PIC12F639-E/SN [MICROCHIP]

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology; 8月14日引脚,基于闪存的8位CMOS微控制器采用纳瓦技术
PIC12F639-E/SN
型号: PIC12F639-E/SN
厂家: MICROCHIP    MICROCHIP
描述:

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
8月14日引脚,基于闪存的8位CMOS微控制器采用纳瓦技术

闪存 微控制器
文件: 总234页 (文件大小:3856K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC12F635/PIC16F636/639  
Data Sheet  
8/14-Pin, Flash-Based 8-Bit  
CMOS Microcontrollers  
with nanoWatt Technology  
*8-bit, 8-pin Devices Protected by Microchip’s Low Pin Count Patent: U. S. Patent No. 5,847,450. Additional U.S. and  
foreign patents and applications may be issued or pending.  
© 2007 Microchip Technology Inc.  
DS41232D  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
DS41232D-page ii  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
8/14-Pin Flash-Based, 8-Bit CMOS Microcontrollers  
With nanoWatt Technology  
High-Performance RISC CPU:  
Peripheral Features:  
• Only 35 instructions to learn:  
- All single-cycle instructions except branches  
• Operating speed:  
• 6/12 I/O pins with individual direction control:  
- High-current source/sink for direct LED drive  
- Interrupt-on-change pin  
- DC – 20 MHz oscillator/clock input  
- DC – 200 ns instruction cycle  
• Interrupt capability  
- Individually programmable weak pull-ups/  
pull-downs  
- Ultra Low-Power Wake-up  
• 8-level deep hardware stack  
• Direct, Indirect and Relative Addressing modes  
• Analog Comparator module with:  
- Up to two analog comparators  
- Programmable On-chip Voltage Reference  
(CVREF) module (% of VDD)  
- Comparator inputs and outputs externally  
accessible  
• Timer0: 8-bit timer/counter with 8-bit  
programmable prescaler  
• Enhanced Timer1:  
- 16-bit timer/counter with prescaler  
- External Timer1 Gate (count enable)  
- Option to use OSC1 and OSC2 in LP mode  
as Timer1 oscillator if INTOSC mode  
selected  
Special Microcontroller Features:  
• Precision Internal Oscillator:  
- Factory calibrated to ±1%, typical  
- Software selectable frequency range of  
8 MHz to 125 kHz  
- Software tunable  
- Two-Speed Start-up mode  
- Crystal fail detect for critical applications  
- Clock mode switching during operation for  
power savings  
• Clock mode switching for low-power operation  
• Power-Saving Sleep mode  
• Wide operating voltage range (2.0V-5.5V)  
• Industrial and Extended Temperature range  
• Power-on Reset (POR)  
• KEELOQ® compatible hardware Cryptographic  
module  
• In-Circuit Serial Programming™ (ICSP™) via  
two pins  
• Wake-up Reset (WUR)  
• Independent weak pull-up/pull-down resistors  
• Programmable Low-Voltage Detect (PLVD)  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
• Brown-out Reset (BOR) with software control  
option  
• Enhanced Low-Current Watchdog Timer (WDT)  
with on-chip oscillator (software selectable  
nominal 268 seconds with full prescaler) with  
software enable  
• Multiplexed Master Clear with pull-up/input pin  
• Programmable code protection (program and  
data independent)  
Low-Frequency Analog Front-End  
Features (PIC16F639 only):  
• Three input pins for 125 kHz LF input signals  
• High input detection sensitivity (3 mVPP, typical)  
• Demodulated data, Carrier clock or RSSI output  
selection  
• Input carrier frequency: 125 kHz, typical  
• Input modulation frequency: 4 kHz, maximum  
• 8 internal Configuration registers  
• Bidirectional transponder communication  
(LF talk back)  
• Programmable antenna tuning capacitance  
(up to 63 pF, 1 pF/step)  
• High-Endurance Flash/EEPROM cell:  
- 100,000 write Flash endurance  
- 1,000,000 write EEPROM endurance  
- Flash/Data EEPROM Retention: > 40 years  
• Low standby current: 5 μA (with 3 channels  
enabled), typical  
• Low operating current: 15 μA (with 3 channels  
enabled), typical  
• Serial Peripheral Interface (SPI) with internal  
MCU and external devices  
• Supports Battery Back-up mode and batteryless  
operation with external circuits  
Low-Power Features:  
• Standby Current:  
- 1 nA @ 2.0V, typical  
• Operating Current:  
- 8.5 μA @ 32 kHz, 2.0V, typical  
- 100 μA @ 1 MHz, 2.0V, typical  
• Watchdog Timer Current:  
- 1 μA @ 2.0V, typical  
© 2007 Microchip Technology Inc.  
DS41232D-page 1  
PIC12F635/PIC16F636/639  
Program Memory  
Flash (words)  
Data Memory  
LowFrequency  
Analog  
Device  
I/O  
Comparators  
SRAM (bytes)  
EEPROM (bytes)  
Front-End  
PIC12F635  
PIC16F636  
PIC16F639  
1024  
2048  
2048  
64  
128  
256  
256  
6
1
2
2
N
N
Y
128  
128  
12  
12  
Note 1: Any references to PORTA, RAn, TRISA and TRISAn refer to GPIO, GPn, TRISIO and TRISIOn, respectively.  
2: VDDT is the supply voltage of the Analog Front-End section (PIC16F639 only). VDDT is treated as VDD in  
this document unless otherwise stated.  
3: VSST is the ground reference voltage of the Analog Front-End section (PIC16F639 only). VSST is treated  
as VSS in this document unless otherwise stated.  
DS41232D-page 2  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
8-Pin Diagrams (PDIP, SOIC, DFN, DFN-S)  
PDIP, SOIC  
VDD  
GP5/T1CKI/OSC1/CLKIN  
GP4/T1G/OSC2/CLKOUT  
GP3/MCLR/VPP  
1
2
VSS  
8
7
GP0/C1IN+/ICSPDAT/ULPWU  
GP1/C1IN-/ICSPCLK  
GP2/T0CKI/INT/C1OUT  
3
4
6
5
DFN, DFN-S  
VDD  
GP5/T1CKI/OSC1/CLKIN  
GP4/T1G/OSC2/CLKOUT  
GP3/MCLR/VDD  
VSS  
8
7
6
5
1
2
GP0/CIN+/ICSPDAT/ULPWU  
GP1/CIN-/ICSPCLK  
GP2/T0CKI/INT/COUT  
3
4
TABLE 1:  
I/O  
8-PIN SUMMARY (PDIP, SOIC, DFN, DFN-S)  
Pin  
Comparators  
Timer  
Interrupts  
Pull-ups  
Basic  
GP0  
7
6
5
C1IN+  
C1IN-  
IOC  
IOC  
Y
Y
Y
ICSPDAT/ULPWU  
GP1  
ICSPCLK  
GP2  
C1OUT  
T0CKI  
INT/IOC  
GP3(1)  
4
3
2
1
8
T1G  
T1CKI  
IOC  
IOC  
IOC  
Y(2)  
Y
MCLR/VPP  
OSC2/CLKOUT  
OSC1/CLKIN  
VDD  
GP4  
GP5  
Y
VSS  
Note 1: Input only.  
2: Only when pin is configured for external MCLR.  
© 2007 Microchip Technology Inc.  
DS41232D-page 3  
PIC12F635/PIC16F636/639  
14-Pin Diagram (PDIP, SOIC, TSSOP)  
VDD  
RA5/T1CKI/OSC1/CLKIN  
RA4/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
RC5  
1
2
3
4
5
6
7
VSS  
14  
13  
12  
11  
10  
9
RA0/C1IN+/ICSPDAT/ULPWU  
RA1/C1IN-/VREF/ICSPCLK  
RA2/T0CKI/INT/C1OUT  
RC0/C2IN+  
RC1/C2IN-  
RC2  
RC4/C2OUT  
RC3  
8
TABLE 2:  
I/O  
14-PIN SUMMARY (PDIP, SOIC, TSSOP)  
Pin  
Comparators  
Timer  
Interrupts  
Pull-ups  
Basic  
RA0  
13  
12  
11  
C1IN+  
C1IN-  
IOC  
IOC  
Y
Y
Y
ICSPDAT/ULPWU  
VREF/ICSPCLK  
RA1  
RA2  
C1OUT  
T0CKI  
INT/IOC  
RA3(1)  
4
3
T1G  
T1CKI  
IOC  
IOC  
IOC  
Y(2)  
Y
MCLR/VPP  
RA4  
RA5  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
OSC2/CLKOUT  
2
Y
OSC1/CLKIN  
10  
9
C2IN+  
C2IN-  
8
7
6
C2OUT  
5
1
VDD  
VSS  
14  
Note 1: Input only.  
2: Only when pin is configured for external MCLR.  
DS41232D-page 4  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
16-Pin Diagram  
QFN  
12  
11  
10  
9
RA0/C1IN+/ICSPDAT/ULPWU  
RA1/C1IN-/VREF/ICSPCLK  
RA5/T1CKI/OSC1/CLKIN  
1
2
3
4
RA4/AN3/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
RC5  
PIC16F636  
RA2/T0CKI/INT/C1OUT  
RC0/C2IN+  
TABLE 3:  
I/O  
RA0  
16-PIN SUMMARY  
Comparators  
Pin  
Timer  
Interrupts  
Pull-ups  
Basic  
12  
11  
10  
C1IN+  
C1IN-  
IOC  
IOC  
Y
Y
Y
ICSPDAT/ULPWU  
VREF/ICSPCLK  
RA1  
RA2  
C1OUT  
T0CKI  
INT/IOC  
RA3(1)  
3
2
T1G  
T1CKI  
IOC  
IOC  
IOC  
Y(2)  
Y
MCLR/VPP  
RA4  
RA5  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
OSC2/CLKOUT  
1
Y
OSC1/CLKIN  
9
C2IN+  
C2IN-  
8
7
6
5
C2OUT  
4
16  
13  
14  
15  
VDD  
VSS  
NC  
NC  
Note 1: Input only.  
2: Only when pin is configured for external MCLR.  
© 2007 Microchip Technology Inc.  
DS41232D-page 5  
PIC12F635/PIC16F636/639  
20-Pin Diagram  
SSOP  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
VDD  
RA5/T1CKI/OSC1/CLKIN  
RA4/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
VSS  
RA0/C1IN+/ICSPDAT/ULPWU  
RA1/C1IN-/VREF/ICSPCLK  
RA2/TOCKI/INT/C1OUT  
RC0/C2IN+  
17  
16  
RC5  
15  
14  
13  
12  
11  
RC4/C2OUT  
RC1/C2IN-/CS  
RC3/LFDATA/RSSI/CCLK/SDIO  
RC2/SCLK/ALERT  
(3)  
(4)  
VDDT  
VSST  
LCZ  
LCY  
LCCOM  
LCX  
TABLE 4:  
20-PIN SUMMARY  
I/O  
Pin  
Analog Front-End Comparators  
Timer  
Interrupts  
Pull-ups  
Basic  
RA0  
19  
18  
17  
C1IN+  
C1IN-  
IOC  
IOC  
Y
Y
Y
ICSPDAT/ULPWU  
VREF/ICSPCLK  
RA1  
RA2  
C1OUT  
T0CKI  
INT/IOC  
RA3(1)  
4
3
T1G  
T1CKI  
IOC  
IOC  
IOC  
Y(2)  
Y
MCLR/VPP  
RA4  
RA5  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
OSC2/CLKOUT  
2
Y
OSC1/CLKIN  
16  
15  
14  
7
C2IN+  
C2IN-  
CS  
ALERT  
SCLK  
CCLK/SDIO  
LFDATA/RSSI  
6
C2OUT  
5
(3)  
8
VDDT  
(4)  
13  
11  
10  
9
VSST  
LCX  
LCY  
LCZ  
LCCOM  
12  
1
VDD  
VSS  
20  
Note 1: Input only.  
2: Only when pin is configured for external MCLR.  
3: VDDT is the supply voltage of the Analog Front-End section (PIC16F639 only). VDDT is treated as VDD in  
this document unless otherwise stated.  
4: VSST is the ground reference voltage of the Analog Front-End section (PIC16F639 only). VSST is treated  
as VSS in this document unless otherwise stated.  
DS41232D-page 6  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 9  
2.0 Memory Organization................................................................................................................................................................. 17  
3.0 Clock Sources ............................................................................................................................................................................ 35  
4.0 I/O Ports ..................................................................................................................................................................................... 47  
5.0 Timer0 Module ........................................................................................................................................................................... 61  
6.0 Timer1 Module with Gate Control............................................................................................................................................... 64  
7.0 Comparator Module.................................................................................................................................................................... 71  
8.0 Programmable Low-Voltage Detect (PLVD) Module.................................................................................................................. 87  
9.0 Data EEPROM Memory ............................................................................................................................................................. 91  
®
10.0 KEELOQ Compatible Cryptographic Module ............................................................................................................................. 95  
11.0 Analog Front-End (AFE) Functional Description (PIC16F639 Only) .......................................................................................... 97  
12.0 Special Features of the CPU.................................................................................................................................................... 129  
13.0 Instruction Set Summary.......................................................................................................................................................... 149  
14.0 Development Support............................................................................................................................................................... 159  
15.0 Electrical Specifications............................................................................................................................................................ 163  
16.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 191  
17.0 Packaging Information.............................................................................................................................................................. 211  
On-Line Support  
223  
Systems Information and Upgrade Hot Line ..................................................................................................................................... 223  
Reader Response............................................................................................................................................................................. 224  
Appendix A: Data Sheet Revision History......................................................................................................................................... 225  
Product Identification System ........................................................................................................................................................... 231  
Worldwide Sales and Service ........................................................................................................................................................... 232  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
© 2007 Microchip Technology Inc.  
DS41232D-page 7  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232D-page 8  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
Block Diagrams and pinout descriptions of the devices  
are as follows:  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the PIC12F635/PIC16F636/639 devices.  
• PIC12F635 (Figure 1-1, Table 1-1)  
• PIC16F636 (Figure 1-2, Table 1-2)  
• PIC16F639 (Figure 1-3, Table 1-3)  
FIGURE 1-1:  
PIC12F635 BLOCK DIAGRAM  
Configuration  
13  
8
GPIO  
Data Bus  
Program Counter  
GP0  
GP1  
GP2  
GP3  
GP4  
GP5  
Flash  
1K x 14  
Program  
RAM  
64 bytes  
8-level Stack  
Memory  
(13-bit)  
File  
Registers  
Program  
Bus  
14  
RAM Addr  
9
Addr MUX  
Instruction Reg  
Indirect  
Addr  
7
Direct Addr  
8
FSR Reg  
STATUS Reg  
8
3
MUX  
Power-up  
Timer  
Instruction  
Decode and  
Control  
Oscillator  
Start-up Timer  
ALU  
Power-on  
Reset  
OSC1/CLKIN  
8
Timing  
Generation  
Watchdog  
Timer  
Brown-out  
Reset  
W Reg  
OSC2/CLKOUT  
Programmable  
8 MHz  
Internal  
Oscillator Oscillator  
31 kHz  
Internal  
Low-Voltage Detect  
Wake-up  
Reset  
T1G  
VDD VSS  
MCLR  
T1CKI  
Timer0  
Timer1  
T0CKI  
Cryptographic  
Module  
1 Analog  
Comparator  
and Reference  
EEDAT  
128 bytes  
Data  
EEPROM  
EEADDR  
C1IN- C1IN+ C1OUT  
© 2007 Microchip Technology Inc.  
DS41232D-page 9  
PIC12F635/PIC16F636/639  
FIGURE 1-2:  
PIC16F636 BLOCK DIAGRAM  
Configuration  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
Flash  
2K x 14  
Program  
RAM  
128  
bytes  
8-level Stack  
(13-bit)  
Memory  
File  
Registers  
Program  
Bus  
14  
RAM Addr  
9
Addr MUX  
Instruction Reg  
PORTC  
Indirect  
Addr  
7
Direct Addr  
8
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
FSR Reg  
STATUS Reg  
8
3
Power-up  
Timer  
MUX  
Oscillator  
Instruction  
Decode and  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
8
Watchdog  
Timer  
OSC1/CLKIN  
W Reg  
Timing  
Generation  
Brown-out  
Reset  
OSC2/CLKOUT  
Programmable  
Low-Voltage Detect  
8 MHz  
Internal  
Oscillator  
31 kHz  
Internal  
Oscillator  
Wake-up  
Reset  
T1CKI T1G  
VDD  
VSS  
MCLR  
Timer0  
Timer1  
T0CKI  
2 Analog Comparators  
and Reference  
Cryptographic  
Module  
EEDAT  
256 bytes  
Data  
EEPROM  
EEADDR  
C1IN- C1IN+ C1OUT C2IN- C2IN+ C2OUT  
DS41232D-page 10  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 1-3:  
PIC16F639 BLOCK DIAGRAM  
Configuration  
PORTA  
13  
8
Data Bus  
Program Counter  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
Flash  
2K x 14  
Program  
Memory  
RAM  
128  
bytes  
8-level Stack  
(13-bit)  
File  
Registers  
Program  
Bus  
14  
RAM Addr (1)  
9
Addr MUX  
Instruction Reg  
PORTC  
Indirect  
Addr  
7
Direct Addr  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
8
FSR Reg  
STATUS Reg  
8
3
MUX  
Power-up  
Timer  
Oscillator  
Instruction  
Decode and  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
8
Watchdog  
Timer  
OSC1/CLKIN  
W Reg  
Timing  
Generation  
VDDT  
VSST  
Brown-out  
Reset  
125 kHz  
Analog Front-End  
(AFE)  
OSC2/CLKOUT  
Programmable  
Low-voltage Detect  
LCCOM  
8 MHz  
Internal  
Oscillator  
31 kHz  
Internal  
Oscillator  
Wake-up  
Reset  
T1CKI T1G  
LCX  
LCY LCZ  
VDD VSS  
MCLR  
Timer0  
Timer1  
T0CKI  
2 Analog  
Comparators  
EEDAT  
KEELOQ Module  
and Reference  
256 bytes  
DATA  
EEPROM  
EEADDR  
C1IN- C1IN+ C1OUT C2IN-  
C2IN+ C2OUT  
© 2007 Microchip Technology Inc.  
DS41232D-page 11  
PIC12F635/PIC16F636/639  
TABLE 1-1:  
PIC12F635 PINOUT DESCRIPTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
GP0/C1IN+/ICSPDAT/ULPWU  
GP0  
TTL  
General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up/pull-down.  
Selectable Ultra Low-Power Wake-up pin.  
C1IN+  
ICSPDAT  
ULPWU  
GP1  
AN  
TTL  
AN  
Comparator 1 input – positive.  
CMOS Serial programming data I/O.  
Ultra Low-Power Wake-up input.  
GP1/C1IN-/ICSPCLK  
TTL  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up/pull-down.  
C1IN-  
ICSPCLK  
GP2  
AN  
ST  
ST  
Comparator 1 input – negative.  
Serial programming clock.  
GP2/T0CKI/INT/C1OUT  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up/pull-down.  
T0CKI  
INT  
ST  
ST  
External clock for Timer0.  
External interrupt.  
C1OUT  
GP3  
CMOS Comparator 1 output.  
GP3/MCLR/VPP  
TTL  
General purpose input. Individually controlled  
interrupt-on-change.  
MCLR  
VPP  
ST  
HV  
Master Clear Reset. Pull-up enabled when configured as MCLR.  
Programming voltage.  
GP4/T1G/OSC2/CLKOUT  
GP4  
TTL  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up/pull-down.  
T1G  
OSC2  
CLKOUT  
GP5  
ST  
Timer1 gate.  
XTAL XTAL connection.  
CMOS TOSC/4 reference clock.  
GP5/T1CKI/OSC1/CLKIN  
TTL  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up/pull-down.  
T1CKI  
OSC1  
CLKIN  
VDD  
ST  
XTAL  
ST  
Timer1 clock.  
XTAL connection.  
TOSC reference clock.  
VDD  
VSS  
D
Power supply for microcontroller.  
Ground reference for microcontroller.  
VSS  
D
Legend: AN = Analog input or output  
HV = High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
D = Direct  
TTL = TTL compatible input  
DS41232D-page 12  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 1-2:  
PIC16F636 PINOUT DESCRIPTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
RA0/C1IN+/ICSPDAT/ULPWU  
RA0  
TTL  
General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up/pull-down.  
Selectable Ultra Low-Power Wake-up pin.  
C1IN+  
ICSPDAT  
ULPWU  
RA1  
AN  
TTL  
AN  
Comparator 1 input – positive.  
CMOS Serial programming data I/O.  
Ultra Low-Power Wake-up input.  
RA1/C1IN-/VREF/ICSPCLK  
RA2/T0CKI/INT/C1OUT  
TTL  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up/pull-down.  
C1IN-  
VREF  
AN  
AN  
ST  
ST  
Comparator 1 input – negative.  
External voltage reference  
Serial programming clock.  
ICSPCLK  
RA2  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up/pull-down.  
T0CKI  
INT  
ST  
ST  
External clock for Timer0.  
External interrupt.  
C1OUT  
RA3  
CMOS Comparator 1 output.  
RA3/MCLR/VPP  
TTL  
ST  
General purpose input. Individually controlled interrupt-on-change.  
MCLR  
VPP  
Master Clear Reset. Pull-up enabled when configured as MCLR.  
Programming voltage.  
HV  
TTL  
RA4/T1G/OSC2/CLKOUT  
RA4  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up/pull-down.  
T1G  
OSC2  
CLKOUT  
RA5  
ST  
Timer1 gate.  
XTAL XTAL connection.  
CMOS TOSC/4 reference clock.  
RA5/T1CKI/OSC1/CLKIN  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up/pull-down.  
T1CKI  
OSC1  
CLKIN  
RC0  
ST  
XTAL  
ST  
Timer1 clock.  
XTAL connection.  
TOSC reference clock.  
RC0/C2IN+  
RC1/C2IN-  
TTL  
AN  
CMOS General purpose I/O.  
C2IN+  
RC1  
Comparator 1 input – positive.  
TTL  
AN  
CMOS General purpose I/O.  
C2IN-  
RC2  
Comparator 1 input – negative.  
RC2  
TTL  
TTL  
TTL  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
CMOS Comparator 2 output.  
CMOS General purpose I/O.  
RC3  
RC3  
RC4/C2OUT  
RC4  
C2OUT  
RC5  
RC5  
VDD  
VSS  
TTL  
D
VDD  
Power supply for microcontroller.  
Ground reference for microcontroller.  
VSS  
D
Legend: AN = Analog input or output  
HV = High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
D = Direct  
TTL = TTL compatible input  
© 2007 Microchip Technology Inc.  
DS41232D-page 13  
PIC12F635/PIC16F636/639  
TABLE 1-3:  
PIC16F639 PINOUT DESCRIPTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
LCCOM  
LCCOM  
LCX  
AN  
AN  
AN  
AN  
TTL  
Common reference for analog inputs.  
125 kHz analog X channel input.  
125 kHz analog Y channel input.  
125 kHz analog Z channel input.  
LCX  
LCY  
LCY  
LCZ  
LCZ  
RA0/C1IN+/ICSPDAT/ULPWU  
RA0  
General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up/pull-down.  
Selectable Ultra Low-Power Wake-up pin.  
C1IN+  
ICSPDAT  
ULPWU  
RA1  
AN  
TTL  
AN  
Comparator1 input – positive.  
CMOS Serial Programming Data IO.  
Ultra Low-Power Wake-up input.  
RA1/C1IN-/VREF/ICSPCLK  
RA2/T0CKI/INT/C1OUT  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up/pull-down.  
C1IN-  
VREF  
AN  
AN  
ST  
ST  
Comparator1 input – negative.  
External voltage reference  
Serial Programming Clock.  
ICSPCLK  
RA2  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up/pull-down.  
T0CKI  
INT  
ST  
ST  
External clock for Timer0.  
External Interrupt.  
C1OUT  
RA3  
CMOS Comparator1 output.  
TTL  
General purpose input. Individually controlled  
interrupt-on-change.  
RA3/MCLR/VPP  
Master Clear Reset. Pull-up enabled when configured as MCLR.  
MCLR  
VPP  
ST  
HV  
Programming voltage.  
RA4  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up/pull-down.  
RA4/T1G/OSC2/CLKOUT  
ST  
Timer1 gate.  
T1G  
OSC2  
CLKOUT  
RA5  
XTAL XTAL connection.  
CMOS TOSC reference clock.  
RA5/T1CKI/OSC1/CLKIN  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up/pull-down.  
T1CKI  
OSC1  
CLKIN  
RC0  
ST  
XTAL  
ST  
Timer1 clock.  
XTAL connection.  
TOSC/4 reference clock.  
RC0/C2IN+  
TTL  
AN  
CMOS General purpose I/O.  
C2IN+  
RC1  
Comparator1 input – positive.  
TTL  
AN  
CMOS General purpose I/O.  
RC1/C2IN-/CS  
C2IN-  
Comparator1 input – negative.  
TTL  
Chip select input for SPI communication with internal pull-up  
resistor.  
CS  
RC2  
SCLK  
ALERT  
TTL  
TTL  
CMOS General purpose I/O.  
RC2/SCLK/ALERT  
Digital clock input for SPI communication.  
Output with internal pull-up resistor for AFE error signal.  
= Direct  
OD  
Legend: AN = Analog input or output  
HV = High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
D
OD = Open Drain  
TTL = TTL compatible input  
DS41232D-page 14  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 1-3:  
PIC16F639 PINOUT DESCRIPTIONS (CONTINUED)  
Input  
Type  
Output  
Type  
Name  
RC3/LFDATA/RSSI/CCLK/SDO  
Function  
Description  
RC3  
LFDATA  
RSSI  
TTL  
CMOS General purpose I/O.  
CMOS Digital output representation of analog input signal to LC pins.  
Current Received signal strength indicator. Analog current that is  
proportional to input amplitude.  
CCLK  
SDIO  
RC4  
TTL  
TTL  
Carrier clock output.  
CMOS Input/Output for SPI communication.  
CMOS General purpose I/O.  
RC4/C2OUT  
C2OUT  
RC5  
CMOS Comparator2 output.  
RC5  
TTL  
D
CMOS General purpose I/O.  
VDDT  
VDDT  
Power supply for Analog Front-End. In this document, VDDT is  
treated the same as VDD, unless otherwise stated.  
VSST  
VSST  
D
Ground reference for Analog Front-End. In this document, VSST is  
treated the same as VSS, unless otherwise stated.  
VDD  
VSS  
VDD  
VSS  
D
D
Power supply for microcontroller.  
Ground reference for microcontroller.  
Legend: AN = Analog input or output  
HV = High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
D
= Direct  
OD = Open Drain  
TTL = TTL compatible input  
© 2007 Microchip Technology Inc.  
DS41232D-page 15  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232D-page 16  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 2-1: PROGRAM MEMORY MAP AND  
STACK OF THE PIC12F635  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
The PIC12F635/PIC16F636/639 devices have a 13-bit  
program counter capable of addressing an 8K x 14  
program memory space. Only the first 1K x 14  
(0000h-03FFh, for the PIC12F635) and 2K x 14  
(0000h-07FFh, for the PIC16F636/639) is physically  
implemented. Accessing a location above these  
boundaries will cause a wraparound within the first  
2K x 14 space. The Reset vector is at 0000h and the  
interrupt vector is at 0004h (see Figure 2-1).  
13  
Stack Level 1  
Stack Level 8  
Reset Vector  
0000h  
2.2  
Data Memory Organization  
Interrupt Vector  
0004h  
0005h  
The data memory (see Figure 2-2) is partitioned into  
two banks, which contain the General Purpose  
Registers (GPR) and the Special Function Registers  
(SFR). The Special Function Registers are located in  
the first 32 locations of each bank. Register locations  
20h-7Fh in Bank 0 and A0h-BFh in Bank 1 are GPRs,  
implemented as static RAM for the PIC16F636/639.  
For the PIC12F635, register locations 40h through 7Fh  
are GPRs implemented as static RAM. Register  
locations F0h-FFh in Bank 1 point to addresses  
70h-7Fh in Bank 0. All other RAM is unimplemented  
and returns ‘0’ when read. RP0 of the STATUS register  
is the bank select bit.  
On-chip Program  
Memory  
03FFh  
0400h  
Access 0-3FFh  
1FFFh  
FIGURE 2-2: PROGRAM MEMORY MAP AND  
STACK OF THE PIC16F636/639  
RP1  
0
RP0  
0
PC<12:0>  
Bank 0 is selected  
Bank 1 is selected  
Bank 2 is selected  
Bank 3 is selected  
CALL, RETURN  
RETFIE, RETLW  
13  
0
1
1
0
Stack Level 1  
Stack Level 8  
1
1
Reset Vector  
0000h  
0004h  
0005h  
Interrupt Vector  
On-chip Program  
Memory  
07FFh  
0800h  
Access 0-7FFh  
1FFFh  
© 2007 Microchip Technology Inc.  
DS41232D-page 17  
PIC12F635/PIC16F636/639  
2.2.1  
GENERAL PURPOSE REGISTER  
The register file is organized as 64 x 8 for the  
PIC12F635 and 128 x 8 for the PIC16F636/639. Each  
register is accessed, either directly or indirectly,  
through the File Select Register, FSR (see Section 2.4  
“Indirect Addressing, INDF and FSR Registers”).  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral functions for controlling  
the desired operation of the device (see Figure 2-1).  
These registers are static RAM.  
The special registers can be classified into two sets:  
core and peripheral. The Special Function Registers  
associated with the “core” are described in this section.  
Those related to the operation of the peripheral  
features are described in the section of that peripheral  
feature.  
DS41232D-page 18  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 2-3:  
PIC12F635 SPECIAL FUNCTION REGISTERS  
File File  
Address Address  
Indirect addr.(1) 00h Indirect addr.(1) 80h  
OPTION_REG 81h  
File  
File  
Address  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
Address  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
Accesses  
00h-0Bh  
Accesses  
80h-8Bh  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
STATUS  
FSR  
GPIO  
TRISIO  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
TMR1L  
TMR1H  
T1CON  
PCON  
OSCCON  
OSCTUNE  
CRCON  
CRDAT0(2)  
CRDAT1(2)  
CRDAT2(2)  
CRDAT3(2)  
LVDCON  
WPUDA  
IOCA  
WDA  
WDTCON  
CMCON0  
CMCON1  
VRCON  
EEDAT  
EEADR  
EECON1  
EECON2(1)  
3Fh  
40h  
General  
Purpose  
Register  
64 Bytes  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
Bank 0  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
2: CRDAT<3:0> registers are KEELOQ® hardware peripheral related registers and require the execution of the  
®
“KEELOQ Encoder License Agreement” regarding implementation of the module and access to related  
registers. The “KEELOQ® Encoder License Agreement” may be accessed through the Microchip web site  
located at www.microchip.com/KEELOQ or by contacting your local Microchip Sales Representative.  
© 2007 Microchip Technology Inc.  
DS41232D-page 19  
PIC12F635/PIC16F636/639  
FIGURE 2-4:  
PIC16F636/639 SPECIAL FUNCTION REGISTERS  
File  
File  
File  
File  
Address  
Address  
Address  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
Address  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
Indirect addr.(1) 00h  
Indirect addr. (1) 80h  
Accesses  
00h-0Bh  
Accesses  
80h-8Bh  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
OPTION_REG 81h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
STATUS  
FSR  
PORTA  
TRISA  
PORTC  
TRISC  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
TMR1L  
TMR1H  
T1CON  
PCON  
OSCCON  
OSCTUNE  
CRCON  
CRDAT0(2)  
CRDAT1(2)  
CRDAT2(2)  
CRDAT3(2)  
LVDCON  
WPUDA  
IOCA  
WDA  
WDTCON  
CMCON0  
CMCON1  
VRCON  
EEDAT  
EEADR  
EECON1  
EECON2(1)  
General  
Purpose  
Register  
96 Bytes  
General  
Purpose  
Register  
32 Bytes  
BFh  
C0h  
EFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
Accesses  
70h-7Fh  
F0h  
FFh  
Accesses  
70h-7Fh  
Accesses  
Bank 0  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
2: CRDAT<3:0> registers are KEELOQ hardware peripheral related registers and require the execution of the  
®
“KEELOQ Encoder License Agreement” regarding implementation of the module and access to related  
registers. The “KEELOQ® Encoder License Agreement” may be accessed through the Microchip web site  
located at www.microchip.com/KEELOQ or by contacting your local Microchip Sales Representative.  
DS41232D-page 20  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 2-1:  
PIC12F635 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0  
Value on  
POR/BOR/  
WUR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 0  
00h  
INDF  
Addressing this location uses contents of FSR to address data memory  
(not a physical register)  
xxxx xxxx  
32,137  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
TMR0  
PCL  
STATUS  
FSR  
GPIO  
Timer0 Module Register  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--xx xx00  
61,137  
32,137  
26,137  
32,137  
47,137  
Program Counter’s (PC) Least Significant Byte  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
GP5  
GP4  
GP3  
GP2  
GP1  
GP0  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
0Ah PCLATH  
0Bh INTCON  
0Ch PIR1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000  
0000 000x  
000- 00-0  
32,137  
28,137  
30,137  
GIE  
PEIE  
T0IE  
CRIF  
INTE  
RAIE  
C1IF  
T0IF  
INTF  
RAIF(2)  
EEIF  
LVDIF  
OSFIF  
TMR1IF  
0Dh  
Unimplemented  
0Eh TMR1L  
Holding Register for the Least Significant Byte of the 16-bit TMR1  
Holding Register for the Most Significant Byte of the 16-bit TMR1  
xxxx xxxx  
xxxx xxxx  
64,137  
64,137  
0Fh  
TMR1H  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
T1CON  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS  
TMR1ON  
0000 0000  
68,137  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
WDTCON  
CMCON0  
COUT  
WDTPS3  
CINV  
WDTPS2  
CIS  
WDTPS1 WDTPS0  
SWDTEN  
CM0  
---0 1000  
144,137  
79,137  
82,137  
CM2  
CM1  
-0-0 0000  
1Ah CMCON1  
T1GSS  
CMSYNC  
---- --10  
1Bh  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
1Ch  
1Dh  
1Eh  
1Fh  
Legend:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1:  
2:  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
MCLR and WDT Reset do not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the mis-  
match exists.  
© 2007 Microchip Technology Inc.  
DS41232D-page 21  
PIC12F635/PIC16F636/639  
TABLE 2-2:  
PIC12F635 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1  
Value on  
POR/BOR/  
WUR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 1  
32,137  
80h INDF  
Addressing this location uses contents of FSR to address data memory  
(not a physical register)  
xxxx xxxx  
63,137  
32,137  
26,137  
32,137  
81h OPTION_REG RAPU INTEDG  
T0CS  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO PD  
Indirect Data Memory Address Pointer  
T0SE  
PSA  
PS2  
PS1  
PS0  
C
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
82h PCL  
83h STATUS  
84h FSR  
Z
DC  
85h TRISIO  
TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111  
86h  
87h  
88h  
89h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
32,137  
8Ah PCLATH  
8Bh INTCON  
8Ch PIE1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000  
0000 000x  
(3)  
GIE  
EEIE  
PEIE  
LVDIE  
T0IE  
CRIE  
INTE  
RAIE  
C1IE  
T0IF  
INTF  
RAIF  
28,137  
29,137  
OSFIE  
TMR1IE 000- 00-0  
8Dh  
Unimplemented  
8Eh PCON  
IRCF2  
ULPWUE SBOREN WUR  
POR  
LTS  
BOR  
SCS  
--01 q-qq  
-110 q000  
31,137  
36,137  
40,137  
8Fh OSCCON  
90h OSCTUNE  
IRCF1  
IRCF0  
TUN4  
OSTS  
TUN3  
HTS  
TUN2  
TUN1  
TUN0 ---0 0000  
91h  
92h  
93h  
Unimplemented  
Unimplemented  
Unimplemented  
94h LVDCON  
IRVST  
LVDEN  
LVDL2  
LVDL1  
LVDL0 --00 -000 --00 -000  
(2)  
95h WPUDA  
96h IOCA  
WPUDA5 WPUDA4  
WPUDA2 WPUDA1 WPUDA0 --11 -111 --11 -111  
IOCA5  
WDA5  
IOCA4  
WDA4  
IOCA3  
IOCA2  
WDA2  
IOCA1  
WDA1  
IOCA0 --00 0000 --00 0000  
WDA0 --11 -111 --11 -111  
(2)  
97h WDA  
9Bh  
Unimplemented  
VREN  
99h VRCON  
9Ah EEDAT  
9Bh EEADR  
9Ch EECON1  
9Dh EECON2  
VRR  
VR3  
VR2  
VR1  
VR0  
0-0- 0000 0-0- 0000  
EEDAT7 EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0 0000 0000 0000 0000  
EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 0000 0000 0000 0000  
WRERR WREN  
WR  
RD  
---- x000 ---- q000  
---- ---- ---- ----  
EEPROM Control Register 2 (not a physical register)  
Unimplemented  
9Eh  
9Fh  
Unimplemented  
Legend:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: GP3 pull-up is enabled when pin is configured as MCLR in the Configuration Word register.  
3: MCLR and WDT Reset do not affect the previous value data latch. The RAIF bit will be cleared upon Reset, but will set  
again if the mismatch exists.  
DS41232D-page 22  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 2-3:  
PIC16F636/639 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0  
Value on  
POR/BOR/  
WUR  
Addr Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 0  
32,137  
00h INDF  
Addressing this location uses contents of FSR to address data memory  
(not a physical register)  
xxxx xxxx  
61,137  
32,137  
01h TMR0  
02h PCL  
Timer0 Module Register  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--xx xx00  
Program Counter’s (PC) Least Significant Byte  
26,137  
32,137  
03h STATUS  
04h FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
RA1  
RC1  
C
Indirect Data Memory Address Pointer  
05h PORTA  
RA5  
RC5  
RA4  
RC4  
RA3  
RC3  
RA2  
RC2  
RA0  
RC0  
48,137  
06h  
Unimplemented  
07h PORTC  
--xx xx00  
57,137  
08h  
09h  
Unimplemented  
Unimplemented  
32,137  
0Ah PCLATH  
0Bh INTCON  
0Ch PIR1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000  
0000 000x  
(2)  
GIE  
EEIF  
PEIE  
LVDIF  
T0IE  
CRIF  
INTE  
C2IF  
RAIE  
C1IF  
T0IF  
INTF  
RAIF  
28,137  
30,137  
OSFIF  
TMR1IF 0000 00-0  
0Dh  
0Eh TMR1L  
0Fh TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1  
10h T1CON  
Unimplemented  
64,137  
64,137  
Holding Register for the Least Significant Byte of the 16-bit TMR1  
xxxx xxxx  
xxxx xxxx  
68,137  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
144,137  
79,137  
82,137  
18h WDTCON  
19h CMCON0 C2OUT C1OUT  
1Ah CMCON1  
C2INV  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN ---0 1000  
C1INV  
CIS  
CM2  
CM1  
CM0  
0000 0000  
T1GSS C2SYNC ---- --10  
1Bh  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
1Ch  
1Dh  
1Eh  
1Fh  
Legend:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: MCLR and WDT Reset do not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set  
again if the mismatch exists.  
© 2007 Microchip Technology Inc.  
DS41232D-page 23  
PIC12F635/PIC16F636/639  
TABLE 2-4:  
PIC16F636/639 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1  
Value on  
POR/BOR/  
WUR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 1  
32,137  
80h INDF  
Addressing this location uses contents of FSR to address data memory  
(not a physical register)  
xxxx xxxx  
63,137  
32,137  
26,137  
32,137  
81h OPTION_REG RAPU INTEDG  
T0CS  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO PD  
Indirect Data Memory Address Pointer  
T0SE  
PSA  
PS2  
PS1  
PS0  
C
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
82h PCL  
83h STATUS  
84h FSR  
Z
DC  
85h TRISA  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 --11 1111 --11 1111  
86h  
Unimplemented  
87h TRISC  
TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 --11 1111 --11 1111  
88h  
89h  
Unimplemented  
Unimplemented  
32,137  
8Ah PCLATH  
8Bh INTCON  
8Ch PIE1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000  
0000 000x  
(3)  
GIE  
EEIE  
PEIE  
LVDIE  
T0IE  
CRIE  
INTE  
C2IE  
RAIE  
C1IE  
T0IF  
INTF  
RAIF  
28,137  
29,137  
OSFIE  
TMR1IE 0000 00-0  
8Dh  
Unimplemented  
8Eh PCON  
IRCF2  
ULPWUE SBOREN WUR  
POR  
LTS  
BOR  
SCS  
--01 q-qq --0u u-uu  
-110 q000 -110 x000  
8Fh OSCCON  
90h OSCTUNE  
IRCF1  
IRCF0  
TUN4  
OSTS  
TUN3  
HTS  
TUN2  
TUN1  
TUN0 ---0 0000 ---u uuuu  
91h  
92h  
93h  
Unimplemented  
Unimplemented  
Unimplemented  
94h LVDCON  
IRVST  
LVDEN  
LVDL2  
LVDL1  
LVDL0 --00 -000 --00 -000  
(2)  
95h WPUDA  
96h IOCA  
WPUDA5 WPUDA4  
WPUDA2 WPUDA1 WPUDA0 --11 -111 --11 -111  
IOCA5  
WDA5  
IOCA4  
WDA4  
IOCA3  
IOCA2  
WDA2  
IOCA1  
WDA1  
IOCA0 --00 0000 --00 0000  
WDA0 --11 -111 --11 -111  
(2)  
97h WDA  
9Bh  
Unimplemented  
VREN  
99h VRCON  
9Ah EEDAT  
9Bh EEADR  
9Ch EECON1  
9Dh EECON2  
VRR  
VR3  
VR2  
VR1  
VR0  
0-0- 0000 0-0- 0000  
EEDAT7 EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0 0000 0000 0000 0000  
EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 0000 0000 0000 0000  
WRERR WREN  
WR  
RD  
---- x000 ---- q000  
---- ---- ---- ----  
EEPROM Control Register 2 (not a physical register)  
Unimplemented  
9Eh  
9Fh  
Unimplemented  
Legend:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: RA3 pull-up is enabled when pin is configured as MCLR in the Configuration Word register.  
3: MCLR and WDT Reset do not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set  
again if the mismatch exists.  
DS41232D-page 24  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 2-5:  
PIC12F635/PIC16F636/639 SPECIAL FUNCTION REGISTERS SUMMARY BANK 2  
Value on  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR/BOR/  
WUR  
Page  
Bank 2  
10Ch  
10Dh  
10Eh  
10Fh  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
GO/DONE ENC/DEC  
110h CRCON  
111h CRDAT0  
112h CRDAT1  
113h CRDAT2  
114h CRDAT3  
CRREG1 CRREG0 00-- --00 00-- --00  
0000 0000 0000 0000  
(2)  
(2)  
(2)  
(2)  
Cryptographic Data Register 0  
Cryptographic Data Register 1  
Cryptographic Data Register 2  
Cryptographic Data Register 3  
Unimplemented  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
115h  
116h  
Unimplemented  
Legend:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
®
2: CRDAT<3:0> registers are KEELOQ hardware peripheral related registers and require the execution of the “KEELOQ  
Encoder License Agreement” regarding implementation of the module and access to related registers. The “KEELOQ  
Encoder License Agreement” may be accessed through the Microchip web site located at www.microchip.com/KEELOQ  
or by contacting your local Microchip Sales Representative.  
© 2007 Microchip Technology Inc.  
DS41232D-page 25  
PIC12F635/PIC16F636/639  
For example, CLRF STATUS,will clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu(where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not affect-  
ing any Status bits, see Section 13.0 “Instruction Set  
Summary”  
• the bank select bits for data memory (GPR and  
SFR)  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction.  
REGISTER 2-1:  
STATUS: STATUS REGISTER  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h-1FFh)  
0= Bank 0, 1 (00h-FFh)  
bit 6-5  
RP<1:0>: Register Bank Select bits (used for direct addressing)  
00= Bank 0 (00h-7Fh)  
01= Bank 1 (80h-FFh)  
10= Bank 2 (100h-17Fh)  
11= Bank 3 (180h-1FFh)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(1)  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order  
bit of the source register.  
DS41232D-page 26  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
2.2.2.2  
OPTION Register  
Note:  
To achieve a 1:1 prescaler assignment for  
Timer0, assign the prescaler to the WDT by  
setting the PSA bit of the OPTION register  
to ‘1’. See Section 5.1.3 “Software  
Programmable Prescaler”.  
The OPTION register is a readable and writable  
register which contains various control bits to  
configure:  
• TMR0/WDT prescaler  
• External RA2/INT interrupt  
• TMR0  
• Weak pull-up/pull-downs on PORTA  
REGISTER 2-2:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RAPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RAPU: PORTA Pull-up Enable bit  
1= PORTA pull-ups are disabled  
0= PORTA pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RA2/INT pin  
0= Interrupt on falling edge of RA2/INT pin  
T0CS: Timer0 Clock Source Select bit  
1= Transition on RA2/T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on RA2/T0CKI pin  
0= Increment on low-to-high transition on RA2/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
© 2007 Microchip Technology Inc.  
DS41232D-page 27  
PIC12F635/PIC16F636/639  
2.2.2.3  
INTCON Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE of the INTCON  
register. User software should ensure the  
appropriate interrupt flag bits are clear  
prior to enabling an interrupt.  
The INTCON register is a readable and writable  
register which contains the various enable and flag bits  
for TMR0 register overflow, PORTA change and  
external RA2/INT pin interrupts.  
REGISTER 2-3:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RAIE(1,3)  
R/W-0  
T0IF(2)  
R/W-0  
INTF  
R/W-x  
RAIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: RA2/INT External Interrupt Enable bit  
1= Enables the RA2/INT external interrupt  
0= Disables the RA2/INT external interrupt  
RAIE: PORTA Change Interrupt Enable bit(1,3)  
1= Enables the PORTA change interrupt  
0= Disables the PORTA change interrupt  
T0IF: Timer0 Overflow Interrupt Flag bit(2)  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RA2/INT External Interrupt Flag bit  
1= The RA2/INT external interrupt occurred (must be cleared in software)  
0= The RA2/INT external interrupt did not occur  
RAIF: PORTA Change Interrupt Flag bit  
1 = When at least one of the PORTA general purpose I/O pins changed state (must be cleared in  
software)  
0= None of the PORTA general purpose I/O pins have changed state  
Note 1: IOCA register must also be enabled.  
2: T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before  
clearing T0IF bit.  
3: Includes ULPWU interrupt.  
DS41232D-page 28  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
2.2.2.4  
PIE1 Register  
The PIE1 register contains the interrupt enable bits, as  
shown in Register 2-4.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 2-4:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
EEIE  
R/W-0  
LVDIE  
R/W-0  
CRIE  
R/W-0  
C2IE(1)  
R/W-0  
C1IE  
R/W-0  
OSFIE  
U-0  
R/W-0  
TMR1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
EEIE: EE Write Complete Interrupt Enable bit  
1= Enables the EE write complete interrupt  
0= Disables the EE write complete interrupt  
LVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Enables the LVD interrupt  
0= Disables the LVD interrupt  
CRIE: Cryptographic Interrupt Enable bit  
1= Enables the cryptographic interrupt  
0= Disables the cryptographic interrupt  
C2IE: Comparator 2 Interrupt Enable bit(1)  
1= Enables the Comparator 2 interrupt  
0= Disables the Comparator 2 interrupt  
C1IE: Comparator 1 Interrupt Enable bit  
1= Enables the Comparator 1 interrupt  
0= Disables the Comparator 1 interrupt  
OSFIE: Oscillator Fail Interrupt Enable bit  
1= Enables the oscillator fail interrupt  
0= Disables the oscillator fail interrupt  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
Note 1: PIC16F636/639 only.  
© 2007 Microchip Technology Inc.  
DS41232D-page 29  
PIC12F635/PIC16F636/639  
2.2.2.5  
PIR1 Register  
The PIR1 register contains the interrupt flag bits, as  
shown in Register 2-5.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE of the INTCON  
register. User software should ensure the  
appropriate interrupt flag bits are clear  
prior to enabling an interrupt.  
REGISTER 2-5:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
R/W-0  
EEIF  
R/W-0  
LVDIF  
R/W-0  
CRIF  
R/W-0  
C2IF(1)  
R/W-0  
C1IF  
R/W-0  
OSFIF  
U-0  
R/W-0  
TMR1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
