PIC16C55-XTI/SOXXX [MICROCHIP]

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SOP,28PIN,PLASTIC;
PIC16C55-XTI/SOXXX
型号: PIC16C55-XTI/SOXXX
厂家: MICROCHIP    MICROCHIP
描述:

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SOP,28PIN,PLASTIC

可编程只读存储器 微控制器 光电二极管
文件: 总194页 (文件大小:2646K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C5X  
Data Sheet  
EPROM/ROM-Based 8-bit CMOS  
Microcontroller Series  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D  
®
Note the following details of the code protection feature on PICmicro MCUs.  
The PICmicro family meets the specifications contained in the Microchip Data Sheet.  
Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,  
when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-  
edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.  
The person doing so may be engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable”.  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of  
our product.  
If you have any further questions about this matter, please contact the local sales office nearest to you.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode  
and Total Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchip’s quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
DS30453D - page ii  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
EPROM/ROM-Based 8-bit CMOS Microcontroller Series  
• 12-bit wide instructions  
Devices Included in this Data Sheet:  
• 8-bit wide data path  
• PIC16C54  
• Seven or eight special function hardware registers  
• PIC16CR54  
• Two-level deep hardware stack  
• PIC16C55  
• Direct, indirect and relative addressing modes for  
• PIC16C56  
data and instructions  
• PIC16CR56  
• PIC16C57  
• PIC16CR57  
• PIC16C58  
• PIC16CR58  
Peripheral Features:  
• 8-bit real time clock/counter (TMR0) with 8-bit  
programmable prescaler  
• Power-on Reset (POR)  
Note: PIC16C5X refers to all revisions of the part  
(i.e., PIC16C54 refers to PIC16C54,  
PIC16C54A, and PIC16C54C), unless  
specifically called out otherwise.  
• Device Reset Timer (DRT)  
• Watchdog Timer (WDT) with its own on-chip  
RC oscillator for reliable operation  
• Programmable Code Protection  
• Power saving SLEEP mode  
• Selectable oscillator options:  
High-Performance RISC CPU:  
• Only 33 single word instructions to learn  
- RC:  
- XT:  
- HS:  
- LP:  
Low cost RC oscillator  
• All instructions are single cycle except for pro-  
gram branches which are two-cycle  
Standard crystal/resonator  
High speed crystal/resonator  
Power saving, low frequency crystal  
• Operating speed: DC - 40 MHz clock input  
DC - 100 ns instruction cycle  
EPROM/  
ROM  
CMOS Technology:  
Device  
PIC16C54  
Pins I/O  
RAM  
• Low power, high speed CMOS EPROM/ROM tech-  
nology  
18  
18  
18  
18  
18  
28  
28  
18  
18  
18  
28  
28  
28  
18  
18  
12  
12  
12  
12  
12  
20  
20  
12  
12  
12  
20  
20  
20  
12  
12  
512  
512  
512  
512  
512  
512  
512  
1K  
25  
25  
25  
25  
25  
24  
24  
25  
25  
25  
72  
72  
72  
73  
73  
PIC16C54A  
PIC16C54C  
PIC16CR54A  
PIC16CR54C  
PIC16C55  
• Fully static design  
• Wide operating voltage and temperature range:  
- EPROM Commercial/Industrial 2.0V to 6.25V  
- ROM Commercial/Industrial 2.0V to 6.25V  
- EPROM Extended 2.5V to 6.0V  
- ROM Extended 2.5V to 6.0V  
PIC16C55A  
PIC16C56  
• Low power consumption  
PIC16C56A  
PIC16CR56A  
PIC16C57  
1K  
- < 2 mA typical @ 5V, 4 MHz  
1K  
- 15 µA typical @ 3V, 32 kHz  
2K  
- < 0.6 µA typical standby current  
(with WDT disabled) @ 3V, 0°C to 70°C  
PIC16C57C  
PIC16CR57C  
PIC16C58B  
PIC16CR58B  
2K  
2K  
2K  
Note: In this document, figure and table titles  
refer to all varieties of the part number indi-  
cated, (i.e., The title “Figure 15-1: Load  
Conditions For Device Timing Specifica-  
2K  
tions  
-
PIC16C54A”, also refers to  
PIC16LC54A and PIC16LV54A parts),  
unless specifically called out otherwise.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 1  
PIC16C5X  
Pin Diagrams  
PDIP, SOIC, Windowed CERDIP  
PDIP, SOIC, Windowed CERDIP  
18  
17  
16  
15  
14  
RA1  
RA0  
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
T0CKI  
1  
•1  
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MCLR/VPP  
RA2  
2
3
4
5
6
7
8
9
RA3  
T0CKI  
MCLR/VPP  
VSS  
VDD  
N/C  
VSS  
N/C  
RA0  
RA1  
RA2  
RA3  
RB0  
OSC1/CLKIN  
3
OSC2/CLKOUT  
RC7  
4
5
RC6  
RB7  
RB6  
RB5  
RB4  
13  
12  
RB0  
6
RC5  
RC4  
RC3  
RB1  
RB2  
RB3  
11  
10  
7
8
RC2  
9
RC1  
RC0  
10  
11  
12  
13  
14  
RB1  
RB2  
RB3  
RB4  
RB7  
RB6  
RB5  
SSOP  
SSOP  
VSS  
1  
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MCLR/VPP  
OSC1/CLKIN  
OSC2/CLKOUT  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RA2  
RA3  
T0CKI  
MCLR/VPP  
VSS  
1  
2
3
4
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
RA1  
RA0  
OSC1/CLKIN  
OSC2/CLKOUT  
T0CKI  
VDD  
VDD  
RA0  
RA1  
RA2  
RA3  
RB0  
RB1  
RB2  
RB3  
RB4  
VSS  
5
6
7
8
VDD  
VDD  
RB7  
RB6  
RB5  
RB4  
VSS  
RB0  
RB1  
9
10  
11  
12  
13  
14  
RB2  
RB3  
9
10  
RC0  
RB7  
RB6  
RB5  
Device Differences  
Oscillator  
Selection  
(Program)  
Process  
Technology  
(Microns)  
Voltage  
Range  
ROM  
Equivalent  
MCLR  
Filter  
Device  
Oscillator  
PIC16C54  
2.5-6.25  
2.0-6.25  
2.5-5.5  
2.5-6.25  
2.5-5.5  
2.5-6.25  
2.5-5.5  
2.5-6.25  
2.5-5.5  
2.5-5.5  
2.5-6.25  
2.5-5.5  
2.5-5.5  
2.5-5.5  
2.5-5.5  
Factory  
User  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
1.2  
0.9  
0.7  
1.7  
0.7  
1.7  
0.7  
1.2  
0.7  
0.7  
1.2  
0.7  
0.7  
0.7  
0.7  
PIC16CR54A  
No  
No  
PIC16C54A  
PIC16C54C  
PIC16C55  
User  
PIC16CR54C  
Yes  
No  
Factory  
User  
PIC16C55A  
PIC16C56  
Yes  
No  
Factory  
User  
PIC16CR56A  
PIC16C56A  
PIC16C57  
Yes  
No  
Factory  
User  
PIC16C57C  
PIC16C58B  
PIC16CR54A  
PIC16CR54C  
PIC16CR56A  
PIC16CR57C  
PIC16CR58B  
PIC16CR57C  
PIC16CR58B  
N/A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
User  
Factory  
Factory  
Factory  
Factory  
Factory  
N/A  
N/A  
N/A  
N/A  
Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.  
Note: The table shown above shows the generic names of the PIC16C5X devices. For device varieties, please  
refer to Section 2.0.  
DS30453D-page 2  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
Table of Contents  
1.0 General Description...................................................................................................................................................................... 5  
2.0 PIC16C5X Device Varieties ......................................................................................................................................................... 7  
3.0 Architectural Overview ................................................................................................................................................................ 9  
4.0 Oscillator Configurations ............................................................................................................................................................ 15  
5.0 Reset.......................................................................................................................................................................................... 19  
6.0 Memory Organization................................................................................................................................................................. 25  
7.0 I/O Ports ..................................................................................................................................................................................... 35  
8.0 Timer0 Module and TMR0 Register ........................................................................................................................................... 37  
9.0 Special Features of the CPU...................................................................................................................................................... 43  
10.0 Instruction Set Summary............................................................................................................................................................ 49  
11.0 Development Support................................................................................................................................................................. 61  
12.0 Electrical Characteristics - PIC16C54/55/56/57 ......................................................................................................................... 67  
13.0 Electrical Characteristics - PIC16CR54A ................................................................................................................................... 79  
14.0 Device Characterization - PIC16C54/55/56/57/CR54A.............................................................................................................. 91  
15.0 Electrical Characteristics - PIC16C54A.................................................................................................................................... 103  
16.0 Device Characterization - PIC16C54A..................................................................................................................................... 117  
17.0 Electrical Characteristics - PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B ........................................ 131  
18.0 Device Characterization - PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B.......................................... 145  
19.0 Electrical Characteristics - PIC16C54C/C55A/C56A/C57C/C58B 40MHz............................................................................... 155  
20.0 Device Characterization - PIC16C54C/C55A/C56A/C57C/C58B 40MHz ................................................................................ 165  
21.0 Packaging Information.............................................................................................................................................................. 171  
Appendix A: Compatibility ............................................................................................................................................................. 183  
On-Line Support................................................................................................................................................................................. 189  
Reader Response.............................................................................................................................................................................. 190  
Product Identification System ............................................................................................................................................................ 191  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 3  
PIC16C5X  
NOTES:  
DS30453D-page 4  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
8-Bit EPROM/ROM-Based CMOS Microcontrollers  
1.1  
Applications  
1.0  
GENERAL DESCRIPTION  
The PIC16C5X series fits perfectly in applications rang-  
ing from high speed automotive and appliance motor  
control to low power remote transmitters/receivers,  
pointing devices and telecom processors. The EPROM  
technology makes customizing application programs  
(transmitter codes, motor speeds, receiver frequen-  
cies, etc.) extremely fast and convenient. The small  
footprint packages, for through hole or surface mount-  
ing, make this microcontroller series perfect for applica-  
tions with space limitations. Low cost, low power, high  
performance ease of use and I/O flexibility make the  
PIC16C5X series very versatile even in areas where no  
microcontroller use has been considered before (e.g.,  
timer functions, replacement of “glue” logic in larger  
systems, co-processor applications).  
The PIC16C5X from Microchip Technology is a family  
of low cost, high performance, 8-bit fully static,  
EPROM/ROM-based CMOS microcontrollers. It  
employs a RISC architecture with only 33 single word/  
single cycle instructions. All instructions are single  
cycle except for program branches which take two  
cycles. The PIC16C5X delivers performance in an  
order of magnitude higher than its competitors in the  
same price category. The 12-bit wide instructions are  
highly symmetrical resulting in 2:1 code compression  
over other 8-bit microcontrollers in its class. The easy  
to use and easy to remember instruction set reduces  
development time significantly.  
The PIC16C5X products are equipped with special fea-  
tures that reduce system cost and power requirements.  
The Power-on Reset (POR) and Device Reset Timer  
(DRT) eliminate the need for external RESET circuitry.  
There are four oscillator configurations to choose from,  
including the power saving LP (Low Power) oscillator  
and cost saving RC oscillator. Power saving SLEEP  
mode, Watchdog Timer and Code Protection features  
improve system cost, power and reliability.  
The UV erasable CERDIP packaged versions are ideal  
for code development, while the cost effective One  
Time Programmable (OTP) versions are suitable for  
production in any volume. The customer can take full  
advantage of Microchip’s price leadership in OTP  
microcontrollers, while benefiting from the OTP’s  
flexibility.  
The PIC16C5X products are supported by a full fea-  
tured macro assembler, a software simulator, an in-cir-  
cuit emulator, a low cost development programmer and  
a full featured programmer. All the tools are supported  
on IBM PC and compatible machines.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 5  
PIC16C5X  
TABLE 1-1:  
PIC16C5X FAMILY OF DEVICES  
Features  
PIC16C54  
PIC16CR54  
PIC16C55  
PIC16C56  
PIC16CR56  
Maximum Operation Frequency  
EPROM Program Memory (x12 words)  
ROM Program Memory (x12 words)  
RAM Data Memory (bytes)  
Timer Module(s)  
40 MHz  
512  
20 MHz  
40 MHz  
512  
40 MHz  
1K  
20 MHz  
512  
25  
1K  
25  
24  
25  
25  
TMR0  
12  
TMR0  
12  
TMR0  
20  
TMR0  
12  
TMR0  
12  
I/O Pins  
Number of Instructions  
Packages  
33  
33  
33  
33  
33  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
28-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
20-pin SSOP 20-pin SSOP 28-pin SSOP 20-pin SSOP 20-pin SSOP  
All PICmicro® Family devices have Power-on Reset, selectable Watchdog Timer, selectable Code Protect and high  
I/O current capability.  
Features  
PIC16C57  
PIC16CR57  
PIC16C58  
PIC16CR58  
Maximum Operation Frequency  
EPROM Program Memory (x12 words)  
ROM Program Memory (x12 words)  
RAM Data Memory (bytes)  
Timer Module(s)  
40 MHz  
2K  
20 MHz  
40 MHz  
2K  
20 MHz  
2K  
2K  
72  
72  
73  
73  
TMR0  
20  
TMR0  
20  
TMR0  
12  
TMR0  
12  
I/O Pins  
Number of Instructions  
Packages  
33  
33  
33  
33  
28-pin DIP, SOIC; 28-pin DIP, SOIC; 18-pin DIP, SOIC; 18-pin DIP, SOIC;  
28-pin SSOP 28-pin SSOP 20-pin SSOP 20-pin SSOP  
All PICmicro® Family devices have Power-on Reset, selectable Watchdog Timer, selectable Code Protect and high  
I/O current capability.  
DS30453D-page 6  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
2.3  
Quick-Turnaround-Production  
(QTP) Devices  
2.0  
PIC16C5X DEVICE VARIETIES  
A variety of frequency ranges and packaging options  
are available. Depending on application and production  
requirements, the proper device option can be selected  
using the information in this section. When placing  
orders, please use the PIC16C5X Product Identifica-  
tion System at the back of this data sheet to specify the  
correct part number.  
Microchip offers a QTP Programming Service for fac-  
tory production orders. This service is made available  
for users who choose not to program a medium to high  
quantity of units and whose code patterns have stabi-  
lized. The devices are identical to the OTP devices but  
with all EPROM locations and configuration bit options  
already programmed by the factory. Certain code and  
prototype verification procedures apply before produc-  
tion shipments are available. Please contact your  
Microchip Technology sales office for more details.  
For the PIC16C5X family of devices, there are four  
device types, as indicated in the device number:  
1. C, as in PIC16C54C. These devices have  
EPROM program memory and operate over the  
standard voltage range.  
2.4  
Serialized Quick-Turnaround-  
Production (SQTPSM) Devices  
2. LC, as in PIC16LC54A. These devices have  
EPROM program memory and operate over an  
extended voltage range.  
Microchip offers the unique programming service  
where a few user defined locations in each device are  
programmed with different serial numbers. The serial  
numbers may be random, pseudo-random or sequen-  
tial. The devices are identical to the OTP devices but  
with all EPROM locations and configuration bit options  
already programmed by the factory.  
3. CR, as in PIC16CR54A. These devices have  
ROM program memory and operate over the  
standard voltage range.  
4. LCR, as in PIC16LCR54A. These devices have  
ROM program memory and operate over an  
extended voltage range.  
Serial programming allows each device to have a  
unique number which can serve as an entry code,  
password or ID number.  
2.1  
UV Erasable Devices (EPROM)  
The UV erasable versions offered in CERDIP pack-  
ages, are optimal for prototype development and pilot  
programs.  
2.5  
Read Only Memory (ROM) Devices  
Microchip offers masked ROM versions of several of  
the highest volume parts, giving the customer a low  
cost option for high volume, mature products.  
UV erasable devices can be programmed for any of the  
four oscillator configurations. Microchip’s  
PICSTART Plus(1) and PRO MATE programmers  
both support programming of the PIC16C5X. Third  
party programmers also are available. Refer to the  
Third Party Guide (DS00104) for a list of sources.  
2.2  
One-Time-Programmable (OTP)  
Devices  
The availability of OTP devices is especially useful for  
customers expecting frequent code changes and  
updates, or small volume applications.  
The OTP devices, packaged in plastic packages, per-  
mit the user to program them once. In addition to the  
program memory, the configuration bits must be pro-  
grammed.  
Note 1: PIC16C55A and PIC16C57C devices  
require OSC2 not to be connected while  
programming with PICSTART® Plus  
programmer.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 7  
PIC16C5X  
NOTES:  
DS30453D-page 8  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
The PIC16C5X device contains an 8-bit ALU and work-  
ing register. The ALU is a general purpose arithmetic  
unit. It performs arithmetic and Boolean functions  
between data in the working register and any register  
file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16C5X family can be  
attributed to a number of architectural features com-  
monly found in RISC microprocessors. To begin with,  
the PIC16C5X uses a Harvard architecture in which  
program and data are accessed on separate buses.  
This improves bandwidth over traditional von Neumann  
architecture where program and data are fetched on  
the same bus. Separating program and data memory  
further allows instructions to be sized differently than  
the 8-bit wide data word. Instruction opcodes are 12  
bits wide making it possible to have all single word  
instructions. A 12-bit wide program memory access  
bus fetches a 12-bit instruction in a single cycle. A two-  
stage pipeline overlaps fetch and execution of instruc-  
tions. Consequently, all instructions (33) execute in a  
single cycle except for program branches.  
The ALU is 8 bits wide and capable of addition, subtrac-  
tion, shift and logical operations. Unless otherwise  
mentioned, arithmetic operations are two's comple-  
ment in nature. In two-operand instructions, typically  
one operand is the W (working) register. The other  
operand is either a file register or an immediate con-  
stant. In single operand instructions, the operand is  
either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register. The C and DC bits  
operate as a borrow and digit borrow out bit, respec-  
tively, in subtraction. See the SUBWF and ADDWF  
instructions for examples.  
The PIC16C54/CR54 and PIC16C55 address 512 x 12  
of program memory, the PIC16C56/CR56 address  
1K x 12 of program memory, and the PIC16C57/CR57  
and PIC16C58/CR58 address 2K x 12 of program  
memory. All program memory is internal.  
A simplified block diagram is shown in Figure 3-1, with  
the corresponding device pins described in Table 3-1  
(for PIC16C54/56/58) and Table 3-2 (for PIC16C55/  
57).  
The PIC16C5X can directly or indirectly address its  
register files and data memory. All special function reg-  
isters including the program counter are mapped in the  
data memory. The PIC16C5X has a highly orthogonal  
(symmetrical) instruction set that makes it possible to  
carry out any operation on any register using any  
addressing mode. This symmetrical nature and lack of  
‘special optimal situations’ make programming with the  
PIC16C5X simple yet efficient. In addition, the learning  
curve is reduced significantly.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 9  
PIC16C5X  
FIGURE 3-1:  
PIC16C5X SERIES BLOCK DIAGRAM  
9-11  
T0CKI  
PIN  
OSC1 OSC2 MCLR  
CONFIGURATION WORD  
9-11  
EPROM/ROM  
512 X 12 TO  
2048 X 12  
STACK 1  
STACK2  
“DISABLE” “OSC  
PC  
SELECT”  
WATCHDOG  
TIMER  
12  
2
“CODE  
OSCILLATOR/  
TIMING &  
CONTROL  
PROTECT”  
INSTRUCTION  
REGISTER  
WDT TIME  
OUT  
CLKOUT  
WDT/TMR0  
PRESCALER  
9
12  
8
“SLEEP”  
INSTRUCTION  
DECODER  
6
“OPTION”  
OPTION REG.  
FROM W  
DIRECT ADDRESS  
DIRECT RAM  
ADDRESS  
GENERAL  
PURPOSE  
REGISTER  
FILE  
5
5-7  
8
(SRAM)  
24, 25, 72 or  
73 Bytes  
STATUS  
TMR0  
FSR  
8
DATA BUS  
8
W
ALU  
FROM W  
8
FROM W  
4
FROM W  
8
8
4
8
“TRIS 5”  
“TRIS 6”  
“TRIS 7”  
TRISB PORTB  
TRISA PORTA  
TRISC  
PORTC  
8
4
8
RC<7:0>  
(28-Pin  
RA<3:0>  
RB<7:0>  
Devices Only)  
DS30453D-page 10  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
TABLE 3-1:  
Pin Name  
PINOUT DESCRIPTION - PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16C58,  
PIC16CR58  
Pin Number  
SOIC SSOP  
Pin Buffer  
Type Type  
Description  
DIP  
RA0  
RA1  
RA2  
RA3  
17  
18  
1
17  
18  
1
19  
20  
1
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
2
2
2
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
6
7
8
6
7
8
7
8
9
10  
11  
12  
13  
14  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
9
9
10  
11  
12  
13  
10  
11  
12  
13  
T0CKI  
3
3
3
I
ST  
Clock input to Timer0. Must be tied to VSS or VDD, if not in  
use, to reduce current consumption.  
MCLR/VPP  
4
4
4
I
ST  
Master clear (RESET) input/programming voltage input.  
This pin is an active low RESET to the device. Voltage on  
the MCLR/VPP pin must not exceed VDD to avoid unin-  
tended entering of Programming mode.  
OSC1/CLKIN  
16  
15  
16  
15  
18  
17  
I
ST  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator  
in crystal Oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT, which has 1/4 the frequency of OSC1 and  
denotes the instruction cycle rate.  
VDD  
VSS  
14  
5
14  
5
15,16  
5,6  
P
P
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Legend: I = input, O = output, I/O = input/output, P = power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger  
input  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 11  
PIC16C5X  
TABLE 3-2:  
Pin Name  
PINOUT DESCRIPTION - PIC16C55, PIC16C57, PIC16CR57  
Pin Number  
Pin Buffer  
Type Type  
Description  
DIP  
SOIC SSOP  
RA0  
RA1  
RA2  
RA3  
6
7
8
9
6
7
8
9
5
6
7
8
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
10  
11  
12  
13  
14  
15  
16  
17  
10  
11  
12  
13  
14  
15  
16  
17  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
10  
11  
12  
13  
15  
16  
17  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
18  
19  
20  
21  
22  
23  
24  
25  
18  
19  
20  
21  
22  
23  
24  
25  
18  
19  
20  
21  
22  
23  
24  
25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
T0CKI  
1
1
2
I
ST  
Clock input to Timer0. Must be tied to VSS or VDD, if not in  
use, to reduce current consumption.  
MCLR  
28  
28  
28  
I
ST  
Master clear (RESET) input. This pin is an active low  
RESET to the device.  
OSC1/CLKIN  
27  
26  
27  
26  
27  
26  
I
ST  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator  
in crystal Oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and  
denotes the instruction cycle rate.  
VDD  
VSS  
N/C  
2
4
2
4
3,4  
1,14  
P
P
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Unused, do not connect.  
3,5  
3,5  
Legend: I = input, O = output, I/O = input/output, P = power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger  
input  
DS30453D-page 12  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
3.1  
Clocking Scheme/Instruction  
Cycle  
3.2  
Instruction Flow/Pipelining  
An Instruction Cycle consists of four Q cycles (Q1, Q2,  
Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
then two cycles are required to complete the instruction  
(Example 3-1).  
The clock input (OSC1/CLKIN pin) is internally divided  
by four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the pro-  
gram counter is incremented every Q1 and the instruc-  
tion is fetched from program memory and latched into  
the instruction register in Q4. It is decoded and exe-  
cuted during the following Q1 through Q4. The clocks  
and instruction execution flow are shown in Figure 3-2  
and Example 3-1.  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register in cycle Q1. This instruc-  
tion is then decoded and executed during the Q2, Q3  
and Q4 cycles. Data memory is read during Q2 (oper-  
and read) and written during Q4 (destination write).  
FIGURE 3-2:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Q4  
PC  
Internal  
phase  
clock  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1:  
INSTRUCTION PIPELINE FLOW  
1. MOVLW H’55’  
2. MOVWF PORTB  
3. CALL SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3  
Flush  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction  
is “flushed” from the pipeline, while the new instruction is being fetched and then executed.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 13  
PIC16C5X  
NOTES:  
DS30453D-page 14  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 4-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR  
LP OSC  
4.0  
4.1  
OSCILLATOR  
CONFIGURATIONS  
CONFIGURATION)  
Oscillator Types  
PIC16C5Xs can be operated in four different oscillator  
modes. The user can program two configuration bits  
(FOSC1:FOSC0) to select one of these four modes:  
Clock from  
ext. system  
OSC1  
PIC16C5X  
OSC2  
1. LP:  
2. XT:  
3. HS:  
4. RC:  
Low Power Crystal  
Open  
Crystal/Resonator  
High Speed Crystal/Resonator  
Resistor/Capacitor  
TABLE 4-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS -  
PIC16C5X, PIC16CR5X  
Note: Not all oscillator selections available for all  
parts. See Section 9.1.  
Osc  
Resonator Cap. Range Cap. Range  
Type  
Freq  
C1  
C2  
4.2  
Crystal Oscillator/Ceramic  
Resonators  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68-100 pF  
15-33 pF  
10-22 pF  
68-100 pF  
15-33 pF  
10-22 pF  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 4-1). The  
PIC16C5X oscillator design requires the use of a paral-  
lel cut crystal. Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturers specifications.  
When in XT, LP or HS modes, the device can have an  
external clock source drive the OSC1/CLKIN pin  
(Figure 4-2).  
HS  
8.0 MHz  
16.0 MHz  
10-22 pF  
10 pF  
10-22 pF  
10 pF  
These values are for design guidance only. Since  
each resonator has its own characteristics, the user  
should consult the resonator manufacturer for  
appropriate values of external components.  
TABLE 4-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR -  
PIC16C5X, PIC16CR5X  
FIGURE 4-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP OSC  
CONFIGURATION)  
Osc  
Type  
Crystal  
Freq  
32 kHz(1)  
Cap.Range Cap. Range  
C1  
C2  
LP  
XT  
15 pF  
15 pF  
(1)  
C1  
OSC1  
100 kHz  
200 kHz  
455 kHz  
1 MHz  
2 MHz  
4 MHz  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
15 pF  
200-300 pF  
100-200 pF  
15-100 pF  
15-30 pF  
15 pF  
PIC16C5X  
SLEEP  
XTAL  
OSC2  
(3)  
RF  
To internal  
logic  
15 pF  
15 pF  
(2)  
RS  
(1)  
HS  
4 MHz  
8 MHz  
20 MHz  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
C2  
Note 1: See Capacitor Selection tables for  
recommended values of C1 and C2.  
2: A series resistor (RS) may be required  
for AT strip cut crystals.  
Note 1: For VDD > 4.5V, C1 = C2 30 pF is  
recommended.  
These values are for design guidance only. Rs may  
be required in HS mode as well as XT mode to avoid  
overdriving crystals with low drive level specification.  
Since each crystal has its own characteristics, the  
user should consult the crystal manufacturer for  
appropriate values of external components.  
3: RF varies with the Oscillator mode cho-  
sen (approx. value = 10 M).  
Note: If you change from this device to another  
device, please verify oscillator characteris-  
tics in your application.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 15  
PIC16C5X  
Figure 4-4 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental fre-  
quency of the crystal. The inverter performs a 180-  
degree phase shift in a series resonant oscillator cir-  
cuit. The 330 kresistors provide the negative feed-  
back to bias the inverters in their linear region.  
4.3  
External Crystal Oscillator Circuit  
Either a prepackaged oscillator or a simple oscillator  
circuit with TTL gates can be used as an external crys-  
tal oscillator circuit. Prepackaged oscillators provide a  
wide operating range and better stability. A well-  
designed crystal oscillator will provide good perfor-  
mance with TTL gates. Two types of crystal oscillator  
circuits can be used: one with parallel resonance, or  
one with series resonance.  
FIGURE 4-4:  
EXAMPLE OF EXTERNAL  
SERIES RESONANT  
CRYSTAL OSCILLATOR  
CIRCUIT (USING XT, HS  
OR LP OSCILLATOR  
MODE)  
Figure 4-3 shows an implementation example of a par-  
allel resonant oscillator circuit. The circuit is designed  
to use the fundamental frequency of the crystal. The  
74AS04 inverter performs the 180-degree phase shift  
that a parallel oscillator requires. The 4.7 kresistor  
provides the negative feedback for stability. The 10 kΩ  
potentiometers bias the 74AS04 in the linear region.  
This circuit could be used for external oscillator  
designs.  
To Other  
Devices  
330K  
330K  
PIC16C5X  
74AS04  
74AS04  
74AS04  
CLKIN  
0.1 µF  
XTAL  
Open  
OSC2  
FIGURE 4-3:  
EXAMPLE OF EXTERNAL  
PARALLEL RESONANT  
CRYSTAL OSCILLATOR  
CIRCUIT (USING XT, HS  
OR LP OSCILLATOR  
MODE)  
+5V  
To Other  
Devices  
10K  
74AS04  
PIC16C5X  
4.7K  
CLKIN  
74AS04  
Open  
OSC2  
10K  
XTAL  
10K  
20 pF  
20 pF  
DS30453D-page 16  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 4-5:  
RC OSCILLATOR MODE  
4.4  
RC Oscillator  
VDD  
For timing insensitive applications, the RC device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used.  
REXT  
Internal  
clock  
OSC1  
N
CEXT  
VSS  
PIC16C5X  
OSC2/CLKOUT  
Fosc/4  
Figure 4-5 shows how the R/C combination is con-  
nected to the PIC16C5X. For REXT values below  
2.2 k, the oscillator operation may become unstable,  
or stop completely. For very high REXT values  
(e.g., 1 M) the oscillator becomes sensitive to noise,  
humidity and leakage. Thus, we recommend keeping  
REXT between 3 kand 100 k.  
Note: If you change from this device to another  
device, please verify oscillator characteris-  
tics in your application.  
Although the oscillator will operate with no external  
capacitor (CEXT = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or pack-  
age lead frame capacitance.  
The Electrical Specifications sections show RC fre-  
quency variation from part to part due to normal pro-  
cess variation. The variation is larger for larger R (since  
leakage current variation will affect RC frequency more  
for large R) and for smaller C (since variation of input  
capacitance will affect RC frequency more).  
Also, see the Electrical Specifications sections for vari-  
ation of oscillator frequency due to VDD for given REXT/  
CEXT values as well as frequency variation due to oper-  
ating temperature for given R, C, and VDD values.  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin, and can be used for test pur-  
poses or to synchronize other logic.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 17  
PIC16C5X  
NOTES:  
DS30453D-page 18  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
The TO and PD bits (STATUS <4:3>) are set or cleared  
depending on the different RESET conditions (Table 5-  
1). These bits may be used to determine the nature of  
the RESET.  
5.0  
RESET  
PIC16C5X devices may be RESET in one of the follow-  
ing ways:  
• Power-On Reset (POR)  
Table 5-3 lists a full description of RESET states of all  
registers. Figure 5-1 shows a simplified block diagram  
of the On-chip Reset circuit.  
• MCLR Reset (normal operation)  
• MCLR Wake-up Reset (from SLEEP)  
• WDT Reset (normal operation)  
• WDT Wake-up Reset (from SLEEP)  
Table 5-1 shows these RESET conditions for the PCL  
and STATUS registers.  
Some registers are not affected in any RESET condi-  
tion. Their status is unknown on POR and unchanged  
in any other RESET. Most other registers are reset to a  
“RESET state” on Power-On Reset (POR), MCLR or  
WDT Reset. A MCLR or WDT wake-up from SLEEP  
also results in a device RESET, and not a continuation  
of operation before SLEEP.  
TABLE 5-1:  
STATUS BITS AND THEIR SIGNIFICANCE  
Condition  
TO  
PD  
Power-On Reset  
1
u
1
u
MCLR Reset (normal operation)  
1
0
MCLR Wake-up (from SLEEP)  
WDT Reset (normal operation)  
0
0
1
0
WDT Wake-up (from SLEEP)  
Legend: u= unchanged, x= unknown, = unimplemented read as ’0’.  
TABLE 5-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH RESET  
Value on  
MCLR and  
WDT Reset  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
03h  
STATUS  
PA2  
PA1  
PA0  
TO  
PD  
Z
DC  
C
0001 1xxx 000q quuu  
Legend: u = unchanged, x = unknown, q = see Table 5-1 for possible values.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 19  
PIC16C5X  
TABLE 5-3:  
RESET CONDITIONS FOR ALL REGISTERS  
Register  
Address  
Power-On Reset  
MCLR or WDT Reset  
W
N/A  
N/A  
xxxx xxxx  
1111 1111  
uuuu uuuu  
1111 1111  
--11 1111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
000q quuu  
1uuu uuuu  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
TRIS  
OPTION  
INDF  
N/A  
--11 1111  
00h  
xxxx xxxx  
TMR0  
PCL  
01h  
xxxx xxxx  
02h  
1111 1111  
STATUS  
FSR(1)  
PORTA  
PORTB  
PORTC(2)  
03h  
0001 1xxx  
04h  
1xxx xxxx  
05h  
---- xxxx  
06h  
xxxx xxxx  
07h  
xxxx xxxx  
General Purpose Register Files  
07-7Fh  
xxxx xxxx  
Legend: x= unknown  
u= unchanged  
-= unimplemented, read as ’0’  
q= see tables in Table 5-1 for possible values.  
Note 1: These values are valid for PIC16C57/CR57/C58/CR58. For the PIC16C54/CR54/C55/C56/CR56, the  
value on RESET is 111x xxxx and for MCLR and WDT Reset, the value is 111u uuuu.  
2: General purpose register file on PIC16C54/CR54/C56/CR56/C58/CR58.  
FIGURE 5-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
Power-Up  
Detect  
POR (Power-On Reset)  
VDD  
MCLR/VPP pin  
WDT Time-out  
RESET  
8-bit Asynch  
S
R
Q
Q
WDT  
On-Chip  
RC OSC  
Ripple Counter  
(Device Reset  
Timer)  
CHIP RESET  
DS30453D-page 20  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 5-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
5.1  
Power-On Reset (POR)  
The PIC16C5X family incorporates on-chip Power-On  
Reset (POR) circuitry which provides an internal chip  
RESET for most power-up situations. To use this fea-  
ture, the user merely ties the MCLR/VPP pin to VDD. A  
simplified block diagram of the on-chip Power-On  
Reset circuit is shown in Figure 5-1.  
VDD  
D
VDD  
R
R1  
The Power-On Reset circuit and the Device Reset  
Timer (Section 5.2) circuit are closely related. On  
power-up, the RESET latch is set and the DRT is  
RESET. The DRT timer begins counting once it detects  
MCLR to be high. After the time-out period, which is  
typically 18 ms, it will RESET the reset latch and thus  
end the on-chip RESET signal.  
MCLR  
PIC16C5X  
C
• External Power-On Reset circuit is required  
only if VDD power-up is too slow. The diode D  
helps discharge the capacitor quickly when  
VDD powers down.  
A power-up example where MCLR is not tied to VDD is  
shown in Figure 5-3. VDD is allowed to rise and stabilize  
before bringing MCLR high. The chip will actually come  
out of reset TDRT msec after MCLR goes high.  
• R < 40 kis recommended to make sure that  
voltage drop across R does not violate the  
device electrical specification.  
In Figure 5-4, the on-chip Power-On Reset feature is  
being used (MCLR and VDD are tied together). The VDD  
is stable before the start-up timer times out and there is  
no problem in getting a proper RESET. However,  
Figure 5-5 depicts a problem situation where VDD rises  
too slowly. The time between when the DRT senses a  
high on the MCLR/VPP pin, and when the MCLR/VPP  
pin (and VDD) actually reach their full value, is too long.  
In this situation, when the start-up timer times out, VDD  
has not reached the VDD (min) value and the chip is,  
therefore, not guaranteed to function correctly. For  
such situations, we recommend that external RC cir-  
cuits be used to achieve longer POR delay times  
(Figure 5-2).  
• R1 = 100to 1 kwill limit any current flow-  
ing into MCLR from external capacitor C in the  
event of MCLR pin breakdown due to Electro-  
static Discharge (ESD) or Electrical Over-  
stress (EOS).  
Note: When the device starts normal operation  
(exits the RESET condition), device oper-  
ating parameters (voltage, frequency, tem-  
perature, etc.) must be met to ensure  
operation. If these conditions are not met,  
the device must be held in RESET until the  
operating conditions are met.  
For more information on PIC16C5X POR, see Power-  
Up Considerations - AN522 in the Embedded Control  
Handbook.  
The POR circuit does not produce an internal RESET  
when VDD declines.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 21  
PIC16C5X  
FIGURE 5-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
FIGURE 5-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE  
TIME  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
FIGURE 5-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE  
TIME  
V1  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
When VDD rises slowly, the TDRT time-out expires long before VDD has reached its final value. In  
this example, the chip will RESET properly if, and only if, V1 VDD min  
DS30453D-page 22  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 5-7:  
EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 2  
5.2  
Device Reset Timer (DRT)  
The Device Reset Timer (DRT) provides an 18 ms  
nominal time-out on RESET regardless of Oscillator  
mode used. The DRT operates on an internal RC oscil-  
lator. The processor is kept in RESET as long as the  
DRT is active. The DRT delay allows VDD to rise above  
VDD min., and for the oscillator to stabilize.  
VDD  
VDD  
R1  
R2  
Q1  
Oscillator circuits based on crystals or ceramic resona-  
tors require a certain time after power-up to establish a  
stable oscillation. The on-chip DRT keeps the device in  
a RESET condition for approximately 18 ms after the  
voltage on the MCLR/VPP pin has reached a logic high  
(VIH) level. Thus, external RC networks connected to  
the MCLR input are not required in most cases, allow-  
ing for savings in cost-sensitive and/or space restricted  
applications.  
MCLR  
40K  
PIC16C5X  
This brown-out circuit is less expensive, although  
less accurate. Transistor Q1 turns off when VDD  
is below a certain level such that:  
The Device Reset time delay will vary from chip to chip  
due to VDD, temperature, and process variation. See  
AC parameters for details.  
R1  
= 0.7V  
VDD •  
R1 + R2  
The DRT will also be triggered upon a Watchdog Timer  
time-out. This is particularly important for applications  
using the WDT to wake the PIC16C5X from SLEEP  
mode automatically.  
FIGURE 5-8:  
EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 3  
5.3  
Reset on Brown-Out  
VDD  
A brown-out is a condition where device power (VDD)  
dips below its minimum value, but not to zero, and then  
recovers. The device should be RESET in the event of  
a brown-out.  
VDD  
bypass  
capacitor  
VDD  
MCP809  
To RESET PIC16C5X devices when a brown-out  
occurs, external brown-out protection circuits may be  
built, as shown in Figure 5-6, Figure 5-7 and Figure 5-  
8.  
RST  
MCLR  
Vss  
PIC16C5X  
This brown-out protection circuit employs Micro-  
chip Technology’s MCP809 microcontroller  
supervisor. The MCP8XX and MCP1XX families  
of supervisors provide push-pull and open collec-  
tor outputs with both "active high and active low"  
RESET pins. There are 7 different trip point selec-  
tions to accommodate 5V and 3V systems.  
FIGURE 5-6:  
EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 1  
VDD  
33K  
VDD  
Q1  
10K  
MCLR  
40K  
PIC16C5X  
This circuit will activate RESET when VDD goes below Vz  
+ 0.7V (where Vz = Zener voltage).  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 23  
PIC16C5X  
NOTES:  
DS30453D-page 24  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 6-2:  
PIC16C56/CR56  
PROGRAM MEMORY MAP  
AND STACK  
6.0  
MEMORY ORGANIZATION  
PIC16C5X memory is organized into program memory  
and data memory. For devices with more than 512  
bytes of program memory, a paging scheme is used.  
Program memory pages are accessed using one or two  
STATUS Register bits. For devices with a data memory  
register file of more than 32 registers, a banking  
scheme is used. Data memory banks are accessed  
using the File Selection Register (FSR).  
PC<9:0>  
10  
CALL, RETLW  
Stack Level 1  
Stack Level 2  
000h  
On-chip Program  
0FFh  
Memory (Page 0)  
100h  
6.1  
Program Memory Organization  
The PIC16C54, PIC16CR54 and PIC16C55 have a 9-  
bit Program Counter (PC) capable of addressing a 512  
1FFh  
200h  
x
12 program memory space (Figure 6-1). The  
On-chip Program  
Memory (Page 1)  
2FFh  
300h  
PIC16C56 and PIC16CR56 have a 10-bit Program  
Counter (PC) capable of addressing a 1K x 12 program  
memory space (Figure 6-2). The PIC16CR57,  
PIC16C58 and PIC16CR58 have an 11-bit Program  
Counter capable of addressing a 2K x 12 program  
memory space (Figure 6-3). Accessing a location  
above the physically implemented address will cause a  
wraparound.  
RESET Vector  
3FFh  
FIGURE 6-3:  
PIC16C57/CR57/C58/  
CR58 PROGRAM  
MEMORY MAP AND  
STACK  
A NOPat the RESET vector location will cause a restart  
at location 000h. The RESET vector for the PIC16C54,  
PIC16CR54 and PIC16C55 is at 1FFh. The RESET  
vector for the PIC16C56 and PIC16CR56 is at 3FFh.  
The RESET vector for the PIC16C57, PIC16CR57,  
PIC16C58, and PIC16CR58 is at 7FFh. See  
Section 6.5 for additional information using CALLand  
GOTOinstructions.  
PC<10:0>  
11  
CALL, RETLW  
Stack Level 1  
Stack Level 2  
000h  
FIGURE 6-1:  
PIC16C54/CR54/C55  
PROGRAM MEMORY MAP  
AND STACK  
On-chip Program  
0FFh  
Memory (Page 0)  
100h  
1FFh  
200h  
PC<8:0>  
9
On-chip Program  
2FFh  
CALL, RETLW  
Memory (Page 1)  
300h  
Stack Level 1  
Stack Level 2  
3FFh  
400h  
On-chip Program  
4FFh  
000h  
Memory (Page 2)  
500h  
On-chip  
Program  
Memory  
5FFh  
600h  
0FFh  
100h  
On-chip Program  
6FFh  
Memory (Page 3)  
700h  
RESET Vector  
7FFh  
RESET Vector  
1FFh  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 25  
PIC16C5X  
FIGURE 6-4:  
PIC16C54, PIC16CR54,  
PIC16C55, PIC16C56,  
PIC16CR56 REGISTER  
FILE MAP  
6.2  
Data Memory Organization  
Data memory is composed of registers, or bytes of  
RAM. Therefore, data memory for a device is specified  
by its register file. The register file is divided into two  
functional groups: Special Function Registers and  
General Purpose Registers.  
File Address  
INDF(1)  
TMR0  
PCL  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
The Special Function Registers include the TMR0 reg-  
ister, the Program Counter (PC), the Status Register,  
the I/O registers (ports) and the File Select Register  
(FSR). In addition, Special Purpose Registers are used  
to control the I/O port configuration and prescaler  
options.  
STATUS  
FSR  
PORTA  
PORTB  
The General Purpose Registers are used for data and  
control information under command of the instructions.  
For the PIC16C54, PIC16CR54, PIC16C56 and  
PIC16CR56, the register file is composed of 7 Special  
Function Registers and 25 General Purpose Registers  
(Figure 6-4).  
PORTC(2)  
08h  
General  
Purpose  
Registers  
For the PIC16C55, the register file is composed of 8  
Special Function Registers and 24 General Purpose  
Registers.  
For the PIC16C57 and PIC16CR57, the register file is  
composed of 8 Special Function Registers, 24 General  
Purpose Registers and up to 48 additional General  
Purpose Registers that may be addressed using a  
banking scheme (Figure 6-5).  
1Fh  
Note 1: Not a physical register. See  
Section 6.7.  
2: PIC16C55 only, in all other devices this  
is implemented as a a general purpose  
register.  
For the PIC16C58 and PIC16CR58, the register file is  
composed of 7 Special Function Registers, 25 General  
Purpose Registers and up to 48 additional General  
Purpose Registers that may be addressed using a  
banking scheme (Figure 6-6).  
6.2.1  
GENERAL PURPOSE REGISTER  
FILE  
The register file is accessed either directly or indirectly  
through the File Select Register (FSR). The FSR Reg-  
ister is described in Section 6.7.  
DS30453D-page 26  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 6-5:  
PIC16C57/CR57 REGISTER FILE MAP  
FSR<6:5>  
00  
01  
10  
11  
File Address  
00h  
INDF(1)  
TMR0  
PCL  
20h  
40h  
60h  
01h  
02h  
03h  
04h  
05h  
06h  
STATUS  
FSR  
Addresses map back to  
addresses in Bank 0.  
PORTA  
PORTB  
07h  
08h  
PORTC  
General  
Purpose  
Registers  
2Fh  
30h  
4Fh  
50h  
6Fh  
0Fh  
10h  
70h  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
1Fh  
3Fh  
5Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note 1: Not a physical register. See Section 6.7.  
FIGURE 6-6:  
PIC16C58/CR58 REGISTER FILE MAP  
FSR<6:5>  
00  
01  
10  
11  
File Address  
00h  
INDF(1)  
TMR0  
PCL  
20h  
40h  
60h  
01h  
02h  
03h  
04h  
05h  
STATUS  
FSR  
Addresses map back to  
addresses in Bank 0.  
PORTA  
PORTB  
06h  
07h  
General  
Purpose  
Registers  
2Fh  
30h  
4Fh  
50h  
6Fh  
0Fh  
10h  
70h  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
1Fh  
3Fh  
5Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note 1: Not a physical register. See Section 6.7.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 27  
PIC16C5X  
6.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral functions to control the opera-  
tion of the device (Table 6-1).  
The Special Registers can be classified into two sets.  
The Special Function Registers associated with the  
“core” functions are described in this section. Those  
related to the operation of the peripheral features are  
described in the section for each peripheral feature.  
TABLE 6-1:  
Address  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on  
Power-on  
Reset  
Details  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3  
Bit 2 Bit 1 Bit 0  
1111 1111  
--11 1111  
xxxx xxxx  
xxxx xxxx  
1111 1111  
0001 1xxx  
1xxx xxxx(3)  
---- xxxx  
N/A  
N/A  
00h  
01h  
02h  
TRIS  
I/O Control Registers (TRISA, TRISB, TRISC)  
35  
30  
32  
38  
31  
29  
OPTION  
INDF  
Contains control bits to configure Timer0 and Timer0/WDT prescaler  
Uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
TMR0  
PCL  
(1)  
Low order 8 bits of PC  
03h  
04h  
05h  
06h  
07h  
STATUS  
FSR  
PA2  
PA1  
PA0  
TO  
PD  
Z
DC  
C
Indirect data memory address pointer  
32  
35  
35  
35  
PORTA  
PORTB  
PORTC  
RA3  
RB3  
RC3  
RA2  
RB2  
RC2  
RA1  
RB1  
RC1  
RA0  
RB0  
RC0  
RB7  
RC7  
RB6  
RC6  
RB5  
RC5  
RB4  
RC4  
xxxx xxxx  
xxxx xxxx  
(2)  
Legend: x = unknown, u = unchanged, – = unimplemented, read as '0' (if applicable). Shaded cells = unimplemented or unused  
Note 1: The upper byte of the Program Counter is not directly accessible. See Section 6.5 for an explanation of how to access  
these bits.  
2: File address 07h is a General Purpose Register on the PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16C58 and  
PIC16CR58.  
3: These values are valid for PIC16C57/CR57/C58/CR58. For the PIC16C54/CR54/C55/C56/CR56, the value on RESET is  
111x xxxx and for MCLR and WDT Reset, the value is 111u uuuu.  
DS30453D-page 28  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
writable. Therefore, the result of an instruction with the  
STATUS Register as destination may be different than  
intended.  
6.3  
STATUS Register  
This register contains the arithmetic status of the ALU,  
the RESET status and the page preselect bits for pro-  
gram memories larger than 512 words.  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS Register  
as 000u u1uu(where u= unchanged).  
The STATUS Register can be the destination for any  
instruction, as with any other register. If the STATUS  
Register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
It is recommended, therefore, that only BCF, BSFand  
MOVWFinstructions be used to alter the STATUS Reg-  
ister because these instructions do not affect the Z, DC  
or C bits from the STATUS Register. For other instruc-  
tions which do affect STATUS Bits, see Section 10.0,  
Instruction Set Summary.  
REGISTER 6-1:  
R/W-0  
PA2  
bit 7  
STATUS REGISTER (ADDRESS: 03h)  
R/W-0  
PA1  
R/W-0  
PA0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 0  
bit 7:  
PA2: This bit unused at this time.  
Use of the PA2 bit as a general purpose read/write bit is not recommended, since this may affect upward  
compatibility with future products.  
bit 6-5:  
PA<1:0>: Program page preselect bits (PIC16C56/CR56)(PIC16C57/CR57)(PIC16C58/CR58)  
00= Page 0 (000h - 1FFh) - PIC16C56/CR56, PIC16C57/CR57, PIC16C58/CR58  
01= Page 1 (200h - 3FFh) - PIC16C56/CR56, PIC16C57/CR57, PIC16C58/CR58  
10= Page 2 (400h - 5FFh) - PIC16C57/CR57, PIC16C58/CR58  
11= Page 3 (600h - 7FFh) - PIC16C57/CR57, PIC16C58/CR58  
Each page is 512 words.  
Using the PA<1:0> bits as general purpose read/write bits in devices which do not use them for program  
page preselect is not recommended since this may affect upward compatibility with future products.  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (for ADDWFand SUBWFinstructions)  
ADDWF  
1= A carry from the 4th low order bit of the result occurred  
0= A carry from the 4th low order bit of the result did not occur  
SUBWF  
1= A borrow from the 4th low order bit of the result did not occur  
0= A borrow from the 4th low order bit of the result occurred  
bit 0:  
C: Carry/borrow bit (for ADDWF, SUBWFand RRF, RLFinstructions)  
ADDWF  
SUBWF  
RRF or RLF  
1= A carry occurred  
0= A carry did not occur  
1= A borrow did not occur  
0= A borrow occurred  
Loaded with LSb or MSb, respectively  
Legend:  
R = Readable bit  
W = Writable bit  
1 = bit is set  
U = Unimplemented bit, read as ‘0’  
0 = bit is cleared x = bit is unknown  
-n = Value at POR  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 29  
PIC16C5X  
6.4  
OPTION Register  
The OPTION Register is a 6-bit wide, write-only regis-  
ter which contains various control bits to configure the  
Timer0/WDT prescaler and Timer0.  
By executing the OPTION instruction, the contents of  
the W Register will be transferred to the OPTION Reg-  
ister. A RESET sets the OPTION<5:0> bits.  
REGISTER 6-2:  
U-0  
OPTION REGISTER  
U-0  
W-1  
T0CS  
W-1  
W-1  
W-1  
W-1  
W-1  
PS0  
bit 0  
TOSE  
PSA  
PS2  
PS1  
bit 7  
bit 7-6:  
bit 5:  
Unimplemented: Read as ‘0’  
T0CS: Timer0 clock source select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
bit 4:  
T0SE: Timer0 source edge select bit  
1 = Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
bit 3:  
PSA: Prescaler assignment bit  
1= Prescaler assigned to the WDT  
0= Prescaler assigned to Timer0  
bit 2-0:  
PS<2:0>: Prescaler rate select bits  
Bit Value  
Timer0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
1 = bit is set  
U = Unimplemented bit, read as ‘0’  
0 = bit is cleared x = bit is unknown  
DS30453D-page 30  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 6-8:  
LOADING OF PC  
6.5  
Program Counter  
BRANCH INSTRUCTIONS  
- PIC16C56/PIC16CR56  
As a program instruction is executed, the Program  
Counter (PC) will contain the address of the next pro-  
gram instruction to be executed. The PC value is  
increased by one, every instruction cycle, unless an  
instruction changes the PC.  
GOTO Instruction  
10  
9
8
7
0
0
PC  
PCL  
For a GOTOinstruction, bits 8:0 of the PC are provided  
by the GOTOinstruction word. The PC Latch (PCL) is  
mapped to PC<7:0> (Figure 6-7, Figure 6-8 and  
Figure 6-9).  
Instruction Word  
2
PA<1:0>  
7
0
For the PIC16C56, PIC16CR56, PIC16C57,  
PIC16CR57, PIC16C58 and PIC16CR58, a page num-  
ber must be supplied as well. Bit5 and bit6 of the STA-  
TUS Register provide page information to bit9 and  
bit10 of the PC (Figure 6-8 and Figure 6-9).  
0
STATUS  
CALL or Modify PCL Instruction  
For a CALL instruction, or any instruction where the  
PCL is the destination, bits 7:0 of the PC again are pro-  
vided by the instruction word. However, PC<8> does  
not come from the instruction word, but is always  
cleared (Figure 6-7 and Figure 6-8).  
10  
9
8
7
0
0
PC  
PCL  
Instruction Word  
Instructions where the PCL is the destination, or modify  
PCL instructions, include MOVWF PCL, ADDWF PCL,  
and BSF PCL,5.  
Reset to ‘0’  
PA<1:0>  
2
7
0
0
For the PIC16C56, PIC16CR56, PIC16C57,  
PIC16CR57, PIC16C58 and PIC16CR58, a page num-  
ber again must be supplied. Bit5 and bit6 of the STA-  
TUS Register provide page information to bit9 and  
bit10 of the PC (Figure 6-8 and Figure 6-9).  
STATUS  
FIGURE 6-9:  
LOADING OF PC  
BRANCH INSTRUCTIONS  
- PIC16C57/PIC16CR57,  
AND PIC16C58/  
Note: Because PC<8> is cleared in the CALL  
instruction, or any modify PCL instruction,  
all subroutine calls or computed jumps are  
limited to the first 256 locations of any pro-  
gram memory page (512 words long).  
PIC16CR58  
GOTO Instruction  
10  
9
8
7
0
FIGURE 6-7:  
LOADING OF PC  
PC  
PCL  
BRANCH INSTRUCTIONS  
- PIC16C54, PIC16CR54,  
PIC16C55  
Instruction Word  
2
PA<1:0>  
GOTO Instruction  
7
0
8
7
0
PCL  
PC  
STATUS  
CALL or Modify PCL Instruction  
Instruction Word  
10  
9
8
7
0
CALL or Modify PCL Instruction  
PC  
PCL  
8
7
0
PCL  
PC  
Instruction Word  
Reset to ‘0’  
PA<1:0>  
Reset to ’0’  
Instruction Word  
2
7
0
STATUS  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 31  
PIC16C5X  
6.5.1  
PAGING CONSIDERATIONS –  
PIC16C56/CR56, PIC16C57/CR57  
AND PIC16C58/CR58  
If the Program Counter is pointing to the last address of  
a selected memory page, when it increments it will  
cause the program to continue in the next higher page.  
However, the page preselect bits in the STATUS Reg-  
ister will not be updated. Therefore, the next GOTO,  
CALLor modify PCL instruction will send the program  
to the page specified by the page preselect bits (PA0 or  
PA<1:0>).  
For example, a NOP at location 1FFh (page 0) incre-  
ments the PC to 200h (page 1). A GOTO xxxat 200h  
will return the program to address xxh on page 0  
(assuming that PA<1:0> are clear).  
To prevent this, the page preselect bits must be  
updated under program control.  
6.5.2  
EFFECTS OF RESET  
The Program Counter is set upon a RESET, which  
means that the PC addresses the last location in the  
last page (i.e., the RESET vector).  
The STATUS Register page preselect bits are cleared  
upon a RESET, which means that page 0 is pre-  
selected.  
Therefore, upon a RESET, a GOTO instruction at the  
RESET vector location will automatically cause the pro-  
gram to jump to page 0.  
6.6  
Stack  
PIC16C5X devices have a 10-bit or 11-bit wide, two-  
level hardware push/pop stack.  
A CALLinstruction will push the current value of stack  
1 into stack 2 and then push the current program  
counter value, incremented by one, into stack level 1. If  
more than two sequential CALL’s are executed, only  
the most recent two return addresses are stored.  
A RETLWinstruction will pop the contents of stack level  
1 into the program counter and then copy stack level 2  
contents into level 1. If more than two sequential  
RETLW’s are executed, the stack will be filled with the  
address previously stored in level 2. Note that the  
W Register will be loaded with the literal value specified  
in the instruction. This is particularly useful for the  
implementation of data look-up tables within the pro-  
gram memory.  
For the RETLW instruction, the PC is loaded with the  
Top of Stack (TOS) contents. All of the devices covered  
in this data sheet have a two-level stack. The stack has  
the same bit width as the device PC, therefore, paging  
is not an issue when returning from a subroutine.  
DS30453D-page 32  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
EXAMPLE 6-2:  
HOW TO CLEAR RAM  
USING INDIRECT  
ADDRESSING  
6.7  
Indirect Data Addressing; INDF  
and FSR Registers  
The INDF Register is not  
a physical register.  
MOVLW  
H’10’  
FSR  
;initialize pointer  
; to RAM  
Addressing INDF actually addresses the register  
whose address is contained in the FSR Register (FSR  
is a pointer). This is indirect addressing.  
MOVWF  
CLRF  
NEXT  
INDF  
FSR,F  
FSR,4  
NEXT  
;clear INDF Register  
;inc pointer  
;all done?  
INCF  
BTFSC  
GOTO  
EXAMPLE 6-1:  
INDIRECT ADDRESSING  
;NO, clear next  
CONTINUE  
• Register file 08 contains the value 10h  
• Register file 09 contains the value 0Ah  
• Load the value 08 into the FSR Register  
:
;YES, continue  
The FSR is either a 5-bit (PIC16C54, PIC16CR54,  
PIC16C55, PIC16C56, PIC16CR56) or 7-bit  
(PIC16C57, PIC16CR57, PIC16C58, PIC16CR58)  
wide register. It is used in conjunction with the INDF  
Register to indirectly address the data memory area.  
• A read of the INDF Register will return the value  
of 10h  
• Increment the value of the FSR Register by one  
(FSR = 09h)  
• A read of the INDF register now will return the  
value of 0Ah.  
The FSR<4:0> bits are used to select data memory  
addresses 00h to 1Fh.  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF Register indirectly results in a  
no-operation (although STATUS bits may be affected).  
PIC16C54, PIC16CR54, PIC16C55, PIC16C56,  
PIC16CR56: These do not use banking. FSR<6:5> bits  
are unimplemented and read as '1's.  
A simple program to clear RAM locations 10h-1Fh  
using indirect addressing is shown in Example 6-2.  
PIC16C57, PIC16CR57, PIC16C58, PIC16CR58:  
FSR<6:5> are the bank select bits and are used to  
select the bank to be addressed (00 = bank 0,  
01= bank 1, 10= bank 2, 11= bank 3).  
FIGURE 6-10:  
DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
(FSR)  
(opcode)  
(FSR)  
3
2
1
4
0
5
3
2
1
0
6
4
5
6
location select  
bank select  
location select  
bank  
00  
01  
10  
11  
00h  
Addresses map back to  
addresses in Bank 0.  
Data  
Memory  
0Fh  
10h  
(1)  
1Fh  
3Fh  
Bank 1  
5Fh  
Bank 2  
7Fh  
Bank 3  
Bank 0  
Note 1: For register map detail see Section 6.2.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 33  
PIC16C5X  
NOTES:  
DS30453D-page 34  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
7.5  
I/O Interfacing  
7.0  
I/O PORTS  
The equivalent circuit for an I/O port pin is shown in  
Figure 7-1. All ports may be used for both input and  
output operation. For input operations these ports are  
non-latching. Any input must be present until read by  
an input instruction (e.g., MOVF PORTB, W). The out-  
puts are latched and remain unchanged until the output  
latch is rewritten. To use a port pin as output, the corre-  
sponding direction control bit (in TRISA, TRISB,  
TRISC) must be cleared (= 0). For use as an input, the  
corresponding TRIS bit must be set. Any I/O pin can be  
programmed individually as input or output.  
As with any other register, the I/O Registers can be  
written and read under program control. However, read  
instructions (e.g., MOVF PORTB,W) always read the I/O  
pins independent of the pin’s input/output modes. On  
RESET, all I/O ports are defined as input (inputs are at  
hi-impedance) since the I/O control registers (TRISA,  
TRISB, TRISC) are all set.  
7.1  
PORTA  
PORTA is a 4-bit I/O Register. Only the low order 4 bits  
are used (RA<3:0>). Bits 7-4 are unimplemented and  
read as '0's.  
FIGURE 7-1:  
EQUIVALENT CIRCUIT  
FOR A SINGLE I/O PIN  
7.2  
PORTB  
PORTB is an 8-bit I/O Register (PORTB<7:0>).  
Data  
Bus  
D
7.3  
PORTC  
Q
Data  
Latch  
VDD  
PORTC is an 8-bit I/O Register for PIC16C55,  
PIC16C57 and PIC16CR57.  
WR  
Port  
Q
CK  
P
PORTC is a General Purpose Register for PIC16C54,  
PIC16CR54, PIC16C56, PIC16CR56, PIC16C58 and  
PIC16CR58.  
N
I/O  
W
pin(1)  
Reg  
7.4  
TRIS Registers  
D
Q
Q
TRIS  
Latch  
VSS  
The Output Driver Control Registers are loaded with  
the contents of the W Register by executing the  
TRIS ‘f’  
CK  
TRISfinstruction. A '1' from a TRIS Register bit puts  
the corresponding output driver in a hi-impedance  
(input) mode. A '0' puts the contents of the output data  
latch on the selected pins, enabling the output buffer.  
RESET  
Note: A read of the ports reads the pins, not the  
output data latches. That is, if an output  
driver on a pin is enabled and driven high,  
but the external system is holding it low, a  
read of the port will indicate that the pin is  
low.  
RD Port  
Note 1: I/O pins have protection diodes to VDD and VSS.  
The TRIS Registers are “write-only” and are set (output  
drivers disabled) upon RESET.  
TABLE 7-1:  
SUMMARY OF PORT REGISTERS  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
N/A  
05h  
06h  
07h  
TRIS  
I/O Control Registers (TRISA, TRISB, TRISC)  
1111 1111 1111 1111  
---- xxxx ---- uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
PORTA  
PORTB  
PORTC  
RA3  
RB3  
RC3  
RA2  
RB2  
RC2  
RA1  
RB1  
RC1  
RA0  
RB0  
RC0  
RB7  
RC7  
RB6  
RC6  
RB5  
RC5  
RB4  
RC4  
Legend: x= unknown, u= unchanged, — = unimplemented, read as '0', Shaded cells = unimplemented, read as ‘0’  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 35  
PIC16C5X  
EXAMPLE 7-1:  
READ-MODIFY-WRITE  
INSTRUCTIONS ON AN I/O  
PORT  
7.6  
I/O Programming Considerations  
BI-DIRECTIONAL I/O PORTS  
7.6.1  
Some instructions operate internally as read followed  
by write operations. The BCFand BSFinstructions, for  
example, read the entire port into the CPU, execute the  
bit operation and re-write the result. Caution must be  
used when these instructions are applied to a port  
where one or more pins are used as input/outputs. For  
example, a BSFoperation on bit5 of PORTB will cause  
all eight bits of PORTB to be read into the CPU, bit5 to  
be set and the PORTB value to be written to the output  
latches. If another bit of PORTB is used as a bi-direc-  
tional I/O pin (say bit0) and it is defined as an input at  
this time, the input signal present on the pin itself would  
be read into the CPU and rewritten to the data latch of  
this particular pin, overwriting the previous content. As  
long as the pin stays in the Input mode, no problem  
occurs. However, if bit0 is switched into Output mode  
later on, the content of the data latch may now be  
unknown.  
;Initial PORT Settings  
; PORTB<7:4> Inputs  
; PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-ups and are  
;not connected to other circuitry  
;
;
;
PORT latch PORT pins  
---------- ----------  
BCF  
BCF  
MOVLW H’3F’  
TRIS PORTB  
PORTB, 7  
PORTB, 6  
;01pp pppp  
;10pp pppp  
;
11pp pppp  
11pp pppp  
;10pp pppp  
10pp pppp  
;
;Note that the user may have expected the pin  
;values to be 00pp pppp. The 2nd BCF caused  
;RB7 to be latched as the pin value (High).  
7.6.2  
SUCCESSIVE OPERATIONS ON I/O  
PORTS  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle (Figure 7-  
2). Therefore, care must be exercised if a write followed  
by a read operation is carried out on the same I/O port.  
The sequence of instructions should allow the pin volt-  
age to stabilize (load dependent) before the next  
instruction, which causes that file to be read into the  
CPU, is executed. Otherwise, the previous state of that  
pin may be read into the CPU rather than the new state.  
When in doubt, it is better to separate these instruc-  
tions with a NOP or another instruction not accessing  
this I/O port.  
Example 7-1 shows the effect of two sequential read-  
modify-write instructions (e.g., BCF, BSF, etc.) on an  
I/O port.  
A pin actively outputting a high or a low should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”, “wired-and”).  
The resulting high output currents may damage the  
chip.  
FIGURE 7-2:  
SUCCESSIVE I/O OPERATION  
Q4  
Q4  
Q4  
Q4  
Q3  
Q3  
Q3  
Q3  
Q1 Q2  
PC  
Q1 Q2  
Q1 Q2  
Q1 Q2  
PC + 3  
NOP  
PC + 1  
PC + 2  
NOP  
Instruction  
fetched  
MOVWF PORTB MOVF PORTB,W  
This example shows a write  
to PORTB followed by a read  
from PORTB.  
RB<7:0>  
Port pin  
written here  
Port pin  
sampled here  
MOVWF PORTB MOVF PORTB,W  
NOP  
Instruction  
executed  
(Write to  
PORTB)  
(Read  
PORTB)  
DS30453D-page 36  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
Counter mode is selected by setting the T0CS bit  
(OPTION<5>). In this mode, Timer0 will increment  
either on every rising or falling edge of pin T0CKI. The  
incrementing edge is determined by the source edge  
select bit T0SE (OPTION<4>). Clearing the T0SE bit  
selects the rising edge. Restrictions on the external  
clock input are discussed in detail in Section 8.1.  
8.0  
TIMER0 MODULE AND TMR0  
REGISTER  
The Timer0 module has the following features:  
• 8-bit timer/counter register, TMR0  
- Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
- Edge select for external clock  
Note: The prescaler may be used by either the  
Timer0 module or the Watchdog Timer, but  
not both.  
Figure 8-1 is a simplified block diagram of the Timer0  
module, while Figure 8-2 shows the electrical structure  
of the Timer0 input.  
The prescaler assignment is controlled in software by  
the control bit PSA (OPTION<3>). Clearing the PSA bit  
will assign the prescaler to Timer0. The prescaler is not  
readable or writable. When the prescaler is assigned to  
the Timer0 module, prescale values of 1:2, 1:4,...,  
1:256 are selectable. Section 8.2 details the operation  
of the prescaler.  
Timer mode is selected by clearing the T0CS bit  
(OPTION<5>). In Timer mode, the Timer0 module will  
increment every instruction cycle (without prescaler). If  
TMR0 register is written, the increment is inhibited for  
the following two cycles (Figure 8-3 and Figure 8-4).  
The user can work around this by writing an adjusted  
value to the TMR0 register.  
A summary of registers associated with the Timer0  
module is found in Table 8-1.  
FIGURE 8-1:  
TIMER0 BLOCK DIAGRAM  
Data Bus  
F
OSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
Clocks  
TMR0 reg  
T0CKI  
pin  
Programmable  
Prescaler(2)  
PSout  
Sync  
T0SE(1)  
(2 cycle delay)  
3
PSA(1)  
PS2, PS1, PS0(1)  
T0CS(1)  
Note 1: Bits T0CS, T0SE, PSA, PS2, PS1 and PS0 are located in the OPTION register  
(Section 6.4).  
2: The prescaler is shared with the Watchdog Timer (Figure 8-6).  
FIGURE 8-2:  
ELECTRICAL STRUCTURE OF T0CKI PIN  
RIN  
T0CKI  
pin  
(1)  
Schmitt Trigger  
Input Buffer  
N
(1)  
VSS  
VSS  
Note 1: ESD protection circuits.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 37  
PIC16C5X  
FIGURE 8-3:  
TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALER  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetch  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
T0  
T0+1  
T0+2  
NT0  
NT0  
NT0  
NT0+1  
NT0+2  
Timer0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
FIGURE 8-4:  
TIMER0 TIMING: INTERNAL CLOCK/PRESCALER 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
NT0  
Timer0  
Instruction  
Execute  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
TABLE 8-1:  
Address  
01h  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
Power-on  
Reset  
Value on  
MCLR and  
WDT Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0  
Timer0 - 8-bit real-time clock/counter  
T0CS T0SE  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
N/A  
OPTION  
PSA  
PS2  
PS1  
PS0  
Legend: x = unknown, u= unchanged, -= unimplemented. Shaded cells not used by Timer0.  
DS30453D-page 38  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple counter-type pres-  
caler so that the prescaler output is symmetrical. For  
the external clock to meet the sampling requirement,  
the ripple counter must be taken into account. There-  
fore, it is necessary for T0CKI to have a period of at  
least 4TOSC (and a small RC delay of 40 ns) divided by  
the prescaler value. The only requirement on T0CKI  
high and low time is that they do not violate the mini-  
mum pulse width requirement of 10 ns. Refer to param-  
eters 40, 41 and 42 in the electrical specification of the  
desired device.  
8.1  
Using Timer0 with an External  
Clock  
When an external clock input is used for Timer0, it must  
meet certain requirements. The external clock require-  
ment is due to internal phase clock (TOSC) synchroniza-  
tion. Also, there is a delay in the actual incrementing of  
Timer0 after synchronization.  
8.1.1  
EXTERNAL CLOCK  
SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks (Figure 8-5).  
Therefore, it is necessary for T0CKI to be high for at  
least 2TOSC (and a small RC delay of 20 ns) and low for  
at least 2TOSC (and a small RC delay of 20 ns). Refer  
to the electrical specification of the desired device.  
8.1.2  
TIMER0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the Timer0 mod-  
ule is actually incremented. Figure 8-5 shows the delay  
from the external clock edge to the timer incrementing.  
FIGURE 8-5:  
TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
External Clock Input or  
misses sampling  
Prescaler Output (1)  
(3)  
External Clock/Prescaler  
Output After Sampling  
(2)  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: External clock if no prescaler selected, prescaler output otherwise.  
2: The arrows indicate the points in time where sampling occurs.  
3: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc (duration of Q = Tosc). Therefore,  
the error in measuring the interval between two edges on Timer0 input = ± 4Tosc max.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 39  
PIC16C5X  
EXAMPLE 8-1:  
CHANGING PRESCALER  
(TIMER0WDT)  
8.2  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer (WDT), respectively (Section 9.2.1). For simplic-  
ity, this counter is being referred to as “prescaler”  
throughout this data sheet. Note that the prescaler may  
be used by either the Timer0 module or the WDT, but  
not both. Thus, a prescaler assignment for the Timer0  
module means that there is no prescaler for the WDT,  
and vice-versa.  
CLRWDT  
CLRF  
;Clear WDT  
;Clear TMR0 & Prescaler  
TMR0  
MOVLW B'00xx1111’ ;Last 3 instructions in  
this example  
;are required only if  
;desired  
;PS<2:0> are 000 or  
;001  
OPTION  
CLRWDT  
MOVLW B'00xx1xxx’ ;Set Prescaler to  
OPTION ;desired WDT rate  
The PSA and PS<2:0> bits (OPTION<3:0>) determine  
prescaler assignment and prescale ratio.  
To change prescaler from the WDT to the Timer0 mod-  
ule, use the sequence shown in Example 8-2. This  
sequence must be used even if the WDT is disabled. A  
CLRWDTinstruction should be executed before switch-  
ing the prescaler.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF 1,  
MOVWF 1, BSF 1,x, etc.) will clear the prescaler.  
When assigned to WDT, a CLRWDTinstruction will clear  
the prescaler along with the WDT. The prescaler is nei-  
ther readable nor writable. On a RESET, the prescaler  
contains all '0's.  
EXAMPLE 8-2:  
CHANGING PRESCALER  
(WDTTIMER0)  
CLRWDT  
;Clear WDT and  
;prescaler  
;Select TMR0, new  
;prescale value and  
;clock source  
8.2.1  
SWITCHING PRESCALER  
ASSIGNMENT  
MOVLW  
B'xxxx0xxx'  
The prescaler assignment is fully under software con-  
trol (i.e., it can be changed “on the fly” during program  
execution). To avoid an unintended device RESET, the  
following instruction sequence (Example 8-1) must be  
executed when changing the prescaler assignment  
from Timer0 to the WDT.  
OPTION  
DS30453D-page 40  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 8-6:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
TCY ( = FOSC/4)  
Data Bus  
8
0
1
M
U
X
1
0
M
U
X
T0CKI  
pin  
Sync  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
PSA  
0
1
8-bit Prescaler  
M
U
X
8
Watchdog  
Timer  
8 - to - 1MUX  
PS<2:0>  
PSA  
1
0
WDT Enable bit  
MUX  
PSA  
WDT  
Time-Out  
Note: T0CS, T0SE, PSA, PS<2:0> are bits in the OPTION register.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 41  
PIC16C5X  
NOTES:  
DS30453D-page 42  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
9.0  
SPECIAL FEATURES OF THE  
CPU  
What sets a microcontroller apart from other proces-  
sors are special circuits that deal with the needs of real-  
time applications. The PIC16C5X family of microcon-  
trollers have a host of such features intended to maxi-  
mize system reliability, minimize cost through  
elimination of external components, provide power sav-  
ing operating modes and offer code protection. These  
features are:  
• Oscillator Selection (Section 4.0)  
• RESET (Section 5.0)  
• Power-On Reset (Section 5.1)  
• Device Reset Timer (Section 5.2)  
• Watchdog Timer (WDT) (Section 9.2)  
• SLEEP (Section 9.3)  
• Code protection (Section 9.4)  
• ID locations (Section 9.5)  
The PIC16C5X Family has a Watchdog Timer which  
can be shut off only through configuration bit WDTE. It  
runs off of its own RC oscillator for added reliability.  
There is an 18 ms delay provided by the Device Reset  
Timer (DRT), intended to keep the chip in RESET until  
the crystal oscillator is stable. With this timer on-chip,  
most applications need no external RESET circuitry.  
The SLEEP mode is designed to offer a very low cur-  
rent Power-down mode. The user can wake up from  
SLEEP through external RESET or through a Watch-  
dog Timer time-out. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 43  
PIC16C5X  
PIC16C58B, and PIC16CR58B devices (Register 9-1).  
One bit is for code protection for the PIC16C54,  
PIC16C55, PIC16C56 and PIC16C57 devices  
(Register 9-2).  
9.1  
Configuration Bits  
Configuration bits can be programmed to select various  
device configurations. Two bits are for the selection of  
the oscillator type and one bit is the Watchdog Timer  
enable bit. Nine bits are code protection bits for the  
PIC16C54A,  
PIC16CR54C,  
PIC16CR56A,  
QTP or ROM devices have the oscillator configuration  
programmed at the factory and these parts are tested  
accordingly (see "Product Identification System" dia-  
grams in the back of this data sheet).  
PIC16CR54A,  
PIC16C55A,  
PIC16C57C,  
PIC16C54C,  
PIC16C56A,  
PIC16CR57C,  
REGISTER 9-1: CONFIGURATION WORD FOR PIC16C54A/CR54A/C54C/CR54C/C55A/C56A/  
CR56A/C57C/CR57C/C58B/CR58B  
CP  
CP  
CP  
CP  
CP  
CP  
CP  
CP  
CP  
WDTE  
FOSC1  
FOSC0  
bit 0  
bit 11  
bit 11-3: CP: Code Protection Bit  
1= Code protection off  
0= Code protection on  
bit 2:  
WDTE: Watchdog timer enable bit  
1= WDT enabled  
0= WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection Bit  
00 = LP oscillator  
01 = XT oscillator  
10 = HS oscillator  
11 = RC oscillator  
Note 1: Refer to the PIC16C5X Programming Specification (Literature Number DS30190) to determine how to  
access the configuration word.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
0 = bit is cleared x = bit is unknown  
-n = Value at POR  
1 = bit is set  
DS30453D-page 44  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
REGISTER 9-2: CONFIGURATION WORD FOR PIC16C54/C55/C56/C57  
CP  
WDTE  
FOSC1  
FOSC0  
bit 11  
bit 0  
bit 11-4: Unimplemented: Read as ‘0’  
bit 3:  
CP: Code protection bit.  
1 = Code protection off  
0= Code protection on  
bit 2:  
WDTE: Watchdog timer enable bit  
1= WDT enabled  
0= WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator selection bits(2)  
00 = LP oscillator  
01 = XT oscillator  
10 = HS oscillator  
11 = RC oscillator  
Note 1: Refer to the PIC16C5X Programming Specifications (Literature Number DS30190) to determine how to  
access the configuration word.  
2: PIC16LV54A supports XT, RC and LP oscillator only.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
1 = bit is set  
U = Unimplemented bit, read as ‘0’  
0 = bit is cleared x = bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 45  
PIC16C5X  
both. Thus, a prescaler assignment for the Timer0  
module means that there is no prescaler for the WDT,  
and vice-versa.  
9.2  
Watchdog Timer (WDT)  
The Watchdog Timer (WDT) is a free running on-chip  
RC oscillator which does not require any external com-  
ponents. This RC oscillator is separate from the RC  
oscillator of the OSC1/CLKIN pin. That means that the  
WDT will run even if the clock on the OSC1/CLKIN and  
OSC2/CLKOUT pins have been stopped, for example,  
by execution of a SLEEP instruction. During normal  
operation or SLEEP, a WDT Reset or Wake-up Reset  
generates a device RESET.  
The PSA and PS<2:0> bits (OPTION<3:0>) determine  
prescaler assignment and prescale ratio (Section 6.4).  
The WDT has a nominal time-out period of 18 ms (with  
no prescaler). If a longer time-out period is desired, a  
prescaler with a division ratio of up to 1:128 can be  
assigned to the WDT (under software control) by writ-  
ing to the OPTION register. Thus, time-out a period of  
a nominal 2.3 seconds can be realized. These periods  
vary with temperature, VDD and part-to-part process  
variations (see Device Characterization).  
The TO bit (STATUS<4>) will be cleared upon a Watch-  
dog Timer Reset (Section 6.3).  
The WDT can be permanently disabled by program-  
ming the configuration bit WDTE as a ’0’ (Section 9.1).  
Refer to the PIC16C5X Programming Specifications  
(Literature Number DS30190) to determine how to  
access the configuration word.  
Under worst case conditions (VDD = Min., Temperature  
= Max., WDT prescaler = 1:128), it may take several  
seconds before a WDT time-out occurs.  
9.2.2  
WDT PROGRAMMING  
CONSIDERATIONS  
9.2.1  
WDT PERIOD  
The CLRWDTinstruction clears the WDT and the pres-  
caler, if assigned to the WDT, and prevents it from tim-  
ing out and generating a device RESET.  
An 8-bit counter is available as a prescaler for the  
Timer0 module (Section 8.2), or as a postscaler for the  
Watchdog Timer (WDT), respectively. For simplicity,  
this counter is being referred to as “prescaler” through-  
out this data sheet. Note that the prescaler may be  
used by either the Timer0 module or the WDT, but not  
The SLEEPinstruction RESETS the WDT and the pres-  
caler, if assigned to the WDT. This gives the maximum  
SLEEP time before a WDT Wake-up Reset.  
FIGURE 9-1:  
WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
0
M
1
Prescaler  
Watchdog  
U
X
Timer  
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT Enable  
EPROM Bit  
To TMR0  
1
0
PSA  
MUX  
Note:  
T0CS, T0SE, PSA, PS2:PS0 are bits in the  
OPTION register.  
WDT  
Time-out  
TABLE 9-1:  
Address  
SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER  
Value on  
Value on  
Name  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Power-On MCLR and  
Reset WDT Reset  
N/A  
OPTION  
Tosc  
Tose  
PSA  
PS2  
PS1  
PS0 --11 1111 --11 1111  
Legend: u= unchanged, -= unimplemented, read as '0'. Shaded cells not used by Watchdog Timer.  
DS30453D-page 46  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
9.3  
Power-Down Mode (SLEEP)  
9.4  
Program Verification/Code  
Protection  
A device may be powered down (SLEEP) and later  
powered up (Wake-up from SLEEP).  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
9.3.1  
SLEEP  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
Note: Microchip does not recommend code pro-  
tecting windowed devices.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the TO bit (STATUS<4>) is set, the PD  
bit (STATUS<3>) is cleared and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, driving low, or hi-impedance).  
9.5  
ID Locations  
Four memory locations are designated as ID locations  
where the user can store checksum or other code-iden-  
tification numbers. These locations are not accessible  
during normal execution but are readable and writable  
during program/verify.  
It should be noted that a RESET generated by a WDT  
time-out does not drive the MCLR/VPP pin low.  
Use only the lower 4 bits of the ID locations and always  
program the upper 8 bits as ’1’s.  
For lowest current consumption while powered down,  
the T0CKI input should be at VDD or VSS and the  
MCLR/VPP pin must be at a logic high level  
(MCLR = VIH).  
Note: Microchip will assign a unique pattern  
number for QTP and SQTP requests and  
for ROM devices. This pattern number will  
be unique and traceable to the submitted  
code.  
9.3.2  
WAKE-UP FROM SLEEP  
The device can wake up from SLEEP through one of  
the following events:  
1. An external RESET input on MCLR/VPP pin.  
2. A Watchdog Timer Time-out Reset (if WDT was  
enabled).  
Both of these events cause a device RESET. The TO  
and PD bits can be used to determine the cause of  
device RESET. The TO bit is cleared if a WDT time-  
out occurred (and caused wake-up). The PD bit, which  
is set on power-up, is cleared when SLEEPis invoked.  
The WDT is cleared when the device wakes from  
SLEEP, regardless of the wake-up source.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 47  
PIC16C5X  
NOTES:  
DS30453D-page 48  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles.  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time would be 1 µs. If a condi-  
tional test is true or the program counter is changed as  
a result of an instruction, the instruction execution time  
would be 2 µs.  
10.0 INSTRUCTION SET SUMMARY  
Each PIC16C5X instruction is a 12-bit word divided into  
an OPCODE, which specifies the instruction type and  
one or more operands which further specify the opera-  
tion of the instruction. The PIC16C5X instruction set  
summary in Table 10-2 groups the instructions into  
byte-oriented, bit-oriented, and literal and control oper-  
ations. Table 10-1 shows the opcode field descriptions.  
For byte-oriented instructions, ’f’ represents a file reg-  
ister designator and ’d’ represents a destination desig-  
nator. The file register designator is used to specify  
which one of the 32 file registers in that bank is to be  
used by the instruction.  
Figure 10-1 shows the three general formats that the  
instructions can have. All examples in the figure use  
the following format to represent a hexadecimal num-  
ber:  
The destination designator specifies where the result of  
the operation is to be placed. If ’d’ is ’0’, the result is  
placed in the W register. If ’d’ is ’1’, the result is placed  
in the file register specified in the instruction.  
0xhhh  
where ’h’ signifies a hexadecimal digit.  
FIGURE 10-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ’b’ represents a bit field  
designator which selects the number of the bit affected  
by the operation, while ’f’ represents the number of the  
file in which the bit is located.  
Byte-oriented file register operations  
11  
6
5
d
4
0
OPCODE  
f (FILE #)  
For literal and control operations, ’k’ represents an  
8 or 9-bit constant or literal value.  
d = 0 for destination W  
d = 1 for destination f  
f = 5-bit file register address  
Bit-oriented file register operations  
11 8 7  
b (BIT #)  
TABLE 10-1: OPCODE FIELD  
DESCRIPTIONS  
5
4
0
Field  
Description  
OPCODE  
f (FILE #)  
f
W
b
k
x
Register file address (0x00 to 0x1F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Don’t care location (= 0 or 1)  
b = 3-bit bit address  
f = 5-bit file register address  
Literal and control operations (except GOTO)  
11  
8
7
0
The assembler will generate code with x = 0.  
It is the recommended form of use for com-  
patibility with all Microchip software tools.  
Destination select;  
OPCODE  
k (literal)  
k = 8-bit immediate value  
d
d = 0 (store result in W)  
d = 1 (store result in file register ’f’)  
Default is d = 1  
Literal and control operations - GOTO instruction  
11  
9
8
0
OPCODE  
k (literal)  
label Label name  
TOS  
PC  
WDT  
TO  
Top of Stack  
k = 9-bit immediate value  
Program Counter  
Watchdog Timer Counter  
Time-out bit  
PD  
Power-down bit  
dest  
Destination, either the W register or the  
specified register file location  
Options  
[
(
]
)
Contents  
Assigned to  
< >  
Register bit field  
In the set of  
italics User defined term (font is courier)  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 49  
PIC16C5X  
TABLE 10-2: INSTRUCTION SET SUMMARY  
12-Bit Opcode  
MSb LSb  
Mnemonic,  
Description  
Operands  
Status  
Affected  
Cycles  
Notes  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f,d  
f,d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
Move W to f  
No Operation  
Rotate left f through Carry  
Rotate right f through Carry  
Subtract W from f  
Swap f  
1
1
1
1
1
0001 11df ffff C,DC,Z  
1,2,4  
2,4  
4
0001 01df ffff  
0000 011f ffff  
0000 0100 0000  
0010 01df ffff  
0000 11df ffff  
0010 11df ffff  
0010 10df ffff  
0011 11df ffff  
0001 00df ffff  
0010 00df ffff  
0000 001f ffff  
0000 0000 0000  
0011 01df ffff  
0011 00df ffff  
Z
Z
Z
Z
Z
None  
Z
None  
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1
2,4  
2,4  
2,4  
2,4  
2,4  
2,4  
1,4  
DECFSZ  
INCF  
1(2)  
1
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
1(2)  
1
1
1
1
1
1
1
1
1
Z
None  
None  
C
f, d  
f, d  
f, d  
f, d  
f, d  
2,4  
2,4  
1,2,4  
2,4  
C
0000 10df ffff C,DC,Z  
0011 10df ffff  
0001 10df ffff  
None  
Z
Exclusive OR W with f  
2,4  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
0100 bbbf ffff  
0101 bbbf ffff  
0110 bbbf ffff  
0111 bbbf ffff  
None  
None  
None  
None  
2,4  
2,4  
1 (2)  
1 (2)  
LITERAL AND CONTROL OPERATIONS  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
OPTION  
RETLW  
SLEEP  
TRIS  
k
k
k
k
k
k
k
k
f
AND literal with W  
Call subroutine  
1
2
1
2
1
1
1
2
1
1
1
1110 kkkk kkkk  
1001 kkkk kkkk  
0000 0000 0100 TO, PD  
101k kkkk kkkk  
1101 kkkk kkkk  
1100 kkkk kkkk  
0000 0000 0010  
1000 kkkk kkkk  
Z
None  
1
3
Clear Watchdog Timer  
Unconditional branch  
Inclusive OR Literal with W  
Move Literal to W  
Load OPTION register  
Return, place Literal in W  
Go into standby mode  
Load TRIS register  
None  
Z
None  
None  
None  
0000 0000 0011 TO, PD  
0000 0000 0fff  
1111 kkkk kkkk  
None  
Z
XORLW  
k
Exclusive OR Literal to W  
Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for  
GOTO(see Section 6.5 for more on program counter).  
2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that  
value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and  
is driven low by an external device, the data will be written back with a '0'.  
3: The instruction TRIS f, where f = 5, 6 or 7 causes the contents of the W register to be written to the tristate  
latches of PORTA, B or C respectively. A '1' forces the pin to a hi-impedance state and disables the output  
buffers.  
4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be  
cleared (if assigned to TMR0).  
DS30453D-page 50  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
ADDWF  
Syntax:  
Add W and f  
[ label ] ADDWF f,d  
0 f 31  
ANDWF  
Syntax:  
AND W with f  
[ label ] ANDWF f,d  
Operands:  
Operands:  
0 f 31  
d
[0,1]  
d
[0,1]  
Operation:  
(W) + (f) (dest)  
Operation:  
(W) .AND. (f) (dest)  
Status Affected: C, DC, Z  
Status Affected:  
Encoding:  
Z
Encoding:  
0001  
11df  
ffff  
0001  
01df  
ffff  
Description:  
Add the contents of the W register  
and register ’f’. If ’d’ is 0 the result  
is stored in the W register. If ’d’ is  
’1’ the result is stored back in  
register ’f’.  
Description:  
The contents of the W register are  
AND’ed with register 'f'. If 'd' is 0  
the result is stored in the W regis-  
ter. If 'd' is '1' the result is stored  
back in register 'f'.  
Words:  
1
Words:  
1
Cycles:  
Example:  
1
Cycles:  
Example:  
1
ADDWF TEMP_REG, 0  
ANDWF TEMP_REG, 1  
Before Instruction  
Before Instruction  
W
=
0x17  
W
=
0x17  
TEMP_REG = 0xC2  
After Instruction  
TEMP_REG = 0xC2  
After Instruction  
W
=
0xD9  
W
=
0x17  
TEMP_REG = 0xC2  
TEMP_REG = 0x02  
ANDLW  
AND literal with W  
BCF  
Bit Clear f  
Syntax:  
[ label ] ANDLW  
k
Syntax:  
[ label ] BCF f,b  
Operands:  
Operation:  
Status Affected:  
Encoding:  
0 k 255  
Operands:  
0 f 31  
0 b 7  
(W).AND. (k) (W)  
Operation:  
0 (f<b>)  
Z
Status Affected: None  
1110  
kkkk  
kkkk  
Encoding:  
Description:  
Words:  
0100  
bbbf  
ffff  
Description:  
The contents of the W register are  
AND’ed with the eight-bit literal 'k'.  
The result is placed in the W regis-  
ter.  
Bit 'b' in register 'f' is cleared.  
1
1
Cycles:  
Words:  
1
Example:  
BCF  
FLAG_REG,  
7
Cycles:  
Example:  
1
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
ANDLW H’5F’  
=
=
0xC7  
0x47  
Before Instruction  
W
=
0xA3  
After Instruction  
0x03  
W
=
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 51  
PIC16C5X  
BSF  
Bit Set f  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] BTFSS f,b  
Operands:  
0 f 31  
0 b 7  
Operands:  
0 f 31  
0 b < 7  
Operation:  
1 (f<b>)  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
Status Affected: None  
Encoding:  
Description:  
Words:  
0101  
bbbf  
ffff  
Encoding:  
0111  
bbbf  
ffff  
Bit ’b’ in register ’f’ is set.  
Description:  
If bit ’b’ in register ’f’ is ’1’ then the  
next instruction is skipped.  
1
1
If bit ’b’ is ’1’, then the next instruc-  
tion fetched during the current  
instruction execution, is discarded  
and a NOPis executed instead,  
making this a 2-cycle instruction.  
Cycles:  
Example:  
BSF  
FLAG_REG,  
7
Before Instruction  
FLAG_REG = 0x0A  
After Instruction  
FLAG_REG = 0x8A  
Words:  
1
Cycles:  
Example:  
1(2)  
HERE  
FALSE GOTO  
TRUE  
BTFSS FLAG,1  
PROCESS_CODE  
BTFSC  
Bit Test f, Skip if Clear  
Syntax:  
[ label ] BTFSC f,b  
Operands:  
0 f 31  
0 b 7  
Before Instruction  
PC  
After Instruction  
If FLAG<1>  
PC  
=
address (HERE)  
Operation:  
skip if (f<b>) = 0  
Status Affected: None  
=
=
=
=
0,  
address (FALSE);  
1,  
address (TRUE)  
Encoding:  
0110  
bbbf  
ffff  
if FLAG<1>  
PC  
Description:  
If bit ’b’ in register ’f’ is 0 then the  
next instruction is skipped.  
If bit ’b’ is 0 then the next instruc-  
tion fetched during the current  
instruction execution is discarded,  
and a NOPis executed instead,  
making this a 2-cycle instruction.  
Words:  
1
Cycles:  
Example:  
1(2)  
HERE  
FALSE GOTO  
BTFSC FLAG,1  
PROCESS_CODE  
TRUE  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
if FLAG<1>  
PC  
=
=
=
=
0,  
address (TRUE);  
1,  
address(FALSE)  
if FLAG<1>  
PC  
DS30453D-page 52  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
CALL  
Subroutine Call  
CLRW  
Clear W  
Syntax:  
[ label ] CALL  
k
Syntax:  
[ label ] CLRW  
None  
Operands:  
Operation:  
0 k 255  
Operands:  
Operation:  
(PC) + 1TOS;  
k PC<7:0>;  
00h (W);  
1 Z  
(STATUS<6:5>) PC<10:9>;  
0 PC<8>  
Status Affected:  
Encoding:  
Z
0000  
0100  
0000  
Status Affected: None  
Description:  
The W register is cleared. Zero bit  
(Z) is set.  
Encoding:  
1001  
kkkk  
kkkk  
Description:  
Subroutine call. First, return  
address (PC+1) is pushed onto the  
stack. The eight bit immediate  
address is loaded into PC bits  
<7:0>. The upper bits PC<10:9>  
are loaded from STATUS<6:5>,  
PC<8> is cleared. CALLis a two-  
cycle instruction.  
Words:  
1
Cycles:  
Example:  
1
CLRW  
Before Instruction  
W
=
0x5A  
After Instruction  
W
Z
=
=
0x00  
1
Words:  
1
2
Cycles:  
Example:  
HERE  
CALL  
THERE  
CLRWDT  
Clear Watchdog Timer  
Before Instruction  
Syntax:  
[ label ] CLRWDT  
None  
PC  
=
address (HERE)  
After Instruction  
Operands:  
Operation:  
PC  
TOS  
=
=
address (THERE)  
address (HERE + 1)  
00h WDT;  
0 WDT prescaler (if assigned);  
1 TO;  
1 PD  
CLRF  
Clear f  
[ label ] CLRF  
Status Affected: TO, PD  
Syntax:  
f
Encoding:  
0000  
0000  
0100  
Operands:  
Operation:  
0 f 31  
Description:  
The CLRWDTinstruction resets the  
WDT. It also resets the prescaler, if  
the prescaler is assigned to the  
WDT and not Timer0. Status bits  
TO and PD are set.  
00h (f);  
1 Z  
Status Affected:  
Encoding:  
Z
0000  
011f  
ffff  
Words:  
1
Description:  
The contents of register ’f’ are  
cleared and the Z bit is set.  
Cycles:  
Example:  
1
CLRWDT  
Words:  
1
1
Before Instruction  
Cycles:  
Example:  
WDT counter  
After Instruction  
WDT counter  
=
=
?
CLRF  
FLAG_REG  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
Z
0x00  
=
0x5A  
WDT prescaler =  
TO  
PD  
0
1
1
=
=
=
=
0x00  
1
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 53  
PIC16C5X  
COMF  
Complement f  
DECFSZ  
Decrement f, Skip if 0  
Syntax:  
[ label ] COMF f,d  
Syntax:  
[ label ] DECFSZ f,d  
0 f 31  
Operands:  
0 f 31  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(f) (dest)  
Operation:  
(f) – 1 d; skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected: None  
0010  
01df  
ffff  
Encoding:  
0010  
11df  
ffff  
Description:  
The contents of register ’f’ are  
complemented. If ’d’ is 0 the result  
is stored in the W register. If ’d’ is 1  
the result is stored back in  
register ’f’.  
Description:  
The contents of register 'f' are dec-  
remented. If 'd' is 0 the result is  
placed in the W register. If 'd' is 1  
the result is placed back in  
register 'f'.  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded and a NOPis executed  
instead making it a two-cycle  
instruction.  
Words:  
1
1
Cycles:  
Example:  
COMF  
REG1,0  
0x13  
Before Instruction  
Words:  
1
REG1  
=
After Instruction  
Cycles:  
Example:  
1(2)  
REG1  
W
=
=
0x13  
0xEC  
HERE  
DECFSZ  
GOTO  
CNT, 1  
LOOP  
CONTINUE •  
DECF  
Decrement f  
Syntax:  
[ label ] DECF f,d  
Before Instruction  
PC  
After Instruction  
CNT  
=
address(HERE)  
Operands:  
0 f 31  
d
[0,1]  
=
=
=
=
CNT - 1;  
0,  
address (CONTINUE);  
0,  
Operation:  
(f) – 1 (dest)  
if CNT  
PC  
if CNT  
PC  
Status Affected:  
Encoding:  
Z
0000  
11df  
ffff  
address (HERE+1)  
Description:  
Decrement register 'f'. If 'd' is 0 the  
result is stored in the W register. If  
'd' is 1 the result is stored back in  
register 'f'.  
Words:  
1
1
Cycles:  
Example:  
DECF  
CNT, 1  
0x01  
Before Instruction  
CNT  
Z
=
=
0
After Instruction  
CNT  
Z
=
=
0x00  
1
DS30453D-page 54  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
GOTO  
Unconditional Branch  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] GOTO k  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
Operation:  
0 k 511  
Operands:  
0 f 31  
d
[0,1]  
k PC<8:0>;  
STATUS<6:5> PC<10:9>  
Operation:  
(f) + 1 (dest), skip if result = 0  
Status Affected: None  
Status Affected: None  
Encoding:  
101k  
kkkk  
kkkk  
Encoding:  
0011  
11df  
ffff  
Description:  
GOTOis an unconditional branch.  
The 9-bit immediate value is  
loaded into PC bits <8:0>. The  
upper bits of PC are loaded from  
STATUS<6:5>. GOTOis a two-  
cycle instruction.  
Description:  
The contents of register ’f’ are  
incremented. If ’d’ is 0 the result is  
placed in the W register. If ’d’ is 1  
the result is placed back in  
register ’f’.  
If the result is 0, then the next  
instruction, which is already  
fetched, is discarded and a NOPis  
executed instead making it a two-  
cycle instruction.  
Words:  
1
Cycles:  
Example:  
2
GOTO THERE  
Words:  
1
After Instruction  
PC  
=
address (THERE)  
Cycles:  
Example:  
1(2)  
HERE  
INCFSZ  
GOTO  
CONTINUE •  
CNT, 1  
LOOP  
INCF  
Increment f  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 31  
Before Instruction  
d
[0,1]  
PC  
After Instruction  
CNT  
=
address (HERE)  
Operation:  
(f) + 1 (dest)  
Status Affected:  
Encoding:  
Z
=
=
=
=
CNT + 1;  
0,  
address (CONTINUE);  
0,  
if CNT  
PC  
0010  
10df  
ffff  
Description:  
The contents of register ’f’ are  
incremented. If ’d’ is 0 the result is  
placed in the W register. If ’d’ is 1  
the result is placed back in  
register ’f’.  
if CNT  
PC  
address (HERE +1)  
Words:  
1
1
Cycles:  
Example:  
INCF  
CNT,  
1
Before Instruction  
CNT  
Z
=
=
0xFF  
0
After Instruction  
CNT  
Z
=
=
0x00  
1
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 55  
PIC16C5X  
IORLW  
Inclusive OR literal with W  
MOVF  
Move f  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
[ label ] MOVF f,d  
0 f 31  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
d
[0,1]  
(W) .OR. (k) (W)  
Z
Operation:  
(f) (dest)  
Status Affected:  
Encoding:  
Z
1101  
kkkk  
kkkk  
0010  
00df  
ffff  
Description:  
The contents of the W register are  
OR’ed with the eight bit literal 'k'.  
The result is placed in the W regis-  
ter.  
Description:  
The contents of register 'f' is  
moved to destination 'd'. If 'd' is 0,  
destination is the W register. If 'd'  
is 1, the destination is file  
register 'f'. 'd' is 1 is useful to test a  
file register since status flag Z is  
affected.  
Words:  
1
Cycles:  
Example:  
1
IORLW 0x35  
Words:  
1
1
Before Instruction  
0x9A  
After Instruction  
W
=
Cycles:  
Example:  
MOVF  
FSR,  
0
W
Z
=
=
0xBF  
0
After Instruction  
W
=
value in FSR register  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] IORWF f,d  
0 f 31  
MOVLW  
Move Literal to W  
Operands:  
Syntax:  
[ label ] MOVLW  
0 k 255  
k
d
[0,1]  
Operands:  
Operation:  
Operation:  
(W).OR. (f) (dest)  
k (W)  
Status Affected:  
Encoding:  
Z
Status Affected: None  
0001  
00df  
ffff  
Encoding:  
1100  
kkkk  
kkkk  
Description:  
Inclusive OR the W register with  
register 'f'. If 'd' is 0 the result is  
placed in the W register. If 'd' is 1  
the result is placed back in  
register 'f'.  
Description:  
The eight bit literal 'k' is loaded into  
the W register.  
Words:  
1
Cycles:  
Example:  
1
Words:  
1
1
MOVLW 0x5A  
Cycles:  
Example:  
After Instruction  
IORWF  
RESULT, 0  
W
=
0x5A  
Before Instruction  
RESULT  
W
=
=
0x13  
0x91  
After Instruction  
RESULT  
W
Z
=
=
=
0x13  
0x93  
0
DS30453D-page 56  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
MOVWF  
Move W to f  
OPTION  
Load OPTION Register  
Syntax:  
[ label ] OPTION  
None  
Syntax:  
[ label ] MOVWF  
0 f 31  
f
Operands:  
Operation:  
Operands:  
Operation:  
(W) OPTION  
(W) (f)  
Status Affected: None  
Status Affected: None  
Encoding:  
0000  
0000  
0010  
Encoding:  
0000  
001f  
ffff  
Description:  
The content of the W register is  
loaded into the OPTION register.  
Description:  
Move data from the W register to  
register ’f’.  
Words:  
Cycles:  
Example  
1
Words:  
1
1
Cycles:  
Example:  
1
OPTION  
MOVWF TEMP_REG  
Before Instruction  
Before Instruction  
TEMP_REG = 0xFF  
W
=
0x07  
0x07  
After Instruction  
OPTION  
W
=
0x4F  
=
After Instruction  
TEMP_REG = 0x4F  
0x4F  
W
=
RETLW  
Return with Literal in W  
Syntax:  
[ label ] RETLW k  
Operands:  
Operation:  
0 k 255  
NOP  
No Operation  
k (W);  
TOS PC  
Syntax:  
[ label ] NOP  
None  
Operands:  
Operation:  
Status Affected: None  
No operation  
Encoding:  
1000  
kkkk  
kkkk  
Status Affected: None  
Description:  
The W register is loaded with the  
eight bit literal ’k’. The program  
counter is loaded from the top of  
the stack (the return address). This  
is a two-cycle instruction.  
Encoding:  
Description:  
Words:  
0000  
0000  
0000  
No operation.  
1
Cycles:  
1
Words:  
1
2
Example:  
NOP  
Cycles:  
Example:  
CALL TABLE ;W contains  
;table offset  
;value.  
;W now has table  
;value.  
TABLE  
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
RETLW k2  
;
RETLW kn ; End of table  
Before Instruction  
W
=
=
0x07  
After Instruction  
W
value of k8  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 57  
PIC16C5X  
RLF  
Rotate Left f through Carry  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] RLF f,d  
Syntax:  
[ label ] RRF f,d  
Operands:  
0 f 31  
Operands:  
0 f 31  
d
[0,1]  
d
[0,1]  
Operation:  
See description below  
C
Operation:  
See description below  
C
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
0011  
01df  
ffff  
0011  
00df  
ffff  
Description:  
The contents of register ’f’ are  
rotated one bit to the left through  
the Carry Flag (STATUS<0>). If ’d’  
is 0 the result is placed in the W  
register. If ’d’ is 1 the result is  
stored back in  
Description:  
The contents of register ’f’ are  
rotated one bit to the right through  
the Carry Flag (STATUS<0>). If ’d’  
is 0 the result is placed in the W  
register. If ’d’ is 1 the result is  
placed back in  
register ’f’.  
register ’f’.  
register ’f’  
C
register ’f’  
C
Words:  
1
Words:  
1
1
Cycles:  
Example:  
1
Cycles:  
Example:  
RLF  
REG1,0  
RRF  
REG1,0  
Before Instruction  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
REG1  
C
=
=
1110 0110  
0
After Instruction  
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
SLEEP  
Enter SLEEP Mode  
Syntax:  
[label] SLEEP  
None  
Operands:  
Operation:  
00h WDT;  
0 WDT prescaler; if assigned  
1 TO;  
0 PD  
Status Affected: TO, PD  
Encoding:  
0000  
0000  
0011  
Description:  
Time-out status bit (TO) is set. The  
power-down status bit (PD) is  
cleared. The WDT and its pres-  
caler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
See section on SLEEP for more  
details.  
Words:  
1
Cycles:  
Example:  
1
SLEEP  
DS30453D-page 58  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
SUBWF  
Subtract W from f  
SWAPF  
Swap Nibbles in f  
Syntax:  
[label] SUBWF f,d  
Syntax:  
[ label ] SWAPF f,d  
0 f 31  
Operands:  
0 f 31  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(f) – (W) → (dest)  
Operation:  
(f<3:0>) (dest<7:4>);  
(f<7:4>) (dest<3:0>)  
Status Affected: C, DC, Z  
Status Affected: None  
Encoding:  
0000  
10df  
ffff  
Encoding:  
0011  
10df  
ffff  
Description:  
Subtract (2’s complement method)  
the W register from register 'f'. If 'd'  
is 0 the result is stored in the W  
register. If 'd' is 1 the result is  
stored back in register 'f'.  
Description:  
The upper and lower nibbles of  
register 'f' are exchanged. If 'd' is 0  
the result is placed in W register. If  
'd' is 1 the result is placed in  
register 'f'.  
Words:  
1
1
Words:  
Cycles:  
Example  
1
1
Cycles:  
Example 1:  
SUBWF  
REG1, 1  
SWAPF REG1,  
0
Before Instruction  
REG1  
W
C
=
=
=
3
2
?
Before Instruction  
REG1  
After Instruction  
=
0xA5  
After Instruction  
REG1  
W
=
=
0xA5  
0x5A  
REG1  
W
=
=
=
1
2
1
C
; result is positive  
Example 2:  
Before Instruction  
TRIS  
Load TRIS Register  
Syntax:  
[ label ] TRIS  
f
REG1  
W
C
=
=
=
2
2
?
Operands:  
Operation:  
f = 5, 6 or 7  
(W) TRIS register f  
After Instruction  
Status Affected: None  
REG1  
W
C
=
=
=
0
2
1
Encoding:  
0000  
0000  
0fff  
; result is zero  
Description:  
TRIS register 'f' (f = 5, 6, or 7) is  
loaded with the contents of the W  
register.  
Example 3:  
Before Instruction  
REG1  
W
C
=
=
=
1
2
?
Words:  
Cycles:  
Example  
1
1
After Instruction  
TRIS  
PORTB  
REG1  
W
C
=
=
=
0xFF  
2
0
Before Instruction  
W
=
0xA5  
0xA5  
; result is negative  
After Instruction  
TRISB  
=
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 59  
PIC16C5X  
XORLW  
Exclusive OR literal with W  
Syntax:  
[label] XORLW k  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) .XOR. k → (W)  
Z
1111  
kkkk  
kkkk  
The contents of the W register are  
XOR’ed with the eight bit literal 'k'.  
The result is placed in the W regis-  
ter.  
Words:  
1
Cycles:  
Example:  
1
XORLW 0xAF  
Before Instruction  
W
=
0xB5  
After Instruction  
W
=
0x1A  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] XORWF f,d  
0 f 31  
Operands:  
d
[0,1]  
Operation:  
(W) .XOR. (f) → (dest)  
Status Affected:  
Encoding:  
Z
0001  
10df  
ffff  
Description:  
Exclusive OR the contents of the  
W register with register 'f'. If 'd' is 0  
the result is stored in the W regis-  
ter. If 'd' is 1 the result is stored  
back in register 'f'.  
Words:  
Cycles:  
Example  
1
1
XORWF REG,1  
Before Instruction  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS30453D-page 60  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
The MPLAB IDE allows you to:  
11.0 DEVELOPMENT SUPPORT  
• Edit your source files (either assembly or ‘C’)  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
• One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools (auto-  
matically updates all project information)  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Debug using:  
- source files  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- absolute listing file  
- machine code  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
The ability to use MPLAB IDE with multiple debugging  
tools allows users to easily switch from the cost-  
effective simulator to a full-featured emulator with  
minimal retraining.  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
11.2 MPASM Assembler  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPIC™ In-Circuit Emulator  
• In-Circuit Debugger  
The MPASM assembler is a full-featured universal  
macro assembler for all PICmicro MCU’s.  
- MPLAB ICD  
The MPASM assembler has a command line interface  
and a Windows shell. It can be used as a stand-alone  
application on a Windows 3.x or greater system, or it  
can be used through MPLAB IDE. The MPASM assem-  
bler generates relocatable object files for the MPLINK  
object linker, Intel® standard HEX files, MAP files to  
detail memory usage and symbol reference, an abso-  
lute LST file that contains source lines and generated  
machine code, and a COD file for debugging.  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
Programmer  
• Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 17 Demonstration Board  
- KEELOQ® Demonstration Board  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects.  
• User-defined macros to streamline assembly  
code.  
11.1 MPLAB Integrated Development  
Environment Software  
• Conditional assembly for multi-purpose source  
files.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application that contains:  
• Directives that allow complete control over the  
assembly process.  
11.3 MPLAB C17 and MPLAB C18  
C Compilers  
• An interface to debugging tools  
- simulator  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI ‘C’ compilers for  
Microchip’s PIC17CXXX and PIC18CXXX family of  
microcontrollers, respectively. These compilers provide  
powerful integration capabilities and ease of use not  
found with other compilers.  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor  
• A project manager  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
• Customizable toolbar and key mapping  
• A status bar  
• On-line help  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 61  
PIC16C5X  
11.4 MPLINK Object Linker/  
MPLIB Object Librarian  
11.6 MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can also  
link relocatable objects from pre-compiled libraries,  
using directives from a linker script.  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers (MCUs). Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLINK object linker features include:  
• Integration with MPASM assembler and MPLAB  
C17 and MPLAB C18 C compilers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows environment were chosen to best  
make these features available to you, the end user.  
• Allows all memory areas to be defined as sections  
to provide link-time flexibility.  
The MPLIB object librarian features include:  
• Easier linking because single libraries can be  
included instead of many smaller files.  
• Helps keep code maintainable by grouping  
related modules together.  
11.7 ICEPIC In-Circuit Emulator  
• Allows libraries to be created and modules to be  
added, listed, replaced, deleted or extracted.  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X and PIC16CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC16C5X  
or PIC16CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
11.5 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC-hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user-defined key press, to any of the pins. The  
execution can be performed in single step, execute  
until break, or trace mode.  
The MPLAB SIM simulator fully supports symbolic debug-  
ging using the MPLAB C17 and the MPLAB C18 C com-  
pilers and the MPASM assembler. The software simulator  
offers the flexibility to develop and debug code outside of  
the laboratory environment, making it an excellent multi-  
project software development tool.  
DS30453D-page 62  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
11.8 MPLAB ICD In-Circuit Debugger  
11.11 PICDEM 1 Low Cost PICmicro  
Demonstration Board  
Microchip’s In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PICmicro MCUs and can be used  
to develop for this and other PICmicro microcontrollers.  
The MPLAB ICD utilizes the in-circuit debugging capa-  
bility built into the FLASH devices. This feature, along  
with Microchip’s In-Circuit Serial ProgrammingTM proto-  
col, offers cost-effective in-circuit FLASH debugging  
from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by watch-  
ing variables, single-stepping and setting break points.  
Running at full speed enables testing hardware in real-  
time.  
The PICDEM 1 demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchip’s microcontrollers. The microcontrollers sup-  
ported are: PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM 1 demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM 1 demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
11.9 PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a  
full-featured programmer, capable of operating in  
Stand-alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for max-  
imum reliability. It has an LCD display for instructions  
and error messages, keys to enter commands and a  
modular detachable socket assembly to support various  
package types. In Stand-alone mode, the PRO MATE II  
device programmer can read, verify, or program  
PICmicro devices. It can also set code protection in this  
mode.  
11.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC16C62,  
PIC16C64, PIC16C65, PIC16C73 and PIC16C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
serial EEPROM to demonstrate usage of the I2CTM bus  
and separate headers for connection to an LCD  
module and a keypad.  
11.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient.  
The PICSTART Plus development programmer sup-  
ports all PICmicro devices with up to 40 pins. Larger pin  
count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 63  
PIC16C5X  
11.13 PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board  
11.14 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM 17 dem-  
onstration board supports downloading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM 17 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC16C923 and  
PIC16C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is a LCD panel, with 4  
commons and 12 segments, that is capable of display-  
ing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows software for showing  
the demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
11.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchip’s HCS Secure Data Products. The HCS eval-  
uation kit includes a LCD display to show changing  
codes, a decoder to decode transmissions and a pro-  
gramming interface to program test transmitters.  
DS30453D-page 64  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
TABLE 11-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0 1 5 2 P M C  
X X X C R M F  
H C S X X X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X X F 8 C 1 P I  
X X C 8 2 C 1 P I  
X 7 X 7 C 1 C I P  
X 4 1 7 C I C P  
X 9 X 6 C 1 C I P  
X 8 X 6 F 1 C I P  
X 8 1 6 C I C P  
X 7 X 6 C 1 C I P  
X 7 1 6 C I C P  
X 6 2 1 6 C I F P  
X X X C 6 C 1 P I  
X 6 1 6 C I C P  
X 5 1 6 C I C P  
0 0 1 4 C I 0 P  
X X X C 2 C 1 P I  
s o l T e o r a w f t S o s r o t a u l E m e r u b g e g D s m e a r m o g P r r  
s t l K a i E d v n a s d r a B o o m D e  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 65  
PIC16C5X  
NOTES:  
DS30453D-page 66  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
12.0 ELECTRICAL CHARACTERISTICS - PIC16C54/55/56/57  
Absolute Maximum Ratings(†)  
Ambient Temperature under bias..................................................................................................... –55°C to +125°C  
Storage Temperature ....................................................................................................................... –65°C to +150°C  
Voltage on VDD with respect to VSS ..........................................................................................................0V to +7.5V  
Voltage on MCLR with respect to VSS(1) ....................................................................................................0V to +14V  
Voltage on all other pins with respect to VSS ............................................................................–0.6V to (VDD + 0.6V)  
Total power dissipation(2) ............................................................................................................................... 800 mW  
Max. current out of VSS pin ............................................................................................................................. 150 mA  
Max. current into VDD pin................................................................................................................................ 100 mA  
Max. current into an input pin (T0CKI only)....................................................................................................±500 µA  
Input clamp current, IIK (VI < 0 or VI > VDD).................................................................................................... ±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................±20 mA  
Max. output current sunk by any I/O pin ........................................................................................................... 25 mA  
Max. output current sourced by any I/O pin...................................................................................................... 20 mA  
Max. output current sourced by a single I/O port (PORTA, B or C) .................................................................. 40 mA  
Max. output current sunk by a single I/O port (PORTA, B or C)........................................................................50 mA  
Note 1: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50 to 100 should be used when applying a “low” level to the MCLR pin rather  
than pulling this pin directly to VSS.  
2: Power Dissipation is calculated as follows: Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
† NOTICE: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in  
the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 67  
PIC16C5X  
12.1 DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial)  
PIC16C54/55/56/57-RC, XT, 10, HS, LP  
Standard Operating Conditions (unless otherwise specified)  
(Commercial)  
Operating Temperature 0°C TA +70°C for commercial  
Param  
No.  
Symbol  
Characteristic/Device  
Min  
Typ†  
Max Units  
Conditions  
D001  
VDD  
Supply Voltage  
PIC16C5X-RC  
PIC16C5X-XT  
PIC16C5X-10  
PIC16C5X-HS  
PIC16C5X-LP  
3.0  
3.0  
4.5  
4.5  
2.5  
6.25  
6.25  
5.5  
5.5  
6.25  
V
V
V
V
V
D002  
D003  
VDR  
RAM Data Retention Voltage(1)  
1.5*  
V
V
Device in SLEEP Mode  
VPOR VDD Start Voltage to ensure  
VSS  
See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
D004  
D010  
SVDD VDD Rise Rate to ensure  
0.05*  
V/ms See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
IDD  
Supply Current(2)  
PIC16C5X-RC(3)  
PIC16C5X-XT  
PIC16C5X-10  
PIC16C5X-HS  
PIC16C5X-HS  
PIC16C5X-LP  
1.8  
1.8  
4.8  
4.8  
9.0  
15  
3.3  
3.3  
10  
10  
20  
32  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
FOSC = 32 kHz, VDD = 3.0V,  
WDT disabled  
D020  
IPD  
Power-down Current(2)  
4.0  
0.6  
12  
9
µA  
µA  
VDD = 3.0V, WDT enabled  
VDD = 3.0V, WDT disabled  
*
These parameters are characterized but not tested.  
Data in “Typ” column is based on characterization results at 25°C. This data is for design guidance only and is  
not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT  
enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP  
mode. The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
DS30453D-page 68  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
12.2 DC Characteristics: PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial)  
PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI  
Standard Operating Conditions (unless otherwise specified)  
(Industrial)  
Operating Temperature –40°C TA +85°C for industrial  
Param  
No.  
Symbol  
Characteristic/Device  
Supply Voltage  
Min  
Typ†  
Max Units  
Conditions  
D001  
VDD  
PIC16C5X-RCI  
PIC16C5X-XTI  
PIC16C5X-10I  
PIC16C5X-HSI  
PIC16C5X-LPI  
3.0  
3.0  
4.5  
4.5  
2.5  
6.25  
6.25  
5.5  
5.5  
6.25  
V
V
V
V
V
D002  
D003  
VDR  
RAM Data Retention Voltage(1)  
1.5*  
V
V
Device in SLEEP mode  
VPOR VDD Start Voltage to ensure  
VSS  
See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
D004  
D010  
SVDD VDD Rise Rate to ensure  
0.05*  
V/ms See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
IDD  
Supply Current(2)  
PIC16C5X-RCI(3)  
PIC16C5X-XTI  
PIC16C5X-10I  
PIC16C5X-HSI  
PIC16C5X-HSI  
PIC16C5X-LPI  
1.8  
1.8  
4.8  
4.8  
9.0  
15  
3.3  
3.3  
10  
10  
20  
40  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
FOSC = 32 kHz, VDD = 3.0V,  
WDT disabled  
D020  
IPD  
Power-down Current(2)  
4.0  
0.6  
14  
12  
µA  
µA  
VDD = 3.0V, WDT enabled  
VDD = 3.0V, WDT disabled  
*
These parameters are characterized but not tested.  
Data in “Typ” column is based on characterization results at 25°C. This data is for design guidance only and is  
not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT  
enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP  
mode. The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 69  
PIC16C5X  
12.3 DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)  
PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE  
Standard Operating Conditions (unless otherwise specified)  
(Extended)  
Operating Temperature –40°C TA +125°C for extended  
Param  
No.  
Symbol  
Characteristic/Device  
Supply Voltage  
Min  
Typ†  
Max Units  
Conditions  
D001  
VDD  
PIC16C5X-RCE  
PIC16C5X-XTE  
PIC16C5X-10E  
PIC16C5X-HSE  
PIC16C5X-LPE  
3.25  
3.25  
4.5  
4.5  
2.5  
6.0  
6.0  
5.5  
5.5  
6.0  
V
V
V
V
V
D002  
D003  
VDR  
RAM Data Retention Voltage(1)  
1.5*  
V
V
Device in SLEEP mode  
VPOR VDD Start Voltage to ensure  
VSS  
See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
D004  
D010  
SVDD VDD Rise Rate to ensure  
0.05*  
V/ms See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
IDD  
Supply Current(2)  
PIC16C5X-RCE(3)  
PIC16C5X-XTE  
PIC16C5X-10E  
PIC16C5X-HSE  
PIC16C5X-HSE  
PIC16C5X-LPE  
1.8  
1.8  
4.8  
4.8  
9.0  
19  
3.3  
3.3  
10  
10  
20  
55  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 16 MHz, VDD = 5.5V  
FOSC = 32 kHz, VDD = 3.25V,  
WDT disabled  
D020  
IPD  
Power-down Current(2)  
5.0  
0.8  
22  
18  
µA  
µA  
VDD = 3.25V, WDT enabled  
VDD = 3.25V, WDT disabled  
*
These parameters are characterized but not tested.  
Data in “Typ” column is based on characterization results at 25°C. This data is for design guidance only and is  
not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT  
enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP  
mode. The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
DS30453D-page 70  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
12.4 DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial)  
PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC CHARACTERISTICS  
Param  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Symbol  
Characteristic/Device  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
D030  
VIL  
Input Low Voltage  
I/O ports  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
PIC16C5X-RC only(3)  
PIC16C5X-XT, 10, HS, LP  
D040  
VIH  
Input High Voltage  
I/O ports  
I/O ports  
(4)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
4.0V < VDD 5.5V(4)  
VDD > 5.5V  
I/O ports  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
PIC16C5X-RC only(3)  
PIC16C5X-XT, 10, HS, LP  
D050  
D060  
VHYS Hysteresis of Schmitt  
0.15 VDD*  
V
Trigger inputs  
IIL  
Input Leakage Current(1,2)  
For VDD 5.5V:  
I/O ports  
–1  
0.5  
+1  
µA  
VSS VPIN VDD,  
pin at hi-impedance  
MCLR  
MCLR  
T0CKI  
OSC1  
–5  
–3  
–3  
+5  
+3  
+3  
µA VPIN = VSS + 0.25V  
0.5  
0.5  
0.5  
µA  
µA  
µA  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
PIC16C5X-XT, 10, HS, LP  
D080  
D090  
VOL  
VOH  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
PIC16C5X-RC  
Output High Voltage(2)  
I/O ports  
OSC2/CLKOUT  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = –5.4 mA, VDD = 4.5V  
IOH = –1.0 mA, VDD = 4.5V,  
PIC16C5X-RC  
*
These parameters are characterized but not tested.  
† Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
2: Negative current is defined as coming out of the pin.  
3: For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C5X be driven with external clock in RC mode.  
4: The user may use the better of the two specifications.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 71  
PIC16C5X  
12.5 DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)  
Standard Operating Conditions (unless otherwise specified)  
DC CHARACTERISTICS  
Operating Temperature  
–40°C TA +125°C for extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
D030  
VIL  
Input Low Voltage  
I/O ports  
Vss  
Vss  
Vss  
Vss  
Vss  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
PIC16C5X-RC only(3)  
PIC16C5X-XT, 10, HS, LP  
D040  
VIH  
Input High Voltage  
I/O ports  
I/O ports  
(4)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
4.0V < VDD 5.5V(4)  
VDD > 5.5 V  
I/O ports  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
PIC16C5X-RC only(3)  
PIC16C5X-XT, 10, HS, LP  
D050  
D060  
VHYS Hysteresis of Schmitt  
0.15 VDD*  
V
Trigger inputs  
IIL  
Input Leakage Current (1,2)  
For VDD 5.5 V:  
VSS VPIN VDD,  
pin at hi-impedance  
VPIN = VSS + 0.25V  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
PIC16C5X-XT, 10, HS, LP  
I/O ports  
–1  
0.5  
+1  
µA  
MCLR  
MCLR  
T0CKI  
OSC1  
–5  
–3  
–3  
+5  
+3  
+3  
µA  
µA  
µA  
µA  
0.5  
0.5  
0.5  
D080  
D090  
VOL  
VOH  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
PIC16C5X-RC  
Output High Voltage(2)  
I/O ports  
OSC2/CLKOUT  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = –5.4 mA, VDD = 4.5V  
IOH = –1.0 mA, VDD = 4.5V,  
PIC16C5X-RC  
*
These parameters are characterized but not tested.  
† Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
2: Negative current is defined as coming out of the pin.  
3: For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C5X be driven with external clock in RC mode.  
4: The user may use the better of the two specifications.  
DS30453D-page 72  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
12.6 Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created with one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
2
to  
mc MCLR  
ck CLKOUT  
osc oscillator  
os OSC1  
cy cycle time  
drt device reset timer  
io I/O port  
t0 T0CKI  
wdt watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 12-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16C54/55/56/57  
Pin  
CL =  
50 pF  
for all pins and OSC2 for RC mode  
CL  
0 - 15 pF for OSC2 in XT, HS or LP modes when  
external clock is used to drive OSC1  
VSS  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 73  
PIC16C5X  
12.7  
Timing Diagrams and Specifications  
FIGURE 12-2:  
EXTERNAL CLOCK TIMING - PIC16C54/55/56/57  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
Symbol  
No.  
Characteristic  
Min Typ†  
Max Units  
Conditions  
1A  
FOSC  
External CLKIN Frequency(1) DC  
4.0  
10  
20  
16  
40  
4.0  
4.0  
10  
20  
16  
40  
MHz XT OSC mode  
MHz 10 MHz mode  
DC  
DC  
DC  
DC  
MHz HS OSC mode (Comm/Ind)  
MHz HS OSC mode (Ext)  
kHz LP OSC mode  
Oscillator Frequency(1)  
DC  
0.1  
4.0  
4.0  
4.0  
DC  
MHz RC OSC mode  
MHz XT OSC mode  
MHz 10 MHz mode  
MHz HS OSC mode (Comm/Ind)  
MHz HS OSC mode (Ext)  
kHz LP OSC mode  
*
These parameters are characterized but not tested.  
† Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: All specified values are based on characterization data for that particular oscillator type under standard  
operating conditions with the device executing code. Exceeding these specified limits may result in an  
unstable oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453D-page 74  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
Symbol  
No.  
Characteristic  
Min Typ†  
Max Units  
Conditions  
1
TOSC  
External CLKIN Period(1)  
250  
100  
50  
ns XT OSC mode  
ns 10 MHz mode  
ns HS OSC mode (Comm/Ind)  
ns HS OSC mode (Ext)  
µs LP OSC mode  
ns RC OSC mode  
ns XT OSC mode  
ns 10 MHz mode  
ns HS OSC mode (Comm/Ind)  
ns HS OSC mode (Ext)  
µs LP OSC mode  
62.5  
25  
Oscillator Period(1)  
250  
250  
100  
50  
10,000  
250  
250  
250  
62.5  
25  
2
3
Tcy  
Instruction Cycle Time(2)  
4/FOSC  
TosL,  
TosH  
Clock in (OSC1) Low or High 85*  
ns XT oscillator  
Time  
20*  
ns HS oscillator  
2.0*  
µs LP oscillator  
4
TosR,  
TosF  
Clock in (OSC1) Rise or Fall  
Time  
25*  
25*  
50*  
ns XT oscillator  
ns HS oscillator  
ns LP oscillator  
*
These parameters are characterized but not tested.  
† Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: All specified values are based on characterization data for that particular oscillator type under standard  
operating conditions with the device executing code. Exceeding these specified limits may result in an  
unstable oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 75  
PIC16C5X  
FIGURE 12-3:  
CLKOUT AND I/O TIMING - PIC16C54/55/56/57  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
13  
12  
18  
14  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: Please refer to Figure 12-1 for load conditions.  
TABLE 12-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54/55/56/57  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
Symbol  
No.  
Characteristic  
OSC1to CLKOUT(1)  
TosH2ckH OSC1to CLKOUT(1)  
Min  
Typ†  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
15  
15  
5.0  
5.0  
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TckR  
CLKOUT rise time(1)  
TckF  
CLKOUT fall time(1)  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
CLKOUTto Port out valid(1)  
Port in valid before CLKOUT(1)  
Port in hold after CLKOUT(1)  
OSC1(Q1 cycle) to Port out valid(2)  
0.25 TCY+30*  
0*  
100*  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
20  
21  
TioR  
TioF  
Port output rise time(2)  
10  
10  
25**  
25**  
ns  
ns  
Port output fall time(2)  
* These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
† Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.  
2: Please refer to Figure 12-1 for load conditions.  
DS30453D-page 76  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 12-4:  
RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING -  
PIC16C54/55/56/57  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: Please refer to Figure 12-1 for load conditions.  
TABLE 12-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54/55/56/57  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
No.  
Symbol  
Characteristic  
Min Typ† Max Units  
Conditions  
30  
TmcL  
MCLR Pulse Width (low)  
100*  
ns VDD = 5.0V  
31  
Twdt  
Watchdog Timer Time-out Period  
(No Prescaler)  
9.0*  
18*  
30*  
ms VDD = 5.0V (Comm)  
32  
TDRT  
TioZ  
Device Reset Timer Period  
9.0*  
18*  
30*  
ms VDD = 5.0V (Comm)  
34  
*
I/O Hi-impedance from MCLR Low  
100*  
ns  
These parameters are characterized but not tested.  
† Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 77  
PIC16C5X  
FIGURE 12-5:  
TIMER0 CLOCK TIMINGS - PIC16C54/55/56/57  
T0CKI  
40  
41  
42  
Note: Please refer to Figure 12-1 for load conditions.  
TABLE 12-4: TIMER0 CLOCK REQUIREMENTS - PIC16C54/55/56/57  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ† Max Units  
Conditions  
40  
Tt0H  
T0CKI High Pulse Width  
- No Prescaler  
0.5 TCY + 20*  
ns  
ns  
- With Prescaler  
10*  
41  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
- No Prescaler  
0.5 TCY + 20*  
ns  
ns  
- With Prescaler  
10*  
42  
*
T0CKI Period  
20 or TCY + 40*  
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
N
These parameters are characterized but not tested.  
† Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453D-page 78  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
13.0 ELECTRICAL CHARACTERISTICS - PIC16CR54A  
Absolute Maximum Ratings()  
Ambient Temperature under bias..................................................................................................... –55°C to +125°C  
Storage Temperature ....................................................................................................................... –65°C to +150°C  
Voltage on VDD with respect to VSS ............................................................................................................0 to +7.5V  
Voltage on MCLR with respect to VSS(1) ......................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ............................................................................–0.6V to (VDD + 0.6V)  
Total power dissipation(2) ............................................................................................................................... 800 mW  
Max. current out of VSS pin ............................................................................................................................. 150 mA  
Max. current into VDD pin.................................................................................................................................. 50 mA  
Max. current into an input pin (T0CKI only) .............................................................................................................. ±500 µA  
Input clamp current, IIK (VI < 0 or VI > VDD) ...............................................................................................................±20 mA  
Output clamp current, IOK (V0 < 0 or V0 > VDD) ........................................................................................................±20 mA  
Max. output current sunk by any I/O pin ........................................................................................................... 25 mA  
Max. output current sourced by any I/O pin...................................................................................................... 20 mA  
Max. output current sourced by a single I/O port (PORTA or B)....................................................................... 40 mA  
Max. output current sunk by a single I/O port (PORTA or B) ............................................................................ 50 mA  
Note 1: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA may cause latch-up. Thus,  
a series resistor of 50 to 100 should be used when applying a low level to the MCLR pin rather than pulling  
this pin directly to Vss.  
2: Power Dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indi-  
cated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 79  
PIC16C5X  
13.1 DC Characteristics:PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial)  
PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
PIC16LCR54A-04  
PIC16LCR54A-04I  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise specified)  
PIC16CR54A-04, 10, 20  
PIC16CR54A-04I, 10I, 20I  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Param  
No.  
Symbol  
Characteristic/Device  
Supply Voltage  
Min  
Typ†  
Max  
Units  
Conditions  
VDD  
D001  
PIC16LCR54A 2.0  
6.25  
V
D001  
D001A  
PIC16CR54A 2.5  
4.5  
6.25  
5.5  
V
V
RC and XT modes  
HS mode  
D002  
D003  
D004  
VDR  
VPOR  
SVDD  
IDD  
RAM Data Retention  
1.5*  
VSS  
V
Device in SLEEP mode  
Voltage(1)  
VDD Start Voltage to ensure  
Power-on Reset  
V
See Section 5.1 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
Supply Current(2)  
0.05*  
V/ms See Section 5.1 for details on  
Power-on Reset  
D005  
PICLCR54A  
10  
20  
70  
µA  
µA  
Fosc = 32 kHz, VDD = 2.0V  
Fosc = 32 kHz, VDD = 6.0V  
D005A  
RC(3) and XT modes:  
PIC16CR54A  
2.0  
0.8  
90  
3.6  
1.8  
350  
mA  
mA  
µA  
FOSC = 4.0 MHz, VDD = 6.0V  
FOSC = 4.0 MHz, VDD = 3.0V  
FOSC = 200 kHz, VDD = 2.5V  
HS mode:  
4.8  
9.0  
10  
20  
mA  
mA  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only,  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/  
disabled as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP  
mode. The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
DS30453D-page 80  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
13.1 DC Characteristics:PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial)  
PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
PIC16LCR54A-04  
PIC16LCR54A-04I  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise specified)  
PIC16CR54A-04, 10, 20  
PIC16CR54A-04I, 10I, 20I  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Param  
No.  
Symbol  
Characteristic/Device  
Min  
Typ†  
Max  
Units  
Conditions  
IPD  
Power-down Current(2)  
D006  
PIC16LCR54A-Commercial  
1.0  
2.0  
3.0  
5.0  
6.0  
8.0*  
15  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
25  
D006A  
D007  
PIC16CR54A-Commercial  
PIC16LCR54A-Industrial  
1.0  
2.0  
3.0  
5.0  
6.0  
8.0*  
15  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
25  
1.0  
2.0  
3.0  
3.0  
5.0  
8.0  
10*  
20*  
18  
µA  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 4.0V, WDT enabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
45  
D007A  
PIC16CR54A-Industrial  
1.0  
2.0  
3.0  
3.0  
5.0  
8.0  
10*  
20*  
18  
µA  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 4.0V, WDT enabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
45  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only,  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/  
disabled as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP  
mode. The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 81  
PIC16C5X  
13.2 DC Characteristics:PIC16CR54A-04E, 10E, 20E (Extended)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C for extended  
PIC16CR54A-04E, 10E, 20E  
(Extended)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
D001  
VDD  
Supply Voltage  
RC, XT and LP modes  
HS mode  
3.25  
4.5  
6.0  
5.5  
V
V
D002  
D003  
VDR  
RAM Data Retention Voltage(1)  
1.5*  
V
V
Device in SLEEP mode  
VPOR VDD Start Voltage to ensure  
VSS  
See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
D004  
D010  
SVDD VDD Rise Rate to ensure Power- 0.05*  
V/ms See Section 5.1 for details on  
Power-on Reset  
on Reset  
IDD  
Supply Current(2)  
RC(3) and XT modes  
HS mode  
1.8  
4.8  
9.0  
3.3  
10  
20  
mA  
mA  
mA  
FOSC = 4.0 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 16 MHz, VDD = 5.5V  
HS mode  
D020  
IPD  
Power-down Current(2)  
5.0  
0.8  
22  
18  
µA  
µA  
VDD = 3.25V, WDT enabled  
VDD = 3.25V, WDT disabled  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design  
guidance only and is not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/  
disabled as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP  
mode.The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the  
formula: IR = VDD/2REXT (mA) with REXT in k.  
DS30453D-page 82  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
13.3 DC Characteristics:PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial)  
PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC CHARACTERISTICS  
Param  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
D030  
VIL  
Input Low Voltage  
I/O ports  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
V
V
V
V
V
Pin at hi-impedance  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
RC mode only(3)  
XT, HS and LP modes  
D040  
VIH  
Input High Voltage  
I/O ports  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
VDD = 3.0V to 5.5V(4)  
Full VDD range(4)  
0.6 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
RC mode only(3)  
XT, HS and LP modes  
D050  
D060  
VHYS Hysteresis of Schmitt  
0.15 VDD*  
V
Trigger inputs  
IIL  
Input Leakage Current(1,2)  
For VDD 5.5V:  
VSS VPIN VDD,  
pin at hi-impedance  
VPIN = VSS + 0.25V  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
XT, HS and LP modes  
I/O ports  
–1.0  
+1.0  
µA  
MCLR  
MCLR  
T0CKI  
OSC1  
–5.0  
–3.0  
–3.0  
µA  
µA  
µA  
µA  
0.5  
0.5  
0.5  
+5.0  
+3.0  
+3.0  
D080  
D090  
VOL  
VOH  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
0.5  
0.5  
V
V
IOL = 10 mA, VDD = 6.0V  
IOL = 1.9 mA, VDD = 6.0V,  
RC mode only  
Output High Voltage(2)  
I/O ports  
OSC2/CLKOUT  
VDD – 0.5  
VDD – 0.5  
V
V
IOH = –4.0 mA, VDD = 6.0V  
IOH = –0.8 mA, VDD = 6.0V,  
RC mode only  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
2: Negative current is defined as coming out of the pin.  
3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
4: The user may use the better of the two specifications.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 83  
PIC16C5X  
13.4 DC Characteristics:PIC16CR54A-04E, 10E, 20E (Extended)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
D030  
VIL  
Input Low Voltage  
I/O ports  
Vss  
Vss  
Vss  
Vss  
Vss  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
RC mode only(3)  
XT, HS and LP modes  
D040  
VIH  
Input High Voltage  
I/O ports  
I/O ports  
(4)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
4.0V < VDD 5.5V(4)  
VDD > 5.5V  
I/O ports  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
RC mode only(3)  
XT, HS and LP modes  
D050  
D060  
VHYS Hysteresis of Schmitt  
0.15 VDD*  
V
Trigger inputs  
IIL  
Input Leakage Current(1,2)  
For VDD 5.5V:  
I/O ports  
–1.0  
0.5  
+1.0  
µA  
VSS VPIN VDD,  
pin at hi-impedance  
VPIN = VSS + 0.25V  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
XT, HS and LP modes  
MCLR  
MCLR  
T0CKI  
OSC1  
–5.0  
–3.0  
–3.0  
µA  
µA  
µA  
µA  
0.5  
0.5  
0.5  
+5.0  
+3.0  
+3.0  
D080  
D090  
VOL  
VOH  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC mode only  
Output High Voltage(2)  
I/O ports  
OSC2/CLKOUT  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = –5.4 mA, VDD = 4.5V  
IOH = –1.0 mA, VDD = 4.5V,  
RC mode only  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
2: Negative current is defined as coming out of the pin.  
3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
4: The user may use the better of the two specifications.  
DS30453D-page 84  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
13.5 Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created with one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
2
to  
mc MCLR  
ck CLKOUT  
osc oscillator  
os OSC1  
cy cycle time  
drt device reset timer  
io I/O port  
t0 T0CKI  
wdt watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 13-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16CR54A  
Pin  
CL = 50 pF  
for all pins and OSC2 for RC modes  
CL  
0 -15 pF for OSC2 in XT, HS or LP modes when  
external clock is used to drive OSC1  
VSS  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 85  
PIC16C5X  
13.6 Timing Diagrams and Specifications  
FIGURE 13-2:  
EXTERNAL CLOCK TIMING - PIC16CR54A  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
FOSC  
External CLKIN Frequency(1)  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4.0  
4.0  
4.0  
5.0  
4.0  
4.0  
10  
MHz XT OSC mode  
MHz HS OSC mode (04)  
MHz HS OSC mode (10)  
MHz HS OSC mode (20)  
kHz LP OSC mode  
20  
200  
4.0  
4.0  
4.0  
10  
Oscillator Frequency(1)  
MHz RC OSC mode  
MHz XT OSC mode  
MHz HS OSC mode (04)  
MHz HS OSC mode (10)  
MHz HS OSC mode (20)  
kHz LP OSC mode  
20  
200  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
Note 1: All specified values are based on characterization data for that particular oscillator type under standard  
operating conditions with the device executing code. Exceeding these specified limits may result in an  
unstable oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453D-page 86  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
1
TOSC  
External CLKIN Period(1)  
250  
250  
100  
50  
ns XT OSC mode  
ns HS OSC mode (04)  
ns HS OSC mode (10)  
ns HS OSC mode (20)  
µs LP OSC mode  
5.0  
250  
250  
250  
100  
50  
Oscillator Period(1)  
ns RC OSC mode  
10,000 ns XT OSC mode  
250  
250  
250  
200  
ns HS OSC mode (04)  
ns HS OSC mode (10)  
ns HS OSC mode (20)  
µs LP OSC mode  
5.0  
2
3
Tcy  
Instruction Cycle Time(2)  
4/FOSC  
TosL, TosH Clock in (OSC1) Low or High  
Time  
50*  
20*  
2.0*  
ns XT oscillator  
ns HS oscillator  
µs LP oscillator  
ns XT oscillator  
ns HS oscillator  
ns LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall  
Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
Note 1: All specified values are based on characterization data for that particular oscillator type under standard  
operating conditions with the device executing code. Exceeding these specified limits may result in an  
unstable oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 87  
PIC16C5X  
FIGURE 13-3:  
CLKOUT AND I/O TIMING - PIC16CR54A  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
12  
13  
18  
19  
16  
14  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: Please refer to Figure 13.1 for load conditions.  
TABLE 13-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16CR54A  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
OSC1to CLKOUT(1)  
OSC1to CLKOUT(1)  
CLKOUT rise time(1)  
CLKOUT fall time(1)  
CLKOUTto Port out valid(1)  
Port in valid before CLKOUT(1)  
Port in hold after CLKOUT(1)  
OSC1(Q1 cycle) to Port out valid(2)  
15  
15  
5.0  
5.0  
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TckF  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
0.25 TCY+30*  
0*  
100*  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
Port output rise time(2)  
Port output fall time(2)  
20  
21  
*
TioR  
TioF  
10  
10  
25**  
25**  
ns  
ns  
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
2: Please refer to Figure 13.1 for load conditions.  
DS30453D-page 88  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 13-4:  
RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16CR54A  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: Please refer to Figure 13.1 for load conditions.  
TABLE 13-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16CR54A  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
No.  
Symbol  
Characteristic  
Min Typ† Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
1.0*  
µs VDD = 5.0V  
31  
Twdt  
Watchdog Timer Time-out Period  
7.0*  
18*  
40*  
ms VDD = 5.0V (Comm)  
(No Prescaler)  
32  
34  
TDRT  
TioZ  
Device Reset Timer Period  
7.0*  
18*  
30*  
ms VDD = 5.0V (Comm)  
µs  
I/O Hi-impedance from MCLR Low  
1.0*  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 89  
PIC16C5X  
FIGURE 13-5:  
TIMER0 CLOCK TIMINGS - PIC16CR54A  
T0CKI  
40  
41  
42  
Note: Please refer to Figure 13.1 for load conditions.  
TABLE 13-4: TIMER0 CLOCK REQUIREMENTS - PIC16CR54A  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ† Max Units  
Conditions  
40  
41  
42  
Tt0H T0CKI High Pulse Width  
- No Prescaler  
- With Prescaler  
Tt0L T0CKI Low Pulse Width  
0.5 TCY + 20*  
ns  
ns  
10*  
- No Prescaler  
0.5 TCY + 20*  
ns  
ns  
- With Prescaler  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
N
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453D-page 90  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
14.0 DEVICE CHARACTERIZATION - PIC16C54/55/56/57/CR54A  
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and  
are provided for informational purposes only. The performance characteristics listed herein are not tested or guaran-  
teed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified  
power supply range) and therefore outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean  
– 3σ) respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 14-1:  
TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE  
FOSC  
Frequency normalized to +25°C  
FOSC (25°C)  
1.10  
REXT 10 kΩ  
1.08  
1.06  
1.04  
1.02  
1.00  
CEXT = 100 pF  
0.98  
0.96  
0.94  
VDD = 5.5V  
VDD = 3.5V  
0.92  
0.90  
0.88  
0
10  
20  
25  
30  
40  
50  
60  
70  
T(°C)  
TABLE 14-1: RC OSCILLATOR FREQUENCIES  
Average  
FOSC @ 5 V, 25°C  
CEXT  
REXT  
20 pF  
3.3K  
5K  
5 MHz  
3.8 MHz  
2.2 MHz  
262 kHz  
1.6 MHz  
1.2 MHz  
684 kHz  
71 kHz  
± 27%  
± 21%  
± 21%  
± 31%  
± 13%  
± 13%  
± 18%  
± 25%  
± 10%  
± 14%  
± 15%  
± 19%  
10K  
100K  
3.3K  
5K  
100 pF  
300 pF  
10K  
100K  
3.3K  
5.0K  
10K  
100K  
660 kHz  
484 kHz  
267 kHz  
29 kHz  
The frequencies are measured on DIP packages.  
The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation  
indicated is ±3 standard deviations from the average value for VDD = 5V.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 91  
PIC16C5X  
FIGURE 14-2:  
TYPICAL RC OSC  
FREQUENCY vs. VDD,  
CEXT = 20 PF  
FIGURE 14-3:  
TYPICAL RC OSC  
FREQUENCY vs. VDD,  
CEXT = 100 PF  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
5.5  
5.0  
1.8  
1.6  
1.4  
1.2  
1.0  
R = 3.3K  
R = 3.3K  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
R = 5K  
R = 5K  
0.8  
0.6  
0.4  
0.2  
0.0  
R = 10K  
R = 10K  
Measured on DIP Packages, T = 25°C  
Measured on DIP Packages, T = 25°C  
R = 100K  
3.0  
3.5  
4.0  
4.5  
DD (Volts)  
5.0  
5.5  
6.0  
R = 100K  
5.5  
V
3.0  
3.5  
4.0  
4.5  
5.0  
6.0  
VDD (Volts)  
DS30453D-page 92  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 14-4:  
TYPICAL RC OSC  
FREQUENCY vs. VDD,  
CEXT = 300 PF  
FIGURE 14-5:  
TYPICAL IPD vs. VDD,  
WATCHDOG DISABLED  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
2.5  
2.0  
1.5  
800  
700  
600  
500  
400  
300  
200  
100  
0
R = 3.3K  
R = 5K  
T = 25°C  
1.0  
0.5  
0.0  
R = 10K  
Measured on DIP Packages, T = 25°C  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
VDD (Volts)  
R = 100K  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 93  
PIC16C5X  
FIGURE 14-6:  
MAXIMUM IPD vs. VDD,  
WATCHDOG DISABLED  
FIGURE 14-8:  
MAXIMUM IPD vs. VDD,  
WATCHDOG ENABLED  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
60  
100  
50  
40  
+125°C  
+85°C  
10  
–55°C  
+70°C  
0°C  
+85°C  
30  
–40°C  
–55°C  
+125°C  
–40°C  
+70°C  
1
0
20  
10  
0
0°C  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
DD (Volts)  
V
V
DD (Volts)  
IPD, with WDT enabled, has two components:  
The leakage current, which increases with higher temper-  
ature, and the operating current of the WDT logic, which  
increases with lower temperature. At –40°C, the latter  
dominates explaining the apparently anomalous behav-  
ior.  
FIGURE 14-7:  
TYPICAL IPD vs. VDD,  
WATCHDOG ENABLED  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
20  
18  
16  
14  
12  
T = 25°C  
10  
8
6
4
2
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
VDD (Volts)  
DS30453D-page 94  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 14-9:  
VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS vs. VDD  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
2.00  
1.80  
1.60  
1.40  
1.20  
C)  
°
5
8
+
o
t
C
°
0
4
(
x
a
M
C)  
°
5
2
+
(
p
y
T
C)  
°
5
8
+
to  
1.00  
0.80  
C
°
0
4
(
in  
M
0.60  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
FIGURE 14-10:  
VIH, VIL OF MCLR, T0CKI AND OSC1 (RC MODE) vs. VDD  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
4.5  
4.0  
3.5  
C)  
°
85  
+
o
t
C
°
40  
(
x
a
m
H
I
V
)
3.0  
2.5  
2.0  
1.5  
C
°
5
8
+
o
t
C
°
0
–4  
(
n
i
m
H
I
V
IL  
IH  
1.0  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
These input pins have Schmitt Trigger input buffers.  
5.0  
5.5  
6.0  
Note:  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 95  
PIC16C5X  
FIGURE 14-11:  
VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT  
(XT, HS, AND LP MODES) vs. VDD  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
)
C
°
5
8
+
o
t
C
°
0
4
(
x
a
M
1.8  
1.6  
1.4  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
FIGURE 14-12:  
TYPICAL IDD VS. FREQUENCY (EXTERNAL CLOCK, 25°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
10  
1.0  
0.1  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
0.01  
10K  
100K  
1M  
10M  
100M  
External Clock Frequency (Hz)  
DS30453D-page 96  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 14-13:  
MAXIMUM IDD VS. FREQUENCY (EXTERNAL CLOCK, –40°C TO +85°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
10  
1.0  
7.0  
6.5  
6.0  
5.5  
5.0  
0.1  
4.5  
4.0  
3.5  
3.0  
2.5  
0.01  
10K  
100K  
1M  
External Clock Frequency (Hz)  
10M  
100M  
FIGURE 14-14:  
MAXIMUM IDD vs. FREQUENCY (EXTERNAL CLOCK –55°C TO +125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
10  
1.0  
0.1  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
0.01  
10K  
100K  
1M  
10M  
100M  
External Clock Frequency (Hz)  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 97  
PIC16C5X  
FIGURE 14-15:  
WDT TIMER TIME-OUT  
PERIOD vs. VDD  
FIGURE 14-16:  
TRANSCONDUCTANCE  
(gm) OF HS OSCILLATOR  
vs. VDD  
(1)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
50  
45  
40  
9000  
8000  
7000  
Max –40°C  
35  
30  
6000  
5000  
Max +85  
°
C
C
Typ +25°C  
25  
4000  
Max +70  
°
20  
15  
Typ +25°C  
3000  
2000  
Min +85°C  
MIn 0°C  
10  
5
MIn –40°C  
100  
0
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
VDD (Volts)  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
Note 1: Prescaler set to 1:1.  
VDD (Volts)  
DS30453D-page 98  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 14-17:  
TRANSCONDUCTANCE  
(gm) OF LP OSCILLATOR  
vs. VDD  
FIGURE 14-18:  
TRANSCONDUCTANCE  
(gm) OF XT OSCILLATOR  
vs. VDD  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
45  
40  
35  
2500  
2000  
1500  
1000  
Max –40°C  
Max –40°C  
30  
25  
Typ +25°C  
Typ +25°C  
20  
15  
10  
Min +85°C  
500  
Min +85°C  
5
0
0
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
VDD (Volts)  
VDD (Volts)  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 99  
PIC16C5X  
FIGURE 14-19:  
PORTA, B AND C IOH vs.  
VOH, VDD = 3 V  
FIGURE 14-20:  
PORTA, B AND C IOH vs.  
VOH, VDD = 5 V  
Typical: statistical mean @ 25°C  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
0
–5  
0
Min +85°C  
–10  
Min +85°C  
–10  
–15  
–20  
Typ +25°C  
Typ +25°C  
Max –40°C  
–30  
–40  
Max –40°C  
–20  
–25  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOH (Volts)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOH (Volts)  
DS30453D-page 100  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 14-21:  
PORTA, B AND C IOL vs.  
VOL, VDD = 3 V  
FIGURE 14-22:  
PORTA, B AND C IOL vs.  
VOL, VDD = 5 V  
Typical: statistical mean @ 25°C  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
45  
40  
35  
90  
80  
70  
Max –40°C  
Max –40°C  
30  
25  
20  
60  
50  
Typ +25°C  
Typ +25°C  
Min +85°C  
40  
Min +85°C  
15  
10  
30  
20  
5
0
10  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOL (Volts)  
VOL (Volts)  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 101  
PIC16C5X  
TABLE 14-2: INPUT CAPACITANCE FOR  
PIC16C54/56  
Typical Capacitance (pF)  
Pin  
18L PDIP  
18L SOIC  
RA port  
RB port  
5.0  
4.3  
5.0  
4.3  
MCLR  
17.0  
4.0  
17.0  
3.5  
OSC1  
OSC2/CLKOUT  
T0CKI  
4.3  
3.5  
3.2  
2.8  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
TABLE 14-3: INPUT CAPACITANCE FOR  
PIC16C55/57  
Typical Capacitance (pF)  
Pin  
28L PDIP  
(600 mil)  
28L SOIC  
RA port  
RB port  
5.2  
5.6  
5.0  
17.0  
6.6  
4.6  
4.5  
4.8  
4.7  
4.1  
17.0  
3.5  
3.5  
3.5  
RC port  
MCLR  
OSC1  
OSC2/CLKOUT  
T0CKI  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
DS30453D-page 102  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
15.0 ELECTRICAL CHARACTERISTICS - PIC16C54A  
Absolute Maximum Ratings(†)  
Ambient temperature under bias...................................................................................................... –55°C to +125°C  
Storage temperature ....................................................................................................................... –65°C to +150°C  
Voltage on VDD with respect to VSS ............................................................................................................0 to +7.5V  
Voltage on MCLR with respect to VSS..........................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ............................................................................–0.6V to (VDD + 0.6V)  
Total power dissipation(1) ............................................................................................................................... 800 mW  
Max. current out of VSS pin ............................................................................................................................. 150 mA  
Max. current into VDD pin................................................................................................................................ 100 mA  
Max. current into an input pin (T0CKI only) .............................................................................................................. ±500 µA  
Input clamp current, IIK (VI < 0 or VI > VDD)..............................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ........................................................................................................±20 mA  
Max. output current sunk by any I/O pin ........................................................................................................... 25 mA  
Max. output current sourced by any I/O pin...................................................................................................... 20 mA  
Max. output current sourced by a single I/O port (PORTA or B)....................................................................... 50 mA  
Max. output current sunk by a single I/O port (PORTA or B) ............................................................................ 50 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indi-  
cated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 103  
PIC16C5X  
15.1 DC Characteristics: PIC16C54A-04, 10, 20 (Commercial)  
PIC16C54A-04I, 10I, 20I (Industrial)  
PIC16LC54A-04 (Commercial)  
PIC16LC54A-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
PIC16LC54A-04  
PIC16LC54A-04I  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise specified)  
PIC16C54A-04, 10, 20  
PIC16C54A-04I, 10I, 20I  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Param  
No.  
Symbol  
Characteristic/Device  
Min Typ† Max Units  
Conditions  
VDD  
Supply Voltage  
PIC16LC54A 3.0  
D001  
D001A  
D002  
D003  
D004  
6.25  
6.25  
V
V
XT and RC modes  
LP mode  
2.5  
PIC16C54A 3.0  
4.5  
6.25  
5.5  
V
V
RC, XT and LP modes  
HS mode  
VDR  
RAM Data Retention  
Voltage(1)  
1.5*  
Vss  
V
Device in SLEEP mode  
VPOR VDD Start Voltage to  
V
See Section 5.1 for details on  
Power-on Reset  
ensure Power-on Reset  
SVDD  
IDD  
VDD Rise Rate to ensure  
Power-on Reset  
0.05*  
V/ms See Section 5.1 for details on  
Power-on Reset  
Supply Current(2)  
D005  
PIC16LC5X  
0.5  
11  
2.5 mA FOSC = 4.0 MHz, VDD = 5.5V,  
RC(3) and XT modes  
27  
35  
µA FOSC = 32 kHz, VDD = 2.5V,  
WDT disabled, LP mode, Commercial  
µA FOSC = 32 kHz, VDD = 2.5V,  
WDT disabled, LP mode, Industrial  
11  
D005A  
PIC16C5X  
1.8  
2.4 mA FOSC = 4.0 MHz, VDD = 5.5V,  
RC(3) and XT modes  
2.4  
4.5  
14  
8.0 mA FOSC = 10 MHz, VDD = 5.5V, HS mode  
16  
29  
mA FOSC = 20 MHz, VDD = 5.5V, HS mode  
µA FOSC = 32 kHz, VDD = 3.0V,  
WDT disabled, LP mode, Commercial  
µA FOSC = 32 kHz, VDD = 3.0V,  
WDT disabled, LP mode, Industrial  
17  
37  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is based on characterization results at 25°C. This data is for design guidance only and  
is not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/  
disabled as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP  
mode. The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
DS30453D-page 104  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
15.1 DC Characteristics: PIC16C54A-04, 10, 20 (Commercial)  
PIC16C54A-04I, 10I, 20I (Industrial)  
PIC16LC54A-04 (Commercial)  
PIC16LC54A-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
PIC16LC54A-04  
PIC16LC54A-04I  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise specified)  
PIC16C54A-04, 10, 20  
PIC16C54A-04I, 10I, 20I  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Param  
No.  
Symbol  
Characteristic/Device  
Min Typ† Max Units  
Conditions  
IPD  
Power-down Current(2)  
PIC16LC5X  
D006  
2.5  
0.25 4.0  
2.5 14  
0.25 5.0  
4.0 12  
0.25 4.0  
12  
µA VDD = 2.5V, WDT enabled, Commercial  
µA VDD = 2.5V, WDT disabled, Commercial  
µA VDD = 2.5V, WDT enabled, Industrial  
µA VDD = 2.5V, WDT disabled, Industrial  
D006A  
PIC16C5X  
µA VDD = 3.0V, WDT enabled, Commercial  
µA VDD = 3.0V, WDT disabled, Commercial  
µA VDD = 3.0V, WDT enabled, Industrial  
µA VDD = 3.0V, WDT disabled, Industrial  
5.0  
0.3  
14  
5.0  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is based on characterization results at 25°C. This data is for design guidance only and  
is not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/  
disabled as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP  
mode. The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 105  
PIC16C5X  
15.2 DC Characteristics:  
PIC16C54A-04E, 10E, 20E (Extended)  
PIC16LC54A-04E (Extended)  
PIC16LC54A-04E  
(Extended)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise specified)  
PIC16C54A-04E, 10E, 20E  
(Extended)  
Operating Temperature  
–40°C TA +125°C for extended  
Param  
No.  
Symbol  
Characteristic  
Supply Voltage  
Min Typ† Max Units  
Conditions  
VDD  
D001  
PIC16LC54A 3.0  
2.5  
6.25  
6.25  
V
V
XT and RC modes  
LP mode  
D001A  
PIC16C54A 3.5  
4.5  
5.5  
5.5  
V
V
RC and XT modes  
HS mode  
D002  
D003  
VDR  
RAM Data Retention Voltage(1)  
1.5*  
Vss  
V
V
Device in SLEEP mode  
VPOR VDD Start Voltage to ensure  
See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
D004  
D010  
SVDD VDD Rise Rate to ensure  
0.05*  
V/ms See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
IDD  
Supply Current(2)  
PIC16LC54A  
0.5  
11  
11  
11  
25  
27  
35  
37  
mA FOSC = 4.0 MHz, VDD = 5.5V,  
RC(3) and XT modes  
µA FOSC = 32 kHz, VDD = 2.5V,  
LP mode, Commercial  
µA FOSC = 32 kHz, VDD = 2.5V,  
LP mode, Industrial  
µA FOSC = 32 kHz, VDD = 2.5V,  
LP mode, Extended  
D010A  
PIC16C54A  
1.8  
4.8  
9.0  
3.3 mA FOSC = 4.0 MHz, VDD = 5.5V,  
RC(3) and XT modes  
10  
20  
mA FOSC = 10 MHz, VDD = 5.5V,  
HS mode  
mA FOSC = 20 MHz, VDD = 5.5V,  
HS mode  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/  
disabled as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP  
mode. The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
DS30453D-page 106  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
15.2 DC Characteristics:  
PIC16C54A-04E, 10E, 20E (Extended)  
PIC16LC54A-04E (Extended)  
PIC16LC54A-04E  
(Extended)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise specified)  
PIC16C54A-04E, 10E, 20E  
(Extended)  
Operating Temperature  
–40°C TA +125°C for extended  
Param  
No.  
Symbol  
Characteristic  
Power-down Current(2)  
Min Typ† Max Units  
Conditions  
IPD  
D020  
PIC16LC54A  
2.5  
15  
µA VDD = 2.5V, WDT enabled,  
Extended  
µA VDD = 2.5V, WDT disabled,  
Extended  
0.25 7.0  
D020A  
PIC16C54A  
5.0  
0.8  
22  
18*  
µA VDD = 3.5V, WDT enabled  
µA VDD = 3.5V, WDT disabled  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/  
disabled as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP  
mode. The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 107  
PIC16C5X  
15.3 DC Characteristics:PIC16LV54A-02 (Commercial)  
PIC16LV54A-02I (Industrial)  
PIC16LV54A-02  
Standard Operating Conditions (unless otherwise specified)  
PIC16LV54A-02I  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–20°C TA +85°C for industrial  
Param  
No.  
Symbol  
Characteristic  
Min Typ† Max Units  
Conditions  
D001  
Supply Voltage  
VDD  
RC and XT modes  
2.0  
3.8  
V
V
D002  
D003  
D004  
D010  
VDR  
RAM Data Retention  
Voltage(1)  
1.5*  
Device in SLEEP mode  
VPOR VDD Start Voltage to ensure  
Vss  
V
See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
SVDD VDD Rise Rate to ensure  
0.05*  
V/ms See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
IDD  
Supply Current(2)  
RC(3) and XT modes  
LP mode, Commercial  
LP mode, Industrial  
0.5  
11  
14  
27  
35  
mA FOSC = 2.0 MHz, VDD = 3.0V  
µA FOSC = 32 kHz, VDD = 2.5V WDT disabled  
µA FOSC = 32 kHz, VDD = 2.5V WDT disabled  
D020  
IPD  
Power-down Current(2,4)  
Commercial  
2.5  
0.25 4.0  
3.5  
0.3  
12  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
Commercial  
Industrial  
Industrial  
14  
5.0  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/  
disabled as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP  
mode. The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
4: The oscillator start-up time can be as much as 8 seconds for XT and LP oscillator selection on wake-up from  
SLEEP mode or during initial power-up.  
DS30453D-page 108  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
15.4 DC Characteristics: PIC16C54A-04, 10, 20, PIC16LC54A-04, PIC16LV54A-02 (Commercial)  
PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial)  
PIC16C54A-04E, 10E, 20E, PIC16LC54A-04E (Extended)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Param  
–40°C TA +85°C for industrial  
–20°C TA +85°C for industrial-PIC16LV54A-02I  
–40°C TA +125°C for extended  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
D030  
VIL  
Input Low Voltage  
I/O ports  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
Pin at hi-impedance  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
(3)  
RC mode only  
XT, HS and LP modes  
D040  
VIH  
Input High Voltage  
I/O ports  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
(4)  
0.2 VDD + 1  
2.0  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
For all VDD  
(4)  
4.0V < VDD 5.5V  
(3)  
RC mode only  
XT, HS and LP modes  
D050  
D060  
VHYS Hysteresis of Schmitt  
0.15 VDD*  
V
Trigger inputs  
(1,2)  
IIL  
Input Leakage Current  
For VDD 5.5V:  
I/O ports  
-1.0  
0.5  
+1.0  
µA  
VSS VPIN VDD,  
pin at hi-impedance  
MCLR  
MCLR  
T0CKI  
OSC1  
-5.0  
-3.0  
-3.0  
+5.0  
+3.0  
+3.0  
µA VPIN = VSS +0.25V  
0.5  
0.5  
0.5  
µA  
µA  
µA  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
XT, HS and LP modes  
D080  
VOL Output Low Voltage  
I/O ports  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC mode only  
OSC2/CLKOUT  
(2)  
VOH Output High Voltage  
I/O ports  
VDD - 0.7  
VDD - 0.7  
V
V
IOH = -5.4 mA, VDD = 4.5V  
IOH = -1.0 mA, VDD = 4.5V,  
RC mode only  
OSC2/CLKOUT  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance only  
and is not tested.  
Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltage.  
2: Negative current is defined as coming out of the pin.  
3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be  
driven with external clock in RC mode.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 109  
PIC16C5X  
15.5 Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created with one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
2
to  
mc MCLR  
ck CLKOUT  
osc oscillator  
os OSC1  
cy cycle time  
drt device reset timer  
io I/O port  
t0 T0CKI  
wdt watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 15-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16C54A  
Pin  
CL = 50 pF  
for all pins and OSC2 for RC modes  
CL  
0 -15 pF for OSC2 in XT, HS or LP modes when  
external clock is used to drive OSC1  
VSS  
DS30453D-page 110  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
15.6  
Timing Diagrams and Specifications  
FIGURE 15-2: EXTERNAL CLOCK TIMING - PIC16C54A  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
AC Characteristics  
–20°C TA +85°C for industrial - PIC16LV54A-02I  
–40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
FOSC  
External CLKIN Fre-  
quency(1)  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
0.1  
4.0  
4.0  
4.0  
5.0  
4.0  
2.0  
4.0  
10  
MHz XT OSC mode  
MHz XT OSC mode (PIC16LV54A)  
MHz HS OSC mode (04)  
MHz HS OSC mode (10)  
MHz HS OSC mode (20)  
kHz LP OSC mode  
20  
200  
4.0  
2.0  
4.0  
2.0  
4.0  
10  
Oscillator Frequency(1)  
MHz RC OSC mode  
MHz RC OSC mode (PIC16LV54A)  
MHz XT OSC mode  
MHz XT OSC mode (PIC16LV54A)  
MHz HS OSC mode (04)  
MHz HS OSC mode (10)  
MHz HS OSC mode (20)  
kHz LP OSC mode  
20  
200  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
Note 1: All specified values are based on characterization data for that particular oscillator type under standard  
operating conditions with the device executing code. Exceeding these specified limits may result in an  
unstable oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 111  
PIC16C5X  
TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
AC Characteristics  
–20°C TA +85°C for industrial - PIC16LV54A-02I  
–40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
1
TOSC  
External CLKIN Period(1) 250  
ns XT OSC mode  
500  
250  
100  
50  
ns XT OSC mode (PIC16LV54A)  
ns HS OSC mode (04)  
ns HS OSC mode (10)  
ns HS OSC mode (20)  
µs LP OSC mode  
5.0  
Oscillator Period(1)  
250  
500  
250  
500  
250  
100  
50  
ns RC OSC mode  
ns RC OSC mode (PIC16LV54A)  
10,000 ns XT OSC mode  
250  
250  
250  
200  
ns XT OSC mode (PIC16LV54A)  
ns HS OSC mode (04)  
ns HS OSC mode (10)  
ns HS OSC mode (20)  
µs LP OSC mode  
5.0  
2
3
Tcy  
Instruction Cycle Time(2)  
4/FOSC  
TosL, TosH Clock in (OSC1) Low or  
High Time  
85*  
20*  
2.0*  
ns XT oscillator  
ns HS oscillator  
µs LP oscillator  
ns XT oscillator  
ns HS oscillator  
ns LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or  
Fall Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
Note 1: All specified values are based on characterization data for that particular oscillator type under standard  
operating conditions with the device executing code. Exceeding these specified limits may result in an  
unstable oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453D-page 112  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 15-3:  
CLKOUT AND I/O TIMING - PIC16C54A  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
13  
12  
16  
18  
14  
19  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: Please refer to Figure 15-1 for load conditions.  
TABLE 15-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54A  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
AC Characteristics  
–20°C TA +85°C for industrial - PIC16LV54A-02I  
–40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL OSC1to CLKOUT(1)  
TosH2ckH OSC1to CLKOUT(1)  
15  
15  
5.0  
5.0  
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TckR  
CLKOUT rise time(1)  
CLKOUT fall time(1)  
TckF  
TckL2ioV CLKOUTto Port out valid(1)  
TioV2ckH Port in valid before CLKOUT(1)  
TckH2ioI Port in hold after CLKOUT(1)  
TosH2ioV OSC1(Q1 cycle) to Port out valid(2)  
0.25 TCY+30*  
0*  
100*  
TosH2ioI OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
20  
21  
TioR  
TioF  
Port output rise time(2)  
Port output fall time(2)  
10  
10  
25**  
25**  
ns  
ns  
* These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
2: Please refer to Figure 15-1 for load conditions.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 113  
PIC16C5X  
FIGURE 15-4:  
RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C54A  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: Please refer to Figure 15-1 for load conditions.  
TABLE 15-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54A  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
AC Characteristics  
–20°C TA +85°C for industrial - PIC16LV54A-02I  
–40°C TA +125°C for extended  
Param  
No.  
Symbol  
Characteristic  
Min Typ† Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
100*  
1
ns VDD = 5.0V  
µs VDD = 5.0V (PIC16LV54A only)  
31  
Twdt  
Watchdog Timer Time-out  
Period (No Prescaler)  
9.0*  
18*  
30*  
ms VDD = 5.0V (Comm)  
32  
34  
TDRT  
TioZ  
Device Reset Timer Period  
9.0*  
18*  
30*  
ms VDD = 5.0V (Comm)  
I/O Hi-impedance from MCLR  
Low  
100*  
1µs  
ns  
(PIC16LV54A only)  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453D-page 114  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 15-5:  
TIMER0 CLOCK TIMINGS - PIC16C54A  
T0CKI  
40  
41  
42  
Note: Please refer to Figure 15-1 for load conditions.  
TABLE 15-4: TIMER0 CLOCK REQUIREMENTS - PIC16C54A  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
AC Characteristics  
–20°C TA +85°C for industrial - PIC16LV54A-02I  
–40°C TA +125°C for extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ† Max Units  
Conditions  
40  
41  
42  
Tt0H T0CKI High Pulse Width  
- No Prescaler  
- With Prescaler  
Tt0L T0CKI Low Pulse Width  
0.5 TCY + 20*  
ns  
ns  
10*  
- No Prescaler  
0.5 TCY + 20*  
ns  
ns  
- With Prescaler  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
N
* These parameters are characterized but not tested.  
† Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 115  
PIC16C5X  
NOTES:  
DS30453D-page 116  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
16.0 DEVICE CHARACTERIZATION - PIC16C54A  
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and  
are provided for informational purposes only. The performance characteristics listed herein are not tested or guaran-  
teed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified  
power supply range) and therefore outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean  
– 3σ) respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 16-1:  
Fosc  
TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE  
Frequency normalized to +25°C  
Fosc (25°C)  
1.10  
REXt 10 kW  
1.08  
1.06  
1.04  
1.02  
1.00  
CEXT = 100 pF  
0.98  
VDD = 5.5V  
0.96  
0.94  
VDD = 3.5V  
0.92  
0.90  
0.88  
0
20  
25  
30  
40  
50  
60  
70  
10  
T(°C)  
TABLE 16-1: RC OSCILLATOR FREQUENCIES  
Average  
Fosc @ 5 V, 25°C  
CEXT  
REXT  
20 pF  
3.3K  
5K  
5 MHz  
3.8 MHz  
2.2 MHz  
262 kHz  
1.6 MHz  
1.2 MHz  
684 kHz  
71 kHz  
± 27%  
± 21%  
± 21%  
± 31%  
± 13%  
± 13%  
± 18%  
± 25%  
± 10%  
± 14%  
± 15%  
± 19%  
10K  
100K  
3.3K  
5K  
100 pF  
300 pF  
10K  
100K  
3.3K  
5.0K  
10K  
100K  
660 kHz  
484 kHz  
267 kHz  
29 kHz  
The frequencies are measured on DIP packages.  
The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation  
indicated is ±3 standard deviation from average value for VDD = 5V.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 117  
PIC16C5X  
FIGURE 16-2:  
TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF, 25°C  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
6
5
R=3.3K  
R=5K  
4
3
2
1
R=10K  
R=100K  
0
6.0  
2.5  
3.0  
3.5  
4.0  
5.0  
4.5  
5.5  
VDD (Volts)  
FIGURE 16-3:  
TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 100 PF, 25°C  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
R=3.3K  
R=5K  
6
5
4
3
2
1
R=10K  
R=100K  
0
5.0  
5.5  
6.0  
2.5  
3.5  
4.0  
3.0  
4.5  
VDD (Volts)  
DS30453D-page 118  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 16-4:  
TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF, 25°C  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
700  
R=3.3K  
R=5K  
600  
500  
400  
300  
R=10K  
200  
100  
R=100K  
0
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.5  
6.0  
5.0  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 119  
PIC16C5X  
FIGURE 16-5:  
TYPICAL IPD vs. VDD, WATCHDOG DISABLED (25°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
FIGURE 16-6:  
TYPICAL IPD VS. VDD, WATCHDOG ENABLED (25°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
25.00  
20.00  
15.00  
10.00  
5.00  
0.00  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD (Volts)  
DS30453D-page 120  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 16-7:  
VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS - VDD  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
2.0  
1.8  
1.6  
1.4  
1.2  
C)  
°
5
8
+
o
t
C
°
0
4
(
x
a
M
C)  
°
5
2
+
(
p
y
T
C)  
°
5
8
+
to  
1.0  
0.8  
C
°
0
4
(
in  
M
0.6  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
FIGURE 16-8:  
VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP  
MODES) vs. VDD  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
)
C
°
5
8
+
o
t
C
°
0
4
(
x
a
M
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 121  
PIC16C5X  
FIGURE 16-9:  
VIH, VIL OF MCLR, T0CKI AND OSC1 (IN RC MODE) vs. VDD  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
4.5  
4.0  
3.5  
C)  
°
5
8
+
o
t
C
°
40  
(
x
a
m
H
I
V
3.0  
2.5  
2.0  
1.5  
C)  
°
85  
+
o
t
C
°
40  
(
n
i
m
H
I
V
IL  
1.0  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
Note:  
These input pins have Schmitt Trigger input buffers.  
DS30453D-page 122  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 16-10:  
TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 20 PF, 25°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
10000  
1000  
100  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
10  
0.1  
1
10  
Freq (MHz)  
FIGURE 16-11:  
MAXIMUM IDD vs. FREQUENCY  
(WDT DISABLED, RC MODE @ 20 PF, 40°C to +85°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
10000  
1000  
100  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
10  
0.1  
1
10  
Freq (MHz)  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 123  
PIC16C5X  
FIGURE 16-12:  
TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
10000  
1000  
100  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
10  
0.01  
1
10  
0.1  
Freq (MHz)  
FIGURE 16-13:  
MAXIMUM IDD vs. FREQUENCY  
(WDT DISABLED, RC MODE @ 100 PF, 40°C to +85°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
10000  
1000  
100  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
10  
0.01  
0.1  
10  
1
Freq (MHz)  
DS30453D-page 124  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 16-14:  
TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 300 PF, 25°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
10000  
1000  
100  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
10  
0.01  
0.1  
1
Freq (MHz)  
FIGURE 16-15:  
MAXIMUM IDD vs. FREQUENCY  
(WDT DISABLED, RC MODE @ 300 PF, 40°C to +85°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
10000  
1000  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
100  
10  
0.01  
0.1  
1
Freq (MHz)  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 125  
PIC16C5X  
FIGURE 16-16:  
WDT TIMER TIME-OUT  
PERIOD vs. VDD  
FIGURE 16-17:  
TRANSCONDUCTANCE  
(gm) OF HS OSCILLATOR  
vs. VDD  
(1)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
50  
45  
40  
9000  
8000  
7000  
Max –40°C  
35  
30  
6000  
5000  
Max +85°C  
Typ +25°C  
25  
4000  
Max +70°C  
Typ +25°C  
20  
15  
3000  
2000  
Min +85°C  
MIn 0°C  
10  
5
100  
0
MIn –40°C  
2.0  
3.0  
5.0  
VDD (Volts)  
6.0  
7.0  
4.0  
2.0  
3.0  
5.0  
4.0  
VDD (Volts)  
6.0  
7.0  
Note 1: Prescaler set to 1:1.  
DS30453D-page 126  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 16-18:  
TRANSCONDUCTANCE  
(gm) OF LP OSCILLATOR  
vs. VDD  
FIGURE 16-19:  
TRANSCONDUCTANCE  
(gm) OF XT OSCILLATOR  
vs. VDD  
Typical: statistical mean @ 25°C  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
2500  
2000  
1500  
1000  
45  
40  
35  
Max –40°C  
Max –40°C  
30  
25  
Typ +25°C  
Min +85°C  
Typ +25°C  
20  
15  
10  
500  
Min +85°C  
5
0
0
2.0  
3.0  
5.0  
VDD (Volts)  
6.0  
7.0  
4.0  
2.0  
3.0  
5.0  
VDD (Volts)  
6.0  
7.0  
4.0  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 127  
PIC16C5X  
FIGURE 16-20:  
PORTA, B AND C IOH vs.  
VOH, VDD = 3V  
FIGURE 16-21: PORTA, B AND C IOH vs. VOH,  
VDD = 5V  
Typical: statistical mean @ 25°C  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
0
–5  
0
Min +85°C  
–10  
Min +85°C  
–10  
–15  
–20  
Typ +25°C  
Typ +25°C  
Max –40°C  
–30  
Max –40°C  
–20  
–25  
–40  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOH (Volts)  
VOH (Volts)  
DS30453D-page 128  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 16-22:  
PORTA, B AND C IOL vs.  
VOL, VDD = 3V  
FIGURE 16-23:  
PORTA, B AND C IOL vs.  
VOL, VDD = 5V  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
45  
40  
35  
90  
80  
70  
Max –40°C  
Max –40°C  
30  
25  
60  
50  
Typ +25°C  
Typ +25°C  
Min +85°C  
20  
40  
Min +85°C  
15  
10  
30  
20  
5
0
10  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOL (Volts)  
VOL (Volts)  
TABLE 16-2: INPUT CAPACITANCE FOR  
PIC16C54A/C58A  
Typical Capacitance (pF)  
Pin  
18L PDIP  
18L SOIC  
RA port  
RB port  
5.0  
5.0  
4.3  
4.3  
MCLR  
17.0  
4.0  
17.0  
3.5  
OSC1  
OSC2/CLKOUT  
T0CKI  
4.3  
3.5  
3.2  
2.8  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 129  
PIC16C5X  
NOTES:  
DS30453D-page 130  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
17.0 ELECTRICAL CHARACTERISTICS - PIC16C54C/CR54C/C55A/C56A/CR56A/  
C57C/CR57C/C58B/CR58B  
Absolute Maximum Ratings(†)  
Ambient temperature under bias............................................................................................................–55°C to +125°C  
Storage temperature ............................................................................................................................. –65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V  
Voltage on MCLR with respect to VSS................................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ................................................................................. –0.6V to (VDD + 0.6V)  
Total power dissipation(1) .....................................................................................................................................800 mW  
Max. current out of VSS pin ...................................................................................................................................150 mA  
Max. current into VDD pin......................................................................................................................................100 mA  
Max. current into an input pin (T0CKI only) .....................................................................................................................±500 µA  
Input clamp current, IIK (VI < 0 or VI > VDD).................................................................................................................... ±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. ±20 mA  
Max. output current sunk by any I/O pin .................................................................................................................25 mA  
Max. output current sourced by any I/O pin............................................................................................................20 mA  
Max. output current sourced by a single I/O (Port A, B or C) .................................................................................50 mA  
Max. output current sunk by a single I/O (Port A, B or C).......................................................................................50 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indi-  
cated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 131  
PIC16C5X  
FIGURE 17-1:  
PIC16C54C/55A/56A/57C/58B-04, 20 VOLTAGE-FREQUENCY GRAPH,  
0°C TA +70°C (COMMERCIAL TEMPS)  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
VDD  
(Volts)  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
FIGURE 17-2:  
PIC16C54C/55A/56A/57C/58B-04, 20 VOLTAGE-FREQUENCY GRAPH,  
-40°C TA < 0°C, +70°C < TA +125°C (OUTSIDE OF COMMERCIAL TEMPS)  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
VDD  
(Volts)  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
DS30453D-page 132  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 17-3:  
6.0  
PIC16LC54C/55A/56A/57C/58B VOLTAGE-FREQUENCY GRAPH,  
0°C TA +85°C  
5.5  
5.0  
4.5  
4.0  
3.5  
VDD  
(Volts)  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
FIGURE 17-4:  
PIC16LC54C/55A/56A/57C/58B VOLTAGE-FREQUENCY GRAPH,  
-40°C TA 0°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
VDD  
(Volts)  
2.7  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 133  
PIC16C5X  
17.1  
DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial)  
PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial)  
PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial)  
PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise specified)  
PIC16LC5X  
PIC16LCR5X  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise specified)  
PIC16C5X  
PIC16CR5X  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Param  
No.  
Symbol  
Characteristic/Device  
Supply Voltage  
Min Typ† Max Units  
Conditions  
VDD  
D001  
2.5  
2.7  
2.5  
5.5  
5.5  
5.5  
V
V
V
–40°C TA + 85°C, 16LCR5X  
–40°C TA 0°C, 16LC5X  
0°C TA + 85°C 16LC5X  
PIC16LC5X  
PIC16C5X  
RC, XT, LP and HS mode  
from 0 - 10 MHz  
from 10 - 20 MHz  
D001A  
D002  
D003  
D004  
3.0  
4.5  
5.5  
5.5  
V
V
VDR  
VPOR  
SVDD  
RAM Data Retention Volt-  
age  
1.5*  
VSS  
V
Device in SLEEP mode  
(1)  
VDD Start Voltage to ensure  
Power-on Reset  
V
See Section 5.1 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
0.05*  
V/ms See Section 5.1 for details on  
Power-on Reset  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and  
are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading,  
oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current con-  
sumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave,  
from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled  
as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.  
The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
DS30453D-page 134  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
17.1  
DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial)  
PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial)  
PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial)  
PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise specified)  
PIC16LC5X  
PIC16LCR5X  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise specified)  
PIC16C5X  
PIC16CR5X  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Param  
No.  
Symbol  
Characteristic/Device  
Min Typ† Max Units  
Conditions  
(2,3)  
IDD  
Supply Current  
D010  
PIC16LC5X  
0.5  
11  
2.4  
27  
mA FOSC = 4.0 MHz, VDD = 5.5V, XT and  
µA  
RC modes  
FOSC = 32 kHz, VDD = 2.5V, LP mode,  
Commercial  
14  
35  
µA  
FOSC = 32 kHz, VDD = 2.5V, LP mode,  
Industrial  
D010A  
PIC16C5X  
1.8  
2.6  
4.5  
14  
2.4  
3.6*  
16  
mA FOSC = 4 MHz, VDD = 5.5V, XT and RC  
mA modes  
mA FOSC = 10 MHz, VDD = 3.0V, HS mode  
32  
µA  
FOSC = 20 MHz, VDD = 5.5V, HS mode  
FOSC = 32 kHz, VDD = 3.0V, LP mode,  
Commercial  
17  
40  
µA  
FOSC = 32 kHz, VDD = 3.0V, LP mode,  
Industrial  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and  
are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading,  
oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current con-  
sumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave,  
from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled  
as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.  
The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 135  
PIC16C5X  
17.1  
DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial)  
PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial)  
PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial)  
PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise specified)  
PIC16LC5X  
PIC16LCR5X  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise specified)  
PIC16C5X  
PIC16CR5X  
(Commercial, Industrial)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
Param  
No.  
Symbol  
Characteristic/Device  
Min Typ† Max Units  
Conditions  
(2)  
IPD  
Power-down Current  
D020  
PIC16LC5X  
0.25  
0.25  
1
2
3
5
8
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled, Commercial  
VDD = 2.5V, WDT disabled, Industrial  
VDD = 2.5V, WDT enabled, Commercial  
VDD = 2.5V, WDT enabled, Industrial  
1.25  
D020A  
PIC16C5X  
0.25  
0.25  
1.8  
2.0  
4
4
9.8  
12  
4.0  
5.0  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 3.0V, WDT disabled, Commercial  
VDD = 3.0V, WDT disabled, Industrial  
VDD = 5.5V, WDT disabled, Commercial  
VDD = 5.5V, WDT disabled, Industrial  
VDD = 3.0V, WDT enabled, Commercial  
VDD = 3.0V, WDT enabled, Industrial  
VDD = 5.5V, WDT enabled, Commercial  
VDD = 5.5V, WDT enabled, Industrial  
7.0*  
8.0*  
12*  
14*  
27*  
30*  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and  
are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading,  
oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current con-  
sumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave,  
from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled  
as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.  
The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
DS30453D-page 136  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
17.2 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E (Extended)  
PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)  
PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E  
Standard Operating Conditions (unless otherwise specified)  
PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E  
Operating Temperature –40°C TA +125°C for extended  
(Extended)  
Param  
No.  
Symbol  
Characteristic  
Supply Voltage  
Min Typ† Max Units  
Conditions  
D001  
VDD  
RC, XT, LP, and HS mode  
from 0 - 10 MHz  
from 10 - 20 MHz  
3.0  
4.5  
5.5  
5.5  
V
V
D002  
D003  
VDR  
RAM Data Retention Voltage(1)  
1.5*  
Vss  
V
V
Device in SLEEP mode  
VPOR VDD start voltage to ensure  
See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
D004  
D010  
SVDD VDD rise rate to ensure  
0.05*  
V/ms See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
IDD  
IPD  
Supply Current(2)  
XT and RC(3) modes  
HS mode  
1.8  
9.0  
3.3 mA FOSC = 4.0 MHz, VDD = 5.5V  
20  
mA FOSC = 20 MHz, VDD = 5.5V  
D020  
Power-down Current(2)  
0.3  
10  
12  
4.8  
18  
26  
17  
µA VDD = 3.0V, WDT disabled  
µA VDD = 4.5V, WDT disabled  
µA VDD = 5.5V, WDT disabled  
µA VDD = 3.0V, WDT enabled  
µA VDD = 4.5V, WDT enabled  
µA VDD = 5.5V, WDT enabled  
50*  
60*  
31*  
68*  
90*  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only,  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/  
disabled as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP  
mode. The power-down current in SLEEP mode does not depend on the oscillator type.  
3: Does not include current through REXT. The current through the resistor can be estimated by the formula:  
IR = VDD/2REXT (mA) with REXT in k.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 137  
PIC16C5X  
17.3 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial, Extended)  
PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial)  
PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial, Extended)  
PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
D030  
VIL  
Input Low Voltage  
I/O Ports  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.8 V  
V
V
V
V
V
V
4.5V <VDD 5.5V  
Otherwise  
I/O Ports  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
RC mode only(3)  
XT, HS and LP modes  
D040  
VIH  
Input High Voltage  
I/O ports  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
4.5V < VDD 5.5V  
Otherwise  
I/O ports  
0.25 VDD+0.8  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
RC mode only(3)  
XT, HS and LP modes  
D050  
D060  
VHYS Hysteresis of Schmitt  
0.15 VDD*  
V
Trigger inputs  
IIL  
Input Leakage Current(1,2)  
For VDD 5.5V:  
I/O ports  
-1.0  
-5.0  
0.5  
+1.0  
µA VSS VPIN VDD,  
pin at hi-impedance  
µA VPIN = VSS +0.25V  
µA VPIN = VDD  
µA VSS VPIN VDD  
µA VSS VPIN VDD,  
XT, HS and LP modes  
MCLR  
MCLR  
T0CKI  
OSC1  
+5.0  
+3.0  
+3.0  
0.5  
0.5  
0.5  
-3.0  
-3.0  
D080  
D090  
VOL  
VOH  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC mode only  
Output High Voltage(2)  
I/O ports  
OSC2/CLKOUT  
VDD - 0.7  
VDD - 0.7  
V
V
IOH = -5.4 mA, VDD = 4.5V  
IOH = -1.0 mA, VDD = 4.5V,  
RC mode only  
*
These parameters are characterized but not tested.  
† Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
2: Negative current is defined as coming out of the pin.  
3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
DS30453D-page 138  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
17.4 Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created with one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
2
to  
mc MCLR  
ck CLKOUT  
osc oscillator  
os OSC1  
cy cycle time  
drt device reset timer  
io I/O port  
t0 T0CKI  
wdt watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 17-5:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS -  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B-04, 20  
CL = 50 pF  
for all pins and OSC2 for RC mode  
Pin  
0 -15 pF for OSC2 in XT, HS or LP modes when  
external clock is used to drive OSC1  
CL  
VSS  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 139  
PIC16C5X  
17.5 Timing Diagrams and Specifications  
FIGURE 17-6:  
EXTERNAL CLOCK TIMING - PIC16C5X, PIC16CR5X  
Q4  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
4
2
CLKOUT  
TABLE 17-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
Symbol  
No.  
Characteristic  
Min Typ† Max Units  
Conditions  
FOSC  
External CLKIN Frequency(1)  
DC  
DC  
DC  
DC  
DC  
0.45  
4.0  
4.0  
5.0  
250  
250  
50  
4.0 MHz XT OSC mode  
4.0 MHz HS OSC mode (04)  
20 MHz HS OSC mode (20)  
200 kHz LP OSC mode  
4.0 MHz RC OSC mode  
4.0 MHz XT OSC mode  
4.0 MHz HS OSC mode (04)  
Oscillator Frequency(1)  
20  
MHz HS OSC mode (20)  
200 kHz LP OSC mode  
1
TOSC  
External CLKIN Period(1)  
Oscillator Period(1)  
ns XT OSC mode  
ns HS OSC mode (04)  
ns HS OSC mode (20)  
µs LP OSC mode  
5.0  
250  
250  
250  
50  
ns RC OSC mode  
2,200 ns XT OSC mode  
250  
250  
200  
ns HS OSC mode (04)  
ns HS OSC mode (20)  
µs LP OSC mode  
5.0  
*
These parameters are characterized but not tested.  
† Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: All specified values are based on characterization data for that particular oscillator type under standard oper-  
ating conditions with the device executing code. Exceeding these specified limits may result in an unstable  
oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453D-page 140  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
TABLE 17-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
Symbol  
No.  
Characteristic  
Min Typ† Max Units  
Conditions  
2
Tcy  
Instruction Cycle Time(2)  
50*  
20*  
2.0*  
4/FOSC  
3
TosL, TosH Clock in (OSC1) Low or High  
Time  
ns XT oscillator  
ns HS oscillator  
µs LP oscillator  
ns XT oscillator  
ns HS oscillator  
ns LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall  
Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
† Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: All specified values are based on characterization data for that particular oscillator type under standard oper-  
ating conditions with the device executing code. Exceeding these specified limits may result in an unstable  
oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 141  
PIC16C5X  
FIGURE 17-7:  
CLKOUT AND I/O TIMING - PIC16C5X, PIC16CR5X  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
13  
12  
18  
14  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Refer to Figure 17-5 for load conditions.  
Note:  
TABLE 17-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL OSC1to CLKOUT(1)  
TosH2ckH OSC1to CLKOUT(1)  
15  
15  
5.0  
5.0  
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TckR  
CLKOUT rise time(1)  
CLKOUT fall time(1)  
TckF  
TckL2ioV CLKOUTto Port out valid(1)  
TioV2ckH Port in valid before CLKOUT(1)  
0.25 TCY+30*  
TckH2ioI  
Port in hold after CLKOUT(1)  
0*  
TosH2ioV OSC1(Q1 cycle) to Port out valid(2)  
100*  
TosH2ioI OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
20  
21  
*
TioR  
TioF  
Port output rise time(2)  
Port output fall time(2)  
10  
10  
25**  
25**  
ns  
ns  
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
2: Refer to Figure 17-5 for load conditions.  
DS30453D-page 142  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 17-8:  
RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C5X,  
PIC16CR5X  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: Please refer to Figure 17-5 for load conditions.  
TABLE 17-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C5X, PIC16CR5X  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
No.  
Symbol  
Characteristic  
Min Typ† Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
1000*  
ns VDD = 5.0V  
31  
Twdt Watchdog Timer Time-out Period  
(No Prescaler)  
9.0*  
18*  
30*  
ms VDD = 5.0V (Comm)  
32  
TDRT Device Reset Timer Period  
9.0*  
18*  
30*  
ms VDD = 5.0V (Comm)  
34  
*
TioZ I/O Hi-impedance from MCLR Low 100* 300* 1000*  
ns  
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 143  
PIC16C5X  
FIGURE 17-9:  
TIMER0 CLOCK TIMINGS - PIC16C5X, PIC16CR5X  
T0CKI  
40  
41  
42  
Note: Please refer to Figure 17-5 for load conditions.  
TABLE 17-4: TIMER0 CLOCK REQUIREMENTS - PIC16C5X, PIC16CR5X  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C for commercial  
–40°C TA +85°C for industrial  
–40°C TA +125°C for extended  
AC Characteristics  
Param  
No.  
Symbol Characteristic  
Min  
Typ† Max Units Conditions  
40  
Tt0H T0CKI High Pulse Width  
- No Prescaler  
0.5 TCY + 20*  
ns  
ns  
- With Prescaler  
10*  
41  
Tt0L T0CKI Low Pulse Width  
- No Prescaler  
0.5 TCY + 20*  
ns  
ns  
- With Prescaler  
10*  
42  
*
Tt0P T0CKI Period  
20 or TCY + 40*  
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
N
These parameters are characterized but not tested.  
† Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guid-  
ance only and are not tested.  
DS30453D-page 144  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
18.0 DEVICE CHARACTERIZATION - PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/  
CR57C/C58B/CR58B  
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and  
are provided for informational purposes only. The performance characteristics listed herein are not tested or guaran-  
teed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified  
power supply range) and therefore outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean  
– 3σ) respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 18-1:  
FOSC  
TYPICAL RC OSCILLATOR FREQUENCY VS. TEMPERATURE  
Frequency normalized to +25°C  
FOSC (25°C)  
1.10  
REXT 10 kW  
CEXT = 100 pF  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
VDD = 5.5V  
VDD = 3.5V  
0.92  
0.90  
0.88  
0
10  
20  
25  
30  
40  
50  
60  
70  
T(°C)  
TABLE 18-1: RC OSCILLATOR FREQUENCIES  
Average  
Fosc @ 5V, 25°C  
CEXT  
REXT  
20 pF  
3.3K  
5K  
5 MHz  
3.8 MHz  
2.2 MHz  
262 kHz  
1.63 MHz  
1.2 MHz  
684 kHz  
71 kHz  
± 27%  
± 21%  
± 21%  
± 31%  
± 13%  
± 13%  
± 18%  
± 25%  
± 10%  
± 14%  
± 15%  
± 19%  
10K  
100K  
3.3K  
5K  
100 pF  
300 pF  
10K  
100K  
3.3K  
5.0K  
10K  
100K  
660 kHz  
484 kHz  
267 kHz  
29 kHz  
The frequencies are measured on DIP packages.  
The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation  
indicated is ±3 standard deviation from average value for VDD = 5V.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 145  
PIC16C5X  
FIGURE 18-2:  
TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF, 25°C  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
6
5
4
R=3.3K  
R=5K  
3
2
R=10K  
1
R=100K  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 18-3:  
TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 100 PF, 25°C  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
1.8  
1.6  
R=3.3K  
1.4  
1.0  
R=5K  
R=10K  
0.6  
0.2  
R=100K  
0
2.5  
3.0  
3.5  
5.0  
5.5  
6.0  
4.0  
4.5  
DD (Volts)  
V
DS30453D-page 146  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 18-4:  
TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF, 25°C  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
700  
600  
R=3.3K  
500  
400  
300  
200  
100  
R=5K  
R=10K  
R=100K  
0
2.5  
3.0  
3.5  
5.0  
5.5  
6.0  
4.0  
4.5  
VDD (Volts)  
FIGURE 18-5:  
TYPICAL IPD vs. VDD, WATCHDOG DISABLED (25°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
25  
20  
15  
10  
5
0
2.5  
3.0  
3.5  
5.0  
5.5  
6.0  
4.0  
4.5  
DD (Volts)  
V
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 147  
PIC16C5X  
FIGURE 18-6:  
TYPICAL IPD vs. VDD, WATCHDOG ENABLED (25°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
25  
20  
15  
10  
5.0  
0
2.5  
3.0  
3.5  
5.0  
5.5  
4.0  
4.5  
6.0  
VDD (Volts)  
FIGURE 18-7:  
TYPICAL IPD vs. VDD, WATCHDOG ENABLED (40°C, 85°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
35  
30  
25  
20  
15  
10  
5.0  
0
2.5  
3.0  
3.5  
5.0  
5.5  
4.0  
4.5  
6.0  
VDD (Volts)  
DS30453D-page 148  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 18-8:  
VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF I/O PINS vs. VDD  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
2.0  
1.8  
1.6  
1.4  
1.2  
C)  
°
5
2
+
(
p
y
T
1.0  
0.8  
0.6  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
FIGURE 18-9:  
VIH, VIL OF MCLR, T0CKI AND OSC1 (IN RC MODE) vs. VDD  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
4.5  
4.0  
3.5  
C)  
°
5
8
+
o
t
C
°
40  
(
x
a
m
H
I
V
3.0  
2.5  
2.0  
1.5  
C)  
°
85  
+
o
t
C
°
40  
(
n
i
m
H
I
V
IL  
IL  
1.0  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
These input pins have Schmitt Trigger input buffers.  
5.0  
5.5  
6.0  
Note:  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 149  
PIC16C5X  
FIGURE 18-10:  
VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT (IN XT, HS  
AND LP MODES) vs. VDD  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
FIGURE 18-11:  
TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 20 PF, 25°C)  
TYPICAL IDD vs FREQ(RC MODE @ 20pF/25C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
10000  
1000  
100  
5.5V  
4.5V  
3.5V  
2.5V  
10  
0.1  
1
10  
FREQ(MHz)  
DS30453D-page 150  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 18-12:  
TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C)  
TYPICAL IDD vs FREQ(RC MODE @ 100 pF/25C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
10000  
1000  
100  
5.5V  
4.5V  
3.5V  
2.5V  
10  
0.1  
1
10  
FREQ(MHz)  
FIGURE 18-13:  
TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 300 PF, 25°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
TYPICAL IDD vs FREQ (RC MODE @ 300 pF/25C)  
10000  
1000  
100  
5.5V  
4.5V  
3.5V  
2.5V  
10  
0.01  
0.1  
FREQ(MHz)  
1
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 151  
PIC16C5X  
FIGURE 18-14:  
WDT TIMER TIME-OUT  
PERIOD vs. VDD  
FIGURE 18-15:  
PORTA, B AND C IOH vs.  
VOH, VDD = 3 V  
(1)  
Typical: statistical mean @ 25°C  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
0
–5  
50  
45  
40  
Min +85°C  
35  
30  
–10  
–15  
Typ +25°C  
Typ +125°C  
25  
Typ +85°C  
Max –40°C  
20  
15  
Typ +25°C  
Typ –40°C  
–20  
–25  
10  
0
0.5  
1.0  
VOH (Volts)  
2.0  
2.5  
3.0  
1.5  
5.0  
2.0  
4.0  
VDD (Volts)  
3.0  
5.0  
6.0  
7.0  
Note 1: Prescaler set to 1:1.  
DS30453D-page 152  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 18-16:  
PORTA, B AND C IOH vs.  
VOH, VDD = 5 V  
FIGURE 18-17:  
PORTA, B AND C IOL vs.  
VOL, VDD = 3 V  
Typical: statistical mean @ 25°C  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
45  
40  
35  
0
Max –40°C  
–10  
30  
25  
Typ +125°C  
Typ +85°C  
–20  
Typ +25°C  
Min +85°C  
20  
Typ +25°C  
Typ –40°C  
15  
–30  
–40  
10  
5
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOH (Volts)  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOL (Volts)  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 153  
PIC16C5X  
FIGURE 18-18:  
PORTA, B AND C IOL vs.  
VOL, VDD = 5 V  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
90  
80  
70  
Max –40°C  
60  
50  
Typ +25°C  
Min +85°C  
40  
30  
20  
10  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOL (Volts)  
TABLE 18-2: INPUT CAPACITANCE  
Typical Capacitance (pF)  
Pin  
18L PDIP  
5.0  
18L SOIC  
4.3  
RA port  
RB port  
5.0  
4.3  
MCLR  
17.0  
4.0  
17.0  
3.5  
OSC1  
OSC2/CLKOUT  
T0CKI  
4.3  
3.5  
3.2  
2.8  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
DS30453D-page 154  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
19.0 ELECTRICAL CHARACTERISTICS - PIC16C54C/C55A/C56A/C57C/C58B  
40MHz  
Absolute Maximum Ratings(†)  
Ambient temperature under bias............................................................................................................–55°C to +125°C  
Storage temperature ............................................................................................................................. –65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V  
Voltage on MCLR with respect to VSS................................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ................................................................................. –0.6V to (VDD + 0.6V)  
Total power dissipation(1) .....................................................................................................................................800 mW  
Max. current out of VSS pin ...................................................................................................................................150 mA  
Max. current into VDD pin......................................................................................................................................100 mA  
Max. current into an input pin (T0CKI only) .....................................................................................................................±500 µA  
Input clamp current, IIK (VI < 0 or VI > VDD).................................................................................................................... ±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. ±20 mA  
Max. output current sunk by any I/O pin .................................................................................................................25 mA  
Max. output current sourced by any I/O pin............................................................................................................20 mA  
Max. output current sourced by a single I/O (Port A, B or C) .................................................................................50 mA  
Max. output current sunk by a single I/O (Port A, B or C).......................................................................................50 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indi-  
cated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 155  
PIC16C5X  
FIGURE 19-1:  
PIC16C54C/C55A/C56A/C57C/C58B-40 VOLTAGE-FREQUENCY GRAPH,  
0°C TA +70°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
0
40  
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
3: Operation between 20 to 40 MHz requires the following:  
• VDD between 4.5V. and 5.5V  
• OSC1 externally driven  
• OSC2 not connected  
• HS mode  
• Commercial temperatures  
Devices qualified for 40 MHz operation have -40 designation (ex: PIC16C54C-40/P).  
4: For operation between DC and 20 MHz, see Section 17.1.  
DS30453D-page 156  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
(1)  
19.1  
DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)  
PIC16C54C/C55A/C56A/C57C/C58B-40  
Standard Operating Conditions (unless otherwise specified)  
(Commercial)  
Operating Temperature  
0°C TA +70°C for commercial  
Param  
No.  
Symbol  
Characteristic  
Min Typ† Max Units  
Conditions  
D001  
D002  
D003  
VDD  
Supply Voltage  
RAM Data Retention Voltage(2)  
4.5  
5.5  
V
V
V
HS mode from 20 - 40 MHz  
Device in SLEEP mode  
VDR  
1.5*  
Vss  
VPOR VDD Start Voltage to ensure  
See Section 5.1 for details on  
Power-on Reset  
Power-on Reset  
D004  
D010  
D020  
SVDD VDD Rise Rate to ensure Power- 0.05*  
V/ms See Section 5.1 for details on  
Power-on Reset  
on Reset  
IDD  
IPD  
Supply Current(3)  
5.2 12.3 mA FOSC = 40 MHz, VDD = 4.5V, HS mode  
6.8  
16  
mA FOSC = 40 MHz, VDD = 5.5V, HS mode  
Power-down Current(3)  
1.8  
9.8  
7.0  
27*  
µA VDD = 5.5V, WDT disabled, Commercial  
µA VDD = 5.5V, WDT enabled, Commercial  
* These parameters are characterized but not tested.  
† Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
Note 1: Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin  
externally driven, OSC2 pin not connected, HS oscillator mode and commercial temperatures. For operation  
between DC and 20 MHz, See Section 19.1.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus load-  
ing, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current  
consumption.  
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/dis-  
abled as specified.  
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP  
mode. The power-down current in SLEEP mode does not depend on the oscillator type.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 157  
PIC16C5X  
(1)  
19.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)  
DC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C for commercial  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
D030  
VIL  
Input Low Voltage  
I/O Ports  
VSS  
VSS  
VSS  
VSS  
0.8  
V
V
V
V
4.5V <VDD 5.5V  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1  
0.15 VDD  
0.15 VDD  
0.2 VDD  
HS, 20 MHz FOSC 40 MHz  
4.5V < VDD 5.5V  
D040  
VIH  
Input High Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1  
2.0  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
0.85 VDD  
0.85 VDD  
0.8 VDD  
HS, 20 MHz FOSC 40 MHz  
D050  
D060  
VHYS Hysteresis of Schmitt  
0.15 VDD*  
V
Trigger inputs  
IIL  
Input Leakage Current(2,3)  
For VDD 5.5V:  
I/O ports  
-1.0  
0.5  
+1.0  
µA VSS VPIN VDD,  
pin at hi-impedance  
MCLR  
MCLR  
T0CKI  
OSC1  
-5.0  
-3.0  
-3.0  
+5.0  
+3.0  
+3.0  
µA VPIN = VSS +0.25V  
µA VPIN = VDD  
µA VSS VPIN VDD  
µA VSS VPIN VDD, HS  
0.5  
0.5  
0.5  
D080  
D090  
VOL  
VOH  
Output Low Voltage  
I/O ports  
Output High Voltage(3)  
I/O ports  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOH = -5.4 mA, VDD = 4.5V  
VDD - 0.7  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
Note 1: Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin  
externally driven, OSC2 pin not connected and HS oscillator mode and commercial temperatures. For opera-  
tion between DC and 20 MHz, See Section 17.3.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input volt-  
age.  
3: Negative current is defined as coming out of the pin.  
DS30453D-page 158  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
19.3 Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created with one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
2
to  
mc MCLR  
ck CLKOUT  
osc oscillator  
os OSC1  
cy cycle time  
drt device reset timer  
io I/O port  
t0 T0CKI  
wdt watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 19-2:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS -  
PIC16C54C/C55A/C56A/C57C/C58B-40  
CL = 50 pF for all pins except OSC2  
Pin  
0 pF for OSC2 in HS mode for  
CL  
operation between  
20 MHz to 40 MHz  
VSS  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 159  
PIC16C5X  
19.4 Timing Diagrams and Specifications  
FIGURE 19-3:  
EXTERNAL CLOCK TIMING - PIC16C5X-40  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 19-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X-40  
Standard Operating Conditions (unless otherwise specified)  
AC Characteristics  
Operating Temperature  
0°C TA +70°C for commercial  
Param  
No.  
Symbol  
Characteristic  
Min Typ† Max Units  
Conditions  
FOSC  
TOSC  
Tcy  
External CLKIN Frequency(1)  
External CLKIN Period(1)  
Instruction Cycle Time(2)  
20  
25  
40  
MHz HS OSC mode  
ns HS OSC mode  
1
2
3
4/FOSC  
TosL, TosH Clock in (OSC1) Low or High  
Time  
6.0*  
ns HS oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall  
Time  
6.5*  
ns HS oscillator  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: All specified values are based on characterization data for that particular oscillator type under standard oper-  
ating conditions with the device executing code. Exceeding these specified limits may result in an unstable  
oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453D-page 160  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 19-4:  
OSC1  
CLKOUT AND I/O TIMING - PIC16C5X-40  
Q1  
Q2  
Q3  
Q4  
10  
11  
CLKOUT  
13  
12  
16  
18  
14  
19  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Refer to Figure 19-2 for load conditions.  
.
Note:  
TABLE 19-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C5X-40  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C for commercial  
AC Characteristics  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL OSC1to CLKOUT(1,2)  
TosH2ckH OSC1to CLKOUT(1,2)  
15  
15  
5.0  
5.0  
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TckR  
CLKOUT rise time(1,2)  
CLKOUT fall time(1,2)  
TckF  
TckL2ioV CLKOUTto Port out valid(1,2)  
TioV2ckH Port in valid before CLKOUT(1,2)  
0.25 TCY+30*  
TckH2ioI  
Port in hold after CLKOUT(1,2)  
0*  
TosH2ioV OSC1(Q1 cycle) to Port out valid(2)  
100  
TosH2ioI OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
20  
21  
*
TioR  
TioF  
Port output rise time(2)  
Port output fall time(2)  
10  
10  
25**  
25**  
ns  
ns  
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
2: Refer to Figure 19-2 for load conditions.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 161  
PIC16C5X  
FIGURE 19-5:  
RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C5X-40  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
(1)  
I/O pin  
Note 1: Please refer to Figure 19-2 for load conditions.  
.
TABLE 19-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C5X-40  
Standard Operating Conditions (unless otherwise specified)  
AC Characteristics Operating Temperature  
0°C TA +70°C (commercial)  
Operating Voltage VDD range is described in Section 19.1.  
Param  
No.  
Symbol  
Characteristic  
Min Typ† Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
1000*  
ns VDD = 5.0V  
31  
Twdt Watchdog Timer Time-out Period  
(No Prescaler)  
9.0*  
18*  
30*  
ms VDD = 5.0V (Comm)  
32  
TDRT Device Reset Timer Period  
9.0*  
18*  
30*  
ms VDD = 5.0V (Comm)  
34  
*
TioZ I/O Hi-impedance from MCLR Low 100* 300* 1000*  
ns  
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453D-page 162  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 19-6:  
TIMER0 CLOCK TIMINGS - PIC16C5X-40  
T0CKI  
40  
41  
42  
Note:  
Refer to Figure 19-2 for load conditions.  
TABLE 19-4: TIMER0 CLOCK REQUIREMENTS PIC16C5X-40  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C for commercial  
AC Characteristics  
Param  
No.  
Symbol Characteristic  
Min  
Typ† Max Units Conditions  
40  
Tt0H T0CKI High Pulse Width  
- No Prescaler  
0.5 TCY + 20*  
ns  
ns  
- With Prescaler  
Tt0L T0CKI Low Pulse Width  
10*  
41  
- No Prescaler  
0.5 TCY + 20*  
ns  
ns  
- With Prescaler  
10*  
42  
*
Tt0P T0CKI Period  
20 or TCY + 40*  
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
N
These parameters are characterized but not tested.  
† Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 163  
PIC16C5X  
NOTES:  
DS30453D-page 164  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
20.0 DEVICE CHARACTERIZATION - PIC16C54C/C55A/C56A/C57C/C58B 40MHz  
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and  
are provided for informational purposes only. The performance characteristics listed herein are not tested or guaran-  
teed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified  
power supply range) and therefore outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean  
– 3σ) respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 20-1:  
TYPICAL IPD vs. VDD, WATCHDOG DISABLED (25°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
25  
20  
15  
10  
5.0  
0
2.5  
3.0  
3.5  
5.0  
5.5  
4.0  
4.5  
6.0  
VDD (Volts)  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 165  
PIC16C5X  
FIGURE 20-2:  
TYPICAL IPD vs. VDD, WATCHDOG ENABLED (25°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
25  
20  
15  
10  
5.0  
0
2.5  
3.0  
3.5  
5.0  
5.5  
6.0  
4.0  
4.5  
VDD (Volts)  
FIGURE 20-3:  
TYPICAL IPD vs. VDD, WATCHDOG ENABLED (40°C, 85°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
35  
30  
25  
20  
15  
10  
5.0  
0
6.0  
2.5  
3.5  
5.0  
5.5  
3.0  
4.0  
4.5  
VDD (Volts)  
DS30453D-page 166  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 20-4:  
VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF I/O PINS vs. VDD  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
2.0  
1.8  
1.6  
1.4  
1.2  
C)  
°
5
2
+
(
p
y
T
1.0  
0.8  
0.6  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
FIGURE 20-5:  
VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT  
(HS MODE) vs. VDD  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 167  
PIC16C5X  
FIGURE 20-6:  
TYPICAL IDD vs. VDD (40 MHZ, WDT DISABLED, HS MODE, 70°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
12  
11  
10  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
VDD (Volts)  
DS30453D-page 168  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
FIGURE 20-7:  
WDT TIMER TIME-OUT  
PERIOD vs. VDD  
FIGURE 20-8:  
IOH vs. VOH, VDD = 5 V  
(1)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
0
50  
45  
40  
–10  
Typ +125°C  
Typ +85°C  
35  
30  
–20  
Typ +25°C  
Typ –40°C  
Typ +125°C  
25  
Typ +85°C  
–30  
–40  
20  
15  
Typ +25°C  
Typ –40°C  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
10  
VOH (Volts)  
5.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
VDD (Volts)  
Note 1: Prescaler set to 1:1.  
TABLE 20-1: INPUT CAPACITANCE  
Typical Capacitance (pF)  
Pin  
18L PDIP  
5.0  
18L SOIC  
4.3  
RA port  
RB port  
5.0  
4.3  
MCLR  
17.0  
4.0  
17.0  
3.5  
OSC1  
OSC2/CLKOUT  
T0CKI  
4.3  
3.5  
3.2  
2.8  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 169  
PIC16C5X  
FIGURE 20-9:  
IOL vs. VOL, VDD = 5 V  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
90  
80  
70  
Max –40°C  
60  
50  
Typ +25°C  
Min +85°C  
40  
30  
20  
10  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOL (Volts)  
DS30453D-page 170  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
21.0 PACKAGING INFORMATION  
21.1 Package Marketing Information  
18-Lead PDIP  
Example  
PIC16C56A  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
-04I/P456  
YYWWNNN  
0023CBA  
Example  
Example  
28-Lead Skinny PDIP (.300")  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC16C55A  
-04I/SP456  
YYWWNNN  
0023CBA  
28-Lead PDIP (.600")  
XXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXX  
YYWWNNN  
PIC16C55A  
-04/P126  
0042CDA  
18-Lead SOIC  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C54C  
-04/S0218  
YYWWNNN  
0018CDK  
28-Lead SOIC  
Example  
PIC16C57C  
-04/SO  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
YYWWNNN  
0015CBK  
Example  
20-Lead SSOP  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16C54C  
-04/SS218  
0020CBP  
YYWWNNN  
28-Lead SSOP  
Example  
PIC16C57C  
-04/SS123  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
0025CBK  
YYWWNNN  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 171  
PIC16C5X  
Package Marking Information (Cont’d)  
18-Lead CERDIP Windowed  
Example  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
PIC16C54C  
/JW  
0001CBA  
28-Lead CERDIP Windowed  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16C57C  
/JW  
0038CBA  
YYWWNNN  
Legend: XX...X Customer specific information*  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
DS30453D-page 172  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
A
L
c
A1  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.890  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
22.61  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.898  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.905  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
22.80  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
22.99  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-007  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 173  
PIC16C5X  
28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
L
A
c
B1  
β
A1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.150  
.130  
2.54  
3.81  
3.30  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
A2  
A1  
E
.140  
.160  
3.56  
4.06  
.125  
.015  
.300  
.275  
1.345  
.125  
.008  
.040  
.016  
.320  
.135  
3.18  
0.38  
7.62  
6.99  
34.16  
3.18  
0.20  
1.02  
3.43  
.310  
.285  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.295  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.87  
7.24  
8.26  
7.49  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
34.67  
3.30  
Tip to Seating Plane  
Lead Thickness  
L
c
0.29  
Upper Lead Width  
B1  
B
1.33  
Lower Lead Width  
0.41  
8.13  
5
0.48  
8.89  
10  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
5
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
DS30453D-page 174  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
28-Lead Plastic Dual In-line (P) – 600 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
B1  
β
A1  
p
B
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.100  
.175  
.150  
2.54  
4.45  
3.81  
Top to Seating Plane  
A
.160  
.190  
4.06  
4.83  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.140  
.015  
.595  
.505  
1.395  
.120  
.008  
.030  
.014  
.620  
5
.160  
3.56  
0.38  
15.11  
12.83  
35.43  
3.05  
0.20  
0.76  
0.36  
15.75  
5
4.06  
.600  
.545  
1.430  
.130  
.012  
.050  
.018  
.650  
10  
.625  
.560  
1.465  
.135  
.015  
.070  
.022  
.680  
15  
15.24  
13.84  
36.32  
3.30  
0.29  
1.27  
0.46  
16.51  
10  
15.88  
14.22  
37.21  
3.43  
0.38  
1.78  
0.56  
17.27  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-011  
Drawing No. C04-079  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 175  
PIC16C5X  
18-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
p
E1  
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.050  
.099  
.091  
.008  
.407  
.295  
.454  
.020  
.033  
4
1.27  
Overall Height  
A
.093  
.104  
2.36  
2.24  
2.50  
2.31  
0.20  
10.34  
7.49  
11.53  
0.50  
0.84  
4
2.64  
2.39  
0.30  
10.67  
7.59  
11.73  
0.74  
1.27  
8
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.291  
.446  
.010  
.016  
0
.094  
.012  
.420  
.299  
.462  
.029  
.050  
8
§
0.10  
10.01  
7.39  
11.33  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.012  
.020  
15  
0.23  
0.36  
0
0.27  
0.42  
12  
0.30  
0.51  
15  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-051  
DS30453D-page 176  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
E1  
p
D
B
2
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.050  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle Top  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 177  
PIC16C5X  
20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
1
n
α
c
A2  
A
φ
L
A1  
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
Number of Pins  
Pitch  
20  
.026  
.073  
.068  
.006  
.309  
.207  
.284  
.030  
.007  
4
0.65  
Overall Height  
A
.068  
.078  
1.73  
1.63  
1.85  
1.73  
0.15  
7.85  
5.25  
7.20  
0.75  
0.18  
101.60  
0.32  
5
1.98  
1.83  
0.25  
8.18  
5.38  
7.34  
0.94  
0.25  
203.20  
0.38  
10  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.064  
.002  
.299  
.201  
.278  
.022  
.004  
0
.072  
.010  
.322  
.212  
.289  
.037  
.010  
8
§
0.05  
7.59  
5.11  
7.06  
0.56  
0.10  
0.00  
0.25  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-150  
Drawing No. C04-072  
DS30453D-page 178  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
28-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
n
1
α
A
c
A2  
A1  
φ
L
β
Units  
INCHES  
NOM  
MILLIMETERS*  
NOM MAX  
Dimension Limits  
MIN  
MAX  
MIN  
n
p
Number of Pins  
Pitch  
28  
28  
.026  
.073  
.068  
.006  
.309  
.207  
.402  
.030  
.007  
4
0.65  
1.85  
1.73  
0.15  
7.85  
5.25  
10.20  
0.75  
0.18  
101.60  
0.32  
5
Overall Height  
A
.068  
.078  
1.73  
1.98  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.064  
.002  
.299  
.201  
.396  
.022  
.004  
0
.072  
.010  
.319  
.212  
.407  
.037  
.010  
8
1.63  
0.05  
7.59  
5.11  
10.06  
0.56  
0.10  
0.00  
0.25  
0
1.83  
0.25  
8.10  
5.38  
10.34  
0.94  
0.25  
203.20  
0.38  
10  
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
β
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-150  
Drawing No. C04-073  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 179  
PIC16C5X  
18-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)  
E1  
D
W2  
2
1
n
W1  
E
A2  
A
c
L
A1  
B1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.183  
.160  
.023  
.313  
.290  
.900  
.138  
.010  
.055  
.019  
.385  
.140  
.200  
2.54  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.170  
.195  
4.32  
3.94  
4.64  
4.06  
0.57  
7.94  
7.37  
22.86  
3.49  
0.25  
1.40  
0.47  
9.78  
3.56  
5.08  
4.95  
A2  
A1  
.155  
.015  
.300  
.285  
.880  
.125  
.008  
.050  
.016  
.345  
.130  
.190  
.165  
.030  
.325  
.295  
.920  
.150  
.012  
.060  
.021  
.425  
.150  
.210  
4.19  
0.76  
8.26  
7.49  
23.37  
3.81  
0.30  
1.52  
0.53  
10.80  
3.81  
5.33  
0.38  
7.62  
7.24  
22.35  
3.18  
0.20  
1.27  
0.41  
8.76  
3.30  
4.83  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
Tip to Seating Plane  
Lead Thickness  
c
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Width  
B1  
B
§
eB  
W1  
W2  
Window Length  
* Controlling Parameter  
§ Significant Characteristic  
JEDEC Equivalent: MO-036  
Drawing No. C04-010  
DS30453D-page 180  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
28-Lead Ceramic Dual In-line with Window (JW) – 600 mil (CERDIP)  
E1  
W
D
2
n
1
E
A2  
A
L
c
B1  
eB  
A1  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.100  
.210  
.160  
.038  
.600  
.520  
1.460  
.138  
.010  
.058  
.020  
.660  
.280  
2.54  
5.33  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.195  
.225  
.165  
.060  
.625  
.526  
1.490  
.150  
.012  
.065  
.023  
.710  
.290  
4.95  
5.72  
A2  
A1  
.155  
.015  
.595  
.514  
1.430  
.125  
.008  
.050  
.016  
.610  
.270  
3.94  
0.38  
4.06  
4.19  
1.52  
0.95  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
15.11  
13.06  
36.32  
3.18  
15.24  
13.21  
37.08  
3.49  
15.88  
13.36  
37.85  
3.81  
Tip to Seating Plane  
Lead Thickness  
c
0.20  
0.25  
0.30  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Diameter  
B1  
B
1.27  
1.46  
1.65  
0.41  
0.51  
0.58  
§
eB  
W
15.49  
6.86  
16.76  
7.11  
18.03  
7.37  
* Controlling Parameter  
§ Significant Characteristic  
JEDEC Equivalent: MO-103  
Drawing No. C04-013  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 181  
PIC16C5X  
NOTES:  
DS30453D-page 182  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
APPENDIX A: COMPATIBILITY  
To convert code written for PIC16CXX to PIC16C5X,  
the user should take the following steps:  
1. Check any CALL, GOTO or instructions that  
modify the PC to determine if any program  
memory page select operations (PA2, PA1, PA0  
bits) need to be made.  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
3. Eliminate any special function register page  
switching. Redefine data variables to reallocate  
them.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
5. Change RESET vector to proper value for  
processor used.  
6. Remove any use of the ADDLW, RETURN and  
SUBLWinstructions.  
7. Rewrite any code segments that use interrupts.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 183  
PIC16C5X  
NOTES:  
DS30453D-page 184  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
PIC16CR54A  
INDEX  
A
Commercial .................................................. 80, 83  
Extended ...................................................... 82, 84  
Industrial....................................................... 80, 83  
Absolute Maximum Ratings  
PIC16LV54A  
PIC16C54/55/56/57 .................................................... 67  
PIC16C54A............................................................... 103  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/  
C58B/CR58B ............................................................ 131  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/  
C58B/CR58B-40 ....................................................... 155  
PIC16CR54A .............................................................. 79  
ADDWF............................................................................... 51  
ALU ....................................................................................... 9  
ANDLW ............................................................................... 51  
ANDWF............................................................................... 51  
Applications........................................................................... 5  
Architectural Overview .......................................................... 9  
Assembler  
Commercial .............................................. 108, 109  
Industrial................................................... 108, 109  
DECF.................................................................................. 54  
DECFSZ ............................................................................. 54  
Development Support......................................................... 61  
Device Characterization  
PIC16C54/55/56/57/CR54A ....................................... 91  
PIC16C54A............................................................... 117  
PIC16C54C/C55A/C56A/C57C/C58B-40................. 165  
Device Reset Timer (DRT) ................................................. 23  
Device Varieties.................................................................... 7  
Digit Carry (DC) bit ......................................................... 9, 29  
DRT .................................................................................... 23  
MPASM Assembler ..................................................... 61  
E
B
Electrical Specifications  
PIC16C54/55/56/57.................................................... 67  
PIC16C54A............................................................... 103  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/  
C58B/CR58B............................................................ 131  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/  
C58B/CR58B-40....................................................... 155  
PIC16CR54A.............................................................. 79  
Errata.................................................................................... 3  
External Power-On Reset Circuit........................................ 21  
Block Diagram  
On-Chip Reset Circuit................................................. 20  
PIC16C5X Series........................................................ 10  
Timer0......................................................................... 37  
TMR0/WDT Prescaler................................................. 41  
Watchdog Timer.......................................................... 46  
Brown-Out Protection Circuit .............................................. 23  
BSF..................................................................................... 52  
BTFSC ................................................................................ 52  
BTFSS ................................................................................ 52  
F
C
Family of Devices  
PIC16C5X..................................................................... 6  
FSR Register ...................................................................... 33  
Value on reset............................................................. 20  
CALL ............................................................................. 31, 53  
Carry (C) bit .................................................................... 9, 29  
Clocking Scheme ................................................................ 13  
CLRF................................................................................... 53  
CLRW ................................................................................. 53  
CLRWDT............................................................................. 53  
CMOS Technology................................................................ 1  
Code Protection ............................................................ 43, 47  
COMF ................................................................................. 54  
Compatibility ..................................................................... 183  
Configuration Bits................................................................ 44  
G
General Purpose Registers  
Value on reset............................................................. 20  
GOTO ........................................................................... 31, 55  
H
High-Performance RISC CPU .............................................. 1  
I
D
I/O Interfacing ..................................................................... 35  
I/O Ports ............................................................................. 35  
I/O Programming Considerations ....................................... 36  
ICEPIC In-Circuit Emulator................................................. 62  
ID Locations.................................................................. 43, 47  
INCF ................................................................................... 55  
INCFSZ............................................................................... 55  
INDF Register..................................................................... 33  
Value on reset............................................................. 20  
Indirect Data Addressing .................................................... 33  
Instruction Cycle ................................................................. 13  
Instruction Flow/Pipelining.................................................. 13  
Instruction Set Summary .................................................... 49  
IORLW................................................................................ 56  
IORWF................................................................................ 56  
Data Memory Organization ................................................. 26  
DC Characteristics  
PIC16C54/55/56/57  
Commercial................................................... 68, 71  
Extended....................................................... 70, 72  
Industrial ....................................................... 69, 71  
PIC16C54A  
Commercial............................................... 104, 109  
Extended................................................... 106, 109  
Industrial ................................................... 104, 109  
PIC16C54C/C55A/C56A/C57C/C58B-40  
Commercial............................................... 157, 158  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/  
C58B/CR58B  
Commercial............................................... 134, 138  
Extended................................................... 137, 138  
Industrial ................................................... 134, 138  
K
KeeLoq Evaluation and Programming Tools ...................... 64  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 185  
PIC16C5X  
Program Memory Organization........................................... 25  
Program Verification/Code Protection ................................ 47  
L
Loading of PC .....................................................................31  
Q
M
Q cycles.............................................................................. 13  
Quick-Turnaround-Production (QTP) Devices...................... 7  
MCLR Reset  
Register values on ......................................................20  
Memory Map  
R
PIC16C54/CR54/C55..................................................25  
PIC16C56/CR56 .........................................................25  
PIC16C57/CR57/C58/CR58 .......................................25  
Memory Organization..........................................................25  
MOVF..................................................................................56  
MOVLW...............................................................................56  
MOVWF ..............................................................................57  
MPLAB C17 and MPLAB C18 C Compilers........................61  
MPLAB ICD In-Circuit Debugger.........................................63  
MPLAB ICE High Performance Universal In-Circuit Emulator  
with MPLAB IDE..................................................................62  
MPLAB Integrated Development Environment Software ....61  
MPLINK Object Linker/MPLIB Object Librarian ..................62  
RC Oscillator....................................................................... 17  
Read Only Memory (ROM) Devices ..................................... 7  
Read-Modify-Write.............................................................. 36  
Register File Map  
PIC16C54, PIC16CR54, PIC16C55, PIC16C56,  
PIC16CR56 ................................................................ 26  
PIC16C57/CR57......................................................... 27  
PIC16C58/CR58......................................................... 27  
Registers  
Special Function ......................................................... 28  
Value on reset............................................................. 20  
Reset .................................................................................. 19  
Reset on Brown-Out ........................................................... 23  
RETLW ............................................................................... 57  
RLF..................................................................................... 58  
RRF .................................................................................... 58  
N
NOP ....................................................................................57  
O
S
One-Time-Programmable (OTP) Devices.............................7  
OPTION ..............................................................................57  
OPTION Register................................................................30  
Value on reset .............................................................20  
Oscillator Configurations.....................................................15  
Oscillator Types  
Serialized Quick-Turnaround-Production (SQTP) Devices... 7  
SLEEP .................................................................... 43, 47, 58  
Software Simulator (MPLAB SIM) ...................................... 62  
Special Features of the CPU .............................................. 43  
Special Function Registers................................................. 28  
Stack................................................................................... 32  
STATUS Register ........................................................... 9, 29  
Value on reset............................................................. 20  
SUBWF............................................................................... 59  
SWAPF............................................................................... 59  
HS...............................................................................15  
LP................................................................................15  
RC...............................................................................15  
XT ...............................................................................15  
P
T
PA0 bit.................................................................................29  
PA1 bit.................................................................................29  
Paging.................................................................................31  
PC .......................................................................................31  
Value on reset .............................................................20  
PD bit ............................................................................ 19, 29  
Peripheral Features...............................................................1  
PICDEM 1 Low Cost PICmicro Demonstration Board ........63  
PICDEM 17 Demonstration Board ......................................64  
PICDEM 2 Low Cost PIC16CXX Demonstration Board......63  
PICDEM 3 Low Cost PIC16CXXX Demonstration Board ...64  
PICSTART Plus Entry Level Development Programmer ....63  
Pin Configurations.................................................................2  
Pinout Description - PIC16C54, PIC16CR54, PIC16C56,  
PIC16CR56, PIC16C58, PIC16CR58 .................................11  
Pinout Description - PIC16C55, PIC16C57, PIC16CR57 ...12  
PORTA................................................................................35  
Value on reset .............................................................20  
PORTB................................................................................35  
Value on reset .............................................................20  
PORTC................................................................................35  
Value on reset .............................................................20  
Power-Down Mode..............................................................47  
Power-On Reset (POR) ......................................................21  
Register values on ......................................................20  
Prescaler.............................................................................40  
PRO MATE II Universal Device Programmer .....................63  
Program Counter.................................................................31  
Timer0  
Switching Prescaler Assignment ................................ 40  
Timer0 (TMR0) Module............................................... 37  
TMR0 register - Value on reset................................... 20  
TMR0 with External Clock .......................................... 39  
Timing Diagrams and Specifications  
PIC16C54/55/56/57 .................................................... 74  
PIC16C54A............................................................... 111  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/  
C58B/CR58B ............................................................ 140  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/  
C58B/CR58B-40....................................................... 160  
PIC16CR54A .............................................................. 86  
Timing Parameter Symbology and Load Conditions  
PIC16C54/55/56/57 .................................................... 73  
PIC16C54A............................................................... 110  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/  
C58B/CR58B ............................................................ 139  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/  
C58B/CR58B-40....................................................... 159  
PIC16CR54A .............................................................. 85  
TO bit............................................................................ 19, 29  
TRIS.................................................................................... 59  
TRIS Registers ................................................................... 35  
Value on reset............................................................. 20  
DS30453D-page 186  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
U
UV Erasable Devices ............................................................ 7  
W
W Register  
Value on reset............................................................. 20  
Wake-up from SLEEP................................................... 19, 47  
Watchdog Timer (WDT) ................................................ 43, 46  
Period.......................................................................... 46  
Programming Considerations ..................................... 46  
Register values on reset ............................................. 20  
WWW, On-Line Support ....................................................... 3  
X
XORLW............................................................................... 60  
XORWF............................................................................... 60  
Z
Zero (Z) bit ...................................................................... 9, 29  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page 187  
PIC16C5X  
NOTES:  
DS30453D-page 188  
Preliminary  
2002 Microchip Technology Inc.  
PIC16C5X  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
013001  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
© 2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page189  
PIC16C5X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30453D  
Device:  
PIC16C5X  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30453D-page190  
Preliminary  
© 2002 Microchip Technology Inc.  
PIC16C5X  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
-
PART NO.  
Device  
XX  
X
/XX  
XXX  
Examples:  
Frequency  
Range/OSC  
Type  
Temperature Package Pattern  
Range  
a)  
PIC16C55A - 04/P 301 = Commercial Temp.,  
PDIP package, 4 MHz, standard VDD limits,  
QTP pattern #301  
b)  
c)  
PIC16LC54C - 04I/SO Industrial Temp., SOIC  
package, 200 kHz, extended VDD limits  
PIC16C57 - RC/SP = RC Oscillator, commer-  
cial temp, skinny PDIP package, 4 MHz, stan-  
dard VDD limits  
Device  
PIC16C54  
PIC16C54T(2)  
PIC16C54A  
PIC16CR54A  
PIC16C54C  
PIC16CR54C  
PIC16C55  
PIC16C55A  
PIC16C56  
PIC16C56A  
PIC16CR56A  
PIC16C57  
PIC16C54AT(2)  
PIC16CR54AT(2)  
PIC16C54CT(2)  
PIC16CR54CT(2)  
PIC16C55T(2)  
d)  
PIC16C58BT -40/SS 123 = commercial  
temp, SSOP package in tape and reel, 4  
MHz, extended VDD limits, ROM pattern  
#123  
PIC16C55AT(2)  
PIC16C56T(2)  
PIC16C56AT(2)  
PIC16CR56AT(2)  
PIC16C57T(2)  
PIC16C57C  
PIC16CR57C  
PIC16C58B  
PIC16CR58B  
PIC16C57CT(2)  
PIC16CR57CT(2)  
PIC16C58BT(2)  
PIC16CR58BT(2)  
Note 1: C = normal voltage range  
LC = extended  
2: T = in tape and reel - SOIC and SSOP  
packages only  
Frequency Range/  
Oscillator Type  
RC Resistor Capacitor  
LP Low Power Crystal  
3: JW Devices are UV erasable and can be  
programmed to any device configura-  
tion. JW Devices meet the electrical  
requirements of each oscillator type,  
including LC devices.  
XT Standard Crystal/Resonator  
HS High Speed Crystal  
02 200 KHz (LP) or 2 MHz (XT and RC)  
04 200 KHz (LP) or 4 MHz (XT and RC)  
10 10 MHz (HS only)  
4: b = Blank  
20 20 MHz (HS only)  
40 40 MHz (HS only)  
b(4) No oscillator type for JW packages(3)  
*RC/LP/XT/HS are for 16C54/55/56/57 devices only  
-02 is available for 16LV54A only  
-04/10/20 options are available for all other devices  
-40 is available for 16C54C/55A/56A/57C/58B devices only  
Temperature Range  
Package  
b(4)  
I
E
=
=
=
0°C to  
-40°C to  
-40°C to +125°C  
+70°C  
+85°C  
S
JW  
=
=
Die in Waffle Pack  
28-pin 600 mil/18-pin 300 mil windowed CER-  
DIP(3)  
P
=
=
=
=
28-pin 600 mil/18-pin 300 mil PDIP  
300 mil SOIC  
209 mil SSOP  
SO  
SS  
SP  
28-pin 300 mil Skinny PDIP  
*See Section 21 for additional package information.  
Pattern  
QTP, SQTP, ROM code (factory specified) or Special  
Requirements. Blank for OTP and Windowed devices.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
Preliminary  
DS30453D-page191  
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-6766200 Fax: 86-28-6766599  
China - Fuzhou  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
Germany  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Hong Kong  
Italy  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Microchip Technology Inc.  
India Liaison Office  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
03/01/02  
DS30453D-page 192  
2002 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY