2/CLKOUT  
011=EC: I/O function on RA4/AN3/T1G/OSC2/CLKOUT, CLKIN on RA5/T1CKI/OSC1/CLKIN  
100=INTOSCIO oscillator: I/O function on RA4/AN3/T1G/OSC2/CLKOUT, I/O function on RA5/T1CKI/OSC1/CLKIN  
101=INTOSC oscillator: CLKOUT function on RA4/AN3/T1G/OSC2/CLKOUT, I/O function on RA5/T1CKI/OSC1/  
CLKIN  
110=EXTRCIO oscillator: I/O function on RA4/AN3/T1G/OSC2/CLKOUT, RC on RA5/T1CKI/OSC1/CLKIN  
111=EXTRC oscillator: CLKOUT function on RA4/AN3/T1G/OSC2/CLKOUT, RC on RA5/T1CKI/OSC1/CLKIN  
Note 1:Enabling Brown-out Reset does not automatically enable the Power-up Timer (PWRT).  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
1 = bit is set  
U = Unimplemented bit, read as ‘1’  
0 = bit is cleared  
P = Programmable  
x = bit is unknown  
2010 Microchip Technology Inc.  
DS41302D-page 109  
PIC12F609/615/617/12HV609/615  
Some registers are not affected in any Reset condition;  
12.2 Calibration Bits  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
The 8 MHz internal oscillator is factory calibrated.  
These calibration values are stored in fuses located in  
the Calibration Word (2008h). The Calibration Word is  
not erased when using the specified bulk erase  
sequence in the Memory Programming Specification  
(DS41204) and thus, does not require reprogramming.  
• Power-on Reset  
• MCLR Reset  
• MCLR Reset during Sleep  
• WDT Reset  
12.3 Reset  
• Brown-out Reset (BOR)  
WDT wake-up does not cause register resets in the  
same manner as a WDT Reset since wake-up is  
viewed as the resumption of normal operation. TO and  
PD bits are set or cleared differently in different Reset  
situations, as indicated in Table 12-2. Software can use  
these bits to determine the nature of the Reset. See  
Table 12-5 for a full description of Reset states of all  
registers.  
The  
PIC12F609/615/617/12HV609/615  
device  
differentiates between various kinds of Reset:  
a) Power-on Reset (POR)  
b) WDT Reset during normal operation  
c) WDT Reset during Sleep  
d) MCLR Reset during normal operation  
e) MCLR Reset during Sleep  
f) Brown-out Reset (BOR)  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 12-1.  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Section 16.0 “Electrical  
Specifications” for pulse-width specifications.  
FIGURE 12-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR/VPP pin  
Sleep  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out(1)  
Reset  
BOREN  
S
R
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
Q
OSC1/  
CLKIN pin  
PWRT  
11-bit Ripple Counter  
On-Chip  
RC OSC  
Enable PWRT  
Enable OST  
Note 1: Refer to the Configuration Word register (Register 12-1).  
DS41302D-page 110  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
12.3.1  
POWER-ON RESET (POR)  
FIGURE 12-2:  
RECOMMENDED MCLR  
CIRCUIT  
The on-chip POR circuit holds the chip in Reset until  
VDD has reached a high enough level for proper  
operation. To take advantage of the POR, simply  
connect the MCLR pin through a resistor to VDD. This  
will eliminate external RC components usually needed  
to create Power-on Reset. A maximum rise time for  
VDD is required. See Section 16.0 “Electrical  
Specifications” for details. If the BOR is enabled, the  
maximum rise time specification does not apply. The  
BOR circuitry will keep the device in Reset until VDD  
reaches VBOR (see Section 12.3.4 “Brown-out Reset  
(BOR)”).  
VDD  
PIC®  
MCU  
R1  
1 kor greater)  
R2  
MCLR  
100   
needed with capacitor)  
SW1  
(optional)  
C1  
0.1 F  
(optional, not critical)  
Note:  
The POR circuit does not produce an  
internal Reset when VDD declines. To re-  
enable the POR, VDD must reach Vss for  
a minimum of 100 s.  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (i.e.,  
voltage, frequency, temperature, etc.) must be met to  
ensure proper operation. If these conditions are not  
met, the device must be held in Reset until the  
operating conditions are met.  
12.3.3  
POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 64 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates from an internal  
RC oscillator. For more information, see Section 4.4  
“Internal Clock Modes”. The chip is kept in Reset as  
long as PWRT is active. The PWRT delay allows the  
VDD to rise to an acceptable level. A Configuration bit,  
PWRTE, can disable (if set) or enable (if cleared or  
programmed) the Power-up Timer. The Power-up  
Timer should be enabled when Brown-out Reset is  
enabled, although it is not required.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
12.3.2  
MCLR  
PIC12F609/615/617/12HV609/615 has a noise filter in  
the MCLR Reset path. The filter will detect and ignore  
small pulses.  
The Power-up Timer delay will vary from chip-to-chip  
due to:  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
• VDD variation  
Voltages applied to the MCLR pin that exceed its  
specification can result in both MCLR Resets and  
excessive current beyond the device specification  
during the ESD event. For this reason, Microchip  
recommends that the MCLR pin no longer be tied  
directly to VDD. The use of an RC network, as shown in  
Figure 12-2, is suggested.  
Temperature variation  
• Process variation  
See DC parameters for details (Section 16.0  
“Electrical Specifications”).  
An internal MCLR option is enabled by clearing the  
MCLRE bit in the Configuration Word register. When  
MCLRE = 0, the Reset signal to the chip is generated  
internally. When the MCLRE = 1, the GP3/MCLR pin  
becomes an external Reset input. In this mode, the  
GP3/MCLR pin has a weak pull-up to VDD.  
Note:  
Voltage spikes below VSS at the MCLR  
pin, inducing currents greater than 80 mA,  
may cause latch-up. Thus, a series resis-  
tor of 50-100 should be used when  
applying a “low” level to the MCLR pin,  
rather than pulling this pin directly to VSS.  
2010 Microchip Technology Inc.  
DS41302D-page 111  
PIC12F609/615/617/12HV609/615  
On any Reset (Power-on, Brown-out Reset, Watchdog  
timer, etc.), the chip will remain in Reset until VDD rises  
above VBOR (see Figure 12-3). If enabled, the Power-  
up Timer will be invoked by the Reset and keep the chip  
in Reset an additional 64 ms.  
12.3.4  
BROWN-OUT RESET (BOR)  
The BOREN0 and BOREN1 bits in the Configuration  
Word register select one of three BOR modes. One  
mode has been added to allow control of the BOR  
enable for lower current during Sleep. By selecting  
BOREN<1:0> = 10, the BOR is automatically disabled  
in Sleep to conserve power and enabled on wake-up.  
See Register 12-1 for the Configuration Word  
definition.  
Note:  
The Power-up Timer is enabled by the  
PWRTE bit in the Configuration Word  
register.  
If VDD drops below VBOR while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOR, the Power-up Timer will execute a  
64 ms Reset.  
A brown-out occurs when VDD falls below VBOR for  
greater than parameter TBOR (see Section 16.0  
“Electrical Specifications”). The brown-out condition  
will reset the device. This will occur regardless of VDD  
slew rate. A Brown-out Reset may not occur if VDD falls  
below VBOR for less than parameter TBOR.  
FIGURE 12-3:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
< 64 ms  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
Note 1: 64 ms delay only if PWRTE bit is programmed to ‘0’.  
DS41302D-page 112  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
12.3.5  
TIME-OUT SEQUENCE  
12.3.6  
POWER CONTROL (PCON)  
REGISTER  
On power-up, the time-out sequence is as follows:  
• PWRT time-out is invoked after POR has expired.  
The Power Control register PCON (address 8Eh) has  
two Status bits to indicate what type of Reset occurred  
last.  
• OST is activated after the PWRT time-out has  
expired.  
Bit 0 is BOR (Brown-out). BOR is unknown on Power-  
on Reset. It must then be set by the user and checked  
on subsequent Resets to see if BOR = 0, indicating that  
a Brown-out has occurred. The BOR Status bit is a  
“don’t care” and is not necessarily predictable if the  
brown-out circuit is disabled (BOREN<1:0> = 00in the  
Configuration Word register).  
The total time-out will vary based on oscillator  
configuration and PWRTE bit status. For example, in EC  
mode with PWRTE bit erased (PWRT disabled), there  
will be no time-out at all. Figure 12-4, Figure 12-5 and  
Figure 12-6 depict time-out sequences.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then,  
bringing MCLR high will begin execution immediately  
(see Figure 12-5). This is useful for testing purposes or  
to synchronize more than one PIC12F609/615/617/  
12HV609/615 device operating in parallel.  
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
1’ to this bit following a Power-on Reset. On a subse-  
quent Reset, if POR is ‘0’, it will indicate that a Power-  
on Reset has occurred (i.e., VDD may have gone too  
low).  
Table 12-6 shows the Reset conditions for some  
special registers, while Table 12-5 shows the Reset  
conditions for all the registers.  
For more information, see Section 12.3.4 “Brown-out  
Reset (BOR)”.  
TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Brown-out Reset  
Wake-up from  
Oscillator Configuration  
Sleep  
PWRTE = 0  
PWRTE = 1  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
TPWRT + 1024 •  
TOSC  
1024 • TOSC  
TPWRT + 1024 •  
TOSC  
1024 • TOSC  
1024 • TOSC  
RC, EC, INTOSC  
TPWRT  
TPWRT  
TABLE 12-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
Condition  
0
u
u
u
x
0
u
u
1
1
0
0
1
1
u
0
Power-on Reset  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
u
u
u
u
u
1
u
0
MCLR Reset during normal operation  
MCLR Reset during Sleep  
Legend: u= unchanged, x= unknown  
TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET  
Value on  
Value on  
all other  
Resets(1)  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
PCON  
Z
POR  
DC  
BOR ---- --qq ---- --uu  
0001 1xxx 000q quuu  
STATUS  
IRP  
RP1  
RP0  
TO  
PD  
C
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Shaded cells are not used by BOR.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2010 Microchip Technology Inc.  
DS41302D-page 113  
PIC12F609/615/617/12HV609/615  
FIGURE 12-4:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 12-5:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 12-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
DS41302D-page 114  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 12-4: INITIALIZATION CONDITION FOR REGISTERS (PIC12F609/HV609)  
Wake-up from Sleep through  
Interrupt  
Wake-up from Sleep through  
WDT Time-out  
MCLR Reset  
WDT Reset  
Power-on  
Reset  
Register  
Address  
Brown-out Reset(1)  
W
00h/80h  
01h  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--x0 x000  
---0 0000  
0000 0000  
----- 0--0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0-00 0000  
0000 -0-0  
---0 0-10  
1111 1111  
--11 1111  
----- 0--0  
---- --0x  
---0 0000  
--11 -111  
--00 0000  
---- 1-11  
uuuu uuuu  
xxxx xxxx  
uuuu uuuu  
0000 0000  
000q quuu(4)  
uuuu uuuu  
--u0 u000  
---0 0000  
0000 0000  
---- 0--0  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0-00 0000  
0000 -0-0  
---0 0-10  
1111 1111  
--11 1111  
---- 0--0  
---- --uu(1, 5)  
---u uuuu  
--11 -111  
--00 0000  
---- 1-11  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
PC + 1(3)  
INDF  
TMR0  
PCL  
02h/82h  
03h/83h  
04h/84h  
05h  
STATUS  
FSR  
uuuq quuu(4)  
uuuu uuuu  
--uu uuuu  
---u uuuu  
uuuu uuuu(2)  
---- u--u(2)  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
u-uu uuuu  
uuuu -u-u  
---u u-qu  
uuuu uuuu  
--uu uuuu  
---- u--u  
---- --uu  
---u uuuu  
--uu -uuu  
--uu uuuu  
---- q-qq  
GPIO  
PCLATH  
INTCON  
PIR1  
0Ah/8Ah  
0Bh/8Bh  
0Ch  
TMR1L  
TMR1H  
T1CON  
VRCON  
CMCON0  
CMCON1  
OPTION_REG  
TRISIO  
PIE1  
0Eh  
0Fh  
10h  
19h  
1Ah  
1Ch  
81h  
85h  
8Ch  
PCON  
8Eh  
OSCTUNE  
WPU  
90h  
95h  
IOC  
96h  
ANSEL  
9Fh  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 12-6 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
2010 Microchip Technology Inc.  
DS41302D-page 115  
PIC12F609/615/617/12HV609/615  
TABLE 12-5: INITIALIZATION CONDITION FOR REGISTERS (PIC12F615/617/HV615)  
Wake-up from Sleep through  
MCLR Reset  
WDT Reset  
Brown-out Reset  
Interrupt  
Wake-up from Sleep through  
WDT Time-out  
Register  
Address  
Power-on Reset  
(1)  
W
00h/80h  
01h  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--x0 x000  
---0 0000  
0000 0000  
-000 0-00  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
-000 0000  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
0000 0000  
0000 0000  
0-00 0000  
0000 -0-0  
---0 0-10  
xxxx xxxx  
00-0 0000  
1111 1111  
--11 1111  
-00- 0-00  
---- --0x  
---0 0000  
1111 1111  
---0 --00  
--11 -111  
--00 0000  
---- -000  
---- ----  
0000 0000  
uuuu uuuu  
xxxx xxxx  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
INDF  
TMR0  
PCL  
(3)  
02h/82h  
03h/83h  
04h/84h  
05h  
PC + 1  
(4)  
(4)  
STATUS  
FSR  
000q quuu  
uuuu uuuu  
--u0 u000  
---0 0000  
0000 0000  
-000 0-00  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
uuuu uuuu  
0-00 0000  
0000 0000  
0000 0000  
0-00 0000  
0000 -0-0  
---0 0-10  
uuuu uuuu  
00-0 0000  
1111 1111  
--11 1111  
-00- 0-00  
uuuq quuu  
uuuu uuuu  
--uu uuuu  
---u uuuu  
GPIO  
PCLATH  
INTCON  
PIR1  
0Ah/8Ah  
0Bh/8Bh  
0Ch  
(2)  
uuuu uuuu  
(2)  
-uuu u-uu  
TMR1L  
TMR1H  
T1CON  
0Eh  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu -u-u  
---u u-qu  
uuuu uuuu  
uu-u uuuu  
uuuu uuuu  
--uu uuuu  
-uu- u-uu  
---- --uu  
---u uuuu  
1111 1111  
---u --uu  
--uu -uuu  
--uu uuuu  
---- -uuu  
---- ----  
uuuu uuuu  
0Fh  
10h  
(1)  
TMR2  
11h  
(1)  
T2CON  
12h  
(1)  
(1)  
CCPR1L  
13h  
CCPR1H  
14h  
(1)  
CCP1CON  
15h  
(1)  
PWM1CON  
16h  
(1)  
ECCPAS  
17h  
VRCON  
19h  
CMCON0  
CMCON1  
1Ah  
1Ch  
(1)  
ADRESH  
1Eh  
(1)  
ADCON0  
1Fh  
OPTION_REG  
TRISIO  
PIE1  
81h  
85h  
8Ch  
(1, 5)  
PCON  
8Eh  
---- --uu  
OSCTUNE  
PR2  
90h  
---u uuuu  
1111 1111  
---0 --00  
--11 -111  
--00 0000  
---- -000  
---- ----  
0000 0000  
92h  
APFCON  
WPU  
93h  
95h  
IOC  
96h  
(6)  
PMCON1  
98h  
(6)  
PMCON2  
99h  
(6)  
PMADRL  
9Ah  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
4: See Table 12-6 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: For PIC12F617 only.  
DS41302D-page 116  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 12-5: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)(PIC12F615/617/HV615)  
Wake-up from Sleep through  
MCLR Reset  
Interrupt  
Register  
Address  
Power-on Reset  
WDT Reset (Continued)  
Wake-up from Sleep through  
WDT Time-out (Continued)  
(1)  
Brown-out Reset  
(6)  
PMADRH  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
---- -000  
0000 0000  
--00 0000  
xxxx xxxx  
-000 1111  
---- -000  
0000 0000  
--00 0000  
uuuu uuuu  
-000 1111  
---- -uuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu qqqq  
(6)  
(6)  
PMDATL  
PMDATH  
(1)  
ADRESL  
ANSEL  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
4: See Table 12-6 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: For PIC12F617 only.  
TABLE 12-6: INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
Status  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
---- --0x  
---- --uu  
MCLR Reset during normal operation  
---- --uu  
MCLR Reset during Sleep  
WDT Reset  
000h  
000h  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --uu  
---- --uu  
---- --10  
---- --uu  
WDT Wake-up  
PC + 1  
000h  
PC + 1(1)  
Brown-out Reset  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with  
the interrupt vector (0004h) after execution of PC + 1.  
2010 Microchip Technology Inc.  
DS41302D-page 117  
PIC12F609/615/617/12HV609/615  
Figure 12-8). The latency is the same for one or two-  
12.4 Interrupts  
cycle instructions. Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be  
determined by polling the interrupt flag bits. The  
interrupt flag bit(s) must be cleared in software before  
re-enabling interrupts to avoid multiple interrupt  
requests.  
The PIC12F609/615/617/12HV609/615 has 8 sources  
of interrupt:  
• External Interrupt GP2/INT  
• Timer0 Overflow Interrupt  
• GPIO Change Interrupts  
Note 1: Individual interrupt flag bits are set,  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
• Comparator Interrupt  
• A/D Interrupt (PIC12F615/617/HV615 only)  
• Timer1 Overflow Interrupt  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The interrupts, which were  
ignored, are still pending to be serviced  
when the GIE bit is set again.  
• Timer2 Match Interrupt (PIC12F615/617/HV615  
only)  
• Enhanced CCP Interrupt (PIC12F615/617/HV615  
only)  
• Flash Memory Self Write (PIC12F617 only)  
The Interrupt Control register (INTCON) and Peripheral  
Interrupt Request Register 1 (PIR1) record individual  
interrupt requests in flag bits. The INTCON register  
also has individual and global interrupt enable bits.  
For additional information on Timer1, Timer2,  
comparators, ADC, Enhanced CCP modules, refer to  
the respective peripheral section.  
12.4.1  
GP2/INT INTERRUPT  
The Global Interrupt Enable bit, GIE of the INTCON  
register, enables (if set) all unmasked interrupts, or  
disables (if cleared) all interrupts. Individual interrupts  
can be disabled through their corresponding enable  
bits in the INTCON register and PIE1 register. GIE is  
cleared on Reset.  
The external interrupt on the GP2/INT pin is edge-  
triggered; either on the rising edge if the INTEDG bit of  
the OPTION register is set, or the falling edge, if the  
INTEDG bit is clear. When a valid edge appears on the  
GP2/INT pin, the INTF bit of the INTCON register is set.  
This interrupt can be disabled by clearing the INTE  
control bit of the INTCON register. The INTF bit must  
be cleared by software in the Interrupt Service Routine  
before re-enabling this interrupt. The GP2/INT interrupt  
can wake-up the processor from Sleep, if the INTE bit  
was set prior to going into Sleep. See Section 12.7  
“Power-Down Mode (Sleep)” for details on Sleep and  
Figure 12-9 for timing of wake-up from Sleep through  
GP2/INT interrupt.  
When an interrupt is serviced, the following actions  
occur automatically:  
• The GIE is cleared to disable any further interrupt.  
• The return address is pushed onto the stack.  
• The PC is loaded with 0004h.  
The Return from Interrupt instruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables unmasked interrupts.  
The following interrupt flags are contained in the  
INTCON register:  
Note:  
The ANSEL register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’ and cannot generate an interrupt.  
• INT Pin Interrupt  
• GPIO Change Interrupt  
• Timer0 Overflow Interrupt  
The peripheral interrupt flags are contained in the  
special register, PIR1. The corresponding interrupt  
enable bit is contained in special register, PIE1.  
The following interrupt flags are contained in the PIR1  
register:  
• A/D Interrupt  
• Comparator Interrupt  
• Timer1 Overflow Interrupt  
• Timer2 Match Interrupt  
• Enhanced CCP Interrupt  
For external interrupt events, such as the INT pin or  
GPIO change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends upon when the interrupt event occurs (see  
DS41302D-page 118  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
12.4.2  
TIMER0 INTERRUPT  
12.4.3  
GPIO INTERRUPT-ON-CHANGE  
An overflow (FFh 00h) in the TMR0 register will set  
the T0IF bit of the INTCON register. The interrupt can  
be enabled/disabled by setting/clearing T0IE bit of the  
INTCON register. See Section 6.0 “Timer0 Module”  
for operation of the Timer0 module.  
An input change on GPIO sets the GPIF bit of the  
INTCON register. The interrupt can be enabled/  
disabled by setting/clearing the GPIE bit of the  
INTCON register. Plus, individual pins can be  
configured through the IOC register.  
Note:  
If a change on the I/O pin should occur  
when any GPIO operation is being  
executed, then the GPIF interrupt flag may  
not get set.  
FIGURE 12-7:  
INTERRUPT LOGIC  
IOC-GP0  
IOC0  
IOC-GP1  
IOC1  
IOC-GP2  
IOC2  
IOC-GP3  
IOC3  
IOC-GP4  
IOC4  
IOC-GP5  
IOC5  
(1)  
Wake-up (If in Sleep mode)  
T0IF  
T0IE  
TMR2IF  
TMR2IE  
only)  
(615/617  
INTF  
INTE  
GPIF  
Interrupt to CPU  
TMR1IF  
TMR1IE  
GPIE  
CMIF  
CMIE  
PEIE  
GIE  
ADIF  
ADIE  
(615/617 only)  
CCP1IF  
CCP1IE  
(615/617 only)  
Note 1: Some peripherals depend upon the system clock for  
operation. Since the system clock is suspended during Sleep, only  
those peripherals which do not depend upon the system clock will wake  
the part from Sleep. See Section 12.7.1 “Wake-up from Sleep”.  
2010 Microchip Technology Inc.  
DS41302D-page 119  
PIC12F609/615/617/12HV609/615  
FIGURE 12-8:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(2)  
(5)  
Interrupt Latency  
INTF flag  
(INTCON reg.)  
GIE bit  
(INTCON reg.)  
INSTRUCTION FLOW  
PC  
PC + 1  
0004h  
0005h  
PC  
Inst (PC)  
PC + 1  
Instruction  
Fetched  
Inst (PC + 1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC – 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency  
is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in INTOSC and RC Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 16.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
TABLE 12-7: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
INTCON GIE  
PEIE  
ADIF(1) CCP1IF(1)  
ADIE(1) CCP1IE(1)  
T0IE  
INTE  
IOC4  
GPIE  
IOC3  
CMIF  
CMIE  
T0IF  
IOC2  
INTF  
IOC1  
GPIF  
IOC0  
0000 0000 0000 0000  
--00 0000 --00 0000  
IOC  
IOC5  
PIR1  
PIE1  
TMR2IF(1) TMR1IF -00- 0-00 -000 0-00  
TMR2IE(1) TMR1IE -00- 0-00 -000 0-00  
Legend: x= unknown, u= unchanged, – = unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by the interrupt module.  
Note 1: PIC12F615/617/HV615 only.  
DS41302D-page 120  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
12.5 Context Saving During Interrupts  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key  
registers during an interrupt (e.g., W and STATUS  
registers). This must be implemented in software.  
Temporary  
holding  
registers  
W_TEMP  
and  
STATUS_TEMP should be placed in the last 16 bytes  
of GPR (see Figure 2-3). These 16 locations are  
common to all banks and do not require banking. This  
makes context save and restore operations simpler.  
The code shown in Example 12-1 can be used to:  
• Store the W register  
• Store the STATUS register  
• Execute the ISR code  
• Restore the Status (and Bank Select Bit register)  
• Restore the W register  
Note:  
The PIC12F609/615/617/12HV609/615  
does not require saving the PCLATH.  
However, if computed GOTOs are used in  
both the ISR and the main code, the  
PCLATH must be saved and restored in  
the ISR.  
EXAMPLE 12-1:  
SAVING STATUS AND W REGISTERS IN RAM  
MOVWF  
SWAPF  
W_TEMP  
STATUS,W  
;Copy W to TEMP register  
;Swap status to be saved into W  
;Swaps are used because they do not affect the status bits  
;Save status to bank zero STATUS_TEMP register  
MOVWF  
:
STATUS_TEMP  
:(ISR)  
:
;Insert user code here  
SWAPF  
STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
12.6.1  
WDT PERIOD  
12.6 Watchdog Timer (WDT)  
The WDT has a nominal time-out period of 18 ms (with  
no prescaler). The time-out periods vary with  
temperature, VDD and process variations from part to  
part (see DC specs). If longer time-out periods are  
desired, a prescaler with a division ratio of up to 1:128  
can be assigned to the WDT under software control by  
writing to the OPTION register. Thus, time-out periods  
up to 2.3 seconds can be realized.  
The Watchdog Timer is a free running, on-chip RC  
oscillator, which requires no external components. This  
RC oscillator is separate from the external RC oscillator  
of the CLKIN pin and INTOSC. That means that the  
WDT will run, even if the clock on the OSC1 and OSC2  
pins of the device has been stopped (for example, by  
execution of a SLEEPinstruction). During normal oper-  
ation, a WDT time out generates a device Reset. If the  
device is in Sleep mode, a WDT time out causes the  
device to wake-up and continue with normal operation.  
The WDT can be permanently disabled by program-  
ming the Configuration bit, WDTE, as clear  
(Section 12.1 “Configuration Bits”).  
The CLRWDT and SLEEP instructions clear the WDT  
and the prescaler, if assigned to the WDT, and prevent  
it from timing out and generating a device Reset.  
The TO bit in the STATUS register will be cleared upon  
a Watchdog Timer time out.  
2010 Microchip Technology Inc.  
DS41302D-page 121  
PIC12F609/615/617/12HV609/615  
12.6.2  
WDT PROGRAMMING  
CONSIDERATIONS  
It should also be taken in account that under worst-  
case conditions (i.e., VDD = Min., Temperature = Max.,  
Max. WDT prescaler) it may take several seconds  
before a WDT time out occurs.  
FIGURE 12-2:  
WATCHDOG TIMER BLOCK DIAGRAM  
CLKOUT  
(= FOSC/4)  
Data Bus  
8
0
1
1
0
SYNC 2  
Cycles  
TMR0  
T0CKI  
pin  
0
1
Set Flag bit T0IF  
on Overflow  
T0CS  
T0SE  
8-bit  
Prescaler  
PSA  
8
PSA  
3
1
0
PS<2:0>  
WDT  
Time-Out  
Watchdog  
Timer  
PSA  
WDTE  
Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register.  
TABLE 12-8: WDT STATUS  
Conditions  
WDT  
WDTE = 0  
CLRWDTCommand  
Cleared  
Oscillator Fail Detected  
Exit Sleep + System Clock = T1OSC, EXTRC, INTRC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
TABLE 12-9: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OPTION_REG GPPU INTEDG T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111 1111 1111  
CONFIG  
IOSCFS  
CP  
MCLRE PWRTE WDTE  
FOSC2 FOSC1  
FOSC0  
Legend:  
Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 12-1 for operation of all Configuration Word register bits.  
DS41302D-page 122  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
When the SLEEPinstruction is being executed, the next  
12.7 Power-Down Mode (Sleep)  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction, then branches to the interrupt  
address (0004h). In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
The Power-Down mode is entered by executing a  
SLEEPinstruction.  
If the Watchdog Timer is enabled:  
• WDT will be cleared but keeps running.  
• PD bit in the STATUS register is cleared.  
• TO bit is set.  
• Oscillator driver is turned off.  
• I/O ports maintain the status they had before SLEEP  
was executed (driving high, low or high-impedance).  
Note:  
If the global interrupts are disabled (GIE is  
cleared) and any interrupt source has both  
its interrupt enable bit and the correspond-  
ing interrupt flag bits set, the device will  
immediately wake-up from Sleep.  
For lowest current consumption in this mode, all I/O pins  
should be either at VDD or VSS, with no external circuitry  
drawing current from the I/O pin and the comparators  
and CVREF should be disabled. I/O pins that are high-  
impedance inputs should be pulled high or low externally  
to avoid switching currents caused by floating inputs.  
The T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip pull-  
ups on GPIO should be considered.  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
12.7.2  
WAKE-UP USING INTERRUPTS  
The MCLR pin must be at a logic high level.  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
Note:  
It should be noted that a Reset generated  
by a WDT time-out does not drive MCLR  
pin low.  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP. Therefore, the WDT and WDT  
prescaler and postscaler (if enabled) will not be  
cleared, the TO bit will not be set and the PD bit  
will not be cleared.  
12.7.1  
WAKE-UP FROM SLEEP  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin.  
• If the interrupt occurs during or after the  
execution of a SLEEPinstruction, the device will  
Immediately wake-up from Sleep. The SLEEP  
instruction is executed. Therefore, the WDT and  
WDT prescaler and postscaler (if enabled) will be  
cleared, the TO bit will be set and the PD bit will  
be cleared.  
2. Watchdog Timer wake-up (if WDT was  
enabled).  
3. Interrupt from GP2/INT pin, GPIO change or a  
peripheral interrupt.  
The first event will cause a device Reset. The two latter  
events are considered a continuation of program  
execution. The TO and PD bits in the STATUS register  
can be used to determine the cause of device Reset.  
The PD bit, which is set on power-up, is cleared when  
Sleep is invoked. TO bit is cleared if WDT wake-up  
occurred.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
The following peripheral interrupts can wake the device  
from Sleep:  
To ensure that the WDT is cleared, a CLRWDTinstruction  
should be executed before a SLEEP instruction. See  
Figure 12-9 for more details.  
1. Timer1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
2. ECCP Capture mode interrupt.  
3. A/D conversion (when A/D clock source is RC).  
4. Comparator output changes state.  
5. Interrupt-on-change.  
6. External Interrupt from INT pin.  
Other peripherals cannot generate interrupts since  
during Sleep, no on-chip clocks are present.  
2010 Microchip Technology Inc.  
DS41302D-page 123  
PIC12F609/615/617/12HV609/615  
FIGURE 12-9:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTF flag  
(INTCON reg.)  
Interrupt Latency(3)  
GIE bit  
(INTCON reg.)  
Processor in  
Sleep  
Instruction Flow  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Sleep  
Inst(PC + 1)  
Inst(PC – 1)  
Inst(0004h)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC, INTOSC and RC Oscillator modes.  
3: GIE = ‘1’ assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = ‘0’, execution will continue in-line.  
4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.  
12.8 Code Protection  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out using ICSPfor verification purposes.  
Note:  
The entire Flash program memory will be  
erased when the code protection is turned  
off. See the MemoryProgramming  
Specification  
(DS41204)  
for  
more  
information.  
12.9 ID Locations  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution but are  
readable and writable during Program/Verify mode.  
Only the Least Significant 7 bits of the ID locations are  
used.  
DS41302D-page 124  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
12.10 In-Circuit Serial Programming™  
12.11 In-Circuit Debugger  
ThePIC12F609/615/617/12HV609/615  
microcontrollers can be serially programmed while in  
the end application circuit. This is simply done with five  
connections for:  
Since in-circuit debugging requires access to three pins,  
MPLAB® ICD 2 development with an 14-pin device is  
not practical. A special 28-pin PIC12F609/615/617/  
12HV609/615 ICD device is used with MPLAB ICD 2 to  
provide separate clock, data and MCLR pins and frees  
all normally available pins to the user.  
• clock  
• data  
A special debugging adapter allows the ICD device to  
be used in place of a PIC12F609/615/617/12HV609/  
615 device. The debugging adapter is the only source  
of the ICD device.  
• power  
• ground  
• programming voltage  
This allows customers to manufacture boards with  
unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
When the ICD pin on the PIC12F609/615/617/  
12HV609/615 ICD device is held low, the In-Circuit  
Debugger functionality is enabled. This function allows  
simple debugging functions when used with MPLAB  
ICD 2. When the microcontroller has this feature  
enabled, some of the resources are not available for  
general use. Table 12-10 shows which features are  
consumed by the background debugger.  
The device is placed into a Program/Verify mode by  
holding the GP0 and GP1 pins low, while raising the  
MCLR (VPP) pin from VIL to VIHH. See the Memory  
Programming Specification (DS41284) for more  
information. GP0 becomes the programming data and  
GP1 becomes the programming clock. Both GP0 and  
GP1 are Schmitt Trigger inputs in Program/Verify  
mode.  
TABLE 12-10: DEBUGGER RESOURCES  
Resource  
Description  
I/O pins  
Stack  
ICDCLK, ICDDATA  
1 level  
A typical In-Circuit Serial Programming connection is  
shown in Figure 12-10.  
Program Memory Address 0h must be NOP  
700h-7FFh  
FIGURE 12-10:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
For more information, see “MPLAB® ICD 2 In-Circuit  
Debugger User’s Guide” (DS51331), available on  
Microchip’s web site (www.microchip.com).  
To Normal  
Connections  
FIGURE 12-11:  
28-Pin PDIP  
28 PIN ICD PINOUT  
External  
Connector  
Signals  
PIC12F617/  
PIC12F615/12HV615  
*
PIC12F609/12HV609  
In-Circuit Debug Device  
+5V  
0V  
VDD  
VSS  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VDD  
CS0  
GND  
RA0  
RA1  
SHUNTEN  
RA2  
RC0  
RC1  
RC2  
NC  
VPP  
MCLR/VPP/GP3/RA3  
2
3
CS1  
GP1  
GP0  
CLK  
4
CS2  
Data I/O  
5
RA5  
6
RA4  
7
RA3  
8
RC5  
9
RC4  
*
*
*
10  
11  
12  
13  
14  
RC3  
NC  
ICDCLK  
ICDMCLR  
ICDDATA  
NC  
NC  
NC  
NC  
To Normal  
Connections  
ICD  
* Isolation devices (as required)  
Note:  
To erase the device VDD must be above  
the Bulk Erase VDD minimum given in the  
Memory  
Programming  
Specification  
(DS41284)  
2010 Microchip Technology Inc.  
DS41302D-page 125  
PIC12F609/615/617/12HV609/615  
NOTES:  
DS41302D-page 126  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
An external current limiting resistor, RSER, located  
13.0 VOLTAGE REGULATOR  
between the unregulated supply, VUNREG, and the VDD  
pin, drops the difference in voltage between VUNREG  
and VDD. RSER must be between RMAX and RMIN as  
defined by Equation 13-1.  
The PIC12HV609/HV615 devices include a permanent  
internal 5 volt (nominal) shunt regulator in parallel with  
the VDD pin. This eliminates the need for an external  
voltage regulator in systems sourced by an  
unregulated supply. All external devices connected  
directly to the VDD pin will share the regulated supply  
voltage and contribute to the total VDD supply current  
(ILOAD).  
EQUATION 13-1: RSER LIMITING RESISTOR  
(VUMIN - 5V)  
RMAX =  
1.05 • (4 MA + ILOAD)  
13.1 Regulator Operation  
(VUMAX - 5V)  
RMIN =  
A shunt regulator generates a specific supply voltage  
by creating a voltage drop across a pass resistor RSER.  
The voltage at the VDD pin of the microcontroller is  
monitored and compared to an internal voltage refer-  
ence. The current through the resistor is then adjusted,  
based on the result of the comparison, to produce a  
voltage drop equal to the difference between the supply  
voltage VUNREG and the VDD of the microcontroller.  
See Figure 13-1 for voltage regulator schematic.  
0.95 • (50 MA)  
Where:  
RMAX = maximum value of RSER (ohms)  
RMIN = minimum value of RSER (ohms)  
VUMIN = minimum value of VUNREG  
VUMAX = maximum value of VUNREG  
VDD  
= regulated voltage (5V nominal)  
FIGURE 13-1:  
VOLTAGE REGULATOR  
ILOAD = maximum expected load current in mA  
including I/O pin currents and external  
circuits connected to VDD.  
VUNREG  
ILOAD  
RSER  
ISUPPLY  
1.05 = compensation for +5% tolerance of RSER  
0.95 = compensation for -5% tolerance of RSER  
VDD  
ISHUNT  
CBYPASS  
Feedback  
13.2 Regulator Considerations  
VSS  
The supply voltage VUNREG and load current are not  
constant. Therefore, the current range of the regulator  
is limited. Selecting a value for RSER must take these  
three factors into consideration.  
Device  
Since the regulator uses the band gap voltage as the  
regulated voltage reference, this voltage reference is  
permanently enabled in the PIC12HV609/HV615  
devices.  
The shunt regulator will still consume current when  
below operating voltage range for the shunt regulator.  
13.3 Design Considerations  
For more information on using the shunt regulator and  
managing current load, see Application Note AN1035,  
Designing with HV Microcontrollers” (DS01035).  
2010 Microchip Technology Inc.  
DS41302D-page 127  
PIC12F609/615/617/12HV609/615  
NOTES:  
DS41302D-page 128  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 14-1: OPCODE FIELD  
14.0 INSTRUCTION SET SUMMARY  
DESCRIPTIONS  
The PIC12F609/615/617/12HV609/615 instruction set  
is highly orthogonal and is comprised of three basic  
categories:  
Field  
Description  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Byte-oriented operations  
Bit-oriented operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Literal and control operations  
k
Each PIC16 instruction is a 14-bit word divided into an  
opcode, which specifies the instruction type and one or  
more operands, which further specify the operation of  
the instruction. The formats for each of the categories  
is presented in Figure 14-1, while the various opcode  
fields are summarized in Table 14-1.  
x
Don’t care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
Table 14-2 lists the instructions recognized by the  
MPASMTM assembler.  
PC  
TO  
C
Program Counter  
Time-out bit  
Carry bit  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
DC  
Z
Digit carry bit  
Zero bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
PD  
Power-down bit  
FIGURE 14-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ‘b’ represents a bit field  
designator, which selects the bit affected by the  
operation, while ‘f’ represents the address of the file in  
which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
OPCODE  
d
f (FILE #)  
For literal and control operations, ‘k’ represents an  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
8-bit or 11-bit constant, or literal value.  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a normal  
instruction execution time of 1 s. All instructions are  
executed within a single instruction cycle, unless a  
conditional test is true, or the program counter is  
changed as a result of an instruction. When this occurs,  
the execution takes two instruction cycles, with the  
second cycle executed as a NOP.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
Literal and control operations  
General  
13  
8
7
0
0
OPCODE  
k (literal)  
14.1 Read-Modify-Write Operations  
k = 8-bit immediate value  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (RMW)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
For example, a CLRF GPIOinstruction will read GPIO,  
clear all the data bits, then write the result back to  
GPIO. This example would have the unintended  
consequence of clearing the condition that set the  
GPIF flag.  
2010 Microchip Technology Inc.  
DS41302D-page 129  
PIC12F609/615/617/12HV609/615  
TABLE 14-2: PIC12F609/615/617/12HV609/615 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
1, 2  
1, 2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1, 2  
1, 2  
1, 2, 3  
1, 2  
1, 2, 3  
1, 2  
1, 2  
Z
Z
Z
Move W to f  
No Operation  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
00 0010 dfff ffff C, DC, Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1, 2  
1, 2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Call Subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C, DC, Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO, PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO, PD  
11 110x kkkk kkkk C, DC, Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
DS41302D-page 130  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
14.2 Instruction Descriptions  
BCF  
Bit Clear f  
ADDLW  
Add literal and W  
Syntax:  
[ label ] BCF f,b  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) + k (W)  
C, DC, Z  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal ‘k’  
and the result is placed in the  
W register.  
Bit ‘b’ in register ‘f’ is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d 0,1  
Operation:  
1(f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit ‘b’ in register ‘f’ is set.  
Description:  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If  
‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
BTFSC  
Bit Test f, Skip if Clear  
ANDLW  
AND literal with W  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 0  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is discarded, and a NOP  
is executed instead, making this a  
two-cycle instruction.  
ANDWF  
AND W with f  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
d 0,1  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
AND the W register with register  
‘f’. If ‘d’ is ‘0’, the result is stored in  
the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
2010 Microchip Technology Inc.  
DS41302D-page 131  
PIC12F609/615/617/12HV609/615  
CLRWDT  
Clear Watchdog Timer  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[ label ] CLRWDT  
Syntax:  
[ label ] BTFSS f,b  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
0 b < 7  
00h WDT  
0WDT prescaler,  
1TO  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
1PD  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
Status Affected: TO, PD  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets  
the prescaler of the WDT.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction.  
Status bits TO and PD are set.  
CALL  
Call Subroutine  
COMF  
Complement f  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in  
register ‘f’.  
Description:  
Call Subroutine. First, return  
address (PC + 1) is pushed onto  
the stack. The eleven-bit  
immediate address is loaded into  
PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two-cycle instruction.  
CLRF  
Clear f  
DECF  
Decrement f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are  
cleared and the Z bit is set.  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
DS41302D-page 132  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, then a NOPis  
executed instead, making it a  
two-cycle instruction.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, a NOPis executed  
instead, making it a two-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the  
W register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a  
two-cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
2010 Microchip Technology Inc.  
DS41302D-page 133  
PIC12F609/615/617/12HV609/615  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
MOVF  
Move f  
Syntax:  
f
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
0 f 127  
d [0,1]  
Operation:  
(f) (dest)  
None  
Status Affected:  
Description:  
Z
Move data from W register to  
register ‘f’.  
The contents of register ‘f’ is  
moved to a destination dependent  
upon the status of ‘d’. If d = 0,  
destination is W register. If d = 1,  
the destination is file register ‘f’  
itself. d = 1is useful to test a file  
register since Status flag Z is  
affected.  
Words:  
1
1
Cycles:  
Example:  
MOVW  
F
OPTION  
Before Instruction  
OPTION = 0xFF  
Words:  
1
1
W
=
0x4F  
After Instruction  
Cycles:  
Example:  
OPTION = 0x4F  
W
MOVF  
FSR, 0  
=
0x4F  
After Instruction  
W
=
value in FSR  
register  
Z
=
1
MOVLW  
Syntax:  
Move literal to W  
NOP  
No Operation  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] NOP  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
k (W)  
No operation  
Status Affected: None  
None  
Description:  
The eight-bit literal ‘k’ is loaded into  
W register. The “don’t cares” will  
assemble as ‘0’s.  
No operation.  
1
Cycles:  
1
Words:  
1
1
NOP  
Example:  
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
DS41302D-page 134  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RETLW  
Return with literal in W  
[ label ] RETLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC,  
1GIE  
k (W);  
TOS PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
Return from Interrupt. Stack is  
POPed and Top-of-Stack (TOS)  
is loaded in the PC. Interrupts are  
enabled by setting Global  
Interrupt Enable bit, GIE (INT-  
CON<7>). This is a two-cycle  
instruction.  
The W register is loaded with the  
eight-bit literal ‘k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
CALL TABLE;W contains  
Cycles:  
Example:  
2
;table offset  
;value  
RETFIE  
GOTO DONE  
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
After Interrupt  
PC = TOS  
TABLE  
GIE =  
1
RETLW k2  
;
RETLW kn ;End of table  
DONE  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
RETURN  
Return from Subroutine  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
TOS PC  
Status Affected: None  
Description: Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
2010 Microchip Technology Inc.  
DS41302D-page 135  
PIC12F609/615/617/12HV609/615  
RLF  
Rotate Left f through Carry  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0PD  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD  
is cleared. Time-out Status bit,  
TO is set. Watchdog Timer and  
its prescaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
C
Register f  
Words:  
1
1
Cycles:  
Example:  
RLF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
SUBLW  
Subtract W from literal  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Syntax:  
[ label ] RRF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
k - (W) W)  
Operation:  
See description below  
C
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Description: The W register is subtracted (2’s  
complement method) from the  
eight-bit literal ‘k’. The result is  
placed in the W register.  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is placed  
back in register ‘f’.  
Result  
Condition  
C = 0  
W k  
C
Register f  
C = 1  
W k  
DC = 0  
DC = 1  
W<3:0> k<3:0>  
W<3:0> k<3:0>  
DS41302D-page 136  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
SUBWF  
Subtract W from f  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - (W) destination)  
Operation:  
(W) .XOR. (f) destination)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Z
Description:  
Subtract (2’s complement method)  
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
W register from register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
C = 0  
W f  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> f<3:0>  
W<3:0> f<3:0>  
SWAPF  
Swap Nibbles in f  
Syntax:  
[ label ] SWAPF f,d  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Status Affected: None  
Description:  
The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in the W  
register. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k W)  
Z
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
2010 Microchip Technology Inc.  
DS41302D-page 137  
PIC12F609/615/617/12HV609/615  
NOTES:  
DS41302D-page 138  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
15.1 MPLAB Integrated Development  
Environment Software  
15.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- HI-TECH C for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2010 Microchip Technology Inc.  
DS41302D-page 139  
PIC12F609/615/617/12HV609/615  
15.2 MPLAB C Compilers for Various  
Device Families  
15.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
15.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
15.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
15.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS41302D-page 140  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
15.7 MPLAB SIM Software Simulator  
15.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
15.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
15.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers signifi-  
cant advantages over competitive emulators including  
low-cost, full-speed emulation, run-time variable  
watches, trace analysis, complex breakpoints, a rugge-  
dized probe interface and long (up to three meters) inter-  
connection cables.  
2010 Microchip Technology Inc.  
DS41302D-page 141  
PIC12F609/615/617/12HV609/615  
15.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
15.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
15.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS41302D-page 142  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
16.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias..........................................................................................................-40° to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS ................................................................................................... -0.3V to +6.5V  
Voltage on MCLR with respect to Vss ............................................................................................... -0.3V to +13.5V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ...............................................................................................................................800 mW  
Maximum current out of VSS pin ...................................................................................................................... 95 mA  
Maximum current into VDD pin ......................................................................................................................... 95 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)20 mA  
Output clamp current, IOK (Vo < 0 or Vo >VDD)20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sunk by GPIO...................................................................................................................... 90 mA  
Maximum current sourced GPIO...................................................................................................................... 90 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x  
IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for  
extended periods may affect device reliability.  
2010 Microchip Technology Inc.  
DS41302D-page 143  
PIC12F609/615/617/12HV609/615  
FIGURE 16-1:  
PIC12F609/615/617 VOLTAGE-FREQUENCY GRAPH,  
-40°C TA +125°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
0
8
10  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 16-2:  
PIC12HV609/615 VOLTAGE-FREQUENCY GRAPH,  
-40°C TA +125°C  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
0
8
10  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
DS41302D-page 144  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
16.1 DC Characteristics: PIC12F609/615/617/12HV609/615-I (Industrial)  
PIC12F609/615/617/12HV609/615-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
Sym  
Characteristic  
Min Typ† Max Units  
Conditions  
No.  
VDD  
Supply Voltage  
D001  
PIC12F609/615/617  
PIC12HV609/615  
PIC12F609/615/617  
PIC12HV609/615  
PIC12F609/615/617  
PIC12HV609/615  
PIC12F609/615/617  
PIC12HV609/615  
2.0  
2.0  
2.0  
2.0  
3.0  
3.0  
4.5  
4.5  
1.5  
5.5  
V
V
V
V
V
V
V
V
V
FOSC < = 4 MHz  
(2)  
D001  
FOSC < = 4 MHz  
FOSC < = 8 MHz  
FOSC < = 8 MHz  
FOSC < = 10 MHz  
FOSC < = 10 MHz  
FOSC < = 20 MHz  
FOSC < = 20 MHz  
Device in Sleep mode  
D001B  
D001B  
D001C  
D001C  
D001D  
D001D  
5.5  
(2)  
5.5  
(2)  
5.5  
(2)  
D002* VDR  
RAM Data Retention  
Voltage(1)  
D003 VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See Section 12.3.1 “Power-on Reset  
(POR)” for details.  
D004* SVDD  
VDD Rise Rate to ensure  
internal Power-on Reset  
signal  
0.05  
V/ms See Section 12.3.1 “Power-on Reset  
(POR)” for details.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
2: User defined. Voltage across the shunt regulator should not exceed 5V.  
2010 Microchip Technology Inc.  
DS41302D-page 145  
PIC12F609/615/617/12HV609/615  
16.2 DC Characteristics: PIC12F609/615/617-I (Industrial)  
PIC12F609/615/617-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Units  
Device Characteristics  
Min  
Typ†  
Max  
No.  
VDD  
Note  
13  
19  
25  
D010  
Supply Current (IDD)(1, 2)  
A  
A  
A  
A  
A  
A  
A  
A  
mA  
A  
A  
A  
A  
A  
mA  
A  
A  
mA  
A  
mA  
mA  
A  
A  
A  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
FOSC = 32 kHz  
LP Oscillator mode  
PIC12F609/615/617  
29  
32  
51  
D011*  
D012  
D013*  
D014  
D016*  
D017  
D018  
D019  
135  
185  
300  
240  
360  
0.66  
75  
225  
285  
405  
360  
505  
1.0  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
110  
255  
530  
255  
475  
1.0  
FOSC = 1 MHz  
EC Oscillator mode  
155  
345  
185  
325  
0.665  
245  
360  
FOSC = 4 MHz  
EC Oscillator mode  
340  
485  
FOSC = 4 MHz  
INTOSC mode  
0.620 0.845  
395 550  
0.620 0.850  
FOSC = 8 MHz  
INTOSC mode  
1.2  
175  
285  
530  
2.2  
1.6  
235  
390  
750  
3.1  
FOSC = 4 MHz  
EXTRC mode(3)  
FOSC = 20 MHz  
HS Oscillator mode  
2.8  
3.35  
mA  
5.0  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-  
rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current con-  
sumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in KOhms (K  
DS41302D-page 146  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
16.3 DC Characteristics: PIC12HV609/615-I (Industrial)  
PIC12HV609/615-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Units  
Device Characteristics  
Min  
Typ†  
Max  
No.  
VDD  
Note  
160  
240  
280  
270  
400  
520  
380  
575  
0.875  
215  
375  
570  
330  
550  
0.85  
310  
500  
0.74  
460  
0.75  
1.2  
230  
310  
400  
380  
560  
780  
540  
810  
1.3  
D010  
Supply Current (IDD)(1, 2)  
A  
A  
A  
A  
A  
A  
A  
A  
mA  
A  
A  
A  
A  
A  
mA  
A  
A  
mA  
A  
mA  
mA  
A  
A  
mA  
mA  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
4.5  
FOSC = 32 kHz  
LP Oscillator mode  
PIC12HV609/615  
D011*  
D012  
D013*  
D014  
D016*  
D017  
D018  
D019  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
310  
565  
870  
475  
800  
1.2  
FOSC = 1 MHz  
EC Oscillator mode  
FOSC = 4 MHz  
EC Oscillator mode  
435  
700  
1.1  
FOSC = 4 MHz  
INTOSC mode  
650  
1.1  
FOSC = 8 MHz  
INTOSC mode  
1.6  
320  
510  
0.770  
2.5  
465  
750  
1.0  
FOSC = 4 MHz  
EXTRC mode(3)  
3.4  
FOSC = 20 MHz  
HS Oscillator mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave,  
from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be extended by the formula IR = VDD/2REXT (mA) with REXT in k  
2010 Microchip Technology Inc.  
DS41302D-page 147  
PIC12F609/615/617/12HV609/615  
16.4 DC Characteristics: PIC12F609/615/617 - I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
Conditions  
Param  
No.  
Device Characteristics  
Min  
Typ†  
Max  
Units  
VDD  
Note  
D020  
D021  
Power-down Base  
Current (IPD)(2)  
0.05  
0.9  
A  
2.0  
WDT, BOR, Comparator, VREF and  
T1OSC disabled  
0.15  
0.35  
150  
1.2  
1.5  
500  
A  
A  
nA  
3.0  
5.0  
3.0  
PIC12F609/615/617  
-40°C TA +25°C for industrial  
WDT Current(1)  
0.5  
2.5  
9.5  
5.0  
6.0  
50  
1.5  
4.0  
17  
9
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
D022  
D023  
BOR Current(1)  
12  
60  
65  
75  
40  
60  
105  
50  
80  
130  
10  
12  
14  
1.6  
1.9  
Comparator Current(1), single  
comparator enabled  
55  
60  
D024  
D025*  
D026  
D027  
30  
CVREF Current(1) (high range)  
CVREF Current(1) (low range)  
T1OSC Current(1), 32.768 kHz  
45  
75  
39  
59  
98  
5.5  
7.0  
8.5  
0.2  
0.36  
A/D Current(1), no conversion in  
progress  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41302D-page 148  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
16.5 DC Characteristics: PIC12F609/615/617 - E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C for extended  
Conditions  
Units  
Param  
No.  
Device Characteristics  
Min  
Typ†  
Max  
VDD  
Note  
D020E Power-down Base  
Current (IPD)(2)  
0.05  
0.15  
0.35  
0.5  
2.5  
9.5  
5.0  
6.0  
50  
4.0  
5.0  
8.5  
5.0  
8.0  
19  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOR, Comparator, VREF and  
T1OSC disabled  
PIC12F609/615/617  
D021E  
WDT Current(1)  
BOR Current(1)  
D022E  
D023E  
15  
19  
70  
Comparator Current(1), single  
comparator enabled  
55  
75  
60  
80  
D024E  
D025E*  
D026E  
D027E  
30  
40  
CVREF Current(1) (high range)  
CVREF Current(1) (low range)  
T1OSC Current(1), 32.768 kHz  
45  
60  
75  
105  
50  
39  
59  
80  
98  
130  
16  
5.5  
7.0  
8.5  
0.2  
0.36  
18  
22  
6.5  
10  
A/D Current(1), no conversion in  
progress  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
2010 Microchip Technology Inc.  
DS41302D-page 149  
PIC12F609/615/617/12HV609/615  
16.6 DC Characteristics: PIC12HV609/615 - I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
Conditions  
Param  
No.  
Device Characteristics  
Min  
Typ†  
Max  
Units  
VDD  
Note  
D020  
Power-down Base  
Current (IPD)(2,3)  
135  
200  
A  
2.0  
WDT, BOR, Comparator, VREF and  
T1OSC disabled  
210  
260  
135  
210  
265  
215  
265  
185  
265  
320  
165  
255  
330  
175  
275  
355  
140  
220  
270  
210  
260  
280  
350  
200  
285  
360  
285  
360  
270  
350  
430  
235  
330  
430  
245  
350  
450  
205  
290  
360  
280  
350  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
3.0  
4.5  
2.0  
3.0  
4.5  
3.0  
4.5  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
3.0  
4.5  
PIC12HV609/615  
D021  
WDT Current(1)  
BOR Current(1)  
D022  
D023  
Comparator Current(1), single  
comparator enabled  
D024  
D025*  
D026  
D027  
CVREF Current(1) (high range)  
CVREF Current(1) (low range)  
T1OSC Current(1), 32.768 kHz  
A/D Current(1), no conversion in  
progress  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: Shunt regulator is always on and always draws operating current.  
DS41302D-page 150  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
16.7 DC Characteristics: PIC12HV609/615-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C for extended  
Conditions  
Units  
Param  
No.  
Device Characteristics Min  
Typ†  
Max  
VDD  
Note  
D020E Power-down Base  
Current (IPD)(2,3)  
135  
210  
260  
135  
210  
265  
215  
265  
185  
265  
320  
165  
255  
330  
175  
275  
355  
140  
220  
270  
210  
260  
200  
280  
350  
200  
285  
360  
285  
360  
280  
360  
430  
235  
330  
430  
245  
350  
450  
205  
290  
360  
280  
350  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
3.0  
4.5  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
2.0  
3.0  
4.5  
3.0  
4.5  
WDT, BOR, Comparator, VREF and  
T1OSC disabled  
PIC12HV609/615  
D021E  
WDT Current(1)  
BOR Current(1)  
D022E  
D023E  
Comparator Current(1), single  
comparator enabled  
D024E  
D025E*  
D026E  
D027E  
CVREF Current(1) (high range)  
CVREF Current(1) (low range)  
T1OSC Current(1), 32.768 kHz  
A/D Current(1), no conversion in  
progress  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: Shunt regulator is always on and always draws operating current.  
2010 Microchip Technology Inc.  
DS41302D-page 151  
PIC12F609/615/617/12HV609/615  
16.8 DC Characteristics: PIC12F609/615/617/12HV609/615-I (Industrial)  
PIC12F609/615/617/12HV609/615-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O port:  
with TTL buffer  
D030  
D030A  
D031  
D032  
D033  
D033A  
Vss  
Vss  
Vss  
VSS  
VSS  
VSS  
0.8  
V
V
V
V
V
V
4.5V VDD 5.5V  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3  
2.0V VDD 4.5V  
2.0V VDD 5.5V  
(NOTE 1)  
with Schmitt Trigger buffer  
MCLR, OSC1 (RC mode)  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
0.3 VDD  
VIH  
Input High Voltage  
I/O ports:  
D040  
with TTL buffer  
2.0  
0.25 VDD + 0.8  
0.8 VDD  
0.8 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
4.5V VDD 5.5V  
2.0V VDD 4.5V  
2.0V VDD 5.5V  
D040A  
D041  
with Schmitt Trigger buffer  
MCLR  
D042  
D043  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
D043A  
D043B  
0.7 VDD  
0.9 VDD  
OSC1 (RC mode)  
(NOTE 1)  
(2,3)  
IIL  
Input Leakage Current  
D060  
I/O ports  
0.1  
1  
A VSS VPIN VDD,  
Pin at high-impedance  
(3,4)  
D061  
D063  
GP3/MCLR  
0.7  
0.1  
5  
5  
A VSS VPIN VDD  
OSC1  
A VSS VPIN VDD, XT, HS and  
LP oscillator configuration  
(5)  
D070* IPUR  
VOL  
GPIO Weak Pull-up Current  
Output Low Voltage  
50  
250  
400  
0.6  
A VDD = 5.0V, VPIN = VSS  
V
V
V
V
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D080  
I/O ports  
0.6  
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
VOH  
Output High Voltage  
VDD – 0.7  
VDD – 0.7  
IOH = -2.5mA, VDD = 4.5V,  
-40°C to +125°C  
(2)  
D090  
I/O ports  
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: This specification applies to GP3/MCLR configured as GP3 with the internal weak pull-up disabled.  
5: This specification applies to all weak pull-up pins, including the weak pull-up found on GP3/MCLR. When GP3/MCLR is  
configured as MCLR reset pin, the weak pull-up is always enabled.  
6: Applies to PIC12F617 only.  
DS41302D-page 152  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
16.8 DC Characteristics: PIC12F609/615/617/12HV609/615-I (Industrial)  
PIC12F609/615/617/12HV609/615-E (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Capacitive Loading Specs on  
D101* COSC2 Output Pins  
15  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
OSC2 pin  
D101A* CIO  
All I/O pins  
50  
pF  
Program Flash Memory  
Cell Endurance  
Cell Endurance  
VDD for Read  
D130  
EP  
10K  
1K  
100K  
10K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D130A ED  
D131  
D132  
VPR  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
VPEW  
VDD for Bulk Erase/Write  
4.5  
VMIN  
2
5.5  
5.5  
2.5  
V
V
(6)  
D132A VPEW  
VDD for Row Erase/Write  
Erase/Write cycle time  
Characteristic Retention  
D133  
D134  
TPEW  
ms  
TRETD  
40  
Year Provided no other specifications  
are violated  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: This specification applies to GP3/MCLR configured as GP3 with the internal weak pull-up disabled.  
5: This specification applies to all weak pull-up pins, including the weak pull-up found on GP3/MCLR. When GP3/MCLR is  
configured as MCLR reset pin, the weak pull-up is always enabled.  
6: Applies to PIC12F617 only.  
2010 Microchip Technology Inc.  
DS41302D-page 153  
PIC12F609/615/617/12HV609/615  
16.9 Thermal Considerations  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Typ  
Units  
Conditions  
8-pin PDIP package  
TH01  
TH02  
JA  
Thermal Resistance  
Junction to Ambient  
84.6*  
149.5*  
211*  
60*  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C
8-pin SOIC package  
8-pin MSOP package  
8-pin DFN 3x3mm package  
8-pin DFN 4x4mm package  
8-pin PDIP package  
44*  
JC  
Thermal Resistance  
Junction to Case  
41.2*  
39.9*  
39*  
8-pin SOIC package  
8-pin MSOP package  
9*  
8-pin DFN 3x3mm package  
8-pin DFN 4x4mm package  
3.0*  
150*  
TH03  
TH04  
TH05  
TDIE  
PD  
Die Temperature  
Power Dissipation  
W
PD = PINTERNAL + PI/O  
PINTERNAL Internal Power Dissipation  
W
PINTERNAL = IDD x VDD  
(NOTE 1)  
TH06  
TH07  
PI/O  
I/O Power Dissipation  
Derated Power  
W
W
PI/O = (IOL * VOL) + (IOH * (VDD -  
VOH))  
PDER  
PDER = PDMAX (TDIE - TA)/JA  
(NOTE 2)  
*
These parameters are characterized but not tested.  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient temperature.  
DS41302D-page 154  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
16.10 Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O Port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 16-3:  
LOAD CONDITIONS  
Load Condition  
Pin  
CL  
VSS  
Legend: CL=50 pF for all pins  
15 pF for OSC2 output  
2010 Microchip Technology Inc.  
DS41302D-page 155  
PIC12F609/615/617/12HV609/615  
16.11 AC Characteristics: PIC12F609/615/617/12HV609/615 (Industrial, Extended)  
FIGURE 16-4:  
CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1/CLKIN  
OS02  
OS04  
OS04  
OS03  
OSC2/CLKOUT  
(LP,XT,HS Modes)  
OSC2/CLKOUT  
(CLKOUT Mode)  
TABLE 16-1: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
kHz  
Conditions  
(1)  
OS01  
FOSC  
TOSC  
TCY  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
37  
4
LP Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz EC Oscillator mode  
20  
20  
4
(1)  
Oscillator Frequency  
32.768  
kHz  
LP Oscillator mode  
0.1  
1
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz RC Oscillator mode  
20  
4
DC  
27  
250  
50  
50  
(1)  
OS02  
External CLKIN Period  
s  
ns  
ns  
ns  
s  
ns  
ns  
ns  
ns  
s  
ns  
ns  
ns  
ns  
ns  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
EC Oscillator mode  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
RC Oscillator mode  
TCY = 4/FOSC  
(1)  
Oscillator Period  
30.5  
10,000  
1,000  
DC  
250  
50  
250  
200  
2
(1)  
OS03  
Instruction Cycle Time  
TCY  
OS04*  
TOSH,  
TOSL  
External CLKIN High,  
External CLKIN Low  
LP oscillator  
100  
20  
0
XT oscillator  
HS oscillator  
OS05*  
TOSR,  
TOSF  
External CLKIN Rise,  
External CLKIN Fall  
LP oscillator  
0
XT oscillator  
0
HS oscillator  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing  
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected  
current consumption. All devices are tested to operate at “min” values with an external clock applied to OSC1 pin. When  
an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
DS41302D-page 156  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 16-2: OSCILLATOR PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Freq.  
Tolerance  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
OS06  
TWARM  
Internal Oscillator Switch  
when running  
2
TOSC Slowest clock  
(3)  
OS07  
INTOSC  
Internal Calibrated  
INTOSC Frequency  
(4MHz)  
1%  
2%  
3.96  
3.92  
4.0  
4.0  
4.04  
4.08  
MHz VDD = 3.5V, T = 25°C  
A
(2)  
MHz 2.5V VDD 5.5V,  
0°C TA +85°C  
5%  
3.80  
4.0  
4.2  
MHz 2.0V VDD 5.5V,  
-40°C TA +85°C (Ind.),  
-40°C TA +125°C (Ext.)  
OS08  
INTOSC  
Internal Calibrated  
INTOSC Frequency  
(8MHz)  
1%  
2%  
7.92  
7.84  
8.0  
8.0  
8.08  
8.16  
MHz VDD = 3.5V, T = 25°C  
A
(2)  
MHz 2.5V VDD 5.5V,  
0°C TA +85°C  
5%  
7.60  
8.0  
8.40  
MHz 2.0V VDD 5.5V,  
-40°C TA +85°C (Ind.),  
-40°C TA +125°C (Ext.)  
OS10*  
TIOSC ST INTOSC Oscillator Wake-  
up from Sleep  
5.5  
3.5  
3
12  
7
24  
14  
11  
s  
s  
s  
VDD = 2.0V, -40°C to +85°C  
VDD = 3.0V, -40°C to +85°C  
VDD = 5.0V, -40°C to +85°C  
Start-up Time  
6
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing  
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected  
current consumption. All devices are tested to operate at “min” values with an external clock applied to the OSC1 pin.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 F and 0.01 F values in parallel are recommended.  
3: By design.  
2010 Microchip Technology Inc.  
DS41302D-page 157  
PIC12F609/615/617/12HV609/615  
FIGURE 16-5:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
FOSC  
OS12  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS18  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
TABLE 16-3: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
OS11  
OS12  
OS13  
OS14  
OS15  
OS16  
TOSH2CKL FOSCto CLKOUT(1)  
TOSH2CKH FOSCto CLKOUT(1)  
70  
72  
20  
ns VDD = 5.0V  
ns VDD = 5.0V  
ns  
50  
TCKL2IOV  
CLKOUTto Port out valid(1)  
TIOV2CKH Port input valid before CLKOUT(1)  
TOSC + 200 ns  
ns  
TOSH2IOV FOSC(Q1 cycle) to Port out valid  
70*  
ns VDD = 5.0V  
ns VDD = 5.0V  
TOSH2IOI  
FOSC(Q2 cycle) to Port input invalid  
50  
(I/O in hold time)  
OS17  
OS18  
OS19  
TIOV2OSH Port input valid to FOSC(Q2 cycle)  
20  
ns  
(I/O in setup time)  
TIOR  
TIOF  
Port output rise time(2)  
Port output fall time(2)  
15  
40  
72  
32  
ns VDD = 2.0V  
VDD = 5.0V  
28  
15  
55  
30  
ns VDD = 2.0V  
VDD = 5.0V  
OS20* TINP  
OS21* TRAP  
INT pin input high or low time  
25  
ns  
ns  
GPIO interrupt-on-change new input  
level time  
TCY  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
2: Includes OSC2 in CLKOUT mode.  
DS41302D-page 158  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 16-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Start-Up Time  
(1)  
Internal Reset  
Watchdog Timer  
(1)  
Reset  
31  
34  
34  
I/O pins  
Note 1:  
Asserted low.  
FIGURE 16-7:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR + VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
37  
Reset  
(due to BOR)  
33*  
*
64 ms delay only if PWRTE bit in the Configuration Word register is programmed to ‘0’.  
2010 Microchip Technology Inc.  
DS41302D-page 159  
PIC12F609/615/617/12HV609/615  
TABLE 16-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
TMCL  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
MCLR Pulse Width (low)  
2
5
s VDD = 5V, -40°C to +85°C  
s VDD = 5V, -40°C to +125°C  
31*  
32  
TWDT  
TOST  
Watchdog Timer Time-out  
Period (No Prescaler)  
10  
10  
20  
20  
30  
35  
ms VDD = 5V, -40°C to +85°C  
ms VDD = 5V, -40°C to +125°C  
Oscillation Start-up Timer  
Period(1, 2)  
1024  
TOSC (NOTE 3)  
33*  
34*  
TPWRT Power-up Timer Period  
40  
65  
140  
2.0  
ms  
TIOZ  
I/O High-impedance from  
MCLR Low or Watchdog Timer  
Reset  
s  
35  
VBOR  
VHYST  
TBOR  
Brown-out Reset Voltage  
2.0  
2.15  
100  
2.3  
V
(NOTE 4)  
36*  
37*  
Brown-out Reset Hysteresis  
mV  
Brown-out Reset Minimum  
Detection Period  
100  
s VDD VBOR  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator oper-  
ation and/or higher than expected current consumption. All devices are tested to operate at “min” values  
with an external clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time  
limit is “DC” (no clock) for all devices.  
2: By design.  
3: Period of the slower clock.  
4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device  
as possible. 0.1 F and 0.01 F values in parallel are recommended.  
DS41302D-page 160  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 16-8:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
TABLE 16-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
40*  
41*  
42*  
TT0H  
TT0L  
TT0P  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45*  
46*  
47*  
TT1H  
TT1L  
T1CKI High Synchronous, No Prescaler  
0.5 TCY + 20  
15  
ns  
ns  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
0.5 TCY + 20  
15  
ns  
ns  
ns  
T1CKI Low Synchronous, No Prescaler  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
ns  
TT1P  
FT1  
T1CKI Input Synchronous  
Period  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
ns  
48  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
32.768  
kHz  
49*  
TCKEZTMR1 Delay from External Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
Timers in Sync  
mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
2010 Microchip Technology Inc.  
DS41302D-page 161  
PIC12F609/615/617/12HV609/615  
FIGURE 16-9:  
PIC12F615/617/HV615 CAPTURE/COMPARE/PWM TIMINGS (ECCP)  
CCP1  
(Capture mode)  
CC01  
CC02  
CC03  
Note:  
Refer to Figure 16-3 for load conditions.  
TABLE 16-6: PIC12F615/617/HV615 CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
CC01* TccL  
CC02* TccH  
CC03* TccP  
CCP1 Input Low Time  
CCP1 Input High Time  
CCP1 Input Period  
No Prescaler  
0.5TCY + 20  
20  
ns  
ns  
ns  
ns  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
20  
3TCY + 40  
N
ns N = prescale  
value (1, 4 or  
16)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
TABLE 16-7: COMPARATOR SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristics  
Input Offset Voltage(2)  
Min Typ†  
Max  
Units  
Comments  
CM01 VOS  
CM02 VCM  
CM03* CMRR  
CM04* TRT  
0
5.0  
10  
VDD – 1.5  
mV  
V
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time(1)  
+55  
dB  
ns  
ns  
s  
mV  
Falling  
Rising  
150  
200  
600  
1000  
10  
CM05* TMC2COV Comparator Mode Change to Output Valid  
CM06* VHYS Input Hysteresis Voltage  
These parameters are characterized but not tested.  
45  
60  
*
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.  
The other input is at (VDD -1.5)/2.  
2: Input offset voltage is measured with one comparator input at (VDD - 1.5V)/2.  
DS41302D-page 162  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 16-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristics  
Min  
Typ†  
Max  
Units  
Comments  
CV01* CLSB  
Step Size(2)  
Absolute Accuracy(3)  
VDD/24  
VDD/32  
V
V
Low Range (VRR = 1)  
High Range (VRR = 0)  
CV02* CACC  
1/2  
1/2  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
CV03* CR  
CV04* CST  
Unit Resistor Value (R)  
Settling Time(1)  
2k  
10  
s  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from ‘0000’ to ‘1111’.  
2: See Section 9.10 “Comparator Voltage Reference” for more information.  
3: Absolute Accuracy when CVREF output is (VDD -1.5).  
TABLE 16-9: VOLTAGE REFERENCE SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
VR Voltage Reference Specifications  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Symbol  
Characteristics  
VP6 voltage output  
Min  
Typ  
Max  
Units  
Comments  
VR01  
VR02  
VP6OUT  
0.5  
1.05  
0.6  
1.20  
10  
0.7  
1.35  
V
V
V1P2OUT  
V1P2 voltage output  
Settling Time  
VR03* TSTABLE  
s  
*
These parameters are characterized but not tested.  
TABLE 16-10: SHUNT REGULATOR SPECIFICATIONS (PIC12HV609/615 only)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
SHUNT REGULATOR CHARACTERISTICS  
Param  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
No.  
SR01  
SR02  
SR03*  
SR04  
VSHUNT Shunt Voltage  
ISHUNT Shunt Current  
TSETTLE Settling Time  
4.75  
4
5
5.4  
50  
V
mA  
ns  
150  
10  
To 1% of final value  
CLOAD  
Load Capacitance  
0.01  
F  
Bypass capacitor on VDD  
pin  
SR05  
ISNT  
Regulator operating current  
180  
A  
Includes band gap  
reference current  
*
These parameters are characterized but not tested.  
2010 Microchip Technology Inc.  
DS41302D-page 163  
PIC12F609/615/617/12HV609/615  
TABLE 16-11: PIC12F615/617/HV615 A/D CONVERTER (ADC) CHARACTERISTICS:  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
AD01 NR  
AD02 EIL  
AD03 EDL  
Resolution  
10 bits  
1  
bit  
Integral Error  
LSb VREF = 5.12V(5)  
Differential Error  
1  
LSb No missing codes to 10 bits  
VREF = 5.12V(5)  
AD04 EOFF Offset Error  
AD07 EGN Gain Error  
+1.5  
+2.0  
LSb VREF = 5.12V(5)  
LSb VREF = 5.12V(5)  
1  
AD06 VREF Reference Voltage(3)  
AD06A  
2.2  
2.5  
VDD  
V
Absolute minimum to ensure 1 LSb  
accuracy  
AD07 VAIN Full-Scale Range  
VSS  
VREF  
10  
V
AD08 ZAIN Recommended  
Impedance of Analog  
Voltage Source  
k  
AD09* IREF  
VREF Input Current(3)  
10  
1000  
50  
A During VAIN acquisition.  
Based on differential of VHOLD to VAIN.  
A During A/D conversion cycle.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.  
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing  
codes.  
3: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.  
4: When ADC is off, it will not consume any current other than leakage current. The power-down current  
specification includes any such leakage from the ADC module.  
5: VREF = 5V for PIC12HV615.  
DS41302D-page 164  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 16-12: PIC12F615/617/HV615 A/D CONVERSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
A/D Clock Period  
Min  
Typ†  
Max Units  
Conditions  
AD130* TAD  
1.6  
3.0  
9.0  
9.0  
s TOSC-based, VREF 3.0V  
s TOSC-based, VREF full range(3)  
A/D Internal RC  
Oscillator Period  
ADCS<1:0> = 11(ADRC mode)  
s At VDD = 2.5V  
3.0  
1.6  
6.0  
4.0  
11  
9.0  
6.0  
s At VDD = 5.0V  
AD131 TCNV Conversion Time  
(not including  
TAD Set GO/DONE bit to new data in A/D  
Result register  
Acquisition Time)(1)  
AD132* TACQ Acquisition Time  
11.5  
5
s  
s  
AD133* TAMP Amplifier Settling Time  
AD134 TGO Q4 to A/D Clock Start  
TOSC/2  
TOSC/2 +  
TCY  
If the A/D clock source is selected as  
RC, a time of TCY is added before the  
A/D clock starts. This allows the SLEEP  
instruction to be executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.  
2: See Section 10.3 “A/D Acquisition Requirements” for minimum conditions.  
3: Full range for PIC12HV609/HV615 powered by the shunt regulator is the 5V regulated voltage.  
FIGURE 16-10:  
PIC12F615/617/HV615 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
AD134  
Q4  
1 TCY  
(1)  
(TOSC/2  
)
AD131  
AD130  
A/D CLK  
9
8
7
6
3
2
1
0
A/D Data  
ADRES  
NEW_DATA  
1 TCY  
OLD_DATA  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
2010 Microchip Technology Inc.  
DS41302D-page 165  
PIC12F609/615/617/12HV609/615  
FIGURE 16-11:  
PIC12F615/617/HV615 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
AD134  
(1)  
(TOSC/2 + TCY  
1 TCY  
)
AD131  
Q4  
AD130  
A/D CLK  
A/D Data  
9
8
7
3
2
1
0
6
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
DS41302D-page 166  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
16.12 High Temperature Operation  
This section outlines the specifications for the  
PIC12F615 device operating in a temperature range  
between -40°C and 150°C.(4) The specifications  
between -40°C and 150°C(4) are identical to those  
shown in DS41288 and DS80329.  
Note 1: Writes are not allowed for Flash  
Program Memory above 125°C.  
2: All AC timing specifications are increased  
by 30%. This derating factor will include  
parameters such as TPWRT.  
3: The temperature range indicator in the  
part number is “H” for -40°C to 150°C.(4)  
Example: PIC12F615T-H/ST indicates the  
device is shipped in a TAPE and reel  
configuration, in the MSOP package, and  
is rated for operation from -40°C to  
150°C.(4)  
4: AEC-Q100 reliability testing for devices  
intended to operate at 150°C is 1,000  
hours. Any design in which the total oper-  
ating time from 125°C to 150°C will be  
greater than 1,000 hours is not warranted  
without prior written approval from  
Microchip Technology Inc.  
TABLE 16-13: ABSOLUTE MAXIMUM RATINGS  
Parameter  
Max. Current: VDD  
Source/Sink  
Value  
Units  
Source  
Sink  
20  
50  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
Max. Current: VSS  
Max. Current: PIN  
Source  
Sink  
Max. Current: PIN  
10  
3
Pin Current: at VOH  
Pin Current: at VOL  
Port Current: GPIO  
Port Current: GPIO  
Maximum Junction Temperature  
Source  
Sink  
8.5  
20  
50  
155  
Source  
Sink  
Note:  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure above  
maximum rating conditions for extended periods may affect device reliability.  
2010 Microchip Technology Inc.  
DS41302D-page 167  
PIC12F609/615/617/12HV609/615  
TABLE 16-14: DC CHARACTERISTICS FOR IDD SPECIFICATIONS FOR PIC12F615-H (High Temp.)  
Condition  
Param  
No.  
Device  
Characteristics  
Units  
Min  
Typ  
Max  
VDD  
Note  
D010  
D011  
D012  
D013  
D014  
D016  
D017  
D018  
D019  
13  
19  
58  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
Supply Current (IDD)  
A  
IDD LP OSC (32 kHz)  
67  
32  
92  
135  
185  
300  
240  
360  
0.660  
75  
316  
400  
537  
495  
680  
1.20  
158  
338  
792  
357  
625  
1.30  
476  
672  
1.10  
757  
1.20  
2.20  
332  
518  
972  
4.10  
4.80  
A  
IDD XT OSC (1 MHz)  
IDD XT OSC (4 MHz)  
IDD EC OSC (1 MHz)  
IDD EC OSC (4 MHz)  
IDD INTOSC (4 MHz)  
IDD INTOSC (8 MHz)  
A  
mA  
155  
345  
185  
325  
0.665  
245  
360  
620  
395  
0.620  
1.20  
175  
285  
530  
2.20  
2.80  
A  
A  
mA  
A  
A  
mA  
A  
IDD EXTRC (4 MHz)  
mA  
IDD HS OSC (20 MHz)  
DS41302D-page 168  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
TABLE 16-15: DC CHARACTERISTICS FOR IPD SPECIFICATIONS FOR PIC12F615-H (High Temp.)  
Condition  
Param  
No.  
Device  
Characteristics  
Units  
Min  
Typ  
Max  
VDD  
Note  
D020E  
D021E  
0.05  
0.15  
0.35  
0.5  
2.5  
9.5  
5.0  
6.0  
105  
110  
116  
50  
12  
13  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
Power Down Base  
Current  
IPD Base  
A  
14  
20  
A  
A  
WDT Current  
BOR Current  
25  
36  
D022E  
D023E  
28  
36  
195  
210  
220  
105  
110  
125  
58  
IPD Current (Both  
Comparators Enabled)  
A  
A  
IPD Current (One Comparator  
Enabled)  
55  
60  
D024E  
D025E  
D026E  
D027E  
30  
A  
A  
45  
85  
IPD (CVREF, High Range)  
IPD (CVREF, Low Range)  
75  
142  
76  
39  
59  
114  
190  
30  
98  
5.5  
7.0  
8.5  
0.2  
0.3  
IPD (T1 OSC, 32 kHz)  
A  
A  
35  
45  
12  
IPD (A2D on, not converting)  
15  
TABLE 16-16: WATCHDOG TIMER SPECIFICATIONS FOR PIC12F615-H (High Temp.)  
Param  
Sym  
Characteristic  
Units  
Min  
Typ  
Max  
Conditions  
No.  
31  
TWDT  
Watchdog Timer Time-out Period  
(No Prescaler)  
ms  
6
20  
70  
150°C Temperature  
TABLE 16-17: LEAKAGE CURRENT SPECIFICATIONS FOR PIC12F615-H (High Temp.)  
Param  
Sym  
Characteristic  
Units  
Min  
Typ  
Max  
Conditions  
No.  
D061  
IIL  
IIL  
Input Leakage Current(1)  
(GP3/RA3/MCLR)  
Input Leakage Current(2)  
µA  
±0.5  
±5.0  
VSS VPIN VDD  
D062  
µA  
50  
250  
400  
VDD = 5.0V  
(GP3/RA3/MCLR)  
Note 1: This specification applies when GP3/RA3/MCLR is configured as an input with the pull-up disabled. The  
leakage current for the GP3/RA3/MCLR pin is higher than for the standard I/O port pins.  
2: This specification applies when GP3/RA3/MCLR is configured as the MCLR reset pin function with the  
weak pull-up enabled.  
2010 Microchip Technology Inc.  
DS41302D-page 169  
PIC12F609/615/617/12HV609/615  
TABLE 16-18: OSCILLATOR PARAMETERS FOR PIC12F615-H (High Temp.)  
Param  
No.  
Frequency  
Tolerance  
Sym  
Characteristic  
Units  
Min  
Typ  
Max  
Conditions  
OS08 INTOSC Int. Calibrated INTOSC  
Freq.(1)  
±10%  
MHz  
7.2  
8.0  
8.8  
2.0V VDD 5.5V  
-40°C TA 150°C  
Note 1: To ensure these oscillator frequency tolerances, Vdd and Vss must be capacitively decoupled as close to  
the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.  
TABLE 16-19: COMPARATOR SPECIFICATIONS FOR PIC12F615-H (High Temp.)  
Param  
Sym  
Characteristic  
Units  
Min  
Typ  
Max  
Conditions  
No.  
CM01 VOS  
Input Offset Voltage  
mV  
±5  
±20  
(VDD - 1.5)/2  
DS41302D-page 170  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
17.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3) or (mean -  
3) respectively, where s is a standard deviation, over each temperature range.  
FIGURE 17-1:  
PIC12F609/615/617 IDD LP (32 kHz) vs. VDD  
60  
50  
40  
30  
20  
10  
0
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Maximum  
Typical  
2
4
6
1
3
5
VDD (V)  
FIGURE 17-2:  
PIC12F609/615/617 IDD EC (1 MHz) vs. VDD  
600  
Maximum  
Typical  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
500  
400  
300  
200  
100  
0
2
4
6
1
3
5
VDD (V)  
2010 Microchip Technology Inc.  
DS41302D-page 171  
PIC12F609/615/617/12HV609/615  
FIGURE 17-3:  
PIC12F609/615/617 IDD EC (4 MHz) vs. VDD  
1200  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Maximum  
Typical  
1000  
800  
600  
400  
200  
0
2
4
6
1
3
5
VDD (V)  
FIGURE 17-4:  
PIC12F609/615/617 IDD XT (1 MHz) vs. VDD  
1200  
1000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
600  
Maximum  
Typical  
400  
200  
0
2
4
6
1
3
5
VDD (V)  
FIGURE 17-5:  
PIC12F609/615/617 IDD XT (4 MHz) vs. VDD  
1200  
Maximum  
Typical  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
1000  
800  
600  
400  
200  
0
2
4
6
1
3
VDD (V)  
5
DS41302D-page 172  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 17-6:  
PIC12F609/615/617 IDD INTOSC (4 MHz) vs. VDD  
900  
Maximum  
800  
700  
600  
500  
400  
300  
200  
100  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Typical  
0
2
4
6
1
3
5
VDD (V)  
FIGURE 17-7:  
PIC12F609/615/617 IDD INTOSC (8 MHz) vs. VDD  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
Maximum  
Typical  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
2
4
6
1
3
5
VDD (V)  
2010 Microchip Technology Inc.  
DS41302D-page 173  
PIC12F609/615/617/12HV609/615  
FIGURE 17-8:  
PIC12F609/615617 IDD EXTRC (4 MHz) vs. VDD  
800  
Maximum  
Typical  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
700  
600  
500  
400  
300  
200  
100  
0
2
4
6
1
3
5
VDD (V)  
FIGURE 17-9:  
PIC12F609/615/617 IDD HS (20 MHz) vs. VDD  
4
Maximum  
Typical  
3
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
2
1
0
4
6
5
VDD (V)  
DS41302D-page 174  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 17-10:  
PIC12F609/615/617 IPD BASE vs. VDD  
9
Extended  
Typical: Statistical Mean @25°C  
8
7
6
5
4
3
2
1
0
Industrial: Mean (Worst-Case Temp) + 3  
(-40°C to 85°C)  
Extended: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Industrial  
Typical  
2
4
6
1
3
5
VDD (V)  
FIGURE 17-11:  
PIC12F609/615/617 IPD COMPARATOR (SINGLE ON) vs. VDD  
90  
Extended  
80  
70  
60  
50  
40  
30  
Industrial  
Typical  
Typical: Statistical Mean @25°C  
Industrial: Mean (Worst-Case Temp) + 3  
(-40°C to 85°C)  
Extended: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
2
4
6
1
3
5
VDD (V)  
2010 Microchip Technology Inc.  
DS41302D-page 175  
PIC12F609/615/617/12HV609/615  
FIGURE 17-12:  
PIC12F609/615/617 IPD WDT vs. VDD  
20  
18  
16  
14  
12  
10  
8
Extended  
Industrial  
Typical: Statistical Mean @25°C  
Industrial: Mean (Worst-Case Temp) + 3  
(-40°C to 85°C)  
Extended: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Typical  
6
4
2
0
2
4
6
1
3
5
VDD (V)  
FIGURE 17-13:  
PIC12F609/615/617 IPD BOR vs. VDD  
20  
Typical: Statistical Mean @25°C  
Extended  
Industrial: Mean (Worst-Case Temp) + 3  
18  
16  
14  
12  
10  
8
(-40°C to 85°C)  
Extended: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Industrial  
Typical  
6
4
2
0
2
4
6
1
3
5
VDD (V)  
DS41302D-page 176  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 17-14:  
PIC12F609/615/617 IPD CVREF (LOW RANGE) vs. VDD  
140  
Typical: Statistical Mean @25°C  
Maximum  
Industrial: Mean (Worst-Case Temp) + 3  
(-40°C to 85°C)  
120  
100  
80  
60  
40  
20  
0
Extended: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Typical  
2
4
6
1
3
5
VDD (V)  
FIGURE 17-15:  
PIC12F609/615/617 IPD CVREF (HI RANGE) vs. VDD  
120  
Typical: Statistical Mean @25°C  
Maximum  
Typical  
Industrial: Mean (Worst-Case Temp) + 3  
(-40°C to 85°C)  
100  
80  
60  
40  
20  
0
Extended: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
1
3
2
4
6
5
VDD (V)  
2010 Microchip Technology Inc.  
DS41302D-page 177  
PIC12F609/615/617/12HV609/615  
FIGURE 17-16:  
PIC12F609/615/617 IPD T1OSC vs. VDD  
25  
Typical: Statistical Mean @25°C  
Industrial: Mean (Worst-Case Temp) + 3  
(-40°C to 85°C)  
Extended  
Extended: Mean (Worst-Case Temp) + 3  
20  
15  
10  
5
(-40°C to 125°C)  
Industrial  
Typical  
0
2
4
6
1
3
5
VDD (V)  
FIGURE 17-17:  
PIC12F615/617 IPD A/D vs. VDD  
14  
Typical: Statistical Mean @25°C  
Extended  
Industrial: Mean (Worst-Case Temp) + 3  
(-40°C to 85°C)  
12  
10  
Extended: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
8
6
4
2
0
Industrial  
Typical  
2
4
6
1
3
5
VDD (V)  
DS41302D-page 178  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 17-18:  
PIC12HV609/615 IDD LP (32 kHz) vs. VDD  
450  
Maximum  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
400  
350  
300  
250  
200  
150  
100  
Typical  
50  
0
2
1
3
5
4
VDD (V)  
FIGURE 17-19:  
PIC12HV609/615 IDD EC (1 MHz) vs. VDD  
1000  
900  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Maximum  
Typical  
800  
700  
600  
500  
400  
300  
200  
100  
2
1
3
5
4
VDD (V)  
FIGURE 17-20:  
PIC12HV609/615 IDD EC (4 MHz) vs. VDD  
1400  
1200  
1000  
800  
600  
400  
200  
0
Maximum  
Typical  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
2
5
1
3
4
VDD (V)  
2010 Microchip Technology Inc.  
DS41302D-page 179  
PIC12F609/615/617/12HV609/615  
FIGURE 17-21:  
PIC12HV609/615 IDD XT (1 MHz) vs. VDD  
900  
800  
700  
600  
500  
400  
300  
200  
100  
Maximum  
Typical  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
0
2
1
3
5
4
VDD (V)  
FIGURE 17-22:  
PIC12HV609/615 IDD XT (4 MHz) vs. VDD  
1400  
Maximum  
Typical  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
1200  
1000  
800  
600  
400  
200  
0
2
5
1
3
4
VDD (V)  
FIGURE 17-23:  
PIC12HV609/615 IDD INTOSC (4 MHz) vs. VDD  
1200  
1000  
800  
Maximum  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Typical  
600  
400  
200  
0
2
1
3
5
4
VDD (V)  
DS41302D-page 180  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 17-24:  
PIC12HV609/615 IDD INTOSC (8 MHz) vs. VDD  
2000  
Maximum  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
1500  
1000  
Typical  
500  
0
1
2
3
5
4
VDD (V)  
FIGURE 17-25:  
PIC12HV609/615 IDD EXTRC (4 MHz) vs. VDD  
1200  
Maximum  
Typical  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
1000  
800  
600  
400  
200  
0
1
2
5
3
4
VDD (V)  
FIGURE 17-26:  
PIC12HV609/615 IPD BASE vs. VDD  
400  
350  
300  
250  
200  
150  
100  
50  
Maximum  
Typical  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
0
1
2
5
3
4
VDD (V)  
2010 Microchip Technology Inc.  
DS41302D-page 181  
PIC12F609/615/617/12HV609/615  
FIGURE 17-27:  
PIC12HV609/615 IPD COMPARATOR (SINGLE ON) vs. VDD  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
500  
400  
Maximum  
Typical  
300  
200  
100  
0
1
2
5
3
4
VDD (V)  
FIGURE 17-28:  
PIC12HV609/615 IPD WDT vs. VDD  
400  
350  
300  
250  
200  
150  
100  
50  
Maximum  
Typical  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
0
2
5
1
3
4
VDD (V)  
FIGURE 17-29:  
PIC12HV609/615 IPD BOR vs. VDD  
400  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Maximum  
Typical  
350  
300  
250  
200  
150  
100  
3
2
4
5
VDD (V)  
DS41302D-page 182  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 17-30:  
PIC12HV609/615 IPD CVREF (LOW RANGE) vs. VDD  
500  
Maximum  
Typical  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
400  
300  
200  
100  
0
2
1
3
5
4
VDD (V)  
FIGURE 17-31:  
PIC12HV609/615 IPD CVREF (HI RANGE) vs. VDD  
500  
Maximum  
Typical  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
400  
300  
200  
100  
0
2
1
3
5
4
VDD (V)  
FIGURE 17-32:  
PIC12HV609/615 IPD T1OSC vs. VDD  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
400  
350  
300  
250  
200  
150  
100  
Maximum  
Typical  
50  
0
2
5
1
3
4
VDD (V)  
2010 Microchip Technology Inc.  
DS41302D-page 183  
PIC12F609/615/617/12HV609/615  
FIGURE 17-33:  
PIC12HV615 IPD A/D vs. VDD  
Typical: Statistical Mean @25°C  
400  
350  
300  
250  
200  
150  
100  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Maximum  
Typical  
50  
0
2
4
5
3
VDD (V)  
FIGURE 17-34:  
VOL vs. IOL OVER TEMPERATURE (VDD = 3.0V)  
0.8  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Max. 125°C  
Max. 85°C  
Typical 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
DS41302D-page 184  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 17-35:  
VOL vs. IOL OVER TEMPERATURE (VDD = 5.0V)  
0.45  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
FIGURE 17-36:  
VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V)  
3.5  
3.0  
2.5  
2.0  
1.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
1.0  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
IOH (mA)  
2010 Microchip Technology Inc.  
DS41302D-page 185  
PIC12F609/615/617/12HV609/615  
FIGURE 17-37:  
VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V)  
5.5  
5.0  
4.5  
4.0  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
3.5  
3.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-4.5  
-5.0  
IOH (mA)  
FIGURE 17-38:  
TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
1.7  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41302D-page 186  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 17-39:  
SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
4.0  
VIH Max. 125°C  
Typical: Statistical Mean @25°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
VIH Min. -40°C  
VIL Max. -40°C  
VIL Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 17-40:  
TYPICAL HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
16  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
14  
85°C  
12  
25°C  
10  
-40°C  
8
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2010 Microchip Technology Inc.  
DS41302D-page 187  
PIC12F609/615/617/12HV609/615  
FIGURE 17-41:  
MAXIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
25  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
20  
15  
10  
5
85°C  
25°C  
-40°C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 17-42:  
MINIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
10  
9
8
7
6
5
4
3
2
1
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
85°C  
25°C  
-40°C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41302D-page 188  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 17-43:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 17-44:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (85°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2010 Microchip Technology Inc.  
DS41302D-page 189  
PIC12F609/615/617/12HV609/615  
FIGURE 17-45:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (125°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 17-46:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (-40°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41302D-page 190  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 17-47:  
0.6V REFERENCE VOLTAGE vs. TEMP (TYPICAL)  
0.61  
2.5V  
3V  
0.6  
0.59  
0.58  
0.57  
4V  
5V  
5.5V  
0.56  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temp (C)  
FIGURE 17-48:  
1.2V REFERENCE VOLTAGE vs. TEMP (TYPICAL)  
1.26  
2.5V  
1.25  
1.24  
1.23  
1.22  
1.21  
1.2  
3V  
4V  
5V  
5.5V  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temp (C)  
FIGURE 17-49:  
SHUNT REGULATOR VOLTAGE vs. INPUT CURRENT (TYPICAL)  
5.16  
5.14  
5.12  
5.1  
-40°C  
25°C  
85°C  
125°C  
5.08  
5.06  
5.04  
5.02  
5
4.98  
4.96  
0
10  
20  
30  
40  
50  
60  
Input Current (mA)  
2010 Microchip Technology Inc.  
DS41302D-page 191  
PIC12F609/615/617/12HV609/615  
FIGURE 17-50:  
SHUNT REGULATOR VOLTAGE vs. TEMP (TYPICAL)  
5.16  
5.14  
5.12  
5.1  
50 mA  
40 mA  
5.08  
5.06  
5.04  
5.02  
5
20 mA  
15 mA  
10 mA  
4 mA  
4.98  
4.96  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temp (C)  
FIGURE 17-51:  
COMPARATOR RESPONSE TIME (RISING EDGE)  
1000  
900  
800  
700  
Max. 125°C  
Max. 85°C  
VCM = (VDD - 1.5V)/2  
Note:  
600  
500  
400  
300  
200  
100  
V+ input = VCM  
V- input = Transition from VCM + 100mV to VCM - 20mV  
Typ. 25°C  
Min. -40°C  
0
2.0  
2.5  
4.0  
5.5  
VDD (V)  
DS41302D-page 192  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
FIGURE 17-52:  
COMPARATOR RESPONSE TIME (FALLING EDGE)  
1000  
900  
800  
700  
Max. 125°C  
600  
500  
400  
300  
200  
100  
0
Note:  
VCM = (VDD - 1.5V)/2  
V+ input = VCM  
V- input = Transition from VCM - 100mV to VCM + 20MV  
Max. 85°C  
Typ. 25°C  
Min. -40°C  
2.0  
2.5  
4.0  
5.5  
VDD (V)  
FIGURE 17-53:  
WDT TIME-OUT PERIOD vs. VDD OVER TEMPERATURE  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
125°C  
85°C  
25°C  
-40°C  
5
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD (V)  
2010 Microchip Technology Inc.  
DS41302D-page 193  
PIC12F609/615/617/12HV609/615  
NOTES:  
DS41302D-page 194  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
18.0 PACKAGING INFORMATION  
18.1 Package Marking Information  
8-Lead PDIP (.300”)  
Example  
XXFXXX/P  
XXXXXXXX  
XXXXXNNN  
YYWW  
e
3
017  
0610  
8-Lead SOIC (.150”)  
Example  
XXXXXXXX  
XXXXYYWW  
PICXXCXX  
/SN0610  
e
3
NNN  
017  
8-Lead MSOP  
Example  
XXXXXX  
YWWNNN  
602/MS  
610017  
8-Lead DFN (3x3 mm)  
Example  
XXXX  
YYWW  
NNN  
XXXX  
0610  
017  
8-Lead DFN (4x4 mm) (for PIC12F609/615/HV609/615  
devices only)  
Example  
XXXXXX  
XXXXXX  
YYWW  
NNN  
XXXXXX  
e
3
XXXX  
0610  
017  
Legend:  
XX...X  
Y
YY  
WW  
NNN  
Customer-specific information  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will be  
carried over to the next line, thus limiting the number of available characters for  
customer-specific information.  
*
Standard PIC device marking consists of Microchip part number, year code, week code, and traceability code. For  
PIC device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP  
devices, any special marking adders are included in QTP price.  
2010 Microchip Technology Inc.  
DS41302D-page 195  
PIC12F609/615/617/12HV609/615  
18.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢐꢁꢂꢋꢐꢃꢆꢑꢇꢒꢆꢓꢆꢔꢕꢕꢆꢖꢋꢈꢆꢗꢘꢅꢙꢆꢚꢇꢍꢏꢇꢛ  
ꢜꢘꢊꢃꢝ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
6ꢄꢃ&!  
ꢚ7,8.ꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
<
ꢁꢀꢕꢕꢅ1ꢐ,  
M
ꢁꢀ-ꢕ  
M
ꢁ-ꢀꢕ  
ꢁꢎꢘꢕ  
ꢁ-?ꢘ  
ꢁꢀ-ꢕ  
ꢁꢕꢀꢕ  
ꢁꢕ?ꢕ  
ꢁꢕꢀ<  
M
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
7
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
M
ꢁꢎꢀꢕ  
ꢁꢀꢛꢘ  
M
ꢁꢀꢀꢘ  
ꢁꢕꢀꢘ  
ꢁꢎꢛꢕ  
ꢁꢎꢖꢕ  
ꢁ-ꢖ<  
ꢁꢀꢀꢘ  
ꢁꢕꢕ<  
ꢁꢕꢖꢕ  
ꢁꢕꢀꢖ  
M
ꢁ-ꢎꢘ  
ꢁꢎ<ꢕ  
ꢁꢖꢕꢕ  
ꢁꢀꢘꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎꢎ  
ꢁꢖ-ꢕ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
ꢜꢘꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2ꢅ1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢀ<1  
DS41302D-page 196  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢞꢖꢄꢈꢈꢆꢟꢎꢊꢈꢋꢐꢃꢆꢑꢞꢜꢒꢆꢓꢆꢜꢄꢠꢠꢘꢡꢢꢆꢔꢣꢤꢕꢆꢖꢖꢆꢗꢘꢅꢙꢆꢚꢞꢟꢏꢥꢛ  
ꢜꢘꢊꢃꢝ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
<
ꢀꢁꢎꢜꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅ  
M
ꢀꢁꢎꢘ  
ꢕꢁꢀꢕ  
M
M
M
ꢀꢁꢜꢘ  
M
ꢕꢁꢎꢘ  
ꢗꢎ  
ꢗꢀ  
.
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
?ꢁꢕꢕꢅ1ꢐ,  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
,ꢍꢆ'%ꢈꢉꢅ@ꢋꢓ&ꢃꢋꢄꢆꢇA  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
.ꢀ  
-ꢁꢛꢕꢅ1ꢐ,  
ꢖꢁꢛꢕꢅ1ꢐ,  
ꢕꢁꢎꢘ  
ꢕꢁꢖꢕ  
M
M
ꢕꢁꢘꢕ  
ꢀꢁꢎꢜ  
9
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
9ꢀ  
ꢀꢁꢕꢖꢅꢝ.3  
ꢕꢟ  
ꢕꢁꢀꢜ  
ꢕꢁ-ꢀ  
ꢘꢟ  
M
M
M
M
M
<ꢟ  
)
ꢕꢁꢎꢘ  
ꢕꢁꢘꢀ  
ꢀꢘꢟ  
ꢘꢟ  
ꢀꢘꢟ  
ꢜꢘꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢘꢜ1  
2010 Microchip Technology Inc.  
DS41302D-page 197  
PIC12F609/615/617/12HV609/615  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢞꢖꢄꢈꢈꢆꢟꢎꢊꢈꢋꢐꢃꢆꢑꢞꢜꢒꢆꢓꢆꢜꢄꢠꢠꢘꢡꢢꢆꢔꢣꢤꢕꢆꢖꢖꢆꢗꢘꢅꢙꢆꢚꢞꢟꢏꢥꢛ  
ꢜꢘꢊꢃꢝ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS41302D-page 198  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢦꢋꢌꢠꢘꢆꢞꢖꢄꢈꢈꢆꢟꢎꢊꢈꢋꢐꢃꢆꢇꢄꢌꢧꢄꢨꢃꢆꢑꢦꢞꢒꢆꢚꢦꢞꢟꢇꢛ  
ꢜꢘꢊꢃꢝ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
<
ꢕꢁ?ꢘꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
M
ꢕꢁꢜꢘ  
ꢕꢁꢕꢕ  
M
ꢕꢁ<ꢘ  
ꢀꢁꢀꢕ  
ꢕꢁꢛꢘ  
ꢕꢁꢀꢘ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
M
ꢖꢁꢛꢕꢅ1ꢐ,  
-ꢁꢕꢕꢅ1ꢐ,  
-ꢁꢕꢕꢅ1ꢐ,  
ꢕꢁ?ꢕ  
9
ꢕꢁꢖꢕ  
ꢕꢁ<ꢕ  
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢀ  
ꢕꢁꢛꢘꢅꢝ.3  
M
ꢕꢟ  
<ꢟ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
)
ꢕꢁꢕ<  
ꢕꢁꢎꢎ  
M
M
ꢕꢁꢎ-  
ꢕꢁꢖꢕ  
ꢜꢘꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢀꢀ1  
2010 Microchip Technology Inc.  
DS41302D-page 199  
PIC12F609/615/617/12HV609/615  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢩꢈꢄꢊꢢꢆꢜꢘꢆꢂꢃꢄꢅꢆꢇꢄꢌꢧꢄꢨꢃꢆꢑꢦꢩꢒꢆꢓꢆꢔꢪꢔꢪꢕꢣꢤꢆꢖꢖꢆꢗꢘꢅꢙꢆꢚꢍꢩꢜꢛ  
ꢜꢘꢊꢃꢝ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
e
D
b
N
N
L
EXPOSED PAD  
E
E2  
K
NOTE 1  
NOTE 1  
1
2
2
1
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
<
ꢕꢁ?ꢘꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
7
ꢗꢀ  
ꢗ-  
.ꢎ  
.
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
-ꢁꢕꢕꢅ1ꢐ,  
M
-ꢁꢕꢕꢅ1ꢐ,  
M
ꢕꢁ-ꢕ  
ꢕꢁ-ꢕ  
M
ꢕꢁꢕꢕ  
ꢀꢁ?ꢕ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
ꢒꢎ  
)
9
ꢕꢁꢕꢕ  
ꢕꢁꢎꢘ  
ꢕꢁꢎꢕ  
ꢕꢁꢎꢕ  
ꢎꢁꢖꢕ  
ꢕꢁ-ꢘ  
ꢕꢁꢘꢘ  
M
C
ꢜꢘꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅ'ꢆꢊꢅꢍꢆ ꢈꢅꢋꢄꢈꢅꢋꢉꢅ'ꢋꢉꢈꢅꢈ$ꢓꢋ!ꢈ#ꢅ&ꢃꢈꢅ)ꢆꢉ!ꢅꢆ&ꢅꢈꢄ#!ꢁ  
-ꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕ?ꢎ1  
DS41302D-page 200  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢩꢈꢄꢊꢢꢆꢜꢘꢆꢂꢃꢄꢅꢆꢇꢄꢌꢧꢄꢨꢃꢆꢑꢦꢍꢒꢆꢓꢆꢫꢪꢫꢪꢕꢣꢤꢆꢖꢖꢆꢗꢘꢅꢙꢆꢚꢍꢩꢜꢛ  
ꢜꢘꢊꢃꢝ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
e
D
b
N
N
L
E
E2  
K
EXPOSED  
PAD  
1
2
2
1
NOTE 1  
NOTE 1  
A3  
D2  
BOTTOM VIEW  
TOP VIEW  
A
A1  
NOTE 2  
6ꢄꢃ&!  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
7:ꢔ  
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
7
ꢗꢀ  
ꢗ-  
.ꢎ  
.
<
ꢕꢁ<ꢕꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
ꢖꢁꢕꢕꢅ1ꢐ,  
ꢎꢁꢎꢕ  
ꢖꢁꢕꢕꢅ1ꢐ,  
-ꢁꢕꢕ  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢕ  
ꢎꢁ<ꢕ  
ꢒꢎ  
)
9
ꢕꢁꢕꢕ  
ꢕꢁꢎꢘ  
ꢕꢁ-ꢕ  
ꢕꢁꢎꢕ  
-ꢁ?ꢕ  
ꢕꢁ-ꢘ  
ꢕꢁꢘꢕ  
M
ꢕꢁ-ꢕ  
ꢕꢁꢖꢕ  
M
C
ꢜꢘꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅ'ꢆꢊꢅꢍꢆ ꢈꢅꢋꢄꢈꢅꢋꢉꢅ'ꢋꢉꢈꢅꢈ$ꢓꢋ!ꢈ#ꢅ&ꢃꢈꢅ)ꢆꢉ!ꢅꢆ&ꢅꢈꢄ#!ꢁ  
-ꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀ-ꢀꢒ  
2010 Microchip Technology Inc.  
DS41302D-page 201  
PIC12F609/615/617/12HV609/615  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢩꢈꢄꢊꢢꢆꢜꢘꢆꢂꢃꢄꢅꢆꢇꢄꢌꢧꢄꢨꢃꢆꢑꢦDꢒꢆꢓꢆꢫꢪꢫꢪꢕꢣꢤꢆꢖꢖꢆꢗꢘꢅꢙꢆꢚꢍꢩꢜꢛ  
ꢜꢘꢊꢃꢝ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS41302D-page 202  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: MIGRATING FROM  
OTHER PIC®  
DEVICES  
Revision A  
This discusses some of the issues in migrating from  
other PIC devices to the PIC12F6XX Family of devices.  
This is a new data sheet.  
Revision B (05/2008)  
B.1  
PIC12F675 to PIC12F609/615/  
12HV609/615  
Added Graphs. Revised 28-Pin ICD Pinout, Electrical  
Specifications Section, Package Details.  
TABLE B-1:  
Feature  
FEATURE COMPARISON  
Revision C (09/2009)  
PIC12F609/  
PIC12F675  
615/  
Updated adding the PIC12F617 device throughout the  
entire data sheet; Added Figure 2-2 to Memory  
12HV609/615  
Organization section; Added section  
3 ”FLASH  
Max Operating Speed  
20 MHz  
1024  
20 MHz  
1024  
PROGRAM MEMORY SELF READ/SELF WRITE  
CONTROL (FOR PIC12F617 ONLY)”; Updated  
Register 12-1; Updated Table12-5 adding PMCON1,  
PMCON2, PMADRL, PMADRH, PMDATL, PMDATH;  
Added section 16-12 in the Electrical Specification  
section; Other minor edits.  
Max Program  
Memory (Words)  
SRAM (bytes)  
A/D Resolution  
64  
64  
10-bit  
10-bit (615  
only)  
Timers (8/16-bit)  
1/1  
2/1 (615)  
1/1 (609)  
Revision D (01/2010)  
Oscillator Modes  
Brown-out Reset  
Internal Pull-ups  
8
8
Updated  
Figure  
17-50;  
Revised  
16.8  
DC  
Characteristics; Removed Preliminary Status.  
Y
Y
RA0/1/2/4/5 GP0/1/2/4/5,  
MCLR  
Interrupt-on-change  
Comparator  
RA0/1/2/3/4/5 GP0/1/2/3/4/5  
1
N
1
ECCP  
Y (615)  
4/8 MHz  
INTOSC Frequencies  
4 MHz  
N
Internal Shunt  
Regulator  
Y
(PIC12HV609/  
615)  
Note: This device has been designed to perform  
to the parameters of its data sheet. It has  
been tested to an electrical specification  
designed to determine its conformance  
with these parameters. Due to process  
differences in the manufacture of this  
device, this device may have different  
performance characteristics than its earlier  
version. These differences may cause this  
device to perform differently in your  
application than the earlier version of this  
device.  
2010 Microchip Technology Inc.  
DS41302D-page 203  
PIC12F609/615/617/12HV609/615  
NOTES:  
DS41302D-page 204  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
INDEX  
PIC12F609/12HV609 ................................................... 7  
PIC12F615/617/12HV615 ............................................ 8  
PWM (Enhanced) ....................................................... 97  
A
A/D  
Specifications.................................................... 164, 165  
Resonator Operation .................................................. 39  
Timer1 .................................................................. 57, 58  
Timer2 ........................................................................ 65  
TMR0/WDT Prescaler ................................................ 53  
Watchdog Timer ....................................................... 122  
Brown-out Reset (BOR).................................................... 112  
Associated Registers................................................ 113  
Specifications ........................................................... 160  
Timing and Characteristics....................................... 159  
Absolute Maximum Ratings .............................................. 143  
AC Characteristics  
Industrial and Extended ............................................ 156  
Load Conditions........................................................ 155  
ADC  
Acquisition Requirements ........................................... 86  
Associated registers.................................................... 88  
Block Diagram............................................................. 79  
Calculating Acquisition Time....................................... 86  
Channel Selection....................................................... 80  
Configuration............................................................... 80  
Configuring Interrupt ................................................... 83  
Conversion Clock........................................................ 80  
Conversion Procedure ................................................ 83  
Internal Sampling Switch (RSS) Impedance................ 86  
Interrupts..................................................................... 81  
Operation .................................................................... 82  
Operation During Sleep .............................................. 82  
Port Configuration....................................................... 80  
Reference Voltage (VREF)........................................... 80  
Result Formatting........................................................ 82  
Source Impedance...................................................... 86  
Special Event Trigger.................................................. 82  
Starting an A/D Conversion ........................................ 82  
ADC (PIC12F615/617/HV615 Only) ................................... 79  
ADCON0 Register............................................................... 84  
ADRESH Register (ADFM = 0)........................................... 85  
ADRESH Register (ADFM = 1)........................................... 85  
ADRESL Register (ADFM = 0)............................................ 85  
ADRESL Register (ADFM = 1)............................................ 85  
Analog Input Connection Considerations............................ 68  
Analog-to-Digital Converter. See ADC  
C
C Compilers  
MPLAB C18.............................................................. 140  
MPLAB C30.............................................................. 140  
Calibration Bits.................................................................. 109  
Capture Module. See Enhanced Capture/Compare/  
PWM (ECCP)  
Capture/Compare/PWM (CCP)  
Associated registers w/ Capture................................. 91  
Associated registers w/ Compare............................... 93  
Associated registers w/ PWM................................... 105  
Capture Mode............................................................. 90  
CCP1 Pin Configuration ............................................. 90  
Compare Mode........................................................... 92  
CCP1 Pin Configuration ..................................... 92  
Software Interrupt Mode............................... 90, 92  
Special Event Trigger......................................... 92  
Timer1 Mode Selection................................. 90, 92  
Prescaler .................................................................... 90  
PWM Mode................................................................. 94  
Duty Cycle .......................................................... 95  
Effects of Reset.................................................. 96  
Example PWM Frequencies and  
ANSEL Register (PIC12F609/HV609) ................................ 45  
ANSEL Register (PIC12F615/617/HV615) ......................... 45  
APFCON Register............................................................... 24  
Assembler  
Resolutions, 20 MHZ.................................. 95  
Example PWM Frequencies and  
Resolutions, 8 MHz .................................... 95  
Operation in Sleep Mode.................................... 96  
Setup for Operation ............................................ 96  
System Clock Frequency Changes .................... 96  
PWM Period ............................................................... 95  
Setup for PWM Operation .......................................... 96  
CCP1CON (Enhanced) Register ........................................ 89  
Clock Sources  
External Modes........................................................... 38  
EC ...................................................................... 38  
HS ...................................................................... 39  
LP....................................................................... 39  
OST .................................................................... 38  
RC ...................................................................... 40  
XT....................................................................... 39  
Internal Modes............................................................ 40  
INTOSC.............................................................. 40  
INTOSCIO .......................................................... 40  
CMCON0 Register.............................................................. 72  
CMCON1 Register.............................................................. 73  
Code Examples  
MPASM Assembler................................................... 140  
B
Block Diagrams  
(CCP) Capture Mode Operation ................................. 90  
ADC ............................................................................ 79  
ADC Transfer Function ............................................... 87  
Analog Input Model............................................... 68, 87  
Auto-Shutdown ......................................................... 101  
CCP PWM................................................................... 94  
Clock Source............................................................... 37  
Comparator................................................................. 67  
Compare ..................................................................... 92  
Crystal Operation........................................................ 39  
External RC Mode....................................................... 40  
GP0 and GP1 Pins...................................................... 47  
GP2 Pins..................................................................... 48  
GP3 Pin....................................................................... 49  
GP4 Pin....................................................................... 50  
GP5 Pin....................................................................... 51  
In-Circuit Serial Programming Connections.............. 125  
Interrupt Logic........................................................... 119  
MCLR Circuit............................................................. 111  
On-Chip Reset Circuit............................................... 110  
A/D Conversion .......................................................... 83  
Assigning Prescaler to Timer0.................................... 54  
Assigning Prescaler to WDT....................................... 54  
Changing Between Capture Prescalers ..................... 90  
Indirect Addressing..................................................... 25  
2010 Microchip Technology Inc.  
DS41302D-page 205  
PIC12F609/615/617/12HV609/615  
Initializing GPIO ..........................................................43  
Saving Status and W Registers in RAM ...................121  
Writing to Flash Program Memory ..............................34  
Code Protection ................................................................124  
Comparator .........................................................................67  
Associated registers....................................................78  
Control ........................................................................69  
Gating Timer1 .............................................................73  
Operation During Sleep ..............................................71  
Overview .....................................................................67  
Response Time...........................................................69  
Synchronizing COUT w/Timer1 ..................................73  
Comparator Hysteresis .......................................................77  
Comparator Voltage Reference (CVREF) ............................74  
Effects of a Reset........................................................71  
Comparator Voltage Reference (CVREF)  
Timer Resources ........................................................ 89  
Enhanced Capture/Compare/PWM  
(PIC12F615/617/HV615 Only).................................... 89  
Errata.................................................................................... 6  
F
Firmware Instructions ....................................................... 129  
Flash Program Memory Self Read/Self Write  
Control (For PIC12F617 only)..................................... 27  
Fuses. See Configuration Bits  
G
General Purpose Register File ........................................... 12  
GPIO................................................................................... 43  
Additional Pin Functions ............................................. 44  
ANSEL Register ................................................. 44  
Interrupt-on-Change ........................................... 44  
Weak Pull-Ups.................................................... 44  
Response Time...........................................................69  
Comparator Voltage Reference (CVREF)  
Associated registers ................................................... 52  
GP0 ............................................................................ 47  
GP1 ............................................................................ 47  
GP2 ............................................................................ 48  
GP3 ............................................................................ 49  
GP4 ............................................................................ 50  
GP5 ............................................................................ 51  
Pin Descriptions and Diagrams .................................. 47  
Specifications ........................................................... 158  
GPIO Register .................................................................... 43  
Specifications............................................................163  
Comparators  
C2OUT as T1 Gate .....................................................60  
Effects of a Reset........................................................71  
Specifications............................................................162  
Compare Module. See Enhanced Capture/Compare/  
PWM (ECCP) (PIC12F615/617/HV615 only)  
CONFIG Register..............................................................108  
Configuration Bits..............................................................107  
CPU Features ...................................................................107  
Customer Change Notification Service .............................209  
Customer Notification Service...........................................209  
Customer Support.............................................................209  
H
High Temperature Operation............................................ 167  
I
D
ID Locations...................................................................... 124  
In-Circuit Debugger........................................................... 125  
In-Circuit Serial Programming (ICSP)............................... 125  
Indirect Addressing, INDF and FSR registers..................... 25  
Instruction Format............................................................. 129  
Instruction Set................................................................... 129  
ADDLW..................................................................... 131  
ADDWF..................................................................... 131  
ANDLW..................................................................... 131  
ANDWF..................................................................... 131  
MOVF ....................................................................... 134  
BCF .......................................................................... 131  
BSF........................................................................... 131  
BTFSC...................................................................... 131  
BTFSS ...................................................................... 132  
CALL......................................................................... 132  
CLRF ........................................................................ 132  
CLRW ....................................................................... 132  
CLRWDT .................................................................. 132  
COMF ....................................................................... 132  
DECF........................................................................ 132  
DECFSZ ................................................................... 133  
GOTO ....................................................................... 133  
INCF ......................................................................... 133  
INCFSZ..................................................................... 133  
IORLW...................................................................... 133  
IORWF...................................................................... 133  
MOVLW .................................................................... 134  
MOVWF.................................................................... 134  
NOP.......................................................................... 134  
RETFIE..................................................................... 135  
RETLW ..................................................................... 135  
RETURN................................................................... 135  
Data EEPROM Memory  
Associated Registers ..................................................35  
Data Memory.......................................................................11  
DC and AC Characteristics  
Graphs and Tables ...................................................171  
DC Characteristics  
Extended and Industrial ............................................152  
Industrial and Extended ............................................145  
Development Support .......................................................139  
Device Overview ...................................................................7  
E
ECCP. See Enhanced Capture/Compare/PWM  
ECCPAS Register.............................................................102  
EEDAT Register..................................................................28  
EEDATH Register ...............................................................28  
Effects of Reset  
PWM mode .................................................................96  
Electrical Specifications ....................................................143  
Enhanced Capture/Compare/PWM (ECCP)  
Enhanced PWM Mode ................................................97  
Auto-Restart......................................................103  
Auto-shutdown..................................................101  
Half-Bridge Application .......................................99  
Half-Bridge Application Examples.....................104  
Half-Bridge Mode................................................99  
Output Relationships (Active-High and  
Active-Low) .................................................98  
Output Relationships Diagram............................98  
Programmable Dead Band Delay .....................104  
Shoot-through Current ......................................104  
Start-up Considerations ....................................100  
Specifications............................................................162  
DS41302D-page 206  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
RLF ........................................................................... 136  
Oscillator Parameters ....................................................... 157  
Oscillator Specifications.................................................... 156  
Oscillator Start-up Timer (OST)  
Specifications ........................................................... 160  
OSCTUNE Register............................................................ 41  
RRF........................................................................... 136  
SLEEP ...................................................................... 136  
SUBLW ..................................................................... 136  
SUBWF..................................................................... 137  
SWAPF ..................................................................... 137  
XORLW..................................................................... 137  
XORWF..................................................................... 137  
Summary Table......................................................... 130  
INTCON Register................................................................ 20  
Internal Oscillator Block  
P
P1A/P1B/P1C/P1D.See Enhanced Capture/Compare/  
PWM (ECCP) ............................................................. 97  
Packaging......................................................................... 195  
Marking..................................................................... 195  
PDIP Details ............................................................. 196  
PCL and PCLATH............................................................... 25  
Stack........................................................................... 25  
PCON Register........................................................... 23, 113  
PICSTART Plus Development Programmer..................... 142  
PIE1 Register ..................................................................... 21  
Pin Diagram  
INTOSC  
Specifications............................................ 157, 158  
Internal Sampling Switch (RSS) Impedance........................ 86  
Internet Address................................................................ 209  
Interrupts........................................................................... 118  
ADC ............................................................................ 83  
Associated Registers ................................................ 120  
Context Saving.......................................................... 121  
GP2/INT.................................................................... 118  
GPIO Interrupt-on-Change........................................ 119  
Interrupt-on-Change.................................................... 44  
Timer0....................................................................... 119  
TMR1 .......................................................................... 60  
INTOSC Specifications ............................................. 157, 158  
IOC Register ....................................................................... 46  
PIC12F609/HV609 (PDIP, SOIC, MSOP, DFN)........... 4  
PIC12F615/617/HV615 (PDIP, SOIC, MSOP, DFN).... 5  
Pinout Descriptions  
PIC12F609/12HV609 ................................................... 9  
PIC12F615/617/12HV615 .......................................... 10  
PIR1 Register ..................................................................... 22  
PMADRH and PMADRL Registers..................................... 27  
PMCON1 and PMCON2 Registers..................................... 27  
Power-Down Mode (Sleep)............................................... 123  
Power-on Reset (POR)..................................................... 111  
Power-up Timer (PWRT).................................................. 111  
Specifications ........................................................... 160  
Precision Internal Oscillator Parameters .......................... 158  
Prescaler  
Shared WDT/Timer0................................................... 54  
Switching Prescaler Assignment ................................ 54  
Program Memory................................................................ 11  
Map and Stack............................................................ 11  
Programming, Device Instructions.................................... 129  
Protection Against Spurious Write...................................... 32  
PWM Mode. See Enhanced Capture/Compare/PWM........ 97  
PWM1CON Register......................................................... 105  
L
Load Conditions................................................................ 155  
M
MCLR................................................................................ 111  
Internal...................................................................... 111  
Memory Organization.......................................................... 11  
Data ............................................................................ 11  
Program ...................................................................... 11  
Microchip Internet Web Site.............................................. 209  
Migrating from other PICmicro Devices ............................ 203  
MPLAB ASM30 Assembler, Linker, Librarian ................... 140  
MPLAB ICD 2 In-Circuit Debugger ................................... 141  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator .................................................... 141  
MPLAB Integrated Development Environment Software .. 139  
MPLAB PM3 Device Programmer .................................... 141  
MPLAB REAL ICE In-Circuit Emulator System................. 141  
MPLINK Object Linker/MPLIB Object Librarian ................ 140  
R
Reader Response............................................................. 210  
Reading the Flash Program Memory.................................. 30  
Read-Modify-Write Operations ......................................... 129  
Registers  
ADCON0 (ADC Control 0).......................................... 84  
ADRESH (ADC Result High) with ADFM = 0) ............ 85  
ADRESH (ADC Result High) with ADFM = 1) ............ 85  
ADRESL (ADC Result Low) with ADFM = 0).............. 85  
ADRESL (ADC Result Low) with ADFM = 1).............. 85  
ANSEL (Analog Select) .............................................. 45  
APFCON (Alternate Pin Function Register) ............... 24  
CCP1CON (Enhanced CCP1 Control) ....................... 89  
CMCON0 (Comparator Control 0).............................. 72  
CMCON1 (Comparator Control 1).............................. 73  
CONFIG (Configuration Word) ................................. 108  
Data Memory Map (PIC12F609/HV609) .................... 12  
Data Memory Map (PIC12F615/617/HV615) ............. 13  
ECCPAS (Enhanced CCP Auto-shutdown Control). 102  
EEDAT (EEPROM Data)............................................ 28  
EEDATH (EEPROM Data) ......................................... 28  
GPIO........................................................................... 43  
INTCON (Interrupt Control) ........................................ 20  
IOC (Interrupt-on-Change GPIO) ............................... 46  
OPTION_REG (OPTION)........................................... 19  
O
OPCODE Field Descriptions............................................. 129  
Operation During Code Protect........................................... 32  
Operation During Write Protect........................................... 32  
Operational Amplifier (OPA) Module  
AC Specifications...................................................... 163  
OPTION Register................................................................ 19  
OPTION_REG Register ...................................................... 55  
Oscillator  
Associated registers.............................................. 41, 63  
Oscillator Module .......................................................... 27, 37  
EC............................................................................... 37  
HS............................................................................... 37  
INTOSC ...................................................................... 37  
INTOSCIO................................................................... 37  
LP................................................................................ 37  
RC............................................................................... 37  
RCIO........................................................................... 37  
XT ............................................................................... 37  
2010 Microchip Technology Inc.  
DS41302D-page 207  
PIC12F609/615/617/12HV609/615  
OPTION_REG (Option) ..............................................55  
OSCTUNE (Oscillator Tuning)....................................41  
PCON (Power Control Register).................................23  
PCON (Power Control) .............................................113  
PIE1 (Peripheral Interrupt Enable 1)...........................21  
PIR1 (Peripheral Interrupt Register 1) ........................22  
PWM1CON (Enhanced PWM Control) .....................105  
Reset Values (PIC12F609/HV609) ...........................115  
Reset Values (PIC12F615/617/HV615) ....................116  
Reset Values (special registers) ...............................117  
Special Function Registers .........................................12  
Special Register Summary (PIC12F609/HV609).. 14, 16  
Special Register Summary  
Timer2 (PIC12F615/617/HV615 Only)  
Associated registers ................................................... 66  
Timers  
Timer1  
T1CON ............................................................... 62  
Timer2  
T2CON ............................................................... 66  
Timing Diagrams  
A/D Conversion......................................................... 165  
A/D Conversion (Sleep Mode).................................. 166  
Brown-out Reset (BOR)............................................ 159  
Brown-out Reset Situations ...................................... 112  
CLKOUT and I/O ...................................................... 158  
Clock Timing............................................................. 156  
Comparator Output..................................................... 67  
Enhanced Capture/Compare/PWM (ECCP)............. 162  
Half-Bridge PWM Output .................................... 99, 104  
INT Pin Interrupt ....................................................... 120  
PWM Auto-shutdown  
Auto-restart Enabled......................................... 103  
Firmware Restart.............................................. 103  
PWM Output (Active-High) ......................................... 98  
PWM Output (Active-Low).......................................... 98  
Reset, WDT, OST and Power-up Timer................... 159  
Time-out Sequence  
(PIC12F615/617/HV615) .............................. 15, 17  
STATUS......................................................................18  
T1CON........................................................................62  
T2CON........................................................................66  
TRISIO (Tri-State GPIO).............................................44  
VRCON (Voltage Reference Control) .........................76  
WPU (Weak Pull-Up GPIO) ........................................46  
Reset.................................................................................110  
Revision History ................................................................203  
S
Shoot-through Current ......................................................104  
Sleep  
Case 1 .............................................................. 114  
Case 2 .............................................................. 114  
Case 3 .............................................................. 114  
Timer0 and Timer1 External Clock ........................... 161  
Timer1 Incrementing Edge ......................................... 61  
Wake-up from Interrupt............................................. 124  
Timing Parameter Symbology .......................................... 155  
TRISIO................................................................................ 43  
TRISIO Register ................................................................. 44  
Power-Down Mode ...................................................123  
Wake-up....................................................................123  
Wake-up using Interrupts..........................................123  
Software Simulator (MPLAB SIM).....................................140  
Special Event Trigger..........................................................82  
Special Function Registers .................................................12  
STATUS Register................................................................18  
T
V
T1CON Register..................................................................62  
T2CON Register..................................................................66  
Thermal Considerations....................................................154  
Time-out Sequence...........................................................113  
Timer0.................................................................................53  
Associated Registers ..................................................55  
External Clock.............................................................54  
Interrupt.......................................................................55  
Operation .............................................................. 53, 57  
Specifications............................................................161  
T0CKI..........................................................................54  
Timer1.................................................................................57  
Associated registers....................................................63  
Asynchronous Counter Mode .....................................59  
Reading and Writing ...........................................59  
Comparator Synchronization ......................................61  
ECCP Special Event Trigger  
Voltage Reference (VR)  
Specifications ........................................................... 163  
Voltage Reference. See Comparator Voltage  
Reference (CVREF)  
Voltage References  
Associated registers ................................................... 78  
VP6 Stabilization ........................................................ 74  
VREF. SEE ADC Reference Voltage  
W
Wake-up Using Interrupts................................................. 123  
Watchdog Timer (WDT).................................................... 121  
Associated registers ................................................. 122  
Specifications ........................................................... 160  
WPU Register..................................................................... 46  
Writing the Flash Program Memory.................................... 32  
WWW Address ................................................................. 209  
WWW, On-Line Support ....................................................... 6  
(PIC12F615/617/HV615 Only)............................61  
ECCP Time Base (PIC12F615/617/HV615 Only).......60  
Interrupt.......................................................................60  
Modes of Operation ....................................................57  
Operation During Sleep ..............................................60  
Oscillator.....................................................................59  
Prescaler.....................................................................59  
Specifications............................................................161  
Timer1 Gate  
Inverting Gate .....................................................60  
Selecting Source...........................................60, 73  
Synchronizing COUT w/Timer1 ..........................73  
TMR1H Register .........................................................57  
TMR1L Register..........................................................57  
DS41302D-page 208  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
2010 Microchip Technology Inc.  
DS41302D-page 209  
PIC12F609/615/617/12HV609/615  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC12F609/615/617/12HV609/615  
DS41302D  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41302D-page 210  
2010 Microchip Technology Inc.  
PIC12F609/615/617/12HV609/615  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
b)  
c)  
d)  
e)  
f)  
PIC12F615-E/P 301 = Extended Temp., PDIP  
package, 20 MHz, QTP pattern #301  
PIC12F615-I/SN = Industrial Temp., SOIC  
package, 20 MHz  
PIC12F615T-E/MF = Tape and Reel, Extended  
Temp., 3x3 DFN, 20 MHz  
Device:  
PIC12F609, PIC12F609T(1), PIC12HV609, PIC12HV609T(1)  
PIC12F615, PIC12F615T(1), PIC12HV615, PIC12HV615T(1)  
PIC12F617, PIC12F617T(1)  
,
,
PIC12F609T-E/MF = Tape and Reel, Extended  
Temp., 3x3 DFN, 20 MHz  
PIC12HV615T-E/MF = Tape and Reel,  
Extended Temp., 3x3 DFN, 20 MHz  
PIC12HV609T-E/MF = Tape and Reel,  
Extended Temp., 3x3 DFN, 20 MHz  
PIC12F617T-E/MF = Tape and Reel, Extended  
Temp., 3x3 DFN, 20 MHz  
PIC12F617-I/P = Industrial Temp., PDIP pack-  
age, 20 MHz  
PIC12F615-H/SN = High Temp., SOIC pack-  
age, 20 MHz  
Temperature  
Range:  
H
I
E
=
=
=
-40C to +150C (High Temp)(3)  
-40C to +85C (Industrial)  
-40C to +125C (Extended)  
g)  
h)  
i)  
Package:  
P
=
Plastic DIP (PDIP)  
SN  
MS  
MF  
MD  
=
=
=
=
8-lead Small Outline (150 mil) (SOIC)  
Micro Small Outline (MSOP)  
8-lead Plastic Dual Flat, No Lead (3x3) (DFN)  
8-lead Plastic Dual Flat, No Lead  
(4x4)(DFN)(1,2)  
Note 1:  
T
= in tape and reel for MSOP, SOIC and  
DFN packages only.  
2:  
3:  
Not available for PIC12F617.  
High Temp. available for PIC12F615 only.  
Pattern:  
QTP, SQTP or ROM Code; Special Requirements  
(blank otherwise)  
2010 Microchip Technology Inc.  
DS41302D-page 211  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/05/10  
DS41302D-page 212  
2010 Microchip Technology Inc.  

相关型号:

PIC12F615T-I/MS

8-Pin, Flash-Based 8-Bit CMOS Microcontrollers
MICROCHIP

PIC12F615T-I/P

8-Pin Flash-Based, 8-Bit CMOS Microcontrollers
MICROCHIP

PIC12F615T-I/PQTP

8-Pin Flash-Based, 8-Bit CMOS Microcontrollers
MICROCHIP

PIC12F615T-I/PSQTP

8-Pin Flash-Based, 8-Bit CMOS Microcontrollers
MICROCHIP

PIC12F615T-I/SN

8-Pin Flash-Based, 8-Bit CMOS Microcontrollers
MICROCHIP

PIC12F615T-I/SNQTP

8-Pin Flash-Based, 8-Bit CMOS Microcontrollers
MICROCHIP

PIC12F615T-I/SNSQTP

8-Pin Flash-Based, 8-Bit CMOS Microcontrollers
MICROCHIP

PIC12F615T-I/ST

8-Pin Flash-Based, 8-Bit CMOS Microcontrollers
MICROCHIP

PIC12F615T-I/STQTP

8-Pin Flash-Based, 8-Bit CMOS Microcontrollers
MICROCHIP

PIC12F615T-I/STSQTP

8-Pin Flash-Based, 8-Bit CMOS Microcontrollers
MICROCHIP

PIC12F615_05

8/14-Pin, 8-Bit Flash Microcontroller Product Brief
MICROCHIP

PIC12F616

8/14-Pin, 8-Bit Flash Microcontroller Product Brief
MICROCHIP