EEIF: EE Write Complete Interrupt Flag bit  
1= The write operation completed (must be cleared in software)  
0= The write operation has not completed or has not been started  
LVDIF: Low-Voltage Detect Interrupt Flag bit  
1= The supply voltage has crossed selected LVD voltage (must be cleared in software)  
0= The supply voltage has not crossed selected LVD voltage  
CRIF: Cryptographic Interrupt Flag bit  
1= The Cryptographic module has completed an operation (must be cleared in software)  
0= The Cryptographic module has not completed an operation or is Idle  
C2IF: Comparator 2 Interrupt Flag bit(1)  
1= Comparator output (C2OUT bit) has changed (must be cleared in software)  
0= Comparator output (C2OUT bit) has not changed  
C1IF: Comparator 1 Interrupt Flag bit  
1= Comparator output (C1OUT bit) has changed (must be cleared in software)  
0= Comparator output (C1OUT bit) has not changed  
OSFIF: Oscillator Fail Interrupt Flag bit  
1= System oscillator failed, clock input has changed INTOSC (must be cleared in software)  
0= System clock operating  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= Timer1 rolled over (must be cleared in software)  
0= Timer1 has not rolled over  
Note 1: PIC16F636/639 only.  
DS41232D-page 30  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
2.2.2.6  
PCON Register  
The Power Control (PCON) register (see Table 12-3)  
contains flag bits to differentiate between a:  
• Power-on Reset (POR)  
• Wake-up Reset (WUR)  
• Brown-out Reset (BOR)  
• Watchdog Timer Reset (WDT)  
• External MCLR Reset  
The PCON register also controls the Ultra Low-Power  
Wake-up and software enable of the BOR.  
The PCON register bits are shown in Register 2-6.  
REGISTER 2-6:  
PCON: POWER CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-1  
SBOREN(1)  
R/W-x  
WUR  
U-0  
R/W-0  
POR  
R/W-x  
BOR  
ULPWUE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
ULPWUE: Ultra Low-Power Wake-up Enable bit  
1= Ultra low-power wake-up enabled  
0= Ultra low-power wake-up disabled  
bit 4  
bit 3  
SBOREN: Software BOR Enable bit(1)  
1= BOR enabled  
0= BOR disabled  
WUR: Wake-up Reset Status bit  
1= No Wake-up Reset occurred  
0= A Wake-up Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: BOREN<1:0> = 01in the Configuration Word register for this bit to control the BOR.  
© 2007 Microchip Technology Inc.  
DS41232D-page 31  
PIC12F635/PIC16F636/639  
2.3.2  
STACK  
2.3  
PCL and PCLATH  
The PIC12F635/PIC16F636/639 family has an  
8-level x 13-bit wide hardware stack (see Figure 2-1).  
The stack space is not part of either program or data  
space and the Stack Pointer is not readable or writable.  
The PC is PUSHed onto the stack when a CALL  
instruction is executed or an interrupt causes a branch.  
The stack is POPed in the event of a RETURN, RETLW  
or a RETFIE instruction execution. PCLATH is not  
affected by a PUSH or POP operation.  
The Program Counter (PC) is 13 bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<12:8>) is not  
directly readable or writable and comes from PCLATH.  
On any Reset, the PC is cleared. Figure 2-5 shows the  
two situations for the loading of the PC. The upper  
example in Figure 2-5 shows how the PC is loaded on a  
write to PCL (PCLATH<4:0> PCH). The lower  
example in Figure 2-5 shows how the PC is loaded  
during a CALL or GOTO instruction (PCLATH<4:3> →  
PCH).  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 2-5:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
Note 1: There are no Status bits to indicate stack  
PCH  
PCL  
overflow or stack underflow conditions.  
Instruction with  
12  
8
7
0
PCL as  
Destination  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the CALL,  
RETURN, RETLWand RETFIEinstructions  
or the vectoring to an interrupt address.  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU Result  
2.4  
Indirect Addressing, INDF and  
FSR Registers  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO, CALL  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode<10:0>  
Indirect addressing is possible by using the INDF  
register. Any instruction using the INDF register  
actually accesses data pointed to by the File Select  
Register (FSR). Reading INDF itself indirectly will  
produce 00h. Writing to the INDF register indirectly  
results in a no operation (although Status bits may be  
affected). An effective 9-bit address is obtained by  
concatenating the 8-bit FSR and the IRP bit of the  
STATUS register, as shown in Figure 2-6.  
2.3.1  
MODIFYING PCL  
Executing any instruction with the PCL register as the  
destination simultaneously causes the Program  
Counter PC<12:8> bits (PCH) to be replaced by the  
contents of the PCLATH register. This allows the entire  
contents of the program counter to be changed by  
writing the desired upper 5 bits to the PCLATH register.  
When the lower 8 bits are written to the PCL register, all  
13 bits of the program counter will change to the values  
contained in the PCLATH register and those being  
written to the PCL register.  
A simple program to clear RAM location 20h-2Fh using  
indirect addressing is shown in Example 2-1.  
EXAMPLE 2-1:  
INDIRECT ADDRESSING  
MOVLW 0x20  
MOVWF FSR  
CLRF INDF  
INCF FSR  
;initialize pointer  
;to RAM  
;clear INDF register  
;INC POINTER  
NEXT  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). Care should be  
exercised when jumping into a look-up table or  
program branch table (computed GOTO) by modifying  
the PCL register. Assuming that PCLATH is set to the  
table start address, if the table length is greater than  
255 instructions or if the lower 8 bits of the memory  
address rolls over from 0xFF to 0x00 in the middle of  
the table, then PCLATH must be incremented for each  
address rollover that occurs between the table  
beginning and the target location within the table.  
BTFSS FSR,4 ;all done?  
GOTO  
NEXT  
;no clear next  
;yes continue  
CONTINUE  
For more information refer to Application Note AN556,  
Implementing a Table Read” (DS00556).  
DS41232D-page 32  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 2-6:  
DIRECT/INDIRECT ADDRESSING PIC12F635/PIC16F636/639  
Direct Addressing  
From Opcode  
Indirect Addressing  
7
6
0
0
IRP  
File Select Register  
RP1 RP0  
Bank Select  
180h  
Location Select  
Bank Select  
Location Select  
00h  
00  
01  
10  
11  
Data  
Memory  
7Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note: For memory map detail, see Figure 2-2.  
© 2007 Microchip Technology Inc.  
DS41232D-page 33  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232D-page 34  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The Oscillator module can be configured in one of eight  
clock modes.  
3.0  
3.1  
OSCILLATOR MODULE (WITH  
FAIL-SAFE CLOCK MONITOR)  
1. EC – External clock with I/O on OSC2/CLKOUT.  
2. LP – 32 kHz Low-Power Crystal mode.  
Overview  
3. XT  
– Medium Gain Crystal or Ceramic  
The Oscillator module has a wide variety of clock  
sources and selection features that allow it to be used  
in a wide range of applications while maximizing perfor-  
mance and minimizing power consumption. Figure 3-1  
illustrates a block diagram of the Oscillator module.  
Resonator Oscillator mode.  
4. HS – High Gain Crystal or Ceramic Resonator  
mode.  
5. RC – External Resistor-Capacitor (RC) with  
FOSC/4 output on OSC2/CLKOUT.  
Clock sources can be configured from external  
oscillators, quartz crystal resonators, ceramic resonators  
and Resistor-Capacitor (RC) circuits. In addition, the  
system clock source can be configured from one of two  
internal oscillators, with a choice of speeds selectable via  
software. Additional clock features include:  
6. RCIO – External Resistor-Capacitor (RC) with  
I/O on OSC2/CLKOUT.  
7. INTOSC – Internal oscillator with FOSC/4 output  
on OSC2 and I/O on OSC1/CLKIN.  
8. INTOSCIO – Internal oscillator with I/O on  
OSC1/CLKIN and OSC2/CLKOUT.  
• Selectable system clock source between external  
or internal via software.  
Clock Source modes are configured by the FOSC<2:0>  
bits in the Configuration Word register (CONFIG). The  
internal clock can be generated from two internal  
• Two-Speed Start-up mode, which minimizes  
latency between external oscillator start-up and  
code execution.  
oscillators. The HFINTOSC is  
a
calibrated  
high-frequency oscillator. The LFINTOSC is an  
uncalibrated low-frequency oscillator.  
• Fail-Safe Clock Monitor (FSCM) designed to  
detect a failure of the external clock source (LP,  
XT, HS, EC or RC modes) and switch  
automatically to the internal oscillator.  
FIGURE 3-1:  
PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
FOSC<2:0>  
(Configuration Word Register)  
External Oscillator  
SCS<0>  
(OSCCON Register)  
OSC2  
OSC1  
Sleep  
LP, XT, HS, RC, RCIO, EC  
IRCF<2:0>  
(OSCCON Register)  
System Clock  
(CPU and Peripherals)  
8 MHz  
111  
110  
101  
INTOSC  
Internal Oscillator  
4 MHz  
2 MHz  
1 MHz  
HFINTOSC  
8 MHz  
100  
011  
010  
001  
000  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
LFINTOSC  
31 kHz  
Power-up Timer (PWRT)  
Watchdog Timer (WDT)  
Fail-Safe Clock Monitor (FSCM)  
© 2007 Microchip Technology Inc.  
DS41232D-page 35  
PIC12F635/PIC16F636/639  
3.2  
Oscillator Control  
The Oscillator Control (OSCCON) register (Figure 3-1)  
controls the system clock and frequency selection  
options. The OSCCON register contains the following  
bits:  
• Frequency selection bits (IRCF)  
• Frequency Status bits (HTS, LTS)  
• System clock control bits (OSTS, SCS)  
REGISTER 3-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R/W-1  
IRCF2  
R/W-1  
IRCF1  
R/W-0  
IRCF0  
R-1  
OSTS(1)  
R-0  
R-0  
LTS  
R/W-0  
SCS  
HTS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IRCF<2:0>: Internal Oscillator Frequency Select bits  
111= 8 MHz  
110= 4 MHz (default)  
101= 2 MHz  
100= 1 MHz  
011= 500 kHz  
010= 250 kHz  
001= 125 kHz  
000= 31 kHz (LFINTOSC)  
bit 3  
bit 2  
bit 1  
bit 0  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Device is running from the external clock defined by FOSC<2:0> of the Configuration Word  
0= Device is running from the internal oscillator (HFINTOSC or LFINTOSC)  
HTS: HFINTOSC Status bit (High Frequency – 8 MHz to 125 kHz)  
1= HFINTOSC is stable  
0= HFINTOSC is not stable  
LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz)  
1= LFINTOSC is stable  
0= LFINTOSC is not stable  
SCS: System Clock Select bit  
1= Internal oscillator is used for system clock  
0= Clock source defined by FOSC<2:0> of the Configuration Word  
Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe  
mode is enabled.  
DS41232D-page 36  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
3.3  
Clock Source Modes  
3.4  
External Clock Modes  
Clock Source modes can be classified as external or  
internal.  
3.4.1 OSCILLATOR START-UP TIMER (OST)  
If the Oscillator module is configured for LP, XT or HS  
modes, the Oscillator Start-up Timer (OST) counts  
1024 oscillations from OSC1. This occurs following a  
Power-on Reset (POR) and when the Power-up Timer  
(PWRT) has expired (if configured), or a wake-up from  
Sleep. During this time, the program counter does not  
increment and program execution is suspended. The  
OST ensures that the oscillator circuit, using a quartz  
crystal resonator or ceramic resonator, has started and  
is providing a stable system clock to the Oscillator  
module. When switching between clock sources, a  
delay is required to allow the new clock to stabilize.  
These oscillator delays are shown in Table 3-1.  
• External Clock modes rely on external circuitry for  
the clock source. Examples are: Oscillator mod-  
ules (EC mode), quartz crystal resonators or  
ceramic resonators (LP, XT and HS modes) and  
Resistor-Capacitor (RC) mode circuits.  
• Internal clock sources are contained internally  
within the Oscillator module. The Oscillator  
module has two internal oscillators: the 8 MHz  
High-Frequency Internal Oscillator (HFINTOSC)  
and the 31 kHz Low-Frequency Internal Oscillator  
(LFINTOSC).  
The system clock can be selected between external or  
internal clock sources via the System Clock Select  
(SCS) bit of the OSCCON register. See Section 3.6  
“Clock Switching” for additional information.  
In order to minimize latency between external oscillator  
start-up and code execution, the Two-Speed Clock  
Start-up mode can be selected (see Section 3.7  
“Two-Speed Clock Start-up Mode”).  
TABLE 3-1:  
OSCILLATOR DELAY EXAMPLES  
Switch From  
Switch To  
Frequency  
Oscillator Delay  
LFINTOSC  
HFINTOSC  
31 kHz  
125 kHz to 8 MHz  
Sleep/POR  
Oscillator Warm-Up Delay (TWARM)  
Sleep/POR  
LFINTOSC (31 kHz)  
Sleep/POR  
EC, RC  
EC, RC  
DC – 20 MHz  
DC – 20 MHz  
2 instruction cycles  
1 cycle of each  
LP, XT, HS  
HFINTOSC  
32 kHz to 20 MHz  
125 kHz to 8 MHz  
1024 Clock Cycles (OST)  
1 μs (approx.)  
LFINTOSC (31 kHz)  
3.4.2  
EC MODE  
FIGURE 3-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source. When  
operating in this mode, an external clock source is  
connected to the OSC1 input and the OSC2 is available  
for general purpose I/O. Figure 3-2 shows the pin  
connections for EC mode.  
OSC1/CLKIN  
Clock from  
Ext. System  
PIC® MCU  
(1)  
I/O  
OSC2/CLKOUT  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC® MCU design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
Note 1: Alternate pin functions are listed in the  
Section 1.0 “Device Overview”.  
© 2007 Microchip Technology Inc.  
DS41232D-page 37  
PIC12F635/PIC16F636/639  
3.4.3  
LP, XT, HS MODES  
Note 1: Quartz crystal characteristics vary according  
to type, package and manufacturer. The  
user should consult the manufacturer data  
sheets for specifications and recommended  
application.  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
OSC1 and OSC2 (Figure 3-3). The mode selects a low,  
medium or high gain setting of the internal  
inverter-amplifier to support various resonator types  
and speed.  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
LP Oscillator mode selects the lowest gain setting of  
the internal inverter-amplifier. LP mode current con-  
sumption is the least of the three modes. This mode is  
designed to drive only 32.768 kHz tuning-fork type  
crystals (watch crystals).  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
• AN849, “Basic PIC® Oscillator Design”  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is best suited to drive resonators with a  
medium drive level specification.  
Analysis and Design” (DS00943)  
HS Oscillator mode selects the highest gain setting of the  
internal inverter-amplifier. HS mode current consumption  
is the highest of the three modes. This mode is best  
suited for resonators that require a high drive setting.  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
FIGURE 3-4:  
CERAMIC RESONATOR  
OPERATION  
Figure 3-3 and Figure 3-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
(XT OR HS MODE)  
FIGURE 3-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
PIC® MCU  
OSC1/CLKIN  
C1  
PIC® MCU  
To Internal  
Logic  
OSC1/CLKIN  
(3)  
(2)  
RP  
RF  
Sleep  
C1  
To Internal  
Logic  
Quartz  
Crystal  
(2)  
OSC2/CLKOUT  
(1)  
C2  
RF  
Sleep  
RS  
Ceramic  
Resonator  
Note 1: A series resistor (RS) may be required for  
OSC2/CLKOUT  
(1)  
C2  
RS  
ceramic resonators with low drive level.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
Note 1: A series resistor (RS) may be required for  
quartz crystals with low drive level.  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
DS41232D-page 38  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
3.4.4  
EXTERNAL RC MODES  
3.5  
Internal Clock Modes  
The external Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required. There are two modes: RC and RCIO.  
The Oscillator module has two independent, internal  
oscillators that can be configured or selected as the  
system clock source.  
1. The HFINTOSC (High-Frequency Internal  
Oscillator) is factory calibrated and operates at  
8 MHz. The frequency of the HFINTOSC can be  
user-adjusted via software using the OSCTUNE  
register (Register 3-2).  
In RC mode, the RC circuit connects to OSC1.  
OSC2/CLKOUT outputs the RC oscillator frequency  
divided by 4. This signal may be used to provide a clock  
for external circuitry, synchronization, calibration, test  
or other application requirements. Figure 3-5 shows  
the external RC mode connections.  
2. The LFINTOSC (Low-Frequency Internal  
Oscillator) is uncalibrated and operates at 31 kHz.  
The system clock speed can be selected via software  
using the Internal Oscillator Frequency Select bits  
IRCF<2:0> of the OSCCON register.  
FIGURE 3-5:  
EXTERNAL RC MODES  
The system clock can be selected between external or  
internal clock sources via the System Clock Selection  
(SCS) bit of the OSCCON register. See Section 3.6  
“Clock Switching” for more information.  
VDD  
PIC® MCU  
REXT  
OSC1/CLKIN  
Internal  
Clock  
3.5.1 INTOSC AND INTOSCIO MODES  
CEXT  
VSS  
The INTOSC and INTOSCIO modes configure the  
internal oscillators as the system clock source when  
the device is programmed using the oscillator selection  
or the FOSC<2:0> bits in the Configuration Word  
register (CONFIG). See Section 12.0 “Special  
Features of the CPU” for more information.  
(1)  
FOSC/4 or  
OSC2/CLKOUT  
(2)  
I/O  
Recommended values: 10 kΩ ≤ REXT 100 kΩ, <3V  
3 kΩ ≤ REXT 100 kΩ, 3-5V  
In INTOSC mode, OSC1/CLKIN is available for general  
purpose I/O. OSC2/CLKOUT outputs the selected  
internal oscillator frequency divided by 4. The CLKOUT  
signal may be used to provide a clock for external  
circuitry, synchronization, calibration, test or other  
application requirements.  
CEXT > 20 pF, 2-5V  
Note 1: Alternate pin functions are listed in the  
Section 1.0 “Device Overview”.  
2: Output depends upon RC or RCIO clock mode.  
In RCIO mode, the RC circuit is connected to OSC1.  
OSC2 becomes an additional general purpose I/O pin.  
In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT  
are available for general purpose I/O.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) values  
and the operating temperature. Other factors affecting  
the oscillator frequency are:  
3.5.2  
HFINTOSC  
The High-Frequency Internal Oscillator (HFINTOSC) is  
a factory calibrated 8 MHz internal clock source. The  
frequency of the HFINTOSC can be altered via  
software using the OSCTUNE register (Register 3-2).  
• threshold voltage variation  
• component tolerances  
• packaging variations in capacitance  
The output of the HFINTOSC connects to a postscaler  
and multiplexer (see Figure 3-1). One of seven  
frequencies can be selected via software using the  
IRCF<2:0> bits of the OSCCON register. See  
Section 3.5.4 “Frequency Select Bits (IRCF)” for  
more information.  
The user also needs to take into account variation due  
to tolerance of external RC components used.  
The HFINTOSC is enabled by selecting any frequency  
between 8 MHz and 125 kHz by setting the IRCF<2:0>  
bits of the OSCCON register 000. Then, set the  
System Clock Source (SCS) bit of the OSCCON  
register to ‘1’ or enable Two-Speed Start-up by setting  
the IESO bit in the Configuration Word register  
(CONFIG) to ‘1’.  
The HF Internal Oscillator (HTS) bit of the OSCCON  
register indicates whether the HFINTOSC is stable or not.  
© 2007 Microchip Technology Inc.  
DS41232D-page 39  
PIC12F635/PIC16F636/639  
When the OSCTUNE register is modified, the  
HFINTOSC frequency will begin shifting to the new  
frequency. Code execution continues during this shift.  
There is no indication that the shift has occurred.  
3.5.2.1  
OSCTUNE Register  
The HFINTOSC is factory calibrated but can be  
adjusted in software by writing to the OSCTUNE  
register (Register 3-2).  
OSCTUNE does not affect the LFINTOSC frequency.  
Operation of features that depend on the LFINTOSC  
clock source frequency, such as the Power-up Timer  
(PWRT), Watchdog Timer (WDT), Fail-Safe Clock  
Monitor (FSCM) and peripherals, are not affected by the  
change in frequency.  
The default value of the OSCTUNE register is ‘0’. The  
value is a 5-bit two’s complement number.  
REGISTER 3-2:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
TUN<4:0>: Frequency Tuning bits  
01111= Maximum frequency  
01110=  
00001=  
00000= Oscillator module is running at the calibrated frequency.  
11111=  
10000= Minimum frequency  
DS41232D-page 40  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
3.5.3  
LFINTOSC  
3.5.5  
HF AND LF INTOSC CLOCK  
SWITCH TIMING  
The Low-Frequency Internal Oscillator (LFINTOSC) is  
an uncalibrated 31 kHz internal clock source.  
When switching between the LFINTOSC and the  
HFINTOSC, the new oscillator may already be shut  
down to save power (see Figure 3-6). If this is the case,  
there is a delay after the IRCF<2:0> bits of the  
OSCCON register are modified before the frequency  
selection takes place. The LTS and HTS bits of the  
OSCCON register will reflect the current active status  
of the LFINTOSC and HFINTOSC oscillators. The  
timing of a frequency selection is as follows:  
The output of the LFINTOSC connects to a postscaler  
and multiplexer (see Figure 3-1). Select 31 kHz, via  
software, using the IRCF<2:0> bits of the OSCCON  
register. See Section 3.5.4 “Frequency Select Bits  
(IRCF)” for more information. The LFINTOSC is also the  
frequency for the Power-up Timer (PWRT), Watchdog  
Timer (WDT) and Fail-Safe Clock Monitor (FSCM).  
The LFINTOSC is enabled by selecting 31 kHz  
(IRCF<2:0> bits of the OSCCON register = 000)as the  
system clock source (SCS bit of the OSCCON  
register = 1), or when any of the following are enabled:  
1. IRCF<2:0> bits of the OSCCON register are  
modified.  
2. If the new clock is shut down, a clock start-up  
delay is started.  
• Two-Speed Start-up IESO bit of the Configuration  
Word register = 1and IRCF<2:0> bits of the  
OSCCON register = 000  
3. Clock switch circuitry waits for a falling edge of  
the current clock.  
4. CLKOUT is held low and the clock switch  
circuitry waits for a rising edge in the new clock.  
• Power-up Timer (PWRT)  
• Watchdog Timer (WDT)  
5. CLKOUT is now connected with the new clock.  
LTS and HTS bits of the OSCCON register are  
updated as required.  
• Fail-Safe Clock Monitor (FSCM)  
The LF Internal Oscillator (LTS) bit of the OSCCON  
register indicates whether the LFINTOSC is stable or  
not.  
6. Clock switch is complete.  
See Figure 3-1 for more details.  
3.5.4  
FREQUENCY SELECT BITS (IRCF)  
If the internal oscillator speed selected is between  
8 MHz and 125 kHz, there is no start-up delay before  
the new frequency is selected. This is because the old  
and new frequencies are derived from the HFINTOSC  
via the postscaler and multiplexer.  
The output of the 8 MHz HFINTOSC and 31 kHz  
LFINTOSC connects to a postscaler and multiplexer  
(see Figure 3-1). The Internal Oscillator Frequency  
Select bits IRCF<2:0> of the OSCCON register select  
the frequency output of the internal oscillators. One of  
eight frequencies can be selected via software:  
Start-up delay specifications are located in the A/C  
Specifications (Oscillator Module) in Section 15.0  
“Electrical Specifications”.  
• 8 MHz  
• 4 MHz (Default after Reset)  
• 2 MHz  
• 1 MHz  
• 500 kHz  
• 250 kHz  
• 125 kHz  
• 31 kHz (LFINTOSC)  
Note:  
Following any Reset, the IRCF<2:0> bits of  
the OSCCON register are set to ‘110’ and  
the frequency selection is set to 4 MHz.  
The user can modify the IRCF bits to  
select a different frequency.  
© 2007 Microchip Technology Inc.  
DS41232D-page 41  
PIC12F635/PIC16F636/639  
FIGURE 3-6:  
INTERNAL OSCILLATOR SWITCH TIMING  
HF  
LF(1)  
HFINTOSC  
LFINTOSC (FSCM and WDT disabled)  
HFINTOSC  
Start-up Time  
2-cycle Sync  
Running  
LFINTOSC  
0  
= 0  
IRCF <2:0>  
System Clock  
Note 1: When going from LF to HF.  
HFINTOSC  
HFINTOSC  
LFINTOSC (Either FSCM or WDT enabled)  
2-cycle Sync  
Running  
LFINTOSC  
0  
= 0  
IRCF <2:0>  
System Clock  
LFINTOSC  
HFINTOSC  
LFINTOSC turns off unless WDT or FSCM is enabled  
Running  
LFINTOSC  
Start-up Time 2-cycle Sync  
HFINTOSC  
= 0  
0  
IRCF <2:0>  
System Clock  
DS41232D-page 42  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
When the Oscillator module is configured for LP, XT or  
HS modes, the Oscillator Start-up Timer (OST) is  
3.6  
Clock Switching  
The system clock source can be switched between  
external and internal clock sources via software using  
the System Clock Select (SCS) bit of the OSCCON  
register.  
enabled (see Section 3.4.1 “Oscillator Start-up Timer  
(OST)”). The OST will suspend program execution until  
1024 oscillations are counted. Two-Speed Start-up  
mode minimizes the delay in code execution by  
operating from the internal oscillator as the OST is  
counting. When the OST count reaches 1024 and the  
OSTS bit of the OSCCON register is set, program  
execution switches to the external oscillator.  
3.6.1  
SYSTEM CLOCK SELECT (SCS) BIT  
The System Clock Select (SCS) bit of the OSCCON  
register selects the system clock source that is used for  
the CPU and peripherals.  
3.7.1  
TWO-SPEED START-UP MODE  
CONFIGURATION  
• When the SCS bit of the OSCCON register = 0,  
the system clock source is determined by  
configuration of the FOSC<2:0> bits in the  
Configuration Word register (CONFIG).  
Two-Speed Start-up mode is configured by the  
following settings:  
• When the SCS bit of the OSCCON register = 1,  
the system clock source is chosen by the internal  
oscillator frequency selected by the IRCF<2:0>  
bits of the OSCCON register. After a Reset, the  
SCS bit of the OSCCON register is always  
cleared.  
• IESO (of the Configuration Word register) = 1;  
Internal/External Switchover bit (Two-Speed  
Start-up mode enabled).  
• SCS (of the OSCCON register) = 0.  
• FOSC<2:0> bits in the Configuration Word  
register (CONFIG) configured for LP, XT or HS  
mode.  
Note:  
Any automatic clock switch, which may  
occur from Two-Speed Start-up or Fail-Safe  
Clock Monitor, does not update the SCS bit  
of the OSCCON register. The user can  
monitor the OSTS bit of the OSCCON  
register to determine the current system  
clock source.  
Two-Speed Start-up mode is entered after:  
• Power-on Reset (POR) and, if enabled, after  
Power-up Timer (PWRT) has expired, or  
• Wake-up from Sleep.  
If the external clock oscillator is configured to be  
anything other than LP, XT or HS mode, then  
Two-Speed Start-up is disabled. This is because the  
external clock oscillator does not require any  
stabilization time after POR or an exit from Sleep.  
3.6.2  
OSCILLATOR START-UP TIME-OUT  
STATUS (OSTS) BIT  
The Oscillator Start-up Time-out Status (OSTS) bit of  
the OSCCON register indicates whether the system  
clock is running from the external clock source, as  
defined by the FOSC<2:0> bits in the Configuration  
Word register (CONFIG), or from the internal clock  
source. In particular, OSTS indicates that the Oscillator  
Start-up Timer (OST) has timed out for LP, XT or HS  
modes.  
3.7.2  
TWO-SPEED START-UP  
SEQUENCE  
1. Wake-up from Power-on Reset or Sleep.  
2. Instructions begin execution by the internal  
oscillator at the frequency set in the IRCF<2:0>  
bits of the OSCCON register.  
3. OST enabled to count 1024 clock cycles.  
3.7  
Two-Speed Clock Start-up Mode  
4. OST timed out, wait for falling edge of the  
internal oscillator.  
Two-Speed Start-up mode provides additional power  
savings by minimizing the latency between external  
oscillator start-up and code execution. In applications  
that make heavy use of the Sleep mode, Two-Speed  
Start-up will remove the external oscillator start-up  
time from the time spent awake and can reduce the  
overall power consumption of the device.  
5. OSTS is set.  
6. System clock held low until the next falling edge  
of new clock (LP, XT or HS mode).  
7. System clock is switched to external clock  
source.  
This mode allows the application to wake-up from  
Sleep, perform a few instructions using the INTOSC  
as the clock source and go back to Sleep without  
waiting for the primary oscillator to become stable.  
Note:  
Executing a SLEEP instruction will abort  
the oscillator start-up time and will cause  
the OSTS bit of the OSCCON register to  
remain clear.  
© 2007 Microchip Technology Inc.  
DS41232D-page 43  
PIC12F635/PIC16F636/639  
3.7.3  
CHECKING TWO-SPEED CLOCK  
STATUS  
Checking the state of the OSTS bit of the OSCCON  
register will confirm if the microcontroller is running  
from the external clock source, as defined by the  
FOSC<2:0> bits in the Configuration Word register  
(CONFIG), or the internal oscillator.  
FIGURE 3-7:  
TWO-SPEED START-UP  
HFINTOSC  
TOST  
OSC1  
0
1
1022 1023  
OSC2  
PC - N  
PC + 1  
Program Counter  
PC  
System Clock  
DS41232D-page 44  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
3.8.3  
FAIL-SAFE CONDITION CLEARING  
3.8  
Fail-Safe Clock Monitor  
The Fail-Safe condition is cleared after a Reset,  
executing a SLEEPinstruction or toggling the SCS bit  
of the OSCCON register. When the SCS bit is toggled,  
the OST is restarted. While the OST is running, the  
device continues to operate from the INTOSC selected  
in OSCCON. When the OST times out, the Fail-Safe  
condition is cleared and the device will be operating  
from the external clock source. The Fail-Safe condition  
must be cleared before the OSFIF flag can be cleared.  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue operating should the external oscillator fail.  
The FSCM can detect oscillator failure any time after  
the Oscillator Start-up Timer (OST) has expired. The  
FSCM is enabled by setting the FCMEN bit in the  
Configuration Word register (CONFIG). The FSCM is  
applicable to all external oscillator modes (LP, XT, HS,  
EC, RC and RCIO).  
FIGURE 3-8:  
FSCM BLOCK DIAGRAM  
3.8.4  
RESET OR WAKE-UP FROM SLEEP  
Clock Monitor  
Latch  
The FSCM is designed to detect an oscillator failure  
after the Oscillator Start-up Timer (OST) has expired.  
The OST is used after waking up from Sleep and after  
any type of Reset. The OST is not used with the EC or  
RC Clock modes so that the FSCM will be active as  
soon as the Reset or wake-up has completed. When  
the FSCM is enabled, the Two-Speed Start-up is also  
enabled. Therefore, the device will always be executing  
code while the OST is operating.  
External  
Clock  
S
Q
LFINTOSC  
Oscillator  
÷ 64  
R
Q
31 kHz  
(~32 μs)  
488 Hz  
(~2 ms)  
Note:  
Due to the wide range of oscillator start-up  
times, the Fail-Safe circuit is not active  
during oscillator start-up (i.e., after exiting  
Reset or Sleep). After an appropriate  
amount of time, the user should check the  
OSTS bit of the OSCCON register to verify  
the oscillator start-up and that the system  
Sample Clock  
Clock  
Failure  
Detected  
3.8.1  
FAIL-SAFE DETECTION  
The FSCM module detects a failed oscillator by  
comparing the external oscillator to the FSCM sample  
clock. The sample clock is generated by dividing the  
LFINTOSC by 64. See Figure 3-8. Inside the fail  
detector block is a latch. The external clock sets the  
latch on each falling edge of the external clock. The  
sample clock clears the latch on each rising edge of the  
sample clock. A failure is detected when an entire  
half-cycle of the sample clock elapses before the  
primary clock goes low.  
clock  
completed.  
switchover  
has  
successfully  
3.8.2  
FAIL-SAFE OPERATION  
When the external clock fails, the FSCM switches the  
device clock to an internal clock source and sets the bit  
flag OSFIF of the PIR1 register. Setting this flag will  
generate an interrupt if the OSFIE bit of the PIE1  
register is also set. The device firmware can then take  
steps to mitigate the problems that may arise from a  
failed clock. The system clock will continue to be  
sourced from the internal clock source until the device  
firmware successfully restarts the external oscillator  
and switches back to external operation.  
The internal clock source chosen by the FSCM is  
determined by the IRCF<2:0> bits of the OSCCON  
register. This allows the internal oscillator to be  
configured before a failure occurs.  
© 2007 Microchip Technology Inc.  
DS41232D-page 45  
PIC12F635/PIC16F636/639  
FIGURE 3-9:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
Clock Monitor Output  
(Q)  
Failure  
Detected  
OSFIF  
Test  
Test  
Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Value on  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
POR, BOR  
(1)  
Resets  
(2)  
CONFIG  
CPD  
GIE  
CP  
PEIE  
IRCF2  
MCLRE PWRTE  
WDTE  
RAIE  
OSTS  
TUN3  
C1IE  
FOSC2  
T0IF  
FOSC1  
INTF  
LTS  
FOSC0  
RAIF  
INTCON  
OSCCON  
OSCTUNE  
PIE1  
T0IE  
IRCF1  
INTE  
IRCF0  
TUN4  
C2IE(3)  
C2IF(3)  
0000 000x 0000 000x  
-110 x000 -110 x000  
---0 0000 ---u uuuu  
HTS  
SCS  
TUN2  
OSFIE  
OSFIF  
TUN1  
TUN0  
EEIE  
EEIF  
LVDIE  
LVDIF  
CRIE  
CRIF  
TMR1IE 000- 00-0 000- 00-0  
TMR1IF 000- 00-0 000- 00-0  
PIR1  
C1IF  
Legend:  
x= unknown, u= unchanged, = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: See Configuration Word register (CONFIG) for operation of all register bits.  
3:  
PIC16F636/639 only.  
DS41232D-page 46  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
4.2  
Additional Pin Functions  
4.0  
I/O PORTS  
Every PORTA pin on the PIC12F635/PIC16F636/639  
has an interrupt-on-change option and weak  
pull-up/pull-down option. RA0 has an Ultra Low-Power  
Wake-up option. The next three sections describe  
these functions.  
There are as many as twelve general purpose I/O pins  
available. Depending on which peripherals are  
enabled, some or all of the pins may not be available as  
general purpose I/O. In general, when a peripheral is  
enabled, the associated pin may not be used as a  
general purpose I/O pin.  
a
4.2.1  
WEAK PULL-UP/PULL-DOWN  
Each of the PORTA pins, except RA3, has an internal  
weak pull-up and pull-down. The WDA bits select either  
a pull-up or pull-down for an individual port bit.  
Individual control bits can turn on the pull-up or  
pull-down. These pull-ups/pull-downs are automatically  
turned off when the port pin is configured as an output,  
as an alternate function or on a Power-on Reset,  
setting the RAPU bit of the OPTION register. A weak  
pull-up on RA3 is enabled when configured as MCLR  
in the Configuration Word register and disabled when  
high voltage is detected, to reduce current  
consumption through RA3, while in Programming  
mode.  
4.1  
PORTA and the TRISA Registers  
PORTA is  
a 6-bit wide, bidirectional port. The  
corresponding data direction register is TRISA  
(Register 4-2). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., put the  
corresponding output driver in a High-Impedance  
mode). Clearing a TRISA bit (= 0) will make the  
corresponding PORTA pin an output (i.e., put the  
contents of the output latch on the selected pin). The  
exception is RA3, which is input only and its TRIS bit will  
always read as ‘1’. Example 4-1 shows how to initialize  
PORTA.  
Note:  
PORTA = GPIO  
TRISA = TRISIO  
Note:  
PORTA = GPIO  
TRISA = TRISIO  
Reading the PORTA register (Register 4-1) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch. RA3 reads ‘0’ when MCLRE = 1.  
The TRISA register controls the direction of the  
PORTA pins, even when they are being used as analog  
inputs. The user must ensure the bits in the TRISA  
register are maintained set when using them as analog  
inputs. I/O pins configured as analog inputs always  
read ‘0’.  
Note:  
The CMCON0 register must be initialized  
to configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
EXAMPLE 4-1:  
INITIALIZING PORTA  
BANKSELPORTA  
;
CLRF  
MOVLW 07h  
MOVWF CMCON0  
BSF  
BCF  
PORTA  
;Init PORTA  
;Set RA<2:0> to  
;digital I/O  
;Bank 1  
STATUS,RP0  
STATUS,RP1  
;
MOVLW 0Ch  
MOVWF TRISA  
;Set RA<3:2> as inputs  
;and set RA<5:4,1:0>  
;as outputs  
© 2007 Microchip Technology Inc.  
DS41232D-page 47  
PIC12F635/PIC16F636/639  
REGISTER 4-1:  
PORTA: PORTA REGISTER  
U-0  
U-0  
R/W-x  
RA5  
R/W-x  
RA4  
R-x  
R/W-x  
RA2  
R/W-x  
RA1  
R/W-x  
RA0  
RA3  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RA<5:0>: PORTA I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 4-2:  
TRISA: PORTA TRI-STATE REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R-1  
R/W-1  
R/W-1  
R/W-1  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TRISA<5:0>: PORTA Tri-State Control bits  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
Note 1: TRISA<3> always reads ‘1’.  
2: TRISA<5:4> always reads ‘1’ in XT, HS and LP Oscillator modes.  
DS41232D-page 48  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
REGISTER 4-3:  
WDA: WEAK PULL-UP/PULL-DOWN DIRECTION REGISTER  
U-0  
U-0  
R/W-1  
WDA5  
R/W-1  
WDA4  
U-0  
R/W-1  
WDA2  
R/W-1  
WDA1  
R/W-1  
WDA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
WDA<5:4>: Pull-up/Pull-down Selection bits  
1= Pull-up selected  
0= Pull-down selected  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
WDA<2:0>: Pull-up/Pull-down Selection bits  
1= Pull-up selected  
0= Pull-down selected  
Note 1: The weak pull-up/pull-down device is enabled only when the global RAPU bit is enabled, the pin is in Input mode (TRIS  
= 1), the individual WDA bit is enabled (WDA = 1) and the pin is not configured as an analog input or clock function.  
2: RA3 pull-up is enabled when the pin is configured as MCLR in the Configuration Word register and the device is not in  
Programming mode.  
REGISTER 4-4:  
WPUDA: WEAK PULL-UP/PULL-DOWN ENABLE REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
U-0  
R/W-1  
R/W-1  
R/W-1  
(3)  
(3)  
WPUDA5  
WPUDA4  
WPUDA2  
WPUDA1  
WPUDA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
(3)  
WPUDA<5:4>: Pull-up/Pull-down Direction Selection bits  
1= Pull-up/pull-down enabled  
0= Pull-up/pull-down disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
WPUDA<2:0>: Pull-up/Pull-down Direction Selection bits  
1= Pull-up/pull-down enabled  
0= Pull-up/pull-down disabled  
Note 1: The weak pull-up/pull-down direction device is enabled only when the global RAPU bit is enabled, the pin is in Input mode  
(TRIS = 1), the individual WPUDA bit is enabled (WPUDA = 1) and the pin is not configured as an analog input or clock  
function.  
2: RA3 pull-up is enabled when the pin is configured as MCLR in the Configuration Word register and the device is not in  
Programming mode.  
3: WPUDA5 bit can be written if INTOSC is enabled and T1OSC is disabled; otherwise, the bit can not be written and reads  
as ‘1’. WPUDA4 bit can be written if not configured as OSC2; otherwise, the bit can not be written and reads as ‘1’  
© 2007 Microchip Technology Inc.  
DS41232D-page 49  
PIC12F635/PIC16F636/639  
A mismatch condition will continue to set flag bit RAIF.  
Reading PORTA will end the mismatch condition and  
allow flag bit RAIF to be cleared. The latch holding the  
last read value is not affected by a MCLR nor BOR  
Reset. After these Resets, the RAIF flag will continue  
to be set if a mismatch is present.  
4.2.2  
INTERRUPT-ON-CHANGE  
Each of the PORTA pins is individually configurable as  
an interrupt-on-change pin. Control bits, IOCAx, enable  
or disable the interrupt function for each pin. Refer to  
Register 4-5. The interrupt-on-change is disabled on a  
Power-on Reset.  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RAIF  
interrupt flag may not get set.  
For enabled interrupt-on-change pins, the values are  
compared with the old value latched on the last read of  
PORTA. The ‘mismatch’ outputs of the last read are  
OR’d together to set the PORTA Change Interrupt Flag  
bit (RAIF) in the INTCON register.  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, clears the  
interrupt by:  
a) Any read or write of PORTA. This will end the  
mismatch condition, then  
b) Clear the flag bit RAIF.  
REGISTER 4-5:  
IOCA: INTERRUPT-ON-CHANGE PORTA REGISTER  
U-0  
U-0  
R/W-0  
IOCA5(2)  
R/W-0  
IOCA4(2)  
R/W-0  
IOCA3(3)  
R/W-0  
IOCA2  
R/W-0  
IOCA1  
R/W-0  
IOCA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IOCA<5:0>: Interrupt-on-Change PORTA Control bits(2,3)  
1= Interrupt-on-change enabled(1)  
0= Interrupt-on-change disabled  
Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.  
2: IOCA<5:4> always reads ‘0’ in XT, HS and LP Oscillator modes.  
3: IOCA<3> is ignored when WUR is enabled and the device is in Sleep mode.  
DS41232D-page 50  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
4.2.3  
ULTRA LOW-POWER WAKE-UP  
EXAMPLE 4-2:  
ULTRA LOW-POWER  
WAKE-UP INITIALIZATION  
The Ultra Low-Power Wake-up (ULPWU) on RA0 allows  
a slow falling voltage to generate an interrupt-on-change  
on RA0 without excess current consumption. The mode  
is selected by setting the ULPWUE bit of the PCON  
register. This enables a small current sink which can be  
used to discharge a capacitor on RA0.  
BANKSELPORTA  
;
BSF  
MOVLW  
MOVWF  
PORTA,0  
H’7’  
CMCON0  
;Set RA0 data latch  
;Turn off  
; comparators  
;
;Output high to  
; charge capacitor  
BANKSELTRISA  
BCF  
CALL  
BSF  
TRISA,0  
CapDelay  
To use this feature, the RA0 pin is configured to output  
1’ to charge the capacitor, interrupt-on-change for RA0  
is enabled and RA0 is configured as an input. The  
ULPWUE bit is set to begin the discharge and a SLEEP  
instruction is performed. When the voltage on RA0 drops  
below VIL, an interrupt will be generated which will cause  
the device to wake-up. Depending on the state of the  
GIE bit of the INTCON register, the device will either  
jump to the interrupt vector (0004h) or execute the next  
instruction when the interrupt event occurs. See  
PCON,ULPWUE ;Enable ULP Wake-up  
BSF  
IOCA,0  
;Select RA0 IOC  
;RA0 to input  
B’10001000’ ;Enable interrupt  
BSF  
TRISA,0  
MOVLW  
MOVWF  
SLEEP  
NOP  
INTCON  
; and clear flag  
;Wait for IOC  
;
Section 4.2.2  
“Interrupt-on-Change”  
and  
Section 12.9.3 “PORTA Interrupt” for more  
information.  
This feature provides a low-power technique for  
periodically waking up the device from Sleep. The  
time-out is dependent on the discharge time of the RC  
circuit on RA0. See Example 4-2 for initializing the Ultra  
Low Power Wake-up module.  
The series resistor provides overcurrent protection for the  
RA0 pin and can allow for software calibration of the  
time-out (see Figure 4-1). A timer can be used to measure  
the charge time and discharge time of the capacitor. The  
charge time can then be adjusted to provide the desired  
interrupt delay. This technique will compensate for the  
affects of temperature, voltage and component accuracy.  
The Ultra Low-Power Wake-up peripheral can also be  
configured as a simple Programmable Low-Voltage  
Detect or temperature sensor.  
Note:  
For more information, refer to the  
Application Note AN879, Using the  
Microchip Ultra Low-Power Wake-up  
Module” (DS00879).  
© 2007 Microchip Technology Inc.  
DS41232D-page 51  
PIC12F635/PIC16F636/639  
4.2.4  
PIN DESCRIPTIONS AND  
DIAGRAMS  
4.2.4.1  
RA0/C1IN+/ICSPDAT/ULPWU  
Figure 4-2 shows the diagram for this pin. The RA0 pin  
is configurable to function as one of the following:  
Each PORTA pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions,  
such as the comparator, refer to the appropriate section  
in this data sheet.  
• a general purpose I/O  
• an analog input to the comparator  
• In-Circuit Serial Programming™ data  
• an analog input for the Ultra Low-Power Wake-up  
FIGURE 4-1:  
BLOCK DIAGRAM OF RA0  
Analog  
Input Mode(1)  
VDD  
Data Bus  
D
Q
Q
Weak  
CK  
WR  
WPUDA  
RAPU  
RD  
Weak  
WPUDA  
D
Q
Q
CK  
WR  
WDA  
VDD  
RD  
WDA  
D
Q
Q
I/O pin  
WR  
CK  
PORTA  
+
VSS  
VT  
D
Q
Q
WR  
TRISA  
CK  
IULP  
0
1
RD  
TRISA  
Analog  
Input Mode(1)  
VSS  
ULPWUE  
RD  
PORTA  
D
Q
Q
Q
D
D
CK  
WR  
IOCA  
Q1  
EN  
RD  
IOCA  
Interrupt-on-  
Change  
Q
EN  
RD PORTA  
Note 1: Comparator mode determines Analog Input mode.  
DS41232D-page 52  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
4.2.4.2  
RA1/C1IN-/VREF/ICSPCLK  
4.2.4.3  
RA2/T0CKI/INT/C1OUT  
Figure 4-2 shows the diagram for this pin. The RA1 pin  
is configurable to function as one of the following:  
Figure 4-3 shows the diagram for this pin. The RA2 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input to the comparator  
• In-Circuit Serial Programming™ clock  
• the clock input for Timer0  
• an external edge-triggered interrupt  
• a digital output from the comparator  
FIGURE 4-2:  
BLOCK DIAGRAM OF RA1  
FIGURE 4-3:  
BLOCK DIAGRAM OF RA2  
Analog  
Input Mode(1)  
Data Bus  
D
Q
Q
Data Bus  
D
VDD  
Q
Q
WR  
CK  
WPUDA  
VDD  
WR  
CK  
WPUDA  
Weak  
Weak  
RAPU  
RD  
RAPU  
RD  
WPUDA  
WPUDA  
Weak  
Weak  
D
Q
Q
D
Q
Q
VSS  
WR  
WDA  
CK  
VSS  
WR  
CK  
WDA  
RD  
RD  
WDA  
WDA  
VDD  
D
Q
Q
C1OUT  
VDD  
D
Q
Q
Enable  
WR  
PORTA  
CK  
WR  
PORTA  
CK  
C1OUT  
1
0
I/O pin  
D
Q
Q
I/O pin  
D
Q
Q
WR  
TRISA  
CK  
VSS  
WR  
TRISA  
CK  
VSS  
Analog  
Input Mode(1)  
RD  
TRISA  
RD  
TRISA  
RD  
PORTA  
RD  
PORTA  
D
Q
Q
D
Q
Q
Q
Q
D
CK  
WR  
IOCA  
Q
Q
D
CK  
WR  
IOCA  
Q1  
EN  
RD  
IOCA  
EN  
Q1  
D
RD  
IOCA  
D
EN  
Interrupt-on-  
change  
EN  
Interrupt-on-  
change  
RD PORTA  
RD PORTA  
To Comparator  
To Timer0  
To INT  
Note 1: Comparator mode determines Analog Input mode.  
© 2007 Microchip Technology Inc.  
DS41232D-page 53  
PIC12F635/PIC16F636/639  
4.2.4.4  
RA3/MCLR/VPP  
Figure 4-4 shows the diagram for this pin. The RA3 pin  
is configurable to function as one of the following:  
• a general purpose input  
• as Master Clear Reset with weak pull-up  
• a high-voltage detect for Program mode entry  
FIGURE 4-4:  
BLOCK DIAGRAM OF RA3  
VDD  
Weak  
MCLRE  
Program  
Mode  
HV Detect  
Reset  
MCLRE  
Data Bus  
Input  
pin  
RD  
TRISA  
VSS  
MCLRE  
RD  
VSS  
Q1  
PORTA  
D
Q
Q
Q
Q
D
CK  
WR  
IOCA  
EN  
RD  
IOCA  
D
EN  
RD PORTA  
Interrupt-on-  
change  
WURE  
Sleep  
DS41232D-page 54  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
4.2.4.5  
RA4/T1G/OSC2/CLKOUT  
4.2.4.6  
RA5/T1CKI/OSC1/CLKIN  
Figure 4-5 shows the diagram for this pin. The RA4 pin  
is configurable to function as one of the following:  
Figure 4-6 shows the diagram for this pin. The RA5 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a Timer1 gate input  
• a crystal/resonator connection  
• a clock output  
• a general purpose I/O  
• a Timer1 clock input  
• a crystal/resonator connection  
• a clock input  
FIGURE 4-5:  
BLOCK DIAGRAM OF RA4  
FIGURE 4-6:  
BLOCK DIAGRAM OF RA5  
Data Bus  
D
Data Bus  
D
CLK(1) Modes  
VDD  
CLK(1) Modes  
VDD  
Q
Q
Q
Q
WR  
WR  
CK  
CK  
WPUDA  
WPUDA  
Weak  
Weak  
RAPU  
RAPU  
RD  
RD  
WPUDA  
WPUDA  
Weak  
Weak  
D
Q
Q
D
Q
Q
VSS  
VSS  
WR  
WR  
WDA  
CK  
CK  
WDA  
Oscillator  
Circuit  
RD  
WDA  
RD  
WDA  
Oscillator  
Circuit  
OSC1  
VDD  
CLKOUT  
Enable  
OSC2  
VDD  
D
Q
Q
FOSC/4  
1
0
WR  
PORTA  
CK  
D
Q
Q
WR  
PORTA  
CK  
I/O pin  
I/O pin  
CLKOUT  
Enable  
D
Q
Q
VSS  
WR  
TRISA  
CK  
D
Q
Q
VSS  
INTOSC/  
RC/EC(2)  
WR  
TRISA  
INTOSC  
Mode  
CK  
RD  
TRISA  
CLKOUT  
Enable  
(2)  
RD  
TRISA  
RD  
PORTA  
XTAL  
D
Q
Q
RD  
PORTA  
Q
Q
D
CK  
WR  
IOCA  
D
Q
Q
Q1  
EN  
Q
Q
D
CK  
WR  
IOCA  
RD  
IOCA  
EN  
Q1  
D
RD  
IOCA  
D
EN  
Interrupt-on-  
change  
EN  
Interrupt-on-  
change  
RD PORTA  
RD PORTA  
T1G To Timer1  
T1G To Timer1  
Note 1: Oscillator modes are XT, HS, LP and LPTMR1.  
Note 1: Oscillator modes are XT, HS, LP, LPTMR1 and  
CLKOUT Enable.  
2: When using Timer1 with LP oscillator, the  
Schmitt Trigger is bypassed.  
2: With CLKOUT option.  
© 2007 Microchip Technology Inc.  
DS41232D-page 55  
PIC12F635/PIC16F636/639  
TABLE 4-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
POR, BOR,  
WUR  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTA  
INTCON  
TMR1L  
TMR1H  
RA5  
T0IE  
RA4  
RA3  
RA2  
T0IF  
RA1  
RA0  
--xx xx00  
0000 000x  
xxxx xxxx  
xxxx xxxx  
--uu uu00  
0000 000x  
uuuu uuuu  
uuuu uuuu  
GIE  
PEIE  
INTE  
RAIE  
INTF  
RAIF  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
T1CON  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS TMR1ON  
0000 0000  
---- --10  
0000 0000  
1111 1111  
--11 1111  
--11 -111  
--00 0000  
--11 -111  
uuuu uuuu  
---- --10  
0000 0000  
1111 1111  
--11 1111  
--11 -111  
--00 0000  
--11 -111  
CMCON1  
CMCON0  
OPTION_REG  
TRISA  
C1OUT  
INTEDG  
CIS  
CM2  
T1GSS  
CM1  
CxSYNC  
CM0  
C2OUT  
RAPU  
C2INV  
T0CS  
TRISA5  
C1INV  
T0SE  
PSA  
TRISA3  
PS2  
PS1  
PS0  
TRISA4  
TRISA2  
TRISA1  
TRISA0  
WPUDA  
IOCA  
WPUDA5 WPUDA4  
WPUDA2 WPUDA1 WPUDA0  
IOCA5  
WDA5  
IOCA4  
WDA4  
IOCA3  
IOCA2  
WDA2  
IOCA1  
WDA1  
IOCA0  
WDA0  
WDA  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
DS41232D-page 56  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
EXAMPLE 4-3:  
INITIALIZING PORTC  
4.3  
PORTC  
BANKSELPORTC  
;
PORTC is a general purpose I/O port consisting of 6  
bidirectional pins. The pins can be configured for either  
digital I/O or analog input to comparator. For specific  
information about individual functions, refer to the  
appropriate section in this data sheet.  
CLRF  
MOVLW  
MOVWF  
PORTC  
07h  
CMCON0  
;Init PORTC  
;Set RC<4,1:0> to  
;digital I/O  
;
;Set RC<3:2> as inputs  
;and set RC<5:4,1:0>  
;as outputs  
BANKSELTRISC  
MOVLW  
MOVWF  
0Ch  
TRISC  
Note:  
The CMCON0 register must be initialized  
to configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
REGISTER 4-6:  
PORTC: PORTC REGISTER  
U-0  
U-0  
R/W-x  
RC5  
R/W-x  
RC4  
R/W-x  
RC3  
R/W-x  
RC2  
R/W-0  
RC1  
R/W-0  
RC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RC<5:0>: PORTC General Purpose I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 4-7:  
TRISC: PORTC TRI-STATE REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R-1  
R/W-1  
R/W-1  
R/W-1  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TRISC<5:0>: PORTC Tri-State Control bits  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
© 2007 Microchip Technology Inc.  
DS41232D-page 57  
PIC12F635/PIC16F636/639  
4.3.1  
RC0/C2IN+  
FIGURE 4-7:  
BLOCK DIAGRAM OF RC0  
AND RC1  
Figure 4-7 shows the diagram for this pin. The RC0 pin  
is configurable to function as one of the following:  
Data Bus  
• a general purpose I/O  
VDD  
• an analog input to the comparator  
D
Q
Q
WR  
PORTC  
CK  
4.3.2  
RC1/C2IN-  
Figure 4-7 shows the diagram for this pin. The RC1 pin  
is configurable to function as one of the following:  
I/O pin  
D
Q
Q
• a general purpose I/O  
• an analog input to the comparator  
WR  
TRISC  
CK  
VSS  
Analog Input  
Mode  
4.3.3  
RC2  
RD  
TRISC  
Figure 4-8 shows the diagram for this pin. The RC2 pin  
is configurable to function as a general purpose I/O.  
RD  
PORTC  
4.3.4  
RC3  
Figure 4-8 shows the diagram for this pin. The RC3 pin  
is configurable to function as a general purpose I/O.  
To Comparators  
4.3.5  
RC5  
FIGURE 4-8:  
BLOCK DIAGRAM OF  
RC2, RC3 AND RC5  
Figure 4-8 shows the diagram for this pin. The RC5 pin  
is configurable to function as a general purpose I/O.  
Data Bus  
VDD  
D
CK  
Q
Q
WR  
PORTC  
I/O pin  
D
Q
Q
WR  
TRISC  
CK  
VSS  
RD  
TRISC  
RD  
PORTC  
DS41232D-page 58  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
4.3.6  
RC4/C2OUT  
Figure 4-9 shows the diagram for this pin. The RC4 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a digital output from the comparator  
FIGURE 4-9:  
BLOCK DIAGRAM OF RC4  
C2OUT Enable  
C2OUT  
Data Bus  
VDD  
D
Q
Q
WR  
PORTC  
CK  
1
0
I/O pin  
D
Q
Q
WR  
TRISC  
CK  
VSS  
RD  
TRISC  
RD  
PORTC  
TABLE 4-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
POR, BOR,  
WUR  
Value on  
all other  
Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTC  
CMCON0  
TRISC  
RC5  
RC4  
RC3  
CIS  
RC2  
CM2  
RC1  
CM1  
RC0  
CM0  
--xx xx00  
0000 0000  
--11 1111  
--uu uu00  
0000 0000  
--11 1111  
C2OUT C1OUT  
C2INV  
C1INV  
TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
© 2007 Microchip Technology Inc.  
DS41232D-page 59  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232D-page 60  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
5.1  
Timer0 Operation  
5.0  
TIMER0 MODULE  
When used as a timer, the Timer0 module can be used  
as either an 8-bit timer or an 8-bit counter.  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
• 8-bit timer/counter register (TMR0)  
5.1.1  
8-BIT TIMER MODE  
• 8-bit prescaler (shared with Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
When used as a timer, the Timer0 module will  
increment every instruction cycle (without prescaler).  
Timer mode is selected by clearing the T0CS bit of the  
OPTION register to ‘0’.  
Figure 5-1 is a block diagram of the Timer0 module.  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
Note:  
The value written to the TMR0 register can  
be adjusted, in order to account for the two  
instruction cycle delay when TMR0 is  
written.  
5.1.2  
8-BIT COUNTER MODE  
When used as a counter, the Timer0 module will  
increment on every rising or falling edge of the T0CKI  
pin. The incrementing edge is determined by the T0SE  
bit of the OPTION register. Counter mode is selected by  
setting the T0CS bit of the OPTION register to ‘1’.  
FIGURE 5-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
FOSC/4  
Data Bus  
0
1
8
1
Sync  
TMR0  
2 TCY  
T0CKI  
pin  
0
0
1
Set Flag bit T0IF  
on Overflow  
T0CS  
T0SE  
8-bit  
Prescaler  
PSA  
8
PSA  
WDTE  
SWDTEN  
1
PS<2:0>  
WDT  
Time-out  
16-bit  
Prescaler  
0
16  
31 kHz  
INTOSC  
Watchdog  
Timer  
PSA  
WDTPS<3:0>  
Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register.  
2: SWDTEN and WDTPS<3:0> are bits in the WDTCON register.  
3: WDTE bit is in the Configuration Word register.  
© 2007 Microchip Technology Inc.  
DS41232D-page 61  
PIC12F635/PIC16F636/639  
When changing the prescaler assignment from the  
WDT to the Timer0 module, the following instruction  
sequence must be executed (see Example 5-2).  
5.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
A single software programmable prescaler is available  
for use with either Timer0 or the Watchdog Timer  
(WDT), but not both simultaneously. The prescaler  
assignment is controlled by the PSA bit of the OPTION  
register. To assign the prescaler to Timer0, the PSA bit  
must be cleared to a ‘0’.  
EXAMPLE 5-2:  
CHANGING PRESCALER  
(WDT TIMER0)  
CLRWDT  
;Clear WDT and  
;prescaler  
;
BANKSEL OPTION_REG  
There are 8 prescaler options for the Timer0 module  
ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION register.  
In order to have a 1:1 prescaler value for the Timer0  
module, the prescaler must be assigned to the WDT  
module.  
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11110000’ ;Mask TMR0 select and  
OPTION_REG,W ;prescaler bits  
b’00000011’ ;Set prescale to 1:16  
OPTION_REG  
;
5.1.4  
TIMER0 INTERRUPT  
The prescaler is not readable or writable. When  
assigned to the Timer0 module, all instructions writing to  
the TMR0 register will clear the prescaler.  
Timer0 will generate an interrupt when the TMR0  
register overflows from FFh to 00h. The T0IF interrupt  
flag bit of the INTCON register is set every time the  
TMR0 register overflows, regardless of whether or not  
the Timer0 interrupt is enabled. The T0IF bit must be  
cleared in software. The Timer0 interrupt enable is the  
T0IE bit of the INTCON register..  
When the prescaler is assigned to WDT, a CLRWDT  
instruction will clear the prescaler along with the WDT.  
5.1.3.1  
Switching Prescaler Between  
Timer0 and WDT Modules  
Note:  
The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
As a result of having the prescaler assigned to either  
Timer0 or the WDT, it is possible to generate an  
unintended device Reset when switching prescaler  
values. When changing the prescaler assignment from  
Timer0 to the WDT module, the instruction sequence  
shown in Example 5-1, must be executed.  
5.1.5  
USING TIMER0 WITH AN  
EXTERNAL CLOCK  
When Timer0 is in Counter mode, the synchronization  
of the T0CKI input and the Timer0 register is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, the  
high and low periods of the external clock source must  
meet the timing requirements as shown in the  
Section 15.0 “Electrical Specifications”.  
EXAMPLE 5-1:  
CHANGING PRESCALER  
(TIMER0 WDT)  
BANKSEL TMR0  
CLRWDT  
;
;Clear WDT  
;Clear TMR0 and  
;prescaler  
CLRF  
TMR0  
BANKSEL OPTION_REG  
;
BSF  
OPTION_REG,PSA ;Select WDT  
CLRWDT  
;
;
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11111000’  
OPTION_REG,W  
b’00000101’  
OPTION_REG  
;Mask prescaler  
;bits  
;Set WDT prescaler  
;to 1:32  
DS41232D-page 62  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
REGISTER 5-1:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RAPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RAPU: PORTA Pull-up Enable bit  
1= PORTA pull-ups are disabled  
0= PORTA pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
BIT VALUE TMR0 RATE  
WDT RATE  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 1  
1 : 4  
1 : 2  
1 : 8  
1 : 4  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Note 1: A dedicated 16-bit WDT postscaler is available. See Section 12.11 “Watchdog Timer (WDT)” for more  
information.  
TABLE 5-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0  
Timer0 Module Register  
GIE PEIE T0IE  
xxxx xxxx uuuu uuuu  
INTCON  
INTE  
T0SE  
RAIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RAIF 0000 000x 0000 000x  
PS0 1111 1111 1111 1111  
OPTION_REG RAPU INTEDG T0CS  
TRISA  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 --11 1111 --11 1111  
Legend: – = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the  
Timer0 module.  
© 2007 Microchip Technology Inc.  
DS41232D-page 63  
PIC12F635/PIC16F636/639  
6.0  
TIMER1 MODULE WITH GATE  
CONTROL  
The Timer1 module is a 16-bit timer/counter with the  
following features:  
• 16-bit timer/counter register pair (TMR1H:TMR1L)  
• Programmable internal or external clock source  
• 3-bit prescaler  
• Optional LP oscillator  
• Synchronous or asynchronous operation  
• Timer1 gate (count enable) via comparator or  
T1G pin  
• Interrupt on overflow  
• Wake-up on overflow (external clock,  
Asynchronous mode only)  
• Comparator output synchronization to Timer1  
clock  
Figure 6-1 is a block diagram of the Timer1 module.  
6.1  
Timer1 Operation  
The Timer1 module is a 16-bit incrementing counter  
which is accessed through the TMR1H:TMR1L register  
pair. Writes to TMR1H or TMR1L directly update the  
counter.  
When used with an internal clock source, the module is  
a timer. When used with an external clock source, the  
module can be used as either a timer or counter.  
6.2  
Clock Source Selection  
The TMR1CS bit of the T1CON register is used to select  
the clock source. When TMR1CS = 0, the clock source  
is FOSC/4. When TMR1CS = 1, the clock source is  
supplied externally.  
Clock  
Source  
FOSC  
Mode  
T1OSCEN  
T1CS  
FOSC/4  
x
x
1
xxx  
x
1
T1CKI pin  
T1LPOSC  
LP or  
INTOSCIO  
DS41232D-page 64  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 6-1:  
TIMER1 BLOCK DIAGRAM  
TMR1GE  
T1GINV  
TMR1ON  
Set flag bit  
TMR1IF on  
Overflow  
To C2 Comparator Module  
Timer1 Clock  
(2)  
TMR1  
TMR1H  
Synchronized  
clock input  
0
EN  
TMR1L  
1
Oscillator  
(1)  
T1SYNC  
OSC1/T1CKI  
1
(3)  
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
0
OSC2/T1G  
2
T1CKPS<1:0>  
TMR1CS  
1
0
INTOSC  
Without CLKOUT  
FOSC  
1
0
CxOUT  
T1OSCEN  
FOSC/4  
Internal  
Clock  
T1GSS  
T1ACS  
Note 1: ST Buffer is low power type when using LP osc, or high speed type when using T1CKI.  
2: Timer1 register increments on rising edge.  
3: Synchronize does not operate while in Sleep.  
© 2007 Microchip Technology Inc.  
DS41232D-page 65  
PIC12F635/PIC16F636/639  
6.2.1  
INTERNAL CLOCK SOURCE  
6.5  
Timer1 Operation in  
Asynchronous Counter Mode  
When the internal clock source is selected the  
TMR1H:TMR1L register pair will increment on multiples  
of TCY as determined by the Timer1 prescaler.  
If control bit T1SYNC of the T1CON register is set, the  
external clock input is not synchronized. The timer  
continues to increment asynchronous to the internal  
phase clocks. The timer will continue to run during  
Sleep and can generate an interrupt on overflow,  
which will wake-up the processor. However, special  
precautions in software are needed to read/write the  
timer (see Section 6.5.1 “Reading and Writing  
Timer1 in Asynchronous Counter Mode”).  
6.2.2  
EXTERNAL CLOCK SOURCE  
When the external clock source is selected, the Timer1  
module may work as a timer or a counter.  
When counting, Timer1 is incremented on the rising  
edge of the external clock input T1CKI. In addition, the  
Counter mode clock can be synchronized to the  
microcontroller system clock or run asynchronously.  
Note:  
When switching from synchronous to  
asynchronous operation, it is possible to  
skip an increment. When switching from  
asynchronous to synchronous operation,  
it is possible to produce a single spurious  
increment.  
In Counter mode, a falling edge must be registered by  
the counter prior to the first incrementing rising edge  
after one or more of the following conditions:  
• Timer1 is enabled after POR or BOR Reset  
• A write to TMR1H or TMR1L  
• T1CKI is high when Timer1 is disabled and when  
Timer1 is reenabled T1CKI is low. See Figure 6-2.  
6.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
6.3  
Timer1 Prescaler  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
Timer1 has four prescaler options allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits of the  
T1CON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMR1H or TMR1L.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMR1H:TTMR1L register  
pair.  
6.4  
Timer1 Oscillator  
A low-power 32.768 kHz crystal oscillator is built-in  
between pins OSC1 (input) and OSC2 (amplifier out-  
put). The oscillator is enabled by setting the T1OSCEN  
control bit of the T1CON register. The oscillator will  
continue to run during Sleep.  
6.6  
Timer1 Gate  
The Timer1 oscillator is shared with the system LP  
oscillator. Thus, Timer1 can use this mode only when  
the primary system clock is derived from the internal  
oscillator or when in LP oscillator mode. The user must  
provide a software time delay to ensure proper oscilla-  
tor start-up.  
Timer1 gate source is software configurable to be the  
T1G pin or the output of Comparator 2. This allows the  
device to directly time external events using T1G or  
analog events using Comparator 2. See the CMCON1  
register (Register 7-3) for selecting the Timer1 gate  
source. This feature can simplify the software for a  
Delta-Sigma A/D converter and many other applications.  
For more information on Delta-Sigma A/D converters,  
see the Microchip web site (www.microchip.com).  
TRISA5 and TRISA4 bits are set when the Timer1  
oscillator is enabled. RA5 and RA4 bits read as ‘0’ and  
TRISA5 and TRISA4 bits read as ‘1’.  
Note:  
TMR1GE bit of the T1CON register must  
be set to use either T1G or C2OUT as the  
Timer1 gate source. See Register 7-3 for  
more information on selecting the Timer1  
gate source.  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to enabling Timer1.  
Timer1 gate can be inverted using the T1GINV bit of  
the T1CON register, whether it originates from the T1G  
pin or Comparator 2 output. This configures Timer1 to  
measure either the active-high or active-low time  
between events.  
DS41232D-page 66  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
6.7  
Timer1 Interrupt  
6.9  
Comparator Synchronization  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit of the PIR1 register is  
set. To enable the interrupt on rollover, you must set  
these bits:  
The same clock used to increment Timer1 can also be  
used to synchronize the comparator output. This  
feature is enabled in the Comparator module.  
When using the comparator for Timer1 gate, the  
comparator output should be synchronized to Timer1.  
This ensures Timer1 does not miss an increment if the  
comparator changes.  
• Timer1 interrupt enable bit of the PIE1 register  
• PEIE bit of the INTCON register  
• GIE bit of the INTCON register  
For more information, see Section 7.0 “Comparator  
Module”.  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
Note:  
The TMR1H:TTMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
6.8  
Timer1 Operation During Sleep  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
• TMR1ON bit of the T1CON register must be set  
• TMR1IE bit of the PIE1 register must be set  
• PEIE bit of the INTCON register must be set  
The device will wake-up on an overflow and execute  
the next instruction. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine (0004h).  
FIGURE 6-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of  
the clock.  
© 2007 Microchip Technology Inc.  
DS41232D-page 67  
PIC12F635/PIC16F636/639  
6.10 Timer1 Control Register  
The Timer1 Control register (T1CON), shown in  
Register 6-1, is used to control Timer1 and select the  
various features of the Timer1 module.  
REGISTER 6-1:  
T1CON: TIMER 1 CONTROL REGISTER  
R/W-0  
T1GINV(1)  
R/W-0  
TMR1GE(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
T1GINV: Timer1 Gate Invert bit(1)  
1= Timer1 gate is active-high (Timer1 counts when gate is high)  
0= Timer1 gate is active-low (Timer1 counts when gate is low)  
TMR1GE: Timer1 Gate Enable bit(2)  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 is on if Timer1 gate is active  
0= Timer1 is on  
bit 5-4  
bit 3  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale Value  
10= 1:4 Prescale Value  
01= 1:2 Prescale Value  
00= 1:1 Prescale Value  
T1OSCEN: LP Oscillator Enable Control bit  
If INTOSC without CLKOUT oscillator is active:  
1= LP oscillator is enabled for Timer1 clock  
0= LP oscillator is off  
Else:  
This bit is ignored. LP oscillator is disabled.  
bit 2  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from T1CKI pin (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Note 1: T1GINV bit inverts the Timer1 gate logic, regardless of source.  
2: TMR1GE bit must be set to use either T1G pin or C2OUT, as selected by the T1GSS bit of the CMCON1  
register, as a Timer1 gate source.  
DS41232D-page 68  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 6-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON1  
INTCON  
PIE1  
T1GSS  
INTF  
CMSYNC  
RAIF  
---- --10  
0000 000x  
000- 00-0  
000- 00-0  
xxxx xxxx  
xxxx xxxx  
00-- --10  
0000 000x  
000- 00-0  
000- 00-0  
uuuu uuuu  
uuuu uuuu  
GIE  
EEIE  
PEIE  
T0IE  
CRIE  
CRIF  
INTE  
RAIE  
C1IE  
C1IF  
T0IF  
LVDIE  
LVDIF  
C2IE(1)  
C2IF(1)  
OSFIE  
OSFIF  
TMR1IE  
TMR1IF  
PIR1  
EEIF  
TMR1H  
TMR1L  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
T1CON  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS  
TMR1ON  
0000 0000  
uuuu uuuu  
Legend:  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
Note 1:  
PIC16F636/639 only.  
© 2007 Microchip Technology Inc.  
DS41232D-page 69  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232D-page 70  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
comparator is a digital low level. When the analog  
voltage at VIN+ is greater than the analog voltage at  
VIN-, the output of the comparator is a digital high level.  
7.0  
COMPARATOR MODULE  
Comparators are used to interface analog circuits to a  
digital circuit by comparing two analog voltages and  
providing a digital indication of their relative magnitudes.  
The comparators are very useful mixed signal building  
blocks because they provide analog functionality  
independent of the program execution. The Analog  
Comparator module includes the following features:  
The PIC12F635 contains a single comparator as  
shown in Figure 7-2.  
The PIC16F636/639 devices contains two comparators  
as shown in Figure 7-3 and Figure 7-4. The comparators  
are not independently configurable.  
• Dual comparators (PIC16F636/639 only)  
• Multiple comparator configurations  
FIGURE 7-1:  
SINGLE COMPARATOR  
• Comparator(s) output is available  
internally/externally  
VIN+  
VIN-  
+
Output  
• Programmable output polarity  
• Interrupt-on-change  
• Wake-up from Sleep  
• Timer1 gate (count enable)  
• Output synchronization to Timer1 clock input  
• Programmable voltage reference  
VIN-  
VIN+  
7.1  
Comparator Overview  
A comparator is shown in Figure 7-1 along with the  
relationship between the analog input levels and the  
digital output. When the analog voltage at VIN+ is less  
than the analog voltage at VIN-, the output of the  
Output  
Note:  
The black areas of the output of the  
comparator represents the uncertainty  
due to input offsets and response time.  
FIGURE 7-2:  
COMPARATOR OUTPUT BLOCK DIAGRAM (PIC12F635)  
CMSYNC  
To Timer1 Gate  
To COUT pin  
CINV  
0
1
D
Q
Timer1  
clock source  
(1)  
To Data Bus  
Set CMIF bit  
D
Q
Q
Q1  
EN  
RD CMCON0  
D
Q3*RD CMCON0  
EN  
CL  
Reset  
Note 1: Comparator output is latched on falling edge of Timer1 clock source.  
2: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
3: Q1 is held high during Sleep mode.  
© 2007 Microchip Technology Inc.  
DS41232D-page 71  
PIC12F635/PIC16F636/639  
FIGURE 7-3:  
COMPARATOR C1 OUTPUT BLOCK DIAGRAM (PIC16F636/639)  
C1INV  
To C1OUT pin  
To Data Bus  
C1  
D
Q
Q
Q1  
EN  
RD CMCON0  
Set C1IF bit  
D
Q3*RD CMCON0  
EN  
CL  
Reset  
Note 1: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
2: Q1 is held high during Sleep mode.  
FIGURE 7-4:  
COMPARATOR C2 OUTPUT BLOCK DIAGRAM (PIC16F636/639)  
C2SYNC  
To Timer1 Gate  
C2INV  
0
1
C2  
To C2OUT pin  
D
Q
Timer1  
clock source  
(1)  
To Data Bus  
Set C2IF bit  
D
Q
Q
Q1  
EN  
RD CMCON0  
D
Q3*RD CMCON0  
EN  
CL  
Reset  
Note 1: Comparator output is latched on falling edge of Timer1 clock source.  
2: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
3: Q1 is held high during Sleep mode.  
DS41232D-page 72  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
7.2  
Analog Input Connection  
Considerations  
Note 1: When reading a PORT register, all pins  
configured as analog inputs will read as a  
A simplified circuit for an analog input is shown in  
Figure 7-5. Since the analog input pins share their con-  
nection with a digital input, they have reverse biased  
ESD protection diodes to VDD and VSS. The analog  
input, therefore, must be between VSS and VDD. If the  
input voltage deviates from this range by more than  
0.6V in either direction, one of the diodes is forward  
biased and a latch-up may occur.  
0’. Pins configured as digital inputs will  
convert as an analog input, according to  
the input specification.  
2: Analog levels on any pin defined as a  
digital input, may cause the input buffer to  
consume more current than is specified.  
A maximum source impedance of 10 kΩ is recommended  
for the analog sources. Also, any external component  
connected to an analog input pin, such as a capacitor or  
a Zener diode, should have very little leakage current to  
minimize inaccuracies introduced.  
FIGURE 7-5:  
ANALOG INPUT MODEL  
VDD  
VT 0.6V  
RIC  
Rs < 10K  
To Comparator  
AIN  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT 0.6V  
Vss  
Legend: CPIN  
= Input Capacitance  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
VT  
= Threshold Voltage  
© 2007 Microchip Technology Inc.  
DS41232D-page 73  
PIC12F635/PIC16F636/639  
The port pins denoted as “A” will read as a ‘0’  
regardless of the state of the I/O pin or the I/O control  
TRIS bit. Pins used as analog inputs should also have  
the corresponding TRIS bit set to ‘1’ to disable the  
digital output driver. Pins denoted as “D” should have  
the corresponding TRIS bit set to ‘0’ to enable the  
digital output driver.  
7.3  
Comparator Configuration  
There are eight modes of operation for the comparator.  
The CM<2:0> bits of the CMCON0 register are used to  
select these modes as shown in Figures 7-6 and 7-7.  
I/O lines change as a function of the mode and are  
designed as follows:  
• Analog function (A): digital input buffer is disabled  
Note:  
Comparator interrupts should be disabled  
during a Comparator mode change to  
prevent unintended interrupts.  
• Digital function (D): comparator digital output,  
overrides port function  
• Normal port function (I/O): independent of  
comparator  
FIGURE 7-6:  
COMPARATOR I/O OPERATING MODES (PIC12F635)  
Comparator Reset (POR Default Value – low power)  
Comparator w/o Output and with Internal Reference  
CM<2:0> = 000  
CM<2:0> = 100  
A
CIN-  
CIN+  
A
A
CIN-  
(1)  
COUT  
Off  
I/O  
CIN+  
I/O  
COUT (pin)  
I/O  
COUT (pin)  
From CVREF Module  
Comparator with Output  
Multiplexed Input with Internal Reference and Output  
CM<2:0> = 001  
CM<2:0> = 101  
A
CIN-  
A
CIN-  
CIS = 0  
A
COUT  
CIS = 1  
CIN+  
A
COUT  
CIN+  
D
COUT (pin)  
D
COUT (pin)  
From CVREF Module  
Comparator without Output  
Multiplexed Input with Internal Reference  
CM<2:0> = 010  
CM<2:0> = 110  
A
A
CIN-  
CIN-  
CIS = 0  
A
COUT  
CIS = 1  
COUT  
A
CIN+  
CIN+  
I/O  
I/O  
COUT (pin)  
COUT (pin)  
From CVREF Module  
Comparator with Output and Internal Reference  
Comparator Off (Lowest power)  
CM<2:0> = 011  
CM<2:0> = 111  
A
CIN-  
I/O  
I/O  
CIN-  
COUT  
I/O  
(1)  
CIN+  
Off  
CIN+  
D
COUT (pin)  
I/O  
COUT (pin)  
From CVREF Module  
Legend: A = Analog Input, ports always reads ‘0’  
CIS = Comparator Input Switch (CMCON0<3>)  
D = Comparator Digital Output  
I/O = Normal port I/O  
Note 1: Reads as ‘0’, unless CINV = 1.  
DS41232D-page 74  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 7-7:  
COMPARATOR I/O OPERATING MODES (PIC16F636/639)  
Comparators Reset (POR Default Value)  
CM<2:0> = 000  
Two Independent Comparators  
CM<2:0> = 100  
A
VIN-  
A
VIN-  
C1IN-  
C1IN-  
(1)  
Off  
Off  
C1  
C2  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
VIN+  
A
C1IN+  
C1IN+  
A
A
VIN-  
A
A
VIN-  
C2IN-  
C2IN+  
C2IN-  
C2IN+  
(1)  
VIN+  
VIN+  
Three Inputs Multiplexed to Two Comparators  
CM<2:0> = 001  
One Independent Comparator  
CM<2:0> = 101  
I/O  
A
C1IN-  
VIN-  
C1IN-  
CIS = 0 VIN-  
(1)  
Off  
C1  
VIN+  
I/O  
A
CIS = 1  
C1IN+  
C1IN+  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
A
VIN-  
A
A
VIN-  
C2IN-  
C2IN+  
C2IN-  
C2IN+  
C2OUT  
C2  
VIN+  
VIN+  
Four Inputs Multiplexed to Two Comparators  
CM<2:0> = 010  
Two Common Reference Comparators with Outputs  
CM<2:0> = 110  
A
A
VIN-  
C1IN-  
C1IN-  
CIS = 0  
CIS = 1  
VIN-  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
C1IN+  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
D
C1OUT(pin)  
A
A
C2IN-  
C2IN+  
VIN-  
CIS = 0  
CIS = 1  
A
A
VIN-  
C2IN-  
C2IN+  
VIN+  
VIN+  
D
C2OUT(pin)  
From CVREF Module  
Two Common Reference Comparators  
CM<2:0> = 011  
Comparators Off (Lowest Power)  
CM<2:0> = 111  
A
VIN-  
I/O  
VIN-  
C1IN-  
C1IN-  
C1OUT  
(1)  
C1  
C2  
VIN+  
I/O  
Off  
C1  
VIN+  
I/O  
C1IN+  
C1IN+  
A
A
VIN-  
I/O  
I/O  
VIN-  
C2IN-  
C2IN+  
C2IN-  
C2IN+  
(1)  
C2OUT  
Off  
C2  
VIN+  
VIN+  
Legend: A = Analog Input, ports always reads ‘0’  
CIS = Comparator Input Switch (CMCON0<3>)  
D = Comparator Digital Output  
I/O = Normal port I/O  
Note 1: Reads as ‘0’, unless CxINV = 1.  
© 2007 Microchip Technology Inc.  
DS41232D-page 75  
PIC12F635/PIC16F636/639  
7.4.3  
COMPARATOR INPUT SWITCH  
7.4  
Comparator Control  
The inverting input of the comparators may be switched  
between two analog pins in the following modes:  
The CMCON0 register (Register 7-1) provides access  
to the following comparator features:  
PIC12F635  
• Mode selection  
• Output state  
• Output polarity  
• Input switch  
• CM<2:0> = 101  
• CM<2:0> = 110  
PIC16F636/639  
• CM<2:0> = 001(Comparator C1 only)  
7.4.1  
COMPARATOR OUTPUT STATE  
• CM<2:0> = 010(Comparators C1 and C2)  
Each comparator state can always be read internally  
via the CxOUT bit of the CMCON0 register. The com-  
parator state may also be directed to the CxOUT pin in  
the following modes:  
In the above modes, both pins remain in Analog mode  
regardless of which pin is selected as the input. The  
CIS bit of the CMCON0 register controls the comparator  
input switch.  
PIC12F635  
• CM<2:0> = 001  
• CM<2:0> = 011  
• CM<2:0> = 101  
PIC16F636/639  
• CM<2:0> = 110  
When one of the above modes is selected, the  
associated TRIS bit of the CxOUT pin must be cleared.  
7.4.2  
COMPARATOR OUTPUT POLARITY  
Inverting the output of a comparator is functionally  
equivalent to swapping the comparator inputs. The  
polarity of a comparator output can be inverted by set-  
ting the CXINV bit of the CMCON0 register. Clearing  
CXINV results in a non-inverted output. A complete  
table showing the output state versus input conditions  
and the polarity bit is shown in Table 7-1.  
TABLE 7-1:  
OUTPUT STATE VS. INPUT  
CONDITIONS  
Input Conditions  
CxINV  
CxOUT  
VIN- > VIN+  
VIN- < VIN+  
VIN- > VIN+  
VIN- < VIN+  
0
0
1
1
0
1
1
0
Note:  
CxOUT refers to both the register bit and  
output pin.  
DS41232D-page 76  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
7.5  
Comparator Response Time  
7.6  
Comparator Interrupt Operation  
The comparator output is indeterminate for a period of  
time after the change of an input source or the selection  
of a new reference voltage. This period is referred to as  
the response time. The response time of the  
comparator differs from the settling time of the voltage  
reference. Therefore, both of these times must be  
considered when determining the total response time  
to a comparator input change. See the Comparator and  
Voltage Specifications in Section 15.0 “Electrical  
Specifications” for more details.  
The comparator interrupt flag is set whenever there is a  
change in the output value of the comparator. Changes  
are recognized by means of a mismatch circuit which  
consists of two latches and an exclusive-or gate (see  
Figures 7-8 and 7-9). One latch is updated with the  
comparator output level when the CMCON0 register is  
read. This latch retains the value until the next read of  
the CMCON0 register or the occurrence of a Reset.  
The other latch of the mismatch circuit is updated on  
every Q1 system clock. A mismatch condition will occur  
when a comparator output change is clocked through  
the second latch on the Q1 clock cycle. The mismatch  
condition will persist, holding the CxIF bit of the PIR1  
register true, until either the CMCON0 register is read  
or the comparator output returns to the previous state.  
Note:  
A write operation to the CMCON0 register  
will also clear the mismatch condition  
because all writes include  
a
read  
operation at the beginning of the write  
cycle.  
Software will need to maintain information about the  
status of the comparator output to determine the actual  
change that has occurred.  
The CxIF bit of the PIR1 register, is the comparator  
interrupt flag. This bit must be reset in software by  
clearing it to ‘0’. Since it is also possible to write a ‘1’ to  
this register, a simulated interrupt may be initiated.  
The CxIE bit of the PIE1 register and the PEIE and GIE  
bits of the INTCON register must all be set to enable  
comparator interrupts. If any of these bits are cleared,  
the interrupt is not enabled, although the CxIF bit of the  
PIR1 register will still be set if an interrupt condition  
occurs.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON0. This will end the  
mismatch condition. See Figures 7-8 and 7-9.  
b) Clear the CxIF interrupt flag.  
A persistent mismatch condition will preclude clearing  
the CxIF interrupt flag. Reading CMCON0 will end the  
mismatch condition and allow the CxIF bit to be  
cleared.  
Note:  
If a change in the CMCON0 register  
(CxOUT) should occur when a read  
operation is being executed (start of the  
Q2 cycle), then the CxIF interrupt flag may  
not get set.  
© 2007 Microchip Technology Inc.  
DS41232D-page 77  
PIC12F635/PIC16F636/639  
FIGURE 7-8:  
COMPARATOR  
INTERRUPT TIMING W/O  
CMCON0 READ  
Q1  
Q3  
CIN+  
TRT  
CxOUT  
Set CxIF (level)  
CxIF  
reset by software  
FIGURE 7-9:  
COMPARATOR  
INTERRUPT TIMING WITH  
CMCON0 READ  
Q1  
Q3  
CIN+  
TRT  
CxOUT  
Set CxIF (level)  
CxIF  
cleared by CMCON0 read  
reset by software  
Note 1: If a change in the CMCON0 register  
(CxOUT) should occur when a read  
operation is being executed (start of the  
Q2 cycle), then the CxIF of the PIR1  
register interrupt flag may not get set.  
2: When either comparator is first enabled,  
bias circuitry in the Comparator module  
may cause an invalid output from the  
comparator until the bias circuitry is stable.  
Allow about 1 μs for bias settling then clear  
the mismatch condition and interrupt flags  
before enabling comparator interrupts.  
DS41232D-page 78  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
7.7  
Operation During Sleep  
7.8  
Effects of a Reset  
The comparator, if enabled before entering Sleep mode,  
remains active during Sleep. The additional current  
consumed by the comparator is shown separately in the  
Section 15.0 “Electrical Specifications”. If the  
comparator is not used to wake the device, power  
consumption can be minimized while in Sleep mode by  
turning off the comparator. The comparator is turned off  
by selecting mode CM<2:0> = 000or CM<2:0> = 111  
of the CMCON0 register.  
A device Reset forces the CMCON0 and CMCON1  
registers to their Reset states. This forces the Compar-  
ator module to be in the Comparator Reset mode  
(CM<2:0> = 000). Thus, all comparator inputs are  
analog inputs with the comparator disabled to consume  
the smallest current possible.  
A change to the comparator output can wake-up the  
device from Sleep. To enable the comparator to wake  
the device from Sleep, the CxIE bit of the PIE1 register  
and the PEIE bit of the INTCON register must be set.  
The instruction following the Sleep instruction always  
executes following a wake from Sleep. If the GIE bit of  
the INTCON register is also set, the device will then  
execute the Interrupt Service Routine.  
REGISTER 7-1:  
CMCON0: COMPARATOR CONFIGURATION REGISTER (PIC12F635)  
U-0  
R-0  
U-0  
R/W-0  
CINV  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
COUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
COUT: Comparator Output bit  
When CINV = 0:  
1= VIN+ > VIN-  
0= VIN+ < VIN-  
When CINV = 1:  
1= VIN+ < VIN-  
0= VIN+ > VIN-  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
CINV: Comparator Output Inversion bit  
1= Output inverted  
0= Output not inverted  
bit 3  
CIS: Comparator Input Switch bit  
When CM<2:0> = 110or 101:  
1= CIN+ connects to VIN-  
0= CIN- connects to VIN-  
When CM<2:0> = 0xxor 100or 111:  
CIS has no effect.  
bit 2-0  
CM<2:0>: Comparator Mode bits (See Figure 7-5)  
000= CIN pins are configured as analog, COUT pin configured as I/O, Comparator output turned off  
001= CIN pins are configured as analog, COUT pin configured as Comparator output  
010= CIN pins are configured as analog, COUT pin configured as I/O, Comparator output available internally  
011= CIN- pin is configured as analog, CIN+ pin is configured as I/O, COUT pin configured as  
Comparator output, CVREF is non-inverting input  
100= CIN- pin is configured as analog, CIN+ pin is configured as I/O, COUT pin is configured as I/O, Comparator output  
available internally, CVREF is non-inverting input  
101= CIN pins are configured as analog and multiplexed, COUT pin is configured as  
Comparator output, CVREF is non-inverting input  
110= CIN pins are configured as analog and multiplexed, COUT pin is configured as I/O,  
Comparator output available internally, CVREF is non-inverting input  
111= CIN pins are configured as I/O, COUT pin is configured as I/O, Comparator output disabled, Comparator off.  
© 2007 Microchip Technology Inc.  
DS41232D-page 79  
PIC12F635/PIC16F636/639  
REGISTER 7-2:  
CMCON0: COMPARATOR CONFIGURATION REGISTER (PIC16F636/639)  
R-0  
C2OUT  
bit 7  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
C1OUT  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 Output inverted  
0= C1 Output not inverted  
CIS: Comparator Input Switch bit  
When CM<2:0> = 010:  
1= C1IN+ connects to C1 VIN-  
C2IN+ connects to C2 VIN-  
0= C1IN- connects to C1 VIN-  
C2IN- connects to C2 VIN-  
When CM<2:0> = 001:  
1= C1IN+ connects to C1 VIN-  
0= C1IN- connects to C1 VIN-  
bit 2-0  
CM<2:0>: Comparator Mode bits (See Figure 7-5)  
000= Comparators off. CxIN pins are configured as analog  
001= Three inputs multiplexed to two comparators  
010= Four inputs multiplexed to two comparators  
011= Two common reference comparators  
100= Two independent comparators  
101= One independent comparator  
110= Two comparators with outputs and common reference  
111= Comparators off. CxIN pins are configured as digital I/O  
DS41232D-page 80  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
7.9  
Comparator Gating Timer1  
This feature can be used to time the duration or inter-  
val of analog events. Clearing the T1GSS bit of the  
CMCON1 register will enable Timer1 to increment  
based on the output of the comparator (or Comparator  
C2 for PIC16F636/639). This requires that Timer1 is  
on and gating is enabled. See Section 6.0 “Timer1  
Module with Gate Control” for details.  
It is recommended to synchronize the comparator with  
Timer1 by setting the CxSYNC bit when the comparator  
is used as the Timer1 gate source. This ensures Timer1  
does not miss an increment if the comparator changes  
during an increment.  
Note:  
References to the comparator in this  
section specifically are referring to  
Comparator C2 on the PIC16F636/639.  
7.10 Synchronizing Comparator Output  
to Timer1  
The comparator (or Comparator C2 for PIC16F636/639)  
output can be synchronized with Timer1 by setting the  
CxSYNC bit of the CMCON1 register. When enabled,  
the comparator output is latched on the falling edge of  
the Timer1 clock source. If a prescaler is used with  
Timer1, the comparator output is latched after the  
prescaling function. To prevent a race condition, the  
comparator output is latched on the falling edge of the  
Timer1 clock source and Timer1 increments on the rising  
edge of its clock source. See the Comparator Block  
Diagram (Figure 7-2) and the Timer1 Block Diagram  
(Figure 6-1) for more information.  
Note:  
References to the comparator in this  
section specifically are referring to  
Comparator C2 on the PIC16F636/639.  
© 2007 Microchip Technology Inc.  
DS41232D-page 81  
PIC12F635/PIC16F636/639  
REGISTER 7-3:  
CMCON1: COMPARATOR CONFIGURATION REGISTER (PIC12F635)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
T1GSS  
CMSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
T1GSS: Timer1 Gate Source Select bit(1)  
1= Timer1 Gate Source is T1G pin (pin should be configured as digital input)  
0= Timer1 Gate Source is comparator output  
bit 0  
CMSYNC: Comparator Output Synchronization bit(2)  
1= Output is synchronized with falling edge of Timer1 clock  
0= Output is asynchronous  
Note 1: Refer to Section 6.6 “Timer1 Gate”.  
2: Refer to Figure 7-2.  
REGISTER 7-4:  
CMCON1: COMPARATOR CONFIGURATION REGISTER (PIC16F636/639)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
T1GSS  
C2SYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
T1GSS: Timer1 Gate Source Select bit(1)  
1= Timer1 gate source is T1G pin (pin should be configured as digital input)  
0= Timer1 gate source is Comparator C2 output  
bit 0  
C2SYNC: Comparator C2 Output Synchronization bit(2)  
1= Output is synchronized with falling edge of Timer1 clock  
0= Output is asynchronous  
Note 1: Refer to Section 6.6 “Timer1 Gate”.  
2: Refer to Figure 7-4.  
DS41232D-page 82  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
7.11.3  
OUTPUT CLAMPED TO VSS  
7.11 Comparator Voltage Reference  
The CVREF output voltage can be set to Vss with no  
power consumption by configuring VRCON as follows:  
The Comparator Voltage Reference module provides  
an internally generated voltage reference for the  
comparators. The following features are available:  
• VREN = 0  
• VRR = 1  
• Independent from Comparator operation  
• Two 16-level voltage ranges  
• Output clamped to VSS  
• VR<3:0> = 0000  
This allows the comparator to detect a zero-crossing  
while not consuming additional CVREF module current.  
• Ratiometric with VDD  
• Fixed Voltage Reference  
7.11.4  
OUTPUT RATIOMETRIC TO VDD  
The VRCON register (Register 7-5) controls the  
Voltage Reference module shown in Figure 7-10.  
The comparator voltage reference is VDD derived and  
therefore, the CVREF output changes with fluctuations in  
VDD. The tested absolute accuracy of the Comparator  
Voltage Reference can be found in Section 15.0 “Elec-  
trical Specifications”.  
7.11.1  
INDEPENDENT OPERATION  
The comparator voltage reference is independent of  
the comparator configuration. Setting the VREN bit of  
the VRCON register will enable the voltage reference.  
7.11.2  
OUTPUT VOLTAGE SELECTION  
The CVREF voltage reference has 2 ranges with 16  
voltage levels in each range. Range selection is  
controlled by the VRR bit of the VRCON register. The  
16 levels are set with the VR<3:0> bits of the VRCON  
register.  
The CVREF output voltage is determined by the following  
equations:  
EQUATION 7-1:  
CVREF OUTPUT VOLTAGE  
(INTERNAL CVREF)  
VRR = 1 (low range):  
CVREF = (VR<3:0>/24) × VDD  
VRR = 0 (high range):  
CVREF = (VDD/4) +  
(VR<3:0> × VDD/32)  
EQUATION 7-2:  
CVREF OUTPUT VOLTAGE  
(EXTERNAL CVREF)  
VRR = 1 (low range):  
CVREF = (VR<3:0>/24) × VLADDER  
VRR = 0 (high range):  
CVREF = (VLADDER/4) + (VR<3:0> × VLADDER/32)  
VLADDER = VDD or ([VREF+] - [VREF-]) or VREF+  
The full range of VSS to VDD cannot be realized due to  
the construction of the module. See Figure 7-10.  
© 2007 Microchip Technology Inc.  
DS41232D-page 83  
PIC12F635/PIC16F636/639  
REGISTER 7-5:  
VRCON: VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
VREN  
U-0  
R/W-0  
VRR  
U-0  
R/W-0  
VR3  
R/W-0  
VR2  
R/W-0  
VR1  
R/W-0  
VR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
VREN: CVREF Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down, no IDD drain and CVREF = VSS.  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
VRR: CVREF Range Selection bit  
1= Low range  
0= High range  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
VR<3:0>: CVREF Value Selection bits (0 VR<3:0> 15)  
When VRR = 1: CVREF = (VR<3:0>/24) * VDD  
When VRR = 0: CVREF = VDD/4 + (VR<3:0>/32) * VDD  
FIGURE 7-10:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
16 Stages  
8R  
R
R
R
R
VDD  
VRR  
8R  
16-1 Analog  
MUX  
VREN  
15  
14  
CVREF to  
Comparator  
Input  
2
1
0
(1)  
VR<3:0>  
VREN  
VR<3:0> = 0000  
VRR  
Note 1: Care should be taken to ensure VREF remains  
within the comparator common mode input  
range. See Section 15.0 “Electrical Specifica-  
tions” for more detail.  
DS41232D-page 84  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 7-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND VOLTAGE  
REFERENCE MODULES  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
CMCON0  
CMCON1  
INTCON  
PIE1  
COUT  
CINV  
CIS  
CM2  
CM1  
T1GSS  
INTF  
CM0  
CMSYNC  
RAIF  
-0-0 0000 -0-0 0000  
---- --10 ---- --10  
0000 000x 0000 000x  
000- 00-0 000- 00-0  
000- 00-0 000- 00-0  
--xx xxxx --uu uuuu  
--xx xxxx --uu uuuu  
--11 1111 --11 1111  
--11 1111 --11 1111  
0-0- 0000 0-0- 0000  
GIE  
EEIE  
EEIF  
PEIE  
LVDIE  
LVDIF  
T0IE  
CRIE  
CRIF  
RA5  
RC5  
INTE  
RAIE  
C1IE  
C1IF  
RA3  
RC3  
T0IF  
OSFIE  
OSFIF  
RA2  
TMR1IE  
TMR1IF  
RA0  
PIR1  
PORTA  
PORTC  
TRISA  
RA4  
RC4  
RA1  
RC1  
RC2  
RC0  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1  
TRISC5 TRISC4 TRISC3 TRISC2 TRISC1  
TRISA0  
TRISC0  
VR0  
TRISC  
VRCON  
VREN  
VRR  
VR3  
VR2  
VR1  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used for comparator.  
© 2007 Microchip Technology Inc.  
DS41232D-page 85  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232D-page 86  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The PLVD module includes the following capabilities:  
8.0  
PROGRAMMABLE  
LOW-VOLTAGE DETECT  
(PLVD) MODULE  
• Eight programmable trip points  
• Interrupt on falling VDD  
• Stable reference indication  
The Programmable Low-Voltage Detect (PLVD)  
module is a power supply detector which monitors the  
internal power supply. This module is typically used in  
key fobs and other devices, where certain actions  
need to be taken as a result of a falling battery voltage.  
• Operation during Sleep  
A Block diagram of the PLVD module is shown in  
Figure 8-1.  
FIGURE 8-1:  
PLVD BLOCK DIAGRAM  
8 Stages  
VDD  
8-to-1  
Analog MUX  
LVDEN  
0
1
2
+
-
LVDIF  
det  
6
7
LVDL<2:0>  
Reference  
Voltage  
Generator  
FIGURE 8-2:  
PLVD OPERATION  
VDD  
PLVD Trip Point  
LVDIF  
Cleared by  
Software  
Set by  
Hardware  
© 2007 Microchip Technology Inc.  
DS41232D-page 87  
PIC12F635/PIC16F636/639  
8.1  
PLVD Operation  
8.4  
Stable Reference Indication  
To setup the PLVD for operation, the following steps  
must be taken:  
When the PLVD module is enabled, the reference volt-  
age must be allowed to stabilize before the PLVD will  
provide a valid result. Refer to Electrical Section,  
PLVD Characteristics for the stabilization time.  
• Enable the module by setting the LVDEN bit of the  
LVDCON register.  
When the HFINTOSC is running, the IRVST bit of the  
LVDCON register indicates the stability of the voltage  
reference. The voltage reference is stable when the  
IRVST bit is set.  
• Configure the trip point by setting the LVDL<2:0>  
bits of the LVDCON register.  
• Wait for the reference voltage to become stable.  
Refer to Section 8.4 “Stable Reference  
Indication”.  
8.5  
Operation During Sleep  
• Clear the LVDIF bit of the PIRx register.  
To wake from Sleep, set the LVDIE bit of the PIEx  
register and the PEIE bit of the INTCON register. When  
the LVDIE and PEIE bits are set, the device will wake  
from Sleep and execute the next instruction. If the GIE  
bit is also set, the program will call the Interrupt Service  
Routine upon completion of the first instruction after  
waking from Sleep.  
The LVDIF bit will be set when VDD falls below the  
PLVD trip point. The LVDIF bit remains set until cleared  
by software. Refer to Figure 8-2.  
8.2  
Programmable Trip Point  
The PLVD trip point is selectable from one of eight  
voltage levels. The LVDL bits of the LVDCON register  
select the trip point. Refer to Register 8-1 for the  
available PLVD trip points.  
8.3  
Interrupt on Falling VDD  
When VDD falls below the PLVD trip point, the falling  
edge detector will set the LVDIF bit. See Figure 8-2. An  
interrupt will be generated if the following bits are also  
set:  
• GIE and PEIE bits of the INTCON register  
• LVDIE bit of the PIEx register  
The LVDIF bit must be cleared by software. An interrupt  
can be generated from a simulated PLVD event when  
the LVDIF bit is set by software.  
DS41232D-page 88  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
REGISTER 8-1:  
LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER  
U-0  
U-0  
R-0  
IRVST(1)  
R/W-0  
U-0  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-0  
LVDL0  
LVDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
IRVST: Internal Reference Voltage Stable Status Flag bit(1)  
1= Indicates that the PLVD is stable and PLVD interrupt is reliable  
0= Indicates that the PLVD is not stable and PLVD interrupt must not be enabled  
bit 4  
LVDEN: Low-Voltage Detect Module Enable bit  
1= Enables PLVD Module, powers up PLVD circuit and supporting reference circuitry  
0= Disables PLVD Module, powers down PLVD circuit and supporting reference circuitry  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
LVDL<2:0>: Low-Voltage Detection Level bits (nominal values)  
111= 4.5V  
110= 4.2V  
101= 4.0V  
100= 2.3V (default)  
011= 2.2V  
010= 2.1V  
001= 2.0V(2)  
000= Reserved  
Note 1: The IRVST bit is usable only when the HFINTOSC is running.  
2: Not tested and below minimum operating conditions.  
TABLE 8-1:  
REGISTERS ASSOCIATED WITH PROGRAMMABLE LOW-VOLTAGE DETECT  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
OSFIE  
OSFIF  
PEIE  
C2IE  
C2IF  
T0IE  
C1IE  
INTE  
LCDIE  
LCDIF  
LVDEN  
RAIE  
T0IF  
LVDIE  
LVDIF  
LVDL2  
INTF  
RAIF  
0000 000x 0000 000x  
CCP2IE 0000 -0-0 0000 -0-0  
CCP2IF 0000 -0-0 0000 -0-0  
PIR1  
C1IF  
LVDCON  
IRVST  
LVDL1  
LVDL0  
--00 -100 --00 -100  
Legend:  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used by the PLVD module.  
© 2007 Microchip Technology Inc.  
DS41232D-page 89  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232D-page 90  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The EEPROM data memory allows byte read and write.  
A byte write automatically erases the location and  
9.0  
DATA EEPROM MEMORY  
The EEPROM data memory is readable and writable  
during normal operation (full VDD range). This memory  
is not directly mapped in the register file space.  
Instead, it is indirectly addressed through the Special  
Function Registers. There are four SFRs used to read  
and write this memory:  
writes the new data (erase before write). The EEPROM  
data memory is rated for high erase/write cycles. The  
write time is controlled by an on-chip timer. The write  
time will vary with voltage and temperature as well as  
from chip-to-chip. Please refer to A/C specifications in  
Section 15.0 “Electrical Specifications” for exact  
limits.  
• EECON1  
• EECON2 (not a physically implemented register)  
When the data memory is code-protected, the CPU  
may continue to read and write the data EEPROM  
memory. The device programmer can no longer access  
the data EEPROM data and will read zeroes.  
• EEDAT  
• EEADR  
EEDAT holds the 8-bit data for read/write and EEADR  
holds the address of the EEPROM location being  
accessed. PIC16F636/639 has 256 bytes of data  
EEPROM and the PIC12F635 has 128 bytes.  
REGISTER 9-1:  
EEDAT: EEPROM DATA REGISTER  
R/W-0  
EEDAT7  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDAT6  
EEDAT5  
EEDAT4  
EEDAT3  
EEDAT2  
EEDAT1  
EEDAT0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
EEDATn: Byte Value to Write To or Read From Data EEPROM bits  
REGISTER 9-2:  
EEADR: EEPROM ADDRESS REGISTER  
R/W-0  
EEADR7(1)  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEADR6  
EEADR5  
EEADR4  
EEADR3  
EEADR2  
EEADR1  
EEADR0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
EEADR: Specifies One of 256 Locations for EEPROM Read/Write Operation bits  
Note 1: PIC16F636/639 only. Read as ‘0’ on PIC12F635.  
© 2007 Microchip Technology Inc.  
DS41232D-page 91  
PIC12F635/PIC16F636/639  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset, or a WDT Time-out Reset during normal  
operation. In these situations, following Reset, the user  
can check the WRERR bit, clear it and rewrite the  
location. The data and address will be cleared.  
Therefore, the EEDAT and EEADR registers will need  
to be re-initialized.  
9.1  
EECON1 AND EECON2 Registers  
EECON1 is the control register with four low-order bits  
physically implemented. The upper four bits are  
non-implemented and read as ‘0’s.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set in  
software. They are cleared in hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
Interrupt flag, EEIF bit of the PIR1 register, is set when  
write is complete. This bit must be cleared in software.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the data EEPROM write sequence.  
Note:  
The EECON1, EEDAT and EEADR  
registers should not be modified during a  
data EEPROM write (WR bit = 1).  
REGISTER 9-3:  
EECON1: EEPROM CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
WRERR  
bit 7  
bit 0  
Legend:  
S = Bit can only be set  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during  
normal operation or BOR Reset)  
0= The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the data EEPROM  
WR: Write Control bit  
1= Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only  
be set, not cleared, in software.)  
0= Write cycle to the data EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only  
be set, not cleared, in software.)  
0= Does not initiate an EEPROM read  
DS41232D-page 92  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
9.2  
Reading the EEPROM Data  
Memory  
9.4  
Write Verify  
Depending on the application, good programming  
practice may dictate that the value written to the data  
EEPROM should be verified (see Example 9-3) to the  
desired value to be written.  
To read a data memory location, the user must write the  
address to the EEADR register and then set control bit  
RD of the EECON1 register, as shown in Example 9-1.  
The data is available, in the very next cycle, in the  
EEDAT register. Therefore, it can be read in the next  
instruction. EEDAT holds this value until another read, or  
until it is written to by the user (during a write operation).  
EXAMPLE 9-3:  
WRITE VERIFY  
BANKSEL EEDAT  
;
MOVF  
BSF  
EEDAT,W  
;EEDAT not changed  
;from previous write  
EECON1,RD ;YES, Read the  
EXAMPLE 9-1:  
DATA EEPROM READ  
;value written  
;
;Is data the same  
BANKSEL EEADR  
;
XORWF  
BTFSS  
GOTO  
:
EEDAT,W  
STATUS,Z  
WRITE_ERR ;No, handle error  
;Yes, continue  
MOVLW  
MOVWF  
BSF  
CONFIG_ADDR  
EEADR  
;
;Address to read  
EECON1,RD  
EEDAT,W  
;EE Read  
;Move data to W  
MOVF  
9.4.1  
USING THE DATA EEPROM  
9.3  
Writing to the EEPROM Data  
Memory  
The data EEPROM is  
a high-endurance, byte  
addressable array that has been optimized for the  
storage of frequently changing information (e.g.,  
program variables or other data that are updated  
often). When variables in one section change  
frequently, while variables in another section do not  
change, it is possible to exceed the total number of  
write cycles to the EEPROM (specification D124)  
without exceeding the total number of write cycles to a  
single byte (specifications D120 and D120A). If this is  
the case, then a refresh of the array must be  
performed. For this reason, variables that change  
infrequently (such as constants, IDs, calibration, etc.)  
should be stored in Flash program memory.  
To write an EEPROM data location, the user must first  
write the address to the EEADR register and the data  
to the EEDAT register. Then the user must follow a  
specific sequence to initiate the write for each byte, as  
shown in Example 9-2.  
The write will not initiate if the above sequence is not  
exactly followed (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. We strongly  
recommend that interrupts be disabled during this  
code segment. A cycle count is executed during the  
required sequence. Any number that is not equal to the  
required cycles to execute the required sequence will  
prevent the data from being written into the EEPROM.  
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental writes  
to data EEPROM due to errant (unexpected) code  
execution (i.e., lost programs). The user should keep the  
WREN bit clear at all times, except when updating  
EEPROM. The WREN bit is not cleared by hardware.  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit will  
be inhibited from being set unless the WREN bit is set.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. The EEIF bit of the  
PIR1 register must be cleared by software.  
EXAMPLE 9-2:  
DATA EEPROM WRITE  
BANKSEL EEADR  
;
BSF  
EECON1,WREN  
;Enable write  
BCF  
INTCON,GIE  
55h  
EECON2  
AAh  
EECON2  
;Disable INTs  
;Unlock write  
;
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
;
EECON1,WR  
INTCON,GIE  
;Start the write  
;Enable INTS  
BSF  
© 2007 Microchip Technology Inc.  
DS41232D-page 93  
PIC12F635/PIC16F636/639  
9.5  
Protection Against Spurious Write  
9.6  
Data EEPROM Operation During  
Code Protection  
There are conditions when the user may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built in. On power-up, WREN is cleared. Also, the  
Power-up Timer (nominal 64 ms duration) prevents  
EEPROM write.  
Data memory can be code-protected by programming  
the CPD bit in the Configuration Word (Register 12-1)  
to ‘0’.  
When the data memory is code-protected, the CPU is  
able to read and write data to the data EEPROM. It is  
recommended to code-protect the program memory  
when code-protecting data memory. This prevents  
anyone from programming zeroes over the existing  
code (which will execute as NOPs) to reach an added  
routine, programmed in unused program memory,  
which outputs the contents of data memory.  
Programming unused locations in program memory to  
0’ will also help prevent data memory code protection  
from becoming breached.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during:  
• Brown-out  
• Power Glitch  
• Software Malfunction  
TABLE 9-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
INTCON  
PIR1  
GIE  
EEIF  
EEIE  
PEIE  
LVDIF  
LVDIE  
EEDAT6  
EEADR6  
T0IE  
CRIF  
INTE  
C2IF(1)  
C2IE(1)  
EEDAT4  
EEADR4  
RAIE  
C1IF  
T0IF  
OSFIF  
INTF  
RAIF  
TMR1IF  
TMR1IE  
EEDAT0  
EEADR0  
RD  
0000 000x  
0000 00-0  
0000 00-0  
0000 0000  
0000 0000  
---- x000  
---- ----  
0000 000x  
0000 00-0  
0000 00-0  
0000 0000  
0000 0000  
---- q000  
---- ----  
PIE1  
CRIE  
C1IE  
OSFIE  
EEDAT2  
EEADR2  
WREN  
EEDAT  
EEDAT7  
EEADR7(1)  
EEDAT5  
EEADR5  
EEDAT3  
EEADR3  
WRERR  
EEDAT1  
EEADR1  
WR  
EEADR  
EECON1  
EECON2  
Legend:  
EEPROM Control Register 2 (not a physical register)  
x= unknown, u= unchanged, – = unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by the data EEPROM module.  
Note 1: PIC16F636/639 only.  
DS41232D-page 94  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
®
10.0 KEELOQ COMPATIBLE  
CRYPTOGRAPHIC MODULE  
To obtain information regarding the implementation of  
the KEELOQ module, Microchip Technology requires  
®
the execution of the “KEELOQ Encoder License  
Agreement”.  
®
The “KEELOQ Encoder License Agreement” may be  
accessed through the Microchip web site located at  
www.microchip.com/KEELOQ. Further information may  
be obtained by contacting your local Microchip Sales  
Representative.  
© 2007 Microchip Technology Inc.  
DS41232D-page 95  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232D-page 96  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
11.2 Modulation Circuit  
11.0 ANALOG FRONT-END (AFE)  
FUNCTIONAL DESCRIPTION  
(PIC16F639 ONLY)  
The modulation circuit consists of a modulation  
transistor (FET), internal tuning capacitors and external  
LC antenna components. The modulation transistor  
The PIC16F639 device consists of the PIC16F636  
device and low frequency (LF) Analog Front-End  
(AFE), with the AFE section containing three  
analog-input channels for signal detection and LF  
talk-back. This section describes the Analog Front-End  
(AFE) in detail.  
and the internal tuning capacitors are connected  
between the LC input pin and LCCOM pin. Each LC  
input has its own modulation transistor.  
When the modulation transistor turns on, its low Turn-on  
Resistance (RM) clamps the induced LC antenna  
voltage. The coil voltage is minimized when the  
modulation transistor turns-on and maximized when the  
modulation transistor turns-off. The modulation  
transistor’s low Turn-on Resistance (RM) results in a  
high modulation depth.  
The PIC16F639 device can detect a 125 kHz input  
signal as low as 1 mVpp and transmit data by using  
internal LF talk-back modulation or via an external  
transmitter. The PIC16F639 can also be used for  
various bidirectional communication applications.  
Figure 11-3 and Figure 11-4 show application examples  
of the device.  
The LF talk-back is achieved by turning on and off the  
modulation transistor.  
The modulation data comes from the microcontroller  
section via the digital SPI interface as “Clamp On”,  
“Clamp Off” commands. Only those inputs that are  
enabled will execute the clamp command. A basic  
block diagram of the modulation circuit is shown in  
Figure 11-1 and Figure 11-2.  
Each analog input channel has internal tuning  
capacitance, sensitivity control circuits, an input signal  
strength limiter and an LF talk-back modulation  
transistor. An Automatic Gain Control (AGC) loop is  
used for all three input channel gains. The output of  
each channel is OR’d and fed into a demodulator. The  
digital output is passed to the LFDATA pin. Figure 11-1  
shows the block diagram of the AFE and Figure 11-2  
shows the LC input path.  
The modulation FET is also shorted momentarily after  
Soft Reset and Inactivity timer time-out.  
11.3 Tuning Capacitor  
There are a total of eight Configuration registers. Six of  
them are used for AFE operation options, one for  
column parity bits and one for status indication of AFE  
operation. Each register has 9 bits including one row  
parity bit. These registers are readable and writable by  
SPI (Serial Protocol Interface) commands except for  
the STATUS register, which is read-only.  
Each channel has internal tuning capacitors for external  
antenna tuning. The capacitor values are programmed  
by the Configuration registers up to 63 pF, 1 pF per step.  
Note:  
The user can control the tuning capacitor  
by programming the AFE Configuration  
registers.  
11.1 RF Limiter  
11.4 Variable Attenuator  
The RF Limiter limits LC pin input voltage by de-Q’ing  
the attached LC resonant circuit. The absolute voltage  
limit is defined by the silicon process’s maximum  
allowed input voltage (see Section 15.0 “Electrical  
Specifications”). The limiter begins de-Q’ing the  
external LC antenna when the input voltage exceeds  
VDE_Q, progressively de-Q’ing harder to reduce the  
antenna input voltage.  
The variable attenuator is used to attenuate, via AGC  
control, the input signal voltage to avoid saturating the  
amplifiers and demodulators.  
Note:  
The variable attenuator function is  
accomplished by the device itself. The  
user cannot control its function.  
The signal levels from all 3 channels are combined  
such that the limiter attenuates all 3 channels  
uniformly, in respect to the channel with the strongest  
signal.  
11.5 Sensitivity Control  
The sensitivity of each channel can be reduced by the  
channel’s Configuration register sensitivity setting.  
This is used to desensitize the channel from optimum.  
Note:  
The user can desensitize the channel  
sensitivity by programming the AFE  
Configuration registers.  
© 2007 Microchip Technology Inc.  
DS41232D-page 97  
PIC12F635/PIC16F636/639  
11.6 AGC Control  
11.10 Demodulator  
The AGC controls the variable attenuator to limit the  
internal signal voltage to avoid saturation of internal  
amplifiers and demodulators (Refer to Section 11.4  
“Variable Attenuator”).  
The Demodulator consists of a full-wave rectifier, low  
pass filter, peak detector and Data Slicer that detects  
the envelope of the input signal.  
11.11 Data Slicer  
The signal levels from all 3 channels are combined  
such that AGC attenuates all 3 channels uniformly in  
respect to the channel with the strongest signal.  
The Data Slicer consists of a reference generator and  
comparator. The Data Slicer compares the input with  
the reference voltage. The reference voltage comes  
from the minimum modulation depth requirement  
setting and input peak voltage. The data from all 3  
channels are OR’d together and sent to the output  
enable filter.  
Note:  
The AGC control function is accomplished  
by the device itself. The user cannot  
control its function.  
11.7 Fixed Gain Amplifiers 1 and 2  
FGA1 and FGA2 provides a maximum two-stage gain  
of 40 dB.  
11.12 Output Enable Filter  
The Output Enable Filter enables the LFDATA output  
once the incoming signal meets the wake-up sequence  
requirements (see Section 11.15 “Configurable  
Output Enable Filter”).  
Note:  
The user cannot control the gain of these  
two amplifiers.  
11.8 Auto Channel Selection  
11.13 RSSI (Received Signal Strength  
Indicator)  
The Auto Channel Selection feature is enabled if the  
Auto Channel Select bit AUTOCHSEL<8> in Configu-  
ration Register 5 (Register 11-6) is set, and disabled if  
the bit is cleared. When this feature is active (i.e.,  
AUTOCHSE <8> = 1), the control circuit checks the  
demodulator output of each input channel immediately  
after the AGC settling time (TSTAB). If the output is high,  
it allows this channel to pass data, otherwise it is  
blocked.  
The RSSI provides a current which is proportional to the  
input signal amplitude (see Section 11.31.3 “Received  
Signal Strength Indicator (RSSI) Output”).  
11.14 Analog Front-End Timers  
The AFE has an internal 32 kHz RC oscillator. The  
oscillator is used in several timers:  
The status of this operation is monitored by AFE Status  
Register 7 bits <8:6> (Register 11-8). These bits indicate  
the current status of the channel selection activity, and  
automatically updates for every Soft Reset period. The  
auto channel selection function resets after each Soft  
Reset (or after Inactivity timer time-out). Therefore, the  
blocked channels are reenabled after Soft Reset.  
• Inactivity timer  
• Alarm timer  
• Pulse Width timer  
• Period timer  
• AGC settling timer  
11.14.1 RC OSCILLATOR  
This feature can make the output signal cleaner by  
blocking any channel that was not high at the end of  
TAGC. This function works only for demodulated data  
output, and is not applied for carrier clock or RSSI  
output.  
The RC oscillator is low power, 32 kHz ± 10% over  
temperature and voltage variations.  
11.9 Carrier Clock Detector  
The Detector senses the input carrier cycles. The  
output of the Detector switches digitally at the signal  
carrier frequency. Carrier clock output is available  
when the output is selected by the DATOUT bit in the  
AFE Configuration Register 1 (Register 11-2).  
DS41232D-page 98  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The timer is reset when the:  
11.14.2 INACTIVITY TIMER  
• CS pin is low (any SPI command).  
• Output enable filter is disabled.  
The Inactivity Timer is used to automatically return the  
AFE to Standby mode, if there is no input signal. The  
time-out period is approximately 16 ms (TINACT), based  
on the 32 kHz internal clock.  
• LFDATA pin is enabled (signal passed output  
enable filter).  
The purpose of the Inactivity Timer is to minimize AFE  
current draw by automatically returning the AFE to the  
lower current Standby mode, if there is no input signal  
for approximately 16 ms.  
The timer starts when:  
• Receiving a LF signal.  
The timer causes a low output on the ALERT pin when:  
The timer is reset when:  
• Output enable filter is enabled and modulated  
input signal is present for TALARM, but does not  
pass the output enable filter requirement.  
• An amplitude change in LF input signal, either  
high-to-low or low-to-high  
Note:  
The Alarm timer is disabled if the output  
enable filter is disabled.  
• CS pin is low (any SPI command)  
• Timer-related Soft Reset  
The timer starts when:  
11.14.4 PULSE WIDTH TIMER  
• AFE receives any LF signal  
The timer causes an AFE Soft Reset when:  
The Pulse Width Timer is used to verify that the  
received output enable sequence meets both the  
minimum TOEH and minimum TOEL requirements.  
• A previously received LF signal does not change  
either high-to-low or low-to-high for TINACT  
11.14.5 PERIOD TIMER  
The Soft Reset returns the AFE to Standby mode where  
most of the analog circuits, such as the AGC,  
demodulator and RC oscillator, are powered down. This  
returns the AFE to the lower Standby Current mode.  
The Period Timer is used to verify that the received  
output enable sequence meets the maximum TOET  
requirement.  
11.14.6 AGC SETTLING TIMER (TAGC)  
11.14.3 ALARM TIMER  
This timer is used to keep the output enable filter in  
Reset while the AGC settles on the input signal. The  
time-out period is approximately 3.5 ms. At end of this  
time (TAGC), the input should remain high (TPAGC),  
otherwise the counting is aborted and a Soft Reset is  
issued. See Figure 11-6 for details.  
The Alarm Timer is used to notify the MCU that the AFE  
is receiving LF signal that does not pass the output  
enable filter requirement. The time-out period is  
approximately 32 ms (TALARM) in the presence of  
continuing noise.  
The Alarm Timer time-out occurs if there is an input  
signal for longer than 32 ms that does not meet the  
output enable filter requirements. The Alarm Timer  
time-out causes:  
Note 1: The AFE needs continuous and  
uninterrupted high input signal during  
AGC settling time (TAGC). Any absence of  
signal during this time may reset the timer  
and a new input signal is needed for AGC  
settling time, or may result in improper  
AGC gain settings which will produce  
invalid output.  
a) The ALERT pin to go low.  
b) The ALARM bit to set in the AFE Status  
Configuration 7 register (Register 11-8).  
The MCU is informed of the Alarm timer time-out by  
monitoring the ALERT pin. If the Alarm timer time-out  
occurs, the MCU can take appropriate actions such as  
lowering channel sensitivity or disabling channels. If  
the noise source is ignored, the AFE can return to a  
lower standby current draw state.  
2: The rest of the AFE section wakes up if  
any of these input channels receive the  
AGC  
settling  
time  
correctly.  
<4:2>  
AFE Status Register 7  
bits  
(Register 11-8) indicate which input  
channels have waken up the AFE first.  
Valid input signal on multiple input pins  
can cause more than one channel’s  
indicator bit to be set.  
© 2007 Microchip Technology Inc.  
DS41232D-page 99  
PIC12F635/PIC16F636/639  
FIGURE 11-1:  
FUNCTIONAL BLOCK DIAGRAM – ANALOG FRONT-END  
÷ 64  
AGC  
LCX  
Detector  
WAKEX  
Tune X  
RF  
Lim  
Sensitivity  
Control X  
Mod  
A
÷ 64  
LCCOM  
WAKEY  
AGC  
LCY  
Σ
Detector  
WAKEZ  
Tune Y  
RF  
Lim  
Sensitivity  
Control Y  
Mod  
A
LCCOM  
÷ 64  
AGC  
LCZ  
Detector  
Tune Z  
RF  
Lim  
Sensitivity  
Control Z  
Watchdog  
Mod  
A
B
Modulation  
Depth  
To Sensitivity X  
32 kHZ  
Oscillator  
AGC  
Timer  
Output Enable  
Filter  
LCCOM  
To Sensitivity Y  
To Sensitivity Z  
AGC Preserve  
Command Decoder/Controller  
To Modulation  
Transistors  
To Tuning Cap X  
To Tuning Cap Y  
To Tuning Cap Z  
Configuration  
Registers  
RSSI  
SCLK/ALERT  
CS  
LFDATA/RSSI/  
CCLK/SDIO  
VSST  
VDDT  
MCU  
DS41232D-page 100  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 11-2:  
LC INPUT PATH  
© 2007 Microchip Technology Inc.  
DS41232D-page 101  
PIC12F635/PIC16F636/639  
FIGURE 11-3:  
BIDIRECTIONAL PASSIVE KEYLESS ENTRY (PKE) SYSTEM APPLICATION EXAMPLE  
d
e
s
t
e
p
d
y
o
r
C
c
n
E
e
s
)
n
F
o
H
p
U
s
(
e
R
LED  
LED  
UHF  
Transmitter  
UHF  
Receiver  
Ant. X  
Ant. Y  
Ant. Z  
d
n
a
H
m
k
m
5
o
2
C
1
F
(
L
PIC16F639  
)
z
MCU  
(PIC16F636)  
LF  
+
Transmitter/  
Receiver  
3 Input  
Analog Front-End  
Base Station  
Transponder  
FIGURE 11-4:  
PASSIVE KEYLESS ENTRY (PKE) TRANSPONDER CONFIGURATION EXAMPLE  
+3V  
315 MHz  
VDD  
VSS  
1
20  
19  
18  
+3V  
+3V  
S0  
S3  
2
S1  
S4  
3
S2  
S5  
4
17  
16  
RF Circuitry  
LED  
Data  
5
(UHF TX)  
RFEN  
CS  
6
15  
14  
13  
12  
11  
LFDATA/RSSI/CCLK/SDIO  
SCLK/ALERT  
VSST  
LCCOM  
LCZ  
7
+3V  
VDDT  
LCX  
LCY  
8
9
10  
air-core  
coil  
ferrite-core  
coil  
ferrite-core  
coil  
DS41232D-page 102  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
11.15 Configurable Output Enable Filter  
The purpose of this filter is to enable the LFDATA output  
and wake the microcontroller only after receiving a  
specific sequence of pulses on the LC input pins.  
Therefore, it prevents the AFE from waking up the  
microcontroller due to noise or unwanted input signals.  
The circuit compares the timing of the demodulated  
header waveform with a pre-defined value, and enables  
the demodulated LFDATA output when a match occurs.  
The output enable filter consists of a high (TOEH) and  
low duration (TOEL) of a pulse immediately after the  
AGC settling gap time. The selection of high and low  
times further implies a max period time. The output  
enable high and low times are determined by SPI  
interface programming. Figure 11-5 and Figure 11-6  
show the output enable filter waveforms.  
There should be no missing cycles during TOEH.  
Missing cycles may result in failing the output enable  
condition.  
FIGURE 11-5:  
OUTPUT ENABLE FILTER TIMING  
Required Output Enable Sequence  
Data Packet  
Start bit  
TSTAB  
(TAGC + TPAGC)  
Demodulator  
Output  
TGAP  
t TOEH  
t TOEL  
AGC  
Gap Pulse  
AFE Wake-up  
and AGC Stabilization  
LFDATA output is enabled  
on this rising edge  
t
TOET  
© 2007 Microchip Technology Inc.  
DS41232D-page 103  
PIC12F635/PIC16F636/639  
FIGURE 11-6:  
OUTPUT ENABLE FILTER TIMING EXAMPLE (DETAILED)  
Start bit  
LFDATA Output  
LF Coil Input  
3.5 ms  
TPAGC  
TGAP  
Gap  
Pulse  
Low  
t TOEL  
t TE  
Current  
Standby  
Mode  
(need  
“high”)  
TAGC  
(AGC settling time)  
t TOEH  
t TOET  
TSTAB  
(AFE Stabilization)  
Filter  
starts  
Filter is passed and  
LFDATA is enabled  
Legend:  
TAGC = AGC stabilization time  
TE = Time element of pulse  
TGAP = AGC stabilization gap  
TOEH = Minimum output enable filter high time  
TOEL = Minimum output enable filter low time  
TOET = Maximum output enable filter period  
TPAGC = High time after TAGC  
TSTAB = TAGC + TPAGC  
DS41232D-page 104  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
If the filter resets due to a long high (TOEH > TOET), the  
high-pulse timer will not begin timing again until after a  
gap of TE and another low-to-high transition occurs on  
TABLE 11-1: TYPICAL OUTPUT ENABLE  
FILTER TIMING  
OEH  
OEL  
TOEH  
(ms)  
TOEL  
(ms)  
TOET  
the demodulator output.  
<1:0>  
<1:0>  
(ms)  
Disabling the output enable filter disables the TOEH and  
TOEL requirement and the AFE passes all received LF  
data. See Figure 11-10, Figure 11-11 and Figure 11-12  
for examples.  
01  
01  
01  
01  
00  
01  
10  
11  
1
1
1
1
1
1
2
4
3
3
4
6
When viewed from an application perspective, from the  
pin input, the actual output enable filter timing must fac-  
tor in the analog delays in the input path (such as  
demodulator charge and discharge times).  
10  
10  
10  
10  
00  
01  
10  
11  
2
2
2
2
1
1
2
4
4
4
5
8
TOEH - TDR + TDF  
TOEL + TDR - TDF  
The output enable filter starts immediately after TGAP,  
the gap after AGC stabilization period.  
11  
11  
11  
11  
00  
01  
10  
11  
4
4
4
4
1
1
2
4
6
6
11.16 Input Sensitivity Control  
8
10  
The AFE is designed to have typical input sensitivity of  
3 mVPP. This means any input signal with amplitude  
greater than 3 mVPP can be detected. The AFE’s internal  
AGC loop regulates the detecting signal amplitude when  
the input level is greater than approximately 20 mVPP.  
This signal amplitude is called “AGC-active level”. The  
AGC loop regulates the input voltage so that the input  
signal amplitude range will be kept within the linear range  
of the detection circuits without saturation. The AGC  
Active Status bit AGCACT<5>, in the AFE Status  
Register 7 (Register 11-8) is set if the AGC loop  
regulates the input voltage.  
00  
XX  
Filter Disabled  
Note 1: Typical at room temperature and  
VDD = 3.0V, 32 kHz oscillator.  
TOEH is measured from the rising edge of the demodulator  
output to the first falling edge. The pulse width must fall  
within TOEH t TOET.  
TOEL is measured from the falling edge of the  
demodulator output to the rising edge of the next pulse.  
The pulse width must fall within TOEL t TOET.  
Table 11-2 shows the input sensitivity comparison when  
the AGCSIG option is used. When AGCSIG option bit is  
set, the demodulated output is available only when the  
AGC loop is active (see Table 11-1). The AFE has also  
input sensitivity reduction options per each channel. The  
Configuration Register 3 (Register 11-4), Configuration  
Register 4 (Register 11-5) and Configuration Register 5  
(Register 11-6) have the option to reduce the channel  
gains from 0 dB to approximately -30 dB.  
TOET is measured from rising edge to the next rising  
edge (i.e., the sum of TOEH and TOEL). The pulse width  
must be t TOET. If the Configuration Register 0  
(Register 11-1), OEL<8:7> is set to ‘00’, then TOEH  
must not exceed TOET and TOEL must not exceed  
TINACT.  
The filter will reset, requiring a complete new successive  
high and low period to enable LFDATA, under the  
following conditions.  
• The received high is not greater than the  
configured minimum TOEH value.  
• During TOEH, a loss of signal > 56 μs. A loss of  
signal < 56 μs may or may not cause a filter  
Reset.  
• The received low is not greater than the  
configured minimum TOEL value.  
• The received sequence exceeds the maximum  
TOET value:  
- TOEH + TOEL > TOET  
- or TOEH > TOET  
- or TOEL > TOET  
• A Soft Reset SPI command is received.  
© 2007 Microchip Technology Inc.  
DS41232D-page 105  
PIC12F635/PIC16F636/639  
TABLE 11-2: INPUT SENSITIVITY VS. MODULATED SIGNAL STRENGTH SETTING (AGCSIG <7>)  
Input  
Sensitivity  
(Typical)  
AGCSIG<7>  
(Config. Register 5)  
Description  
0
Disabled – the AFE passes signal of any amplitude level it is capable of  
detecting (demodulated data and carrier clock).  
3.0 mVPP  
1
Enabled – No output until AGC Status = 1(i.e., VPEAK 20 mVPP)  
(demodulated data and carrier clock).  
20 mVPP  
• Provides the best signal to noise ratio.  
11.17 Input Channels (Enable/Disable)  
11.19 AGC Preserve  
Each channel can be individually enabled or disabled  
by programming bits in Configuration Register 0<3:1>  
(Register 11-1).  
The AGC preserve feature allows the AFE to preserve  
the AGC value during the AGC settling time (TAGC) and  
apply the value to the data slicing circuit for the following  
data streams instead of using a new tracking value. This  
feature is useful to demodulate the input signal correctly  
when the input has random amplitude variations at a  
given time period. This feature is enabled when the AFE  
receives an AGC Preserve On command and disabled  
if it receives an AGC Preserve Off command. Once the  
AGC Preserve On command is received, the AFE  
acquires a new AGC value during each AGC settling  
time and preserves the value until a Soft Reset or an  
AGC Preserve Off command is issued. Therefore, it  
does not need to issue another AGC Preserve On  
command. An AGC Preserve Off command is needed to  
The purpose of having an option to disable a particular  
channel is to minimize current draw by powering down  
as much circuitry as possible, if the channel is not  
needed for operation. The exact circuits disabled when  
an input is disabled are amplifiers, detector, full-wave  
rectifier, data slicer, and modulation FET. However, the  
RF input limiter remains active to protect the silicon  
from excessive antenna input voltages.  
11.18 AGC Amplifier  
The circuit automatically amplifies input signal voltage  
levels to an acceptable level for the data slicer. Fast  
attack and slow release by nature, the AGC tracks the  
carrier signal level and not the modulated data bits.  
disable  
Section 11.32.2.5 “AGC Preserve On Command”  
and Section 11.32.2.6 “AGC Preserve Off  
Command” for AGC Preserve commands).  
the  
AGC  
preserve  
feature  
(see  
The AGC inherently tracks the strongest of the three  
antenna input signals. The AGC requires an AGC  
stabilization time (TAGC).  
The AGC will attempt to regulate a channel’s peak  
signal voltage into the data slicer to a desired regulated  
AGC voltage – reducing the input path’s gain as the  
signal level attempts to increase above regulated AGC  
voltage, and allowing full amplification on signal levels  
below the regulated AGC voltage.  
The AGC has two modes of operation:  
1. During the AGC settling time (TAGC), the AGC  
time constant is fast, allowing a reasonably short  
acquisition time of the continuous input signal.  
2. After TAGC, the AGC switches to a slower time  
constant for data slicing.  
Also, the AGC is frozen when the input signal envelope  
is low. The AGC tracks only high envelope levels.  
DS41232D-page 106  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 11-3: SETTING FOR MINIMUM  
MODULATION DEPTH  
11.20 Soft Reset  
The AFE issues a Soft Reset in the following events:  
REQUIREMENT  
MODMIN Bits  
(Config. Register 5)  
a) After Power-on Reset (POR),  
b) After Inactivity timer time-out,  
c) If an “Abort” occurs,  
Modulation Depth  
Bit 6  
Bit 5  
d) After receiving SPI Soft Reset command.  
0
0
1
1
0
1
0
1
50% (default)  
75%  
The “Abort” occurs if there is no positive signal  
detected at the end of the AGC stabilization period  
(TAGC). The Soft Reset initializes internal circuits and  
brings the AFE into a low current Standby mode  
operation. The internal circuits that are initialized by the  
Soft Reset include:  
25%  
12%  
• Output Enable Filter  
• AGC circuits  
• Demodulator  
• 32 kHz Internal Oscillator  
The Soft Reset has no effect on the Configuration register  
setup, except for some of the AFE Status Register 7 bits.  
(Register 11-8).  
The circuit initialization takes one internal clock cycle  
(1/32 kHz = 31.25 μs). During the initialization, the  
modulation transistors between each input and  
LCCOM pins are turned-on to discharge any inter-  
nal/external parasitic charges. The modulation transis-  
tors are turned-off immediately after the initialization  
time.  
The Soft Reset is executed in Active mode only. It is not  
valid in Standby mode.  
11.21 Minimum Modulation Depth  
Requirement for Input Signal  
The AFE demodulates the modulated input signal if the  
modulation depth of the input signal is greater than the  
minimum requirement that is programmed in the AFE  
Configuration Register 5 (Register 11-6). Figure 11-7  
shows the definition of the modulation depth and  
examples. MODMIN<6:5> of the Configuration Register  
5 offer four options. They are 75%, 50%, 25% and 12%,  
with a default setting of 50%.  
The purpose of this feature is to enhance the  
demodulation integrity of the input signal. The 12%  
setting is the best choice for the input signal with weak  
modulation depth, which is typically observed near the  
high-voltage base station antenna and also at  
far-distance from the base station antenna. It gives the  
best demodulation sensitivity, but is very susceptible to  
noise spikes that can result in a bit detection error. The  
75% setting can reduce the bit errors caused by noise,  
but gives the least demodulation sensitivity. See  
Table 11-3 for minimum modulation depth requirement  
settings.  
© 2007 Microchip Technology Inc.  
DS41232D-page 107  
PIC12F635/PIC16F636/639  
FIGURE 11-7:  
MODULATION DEPTH EXAMPLES  
(a) Modulation Depth Definition  
Amplitude  
A - B  
A
X 100%  
Modulation Depth (%) =  
B
A
t
(b) LFDATA Output vs. Input vs. Minimum Modulation Depth Setting  
Amplitude  
10 mVPP  
Coil Input Strength  
7 mVPP  
10 - 7  
10  
X 100% = 30%  
Modulation Depth (%) =  
t
Input signal with modulation depth = 30%  
Demodulated LFDATA Output when MODMIN Setting = 25%  
(LFDATA output = toggled)  
t
Amplitude  
Demodulated LFDATA Output if MODMIN Setting = 50%  
(LFDATA output = not toggled)  
t
0
DS41232D-page 108  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
11.22 Low-Current Sleep Mode  
11.25 Error Detection of AFE  
Configuration Register Data  
The Sleep command from the microcontroller, via an  
SPI Interface command, places the AFE into an ultra  
Low-current mode. All circuits including the RF Limiter,  
except the minimum circuitry required to retain register  
memory and SPI capability, will be powered down to  
minimize the AFE current draw. Power-on Reset or any  
SPI command, other than Sleep command, is required  
to wake the AFE from Sleep.  
The AFE’s Configuration registers are volatile memory.  
Therefore, the contents of the registers can be  
corrupted or cleared by any electrical incidence such  
as battery disconnect. To ensure the data integrity, the  
AFE has an error detection mechanism using row and  
column parity bits of the Configuration register memory  
map. The bit 0 of each register is a row parity bit which  
is calculated over the eight Configuration bits (from bit  
1 to bit 8). The Column Parity Register (Configuration  
Register 6) holds column parity bits; each bit is  
calculated over the respective columns (Configuration  
registers 0 to 5) of the Configuration bits. The STATUS  
register is not included for the column parity bit  
calculation. Parity is to be odd. The parity bit set or  
cleared makes an odd number of set bits. The user  
needs to calculate the row and column parity bits using  
the contents of the registers and program them. During  
operation, the AFE continuously calculates the row and  
column parity bits of the configuration memory map. If  
a parity error occurs, the AFE lowers the SCLK/ALERT  
pin (interrupting the microcontroller section) indicating  
the configuration memory has been corrupted or  
unloaded and needs to be reprogrammed.  
11.23 Low-Current Standby Mode  
The AFE is in Standby mode when no LF signal is  
present on the antenna inputs but the AFE is powered  
and ready to receive any incoming signals.  
11.24 Low-Current Operating Mode  
The AFE is in Low-current Operating mode when a LF  
signal is present on an LF antenna input and internal  
circuitry is switching with the received data.  
At an initial condition after a Power-On-Reset, the  
values of the registers are all clear (default condition).  
Therefore, the AFE will issue the parity bit error by  
lowering the SCLK/ALERT pin. If user reprograms the  
registers with correct parity bits, the SCLK/ALERT pin  
will be toggled to logic high level immediately.  
The parity bit errors do not change or affect the AFE’s  
functional operation.  
Table 11-4 shows an example of the register values  
and corresponding parity bits.  
TABLE 11-4: AFE CONFIGURATION REGISTER PARITY BIT EXAMPLE  
Bit 0  
(Row Parity)  
Register Name  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2  
Bit 1  
Configuration Register 0  
Configuration Register 1  
Configuration Register 2  
Configuration Register 3  
Configuration Register 4  
Configuration Register 5  
1
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
1
1
1
1
0
1
Configuration Register 6  
(Column Parity Register)  
© 2007 Microchip Technology Inc.  
DS41232D-page 109  
PIC12F635/PIC16F636/639  
11.26 Factory Calibration  
11.28 Battery Back-up and Batteryless  
Operation  
Microchip calibrates the AFE to reduce the  
device-to-device variation in standby current, internal  
timing and sensitivity, as well as channel-to-channel  
sensitivity variation.  
The device supports both battery back-up and  
batteryless operation by the addition of external  
components, allowing the device to be partially or  
completely powered from the field.  
11.27 De-Q’ing of Antenna Circuit  
Figure 11-8 shows an example of the external circuit for  
the battery back-up.  
When the transponder is close to the base station, the  
transponder coil may develop coil voltage higher than  
VDE_Q. This condition is called “near field”. The AFE  
detects the strong near field signal through the AGC  
control, and de-Q’ing the antenna circuit to reduce the  
input signal amplitude.  
Note:  
Voltage on LCCOM combined with coil input  
voltage must not exceed the maximum LC  
input voltage.  
FIGURE 11-8:  
LF FIELD POWERING AND BATTERY BACK-UP EXAMPLE  
VBAT  
VDD  
LCX  
LCY  
LCZ  
RLIM  
DFLAT1  
DBLOCK  
CPOOL  
LX  
DLIM  
CX  
LY  
Air Coil  
CY  
LZ  
CZ  
LCCOM  
DFLAT2  
CCOM  
RCOM  
Legend: CCOM = LCCOM charging capacitor.  
CPOOL = Pool capacitor (or battery back-up capacitor), charges in field and powers device.  
DBLOCK = Battery protection from reverse charge.  
Schottky for low forward bias drop.  
DFLAT = Field rectifier diodes.  
DLIM = Voltage limiting diode, may be required to limit VDD voltage when in strong fields.  
RCOM = CCOM discharge path.  
RLIM = Current limiting resistor, required for air coil in strong fields.  
DS41232D-page 110  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
11.29 Demodulator  
The demodulator recovers the modulation data from  
the received signal, containing carrier plus data, by  
appropriate envelope detection. The demodulator has  
a fast rise (charge) time (TDR) and a fall time (TDF)  
appropriate to an envelope of input signal (see  
Section 15.0 “Electrical Specifications” for TDR  
and TDF specifications). The demodulator contains  
the full-wave rectifier, low-pass filter, peak detector  
and data slicer.  
FIGURE 11-9:  
DEMODULATOR CHARGE AND DISCHARGE  
Signal into LC input pins  
Full-wave Rectifier output  
Data Slicer output  
(demodulator output)  
TDR  
TDF  
For a clean data output or to save operating power, the  
input channels can be individually enabled or disabled. If  
more than one channel is enabled, the output is the sum  
of each output of all enabled channels. There will be no  
valid output if all three channels are disabled. When the  
demodulated output is selected, the output is available in  
two different conditions depending on how the options of  
Configuration Register 0 (Register 11-1) are set: Output  
Enable Filter is disabled or enabled.  
11.30 Power-On Reset  
This circuit remains in a Reset state until a sufficient  
supply voltage is applied to the AFE. The Reset  
releases when the supply is sufficient for correct AFE  
operation, nominally VPOR of AFE.  
The Configuration registers are all cleared on a  
Power-on Reset. As the Configuration registers are  
protected by odd row and column parity, the ALERT pin  
will be pulled down – indicating to the microcontroller  
section that the AFE configuration memory is cleared  
and requires loading.  
Related Configuration register bits:  
• Configuration Register 1 (Register 11-2),  
DATOUT <8:7>:  
- bit 8 bit 7  
11.31 LFDATA Output Selection  
0
0
1
0
0: Demodulator Output  
1: Carrier Clock Output  
0: RSSI Output  
The LFDATA output can be configured to pass the  
Demodulator output, Received Signal Strength Indicator  
(RSSI) output, or Carrier Clock. See Configuration  
Register 1 (Register 11-2) for more details.  
1: RSSI Output  
• Configuration Register 0 (Register 11-1): all bits  
11.31.1 DEMODULATOR OUTPUT  
The demodulator output is the default configuration of  
the output selection. This is the output of an envelope  
detection circuit. See Figure 11-9 for the demodulator  
output.  
© 2007 Microchip Technology Inc.  
DS41232D-page 111  
PIC12F635/PIC16F636/639  
Case I. When Output Enable Filter is disabled: Demodulated output is available immediately after the AGC stabilization  
time (TAGC). Figure 11-10 shows an example of demodulated output when the Output Enable Filter is disabled.  
FIGURE 11-10:  
INPUT SIGNAL AND DEMODULATOR OUTPUT WHEN THE OUTPUT ENABLE  
FILTER IS DISABLED  
Input Signal  
LFDATA Output  
Case II. When Output Enable Filter is enabled: Demodulated output is available only if the incoming signal meets the  
enable filter timing criteria that is defined in the Configuration Register 0 (Register 11-1). If the criteria is met, the output  
is available after the low timing (TOEL) of the Enable Filter. Figure 11-11 and Figure 11-12 shows examples of  
demodulated output when the Output Enable Filter is enabled.  
DS41232D-page 112  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 11-11:  
INPUT SIGNAL AND DEMODULATOR OUTPUT (WHEN OUTPUT ENABLE  
FILTER IS ENABLED AND INPUT MEETS FILTER TIMING REQUIREMENTS)  
Input Signal  
LFDATA Output  
FIGURE 11-12:  
NO DEMODULATOR OUTPUT (WHEN OUTPUT ENABLE FILTER IS ENABLED  
BUT INPUT DOES NOT MEET FILTER TIMING REQUIREMENTS)  
Input Signal  
No LFDATA Output  
© 2007 Microchip Technology Inc.  
DS41232D-page 113  
PIC12F635/PIC16F636/639  
11.31.2 CARRIER CLOCK OUTPUT  
When the Carrier Clock output is selected, the LFDATA  
output is a square pulse of the input carrier clock and  
available as soon as the AGC stabilization time (TAGC) is  
completed. There are two Configuration register options  
for the carrier clock output: (a) clock divide-by one or (b)  
clock divide-by four, depending on bit DATOUT<7> of  
Configuration Register 2 (Register 11-3). The carrier  
clock output is available immediately after the AGC  
settling time. The Output Enable Filter, AGCSIG, and  
MODMIN options are applicable for the carrier clock  
output in the same way as the demodulated output. The  
input channel can be individually enabled or disabled for  
the output. If more than one channel is enabled, the  
output is the sum of each output of all enabled channels.  
Therefore, the carrier clock output waveform is not as  
precise as when only one channel is enabled. It is  
recommended to enable one channel only if a precise  
output waveform is desired.  
There will be no valid output if all three channels are  
disabled. See Figure 11-13 for carrier clock output  
examples.  
Related Configuration register bits:  
• Configuration Register 1 (Register 11-2),  
DATOUT <8:7>:  
bit 8 bit 7  
0
0
1
1
0: Demodulator Output  
1: Carrier Clock Output  
0: RSSI Output  
1: RSSI Output  
• Configuration Register 2 (Register 11-3),  
CLKDIV<7>:  
0: Carrier Clock/1  
1: Carrier Clock/4  
• Configuration Register 0 (Register 11-1): all bits  
are affected  
• Configuration Register 5 (Register 11-6)  
DS41232D-page 114  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 11-13:  
CARRIER CLOCK OUTPUT EXAMPLES  
(A) CARRIER CLOCK OUTPUT WITH CARRIER/1 OPTION  
Carrier Clock Output  
Carrier Input  
(B) CARRIER CLOCK OUTPUT WITH CARRIER/4 OPTION  
Carrier Clock Output  
Carrier Input  
© 2007 Microchip Technology Inc.  
DS41232D-page 115  
PIC12F635/PIC16F636/639  
11.31.3 RECEIVED SIGNAL STRENGTH  
INDICATOR (RSSI) OUTPUT  
FIGURE 11-14:  
RSSI OUTPUT PATH  
An analog current is available at the LFDATA pin when  
the Received Signal Strength Indicator (RSSI) output is  
selected for the AFE’s Configuration register. The analog  
current is linearly proportional to the input signal strength  
(see Figure 11-15).  
RSSI Output Current  
Generator  
Current Output  
VDD  
Off  
All timers in the circuit, such as inactivity timer, alarm  
timer, and AGC settling time, are disabled during the  
RSSI mode. Therefore, the RSSI output is not affected  
by the AGC settling time, and available immediately  
when the RSSI option is selected. The AFE enters  
Active mode immediately when the RSSI output is  
selected. The MCU I/O pin (RC3) connected to the  
LFDATA pin, must be set to high-impedance state  
during the RSSI Output mode.  
if RSSI active  
RC3/LFDATA/RSSI/CCLK Pin  
RSSIFET  
When the AFE receives an SPI command during the  
RSSI output, the RSSI mode is temporary disabled  
until the SPI interface communication is completed. It  
returns to the RSSI mode again after the SPI interface  
communication is completed. The AFE holds the RSSI  
mode until another output type is selected (CS low  
turns off the RSSI signal). To obtain the RSSI output  
for a particular input channel, or to save operating  
power, the input channel can be individually enabled  
or disabled. If more than one channel is enabled, the  
RSSI output is from the strongest signal channel.  
There will be no valid output if all three channels are  
disabled.  
RSSI Pull-down MOSFET  
(controlled by Config. 2, bit 8)  
Related AFE Configuration register bits:  
• Configuration Register 1 (Register 11-2),  
DATOUT<8:7>:  
bit 8 bit 7  
0
0
1
1
0: Demodulated Output  
1: Carrier Clock Output  
0: RSSI Output  
1: RSSI Output  
• Configuration Register 2 (Register 11-3),  
RSSIFET<8>:  
0: Pull-Down MOSFET off  
1: Pull-Down MOSFET on.  
Note:  
The pull-down MOSFET option is valid  
only when the RSSI output is selected.  
The MOSFET is not controllable by users  
when Demodulated or Carrier Clock  
output option is selected.  
• Configuration Register 0 (Register 11-1): all bits  
are affected.  
DS41232D-page 116  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 11-15:  
RSSI OUTPUT CURRENT VS. INPUT SIGNAL LEVEL EXAMPLE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
1
2
3
4
5
6
7
8
9
10  
Input Voltage (VPP)  
© 2007 Microchip Technology Inc.  
DS41232D-page 117  
PIC12F635/PIC16F636/639  
11.31.3.1 ANALOG-TO-DIGITAL DATA  
CONVERSION OF RSSI SIGNAL  
11.32 AFE Configuration  
11.32.1 SPI COMMUNICATION  
The AFE’s RSSI output is an analog current. It needs an  
external Analog-to-Digital (ADC) data conversion device  
for digitized output. The ADC data conversion can be  
accomplished by using a stand-alone external ADC  
device or by firmware utilizing MCU’s internal  
comparator along with a few external resistors and a  
capacitor. For slope ADC implementations, the external  
capacitor at the LFDATA pad needs to be discharged  
before data sampling. For this purpose, the internal  
pull-down MOSFET on the LFDATA pad can be utilized.  
The MOSFET can be turned on or off with bit  
The AFE SPI interface communication is used to read  
or write the AFE’s Configuration registers and to send  
command only messages. For the SPI interface, the  
device has three pads; CS, SCLK/ALERT, and  
LFDATA/RSSI/CCLK/SDIO.  
Figure 11-15,  
Figure 11-14, Figure 11-16 and Figure 11-17 shows  
examples of the SPI communication sequences.  
When the device powers up, these pins will be  
high-impedance inputs until firmware modifies them  
appropriately. The AFE pins connected to the MCU  
pins will be as follows.  
RSSIFET<8> of the Configuration Register  
2
(Register 11-3). When it is turned on, the internal  
MOSFET provides a discharge path for the external  
capacitor. This MOSFET option is valid only if RSSI  
output is selected and not controllable by users for  
demodulated or carrier clock output options.  
CS  
• Pin is permanently an input with an internal pull-up.  
SCLK/ALERT  
• Pin is an open collector output when CS is high.  
An internal pull-up resistor exists internal to the  
AFE to ensure no spurious SPI communication  
between powering and the MCU configuring its  
pins. This pin becomes the SPI clock input when  
CS is low.  
See separate application notes for various external ADC  
implementation methods for this device.  
LFDATA/RSSI/CCLK/SDIO  
• Pin is a digital output (LFDATA) so long as CS is  
high. During SPI communication, the pin is the  
SPI data input (SDI) unless performing a register  
Read, where it will be the SPI data output (SDO).  
FIGURE 11-16:  
POWER-UP SEQUENCE  
CS  
SCLK/ALERT  
ALERT  
(open collector  
output)  
LFDATA/RSSI/  
CCLK/SDIO  
LFDATA  
(output)  
DS41232D-page 118  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 11-17:  
SPI WRITE SEQUENCE  
TCSH  
2
6
CS  
TCSSC  
TSCCS TCS1  
TCS0  
16 Clocks for Write Command, Address and Data  
4
THI  
TLO  
7
SCLK/  
ALERT  
MSb  
THD  
LSb  
SCLK  
(input)  
ALERT  
(output)  
1/FSCLK  
ALERT  
(output)  
1
TSU  
LFDATA/RSSI/  
CCLK/SDIO  
LFDATA  
(output)  
SDI  
(input)  
LFDATA  
(output)  
5
3
MCU SPI Write Details:  
1.  
Drive the AFE’s open collector ALERT output low.  
To ensure no false clocks occur when CS drops.  
Drop CS.  
2.  
AFE SCLK/ALERT becomes SCLK input.  
LFDATA/RSSI/CCLK/SDIO becomes SDI input.  
3.  
4.  
Change LFDATA/RSSI/CCLK/SDIO connected pin to output.  
Driving SPI data.  
Clock in 16-bit SPI Write sequence - command, address, data and parity bit.  
Command, address, data and parity bit.  
5.  
6.  
7.  
Change LFDATA/RSSI/CCLK/SDIO connected pin to input.  
Raise CS to complete the SPI Write.  
Change SCLK/ALERT back to input.  
© 2007 Microchip Technology Inc.  
DS41232D-page 119  
PIC12F635/PIC16F636/639  
FIGURE 11-18:  
SPI READ SEQUENCE  
TCSH  
TCSH  
9
6
7
2
CS  
10  
4
8
16 Clocks for Read Result  
16 Clocks for Read Command,  
Address and Dummy Data  
TCS  
0
TCSSC  
TSCCS  
CSSC TCS1  
TCSSC  
TCS1  
T
TCS0  
T
HI  
TLO  
SCLK/ALERT  
MSb  
LSb  
SCLK  
(input)  
SCLK  
(input)  
ALERT  
(output)  
ALERT  
(output)  
ALERT  
(output)  
1/FSCLK  
1
TSU THD  
T
DO  
LFDATA/RSSI/  
CCLK/SDIO  
3
LFDATA  
(output)  
SDO  
(output)  
LFDATA  
(output)  
SDI  
(input)  
LFDATA  
(output)  
5
MCU SPI Read Details:  
7.  
8.  
Drop CS.  
1.  
2.  
Drive the AFE’s open collector ALERT output low.  
To ensure no false clocks occur when CS drops.  
Drop CS  
AFE SCLK/ALERT becomes SCLK input.  
LFDATA/RSSI/CCLK/SDIO becomes SDO output.  
Clock out 16-bit SPI Read result.  
AFE SCLK/ALERT becomes SCLK input.  
LFDATA/RSSI/CCLK/SDIO becomes SDI input.  
First seven bits clocked-out are dummy bits.  
Next eight bits are the Configuration register data.  
The last bit is the Configuration register row parity bit.  
3.  
4.  
Change LFDATA/RSSI/CCLK/SDIO connected pin to output.  
Driving SPI data.  
Clock in 16-bit SPI Read sequence.  
Command, address and dummy data.  
Change LFDATA/RSSI/CCLK/SDIO connected pin to input.  
Raise CS to complete the SPI Read entry of command and address.  
9.  
Raise CS to complete the SPI Read.  
10. Change SCLK/ALERT back to input.  
5.  
6.  
Note:  
The TCSH is considered as one clock. Therefore, the  
Configuration register data appears at 6th clock after TCSH.  
DS41232D-page 120  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The AFE operates in SPI mode 0,0. In mode 0,0 the  
clock idles in the low state (Figure 11-19). SDI data is  
loaded into the AFE on the rising edge of SCLK and  
SDO data is clocked out on the falling edge of SCLK.  
There must be multiples of 16 clocks (SCLK) while CS  
is low or commands will abort.  
11.32.2 COMMAND  
DECODER/CONTROLLER  
The circuit executes 8 SPI commands from the MCU.  
The command structure is:  
Command (3 bits) + Configuration Address (4 bits) +  
Data Byte and Row Parity Bit received by the AFE Most  
Significant bit first. Table 11-5 shows the available SPI  
commands.  
TABLE 11-5: SPI COMMANDS (AFE)  
Row  
Command Address  
Data  
Description  
Parity  
Command only – Address and Data are “Don’t Care”, but need to be clocked in regardless.  
000  
001  
010  
011  
100  
101  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
X
X
X
X
X
X
Clamp on – enable modulation circuit  
Clamp off – disable modulation circuit  
Enter Sleep mode (any other command wakes the AFE)  
AGC Preserve On – to temporarily preserve the current AGC level  
AGC Preserve Off – AGC again tracks strongest input signal  
Soft Reset – resets various circuit blocks  
Read Command – Data will be read from the specified register address.  
110  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Config Byte 0  
Config Byte 1  
Config Byte 2  
Config Byte 3  
Config Byte 4  
Config Byte 5  
Column Parity  
AFE Status  
P
P
P
P
P
P
P
X
General – options that may change during normal operation  
LCX antenna tuning and LFDATA output format  
LCY antenna tuning  
LCZ antenna tuning  
LCX and LCY sensitivity reduction  
LCZ sensitivity reduction and modulation depth  
Column parity byte for Config Byte 0 -> Config Byte 5  
AFE status – parity error, which input is active, etc.  
Write Command – Data will be written to the specified register address.  
111  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Config Byte 0  
Config Byte 1  
Config Byte 2  
Config Byte 3  
Config Byte 4  
Config Byte 5  
Column Parity  
Not Used  
P
P
P
P
P
P
P
X
General – options that may change during normal operation  
LCX antenna tuning and LFDATA output format  
LCY antenna tuning  
LCZ antenna tuning  
LCX and LCY sensitivity reduction  
LCZ sensitivity reduction and modulation depth  
Column parity byte for Config Byte 0 -> Config Byte 5  
Register is readable, but not writable  
Note:  
‘P’ denotes the row parity bit (odd parity) for the respective data byte.  
© 2007 Microchip Technology Inc.  
DS41232D-page 121  
PIC12F635/PIC16F636/639  
FIGURE 11-19:  
CS  
DETAILED SPI INTERFACE TIMING (AFE)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCLK  
SDIO  
MSb  
LSb  
Data Byte  
Row  
Parity Bit  
Command  
Address  
11.32.2.1 Clamp On Command  
11.32.2.5 AGC Preserve On Command  
This command results in activating (turning on) the  
modulation transistors of all enabled channels; channels  
enabled in Configuration Register 0 (Register 11-1).  
This command results in preserving the AGC level  
during each AGC settling time and apply the value to  
the data slicing circuit for the following data stream. The  
preserved AGC value is reset by a Soft Reset, and a  
new AGC value is acquired and preserved when it  
starts a new AGC settling time. This feature is disabled  
by an AGC Preserve Off command (see Section 11.19  
“AGC Preserve”).  
11.32.2.2 Clamp Off Command  
This command results in de-activating (turning off) the  
modulation transistors of all channels.  
11.32.2.3 Sleep Command  
11.32.2.6 AGC Preserve Off Command  
This command places the AFE in Sleep mode –  
minimizing current draw by disabling all but the  
essential circuitry. Any other command wakes the AFE  
(example: Clamp Off command).  
This command disables the AGC preserve feature and  
returns the AFE to the normal AGC tracking mode, fast  
tracking during AGC settling time and slow tracking  
after that (see Section 11.19 “AGC Preserve”).  
11.32.2.4 Soft Reset Command  
11.32.3 CONFIGURATION REGISTERS  
The AFE issues a Soft Reset when it receives an  
external Soft Reset command. The external Soft Reset  
command is typically used to end a SPI communication  
sequence or to initialize the AFE for the next signal  
detection sequence, etc. See Section 11.20 “Soft  
Reset” for more details on Soft Reset.  
The AFE includes 8 Configuration registers, including a  
column parity register and AFE Status Register. All  
registers are readable and writable via SPI, except  
STATUS register, which is readable only. Bit 0 of each  
register is a row parity bit (except for the AFE Status  
Register 7) that makes the register contents an odd  
number.  
If a Soft Reset command is sent during a “Clamp-on”  
condition, the AFE still keeps the “Clamp-on” condition  
after the Soft Reset execution. The Soft Reset is  
executed in Active mode only, not in Standby mode.  
The SPI Soft Reset command is ignored if the AFE is  
not in Active mode.  
DS41232D-page 122  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 11-6: ANALOG FRONT-END CONFIGURATION REGISTERS SUMMARY  
Register Name  
Address  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Configuration Register 0  
Configuration Register 1  
Configuration Register 2  
Configuration Register 3  
Configuration Register 4  
Configuration Register 5  
Column Parity Register 6  
AFE Status Register 7  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
OEH  
DATOUT  
RSSIFET CLKDIV  
Unimplemented  
Channel X Sensitivity Control  
AUTOCHSEL AGCSIG MODMIN MODMIN  
Column Parity Bits  
AGCACT Wake-up Channel Indicators  
OEL  
ALRTIND  
LCZEN  
LCYEN  
LCXEN  
R0PAR  
R1PAR  
R2PAR  
R3PAR  
R4PAR  
R5PAR  
R6PAR  
PEI  
Channel X Tuning Capacitor  
Channel Y Tuning Capacitor  
Channel Z Tuning Capacitor  
Channel Y Sensitivity Control  
Channel Z Sensitivity Control  
Active Channel Indicators  
ALARM  
REGISTER 11-1: CONFIGURATION REGISTER 0  
R/W-0  
OEH1  
R/W-0  
OEH0  
R/W-0  
OEL1  
R/W-0  
OEL0  
R/W-0  
R/W-0  
LCZEN  
R/W-0  
R/W-0  
LCXEN  
R/W-0  
ALRTIND  
LCYEN  
R0PAR  
bit 8  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 8-7  
bit 6-5  
OEH<1:0>: Output Enable Filter High Time (TOEH) bit  
00= Output Enable Filter disabled (no wake-up sequence required, passes all signal to LFDATA)  
01= 1 ms  
10= 2 ms  
11= 4 ms  
OEL<1:0>: Output Enable Filter Low Time (TOEL) bit  
00= 1 ms  
01= 1 ms  
10= 2 ms  
11= 4 ms  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ALRTIND: ALERT bit, output triggered by:  
1= Parity error and/or expired Alarm timer (receiving noise, see Section 11.14.3 “Alarm Timer”)  
0= Parity error  
LCZEN: LCZ Enable bit  
1= Disabled  
0= Enabled  
LCYEN: LCY Enable bit  
1= Disabled  
0= Enabled  
LCXEN: LCX Enable bit  
1= Disabled  
0= Enabled  
R0PAR: Register Parity bit – set/cleared so the 9-bit register contains odd parity – an odd number of set bits  
© 2007 Microchip Technology Inc.  
DS41232D-page 123  
PIC12F635/PIC16F636/639  
REGISTER 11-2: CONFIGURATION REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DATOUT1 DATOUT0 LCXTUN5 LCXTUN4 LCXTUN3 LCXTUN2 LCXTUN1 LCXTUN0  
bit 8  
R1PAR  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 8-7  
DATOUT<1:0>: LFDATA Output type bit  
00= Demodulated output  
01= Carrier Clock output  
10= RSSI output  
11= RSSI output  
bit 6-1  
bit 0  
LCXTUN<5:0>: LCX Tuning Capacitance bit  
000000= +0 pF (Default)  
:
111111= +63 pF  
R1PAR: Register Parity Bit – set/cleared so the 9-bit register contains odd parity – an odd number of set  
bits  
REGISTER 11-3: CONFIGURATION REGISTER 2  
R/W-0  
RSSIFET  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CLKDIV  
LCYTUN5 LCYTUN4 LCYTUN3 LCYTUN2 LCYTUN1 LCYTUN0  
R2PAR  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 8  
RSSIFET: Pull-down MOSFET on LFDATA pad bit (controllable by user in the RSSI mode only)  
1= Pull-down RSSI MOSFET on  
0= Pull-down RSSI MOSFET off  
bit 7  
CLKDIV: Carrier Clock Divide-by bit  
1= Carrier Clock/4  
0= Carrier Clock/1  
bit 6-1  
LCYTUN<5:0>: LCY Tuning Capacitance bit  
000000= +0 pF (Default)  
:
111111= +63 pF  
bit 0  
R2PAR: Register Parity Bit – set/cleared so the 9-bit register contains odd parity – an odd number of set  
bits  
DS41232D-page 124  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
REGISTER 11-4: CONFIGURATION REGISTER 3  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LCZTUN5 LCZTUN4 LCZTUN3 LCZTUN2 LCZTUN1 LCZTUN0  
R3PAR  
bit 8  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 8-7  
bit 6-1  
Unimplemented: Read as ‘0’  
LCZTUN<5:0>: LCZ Tuning Capacitance bit  
000000= +0 pF (Default)  
:
111111= +63 pF  
bit 0  
R3PAR: Register Parity Bit – set/cleared so the 9-bit register contains odd parity – an odd number of set  
bits  
REGISTER 11-5: CONFIGURATION REGISTER 4  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LCXSEN3 LCXSEN2 LCXSEN1 LCXSEN0 LCYSEN3 LCYSEN2 LCYSEN1 LCYSEN0  
bit 8  
R4PAR  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 8-5  
LCXSEN<3:0>(1): Typical LCX Sensitivity Reduction bit  
0000= -0 dB (Default)  
0001= -2 dB  
0010= -4 dB  
0011= -6 dB  
0100= -8 dB  
0101= -10 dB  
0110= -12 dB  
0111= -14 dB  
1000= -16 dB  
1001= -18 dB  
1010= -20 dB  
1011= -22 dB  
1100= -24 dB  
1101= -26 dB  
1110= -28 dB  
1111= -30 dB  
bit 4-1  
bit 0  
LCYSEN<3:0>(1): Typical LCY Sensitivity Reduction bit  
0000= -0 dB (Default)  
:
1111= -30 dB  
R4PAR: Register Parity Bit – set/cleared so the 9-bit register contains odd parity – an odd number of set  
bits  
Note 1: Assured monotonic increment (or decrement) by design.  
© 2007 Microchip Technology Inc.  
DS41232D-page 125  
PIC12F635/PIC16F636/639  
REGISTER 11-6: CONFIGURATION REGISTER 5  
R/W-0  
AUTOCHSEL  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AGCSIG  
MODMIN1  
MODMIN0  
LCZSEN3  
LCZSEN2  
LCZSEN1  
LCZSEN0  
R5PAR  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 8  
AUTOCHSEL: Auto Channel Select bit  
1= Enabled – AFE selects channel(s) that has demodulator output “high” at the end of TSTAB; or otherwise, blocks the  
channel(s).  
0= Disabled – AFE follows channel enable/disable bits defined in Register 0  
bit 7  
AGCSIG: Demodulator Output Enable bit, after the AGC loop is active  
1= Enabled – No output until AGC is regulating at around 20 mVPP at input pins. The AGC Active Status bit is set  
when the AGC begins regulating.  
0= Disabled – the AFE passes signal of any level it is capable of detecting  
bit 6-5  
MODMIN<1:0>: Minimum Modulation Depth bit  
00= 50%  
01= 75%  
10= 25%  
11= 12%  
bit 4-1  
bit 0  
LCZSEN<3:0>(1): LCZ Sensitivity Reduction bit  
0000= -0dB (Default)  
:
1111= -30dB  
R5PAR: Register Parity Bit – set/cleared so the 9-bit register contains odd parity – an odd number of set bits  
Note 1: Assured monotonic increment (or decrement) by design.  
REGISTER 11-7: COLUMN PARITY REGISTER 6  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
COLPAR7  
COLPAR6  
COLPAR5  
COLPAR4  
COLPAR3  
COLPAR2  
COLPAR1  
COLPAR0  
R6PAR  
bit 8  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
COLPAR7: Set/Cleared so that this 8th parity bit + the sum of the Configuration register row parity bits contain an odd  
number of set bits.  
COLPAR6: Set/Cleared such that this 7th parity bit + the sum of the 7th bits in Configuration Registers 0 through 5 contain  
an odd number of set bits.  
COLPAR5: Set/Cleared such that this 6th parity bit + the sum of the 6th bits in Configuration Registers 0 through 5 contain  
an odd number of set bits.  
COLPAR4: Set/Cleared such that this 5th parity bit + the sum of the 5th bits in Configuration Registers 0 through 5 contain  
an odd number of set bits.  
COLPAR3: Set/Cleared such that this 4th parity bit + the sum of the 4th bits in Configuration Registers 0 through 5 contain  
an odd number of set bits.  
COLPAR2: Set/Cleared such that this 3rd parity bit + the sum of the 3rd bits in Configuration Registers 0 through 5 contain  
an odd number of set bits.  
COLPAR1: Set/Cleared such that this 2nd parity bit + the sum of the 2nd bits in Configuration Registers 0 through 5 contain  
an odd number of set bits.  
COLPAR0: Set/Cleared such that this 1st parity bit + the sum of the 1st bits in Configuration Registers 0 through 5 contain an  
odd number of set bits.  
R6PAR: Register Parity bit – set/cleared so the 9-bit register contains odd parity – an odd number of set bits  
DS41232D-page 126  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
REGISTER 11-8: AFE STATUS REGISTER 7  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
PEI  
CHZACT  
CHYACT  
CHXACT  
AGCACT  
WAKEZ  
WAKEY  
WAKEX  
ALARM  
bit 8  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
(1)  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
CHZACT: Channel Z Active bit (cleared via Soft Reset)  
1= Channel Z is passing data after TAGC  
0= Channel Z is not passing data after TAGC  
(1)  
CHYACT: Channel Y Active bit (cleared via Soft Reset)  
1= Channel Y is passing data after TAGC  
0= Channel Y is not passing data after TAGC  
(1)  
CHXACT: Channel X Active bit (cleared via Soft Reset)  
1= Channel X is passing data after TAGC  
0= Channel X is not passing data after TAGC  
AGCACT: AGC Active Status bit (real time, cleared via Soft Reset)  
1= AGC is active (Input signal is strong). AGC is active when input signal level is approximately > 20 mVPP range.  
0= AGC is inactive (Input signal is weak)  
WAKEZ: Wake-up Channel Z Indicator Status bit (cleared via Soft Reset)  
1= Channel Z caused a AFE wake-up (passed ÷64 clock counter)  
0= Channel Z did not cause a AFE wake-up  
WAKEY: Wake-up Channel Y Indicator Status bit (cleared via Soft Reset)  
1= Channel Y caused a AFE wake-up (passed ÷64 clock counter)  
0= Channel Y did not cause a AFE wake-up  
WAKEX: Wake-up Channel X Indicator Status bit (cleared via Soft Reset)  
1= Channel X caused a AFE wake-up (passed ÷64 clock counter)  
0= Channel X did not cause a AFE wake-up  
ALARM: Indicates whether an Alarm timer time-out has occurred (cleared via read “Status Register command”)  
1= The Alarm timer time-out has occurred. It may cause the ALERT output to go low depending on the state of bit 4 of the  
Configuration register 0  
0= The Alarm timer is not timed out  
bit 0  
PEI: Parity Error Indicator bit – indicates whether a Configuration register parity error has occurred (real time)  
1= A parity error has occurred and caused the ALERT output to go low  
0= A parity error has not occurred  
Note 1:  
Bit is high whenever channel is passing data. Bit is low in Standby mode.  
See Table 11-7 for the bit conditions of the AFE Status  
Register after various SPI commands and the AFE  
Power-on Reset.  
TABLE 11-7: AFE STATUS REGISTER BIT CONDITION (AFTER POWER-ON RESET AND  
VARIOUS SPI COMMANDS)  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PEI  
Condition  
CHZACT CHYACT CHXACT AGCACT WAKEZ  
WAKEY  
WAKEX  
ALARM  
POR  
0
u
0
u
0
u
0
u
0
u
0
u
0
u
0
0
1
u
Read Command  
(STATUS Register only)  
Sleep Command  
u
0
u
0
u
0
u
0
u
0
u
0
u
0
u
u
u
u
(1)  
Soft Reset Executed  
Legend:  
u= unchanged  
Note 1: See Section 11.20 “Soft Reset” and Section 11.32.2.4 “Soft Reset Command” for the condition of Soft Reset  
execution.  
© 2007 Microchip Technology Inc.  
DS41232D-page 127  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232D-page 128  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
12.1 Configuration Bits  
12.0 SPECIAL FEATURES OF THE  
CPU  
The Configuration Word bits can be programmed (read  
as ‘0’), or left unprogrammed (read as ‘1’) to select  
The PIC12F635/PIC16F636/639 has a host of features  
intended to maximize system reliability, minimize cost  
through elimination of external components, provide  
power saving features and offer code protection.  
various device configurations as shown in Register 12-1.  
These bits are mapped in program memory location  
2007h.  
These features are:  
Note:  
Address 2007h is beyond the user program  
memory space. It belongs to the special  
configuration memory space (2000h-  
3FFFh), which can be accessed only during  
programming. See PIC12F6XX/16F6XX  
Memory Programming Specification”  
(DS41204) for more information.  
• Reset  
- Power-on Reset (POR)  
- Wake-up Reset (WUR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
• Watchdog Timer (WDT)  
• Oscillator selection  
• Sleep  
• Code protection  
• ID Locations  
• In-Circuit Serial Programming™  
The PIC12F635/PIC16F636/639 has two timers that  
offer necessary delays on power-up. One is the  
Oscillator Start-up Timer (OST), intended to keep the  
chip in Reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 64 ms (nominal) on power-up only,  
designed to keep the part in Reset while the power  
supply stabilizes. There is also circuitry to reset the  
device if a brown-out occurs, which can use the  
Power-up Timer to provide at least a nominal 64 ms  
Reset. With these three functions on-chip, most  
applications need no external Reset circuitry.  
The Sleep mode is designed to offer a very low-current  
Power-down mode. The user can wake-up from Sleep  
through:  
• External Reset  
• Watchdog Timer Wake-up  
• An Interrupt  
Several oscillator options are also made available to  
allow the part to fit the application. The INTOSC option  
saves system cost while the LP crystal option saves  
power. A set of Configuration bits are used to select  
various options (see Register 12-1).  
© 2007 Microchip Technology Inc.  
DS41232D-page 129  
PIC12F635/PIC16F636/639  
REGISTER 12-1: CONFIG: CONFIGURATION WORD REGISTER  
WURE  
FCMEN  
WDTE  
IESO  
BOREN1  
FOSC1  
BOREN0  
bit 8  
bit 15  
bit 7  
CPD  
CP  
MCLRE  
PWRTE  
FOSC2  
FOSC0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
P = Programmable’  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘1’  
WURE: Wake-up Reset Enable bit  
1= Standard wake-up and continue enabled  
0= Wake-up and Reset enabled  
bit 11  
bit 10  
bit 9-8  
FCMEN: Fail-Safe Clock Monitor Enabled bit  
1= Fail-Safe Clock Monitor is enabled  
0= Fail-Safe Clock Monitor is disabled  
IESO: Internal External Switchover bit  
1= Internal External Switchover mode is enabled  
0= Internal External Switchover mode is disabled  
(1)  
BOREN<1:0>: Brown-out Reset Selection bits  
11= BOR enabled, SBOREN bit disabled  
10= BOR enabled during operation and disabled in Sleep, SBOREN bit disabled  
01= BOR controlled by SBOREN bit of the PCON register  
00= BOR and SBOREN bits disabled  
(2)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
CPD: Data Code Protection bit  
1= Data memory code protection is disabled  
0= Data memory code protection is enabled  
(3)  
CP: Code Protection bit  
1= Program memory code protection is disabled  
0= Program memory code protection is enabled  
(4)  
MCLRE: MCLR pin function select bit  
1= MCLR pin function is MCLR  
0= MCLR pin function is digital input, MCLR internally tied to VDD  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled and can be enabled by SWDTEN bit of the WDTCON register  
FOSC<2:0>: Oscillator Selection bits  
111= EXTRC oscillator: External RC on RA5/OSC1/CLKIN, CLKOUT function on RA4/OSC2/CLKOUT pin  
110= EXTRCIO oscillator: External RC on RA5/OSC1/CLKIN, I/O function on RA4/OSC2/CLKOUT pin  
101= INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN  
100= INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN  
011= EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN  
010= HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN  
001= XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN  
000= LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN  
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.  
2: The entire data EEPROM will be erased when the code protection is turned off.  
3: The entire program memory will be erased when the code protection is turned off.  
4: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  
DS41232D-page 130  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
They are not affected by a WDT wake-up since this is  
viewed as the resumption of normal operation. TO and  
12.2 Reset  
The PIC12F635/PIC16F636/639 differentiates between  
various kinds of Reset:  
PD bits are set or cleared differently in different Reset  
situations, as indicated in Table 12-3. These bits are  
used in software to determine the nature of the Reset.  
See Table 12-4 for a full description of Reset states of  
all registers.  
a) Power-on Reset (POR)  
b) Wake-up Reset (WUR)  
c) WDT Reset during normal operation  
d) WDT Reset during Sleep  
e) MCLR Reset during normal operation  
f) MCLR Reset during Sleep  
g) Brown-out Reset (BOR)  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 12-1.  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Section 15.0 “Electrical  
Specifications” for pulse width specifications.  
Some registers are not affected in any Reset condition;  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
• Power-on Reset  
• MCLR Reset  
• MCLR Reset during Sleep  
• WDT Reset  
• Brown-out Reset  
FIGURE 12-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
Sleep  
WURE  
External Reset  
Sleep  
Wake-up Interrupt  
RA3 Change  
MCLR/VPP pin  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out(1)  
Reset  
<1>  
BOREN  
BOREN<0>  
SBOREN  
S
R
OST/PWRT  
Chip_Reset  
OST  
10-bit Ripple Counter  
Q
OSC1/  
CLKI pin  
PWRT  
11-bit Ripple Counter  
LFINTOSC  
Enable PWRT  
Enable OST  
Note 1: Refer to the Configuration Word register (Register 12-1).  
© 2007 Microchip Technology Inc.  
DS41232D-page 131  
PIC12F635/PIC16F636/639  
12.4.1  
POWER-UP TIMER (PWRT)  
12.3 Power-on Reset  
The Power-up Timer provides a fixed 64 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates from the 31 kHz  
LFINTOSC oscillator. For more information, see  
Section 3.5 “Internal Clock Modes”. The chip is kept  
in Reset as long as PWRT is active. The PWRT delay  
allows the VDD to rise to an acceptable level. A  
Configuration bit, PWRTE, can disable (if set) or enable  
(if cleared or programmed) the Power-up Timer. The  
Power-up Timer should be enabled when Brown-out  
Reset is enabled, although it is not required.  
The on-chip POR circuit holds the chip in Reset until VDD  
has reached a high enough level for proper operation. To  
take advantage of the POR, simply connect the MCLR  
pin through a resistor to VDD. This will eliminate external  
RC components usually needed to create Power-on  
Reset. A maximum rise time for VDD is required. See  
Section 15.0 “Electrical Specifications” for details. If  
the BOR is enabled, the maximum rise time specification  
does not apply. The BOR circuitry will keep the device in  
Reset until VDD reaches VBOD (see Section 12.6  
“Brown-out Reset (BOR)”).  
The Power-up Timer delay will vary from chip-to-chip  
due to:  
Note:  
The POR circuit does not produce an  
internal Reset when VDD declines. To  
re-enable the POR, VDD must reach VSS  
for a minimum of 100 μs.  
• VDD variation  
Temperature variation  
• Process variation  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (i.e.,  
voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
See DC parameters for details (Section 15.0  
“Electrical Specifications”).  
Note:  
Voltage spikes below VSS at the MCLR  
pin, inducing currents greater than 80 mA,  
may cause latch-up. Thus, a series resis-  
tor of 50-100 Ω should be used when  
applying a “low” level to the MCLR pin,  
rather than pulling this pin directly to VSS.  
For additional information, refer to the Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
12.4 Wake-up Reset (WUR)  
The PIC12F635/PIC16F636/639 has  
a
modified  
wake-up from Sleep mechanism. When waking from  
Sleep, the WUR function resets the device and  
releases Reset when VDD reaches an acceptable level.  
12.5 MCLR  
PIC12F635/PIC16F636/639 has a noise filter in the  
MCLR Reset path. The filter will ignore small pulses.  
If the WURE bit is enabled (‘0’) in the Configuration  
Word register, the device will Wake-up Reset from  
Sleep through one of the following events:  
It should be noted that a WDT Reset does not drive  
MCLR pin low. See Figure 12-2 for the recommended  
MCLR circuit.  
1. On any event that causes a wake-up event. The  
peripheral must be enabled to generate an  
interrupt or wake-up, GIE state is ignored.  
An internal MCLR option is enabled by clearing the  
MCLRE bit in the Configuration Word register. When  
cleared, MCLR is internally tied to VDD and an internal  
weak pull-up is enabled for the MCLR pin. In-Circuit  
Serial Programming is not affected by selecting the  
internal MCLR option.  
2. When WURE is enabled, RA3 will always  
generate an interrupt-on-change signal during  
Sleep.  
The WUR, POR and BOR bits in the PCON register  
and the TO and PD bits in the STATUS register can be  
used to determine the cause of device Reset.  
To allow WUR upon RA3 change:  
1. Enable the WUR function, WURE Configuration  
Bit = 0.  
2. Enable RA3 as an input, MCLRE Configuration  
Bit = 0.  
3. Read PORTA to establish the current state of  
RA3.  
4. Execute SLEEPinstruction.  
5. When RA3 changes state, the device will  
wake-up and then reset. The WUR bit in PCON  
will be cleared to ‘0’.  
DS41232D-page 132  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 12-2:  
RECOMMENDED MCLR  
CIRCUIT  
VDD  
R1  
PIC12F635/PIC16F636/639  
1 kΩ (or greater)  
MCLR  
C1  
0.1 μF  
(optional, not critical)  
© 2007 Microchip Technology Inc.  
DS41232D-page 133  
PIC12F635/PIC16F636/639  
On any Reset (Power-on, Brown-out Reset, Watchdog  
12.6 Brown-out Reset (BOR)  
Timer, etc.), the chip will remain in Reset until VDD rises  
above VBOD (see Figure 12-3). The Power-up Timer  
will now be invoked, if enabled and will keep the chip in  
Reset an additional nominal 64 ms.  
The BOREN0 and BOREN1 bits in the Configuration  
Word register select one of four BOR modes. Two  
modes have been added to allow software or hardware  
control of the BOR enable. When BOREN<1:0> = 01,  
the SBOREN bit of the PCON register enables/disables  
the BOR allowing it to be controlled in software. By  
selecting BOREN<1:0>, the BOR is automatically  
disabled in Sleep to conserve power and enabled on  
wake-up. In this mode, the SBOREN bit is disabled. See  
Register 12-1 for the Configuration Word definition.  
Note:  
The Power-up Timer is enabled by the  
PWRTE bit in the Configuration Word  
register.  
If VDD drops below VBOD while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOD, the Power-up Timer will execute a  
64 ms Reset.  
If VDD falls below VBOD for greater than parameter  
(TBOD) (see Section 15.0 “Electrical Specifications”),  
the Brown-out situation will reset the device. This will  
occur regardless of VDD slew rate. A Reset is not  
ensured to occur if VDD falls below VBOD for less than  
parameter (TBOD).  
FIGURE 12-3:  
BROWN-OUT RESET SITUATIONS  
VDD  
VBOD  
Internal  
Reset  
(1)  
64 ms  
VDD  
VBOD  
Internal  
Reset  
< 64 ms  
(1)  
64 ms  
VDD  
VBOD  
Internal  
Reset  
(1)  
64 ms  
Note 1: Nominal 64 ms delay only if PWRTE bit is programmed to ‘0’.  
DS41232D-page 134  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
12.7 Time-out Sequence  
12.8 Power Control (PCON) Register  
On power-up, the time-out sequence is as follows: first,  
PWRT time-out is invoked after POR has expired, then  
OST is activated after the PWRT time-out has expired.  
The total time-out will vary based on oscillator  
Configuration and PWRTE bit status. For example, in  
EC mode with PWRTE bit erased (PWRT disabled),  
there will be no time-out at all. Figure 12-4, Figure 12-5  
and Figure 12-6 depict time-out sequences. The device  
can execute code from the INTOSC, while OST is active,  
by enabling Two-Speed Start-up or Fail-Safe Clock  
Monitor (See Section 3.7.2 “Two-Speed Start-up  
Sequence” and Section 3.8 “Fail-Safe Clock  
Monitor”).  
The Power Control register, PCON (address 8Eh), has  
two Status bits to indicate what type of Reset that last  
occurred.  
Bit 0 is BOR (Brown-out). BOR is unknown on  
Power-on Reset. It must then be set by the user and  
checked on subsequent Resets to see if BOR = 0,  
indicating that a Brown-out has occurred. The BOR  
Status bit is a “don’t care” and is not necessarily  
predictable if the brown-out circuit is disabled  
(BOREN<1:0> = 00 in the Configuration Word  
register).  
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
1’ to this bit following a Power-on Reset. On a  
subsequent Reset, if POR is ‘0’, it will indicate that a  
Power-on Reset has occurred (i.e., VDD may have  
gone too low).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(see Figure 12-5). This is useful for testing purposes or  
to  
synchronize  
more  
than  
one  
For more information, see Section 4.2.3 “Ultra  
Low-Power Wake-up” and Section 12.6 “Brown-out  
Reset (BOR)”.  
PIC12F635/PIC16F636/639 device operating in parallel.  
Table 12-5 shows the Reset conditions for some  
special registers, while Table 12-4 shows the Reset  
conditions for all the registers.  
TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Oscillator  
Brown-out Reset  
Wake-up  
Configuration  
from Sleep  
PWRTE = 0  
PWRTE = 1  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
TPWRT + 1024 • TOSC  
TPWRT  
1024 • TOSC  
TPWRT + 1024 • TOSC  
TPWRT  
1024 • TOSC  
1024 • TOSC  
RC, EC, INTOSC  
TABLE 12-2: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET  
Value on  
all other  
Resets(1)  
Value on  
POR, BOR  
Name  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG(2) BOREN1 BOREN0  
CPD  
CP  
MCLRE  
PWRTE  
WDTE FOSC2 FOSC1 FOSC0  
PCON  
ULPWUE SBOREN  
RP0 TO  
WUR  
PD  
Z
POR  
DC  
BOR  
C
--01 --qq  
0001 1xxx  
--0u --uu  
000q quuu  
STATUS  
IRP  
RP1  
Legend:  
Note 1:  
2:  
u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition. Shaded cells are not used by BOR.  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
See Configuration Word register (Register 12-1) for operation of all register bits.  
TABLE 12-3: PCON BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
WUR  
TO  
PD  
Condition  
0
u
u
u
u
u
u
u
x
0
u
u
u
u
u
0
x
u
u
u
u
u
0
u
1
1
0
0
u
1
1
1
1
1
u
0
u
0
0
1
Power-on Reset  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
Wake-up Reset during Sleep  
Brown-out Reset during Sleep  
Legend: u= unchanged, x= unknown  
© 2007 Microchip Technology Inc.  
DS41232D-page 135  
PIC12F635/PIC16F636/639  
FIGURE 12-4:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 12-5:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 12-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
DS41232D-page 136  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 12-4: INITIALIZATION CONDITION FOR REGISTERS  
MCLR Reset  
Wake-up from Sleep  
through Interrupt  
Wake-up from Sleep  
through WDT Time-out  
Power-on  
Reset  
Wake-up Reset  
WDT Reset  
Brown-out Reset(1)  
Wake-up Reset  
Register  
Address  
W
00h/80h  
01h  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--xx xx00  
--xx xx00  
---0 0000  
0000 000x  
0000 00-0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
---0 1000  
0000 0000  
---- --10  
1111 1111  
--11 1111  
--11 1111  
0000 00-0  
--01 q-qq  
-110 q000  
---0 0000  
--11 -111  
--00 0000  
--11 -111  
0-0- 0000  
0000 0000  
0000 0000  
---- x000  
---- ----  
xxxx xxxx  
-000 ----  
--00 -000  
00-- --00  
uuuu uuuu  
xxxx xxxx  
uuuu uuuu  
0000 0000  
000q quuu(4)  
uuuu uuuu  
--00 0000  
--00 0000  
---0 0000  
0000 000x  
0000 00-0  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---0 1000  
0000 0000  
---- --10  
1111 1111  
--11 1111  
--11 1111  
0000 00-0  
--0u u-uu(1,5)  
-110 q000  
---u uuuu  
--11 -111  
--00 0000  
--11 -111  
0-0- 0000  
0000 0000  
0000 0000  
---- q000  
---- ----  
uuuu uuuu  
-000 ----  
--00 -000  
00-- --00  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
PC + 1(3)  
INDF  
TMR0  
PCL  
02h/82h  
03h/83h  
04h/84h  
05h  
STATUS  
FSR  
uuuq quuu(4)  
uuuu uuuu  
--uu uu00  
--uu uu00  
---u uuuu  
uuuu uuuu(2)  
uuuu uu-u(2)  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
---u uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
--uu 1uuu  
--uu 1uuu  
uuuu uu-u  
--0u u-uu  
-uuu uuuu  
---u uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
u-u- uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
---- ----  
uuuu uuuu  
-uuu ----  
--uu -uuu  
uu-- --uu  
PORTA  
PORTC(6)  
PCLATH  
INTCON  
PIR1  
07h  
0Ah/8Ah  
0Bh/8Bh  
0Ch  
TMR1L  
TMR1H  
T1CON  
WDTCON  
CMCON0  
CMCON1  
OPTION_REG  
TRISA  
0Eh  
0Fh  
10h  
18h  
19h  
1Ah  
81h  
85h  
TRISC(6)  
87h  
PIE1  
8Ch  
PCON  
8Eh  
OSCCON  
OSCTUNE  
WPUDA  
IOCA  
8Fh  
90h  
95h  
96h  
WDA  
97h  
VRCON  
EEDAT  
EEADR  
EECON1  
EECON2  
ADRESL  
ADCON1  
LVDCON  
CRCON  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
94h  
110h  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
4: See Table 12-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: PIC16F636/639 only.  
© 2007 Microchip Technology Inc.  
DS41232D-page 137  
PIC12F635/PIC16F636/639  
TABLE 12-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
Status  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
0001 1xxx  
--01 --0x  
--0u --uu  
--0u --uu  
--0u --uu  
--uu --uu  
--01 --10  
--uu --uu  
--01 --0x  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
000h  
PC + 1(1)  
Brown-out Reset  
Interrupt Wake-up from Sleep  
Wake-up Reset  
000h  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and the Global Interrupt Enable bit, GIE, is set, the PC is loaded  
with the interrupt vector (0004h) after execution of PC + 1.  
DS41232D-page 138  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
For external interrupt events, such as the INT pin or  
PORTA change interrupt, the interrupt latency will be  
12.9 Interrupts  
The PIC12F635/PIC16F636/639 has multiple interrupt  
sources:  
three or four instruction cycles. The exact latency  
depends upon when the interrupt event occurs (see  
Figure 12-8). The latency is the same for one or  
two-cycle instructions. Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be  
determined by polling the interrupt flag bits. The  
interrupt flag bit(s) must be cleared in software before  
re-enabling interrupts to avoid multiple interrupt  
requests.  
• External Interrupt RA2/INT  
• Timer0 Overflow Interrupt  
• PORTA Change Interrupts  
• 2 Comparator Interrupts  
• Timer1 Overflow Interrupt  
• EEPROM Data Write Interrupt  
• Fail-Safe Clock Monitor Interrupt  
Note 1: Individual interrupt flag bits are set,  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
The Interrupt Control register (INTCON) and Peripheral  
Interrupt Request Register 1 (PIR1) record individual  
interrupt requests in flag bits. The INTCON register  
also has individual and global interrupt enable bits.  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The interrupts, which were  
ignored, are still pending to be serviced  
when the GIE bit is set again.  
A Global Interrupt Enable bit GIE of the INTCON regis-  
ter enables (if set) all unmasked interrupts, or disables  
(if cleared) all interrupts. Individual interrupts can be  
disabled through their corresponding enable bits in the  
INTCON register and PIE1 register. GIE is cleared on  
Reset.  
For additional information on Timer1, comparators or  
data EEPROM modules, refer to the respective  
peripheral section.  
The Return from Interrupt instruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables unmasked interrupts.  
12.9.1  
RA2/INT INTERRUPT  
The following interrupt flags are contained in the  
INTCON register:  
External interrupt on RA2/INT pin is edge-triggered;  
either rising if the INTEDG bit of the OPTION register is  
set, or falling if the INTEDG bit is clear. When a valid  
edge appears on the RA2/INT pin, the INTF bit of the  
INTCON register is set. This interrupt can be disabled  
by clearing the INTE control bit of the INTCON register.  
The INTF bit must be cleared in software in the Interrupt  
Service Routine before re-enabling this interrupt. The  
RA2/INT interrupt can wake-up the processor from  
Sleep if the INTE bit was set prior to going into Sleep.  
The status of the GIE bit decides whether or not the  
processor branches to the interrupt vector following  
wake-up (0004h). See Section 12.12 “Power-Down  
Mode (Sleep)” for details on Sleep and Figure 12-10 for  
timing of wake-up from Sleep through RA2/INT interrupt.  
• INT Pin Interrupt  
• PORTA Change Interrupt  
• TMR0 Overflow Interrupt  
The peripheral interrupt flags are contained in the  
special register, PIR1. The corresponding interrupt  
enable bit is contained in special register, PIE1.  
The following interrupt flags are contained in the PIR1  
register:  
• EEPROM Data Write Interrupt  
• 2 Comparator Interrupts  
• Timer1 Overflow Interrupt  
• Fail-Safe Clock Monitor Interrupt  
Note:  
The CMCON0 (19h) register must be  
initialized to configure an analog channel  
as a digital input. Pins configured as  
analog inputs will read ‘0’.  
When an interrupt is serviced:  
• The GIE is cleared to disable any further interrupt.  
• The return address is pushed onto the stack.  
• The PC is loaded with 0004h.  
© 2007 Microchip Technology Inc.  
DS41232D-page 139  
PIC12F635/PIC16F636/639  
12.9.2  
TIMER INTERRUPT  
12.9.3  
PORTA INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
the T0IF bit of the INTCON register. The interrupt can be  
enabled/disabled by setting/clearing T0IE bit of the  
INTCON register. See Section 5.0 “Timer0 Module”  
for operation of the Timer0 module.  
An input change on PORTA change sets the RAIF bit of  
the INTCON register. The interrupt can be  
enabled/disabled by setting/clearing the RAIE bit of the  
INTCON register. Plus, individual pins can be configured  
through the IOCA register.  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RAIF  
interrupt flag may not get set.  
FIGURE 12-7:  
INTERRUPT LOGIC  
IOC-RA0  
IOCA0  
IOC-RA1  
IOCA1  
IOC-RA2  
IOCA2  
IOC-RA3  
IOCA3  
IOC-RA4  
IOCA4  
IOC-RA5  
IOCA5  
Wake-up (If in Sleep mode)  
Interrupt to CPU  
T0IF  
T0IE  
LVDIF  
LVDIE  
INTF  
INTE  
RAIF  
TMR1IF  
TMR1IE  
RAIE  
C1IF  
C1IE  
PEIE  
GIE  
(1)  
C2IF  
(1)  
C2IE  
EEIF  
EEIE  
OSFIF  
OSFIE  
CRIF  
CRIE  
Note 1: PIC16F636/639 only.  
DS41232D-page 140  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 12-8:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(5)  
(2)  
Interrupt Latency  
INTF Flag  
(INTCON<1>)  
GIE bit  
(INTCON<7>)  
Instruction Flow  
PC  
0004h  
PC + 1  
PC + 1  
0005h  
Inst (0005h)  
Inst (0004h)  
PC  
Instruction  
Fetched  
Inst (PC)  
Inst (PC + 1)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC – 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency  
is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in INTOSC and RC Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 15.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS  
Value on  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
INTCON  
IOCA  
PIR1  
GIE  
PEIE  
T0IE  
INTE  
RAIE  
T0IF  
INTF  
IOCA1  
RAIF  
0000 000x 0000 000x  
IOCA5 IOCA4 IOCA3 IOCA2  
CRIF C2IF(1) C1IF OSFIF  
CRIE C2IE(1) C1IE OSFIE  
IOCA0 --00 0000 --00 0000  
TMR1IF 0000 00-0 0000 00-0  
TMR1IE 0000 00-0 0000 00-0  
EEIF  
EEIE  
LVDIF  
LVDIE  
PIE1  
Legend: x= unknown, u= unchanged, – = unimplemented, read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by the Interrupt module.  
Note 1: PIC16F636/639 only.  
© 2007 Microchip Technology Inc.  
DS41232D-page 141  
PIC12F635/PIC16F636/639  
12.10 Context Saving During Interrupts  
Note:  
The PIC12F635/PIC16F636/639 normally  
does not require saving the PCLATH.  
However, if computed GOTO’s are used in  
the ISR and the main code, the PCLATH  
must be saved and restored in the ISR.  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key  
registers during an interrupt (e.g., W and STATUS  
registers). This must be implemented in software.  
Since the lower 16 bytes of all banks are common in the  
PIC12F635/PIC16F636/639 (see Figure 2-2), temporary  
holding registers, W_TEMP and STATUS_TEMP, should  
be placed in here. These 16 locations do not require  
banking and therefore, make it easier to context save and  
restore. The same code shown in Example 12-1 can be  
used to:  
• Store the W register.  
• Store the STATUS register.  
• Execute the ISR code.  
• Restore the Status (and Bank Select Bit register).  
• Restore the W register.  
EXAMPLE 12-1:  
SAVING STATUS AND W REGISTERS IN RAM  
MOVWF  
SWAPF  
W_TEMP  
STATUS,W  
;Copy W to TEMP register  
;Swap status to be saved into W  
;Swaps are used because they do not affect the status bits  
;Save status to bank zero STATUS_TEMP register  
MOVWF  
:
STATUS_TEMP  
:(ISR)  
:
;Insert user code here  
SWAPF  
STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
DS41232D-page 142  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
A new prescaler has been added to the path between  
the INTRC and the multiplexers used to select the path  
for the WDT. This prescaler is 16 bits and can be  
programmed to divide the INTRC by 32 to 65536,  
giving the WDT a nominal range of 1 ms to 268s.  
12.11 Watchdog Timer (WDT)  
The PIC12F635/PIC16F636/639 WDT is code and  
functionally compatible with other PIC16F WDT  
modules and adds a 16-bit prescaler to the WDT. This  
allows the user to have a scaler value for the WDT and  
TMR0 at the same time. In addition, the WDT time-out  
value can be extended to 268 seconds. WDT is cleared  
under certain conditions described in Table 12-7.  
12.11.2 WDT CONTROL  
The WDTE bit is located in the Configuration Word  
register. When set, the WDT runs continuously.  
12.11.1 WDT OSCILLATOR  
When the WDTE bit in the Configuration Word register  
is set, the SWDTEN bit of the WDTCON register has no  
effect. If WDTE is clear, then the SWDTEN bit can be  
used to enable and disable the WDT. Setting the bit will  
enable it and clearing the bit will disable it.  
The WDT derives its time base from the 31 kHz  
LFINTOSC. The LTS bit does not reflect that the  
LFINTOSC is enabled.  
The value of WDTCON is ‘---0 1000’ on all Resets.  
This gives a nominal time base of 16 ms, which is  
compatible with the time base generated with previous  
PIC12F635/PIC16F636/639 microcontroller versions.  
The PSA and PS<2:0> bits of the OPTION register  
have the same function as in previous versions of the  
PIC16F family of microcontrollers. See Section 5.0  
“Timer0 Module” for more information.  
Note:  
When the Oscillator Start-up Timer (OST)  
is invoked, the WDT is held in Reset,  
because the WDT Ripple Counter is used  
by the OST to perform the oscillator delay  
count. When the OST count has expired,  
the WDT will begin counting (if enabled).  
FIGURE 12-9:  
WATCHDOG TIMER BLOCK DIAGRAM  
0
1
From TMR0 Clock Source  
Prescaler(1)  
16-bit WDT Prescaler  
8
PSA  
PS<2:0>  
To TMR0  
PSA  
31 kHz  
LFINTOSC Clock  
WDTPS<3:0>  
1
0
WDTE from Configuration Word Register  
SWDTEN from WDTCON  
WDT Time-out  
Note 1: This is the shared Timer0/WDT prescaler. See Section 5.1.3 “Software Programmable Prescaler” for more information.  
TABLE 12-7: WDT STATUS  
Conditions  
WDT  
WDTE = 0  
CLRWDTCommand  
Oscillator Fail Detected  
Cleared  
Exit Sleep + System Clock = T1OSC, EXTRC, HFINTOSC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
© 2007 Microchip Technology Inc.  
DS41232D-page 143  
PIC12F635/PIC16F636/639  
REGISTER 12-2: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
SWDTEN(1)  
bit 0  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-1  
Unimplemented: Read as ‘0’  
WDTPS<3:0>: Watchdog Timer Period Select bits  
Bit Value = Prescale Rate  
0000 = 1:32  
0001 = 1:64  
0010 = 1:128  
0011 = 1:256  
0100 = 1:512 (Reset value)  
0101 = 1:1024  
0110 = 1:2048  
0111 = 1:4096  
1000 = 1:8192  
1001 = 1:16384  
1010 = 1:32768  
1011 = 1:65536  
1100 = Reserved  
1101 = Reserved  
1110 = Reserved  
1111 = Reserved  
bit 0  
SWDTEN: Software Enable or Disable the Watchdog Timer bit(1)  
1= WDT is turned on  
0= WDT is turned off (Reset value)  
Note 1: If WDTE Configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTE  
Configuration bit = 0, then it is possible to turn WDT on/off with this control bit.  
TABLE 12-8: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WDTCON  
INTEDG  
CP  
WDTPS3 WDTPS2 WSTPS1 WDTPS0 SWDTEN  
---0 1000  
1111 1111  
---0 1000  
1111 1111  
OPTION_REG  
CONFIG  
RAPU  
CPD  
T0CS  
MCLRE  
T0SE  
PSA  
PS2  
PS1  
PS0  
PWRTE  
WDTE  
FOSC2  
FOSC1  
FOSC0  
Legend:  
Note 1:  
Shaded cells are not used by the Watchdog Timer.  
See Register 12-1 for operation of all Configuration Word register bits.  
DS41232D-page 144  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
Other peripherals cannot generate interrupts, since  
during Sleep, no on-chip clocks are present.  
12.12 Power-Down Mode (Sleep)  
The Power-down mode is entered by executing a  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction, then branches to the interrupt  
address (0004h). In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
SLEEPinstruction.  
If the Watchdog Timer is enabled:  
• WDT will be cleared but keeps running.  
• PD bit in the STATUS register is cleared.  
• TO bit is set.  
• Oscillator driver is turned off.  
• I/O ports maintain the status they had before  
SLEEPwas executed (driving high, low or  
high-impedance).  
For lowest current consumption in this mode, all I/O pins  
should be either at VDD or VSS, with no external circuitry  
drawing current from the I/O pin and the comparators  
and CVREF should be disabled. I/O pins that are  
high-impedance inputs should be pulled high or low  
externally to avoid switching currents caused by floating  
inputs. The T0CKI input should also be at VDD or VSS for  
lowest current consumption. The contribution from  
on-chip pull-ups on PORTA should be considered.  
Note:  
If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the corresponding  
interrupt flag bits set, the device will  
immediately wake-up from Sleep. The  
SLEEPinstruction is completely executed.  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
The MCLR pin must be at a logic high level.  
Note:  
If WUR is enabled (WURE = 0 in  
Configuration Word), then the Wake-up  
Reset module will force a device Reset.  
Note 1: It should be noted that a Reset generated  
by a WDT time-out does not drive MCLR  
pin low.  
2: The Analog Front-End (AFE) section in  
the PIC16F639 device is independent of  
the microcontroller’s power-down mode  
(Sleep). See Section 11.32.2.3 “Sleep  
Command” for AFE’s Sleep mode.  
12.12.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP. Therefore, the WDT and WDT  
prescaler and postscaler (if enabled) will not be  
cleared, the TO bit will not be set and the PD bit  
will not be cleared.  
12.12.1 WAKE-UP FROM SLEEP  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin.  
2. Watchdog Timer wake-up (if WDT was enabled).  
• If the interrupt occurs during or after the  
execution of a SLEEPinstruction, the device will  
immediately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT prescaler  
and postscaler (if enabled) will be cleared, the TO  
bit will be set and the PD bit will be cleared.  
3. Interrupt from RA2/INT pin, PORTA change or a  
peripheral interrupt.  
The first event will cause a device Reset. The two latter  
events are considered a continuation of program  
execution. The TO and PD bits in the STATUS register  
can be used to determine the cause of device Reset. The  
PD bit, which is set on power-up, is cleared when Sleep is  
invoked. TO bit is cleared if WDT wake-up occurred.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
The following peripheral interrupts can wake the device  
from Sleep:  
1. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
To ensure that the WDT is cleared, a CLRWDTinstruction  
should be executed before a SLEEPinstruction.  
2. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
3. EEPROM write operation completion.  
4. Comparator output changes state.  
5. Interrupt-on-change.  
6. External Interrupt from INT pin.  
© 2007 Microchip Technology Inc.  
DS41232D-page 145  
PIC12F635/PIC16F636/639  
FIGURE 12-10:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTF Flag  
(INTCON<1>)  
Interrupt Latency(3)  
GIE bit  
(INTCON<7>)  
Processor in  
Sleep  
INSTRUCTION FLOW  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Inst(PC – 1)  
Fetched  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Sleep  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC and RC Oscillator modes.  
3: GIE = 1assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.  
4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.  
12.13 Code Protection  
12.14 ID Locations  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out using ICSP for verification purposes.  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution but are  
readable and writable during Program/Verify mode.  
Only the Least Significant 7 bits of the ID locations are  
used.  
Note:  
The entire data EEPROM and Flash pro-  
gram memory will be erased when the  
code protection is turned off. See the  
PIC12F6XX/16F6XX Memory Program-  
ming Specification” (DS41204) for more  
information.  
DS41232D-page 146  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
12.15 In-Circuit Serial Programming  
12.16 In-Circuit Debugger  
The PIC12F635/PIC16F636/639 microcontrollers can  
be serially programmed while in the end application  
circuit. This is simply done with two lines for clock and  
data and three other lines for:  
Since in-circuit debugging requires the loss of clock,  
data and MCLR pins, MPLAB® ICD 2 development with  
a 14-pin device is not practical. A special 20-pin  
PIC16F636 ICD device is used with MPLAB ICD 2 to  
provide separate clock, data and MCLR pins and frees  
all normally available pins to the user.  
• Power  
• Ground  
Use of the ICD device requires the purchase of a  
special header. On the top of the header is an  
MPLAB ICD 2 connector. On the bottom of the  
header is a 14-pin socket that plugs into the user’s  
target via the 14-pin stand-off connector.  
• Programming Voltage  
This allows customers to manufacture boards with  
unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
When the ICD pin on the PIC16F636 ICD device is held  
low, the In-Circuit Debugger functionality is enabled.  
This function allows simple debugging functions when  
used with MPLAB ICD 2. When the microcontroller has  
this feature enabled, some of the resources are not  
available for general use. Table 12-9 shows which  
features are consumed by the background debugger:  
The device is placed into a Program/Verify mode by hold-  
ing the RA0 and RA1 pins low, while raising the MCLR  
(VPP) pin from VIL to VIHH. See the PIC12F6XX/16F6XX  
Memory Programming Specification” (DS41204) for  
more information. RA0 becomes the programming data  
and RA1 becomes the programming clock. Both RA0  
and RA1 are Schmitt Trigger inputs in this mode.  
TABLE 12-9: DEBUGGER RESOURCES  
After Reset, to place the device into Program/Verify  
mode, the Program Counter (PC) is at location 00h. A  
6-bit command is then supplied to the device.  
Depending on the command, 14 bits of program data  
are then supplied to or from the device, depending on  
whether the command was a load or a read. For  
complete details of serial programming, please refer to  
the PIC12F6XX/16F6XX Memory Programming  
Specification” (DS41204).  
Resource  
I/O pins  
Stack  
Description  
ICDCLK, ICDDATA  
1 level  
Program Memory Address 0h must be NOP  
700h-7FFh  
For more information, see the “MPLAB® ICD 2 In-Circuit  
Debugger User’s Guide” (DS51331), available on  
Microchip’s web site (www.microchip.com).  
A typical In-Circuit Serial Programming connection is  
shown in Figure 12-11.  
FIGURE 12-12:  
20-Pin PDIP  
20-PIN ICD PINOUT  
FIGURE 12-11:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
In-Circuit Debug Device  
To Normal  
1
20  
NC  
ICDMCLR/VPP  
VDD  
ICDCLK  
ICDDATA  
VSS  
RA0  
RA1  
RA2  
RC0  
RC1  
RC2  
Connections  
2
3
4
5
6
7
8
9
19  
18  
17  
16  
15  
14  
13  
12  
External  
Connector  
Signals  
*
RA5  
RA4  
RA3  
RC5  
RC4  
RC3  
PIC16F636  
+5V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP/RA3  
RA1  
RA0  
CLK  
10  
11  
ICD  
ENPORT  
Data I/O  
*
*
*
To Normal  
Connections  
*Isolation devices (as required).  
© 2007 Microchip Technology Inc.  
DS41232D-page 147  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232D-page 148  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 13-1: OPCODE FIELD  
13.0 INSTRUCTION SET SUMMARY  
DESCRIPTIONS  
The PIC12F635/PIC16F636/639 instruction set is  
highly orthogonal and is comprised of three basic  
categories:  
Field  
Description  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Byte-oriented operations  
Bit-oriented operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Literal and control operations  
k
Each PIC16 instruction is a 14-bit word divided into an  
opcode, which specifies the instruction type and one or  
more operands, which further specify the operation of  
the instruction. The formats for each of the categories  
is presented in Figure 13-1, while the various opcode  
fields are summarized in Table 13-1.  
x
Don’t care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
Table 13-2 lists the instructions recognized by the  
MPASMTM assembler.  
PC  
TO  
C
Program Counter  
Time-out bit  
Carry bit  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
DC  
Z
Digit carry bit  
Zero bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
PD  
Power-down bit  
FIGURE 13-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ‘b’ represents a bit field  
designator, which selects the bit affected by the  
operation, while ‘f’ represents the address of the file in  
which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
OPCODE  
d
f (FILE #)  
For literal and control operations, ‘k’ represents an  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
8-bit or 11-bit constant, or literal value.  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a  
nominal instruction execution time of 1 μs. All  
instructions are executed within a single instruction  
cycle, unless a conditional test is true, or the program  
counter is changed as a result of an instruction. When  
this occurs, the execution takes two instruction cycles,  
with the second cycle executed as a NOP.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
Literal and control operations  
General  
13  
8
7
0
0
OPCODE  
k (literal)  
13.1 Read-Modify-Write Operations  
k = 8-bit immediate value  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the  
instruction, or the destination designator ‘d’. A read  
operation is performed on a register even if the  
instruction writes to that register.  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
For example, a CLRF PORTA instruction will read  
PORTA, clear all the data bits, then write the result back  
to PORTA. This example would have the unintended  
consequence of clearing the condition that set the RAIF  
flag.  
© 2007 Microchip Technology Inc.  
DS41232D-page 149  
PIC12F635/PIC16F636/639  
TABLE 13-2: PIC12F635/PIC16F636/639 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
1, 2  
1, 2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1, 2  
1, 2  
1, 2, 3  
1, 2  
1, 2, 3  
1, 2  
1, 2  
Z
Z
Z
Move W to f  
No Operation  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
00 0010 dfff ffff C, DC, Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1, 2  
1, 2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Call Subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C, DC, Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO, PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO, PD  
11 110x kkkk kkkk C, DC, Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
DS41232D-page 150  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
13.2 Instruction Descriptions  
BCF  
Bit Clear f  
ADDLW  
Add literal and W  
Syntax:  
[ label ] BCF f,b  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) + k (W)  
C, DC, Z  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal ‘k’  
and the result is placed in the  
W register.  
Bit ‘b’ in register ‘f’ is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
1(f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit ‘b’ in register ‘f’ is set.  
Description:  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If  
‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
BTFSC  
Bit Test f, Skip if Clear  
ANDLW  
AND literal with W  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 0  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
If bit ‘b’, in register ‘f’, is ‘0’, the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a two-cycle instruction.  
ANDWF  
AND W with f  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
AND the W register with register  
‘f’. If ‘d’ is ‘0’, the result is stored in  
the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
© 2007 Microchip Technology Inc.  
DS41232D-page 151  
PIC12F635/PIC16F636/639  
CLRWDT  
Clear Watchdog Timer  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[ label ] CLRWDT  
Syntax:  
[ label ] BTFSS f,b  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
0 b < 7  
00h WDT  
0WDT prescaler,  
1TO  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
1PD  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
Status Affected: TO, PD  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction.  
Status bits TO and PD are set.  
CALL  
Call Subroutine  
COMF  
Complement f  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in  
register ‘f’.  
Description:  
Call Subroutine. First, return  
address (PC + 1) is pushed onto  
the stack. The eleven-bit  
immediate address is loaded into  
PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two-cycle instruction.  
CLRF  
Clear f  
DECF  
Decrement f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are  
cleared and the Z bit is set.  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
DS41232D-page 152  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, then a NOPis  
executed instead, making it a  
two-cycle instruction.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, a NOPis executed  
instead, making it a two-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the  
W register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a  
two-cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
© 2007 Microchip Technology Inc.  
DS41232D-page 153  
PIC12F635/PIC16F636/639  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
MOVF  
Move f  
Syntax:  
f
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
0 f 127  
d [0,1]  
Operation:  
(f) (dest)  
None  
Status Affected:  
Description:  
Z
Move data from W register to  
register ‘f’.  
The contents of register f is  
moved to a destination dependent  
upon the status of d. If d = 0,  
destination is W register. If d = 1,  
the destination is file register f  
itself. d = 1is useful to test a file  
register since status flag Z is  
affected.  
Words:  
1
1
Cycles:  
Example:  
MOVW  
F
OPTION  
Before Instruction  
OPTION = 0xFF  
Words:  
1
1
W
=
0x4F  
After Instruction  
Cycles:  
Example:  
OPTION = 0x4F  
W
MOVF  
FSR, 0  
=
0x4F  
After Instruction  
W
=
value in FSR  
register  
Z
=
1
MOVLW  
Syntax:  
Move literal to W  
NOP  
No Operation  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] NOP  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
k (W)  
No operation  
Status Affected: None  
None  
Description:  
The eight-bit literal ‘k’ is loaded into  
W register. The “don’t cares” will  
assemble as ‘0’s.  
No operation.  
1
Cycles:  
1
Words:  
1
1
NOP  
Example:  
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
DS41232D-page 154  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RETLW  
Return with literal in W  
[ label ] RETLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC,  
1GIE  
k (W);  
TOS PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
Return from Interrupt. Stack is  
POPed and Top-of-Stack (TOS) is  
loaded in the PC. Interrupts are  
enabled by setting Global  
Interrupt Enable bit, GIE  
The W register is loaded with the  
eight-bit literal ‘k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
(INTCON<7>). This is a two-cycle  
instruction.  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
CALL TABLE;W contains  
table  
Cycles:  
Example:  
2
;offset value  
RETFIE  
;W now has table value  
TABLE  
After Interrupt  
PC = TOS  
GIE =  
1
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
RETLW k2  
;
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
RETURN  
Return from Subroutine  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
TOS PC  
Status Affected: None  
Description: Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
© 2007 Microchip Technology Inc.  
DS41232D-page 155  
PIC12F635/PIC16F636/639  
RLF  
Rotate Left f through Carry  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0PD  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
C
Register f  
Words:  
1
1
Cycles:  
Example:  
RLF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
SUBLW  
Subtract W from literal  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Syntax:  
[ label ] RRF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
k - (W) → (W)  
Operation:  
See description below  
C
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Description: The W register is subtracted (2’s  
complement method) from the  
eight-bit literal ‘k’. The result is  
placed in the W register.  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is placed  
back in register ‘f’.  
C = 0  
W > k  
C = 1  
W k  
DC = 0  
DC = 1  
W<3:0> > k<3:0>  
W<3:0> k<3:0>  
C
Register f  
DS41232D-page 156  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
SUBWF  
Subtract W from f  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k → (W)  
Z
Operation:  
(f) - (W) → (destination)  
Status Affected: C, DC, Z  
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
Description:  
Subtract (2’s complement method)  
W register from register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f.  
C = 0  
W > f  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> > f<3:0>  
W<3:0> f<3:0>  
SWAPF  
Swap Nibbles in f  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Operation:  
(W) .XOR. (f) → (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Description: The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in the W  
register. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
© 2007 Microchip Technology Inc.  
DS41232D-page 157  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232D-page 158  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
14.1 MPLAB Integrated Development  
Environment Software  
14.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2007 Microchip Technology Inc.  
DS41232D-page 159  
PIC12F635/PIC16F636/639  
14.2 MPASM Assembler  
14.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
14.6 MPLAB SIM Software Simulator  
14.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcontrol-  
lers and the dsPIC30 and dsPIC33 family of digital sig-  
nal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
14.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS41232D-page 160  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
14.7 MPLAB ICE 2000  
High-Performance  
14.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
14.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
14.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC® and MCU devices. It debugs and  
programs PIC® and dsPIC® Flash microcontrollers with  
the easy-to-use, powerful graphical user interface of the  
MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high speed, noise tolerant, low-  
voltage differential signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2007 Microchip Technology Inc.  
DS41232D-page 161  
PIC12F635/PIC16F636/639  
14.11 PICSTART Plus Development  
Programmer  
14.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
14.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart® battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
and the latest “Product Selector Guide” (DS00148) for  
the complete list of demonstration, development and  
evaluation kits.  
DS41232D-page 162  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias....................................................................................................... -40°C to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS ................................................................................................... -0.3V to +6.5V  
Voltage on MCLR with respect to Vss ............................................................................................... -0.3V to +13.5V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ............................................................................................................................... 800 mW  
Maximum current out of VSS/VSST pin .............................................................................................................. 95 mA  
Maximum current into VDD/VDDT pin................................................................................................................. 95 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)............................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO >VDD)....................................................................................................... 20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sunk by PORTA and PORTC (combined) ............................................................................ 95 mA  
Maximum current sourced PORTA and PORTC (combined)............................................................................ 95 mA  
Maximum LC Input Voltage (LCX, LCY, LCZ)(2) loaded, with device ............................................................ 10.0 VPP  
Maximum LC Input Voltage (LCX, LCY, LCZ)(2) unloaded, without device ................................................. 700.0 VPP  
Maximum Input Current (rms) into device per LC Channel(2) ........................................................................... 10 mA  
Human Body ESD rating........................................................................................................................4000 (min.) V  
Machine Model ESD rating ......................................................................................................................400 (min.) V  
Note 1: Power dissipation for PIC12F635/PIC16F636/639 (AFE section not included) is calculated as follows:  
PDIS = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL).  
Power dissipation for AFE section is calculated as follows:  
PDIS = VDD x IACT = 3.6V x 16 μA = 57.6 μW  
2: Specification applies to the PIC16F639 only.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note:  
Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100Ω should be used when applying a ‘low’ level to the MCLR pin, rather than  
pulling this pin directly to VSS.  
© 2007 Microchip Technology Inc.  
DS41232D-page 163  
PIC12F635/PIC16F636/639  
FIGURE 15-1:  
PIC12F635/16F636 VOLTAGE-FREQUENCY GRAPH, -40°C TA +125°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
0
8
10  
20  
4
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: Cross-hatched area is for HFINTOSC and EC modes only.  
FIGURE 15-2:  
PIC16F639 VOLTAGE-FREQUENCY GRAPH, -40°C TA +85°C  
5.5  
5.0  
4.5  
4.0  
3.6  
3.0  
2.5  
2.0  
0
4
8
10  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: Cross-hatched area is for HFINTOSC and EC modes only.  
DS41232D-page 164  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 15-3:  
HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE  
125  
± 5%  
85  
60  
25  
± 2%  
± 1%  
0
-40  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
© 2007 Microchip Technology Inc.  
DS41232D-page 165  
PIC12F635/PIC16F636/639  
15.1 DC Characteristics: PIC12F635/PIC16F636-I (Industrial)  
PIC12F635/PIC16F636-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Min Typ† Max Units  
Conditions  
VDD  
Supply Voltage  
D001  
2.0  
2.0  
3.0  
4.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
FOSC < = 4 MHz  
FOSC < = 8 MHz, HFINTOSC, EC  
FOSC < = 10 MHz  
D001A  
D001B  
D001C  
FOSC < = 20 MHz  
D002  
VDR  
RAM Data Retention  
Voltage(1)  
1.5*  
V
Device in Sleep mode  
D003  
VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See Section 12.3 “Power-on Reset” for  
details.  
D004  
D005  
SVDD  
VDD Rise Rate to ensure 0.05*  
internal Power-on Reset  
signal  
V/ms See Section 12.3 “Power-on Reset” for  
details.  
VBOD  
Brown-out Reset  
2.0  
2.1  
2.2  
V
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
DS41232D-page 166  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.2 DC Characteristics: PIC12F635/PIC16F636-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
Conditions  
Param  
No.  
Sym  
Device Characteristics  
Supply Current(1,2)  
Min Typ† Max Units  
VDD  
Note  
D010  
IDD  
11  
18  
16  
28  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
mA  
μA  
μA  
mA  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32.768 kHz  
LP Oscillator mode  
35  
54  
D011  
D012  
D013  
D014  
D015  
D016  
D017  
D018  
D019  
140  
220  
380  
260  
420  
0.8  
240  
380  
550  
360  
650  
1.1  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
130  
215  
360  
220  
375  
0.65  
8
220  
360  
520  
340  
550  
1.0  
FOSC = 1 MHz  
EC Oscillator mode  
FOSC = 4 MHz  
EC Oscillator mode  
20  
FOSC = 31 kHz  
LFINTOSC mode  
16  
40  
31  
65  
340  
500  
0.8  
450  
700  
1.2  
FOSC = 4 MHz  
HFINTOSC mode  
410  
700  
1.30  
230  
400  
0.63  
2.6  
2.6  
650  
950  
1.65  
400  
680  
1.1  
FOSC = 8 MHz  
HFINTOSC mode  
FOSC = 4 MHz  
EXTRC mode  
3.25  
3.25  
FOSC = 20 MHz  
HS Oscillator mode  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled. MCU only, Analog  
Front-End not included.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption. MCU only, Analog Front-End not included.  
3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
© 2007 Microchip Technology Inc.  
DS41232D-page 167  
PIC12F635/PIC16F636/639  
15.2 DC Characteristics: PIC12F635/PIC16F636-I (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
Conditions  
Param  
No.  
Sym  
Device Characteristics  
Min Typ† Max Units  
VDD  
Note  
D020  
IPD  
Power-down Base  
Current(4)  
0.15  
0.20  
0.35  
1.0  
2.0  
3.0  
58  
1.2  
1.5  
1.8  
2.2  
4.0  
7.0  
60  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0 WDT, BOR,  
Comparators, VREF  
and T1OSC disabled  
3.0  
5.0  
D021  
2.0 WDT Current(1)  
3.0  
5.0  
D022A  
D022B  
3.0 BOR Current(1)  
109  
22  
122  
28  
5.0  
2.0 PLVD Current  
25  
35  
3.0  
33  
45  
5.0  
D023  
32  
45  
2.0 Comparator Current(3)  
60  
78  
3.0  
5.0  
120  
30  
160  
36  
D024A  
D024B  
D025  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
CVREF Current(1)  
(high-range)  
45  
55  
75  
95  
39  
47  
CVREF Current(1)  
(low-range)  
59  
72  
98  
124  
7.0  
8.0  
12  
4.5  
5.0  
6.0  
2.0 T1OSC Current(3)  
3.0  
5.0  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled. MCU only, Analog  
Front-End not included.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption. MCU only, Analog Front-End not included.  
3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41232D-page 168  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.3 DC Characteristics: PIC12F635/PIC16F636-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Sym  
Device Characteristics  
Min  
Typ†  
Max  
Units  
VDD  
Note  
(1,2)  
D010E IDD  
Supply Current  
11  
18  
16  
28  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
mA  
μA  
μA  
mA  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32.768 kHz  
LP Oscillator mode  
35  
54  
D011E  
FOSC = 1 MHz  
XT Oscillator mode  
140  
220  
380  
260  
420  
0.8  
240  
380  
550  
360  
650  
1.1  
D012E  
D013E  
D014E  
D015E  
D016E  
D017E  
D018E  
D019E  
FOSC = 4 MHz  
XT Oscillator mode  
FOSC = 1 MHz  
EC Oscillator mode  
130  
215  
360  
220  
375  
0.65  
8
220  
360  
520  
340  
550  
1.0  
FOSC = 4 MHz  
EC Oscillator mode  
FOSC = 31 kHz  
LFINTOSC mode  
20  
16  
40  
31  
65  
FOSC = 4 MHz  
HFINTOSC mode  
340  
500  
0.8  
450  
700  
1.2  
410  
700  
1.30  
230  
400  
0.63  
2.6  
650  
950  
1.65  
100  
680  
1.1  
FOSC = 8 MHz  
HFINTOSC mode  
FOSC = 4 MHz  
EXTRC mode  
FOSC = 20 MHz  
HS Oscillator mode  
3.25  
3.35  
2.8  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption.  
3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this periph-  
eral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this  
limit. Max values should be used when calculating total current consumption.  
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
© 2007 Microchip Technology Inc.  
DS41232D-page 169  
PIC12F635/PIC16F636/639  
15.3 DC Characteristics: PIC12F635/PIC16F636-E (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Sym  
Device Characteristics  
Power-down Base  
Min  
Typ†  
Max  
Units  
VDD  
Note  
D020  
IPD  
0.15  
0.20  
0.35  
1.0  
2.0  
3.0  
42  
1.2  
1.5  
1.8  
17.5  
19  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
WDT, BOR, Comparators,  
VREF and T1OSC disabled  
(4)  
Current  
(1)  
D021  
WDT Current  
22  
(1)  
D022A  
D022B  
60  
BOR Current  
85  
122  
48  
22  
PLVD Current  
25  
55  
33  
65  
(1)  
D023  
32.3  
60  
45  
Comparator Current  
78  
120  
30  
160  
36  
(1)  
D024A  
D024B  
D025  
CVREF Current  
(high-range)  
45  
55  
75  
95  
(1)  
39  
47  
CVREF Current  
(low-range)  
59  
72  
98  
124  
25  
(3)  
4.5  
5.0  
6.0  
T1OSC Current  
30  
40  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption.  
3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this periph-  
eral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this  
limit. Max values should be used when calculating total current consumption.  
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41232D-page 170  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.4 DC Characteristics: PIC12F635/PIC16F636-I (Industrial)  
PIC12F635/PIC16F636-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
D030  
D030A  
D031  
D032  
D033  
D033A  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.8  
V
V
V
V
V
V
4.5V VDD 5.5V  
Otherwise  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3  
with Schmitt Trigger buffer  
MCLR, OSC1 (RC mode)  
Entire range  
(1)  
OSC1 (XT and LP modes)  
(1)  
OSC1 (HS mode)  
0.3 VDD  
VIH  
Input High Voltage  
I/O ports:  
D040  
D040A  
with TTL buffer  
2.0  
(0.25 VDD +  
0.8)  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
Otherwise  
D041  
with Schmitt Trigger buffer  
MCLR  
0.8 VDD  
0.8 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
Entire range  
D042  
D043  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
(Note 1)  
(Note 1)  
D043A  
D043B  
0.7 VDD  
0.9 VDD  
OSC1 (RC mode)  
(2)  
IIL  
Input Leakage Current  
D060  
I/O ports  
0.1  
1
μA VSS VPIN VDD,  
Pin at high-impedance  
D060A  
D060B  
D061  
Analog inputs  
VREF  
0.1  
0.1  
0.1  
0.1  
1
1
5
5
μA VSS VPIN VDD  
μA VSS VPIN VDD  
μA VSS VPIN VDD  
(3)  
MCLR  
D063  
OSC1  
μA VSS VPIN VDD, XT, HS and  
LP oscillator configuration  
D070  
D071  
IPUR  
IPDR  
VOL  
PORTA Weak Pull-up  
Current  
50  
50  
250  
250  
400  
400  
μA VDD = 5.0V, VPIN = VSS  
μA VDD = 5.0V, VPIN = VDD  
PORTA Weak Pull-down  
Current  
Output Low Voltage  
I/O ports  
D080  
D083  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V (Ind.)  
OSC2/CLKOUT (RC mode)  
IOL = 1.6 mA, VDD = 4.5V (Ind.)  
IOL = 1.2 mA, VDD = 4.5V (Ext.)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an  
external clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 9.4.1 “Using the Data EEPROM” for additional information.  
© 2007 Microchip Technology Inc.  
DS41232D-page 171  
PIC12F635/PIC16F636/639  
15.4 DC Characteristics: PIC12F635/PIC16F636-I (Industrial)  
PIC12F635/PIC16F636-E (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VOH  
IULP  
Output High Voltage  
I/O ports  
D090  
D092  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = -3.0 mA, VDD = 4.5V (Ind.)  
OSC2/CLKOUT (RC mode)  
IOH = -1.3 mA, VDD = 4.5V (Ind.)  
IOH = -1.0 mA, VDD = 4.5V (Ext.)  
D100  
Ultra Low-power Wake-up  
Current  
200  
nA  
Capacitive Loading Specs  
on Output Pins  
D101 COSC2 OSC2 pin  
15*  
50*  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101A CIO  
All I/O pins  
pF  
Data EEPROM Memory  
Byte Endurance  
Byte Endurance  
VDD for Read/Write  
D120 ED  
D120A ED  
100K  
10K  
1M  
100K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D121  
VDRW  
VMIN  
5.5  
V
Using EECON1 to read/write  
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW  
Erase/Write cycle time  
Characteristic Retention  
5
6
ms  
TRETD  
40  
Year Provided no other  
specifications are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh  
1M  
10M  
E/W -40°C TA +85°C  
(4)  
Program Flash Memory  
Cell Endurance  
D130 EP  
D130A ED  
10K  
1K  
100K  
10K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
Cell Endurance  
D131  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
D134  
VPEW  
TPEW  
TRETD  
VDD for Erase/Write  
4.5  
2
5.5  
2.5  
V
Erase/Write cycle time  
Characteristic Retention  
ms  
40  
Year Provided no other  
specifications are violated  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an  
external clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 9.4.1 “Using the Data EEPROM” for additional information.  
DS41232D-page 172  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.5 DC Characteristics: PIC16F639-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Sym  
Characteristic  
Min Typ† Max Units  
Conditions  
No.  
D001  
VDD  
Supply Voltage  
2.0  
2.0  
3.6  
3.6  
V
V
FOSC 10 MHz  
D001A VDDT  
Supply Voltage (AFE)  
Analog Front-End VDD voltage. Treated as  
VDD in this document.  
D002  
D003  
VDR  
RAM Data Retention  
Voltage(1)  
1.5*  
V
V
Device in Sleep mode  
VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
See Section 12.3 “Power-on Reset” for  
details.  
D003A VPORT VDD Start Voltage (AFE)  
to ensure internal Power-  
1.8  
V
Analog Front-End POR voltage.  
on Reset signal  
D004  
SVDD  
VDD Rise Rate to ensure 0.05*  
internal Power-on Reset  
signal  
V/ms See Section 12.3 “Power-on Reset” for  
details.  
D005  
D006  
VBOD  
RM  
Brown-out Reset  
2.0  
2.1  
50  
2.2  
V
Turn-on Resistance or  
100 Ohm VDD = 3.0V  
Modulation Transistor  
D007  
D008  
RPU  
IAIL  
Digital Input Pull-Up  
Resistor  
CS, SCLK  
50  
200 350 kOhm VDD = 3.6V  
Analog Input Leakage  
Current  
LCX, LCY, LCZ  
LCCOM  
±1  
±1  
μA  
μA  
VDD = 3.6V, VSS VIN VDD, tested at  
Sleep mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
© 2007 Microchip Technology Inc.  
DS41232D-page 173  
PIC12F635/PIC16F636/639  
15.6 DC Characteristics: PIC16F639-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
Supply Voltage  
-40°C TA +85°C for industrial  
2.0V VDD 3.6V  
Conditions  
Param  
Sym  
No.  
Device Characteristics  
Supply Current(1,2,3)  
Min  
Typ†  
Max  
Units  
VDD  
Note  
D010  
D011  
D012  
D013  
D014  
D015  
D016  
D017  
D020  
IDD  
11  
18  
16  
28  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
FOSC = 32.768 kHz  
LP Oscillator mode  
140  
220  
260  
420  
130  
215  
220  
375  
8
240  
380  
360  
650  
220  
360  
340  
550  
20  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
FOSC = 1 MHz  
EC Oscillator mode  
FOSC = 4 MHz  
EC Oscillator mode  
FOSC = 31 kHz  
LFINTOSC mode  
16  
40  
340  
500  
230  
400  
0.15  
0.20  
450  
700  
400  
680  
1.2  
1.5  
FOSC = 4 MHz  
HFINTOSC mode  
FOSC = 4 MHz  
EXTRC mode  
IPD  
Power-down Base Current(4)  
WDT, BOR, Comparators,  
VREF and T1OSC disabled  
(excludes AFE)  
D021  
IWDT  
1.2  
2.0  
42  
22  
25  
32  
60  
30  
45  
39  
59  
4.5  
5.0  
2.2  
4.0  
60  
28  
35  
45  
78  
36  
55  
47  
72  
7.0  
8.0  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
WDT Current(1)  
D022A  
D022B  
IBOR  
ILVD  
BOR Current(1)  
PLVD Current  
D023  
ICMP  
Comparator Current(1)  
D024A  
D024B  
D025  
IVREFHS  
IVREFLS  
IT1OSC  
IACT  
CVREF Current(1)  
(high-range)  
CVREF Current(1)  
(low-range)  
T1OSC Current(1)  
D026  
Active Current of AFE only  
(receiving signal)  
CS = VDD; Input = Continuous  
Wave (CW);  
1 LC Input Channel Signal  
3 LC Input Channel Signals  
10  
13  
18  
μA  
μA  
3.6  
3.6  
Amplitude = 300 mVPP.  
All channels enabled.  
D027  
ISTDBY  
Standby Current of AFE only  
(not receiving signal)  
1 LC Input Channel Enabled  
CS = VDD; ALERT = VDD  
3
4
5
5
6
7
μΑ  
μA  
μA  
3.6  
3.6  
3.6  
2 LC Input Channels Enabled  
3 LC Input Channels Enabled  
D028  
ISLEEP  
Sleep Current of AFE only  
0.2  
1
μA  
3.6  
CS = VDD; ALERT = VDD  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins  
tri-stated, pulled to VDD; MCLR = VDD; WDT disabled. MCU only, Analog Front-End not included.  
The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate,  
oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. MCU only, Analog  
Front-End not included.  
Note 1:  
2:  
3:  
4:  
The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The  
peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when  
calculating total current consumption.  
The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep  
mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41232D-page 174  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.7 DC Characteristics: PIC16F639-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
Supply Voltage  
-40°C TA +85°C for industrial  
2.0V VDD 3.6V  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030A  
D031  
D032  
D033  
D033A  
D034  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3  
V
V
V
V
V
V
with Schmitt Trigger buffer  
MCLR, OSC1 (RC mode)  
OSC1 (XT and LP modes)(1)  
OSC1 (HS mode)(1)  
0.3 VDD  
0.3 VDD  
Digital Input Low Voltage  
Input High Voltage  
Analog Front-End section  
VIH  
I/O ports:  
D040  
with TTL buffer  
D040A  
D041  
(0.25 VDD + 0.8)  
0.8 VDD  
0.8 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
with Schmitt Trigger buffer  
MCLR  
D042  
D043  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
(Note 1)  
(Note 1)  
D043A  
D043B  
0.7 VDD  
0.9 VDD  
OSC1 (RC mode)  
Digital Input High Voltage  
Analog Front-End section  
D044  
D060  
SCLK, CS, SDIO for Analog  
Front-End (AFE)  
Input Leakage Current(2)  
0.8 VDD  
VDD  
V
IIL  
I/O ports  
0.1  
1
μA  
VSS VPIN VDD,  
Pin at high-impedance  
D060A  
D060B  
D061  
Analog inputs  
VREF  
MCLR(3)  
0.1  
0.1  
0.1  
0.1  
1
1
5
5
μA  
μA  
μA  
μA  
VSS VPIN VDD  
VSS VPIN VDD  
VSS VPIN VDD  
D063  
OSC1  
VSS VPIN VDD, XT, HS and LP  
oscillator configuration  
Digital Input Leakage Current(2)  
VDD = 3.6V, Analog Front-End section  
VSS VPIN VDD  
D064  
SDI for Analog Front-End (AFE)  
1
1
μA  
μA  
D064A  
SCLK, CS for Analog Front-End  
(AFE)  
VPIN VDD  
D070  
D071  
IPUR  
IPDR  
VOL  
PORTA Weak Pull-up Current  
PORTA Weak Pull-down Current  
Output Low Voltage  
50*  
50  
250  
250  
400  
400  
μA  
μA  
VDD = 3.6V, VPIN = VSS  
VDD = 3.6V, VPIN = VDD  
D080  
D083  
I/O ports  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 3.6V (Ind.)  
OSC2/CLKOUT (RC mode)  
IOL = 1.6 mA, VDD = 3.6V (Ind.)  
IOL = 1.2 mA, VDD = 3.6V (Ext.)  
Digital Output Low Voltage  
Analog Front-End section  
IOL = 1.0 mA, VDD = 2.0V  
D084  
ALERT, LFDATA/SDIO for  
Analog Front-End (AFE)  
VSS + 0.4  
V
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC  
mode.  
Note 1:  
2:  
3:  
Negative current is defined as current sourced by the pin.  
The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating  
conditions. Higher leakage current may be measured at different input voltages.  
See Section 9.4.1 “Using the Data EEPROM” for additional information  
4:  
© 2007 Microchip Technology Inc.  
DS41232D-page 175  
PIC12F635/PIC16F636/639  
15.7 DC Characteristics: PIC16F639-I (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
Supply Voltage  
-40°C TA +85°C for industrial  
2.0V VDD 3.6V  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VOH  
Output High Voltage  
I/O ports  
D090  
D092  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = -3.0 mA, VDD = 3.6V (Ind.)  
OSC2/CLKOUT (RC mode)  
IOH = -1.3 mA, VDD = 3.6V (Ind.)  
IOH = -1.0 mA, VDD = 3.6V (Ext.)  
Digital Output High Voltage  
Analog Front-End (AFE) section  
D093  
LFDATA/SDIO for Analog Front-End  
(AFE)  
VDD – 0.5  
V
IOH = -400 μA, VDD = 2.0V  
Capacitive Loading Specs on  
Output Pins  
D100  
COSC2 OSC2 pin  
15*  
pF  
In XT, HS and LP modes when  
external clock is used to drive OSC1  
D101  
D102  
CIO  
All I/O pins  
50*  
pF  
nA  
IULP  
Ultra Low-power Wake-up Current  
Data EEPROM Memory  
Byte Endurance  
200  
D120  
ED  
100K  
10K  
1M  
100K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D120A ED  
Byte Endurance  
D121  
VDRW  
VDD for Read/Write  
VMIN  
5.5  
V
Using EECON1 to read/write  
VMIN = Minimum operating voltage  
D122  
D123  
TDEW  
Erase/Write cycle time  
Characteristic Retention  
5
6
ms  
TRETD  
40  
Year Provided no other specifications are  
violated  
D124  
TREF  
Number of Total Erase/Write Cycles  
before Refresh(1)  
1M  
10M  
E/W -40°C TA +85°C  
Program Flash Memory  
Cell Endurance  
D130  
EP  
10K  
1K  
100K  
10K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D130A ED  
Cell Endurance  
D131  
D132  
D133  
D134  
VPR  
VDD for Read  
VMIN  
4.5  
5.5  
5.5  
2.5  
V
V
VMIN = Minimum operating voltage  
VPEW  
TPEW  
TRETD  
VDD for Erase/Write  
Erase/Write cycle time  
Characteristic Retention  
2
ms  
40  
Year Provided no other specifications are  
violated  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC  
mode.  
Note 1:  
2:  
3:  
Negative current is defined as current sourced by the pin.  
The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating  
conditions. Higher leakage current may be measured at different input voltages.  
See Section 9.4.1 “Using the Data EEPROM” for additional information  
4:  
DS41232D-page 176  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.8 Thermal Considerations  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Para  
m
Sym  
Characteristic  
Typ  
Units  
Conditions  
No.  
TH01 θJA  
Thermal Resistance  
Junction to Ambient  
84.6 °C/W 8-pin PDIP package  
163.0 °C/W 8-pin SOIC package  
PIC12F635  
PIC16F636  
52.4 °C/W 8-pin DFN 4x4x0.9 mm package  
52.4 °C/W 8-pin DFN-S 6x5 mm package  
69.8 °C/W 14-pin PDIP package  
85.0 °C/W 14-pin SOIC package  
100.4 °C/W 14-pin TSSOP package  
46.3 °C/W 16-pin QFN 4x0.9mm package  
PIC16F639 108.1 °C/W 20-pin SSOP package  
41.2 °C/W 8-pin PDIP package  
TH02 θJC  
Thermal Resistance  
Junction to Case  
38.8 °C/W 8-pin SOIC package  
PIC12F635  
3.0  
3.0  
°C/W 8-pin DFN 4x4x0.9 mm package  
°C/W 8-pin DFN-S 6x5 mm package  
32.5 °C/W 14-pin PDIP package  
31.0 °C/W 14-pin SOIC package  
31.7 °C/W 14-pin TSSOP package  
PIC16F636  
2.6  
°C/W 16-pin QFN 4x0.9mm package  
PIC16F639 32.2 °C/W 20-pin SSOP package  
TH03 TJ  
TH04 PD  
Junction Temperature  
Power Dissipation  
150  
°C For derated power calculations  
W
W
PD = PINTERNAL + PI/O  
TH05 PINTERNAL Internal Power Dissipation  
PINTERNAL = IDD x VDD  
(NOTE 1)  
TH06 PI/O  
I/O Power Dissipation  
Derated Power  
W
W
PI/O = Σ (IOL * VOL) + Σ (IOH * (VDD - VOH))  
PDER = (TJ - TA)/θJA  
(NOTE 2, 3)  
TH07 PDER  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient Temperature.  
3: Maximum allowable power dissipation is the lower value of either the absolute maximum total power  
dissipation or derated power (PDER).  
© 2007 Microchip Technology Inc.  
DS41232D-page 177  
PIC12F635/PIC16F636/639  
15.9 Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCLK  
SS  
SDI  
do  
dt  
SDO  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 15-4:  
LOAD CONDITIONS  
Load Condition  
Pin  
CL  
VSS  
Legend: CL = 50 pF for all pins  
15 pF for OSC2 output  
DS41232D-page 178  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.10 AC Characteristics: PIC12F635/PIC16F636/639 (Industrial, Extended)  
FIGURE 15-5:  
CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1/CLKIN  
OS02  
OS04  
OS04  
OS03  
OSC2/CLKOUT  
(LP, XT, HS Modes)  
OSC2/CLKOUT  
(CLKOUT Mode)  
TABLE 15-1: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
(1)  
OS01  
OS02  
OS03  
FOSC  
TOSC  
TCY  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
37  
4
kHz LP Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz EC Oscillator mode  
kHz LP Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz RC Oscillator mode  
20  
20  
(1)  
Oscillator Frequency  
32.768  
0.1  
1
4
20  
4
DC  
27  
250  
50  
50  
(1)  
External CLKIN Period  
μs  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
EC Oscillator mode  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
RC Oscillator mode  
TCY = 4/FOSC  
(1)  
Oscillator Period  
30.5  
250  
50  
250  
200  
2
10,000  
1,000  
(1)  
Instruction Cycle Time  
TCY  
DC  
OS04* TosH, External CLKIN High,  
TosL External CLKIN Low  
LP oscillator  
100  
20  
0
XT oscillator  
HS oscillator  
OS05* TosR, External CLKIN Rise,  
TosF External CLKIN Fall  
50  
25  
15  
LP oscillator  
0
XT oscillator  
0
HS oscillator  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min” values with an external  
clock applied to OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for  
all devices.  
© 2007 Microchip Technology Inc.  
DS41232D-page 179  
PIC12F635/PIC16F636/639  
TABLE 15-2: OSCILLATOR PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Freq  
Tolerance  
Characteristic  
Min  
Typ†  
Max  
Units  
TOSC Slowest clock  
ms LFINTOSC/64  
Conditions  
OS06  
OS07  
OS08  
TWARM  
Internal Oscillator Switch  
2
(3)  
when running  
TSC  
Fail-Safe Sample Clock  
21  
(1)  
Period  
HFOSC  
Internal Calibrated  
HFINTOSC Frequency  
1%  
2%  
7.92  
7.84  
8.0  
8.0  
8.08  
8.16  
MHz VDD = 3.5V, 25°C  
(2)  
MHz 2.5V VDD 5.5V,  
0°C TA +85°C  
5%  
7.60  
15  
8.0  
31  
8.40  
45  
MHz 2.0V VDD 5.5V,  
-40°C TA +85°C (Ind.),  
-40°C TA +125°C (Ext.)  
OS09*  
OS10*  
LFOSC  
Internal Uncalibrated  
LFINTOSC Frequency  
kHz  
TIOSCST HFINTOSC Oscillator  
Wake-up from Sleep  
Start-up Time  
5.5  
3.5  
3
12  
7
24  
14  
11  
μs  
μs  
μs  
VDD = 2.0V, -40°C to +85°C  
VDD = 3.0V, -40°C to +85°C  
VDD = 5.0V, -40°C to +85°C  
6
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min” values with an external  
clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock)  
for all devices.  
2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the  
device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
3: By design.  
DS41232D-page 180  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 15-6:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
FOSC  
OS12  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS18  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
TABLE 15-3: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
OS11  
OS12  
OS13  
OS14  
TOSH2CKL FOSCto CLKOUT(1)  
TOSH2CKH FOSCto CLKOUT(1)  
70  
72  
20  
70  
ns VDD = 5.0V  
ns VDD = 5.0V  
ns  
50  
TCKL2IOV  
TIOV2CKH Port input valid before CLKOUT(1)  
CLKOUTto Port out valid(1)  
TOSC + 200 ns  
ns  
OS15* TOSH2IOV FOSC(Q1 cycle) to Port out valid  
ns VDD = 5.0V  
ns VDD = 5.0V  
OS16  
OS17  
OS18  
OS19  
TOSH2IOI  
FOSC(Q2 cycle) to Port input invalid  
(I/O in hold time)  
50  
TIOV2OSH Port input valid to FOSC(Q2 cycle)  
20  
ns  
(I/O in setup time)  
TIOR  
TIOF  
Port output rise time(2)  
40  
15  
72  
32  
ns VDD = 2.0V  
VDD = 5.0V  
Port output fall time(2)  
28  
15  
55  
30  
ns VDD = 2.0V  
VDD = 5.0V  
OS20* TINP  
OS21* TRAP  
INT pin input high or low time  
25  
ns  
ns  
PORTA interrupt-on-change new input  
level time  
TCY  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
2: Includes OSC2 in CLKOUT mode.  
© 2007 Microchip Technology Inc.  
DS41232D-page 181  
PIC12F635/PIC16F636/639  
FIGURE 15-7:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Start-Up Time  
(1)  
Internal Reset  
Watchdog Timer  
(1)  
Reset  
31  
34  
34  
I/O pins  
Note 1: Asserted low.  
FIGURE 15-8:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR + VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
37  
Reset  
(due to BOR)  
33*  
*
64 ms delay only if PWRTE bit in the Configuration Word register is programmed to ‘0’.  
DS41232D-page 182  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
TMCL  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
MCLR Pulse Width (low)  
2
5
μs VDD = 5V, -40°C to +85°C  
μs VDD = 5V  
31  
32  
TWDT  
TOST  
Watchdog Timer Time-out  
Period (No Prescaler)  
10  
10  
16  
16  
29  
31  
ms VDD = 5V, -40°C to +85°C  
ms VDD = 5V  
Oscillation Start-up Timer  
Period(1, 2)  
1024  
TOSC (NOTE 3)  
33*  
34*  
TPWRT Power-up Timer Period  
40  
65  
140  
2.0  
ms  
TIOZ  
I/O High-impedance from  
MCLR Low or Watchdog Timer  
Reset  
μs  
35  
VBOR  
VHYST  
TBOR  
Brown-out Reset Voltage  
2.0  
50  
2.2  
V
(NOTE 4)  
36*  
37*  
Brown-out Reset Hysteresis  
mV  
Brown-out Reset Minimum  
Detection Period  
100  
μs VDD VBOR  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator oper-  
ation and/or higher than expected current consumption. All devices are tested to operate at “min” values  
with an external clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time  
limit is “DC” (no clock) for all devices.  
2: By design.  
3: Period of the slower clock.  
4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
© 2007 Microchip Technology Inc.  
DS41232D-page 183  
PIC12F635/PIC16F636/639  
FIGURE 15-9:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
TABLE 15-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
40*  
41*  
42*  
TT0H  
TT0L  
TT0P  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45*  
46*  
47*  
TT1H  
TT1L  
T1CKI High Synchronous, No Prescaler  
0.5 TCY + 20  
15  
ns  
ns  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
0.5 TCY + 20  
15  
ns  
ns  
ns  
T1CKI Low Synchronous, No Prescaler  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
ns  
TT1P  
FT1  
T1CKI Input Synchronous  
Period  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
ns  
48  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
32.768  
kHz  
49*  
TCKEZTMR1 Delay from External Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
Timers in Sync  
mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS41232D-page 184  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 15-6: COMPARATOR SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristics  
Min  
Typ†  
Max  
Units  
Comments  
CM01 VOS  
CM02 VCM  
CM03* CMRR  
CM04* TRT  
Input Offset Voltage  
0
5.0  
10  
VDD – 1.5  
mV (VDD - 1.5)/2  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time  
V
+55  
dB  
Falling  
Rising  
150  
200  
600  
ns  
ns  
μs  
(NOTE 1)  
1000  
10  
CM05* TMC2COV Comparator Mode Change to  
Output Valid  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.  
TABLE 15-7: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristics  
Min  
Typ†  
Max  
Units  
Comments  
(2)  
CV01* CLSB  
Step Size  
VDD/24  
VDD/32  
V
V
Low Range (VRR = 1)  
High Range (VRR = 0)  
CV02* CACC  
Absolute Accuracy  
1/2  
1/2  
LSb  
LSb  
Low Range (VRR = 1)  
High Range (VRR = 0)  
CV03* CR  
CV04* CST  
Unit Resistor Value (R)  
2k  
Ω
(1)  
Settling Time  
10  
μs  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guid-  
ance only and are not tested.  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from ‘0000’ to ‘1111’.  
2: See Section 7.11 “Comparator Voltage Reference” for more information.  
TABLE 15-8: PIC12F635/PIC16F636 PLVD CHARACTERISTICS:  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating Temperature  
Operating Voltage  
-40°C TA +125°C  
VDD Range 2.0V-5.5V  
Sym.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VPLVD  
PLVD  
Voltage  
LVDL<2:0> = 001  
LVDL<2:0> = 010  
LVDL<2:0> = 011  
LVDL<2:0> = 100  
LVDL<2:0> = 101  
LVDL<2:0> = 110  
LVDL<2:0> = 111  
1.900  
2.000  
2.100  
2.200  
3.825  
4.025  
4.325  
2.0  
2.1  
2.2  
2.3  
4.0  
4.2  
4.5  
2.125  
2.225  
2.325  
2.425  
4.200  
4.400  
4.700  
V
V
V
V
V
V
V
*TPLVDS  
PLVD Settling time  
50  
25  
μs  
VDD = 5.0V  
VDD = 3.0V  
*
These parameters are characterized but not tested  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
© 2007 Microchip Technology Inc.  
DS41232D-page 185  
PIC12F635/PIC16F636/639  
TABLE 15-9: PIC16F639 PLVD CHARACTERISTICS:  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating Temperature  
Operating Voltage  
-40°C TA +85°C  
VDD Range 2.0V-5.5V  
Sym.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VPLVD  
PLVD  
Voltage  
LVDL<2:0> = 001  
LVDL<2:0> = 010  
LVDL<2:0> = 011  
LVDL<2:0> = 100  
LVDL<2:0> = 101  
LVDL<2:0> = 110  
LVDL<2:0> = 111  
1.900  
2.000  
2.100  
2.200  
3.825  
4.025  
4.325  
2.0  
2.1  
2.2  
2.3  
4.0  
4.2  
4.5  
2.100  
2.200  
2.300  
2.400  
4.175  
4.375  
4.675  
V
V
V
V
V
V
V
*TPLVDS  
PLVD Settling time  
50  
25  
μs  
VDD = 5.0V  
VDD = 3.0V  
*
These parameters are characterized but not tested  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
DS41232D-page 186  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.11 AC Characteristics: Analog Front-End for PIC16F639 (Industrial)  
AC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Supply Voltage  
Operating temperature  
LC Signal Input  
Carrier Frequency  
LCCOM connected to VSS  
2.0V VDD 3.6V  
-40°C TAMB +85°C for industrial  
Sinusoidal 300 mVPP  
125 kHz  
Param  
No.  
Sym.  
Characteristic  
LC Input Sensitivity  
Min  
Typ†  
Max  
Units  
Conditions  
AF01  
VSENSE  
VDD = 3.0V  
1
3.0  
6
mVPP Output enable filter disabled  
AGCSIG = 0; MODMIN = 00  
(33% modulation depth setting)  
Input = Continuous Wave (CW)  
Output = Logic level transition from low-to-  
high at sensitivity level for CW input.  
AF02  
AF03  
AF04  
VDE_Q  
RFLM  
SADJ  
Coil de-Q’ing Voltage -  
RF Limiter (RFLM) must be active  
3
5
V
VDD = 3.0V, Force IIN = 5 μA  
RF Limiter Turn-on Resistance  
(LCX, LCY, LCZ)  
300  
700  
Ohm VDD = 2.0V, VIN = 8 VDC  
Sensitivity Reduction  
VDD = 3.0V  
0
-30  
dB  
dB  
No sensitivity reduction selected  
Max reduction selected  
Monotonic increment in attenuation value from  
setting = 0000to 1111by design  
AF05  
AF06  
VIN_MOD Minimum Modulation Depth  
75% ± 12%  
VDD = 3.0V  
63  
38  
13  
0
75  
50  
25  
12  
87  
62  
37  
24  
%
%
%
%
50% ± 12%  
25% ± 12%  
12% ± 12%  
CTUNX  
CTUNY  
CTUNZ  
LCX Tuning Capacitor  
LCY Tuning Capacitor  
LCZ Tuning Capacitor  
VDD = 3.0V,  
Config. Reg. 1, bits <6:1> Setting = 000000  
0
pF  
pF  
44  
63  
82  
63 pF +/- 30%  
Config. Reg. 1, bits <6:1> Setting = 111111  
63 steps, 1 pF/step  
Monotonic increment in capacitor value from  
setting = 000000to 111111by design  
AF07  
AF08  
VDD = 3.0V,  
Config. Reg. 2, bits <6:1> Setting = 000000  
0
pF  
pF  
44  
63  
82  
63 pF +/- 30%  
Config. Reg. 2, bits <6:1> Setting = 111111  
63 steps, 1 pF/step  
Monotonic increment in capacitor value from  
setting = 000000to 111111by design  
VDD = 3.0V,  
0
pF  
pF  
Config. Reg. 3, bits<6:1> Setting = 000000  
44  
63  
82  
63 pF +/- 30%  
Config. Reg. 3, bits<6:1> Setting = 111111  
63 steps, 1 pF/step  
Monotonic increment in capacitor value from  
setting = 000000to 111111by design  
AF09  
AF10  
AF11  
AF12  
FCARRIER Carrier frequency  
125  
10  
kHz  
kHz  
pF  
Characterized at bench.  
FMOD  
C_Q  
TDR  
Input modulation frequency  
Input data rate, characterized at bench.  
Characterized at bench test  
Q of Trimming Capacitors  
50*  
Demodulator Charge Time  
(delay time of demodulated output  
to rise)  
50  
μs  
VDD = 3.0V  
MOD depth setting = 50%  
Input conditions:  
Amplitude = 300 mVPP  
Modulation depth = 80%  
AF13  
TDF  
Demodulator Discharge Time  
(delay time of demodulated output  
to fall)  
50  
μs  
VDD = 3.0V  
MOD depth setting = 50%  
Input conditions:  
Amplitude = 300 mVPP  
Modulation depth = 80%  
*
Parameter is characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: Required output enable filter high time must account for input path analog delays (= TOEH - TDR + TDF).  
2: Required output enable filter low time must account for input path analog delays (= TOEL + TDR - TDF).  
© 2007 Microchip Technology Inc.  
DS41232D-page 187  
PIC12F635/PIC16F636/639  
15.11 AC Characteristics: Analog Front-End for PIC16F639 (Industrial) (Continued)  
AC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Supply Voltage  
Operating temperature  
LC Signal Input  
Carrier Frequency  
LCCOM connected to VSS  
2.0V VDD 3.6V  
-40°C TAMB +85°C for industrial  
Sinusoidal 300 mVPP  
125 kHz  
Param  
No.  
Sym.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
AF14  
TLFDATAR Rise time of LFDATA  
TLFDATAF Fall time of LFDATA  
0.5  
μs  
VDD = 3.0V  
Time is measured from 10% to 90% of  
amplitude  
AF15  
0.5  
μs  
VDD = 3.0V  
Time is measured from 10% to 90% of  
amplitude  
AF16  
AF17  
AF18  
TAGC  
TPAGC  
TSTAB  
AGC initialization time  
4
3.5*  
62.5  
ms  
μs  
Time required for AGC stabilization  
Equivalent to two Internal clock cycle (FOSC)  
AGC stabilization time  
High time after AGC settling time  
AGC stabilization time plus high  
time (after AGC settling time)  
(TAGC + TPAGC)  
ms  
AF19  
AF20  
TGAP  
TRDY  
Gap time after AGC settling time  
200  
μs  
Typically 1 TE  
Time from exiting Sleep or POR to  
being ready to receive signal  
50*  
ms  
AF21  
AF22  
TPRES  
FOSC  
Minimum time AGC level must be  
held after receiving AGC Preserve  
command  
5*  
ms  
AGC level must not change more than 10%  
during TPRES.  
Internal RC oscillator frequency  
(±10%)  
28.8  
32  
35.2  
kHz  
Internal clock trimmed at 32 kHz during test  
AF23  
AF24  
AF25  
TINACT  
TALARM  
RLC  
Inactivity timer time-out  
Alarm timer time-out  
14.4  
28.8  
16  
32  
17.6  
35.2  
ms  
ms  
512 cycles of RC oscillator @ FOSC  
1024 cycles of RC oscillator @ FOSC  
LC Pin Input Impedance  
LCX, LCY, LCZ  
1*  
MOhm Device in Standby mode  
LCCOM grounded. Vdd = 3.0V,  
AF26  
CIN  
LC Pin Input Capacitance  
LCX, LCY, LCZ  
24  
pF  
FCARRIER = 125 kHz  
AF27  
AF28  
TE  
Time element of pulse  
100  
μs  
TOEH  
Minimum output enable filter high  
time  
OEH (Bits Config0<7:6>)  
01= 1 ms  
RC oscillator = FOSC  
Viewed from the pin input:  
(Note 1)  
32 (~1ms)  
64 (~2ms)  
128 (~4ms)  
clock  
count  
10= 2 ms  
11= 4 ms  
00= Filter Disabled  
AF29  
TOEL  
Minimum output enable filter low  
time  
RC oscillator = FOSC  
Viewed from the pin input:  
OEL (Bits Config0<5:4>)  
00= 1 ms  
clock (Note 2)  
count  
32 (~1ms)  
32 (~1ms)  
64 (~2ms)  
128 (~4ms)  
01= 1 ms  
10= 2 ms  
11= 4 ms  
*
Parameter is characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: Required output enable filter high time must account for input path analog delays (= TOEH - TDR + TDF).  
2: Required output enable filter low time must account for input path analog delays (= TOEL + TDR - TDF).  
DS41232D-page 188  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.11 AC Characteristics: Analog Front-End for PIC16F639 (Industrial) (Continued)  
AC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Supply Voltage  
Operating temperature  
LC Signal Input  
Carrier Frequency  
LCCOM connected to VSS  
2.0V VDD 3.6V  
-40°C TAMB +85°C for industrial  
Sinusoidal 300 mVPP  
125 kHz  
Param  
No.  
Sym.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
AF30  
TOET  
Maximum output enable filter  
period  
RC oscillator = FOSC  
OEH OEL  
TOEH TOEL  
01  
01  
01  
01  
00 = 1 ms 1 ms (filter 1)  
01 = 1 ms 1 ms (filter 1)  
10 = 1 ms 2 ms (filter 2)  
11 = 1 ms 4 ms (filter 3)  
96 (~3ms)  
96 (~3ms)  
128 (~4ms)  
192 (~6ms)  
clock  
count  
10  
10  
10  
10  
00 = 2 ms 1 ms (filter 4)  
01 = 2 ms 1 ms (filter 4)  
10 = 2 ms 2 ms (filter 5)  
11 = 2 ms 4 ms (filter 6)  
128 (~4ms)  
128 (~4ms)  
160 (~5ms)  
250 (~8ms)  
11  
11  
11  
11  
00 = 4 ms 1 ms (filter 7)  
01 = 4 ms 1 ms (filter 7)  
10 = 4 ms 2 ms (filter 8)  
11 = 4 ms 4 ms (filter 9)  
192 (~6ms)  
192 (~6ms)  
256 (~8ms)  
320 (~10ms)  
00  
XX = Filter Disabled  
LFDATA output appears as long as input  
signal level is greater than VSENSE.  
AF31  
IRSSI  
RSSI current output  
100  
μA  
VDD = 3.0V,  
VIN = 0 to 4 VPP  
Linearly increases with input signal amplitude.  
Tested at VIN = 40 mVPP, 400 mVPP, and  
4 VPP  
1
10  
100  
μA  
μA  
μA  
VIN = 40 mVPP  
VIN = 400 mVPP  
VIN = 4 VPP  
AF32  
IRSSILR RSSI current linearity  
-15  
15  
%
Tested at room temperature only  
*
Parameter is characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: Required output enable filter high time must account for input path analog delays (= TOEH - TDR + TDF).  
2: Required output enable filter low time must account for input path analog delays (= TOEL + TDR - TDF).  
© 2007 Microchip Technology Inc.  
DS41232D-page 189  
PIC12F635/PIC16F636/639  
15.12 SPI Timing: Analog Front-End (AFE) for PIC16F639  
AC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Supply Voltage  
2.0V VDD 3.6V  
Operating temperature  
LC Signal Input  
Carrier Frequency  
LCCOM connected to VSS  
-40°C TAMB +85°C for industrial  
Sinusoidal 300 mVPP  
125 kHz  
Param  
AF33  
Sym  
Characteristic  
Min  
Typ†  
Max  
3
Units  
MHz  
ns  
Conditions  
FSCLK SCLK Frequency  
AF34  
Tcssc  
100  
CS fall to first SCLK edge  
setup time  
AF35  
AF36  
AF37  
AF38  
AF39  
AF40  
TSU  
THD  
THI  
SDI setup time  
SDI hold time  
30  
50  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK high time  
SCLK low time  
SDO setup time  
150  
150  
TLO  
TDO  
150  
TSCCS SCLK last edge to CS rise  
setup time  
100  
AF41  
AF42  
TCSH  
TCS1  
CS high time  
500  
50  
ns  
ns  
CS rise to SCLK edge setup  
time  
AF43  
AF44  
TCS0  
SCLK edge to CS fall setup  
time  
50  
ns  
ns  
SCLK edge when CS is high  
TSPIR Rise time of SPI data  
(SPI Read command)  
10  
VDD = 3.0V. Time is measured from 10%  
to 90% of amplitude  
AF45  
TSPIF  
Fall time of SPI data  
(SPI Read command)  
10  
ns  
VDD = 3.0V. Time is measured from 90%  
to 10% of amplitude  
*
Parameter is characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
DS41232D-page 190  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
The graphs and tables provided in this section are for design guidance and are not tested.  
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are ensured to operate properly only within the specified range.  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents  
(mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.  
FIGURE 16-1:  
TYPICAL IDD vs. FOSC OVER VDD (EC MODE)  
3.5  
Typical: Statistical Mean @25°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
4.0V  
3.0V  
2.0V  
1 MHz  
2 MHz  
4 MHz  
6 MHz  
8 MHz  
10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz  
FOSC  
© 2007 Microchip Technology Inc.  
DS41232D-page 191  
PIC12F635/PIC16F636/639  
FIGURE 16-2:  
MAXIMUM IDD vs. FOSC OVER VDD (EC MODE)  
4.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0V  
3.0V  
2.0V  
1 MHz  
2 MHz  
4 MHz  
6 MHz  
8 MHz  
10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz  
FOSC  
FIGURE 16-3:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
Typical IDD vs FOSC Over Vdd  
4.0  
Typical: Statistical Mean @25°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
4 MHz  
10 MHz  
16 MHz  
20 MHz  
FOSC  
DS41232D-page 192  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 16-4:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
5.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
4 MHz  
10 MHz  
16 MHz  
20 MHz  
FOSC  
FIGURE 16-5:  
TYPICAL IDD vs. VDD OVER FOSC (XT MODE)  
XT Mode  
900  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
800  
700  
600  
500  
400  
300  
200  
100  
0
4 MHz  
1 MHz  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41232D-page 193  
PIC12F635/PIC16F636/639  
FIGURE 16-6:  
MAXIMUM IDD vs. VDD OVER FOSC (XT MODE)  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
4 MHz  
1 MHz  
600  
400  
200  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-7:  
TYPICAL IDD vs. VDD OVER FOSC (EXTRC MODE)  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
700  
600  
500  
400  
300  
200  
100  
0
4 MHz  
1 MHz  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41232D-page 194  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 16-8:  
MAXIMUM IDD vs. VDD OEVXETRRCFMOoSdCe(EXTRC MODE)  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
4 MHz  
1 MHz  
600  
400  
200  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-9:  
IDD vs. VDD OVER FOSC (LFINTOSC MODE, 31 kHz)  
LFINTOSC Mode, 31KHZ  
80  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
70  
60  
50  
40  
30  
20  
10  
0
Maximum  
Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41232D-page 195  
PIC12F635/PIC16F636/639  
FIGURE 16-10:  
IDD vs. VDD OVER FOSC (LP MODE)  
70  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
60  
50  
40  
30  
20  
10  
0
32 kHz Maximum  
32 kHz Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-11:  
TYPICAL IDD vs. FOSC OVER VDD (HFINTOSC MODE)  
1,600  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
1,400  
1,200  
1,000  
800  
5.0V  
4.0V  
3.0V  
2.0V  
600  
400  
200  
0
125 kHz  
250 kHz  
500 kHz  
1 MHz  
2 MHz  
4 MHz  
8 MHz  
FOSC  
DS41232D-page 196  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 16-12:  
MAXIMUM IDD vs. FOSC OVER VDD (HFINTOSC MODE)  
HFINTOSC  
2,000  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
4.0V  
3.0V  
600  
2.0V  
400  
200  
0
125 kHz  
250 kHz  
500 kHz  
1 MHz  
2 MHz  
4 MHz  
8 MHz  
FOSC  
FIGURE 16-13:  
TYPICAL IPD vs. VDD (SLETEyPpiMcaOl DE, ALL PERIPHERALS DISABLED)  
0.45  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41232D-page 197  
PIC12F635/PIC16F636/639  
FIGURE 16-14:  
MAXIMUM IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
18.0  
Typical: Statistical Mean @25°C  
16.0  
14.0  
12.0  
10.0  
8.0  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
6.0  
4.0  
Max. 85°C  
3.5  
2.0  
0.0  
2.0  
2.5  
3.0  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-15:  
COMPARATOR IPD vs. VDD (BOTH COMPARATORS ENABLED)  
180  
160  
140  
120  
100  
80  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Maximum  
Typical  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41232D-page 198  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 16-16:  
BOR IPD vs. VDD OVER TEMPERATURE  
160  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
140  
120  
100  
80  
Maximum  
Typical  
60  
40  
20  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-17:  
TYPICAL WDT IPD vs. VDD OVER TEMPERATURE  
Typical  
3.0  
Typical:StatisticalMean@25°C
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41232D-page 199  
PIC12F635/PIC16F636/639  
FIGURE 16-18:  
MAXIMUM WDT IPD vs. VDD OVER TEMPERATURE  
Maximum  
25.0  
20.0  
15.0  
10.0  
5.0  
Max. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 85°C  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-19:  
WDT PERIOD vs. VDD OVER TEMPERATURE  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
Max. (125°C)  
Max. (85°C)  
Typical  
Minimum  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41232D-page 200  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 16-20:  
WDT PERIOD vs. TEMPERVAdTdU=R5EV OVER VDD (5.0V)  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
Maximum  
Typical  
Minimum  
-40°C  
25°C  
85°C  
125°C  
Temperature (°C)  
FIGURE 16-21:  
CVREF IPD vs. VDD OVERHTigEhMRPaEngReATURE (HIGH RANGE)  
140  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
120  
100  
80  
60  
40  
20  
0
Max. 125°C  
Max. 85°C  
Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41232D-page 201  
PIC12F635/PIC16F636/639  
FIGURE 16-22:  
CVREF IPD vs. VDD OVER TEMPERATURE (LOW RANGE)  
180  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
160  
140  
120  
100  
80  
Max. 125°C  
Max. 85°C  
Typical  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-23:  
VOL vs. IOL OVER TEMPERATURE (VDD = 3.0V)  
(VDD = 3V, -40×C TO 125×C)  
0.8  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Max. 125°C  
Max. 85°C  
Typical 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
DS41232D-page 202  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 16-24:  
VOL vs. IOL OVER TEMPERATURE (VDD = 5.0V)  
0.45  
Typical: Statistical Mean @25°C  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
FIGURE 16-25:  
VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V)  
3.5  
3.0  
2.5  
2.0  
1.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
1.0  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
IOH (mA)  
© 2007 Microchip Technology Inc.  
DS41232D-page 203  
PIC12F635/PIC16F636/639  
FIGURE 16-26:  
VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V)  
5.5  
5.0  
4.5  
4.0  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
3.5  
3.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-4.5  
-5.0  
IOH (mA)  
FIGURE 16-27:  
TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
1.7  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41232D-page 204  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 16-28:  
SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VIH Max. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
VIH Min. -40°C  
VIL Max. -40°C  
VIL Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-29:  
T1OSC IPD vs. VDD OVER TEMPERATURE (32 kHz)  
45.0  
Typical: Statistical Mean @25°C  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
3.5  
0.0  
2.0  
2.5  
3.0  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41232D-page 205  
PIC12F635/PIC16F636/639  
FIGURE 16-30:  
COMPARATOR RESPONSE TIME (RISING EDGE)  
531  
806  
1000  
900  
800  
700  
Max. 125°C  
Max. 85°C  
VCM = VDD - 1.5V)/2  
V+ input = VCM  
V- input = Transition from VCM + 100MV to VCM - 20MV  
Note:  
600  
500  
400  
300  
200  
100  
Typ. 25°C  
Min. -40°C  
0
2.0  
2.5  
4.0  
5.5  
VDD (V)  
FIGURE 16-31:  
COMPARATOR RESPONSE TIME (FALLING EDGE)  
1000  
900  
800  
700  
Max. 125°C  
Max. 85°C  
VCM = VDD - 1.5V)/2  
600  
500  
400  
300  
200  
100  
0
Note:  
V+ input = VCM  
V- input = Transition from VCM - 100MV to VCM + 20MV  
Typ. 25°C  
Min. -40°C  
2.0  
2.5  
4.0  
5.5  
VDD (V)  
DS41232D-page 206  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 16-32:  
LFINTOSC FREQUENCY vs. VDD OVER TEMPERATURE (31 kHz)  
LFINTOSC 31Khz  
45,000  
40,000  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5,000  
Max. -40°C  
Typ. 25°C  
Min. 85°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-33:  
TYPICAL HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
16  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
14  
85°C  
12  
25°C  
10  
-40°C  
8
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41232D-page 207  
PIC12F635/PIC16F636/639  
FIGURE 16-34:  
MAXIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
-40C to +85C  
25  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
20  
15  
10  
5
85°C  
25°C  
-40°C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-35:  
MINIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
10  
9
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
8
7
85°C  
6
25°C  
5
-40°C  
4
3
2
1
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41232D-page 208  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 16-36:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-37:  
TYPICAL HFINTOSC FREQUENCY CHANGE OVER DEVICE VDD (85°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41232D-page 209  
PIC12F635/PIC16F636/639  
FIGURE 16-38:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (125°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-39:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (-40°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41232D-page 210  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
17.0 PACKAGING INFORMATION  
17.1 Package Marking Information  
8-Lead PDIP  
Example  
12F635/P  
XXXXXXXX  
XXXXXNNN  
YYWW  
e
3
017  
0610  
8-Lead SOIC  
Example  
12F635/  
XXXXXXXX  
XXXXYYWW  
e
3
SN  
0610  
017  
NNN  
8-Lead DFN (4x4x0.9 mm)  
Example  
XXXXXX  
XXXXXX  
YYWW  
NNN  
PIC12F  
635/MF  
0610  
017  
8-Lead DFN-S (6x5 mm)  
Example  
XXXXXXX  
XXXXXXX  
XXYYWW  
NNN  
PICXXF  
XXX-I/  
MF0610  
017  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
*
Standard PIC device marking consists of Microchip part number, year code, week code and traceability  
code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip  
Sales Office. For QTP devices, any special marking adders are included in QTP price.  
© 2007 Microchip Technology Inc.  
DS41232D-page 211  
PIC12F635/PIC16F636/639  
17.1 Package Marking Information (Continued)  
14-Lead PDIP  
Example  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
PIC16F636-I/P  
0610017  
YYWWNNN  
14-Lead SOIC  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
PIC16F636  
-I/SL  
e
3
0610017  
14-Lead TSSOP  
Example  
XXXXXXXX  
YYWW  
F636/ST  
0610  
017  
NNN  
16-Lead QFN  
Example  
XXXXXXX  
XXXXXXX  
YYWWNNN  
16F636  
-I/ML  
0610017  
20-Lead SSOP  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16F639  
-I/SS  
e
3
YYWWNNN  
0610017  
DS41232D-page 212  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
17.2 Package Details  
The following sections give the technical details of the packages.  
8-Lead Plastic Dual In-Line (P or PA) – 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
Units  
INCHES  
Dimension Limits  
MIN  
NOM  
8
MAX  
Number of Pins  
Pitch  
N
e
.100 BSC  
Top to Seating Plane  
A
.210  
.195  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.290  
.240  
.348  
.115  
.008  
.040  
.014  
.130  
.310  
.250  
.365  
.130  
.010  
.060  
.018  
.325  
.280  
.400  
.150  
.015  
.070  
.022  
.430  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located with the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-018B  
© 2007 Microchip Technology Inc.  
DS41232D-page 213  
PIC12F635/PIC16F636/639  
8-Lead Plastic Small Outline (SN or OA) – Narrow, 3.90 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
8
1.27 BSC  
Overall Height  
A
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
1.25  
0.10  
§
0.25  
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
Chamfer (optional)  
Foot Length  
E1  
D
h
3.90 BSC  
4.90 BSC  
0.25  
0.40  
0.50  
1.27  
L
Footprint  
L1  
φ
1.04 REF  
Foot Angle  
0°  
0.17  
0.31  
5°  
8°  
Lead Thickness  
Lead Width  
c
0.25  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-057B  
DS41232D-page 214  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
e
D
b
N
N
L
E
E2  
K
EXPOSED  
PAD  
1
2
2
1
NOTE 1  
NOTE 1  
D2  
BOTTOM VIEW  
TOP VIEW  
A3  
A
A1  
NOTE 2  
Units  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
8
0.80 BSC  
0.90  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
D
0.02  
Contact Thickness  
Overall Length  
Exposed Pad Width  
Overall Width  
0.20 REF  
4.00 BSC  
2.20  
E2  
E
0.00  
2.80  
4.00 BSC  
3.00  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
D2  
b
0.00  
0.25  
0.30  
0.20  
3.60  
0.35  
0.65  
0.30  
L
0.55  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package may have one or more exposed tie bars at ends.  
3. Package is saw singulated.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-131C  
© 2007 Microchip Technology Inc.  
DS41232D-page 215  
PIC12F635/PIC16F636/639  
8-Lead Plastic Dual Flat, No Lead Package (MF) – 6x5 mm Body [DFN-S]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
e
D
L
b
N
N
K
E
E2  
EXPOSED PAD  
NOTE 1  
NOTE 1  
1
2
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
NOTE 2  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
8
MAX  
Number of Pins  
Pitch  
N
e
1.27 BSC  
0.85  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
D
0.01  
Contact Thickness  
Overall Length  
Overall Width  
0.20 REF  
5.00 BSC  
6.00 BSC  
4.00  
E
Exposed Pad Length  
Exposed Pad Width  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
D2  
E2  
b
3.90  
2.20  
0.35  
0.50  
0.20  
4.10  
2.40  
0.48  
0.75  
2.30  
0.40  
L
0.60  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package may have one or more exposed tie bars at ends.  
3. Package is saw singulated.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-122B  
DS41232D-page 216  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
14-Lead Plastic Dual In-Line (P or PD) – 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
Units  
INCHES  
NOM  
14  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
.100 BSC  
Top to Seating Plane  
A
.210  
.195  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.290  
.240  
.735  
.115  
.008  
.045  
.014  
.130  
.310  
.250  
.750  
.130  
.010  
.060  
.018  
.325  
.280  
.775  
.150  
.015  
.070  
.022  
.430  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located with the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-005B  
© 2007 Microchip Technology Inc.  
DS41232D-page 217  
PIC12F635/PIC16F636/639  
14-Lead Plastic Small Outline (SL or OD) – Narrow, 3.90 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
14  
1.27 BSC  
Overall Height  
A
1.75  
Molded Package Thickness  
Standoff §  
A2  
A1  
E
1.25  
0.10  
0.25  
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
E1  
D
h
3.90 BSC  
8.65 BSC  
Chamfer (optional)  
Foot Length  
0.25  
0.40  
0.50  
1.27  
L
Footprint  
L1  
φ
1.04 REF  
Foot Angle  
0°  
0.17  
0.31  
5°  
8°  
Lead Thickness  
Lead Width  
c
0.25  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-065B  
DS41232D-page 218  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
14  
0.65 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
A
1.20  
1.05  
0.15  
A2  
A1  
E
0.80  
0.05  
1.00  
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
6.40 BSC  
E1  
D
4.30  
4.90  
0.45  
4.40  
4.50  
5.10  
0.75  
5.00  
L
0.60  
Footprint  
L1  
φ
1.00 REF  
Foot Angle  
0°  
8°  
Lead Thickness  
Lead Width  
c
0.09  
0.20  
0.30  
b
0.19  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-087B  
© 2007 Microchip Technology Inc.  
DS41232D-page 219  
PIC12F635/PIC16F636/639  
16-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D2  
EXPOSED  
PAD  
e
E
E2  
2
1
2
b
1
K
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A3  
A
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
16  
MAX  
Number of Pins  
N
e
Pitch  
0.65 BSC  
0.90  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
E
0.02  
Contact Thickness  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
0.20 REF  
4.00 BSC  
2.65  
E2  
D
2.50  
2.80  
4.00 BSC  
2.65  
D2  
b
2.50  
0.25  
0.30  
0.20  
2.80  
0.35  
0.50  
0.30  
L
0.40  
Contact-to-Exposed Pad  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-127B  
DS41232D-page 220  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
A2  
A
φ
A1  
L1  
L
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
20  
0.65 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
A
1.75  
2.00  
1.85  
A2  
A1  
E
1.65  
0.05  
7.40  
5.00  
6.90  
0.55  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
7.80  
5.30  
7.20  
0.75  
1.25 REF  
8.20  
5.60  
7.50  
0.95  
E1  
D
L
Footprint  
L1  
c
Lead Thickness  
Foot Angle  
0.09  
0°  
0.25  
8°  
φ
4°  
Lead Width  
b
0.22  
0.38  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-072B  
© 2007 Microchip Technology Inc.  
DS41232D-page 221  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232D-page 222  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2007 Microchip Technology Inc.  
DS41232D-page 223  
PIC12F635/PIC16F636/639  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC12F635/PIC16F636/639  
DS41232D  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41232D-page 224  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
Revision A  
This is a new data sheet.  
Revision B  
Added PIC16F639 to the data sheet.  
Revision C (12/2006)  
Added Characterization data; Updated Package  
Drawings; Added Comparator Voltage Reference  
section.  
Revision D (03/2007)  
Replaced Package Drawings (Rev. AM); Replaced  
Development Support Section. Updated Product ID  
System.  
© 2007 Microchip Technology Inc.  
DS41232D-page 225  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232D-page 226  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
INDEX  
Auto Channel Selection...................................... 98  
Inactivity ............................................................. 99  
A
Absolute Maximum Ratings .............................................. 163  
AC Characteristics  
Period ................................................................. 99  
Preamble Counters............................................. 99  
Pulse Width ........................................................ 99  
RC Oscillator ...................................................... 98  
Tuning Capacitor ........................................................ 97  
Variable Attenuator..................................................... 97  
Analog Input Connection Considerations ........................... 73  
Assembler  
Analog Front-End (AFE) for PIC16F639................... 187  
Industrial and Extended ............................................ 179  
Load Conditions........................................................ 178  
AGC Settling ....................................................................... 99  
Analog Front-End  
Configuration Registers  
Summary Table ................................................ 123  
Analog Front-End (AFE) ..................................................... 97  
A/D Data Conversion of RSSI Signal........................ 118  
AFE Status Register Bit Condition............................ 127  
AGC .............................................................. 98, 99, 106  
AGC Preserve........................................................... 106  
Battery Back-up and Batteryless Operation.............. 110  
Block Diagrams  
MPASM Assembler .................................................. 160  
B
Block Diagrams  
Analog Input Model..................................................... 73  
Clock Source .............................................................. 35  
Comparator................................................................. 71  
Comparator C1........................................................... 72  
Comparator C2........................................................... 72  
Comparator Modes..................................................... 75  
Crystal Operation........................................................ 38  
External RC Mode ...................................................... 39  
Fail-Safe Clock Monitor (FSCM)................................. 45  
Functional (AFE)....................................................... 100  
In-Circuit Serial Programming Connection ............... 147  
Interrupt Logic........................................................... 140  
On-Chip Reset Circuit............................................... 131  
PIC12F635 Device ....................................................... 9  
PIC16F636 Device ..................................................... 10  
PIC16F639 Device ..................................................... 11  
RA0 Pin ...................................................................... 52  
RA1 Pin ...................................................................... 53  
RA2 Pin ...................................................................... 53  
RA3 Pin ...................................................................... 54  
RA4 Pin ...................................................................... 55  
RA5 Pin ...................................................................... 55  
RC0 and RC1 Pins ..................................................... 58  
RC2, RC3 and RC5 Pins............................................ 58  
RC4 Pin ...................................................................... 59  
Recommended MCLR Circuit................................... 133  
Resonator Operation .................................................. 38  
Timer1 ........................................................................ 65  
TMR0/WDT Prescaler ................................................ 61  
Watchdog Timer (WDT)............................................ 143  
Brown-out Reset (BOR).................................................... 134  
Associated................................................................ 135  
Specifications ........................................................... 183  
Timing and Characteristics................................. 87, 182  
Bidirectional PKE System Application Example 102  
Functional ......................................................... 100  
LC Input Path.................................................... 101  
Output Enable Filter Timing .............................. 103  
Output Enable Filter Timing (Detailed) ............. 104  
Carrier Clock Detector ................................................ 98  
Carrier Clock Output ................................................. 114  
Examples.......................................................... 115  
Command Decoder/Controller .................................. 121  
Configuration Registers ............................................ 122  
Data Slicer .................................................................. 98  
Demodulator ....................................................... 98, 111  
De-Q’ing of Antenna Circuit ...................................... 110  
Error Detection.......................................................... 109  
Factory Calibration.................................................... 110  
Fixed Gain Amplifiers.................................................. 98  
Input Sensitivity Control ............................................ 105  
LF Field Powering/Battery Back-up  
Examples.......................................................... 110  
LFDATA Output Selection......................................... 111  
Case I ............................................................... 112  
Case II .............................................................. 112  
Low Current Modes  
Operating .......................................................... 109  
Sleep................................................................. 109  
Standby............................................................. 109  
Modulation Circuit ....................................................... 97  
Modulation Depth...................................................... 107  
Examples.......................................................... 108  
Output Enable Filter.................................................... 98  
Configurable Smart........................................... 103  
Output Enable Filter Timing (Table).......................... 105  
Power-on Reset ........................................................ 111  
RF Limiter ................................................................... 97  
RSSI.................................................................... 98, 116  
Output Path Diagram ........................................ 116  
Power-up Sequence Diagram........................... 118  
SPI Read Sequence Diagram........................... 120  
SPI Write Sequence Diagram........................... 119  
RSSI Output Current vs. Input Signal Level  
C
C Compilers  
MPLAB C18.............................................................. 160  
MPLAB C30.............................................................. 160  
Clock Sources  
External Modes........................................................... 37  
EC ...................................................................... 37  
HS ...................................................................... 38  
LP....................................................................... 38  
OST .................................................................... 37  
RC ...................................................................... 39  
XT....................................................................... 38  
Internal Modes............................................................ 39  
Frequency Selection........................................... 41  
HFINTOSC ......................................................... 39  
Example............................................................ 117  
Sensitivity Control ....................................................... 97  
Soft Reset ................................................................. 107  
SPI Interface Timing Diagram................................... 122  
Timers................................................................... 98, 99  
Alarm .................................................................. 99  
© 2007 Microchip Technology Inc.  
DS41232D-page 227  
PIC12F635/PIC16F636/639  
INTOSC ..............................................................39  
INTOSCIO...........................................................39  
LFINTOSC ..........................................................41  
Clock Switching...................................................................43  
CMCON0 Register ..............................................................80  
CMCON1 Register ..............................................................82  
Code Examples  
EECON1 Register............................................................... 92  
EECON2 (EEPROM Control 2) Register............................ 92  
EEDAT Register ................................................................. 91  
EEPROM Data Memory  
Reading ...................................................................... 93  
Write Verify................................................................. 93  
Writing ........................................................................ 93  
Electrical Specifications.................................................... 163  
Errata.................................................................................... 7  
Assigning Prescaler to Timer0 ....................................62  
Assigning Prescaler to WDT .......................................62  
Data EEPROM Read ..................................................93  
Data EEPROM Write ..................................................93  
Indirect Addressing .....................................................32  
Initializing PORTA.......................................................47  
Initializing PORTC.......................................................57  
Saving Status and W Registers in RAM ...................142  
Ultra Low-Power Wake-up Initialization ......................51  
Write Verify .................................................................93  
Code Protection ................................................................146  
Comparator .........................................................................71  
Associated registers....................................................85  
C2OUT as T1 Gate .....................................................81  
Configurations.............................................................74  
I/O Operating Modes...................................................74  
Interrupts.....................................................................77  
Operation .............................................................. 71, 76  
Operation During Sleep ..............................................79  
Response Time...........................................................77  
Synchronizing CxOUT w/Timer1.................................81  
Comparator Voltage Reference (CVREF)  
Response Time...........................................................77  
Specifications.................................................... 185, 186  
Comparator Voltage Reference (CVREF) ............................83  
Effects of a Reset........................................................79  
Specifications............................................................185  
Comparators  
C2OUT as T1 Gate .....................................................66  
Effects of a Reset........................................................79  
Specifications............................................................185  
CONFIG Register..............................................................130  
Configuration Bits..............................................................129  
CPU Features ...................................................................129  
Customer Change Notification Service .............................223  
Customer Notification Service...........................................223  
Customer Support.............................................................223  
F
Fail-Safe Clock Monitor ...................................................... 45  
Fail-Safe Condition Clearing....................................... 45  
Fail-Safe Detection ..................................................... 45  
Fail-Safe Operation..................................................... 45  
Reset or Wake-up from Sleep .................................... 45  
Firmware Instructions ....................................................... 149  
Fuses. See Configuration Bits  
G
General Purpose Register (GPR) File ................................ 18  
I
ID Locations...................................................................... 146  
In-Circuit Debugger........................................................... 147  
In-Circuit Serial Programming (ICSP)............................... 147  
Indirect Addressing, INDF and FSR Registers ................... 32  
Instruction Format............................................................. 149  
Instruction Set................................................................... 149  
ADDLW..................................................................... 151  
ADDWF..................................................................... 151  
ANDLW..................................................................... 151  
ANDWF..................................................................... 151  
BCF .......................................................................... 151  
BSF........................................................................... 151  
BTFSC...................................................................... 151  
BTFSS ...................................................................... 152  
CALL......................................................................... 152  
CLRF ........................................................................ 152  
CLRW ....................................................................... 152  
CLRWDT .................................................................. 152  
COMF ....................................................................... 152  
DECF........................................................................ 152  
DECFSZ ................................................................... 153  
GOTO ....................................................................... 153  
INCF ......................................................................... 153  
INCFSZ..................................................................... 153  
IORLW...................................................................... 153  
IORWF...................................................................... 153  
MOVF ....................................................................... 154  
MOVLW .................................................................... 154  
MOVWF.................................................................... 154  
NOP.......................................................................... 154  
RETFIE..................................................................... 155  
RETLW ..................................................................... 155  
RETURN................................................................... 155  
RLF........................................................................... 156  
RRF .......................................................................... 156  
SLEEP ...................................................................... 156  
SUBLW..................................................................... 156  
SUBWF..................................................................... 157  
SWAPF..................................................................... 157  
XORLW .................................................................... 157  
XORWF .................................................................... 157  
Summary Table ........................................................ 150  
INTCON Register................................................................ 28  
D
Data EEPROM Memory  
Associated Registers ..................................................94  
Code Protection .................................................... 91, 94  
Protection Against Spurious Write ..............................94  
Using...........................................................................93  
Data Memory.......................................................................17  
DC and AC Characteristics  
Graphs and Tables ...................................................191  
DC Characteristics  
Extended (PIC12F635/PIC16F636)..........................169  
Industrial (PIC12F635/PIC16F636)...........................167  
Industrial (PIC16F639)..............................................174  
Industrial/Extended (PIC12F635/PIC16F636) .. 166, 171  
Industrial/Extended (PIC16F639)......................173, 175  
Development Support .......................................................159  
Device Overview ...................................................................9  
E
EEADR Register .................................................................91  
EECON1 (EEPROM Control 1) Register ............................92  
DS41232D-page 228  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
Internal Oscillator Block  
INTOSC  
P
Packaging......................................................................... 211  
Specifications............................................ 180, 181  
Details....................................................................... 213  
Marking..................................................................... 211  
PCL and PCLATH............................................................... 32  
Stack........................................................................... 32  
PCON Register................................................................... 31  
PICSTART Plus Development Programmer..................... 162  
PIE1 Register ..................................................................... 29  
Pin Diagrams ............................................................ 3, 4, 5, 6  
Pinout Descriptions  
PIC12F635 ................................................................. 12  
PIC16F636 ................................................................. 13  
PIC16F639 ................................................................. 14  
PIR1 Register ..................................................................... 30  
PLVD  
Internet Address................................................................ 223  
Interrupts........................................................................... 139  
Associated Registers ................................................ 141  
Comparator................................................................. 77  
Context Saving.......................................................... 142  
Data EEPROM Memory Write .................................... 92  
Interrupt-on-Change.................................................... 50  
PORTA Interrupt-on-change..................................... 140  
RA2/INT .................................................................... 139  
Timer0....................................................................... 140  
TMR1 .......................................................................... 67  
INTOSC Specifications ............................................. 180, 181  
IOCA Register..................................................................... 50  
Associated Registers.................................................. 89  
PORTA ............................................................................... 47  
Additional Pin Functions............................................. 47  
Interrupt-on-Change ........................................... 50  
Ultra Low-Power Wake-up............................ 47, 51  
Weak Pull-down.................................................. 47  
Weak Pull-up ...................................................... 47  
Associated Registers.................................................. 56  
Pin Descriptions and Diagrams .................................. 52  
RA0/C1IN+/ICSPDAT/ULPWU Pin............................. 52  
RA1/C1IN-/Vref/ICSPCLK Pin.................................... 53  
RA2/T0CKI/INT/C1OUT Pin ....................................... 53  
RA3/MCLR/VPP PIN.................................................... 54  
RA4/T1G/OSC2/CLKOUT Pin.................................... 55  
RA5/T1CKI/OSC1/CLKIN Pin..................................... 55  
Specifications ........................................................... 181  
PORTA Register................................................................. 48  
PORTC ............................................................................... 57  
Associated Registers.................................................. 59  
RC0/C2IN+ Pin........................................................... 58  
RC2 Pin ...................................................................... 58  
RC3 Pin ...................................................................... 58  
RC4/C2OUT Pin......................................................... 59  
RC5 Pin ...................................................................... 58  
Specifications ........................................................... 181  
PORTC Register................................................................. 57  
Power Control (PCON) Register....................................... 135  
Power-Down Mode (Sleep)............................................... 145  
Power-on Reset................................................................ 132  
Power-up Timer (PWRT).................................................. 132  
Specifications ........................................................... 183  
Precision Internal Oscillator Parameters .......................... 181  
Prescaler  
K
KEELOQ ............................................................................... 95  
L
Load Conditions................................................................ 178  
M
MCLR................................................................................ 132  
Internal...................................................................... 132  
Memory Organization.......................................................... 17  
Data ............................................................................ 17  
Data EEPROM Memory.............................................. 91  
Program ...................................................................... 17  
Microchip Internet Web Site.............................................. 223  
MPLAB ASM30 Assembler, Linker, Librarian ................... 160  
MPLAB ICD 2 In-Circuit Debugger ................................... 161  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator .................................................... 161  
MPLAB Integrated Development Environment Software .. 159  
MPLAB PM3 Device Programmer .................................... 161  
MPLAB REAL ICE In-Circuit Emulator System................. 161  
MPLINK Object Linker/MPLIB Object Librarian ................ 160  
O
OPCODE Field Descriptions............................................. 149  
OPTION Register................................................................ 27  
OPTION_REG Register ...................................................... 63  
OSCCON Register.............................................................. 36  
Oscillator  
Associated registers.............................................. 46, 69  
Oscillator Module ................................................................ 35  
EC............................................................................... 35  
HFINTOSC.................................................................. 35  
HS............................................................................... 35  
INTOSC ...................................................................... 35  
INTOSCIO................................................................... 35  
LFINTOSC .................................................................. 35  
LP................................................................................ 35  
RC............................................................................... 35  
RCIO........................................................................... 35  
XT ............................................................................... 35  
Oscillator Parameters ....................................................... 180  
Oscillator Specifications.................................................... 179  
Oscillator Start-up Timer (OST)  
Shared WDT/Timer0................................................... 62  
Switching Prescaler Assignment ................................ 62  
Product Identification ........................................................ 231  
Program Memory................................................................ 17  
Program Memory Map and Stack  
PIC12F635 ................................................................. 17  
PIC16F636/639 .......................................................... 17  
Programmable Low-Voltage Detect (PLVD) Module .......... 87  
Programming, Device Instructions.................................... 149  
R
Reader Response............................................................. 224  
Read-Modify-Write Operations ......................................... 149  
Registers  
Specifications............................................................ 183  
Oscillator Switching  
Fail-Safe Clock Monitor............................................... 45  
Two-Speed Clock Start-up.......................................... 43  
OSCTUNE Register............................................................ 40  
Analog Front-End (AFE)  
AFE STATUS Register 7.................................. 127  
© 2007 Microchip Technology Inc.  
DS41232D-page 229  
PIC12F635/PIC16F636/639  
Column Parity Register 6..................................126  
T0CKI ......................................................................... 62  
Configuration Register 0 ...................................123  
Configuration Register 1 ...................................124  
Configuration Register 2 ...................................124  
Configuration Register 3 ...................................125  
Configuration Register 4 ...................................125  
Configuration Register 5 ...................................126  
CMCON0 (Comparator Control 0) ..............................80  
CMCON0 (Comparator Control) Register ...................79  
CMCON1 (Comparator Control 1) ..............................82  
CMCON1 (Comparator Control) Register ...................82  
CONFIG (Configuration Word)..................................130  
EEADR (EEPROM Address) ......................................91  
EECON1 (EEPROM Control 1)...................................92  
EEDAT (EEPROM Data) ............................................91  
INTCON (Interrupt Control).........................................28  
IOCA (Interrupt-on-change PORTA)...........................50  
LVDCON (Low-Voltage Detect Control)......................89  
OPTION_REG (OPTION) ...........................................27  
OPTION_REG (Option) ..............................................63  
OSCCON (Oscillator Control) .....................................36  
OSCTUNE (Oscillator Tuning)....................................40  
PCON (Power Control Register).................................31  
PIE1 (Peripheral Interrupt Enable 1)...........................29  
PIR1 (Peripheral Interrupt Request 1) ........................30  
PORTA........................................................................48  
PORTC .......................................................................57  
Reset Values.............................................................137  
Reset Values (Special Registers) .............................138  
STATUS......................................................................26  
T1CON........................................................................68  
TRISA (Tri-State PORTA)...........................................48  
TRISC (Tri-State PORTC) ..........................................57  
VRCON (Voltage Reference Control) .........................84  
WDA (Weak Pull-up/Pull-down Direction PORTA)......49  
WDTCON (Watchdog Timer Control)........................144  
WPUDA (Weak Pull-up/Pull-down Enable PORTA)....49  
Reset.................................................................................131  
Revision History ................................................................225  
Timer1................................................................................. 64  
Associated registers ................................................... 69  
Asynchronous Counter Mode ..................................... 66  
Reading and Writing........................................... 66  
Interrupt ...................................................................... 67  
Modes of Operation .................................................... 64  
Operation During Sleep .............................................. 67  
Oscillator..................................................................... 66  
Prescaler .................................................................... 66  
Specifications ........................................................... 184  
Timer1 Gate  
Inverting Gate..................................................... 66  
Selecting Source .......................................... 66, 81  
Synchronizing CxOUT w/Timer1 ........................ 81  
TMR1H Register......................................................... 64  
TMR1L Register.......................................................... 64  
Timers  
Timer1  
T1CON ............................................................... 68  
Timing Diagrams  
Brown-out Reset (BOR)...................................... 87, 182  
Brown-out Reset Situations ...................................... 134  
CLKOUT and I/O ...................................................... 181  
Clock Timing............................................................. 179  
Comparator Output..................................................... 71  
Fail-Safe Clock Monitor (FSCM)................................. 46  
INT Pin Interrupt ....................................................... 141  
Internal Oscillator Switch Timing ................................ 42  
Reset, WDT, OST and Power-up Timer................... 182  
Time-out Sequence on Power-up (Delayed MCLR) . 136  
Time-out Sequence on Power-up (MCLR with VDD) 136  
Timer0 and Timer1 External Clock ........................... 184  
Timer1 Incrementing Edge ......................................... 67  
Two Speed Start-up.................................................... 44  
Wake-up from Sleep through Interrupt ..................... 146  
Timing Parameter Symbology .......................................... 178  
TRISA ................................................................................. 47  
TRISA Register................................................................... 48  
TRISC Register................................................................... 57  
Two-Speed Clock Start-up Mode........................................ 43  
S
Software Simulator (MPLAB SIM).....................................160  
Special Function Registers (SFR).......................................18  
Maps  
U
Ultra Low-Power Wake-up................................ 13, 14, 47, 51  
PIC12F635..........................................................19  
PIC16F636/639...................................................20  
Summary  
V
Voltage Reference. See Comparator Voltage  
Reference (CVREF)  
Voltage References  
PIC12F635, Bank 0.............................................21  
PIC12F635, Bank 1.............................................22  
PIC12F635/PIC16F636/639, Bank 2 ..................25  
PIC16F636/639, Bank 0......................................23  
PIC16F636/639, Bank 1......................................24  
SPI Timing  
Associated registers ................................................... 85  
W
Wake-up from Sleep......................................................... 145  
Wake-up Reset (WUR)..................................................... 132  
Wake-up using Interrupts.................................................. 145  
Watchdog Timer (WDT).................................................... 143  
Associated Registers................................................ 144  
Control ...................................................................... 143  
Oscillator................................................................... 143  
Specifications ........................................................... 183  
WDA Register..................................................................... 49  
WDTCON Register ........................................................... 144  
WPUDA Register................................................................ 49  
WWW Address ................................................................. 223  
WWW, On-Line Support ....................................................... 7  
Analog Front-End (AFE) for PIC16F639 ...................190  
STATUS Register................................................................26  
T
T1CON Register..................................................................68  
Thermal Considerations....................................................177  
Time-out Sequence...........................................................135  
Timer0.................................................................................61  
Associated Registers ..................................................63  
External Clock.............................................................62  
Interrupt.......................................................................63  
Operation .............................................................. 61, 64  
Specifications............................................................184  
DS41232D-page 230  
© 2007 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
PIC12F635-E/P 301 = Extended Temp., PDIP  
package, 20 MHz, QTP pattern #301  
PIC12F635-I/S Industrial Temp., SOIC  
package, 20 MHz  
b)  
=
Device:  
PIC12F635(1, 2), PIC16F636(1, 2), PIC16F639(1, 2)  
VDD range 2.0V to 5.5V  
Temperature  
Range:  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
Package:  
MD  
MF  
ML  
P
SL  
SN  
SS  
=
Dual-Flat, No Leads, 8-pin (4x4x0.9 mm)  
Dual-Flat, No Leads, Saw Sing. (6x5 mm)  
Dual-Flat, No Leads, 16-pin (4x4x0.9 mm)  
Plastic DIP (300 mil body, 5.30 mm)  
14-lead Small Outline (3.90 mm)  
8-lead Small Outline (3.90 mm)  
=
=
=
=
=
=
Note 1:  
2:  
F
T
=
=
Standard Voltage Range  
in tape and reel PLCC.  
20-Lead Plastic Shrink Small Outline  
(5.30 mm)  
ST  
=
14-Lead Thin Shrink Small Outline (4.4 mm)  
Pattern:  
3-Digit Pattern Code for QTP (blank otherwise)  
© 2007 Microchip Technology Inc.  
DS41232D-page 231  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS41232D-page 232  
© 2007 Microchip Technology Inc.  

相关型号:

PIC12F639-E/SNQTP

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC12F639-E/SS

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC12F639-E/SSQTP

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC12F639-E/ST

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC12F639-E/STQTP

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC12F639-I/MD

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC12F639-I/MDQTP

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC12F639-I/MF

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC12F639-I/MFQTP

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC12F639-I/ML

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC12F639-I/MLQTP

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC12F639-I/P

8/14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP