PIC16C554-04I/SO301 [MICROCHIP]

PIC16C554-04I/SO301;
PIC16C554-04I/SO301
型号: PIC16C554-04I/SO301
厂家: MICROCHIP    MICROCHIP
描述:

PIC16C554-04I/SO301

文件: 总96页 (文件大小:570K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C55X  
EPROM-Based 8-Bit CMOS Microcontrollers  
Devices included in this data sheet:  
Pin Diagram  
Referred to collectively as PIC16C55X.  
PDIP, SOIC, Windowed CERDIP  
• PIC16C554  
• PIC16C558  
RA1  
RA2  
RA3  
•1  
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
RA0  
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
RB7  
RB6  
RB5  
RA4/T0CKI  
High Performance RISC CPU:  
MCLR/ VPP  
VSS  
• Only 35 instructions to learn  
• All single-cycle instructions (200 ns), except for  
program branches which are two-cycle  
• Operating speed:  
RB0/INT  
RB1  
RB2  
RB3  
RB4  
- DC - 20 MHz clock input  
- DC - 200 ns instruction cycle  
SSOP  
Device  
Program  
Memory  
Data  
Memory  
RA1  
RA2  
RA3  
•1  
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
RA0  
PIC16C554  
PIC16C558  
512  
2K  
80  
OSC1/CLKIN  
OSC2/CLKOUT  
RA4/T0CKI  
3
MCLR/ VPP  
4
128  
VDD  
VDD  
RB7  
RB6  
RB5  
RB4  
VSS  
5
VSS  
6
• Interrupt capability  
• 16 special function hardware registers  
• 8-level deep hardware stack  
RB0/INT  
RB1  
7
8
RB2  
RB3  
9
10  
• Direct, Indirect and Relative addressing modes  
Peripheral Features:  
• 13 I/O pins with individual direction control  
• High current sink/source for direct LED drive  
• Timer0: 8-bit timer/counter with 8-bit  
programmable prescaler  
Special Microcontroller Features (cont’d)  
• Programmable code protection  
• Power saving SLEEP mode  
• Selectable oscillator options  
• Serial in-circuit programming (via two pins)  
• Four user programmable ID locations  
Special Microcontroller Features:  
• Power-on Reset (POR)  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
CMOS Technology:  
• Low-power, high-speed CMOS EPROM technology  
• Fully static design  
• Wide operating voltage range  
- 2.5V to 5.5V  
• Commercial, industrial and extended tempera-  
ture range  
• Low power consumption  
- < 2.0 mA @ 5.0V, 4.0 MHz  
- 15 µA typical @ 3.0V, 32 kHz  
- < 1.0 µA typical standby current @ 3.0V  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 1  
PIC16C55X  
Device Differences  
Process  
Technology  
(Microns)  
Voltage  
Range  
Device  
Oscillator  
PIC16C554  
PIC16C558  
2.5 - 5.5  
2.5 - 5.5  
See Note 1  
See Note 1  
0.9  
0.9  
Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.  
DS40143C-page 2  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
Table of Contents  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
General Description......................................................................................................................................................................5  
PIC16C55X Device Varieties .......................................................................................................................................................7  
Architectural Overview .................................................................................................................................................................9  
Memory Organization................................................................................................................................................................ 13  
I/O Ports .................................................................................................................................................................................... 23  
Timer0 Module .......................................................................................................................................................................... 29  
Special Features of the CPU..................................................................................................................................................... 35  
Instruction Set Summary........................................................................................................................................................... 51  
Development Support................................................................................................................................................................ 63  
10.0 Electrical Specifications............................................................................................................................................................. 69  
11.0 Packaging Information............................................................................................................................................................... 81  
Appendix A:  
Appendix B:  
Enhancements............................................................................................................................................................ 87  
Compatibility ............................................................................................................................................................... 87  
INDEX.................................................................................................................................................................................................. 89  
PIC16C55X Product Identification System .......................................................................................................................................... 93  
To Our Valued Customers  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please check our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended  
workarounds. As device/documentation issues become known to us, we will publish an errata sheet.The errata will specify the revi-  
sion of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
• Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
• The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include lit-  
erature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure  
that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing  
or appears in error, please:  
• Fill out and mail in the reader response form in the back of this data sheet.  
• E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 3  
PIC16C55X  
NOTES:  
DS40143C-page 4  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
A highly reliable Watchdog Timer with its own on-chip  
RC oscillator provides protection against software  
lock-up.  
1.0  
GENERAL DESCRIPTION  
The PIC16C55X are 18 and 20-Pin EPROM-based  
members of the versatile PIC16CXX family of low-cost,  
A UV-erasable CERDIP-packaged version is ideal for  
code development while the cost-effective One-Time  
Programmable (OTP) version is suitable for production  
in any volume.  
high-performance,  
microcontrollers.  
®
CMOS,  
fully-static,  
8-bit  
All PICmicro microcontrollers employ an advanced  
RISC architecture. The PIC16C55X have enhanced  
core features, eight-level deep stack, and multiple inter-  
nal and external interrupt sources. The separate  
instruction and data buses of the Harvard architecture  
allow a 14-bit wide instruction word with the separate  
8-bit wide data. The two-stage instruction pipeline  
allows all instructions to execute in a single-cycle,  
except for program branches (which require two  
cycles). A total of 35 instructions (reduced instruction  
set) are available. Additionally, a large register set gives  
some of the architectural innovations used to achieve a  
very high performance.  
Table 1-1 shows the features of the PIC16C55X  
mid-range microcontroller families.  
A simplified block diagram of the PIC16C55X is shown  
in Figure 3-1.  
The PIC16C55X series fit perfectly in applications  
ranging from motor control to low-power remote sen-  
sors. The EPROM technology makes customization of  
application programs (detection levels, pulse genera-  
tion, timers, etc.) extremely fast and convenient. The  
small footprint packages make this microcontroller  
series perfect for all applications with space limitations.  
Low-cost, low-power, high-performance, ease of use  
and I/O flexibility make the PIC16C55X very versatile.  
PIC16C55X microcontrollers typically achieve a 2:1  
code compression and a 4:1 speed improvement over  
other 8-bit microcontrollers in their class.  
1.1  
Family and Upward Compatibility  
The PIC16C554 has 80 bytes of RAM.The PIC16C558  
has 128 bytes of RAM. Each device has 13 I/O pins and  
an 8-bit timer/counter with an 8-bit programmable pres-  
caler.  
Those users familiar with the PIC16C5X family of  
microcontrollers will realize that this is an enhanced  
version of the PIC16C5X architecture. Please refer to  
Appendix A for a detailed list of enhancements. Code  
written for PIC16C5X can be easily ported to  
PIC16C55X family of devices (Appendix B).  
PIC16C55X devices have special features to reduce  
external components, thus reducing cost, enhancing  
system reliability and reducing power consumption.  
There are four oscillator options, of which the single pin  
RC oscillator provides a low-cost solution, the LP  
oscillator minimizes power consumption, XT is a  
standard crystal, and the HS is for High Speed crystals.  
The SLEEP (power-down) mode offers power saving.  
The user can wake up the chip from SLEEP through  
several external and internal interrupts and reset.  
The PIC16C55X family fills the niche for users wanting  
to migrate up from the PIC16C5X family and not need-  
ing various peripheral features of other members of the  
PIC16XX mid-range microcontroller family.  
1.2  
Development Support  
The PIC16C55X family is supported by a full-featured  
macro assembler, a software simulator, an in-circuit  
emulator, a low-cost development programmer and a  
full-featured programmer. A “C” compiler and fuzzy  
logic support tools are also available.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 5  
PIC16C55X  
TABLE 1-1:  
PIC16C55X FAMILY OF DEVICES  
PIC16C554  
PIC16C558  
Clock  
Maximum Frequency of Operation (MHz)  
EPROM Program Memory (x14 words)  
Data Memory (bytes)  
Timer Module(s)  
20  
20  
512  
80  
2K  
Memory  
Peripherals  
128  
TMR0  
3
TMR0  
3
Interrupt Sources  
I/O Pins  
13  
13  
Voltage Range (Volts)  
Brown-out Reset  
2.5-5.5  
2.5-5.5  
Features  
Packages  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
20-pin SSOP  
20-pin SSOP  
®
All PICmicro Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high  
I/O current capability. All PIC16C55X Family devices use serial programming with clock pin RB6 and data pin RB7.  
DS40143C-page 6  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
2.3  
Quick-Turnaround-Production (QTP)  
Devices  
2.0  
PIC16C55X DEVICE VARIETIES  
A variety of frequency ranges and packaging options are  
available. Depending on application and production  
requirements the proper device option can be selected  
using the information in the PIC16C55X Product  
Identification System section at the end of this data  
sheet. When placing orders, please use this page of the  
data sheet to specify the correct part number.  
Microchip offers a QTP Programming Service for  
factory production orders. This service is made  
available for users who choose not to program a  
medium to high quantity of units and whose code pat-  
terns have stabilized. The devices are identical to the  
OTP devices but with all EPROM locations and config-  
uration options already programmed by the factory.  
Certain code and prototype verification procedures  
apply before production shipments are available.  
Please contact your Microchip Technology sales office  
for more details.  
2.1  
UV Erasable Devices  
The UV erasable version, offered in CERDIP package  
is optimal for prototype development and pilot  
programs. This version can be erased and  
reprogrammed to any of the oscillator modes.  
2.4  
Serialized  
Quick-Turnaround-Production  
(SQTPSM) Devices  
Microchip's  
PICSTART  
and  
PROMATE  
programmers both support programming of the  
PIC16C55X.  
Microchip offers a unique programming service where  
a few user-defined locations in each device are  
programmed with different serial numbers. The serial  
numbers may be random, pseudo-random or  
sequential.  
2.2  
One-Time-Programmable (OTP)  
Devices  
The availability of OTP devices is especially useful for  
customers who need the flexibility for frequent code  
updates and small volume applications. In addition to  
the program memory, the configuration bits must also  
be programmed.  
Serial programming allows each device to have a  
unique number which can serve as an entry-code,  
password or ID number.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 7  
PIC16C55X  
NOTES:  
DS40143C-page 8  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
The PIC16C55X devices contain an 8-bit ALU and  
working register. The ALU is a general purpose  
arithmetic unit. It performs arithmetic and Boolean  
functions between data in the working register and any  
register file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16C55X family can be  
attributed to a number of architectural features  
commonly found in RISC microprocessors. To begin  
with, the PIC16C55X uses a Harvard architecture, in  
which, program and data are accessed from separate  
memories using separate busses. This improves  
bandwidth over traditional von Neumann architecture  
where program and data are fetched from the same  
memory. Separating program and data memory further  
allows instructions to be sized differently than 8-bit  
wide data words. Instruction opcodes are 14-bits wide  
making it possible to have all single word instructions.  
A 14-bit wide program memory access bus fetches a  
14-bit instruction in a single cycle. A two-stage pipeline  
overlaps fetch and execution of instructions.  
Consequently, all instructions (35) execute in a sin-  
gle-cycle (200 ns @ 20 MHz) except for program  
branches. The table below lists the memory (EEPROM  
and ROM).  
The ALU is 8-bits wide and capable of addition,  
subtraction, shift and logical operations. Unless  
otherwise mentioned, arithmetic operations are two's  
complement in nature. In two-operand instructions,  
typically one operand is the working register  
(W register). The other operand is a file register or an  
immediate constant. In single operand instructions, the  
operand is either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register.The C and DC bits  
operate as a Borrow and Digit Borrow out bit,  
respectively, in subtraction. See the SUBLW and  
SUBWF instructions for examples.  
Device  
Program  
Memory  
Data  
Memory  
A simplified block diagram is shown in Figure 3-1, with  
a description of the device pins in Table 3-1.  
PIC16C554  
PIC16C558  
512  
2K  
80  
128  
The PIC16C554 addresses 512 x 14 on-chip program  
memory. The PIC16C558 addresses 2K x 14 program  
memory. All program memory is internal.  
The PIC16C55X can directly or indirectly address its  
register files or data memory. All special function  
registers including the program counter are mapped  
into the data memory. The PIC16C55X have an  
orthogonal (symmetrical) instruction set that makes it  
possible to carry out any operation on any register  
using any addressing mode. This symmetrical nature  
and lack of ‘special optimal situations’ make program-  
ming with the PIC16C55X simple yet efficient. In addi-  
tion, the learning curve is reduced significantly.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 9  
PIC16C55X  
FIGURE 3-1:  
BLOCK DIAGRAM  
Program  
Memory  
Data Memory  
(RAM)  
Device  
PIC16C554  
PIC16C558  
512 x 14  
2K x 14  
80 x 8  
128 x 8  
13  
8
PORTA  
EPROM  
Data Bus  
RAM  
Program Counter  
Program  
Memory  
RA0  
RA1  
RA2  
RA3  
512 x 14  
to  
2K x 14  
File  
8 Level Stack  
(13-bit)  
Registers  
80 x 8 to  
128 x 8  
RA4/T0CKI  
Program  
Bus  
14  
RAM Addr(1)  
PORTB  
8
Addr MUX  
Instruction reg  
RB0/INT  
RB7:RB1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
8
3
MUX  
Power-up  
Timer  
Oscillator  
Instruction  
Decode &  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Timer0  
MCLR VDD, VSS  
Note 1: Higher order bits are from the status register.  
DS40143C-page 10  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
TABLE 3-1:  
Name  
PIC16C55X PINOUT DESCRIPTION  
DIP  
SSOP  
Pin #  
I/O/P  
Type  
Buffer  
Type  
SOIC  
Pin #  
Description  
OSC1/CLKIN  
16  
18  
I
ST/CMOS Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
15  
17  
O
Oscillator crystal output. Connects to crystal or resonator  
in crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and  
denotes the instruction cycle rate.  
MCLR/VPP  
4
4
I/P  
ST  
Master clear (reset) input/programming voltage input.  
This pin is an active low reset to the device.  
RA0  
17  
18  
1
19  
20  
1
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
Bi-directional I/O port  
Bi-directional I/O port  
Bi-directional I/O port  
Bi-directional I/O port  
RA1  
RA2  
RA3  
2
2
RA4/T0CKI  
3
3
Bi-directional I/O port or external clock input for TMR0.  
Output is open drain type.  
(1)  
RB0/INT  
6
7
I/O  
Bi-directional I/O port can be software programmed for  
internal weak pull-up. RB0/INT can also be selected as  
an external interrupt pin.  
TTL/ST  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
7
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
TTL  
Bi-directional I/O port can be software programmed for  
internal weak pull-up.  
8
9
Bi-directional I/O port can be software programmed for  
internal weak pull-up.  
9
10  
11  
12  
13  
Bi-directional I/O port can be software programmed for  
internal weak pull-up.  
10  
11  
12  
Bi-directional I/O port can be software programmed for  
internal weak pull-up. Interrupt on change pin.  
Bi-directional I/O port can be software programmed for  
internal weak pull-up. Interrupt on change pin.  
(2)  
(2)  
Bi-directional I/O port can be software programmed for  
internal weak pull-up. Interrupt on change pin. Serial pro-  
gramming clock.  
TTL/ST  
RB7  
13  
14  
I/O  
Bi-directional I/O port can be software programmed for  
internal weak pull-up. Interrupt on change pin. Serial pro-  
gramming data.  
TTL/ST  
VSS  
VDD  
5
5,6  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
14  
15,16  
Legend:  
O = output  
— = Not used  
I/O = input/output  
I = Input  
P = power  
ST = Schmitt Trigger input  
TTL = TTL input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
Note 2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 11  
PIC16C55X  
3.1  
Clocking Scheme/Instruction Cycle  
3.2  
Instruction Flow/Pipelining  
The clock input (OSC1/CLKIN pin) is internally divided  
by four to generate four non-overlapping quadrature  
clocks namely Q1, Q2, Q3 and Q4. Internally, the  
program counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The  
instruction is decoded and executed during the  
following Q1 through Q4. The clocks and instruction  
execution flow are shown in Figure 3-2.  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO)  
then two cycles are required to complete the instruction  
(Example 3-1).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register (IR)” in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 3-2: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
phase  
clock  
Q4  
PC  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3  
Flush  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
DS40143C-page 12  
Preliminary  
1998 Microchip Technology Inc.  
 
 
PIC16C55X  
FIGURE 4-2: PROGRAM MEMORY MAP  
AND STACK FOR THE  
4.0  
MEMORY ORGANIZATION  
4.1  
Program Memory Organization  
PIC16C558  
The PIC16C55X has a 13-bit program counter capable  
of addressing an 8K x 14 program memory space. Only  
the first 512 x 14 (0000h - 01FFh) for the PIC16C554  
and 2K x 14 (0000h - 07FFh) for the PIC16C558 are  
physically implemented. Accessing a location above  
these boundaries will cause a wrap-around within the  
first 512 x 14 space PIC16C554 or 2K x 14 space  
PIC16C558.The reset vector is at 0000h and the inter-  
rupt vector is at 0004h (Figure 4-1, Figure 4-2).  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 2  
Stack Level 8  
FIGURE 4-1: PROGRAM MEMORY MAP  
AND STACK FOR THE  
Reset Vector  
000h  
PIC16C554  
PC<12:0>  
Interrupt Vector  
0004  
0005  
CALL, RETURN  
RETFIE, RETLW  
13  
On-chip Program  
Memory  
Stack Level 1  
Stack Level 2  
07FFh  
0800h  
Stack Level 8  
1FFFh  
Reset Vector  
000h  
4.2  
Data Memory Organization  
The data memory (Figure 4-3 and Figure 4-4) is  
partitioned into two Banks which contain the general  
purpose registers and the special function registers.  
Bank 0 is selected when the RP0 bit (STATUS <5>) is  
cleared. Bank 1 is selected when the RP0 bit is set.  
The Special Function Registers are located in the first  
32 locations of each Bank. Register locations 20-6Fh  
(Bank0) on the PIC16C554 and 20-7Fh (Bank0) and  
A0-BFh (Bank1) on the PIC16C558 are general pur-  
pose registers implemented as static RAM. Some spe-  
cial purpose registers are mapped in Bank 1.  
Interrupt Vector  
0004  
0005  
On-chip Program  
Memory  
01FFh  
0200h  
4.2.1  
GENERAL PURPOSE REGISTER FILE  
1FFFh  
The register file is organized as 80 x 8 in the  
PIC16C554 and 128 x 8 in the PIC16C558. Each can  
be accessed either directly or indirectly through the File  
Select Register, FSR (Section 4.4).  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 13  
 
 
PIC16C55X  
FIGURE 4-3: DATA MEMORY MAP FOR  
THE PIC16C554  
FIGURE 4-4: DATA MEMORY MAP FOR  
THE PIC16C558  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
(1)  
(1)  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
OPTION  
PCL  
TMR0  
PCL  
OPTION  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
TRISA  
TRISB  
PORTA  
PORTB  
TRISA  
TRISB  
PCLATH  
INTCON  
PCLATH  
INTCON  
PCLATH  
INTCON  
PCLATH  
INTCON  
PCON  
PCON  
A0h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
6Fh  
70h  
BFh  
C0h  
FFh  
FFh  
7Fh  
7Fh  
Bank 0  
Bank 1  
Bank 0  
Bank 1  
Unimplemented data memory locations, read as '0'.  
Note 1: Not a physical register.  
Unimplemented data memory locations, read as '0'.  
Note 1: Not a physical register.  
DS40143C-page 14  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C55X  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The special function registers can be classified into two  
sets (core and peripheral). The special function regis-  
ters associated with the “core” functions are described  
in this section. Those related to the operation of the  
peripheral features are described in the section of that  
peripheral feature.  
The Special Function Registers are registers used by  
the CPU and peripheral functions for controlling the  
desired operation of the device (Table 4-1). These  
registers are static RAM.  
TABLE 4-1:  
SPECIAL REGISTERS FOR THE PIC16C55X  
Value on  
Value on  
POR Reset  
all other  
resets(1)  
Address Name  
Bank 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Addressing this location uses contents of FSR to address data memory (not a physical  
register)  
00h  
INDF  
xxxx xxxx  
xxxx xxxx  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
TMR0  
Timer0 Module’s Register  
xxxx xxxx  
0000 0000  
0001 1xxx  
uuuu uuuu  
0000 0000  
000q quuu  
PCL  
Program Counter's (PC) Least Significant Byte  
IRP(2)  
RP1(2)  
STATUS  
RP0  
TO  
PD  
Z
DC  
C
FSR  
Indirect data memory address pointer  
xxxx xxxx  
uuuu uuuu  
PORTA  
RA4  
RB4  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
---x xxxx  
---u uuuu  
PORTB  
RB7  
RB6  
RB5  
xxxx xxxx  
uuuu uuuu  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
Write buffer for upper 5 bits of program counter  
INTE RBIE T0IF INTF  
---0 0000  
---0 0000  
INTCON  
GIE  
(3)  
T0IE  
RBIF  
0000 000x  
0000 000u  
Unimplemented  
0Dh-1Eh Unimplemented  
1Fh  
Unimplemented  
Bank 1  
Addressing this location uses contents of FSR to address data memory (not a physical  
register)  
xxxx xxxx  
xxxx xxxx  
80h  
INDF  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
OPTION  
RBPU  
Program Counter's (PC) Least Significant Byte  
RP0 TO  
Indirect data memory address pointer  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0  
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111  
1111 1111  
PCL  
0000 0000  
0000 0000  
STATUS  
PD  
Z
DC  
C
0001 1xxx  
000q quuu  
FSR  
xxxx xxxx  
uuuu uuuu  
TRISA  
---1 1111  
---1 1111  
TRISB  
1111 1111  
1111 1111  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
Write buffer for upper 5 bits of program counter  
---0 0000  
---0 0000  
INTCON  
GIE  
(3)  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 000u  
Unimplemented  
Unimplemented  
PCON  
POR  
---- --0-  
---- --u-  
8Fh-9Eh Unimplemented  
9Fh Unimplemented  
Legend: = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1: Other (non power-up) resets include MCLR reset and Watchdog Timer reset during normal operation.  
Note 2: IRP & RP1bits are reserved, always maintain these bits clear.  
Note 3: Bit 6 of INTCON register is reserved for future use. Always maintain this bit as clear.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 15  
 
PIC16C55X  
4.2.2.1  
STATUS REGISTER  
It is recommended, therefore, that only BCF, BSF,  
SWAPFand MOVWFinstructions be used to alter the STA-  
TUS register because these instructions do not affect  
any status bits. For other instructions, not affecting any  
status bits, see the “Instruction Set Summary”.  
The STATUS register, shown in Figure 4-5, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled.These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as the destination may be different  
than intended.  
Note 1: The IRP and RP1 bits (STATUS<7:6>)  
are not used by the PIC16C55X and  
should be programmed as ’0'. Use of  
these bits as general purpose R/W bits is  
NOT recommended, since this may  
affect upward compatibility with future  
products.  
Note 2: The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction. See the SUBLW and SUBWF  
instructions for examples.  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the status register as  
000uu1uu(where u= unchanged).  
FIGURE 4-5: STATUS REGISTER (ADDRESS 03H OR 83H)  
Reserved Reserved R/W-0  
IRP RP1 RP0  
bit7  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R
= Readable bit  
W = Writable bit  
- n = Value at POR reset  
- x = Unknown at POR reset  
bit0  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
1 = Bank 2, 3 (100h - 1FFh)  
0 = Bank 0, 1 (00h - FFh)  
The IRP bit is reserved on the PIC16C55X, always maintain this bit clear.  
bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes. The RP1 bit is reserved on the PIC16C55X, always maintain this bit clear.  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
Z: Zero bit  
1 = The result of an arithmetic or logic operation is zero  
0 = The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(for borrow the polarity is reversed)  
1 = A carry-out from the 4th low order bit of the result occurred  
0 = No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1 = A carry-out from the most significant bit of the result occurred  
0 = No carry-out from the most significant bit of the result occurred  
Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of  
the source register.  
DS40143C-page 16  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C55X  
4.2.2.2  
OPTION REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
TMR0, assign the prescaler to the WDT  
(PSA = 1).  
The OPTION register is a readable and writable  
register which contains various control bits to configure  
the TMR0/WDT prescaler, the external RB0/INT  
interrupt, TMR0 and the weak pull-ups on PORTB.  
FIGURE 4-6: OPTION REGISTER (ADDRESS 81H)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R = Readable bit  
W = Writable bit  
- n = Value at POR reset  
bit7  
bit0  
bit 7:  
RBPU: PORTB Pull-up Enable bit  
1 = PORTB pull-ups are disabled  
0 = PORTB pull-ups are enabled by individual port latch values  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
INTEDG: Interrupt Edge Select bit  
1 = Interrupt on rising edge of RB0/INT pin  
0 = Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1 = Transition on RA4/T0CKI pin  
0 = Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1 = Increment on high-to-low transition on RA4/T0CKI pin  
0 = Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1 = Prescaler is assigned to the WDT  
0 = Prescaler is assigned to the Timer0 module  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 17  
PIC16C55X  
4.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
The INTCON register is a readable and writable  
register which contains the various enable and flag bits  
for all interrupt sources.  
FIGURE 4-7: INTCON REGISTER (ADDRESS 0BH OR 8BH)  
R/W-0 Reserved R/W-0  
GIE T0IE  
bit7  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R = Readable bit  
W = Writable bit  
- n = Value at POR reset  
- x = Unknown at POR reset  
bit0  
bit 7:  
GIE: Global Interrupt Enable bit  
1 = Enables all un-masked interrupts  
0 = Disables all interrupts  
bit 6:  
bit 5:  
— = Reserved for future use. Always maintain this bit clear.  
T0IE: TMR0 Overflow Interrupt Enable bit  
1 = Enables the TMR0 interrupt  
0 = Disables the TMR0 interrupt  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
INTE: RB0/INT External Interrupt Enable bit  
1 = Enables the RB0/INT external interrupt  
0 = Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1 = Enables the RB port change interrupt  
0 = Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1 = TMR0 register has overflowed (must be cleared in software)  
0 = TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1 = The RB0/INT external interrupt occurred (must be cleared in software)  
0 = The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1 = When at least one of the RB7:RB4 pins changed state (must be cleared in software)  
0 = None of the RB7:RB4 pins have changed state  
DS40143C-page 18  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
4.2.2.4  
PCON REGISTER  
The PCON register contains flag bits to differentiate  
between a Power-on Reset, an external MCLR reset or  
WDT reset. See Section 7.3 and Section 7.4 for  
detailed reset operation.  
FIGURE 4-8: PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
U-0  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-2: Unimplemented: Read as '0'  
bit 1:  
POR: Power-on Reset Status bit  
1 = No Power-on Reset occurred  
0 = Power-on Reset occurred  
bit 0:  
Unimplemented: Read as '0'  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 19  
PIC16C55X  
4.3.2  
STACK  
4.3  
PCL and PCLATH  
The PIC16C55X family has an 8 level deep x 13-bit  
wide hardware stack (Figure 4-1 and Figure 4-2). The  
stack space is not part of either program or data space  
and the stack pointer is not readable or writable. The  
PC is PUSHed onto the stack when a CALLinstruction  
is executed or an interrupt causes a branch. The stack  
is POPed in the event of a RETURN, RETLWor a RETFIE  
instruction execution. PCLATH is not affected by a  
PUSH or POP operation.  
The program counter (PC) is 13-bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register.The high bits (PC<12:8>) are not directly  
readable or writable and come from PCLATH. On any  
reset, the PC is cleared. Figure 4-9 shows the two  
situations for the loading of the PC.The upper example in  
the figure shows how the PC is loaded on a write to PCL  
(PCLATH<4:0> PCH).The lower example in Figure 4-9  
shows how the PC is loaded during a CALL or GOTO  
instruction (PCLATH<4:3> PCH).  
The stack operates as a circular buffer.This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 4-9: LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Note 1: There are no STATUS bits to indicate  
stack overflow or stack underflow  
conditions.  
12  
8
7
0
Instruction with  
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
Note 2: There are no instructions mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions, or vectoring to an interrupt  
address.  
ALU result  
PCH  
12 11 10  
PCL  
8
7
0
GOTO, CALL  
PC  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
4.3.1  
COMPUTED GOTO  
A computed GOTO is accomplished by adding an  
offset to the program counter (ADDWF PCL). When  
doing a table read using a computed GOTO method,  
care should be exercised if the table location crosses a  
PCL memory boundary (each 256 byte block). Refer to  
the application note “Implementing a Table Read"  
(AN556).  
DS40143C-page 20  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C55X  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 4-1.  
4.4  
Indirect Addressing, INDF and FSR  
Registers  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
EXAMPLE 4-1: INDIRECT ADDRESSING  
movlw 0x20  
movwf FSR  
;initialize pointer  
;to RAM  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses data pointed to by the file select register  
(FSR). Reading INDF itself indirectly will produce 00h.  
Writing to the INDF register indirectly results in a  
no-operation (although status bits may be affected). An  
effective 9-bit address is obtained by concatenating the  
8-bit FSR register and the IRP bit (STATUS<7>), as  
shown in Figure 4-10. However, IRP is not used in the  
PIC16C55X.  
NEXT  
clrf  
incf  
INDF  
FSR  
;clear INDF register  
;inc pointer  
btfss FSR,4 ;all done?  
goto  
NEXT  
;no clear next  
;yes continue  
CONTINUE:  
FIGURE 4-10: DIRECT/INDIRECT ADDRESSING PIC16C55X  
Direct Addressing  
Indirect Addressing  
(1)  
(1)  
from opcode  
7
RP1 RP0  
6
0
0
IRP  
FSR register  
bank select  
00h  
location select  
bank select  
location select  
00  
01  
10  
11  
00h  
not used  
Data  
Memory  
7Fh  
7Fh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
For memory map detail see Figure 4-3 and Figure 4-4.  
Note 1: The RP1 and IRP bits are reserved, always maintain these bits clear.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 21  
 
 
PIC16C55X  
NOTES:  
DS40143C-page 22  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
FIGURE 5-2: BLOCK DIAGRAM OF RA4 PIN  
5.0  
I/O PORTS  
The PIC16C55X have two ports, PORTA and PORTB.  
Data  
bus  
5.1  
PORTA and TRISA Registers  
D
Q
Q
WR  
PORTA is a 5-bit wide latch. RA4 is a SchmittTrigger input  
and an open drain output.Port RA4 is multiplexed with the  
T0CKI clock input. All other RA port pins have Schmitt  
Trigger input levels and full CMOS output drivers. All pins  
have data direction bits (TRIS registers) which can config-  
ure these pins as input or output.  
PORTA  
CK  
I/O pin(1)  
N
Data Latch  
D
Q
VSS  
WR  
TRISA  
VSS  
Schmitt  
Q
CK  
Trigger  
input  
A '1' in the TRISA register puts the corresponding output  
driver in a hi- impedance mode. A '0' in the TRISA register  
puts the contents of the output latch on the selected pin(s).  
TRISA Latch  
buffer  
Reading the PORTA register reads the status of the pins,  
whereas writing to it will write to the port latch. All write  
operations are read-modify-write operations. So a write  
to a port implies that the port pins are first read, then this  
value is modified and written to the port data latch.  
RD TRISA  
Q
D
EN  
RD PORTA  
Note: On reset, the TRISA register is set to all inputs.  
FIGURE 5-1: BLOCK DIAGRAM OF  
PORT PINS RA<3:0>  
TMR0 clock input  
Data  
bus  
D
Q
Q
VDD  
P
WR  
PortA  
VDD  
CK  
Data Latch  
N
Q
D
I/O pin  
WR  
TRISA  
VSS  
Q
CK  
VSS  
Schmitt  
Trigger  
input  
TRIS Latch  
buffer  
RD TRISA  
Q
D
EN  
RD PORTA  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 23  
PIC16C55X  
TABLE 5-1:  
PORTA FUNCTIONS  
Buffer  
Type  
Name  
Bit #  
Function  
RA0  
bit0  
bit1  
bit2  
bit3  
bit4  
ST  
ST  
ST  
ST  
ST  
Bi-directional I/O port.  
Bi-directional I/O port.  
Bi-directional I/O port.  
Bi-directional I/O port.  
RA1  
RA2  
RA3  
RA4/T0CKI  
Bi-directional I/O port or external clock input for TMR0. Output is open  
drain type.  
Legend: ST = Schmitt Trigger input  
TABLE 5-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
POR  
Value on  
All Other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
85h  
PORTA  
TRISA  
RA4  
RA3  
RA2  
RA1  
RA0  
---x xxxx  
---1 1111  
---u uuuu  
---1 1111  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0  
Legend: — = Unimplemented locations, read as ‘0’  
x = unknown  
u = unchanged  
Note: Shaded bits are not used by PORTA.  
DS40143C-page 24  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
latched in INTCON<0>). This interrupt can wake the  
device from SLEEP. The user, in the interrupt service  
routine, can clear the interrupt in the following manner:  
5.2  
PORTB and TRISB Registers  
PORTB is an 8-bit wide bi-directional port. The  
corresponding data direction register is TRISB. A '1' in  
theTRISB register puts the corresponding output driver  
in a high impedance mode. A '0' in the TRISB register  
puts the contents of the output latch on the selected  
pin(s).  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition, and  
allow flag bit RBIF to be cleared.  
Reading PORTB register reads the status of the pins,  
whereas writing to it will write to the port latch. All write  
operations are read-modify-write operations. So a write  
to a port implies that the port pins are first read, then  
this value is modified and written to the port data latch.  
This interrupt on mismatch feature, together with  
software configurable pull-ups on these four pins allow  
easy interface to a key pad and make it possible for  
wake-up on key-depression. (See AN552 in the  
Microchip Embedded Control Handbook.)  
Each of the PORTB pins has a weak internal pull-up  
(200 µA typical). A single control bit can turn on all the  
pull-ups. This is done by clearing the RBPU  
(OPTION<7>) bit. The weak pull-up is automatically  
turned off when the port pin is configured as an output.  
The pull-ups are disabled on Power-on Reset.  
Note: If a change on the I/O pin should occur when the  
read operation is being executed (start of the Q2  
cycle), then the RBIF interrupt flag may not  
get set.  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the interrupt  
on change comparison). The input pins (of RB7:RB4)  
are compared with the old value latched on the last  
read of PORTB. The “mismatch” outputs of RB7:RB4  
are OR’ed together to generate the RBIF interrupt (flag  
FIGURE 5-3: BLOCK DIAGRAM OF RB7:RB4 PINS  
RBPU(1)  
VDD  
weak  
P
pull-up  
VDD  
Data Latch  
Data bus  
VDD  
D
Q
P
WR PortB  
CK  
I/O  
pin  
N
TRIS Latch  
D
Q
VSS  
WR TRISB  
VSS  
CK  
Q
TTL  
Input  
Buffer  
ST  
Buffer  
RD TRISB  
RD PortB  
Latch  
D
Q
EN  
Set RBIF  
From other  
RB7:RB4 pins  
Q
D
EN  
RD Port B  
RB7:RB6 in serial programming mode  
Note 1: TRISB = 1 enables weak pull-up if RBPU = '0'  
(OPTION<7>).  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 25  
PIC16C55X  
FIGURE 5-4: BLOCK DIAGRAM OF RB3:RB0 PINS  
RBPU(1)  
VDD  
weak  
pull-up  
P
VDD  
P
VDD  
Data Latch  
Data bus  
D
Q
WR PortB  
CK  
I/O  
pin  
N
TRIS Latch  
D
Q
VSS  
WR TRISB  
VSS  
CK  
Q
TTL  
ST  
Buffer  
Input  
Buffer  
RD TRISB  
RD PortB  
Latch  
D
Q
EN  
RB0:INT  
ST  
Buffer  
RD Port B  
Note 1: TRISB = 1 enables weak pull-up if RBPU = '0'  
(OPTION<7>).  
TABLE 5-3:  
PORTB FUNCTIONS  
Name  
Bit #  
Buffer Type  
Function  
(1)  
RB0/INT  
bit0  
Input/output or external interrupt input. Internal software programmable  
weak pull-up.  
TTL/ST  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt on change). Internal software  
programmable weak pull-up.  
RB5  
RB6  
RB7  
bit5  
bit6  
bit7  
TTL  
Input/output pin (with interrupt on change). Internal software  
programmable weak pull-up.  
(2)  
Input/output pin (with interrupt on change). Internal software  
programmable weak pull-up. Serial programming clock pin.  
TTL/ST  
(2)  
Input/output pin (with interrupt on change). Internal software  
programmable weak pull-up. Serial programming data pin.  
TTL/ST  
Legend: ST = Schmitt Trigger, TTL = TTL input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
Note 2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
TABLE 5-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
POR  
Value on  
All Other Rests  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
06h  
86h  
81h  
PORTB  
TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx  
1111 1111  
1111 1111  
uuuu uuuu  
1111 1111  
1111 1111  
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
T0SE PSA PS2 PS1 PS0  
OPTION RBPU INTEDG T0CS  
Legend: x = unknown, u = unchanged  
Note: Shaded bits are not used by PORTB.  
DS40143C-page 26  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
5.3  
I/O Programming Considerations  
EXAMPLE 5-1: READ-MODIFY-WRITE  
INSTRUCTIONS ON AN  
5.3.1  
BI-DIRECTIONAL I/O PORTS  
I/O PORT  
;Initial PORT settings: PORTB<7:4> Inputs  
;
Any instruction which writes, operates internally as a  
read followed by a write operation. The BCF and BSF  
instructions, for example, read the register into the  
CPU, execute the bit operation and write the result back  
to the register. Caution must be used when these  
instructions are applied to a port with both inputs and  
outputs defined. For example, a BSFoperation on bit5  
of PORTB will cause all eight bits of PORTB to be read  
into the CPU. Then the BSF operation takes place on  
bit5 and PORTB is written to the output latches. If  
another bit of PORTB is used as a bidirectional I/O pin  
(e.g., bit0) and it is defined as an input at this time, the  
input signal present on the pin itself would be read into  
the CPU and re-written to the data latch of this  
particular pin, overwriting the previous content. As long  
as the pin stays in the input mode, no problem occurs.  
However, if bit0 is switched into output mode later on,  
the content of the data latch may now be unknown.  
;
PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-up and are not  
;connected to other circuitry  
;
;
;
PORT latch PORT pins  
---------- ----------  
BCF PORTB, 7  
BCF PORTB, 6  
BSF STATUS,RP0  
BCF TRISB, 7  
BCF TRISB, 6  
;01pp pppp 11pp pppp  
;10pp pppp 11pp pppp  
;
;10pp pppp 11pp pppp  
;10pp pppp 10pp pppp  
;
;Note that the user may have expected the pin  
;values to be 00pp pppp. The 2nd BCF caused  
;RB7 to be latched as the pin value (High).  
5.3.2  
SUCCESSIVE OPERATIONS ON I/O PORTS  
Reading the port register, reads the values of the port  
pins. Writing to the port register writes the value to the  
port latch. When using read modify write instructions  
(ex. BCF, BSF, etc.) on a port, the value of the port pins  
is read, the desired operation is done to this value, and  
this value is then written to the port latch.  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle  
(Figure 5-5). Therefore, care must be exercised if a  
write followed by a read operation is carried out on the  
same I/O port. The sequence of instructions should be  
such to allow the pin voltage to stabilize (load  
dependent) before the next instruction which causes  
that file to be read into the CPU is executed. Otherwise,  
the previous state of that pin may be read into the CPU  
rather than the new state. When in doubt, it is better to  
separate these instructions with an NOP or another  
instruction not accessing this I/O port.  
Example 5-1 shows the effect of two sequential  
read-modify-write instructions (ex., BCF, BSF, etc.) on  
an I/O port.  
A pin actively outputting a Low or High should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”, “wired-and”).  
The resulting high output currents may damage  
the chip.  
FIGURE 5-5: SUCCESSIVE I/O OPERATION  
Note:  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
This example shows write to PORTB  
followed by a read from PORTB.  
PC + 1  
MOVWF PORTB MOVF PORTB, W  
PC + 2  
NOP  
PC + 3  
NOP  
PC  
Instruction  
fetched  
PC  
Note that:  
Write to  
PORTB  
Read PORTB  
data setup time = (0.25 TCY - TPD)  
where TCY = instruction cycle and  
TPD = propagation delay of Q1 cycle  
to output valid.  
RB7:RB0  
Port pin  
sampled here  
Therefore, at higher clock frequencies,  
a write followed by a read may be  
problematic.  
TPD  
Execute  
MOVWF  
PORTB  
Execute  
MOVF  
PORTB, W  
Execute  
NOP  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 27  
 
 
PIC16C55X  
NOTES:  
DS40143C-page 28  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
bit (OPTION<4>). Clearing the T0SE bit selects the  
rising edge. Restrictions on the external clock input are  
discussed in detail in Section 6.2.  
6.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following  
features:  
The prescaler is shared between the Timer0 module  
and the WatchdogTimer. The prescaler assignment is  
controlled in software by the control bit PSA  
(OPTION<3>). Clearing the PSA bit will assign the  
prescaler to Timer0. The prescaler is not readable or  
writable. When the prescaler is assigned to the Timer0  
module, prescale value of 1:2, 1:4, ..., 1:256 are  
selectable. Section 6.3 details the operation of the  
prescaler.  
• 8-bit timer/counter  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
Figure 6-1 is a simplified block diagram of the Timer0  
module.  
6.1  
TIMER0 Interrupt  
Timer mode is selected by clearing the T0CS bit  
(OPTION<5>). In timer mode, the TMR0 will increment  
every instruction cycle (without prescaler). If Timer0 is  
written, the increment is inhibited for the following two  
cycles (Figure 6-2 and Figure 6-3). The user can work  
around this by writing an adjusted value to TMR0.  
Timer0 interrupt is generated when the TMR0 register  
timer/counter overflows from FFh to 00h. This overflow  
sets the T0IF bit. The interrupt can be masked by  
clearing the T0IE bit (INTCON<5>). The T0IF bit  
(INTCON<2>) must be cleared in software by the  
Timer0 module interrupt service routine before  
re-enabling this interrupt. The Timer0 interrupt cannot  
wake the processor from SLEEP since the timer is shut  
off during SLEEP. See Figure 6-4 for Timer0 interrupt  
timing.  
Counter mode is selected by setting the T0CS bit. In  
this mode Timer0 will increment either on every rising  
or falling edge of pin RA4/T0CKI. The incrementing  
edge is determined by the source edge (T0SE) control  
FIGURE 6-1: TIMER0 BLOCK DIAGRAM  
Data bus  
RA4/T0CKI  
pin  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
PSout  
(2 Tcy delay)  
T0SE  
Set Flag bit T0IF  
on Overflow  
PS2:PS0  
PSA  
T0CS  
Note 1:  
Bits, T0SE, T0CS, PS2, PS1, PS0 and PSA are located in the OPTION register.  
2: The prescaler is shared with Watchdog Timer (Figure 6-6)  
FIGURE 6-2: TIMER0 (TMR0) TIMING: INTERNAL CLOCK/NO PRESCALER  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetch  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
T0  
T0+1  
T0+2  
NT0  
NT0  
NT0  
NT0+1  
NT0+2  
TMR0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 29  
 
 
PIC16C55X  
FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
NT0  
TMR0  
Instruction  
Execute  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
FIGURE 6-4: TIMER0 INTERRUPT TIMING  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
OSC1  
CLKOUT(3)  
TMR0 timer  
FEh  
1
FFh  
1
00h  
01h  
02h  
T0IF bit  
(INTCON<2>)  
GIE bit  
(INTCON<7>)  
Interrupt Latency Time  
INSTRUCTION FLOW  
PC  
PC  
PC +1  
PC +1  
0004h  
0005h  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Instruction  
executed  
Inst (PC-1)  
Dummy cycle  
Dummy cycle  
Inst (0004h)  
Inst (PC)  
Note 1: T0IF interrupt flag is sampled here (every Q1).  
2: Interrupt latency = 4Tcy, where Tcy = instruction cycle time.  
3: CLKOUT is available only in RC oscillator mode.  
DS40143C-page 30  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple-counter type  
prescaler so that the prescaler output is symmetrical.  
For the external clock to meet the sampling  
requirement, the ripple-counter must be taken into  
account. Therefore, it is necessary for T0CKI to have a  
period of at least 4TOSC (and a small RC delay of  
40 ns) divided by the prescaler value. The only  
requirement on T0CKI high and low time is that they do  
not violate the minimum pulse width requirement of  
10 ns. Refer to parameters 40, 41 and 42 in the  
electrical specification of the desired device.  
6.2  
Using Timer0 with External Clock  
When an external clock input is used for Timer0, it must  
meet certain requirements. The external clock  
requirement is due to internal phase clock (TOSC)  
synchronization. Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
6.2.1  
EXTERNAL CLOCK SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is  
accomplished by sampling the prescaler output on the  
Q2 and Q4 cycles of the internal phase clocks  
(Figure 6-5). Therefore, it is necessary for T0CKI to be  
high for at least 2TOSC (and a small RC delay of 20 ns)  
and low for at least 2TOSC (and a small RC delay of  
20 ns). Refer to the electrical specification of the  
desired device.  
6.2.2  
TIMER0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the TMR0 is  
actually incremented. Figure 6-5 shows the delay from  
the external clock edge to the timer incrementing.  
FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
misses sampling  
External Clock Input or  
(2)  
Prescaler output  
(1)  
(3)  
External Clock/Prescaler  
Output after sampling  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc).  
Therefore, the error in measuring the interval between two edges on Timer0 input = ±4Tosc max.  
2: External clock if no prescaler selected, Prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 31  
 
PIC16C55X  
The PSA and PS2:PS0 bits (OPTION<3:0>) determine  
the prescaler assignment and prescale ratio.  
6.3  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer, respectively (Figure 6-6). For simplicity, this  
counter is being referred to as “prescaler” throughout  
this data sheet. Note that there is only one prescaler  
available which is mutually exclusive between the  
Timer0 module and the Watchdog Timer. Thus, a  
prescaler assignment for the Timer0 module means  
that there is no prescaler for the Watchdog Timer, and  
vice-versa.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF 1, MOVWF 1,  
BSF 1,x....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the Watchdog Timer. The  
prescaler is not readable or writable.  
FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (=Fosc/4)  
M
U
X
1
0
0
1
M
U
X
T0CKI  
pin  
SYNC  
2
Tcy  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8-to-1MUX  
PS0 - PS2  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0SE, T0CS, PSA, PS0-PS2 are bits in the OPTION register.  
DS40143C-page 32  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C55X  
6.3.1  
SWITCHING PRESCALER ASSIGNMENT  
To change prescaler from the WDT to the TMR0  
module use the sequence shown in Example 6-2. This  
precaution must be taken even if the WDT is disabled.  
The prescaler assignment is fully under software  
control (i.e., it can be changed “on the fly” during  
program execution). To avoid an unintended device  
EXAMPLE 6-2: CHANGING PRESCALER  
RESET,  
the  
following  
instruction  
sequence  
(WDTTIMER0)  
(Example 6-1) must be executed when changing the  
prescaler assignment from Timer0 to WDT. Lines 5-7  
are required only if the desired postscaler rate is 1:1  
(PS<2:0> = 000) or 1:2 (PS<2:0> = 001).  
CLRWDT  
;Clear WDT and  
;prescaler  
BSF  
STATUS, RP0  
MOVLW  
b'xxxx0xxx' ;Select TMR0, new  
;prescale value and  
;clock source  
OPTION  
STATUS, RP0  
EXAMPLE 6-1: CHANGING PRESCALER  
(TIMER0WDT)  
MOVWF  
BCF  
1.BCF  
STATUS, RP0 ;Skip if already in  
; Bank 0  
2.CLRWDT  
3.CLRF  
4.BSF  
;Clear WDT  
;Clear TMR0 & Prescaler  
STATUS, RP0 ;Bank 1  
TMR0  
5.MOVLW '00101111’b; ;These 3 lines (5, 6, 7)  
6.MOVWF OPTION  
; are required only if  
; desired PS<2:0> are  
; 000 or 001  
7.CLRWDT  
8.MOVLW '00101xxx’b ;Set Postscaler to  
9.MOVWF OPTION ; desired WDT rate  
10.BCF STATUS, RP0 ;Return to Bank 0  
TABLE 6-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
POR  
Value on  
All Other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
TMR0  
Timer0 module’s register  
GIE T0IE  
OPTION RBPU INTEDG T0CS  
TRISA  
xxxx xxxx  
0000 000x  
1111 1111  
---1 1111  
uuuu uuuu  
0000 000x  
1111 1111  
---1 1111  
0Bh/8Bh INTCON  
+
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RBIF  
PS0  
81h  
85h  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0  
Legend: — = Unimplemented locations, read as ‘0’.  
+ = Reserved for future use.  
Note: Shaded bits are not used by TMR0 module.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 33  
 
 
PIC16C55X  
NOTES:  
DS40143C-page 34  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
The PIC16C55X has a Watchdog Timer which is  
controlled by configuration bits. It runs off its own RC  
oscillator for added reliability. There are two timers that  
offer necessary delays on power-up. One is the  
Oscillator Start-up Timer (OST), intended to keep the  
chip in reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 72 ms (nominal) on power-up only,  
designed to keep the part in reset while the power  
supply stabilizes. With these two functions on-chip,  
most applications need no external reset circuitry.  
7.0  
SPECIAL FEATURES OF THE  
CPU  
What sets  
a
microcontroller apart from other  
processors are special circuits to deal with the needs of  
real time applications. The PIC16C55X family has a  
host of such features intended to maximize system  
reliability, minimize cost through elimination of external  
components, provide power saving operating modes  
and offer code protection.  
These are:  
The SLEEP mode is designed to offer a very low  
current power-down mode.The user can wake-up from  
SLEEP through external reset, Watchdog Timer  
wake-up or through an interrupt. Several oscillator  
options are also made available to allow the part to fit  
the application. The RC oscillator option saves system  
cost while the LP crystal option saves power. A set of  
configuration bits are used to select various options.  
1. OSC selection  
2. Reset  
Power-on Reset (POR)  
Power-up Timer (PWRT)  
Oscillator Start-Up Timer (OST)  
3. Interrupts  
4. Watchdog Timer (WDT)  
5. SLEEP  
6. Code protection  
7. ID Locations  
8. In-circuit serial programming™  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 35  
PIC16C55X  
The user will note that address 2007h is beyond  
the user program memory space. In fact, it belongs  
to the special test/configuration memory space  
(2000h – 3FFFh), which can be accessed only during  
programming.  
7.1  
Configuration Bits  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in  
program memory location 2007h.  
FIGURE 7-1: CONFIGURATION WORD  
CP1 CP01 CP1 CP01 CP1 CP01  
bit13  
Reserved CP1 CP01 PWRTE WDTE F0SC1 F0SC0  
bit0  
CONFIG  
REGISTER: 2007h  
Address  
(1)  
bit 13-8 CP<1:0>: Code protection bits  
5-4: 11= Program Memory code protection off  
10= 0400h - 07FFh code protected  
01= 0200h - 07FFh code protected  
11= 0000h - 07FFh code protected  
bit 7:  
bit 6:  
bit 3:  
Unimplemented: Read as '1'  
Reserved: Do not use  
PWRTE: Power-up Timer Enable bit  
1 = PWRT disabled  
0 = PWRT enabled  
bit 2:  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.  
DS40143C-page 36  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C55X  
7.2  
Oscillator Configurations  
TABLE 7-1:  
CAPACITOR SELECTION  
FOR CERAMIC RESONATORS  
(PRELIMINARY)  
7.2.1  
OSCILLATOR TYPES  
The PIC16C55X can be operated in four different  
oscillator options. The user can program two  
configuration bits (FOSC1 and FOSC0) to select one of  
these four modes:  
Ranges Characterized:  
Mode  
Freq  
OSC1(C1)  
OSC2(C2)  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
22 - 100 pF  
15 - 68 pF  
15 - 68 pF  
22 - 100 pF  
15 - 68 pF  
15 - 68 pF  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
Crystal/Resonator  
High Speed Crystal/Resonator  
Resistor/Capacitor  
HS  
8.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
16.0 MHz  
Higher capacitance increases the stability of the oscillator  
but also increases the start-up time. These values are for  
design guidance only. Since each resonator has its own  
characteristics, the user should consult with the resonator  
manufacturer for appropriate values of external compo-  
nents.  
7.2.2  
CRYSTAL OSCILLATOR / CERAMIC  
RESONATORS  
In XT, LP or HS modes a crystal or ceramic resonator  
is connected to the OSC1 and OSC2 pins to establish  
oscillation (Figure 7-2). The PIC16C55X oscillator  
design requires the use of a parallel cut crystal. Use of  
a series cut crystal may give a frequency out of the  
crystal manufacturers specifications.When in XT, LP or  
HS modes, the device can have an external clock  
source to drive the OSC1 pin (Figure 7-3).  
TABLE 7-2:  
CAPACITOR SELECTION  
FOR CRYSTAL OSCILLATOR  
(PRELIMINARY)  
Mode  
Freq  
OSC1(C1)  
OSC2(C2)  
32 kHz  
200 kHz  
68 - 100 pF  
15 - 30 pF  
68 - 100 pF  
15 - 30 pF  
FIGURE 7-2: CRYSTAL OPERATION  
(OR CERAMIC RESONATOR)  
(HS, XT OR LP OSC  
LP  
100 kHz  
2 MHz  
4 MHz  
68 - 150 pF  
15 - 30 pF  
15 - 30 pF  
150 - 200 pF  
15 - 30 pF  
15 - 30 pF  
XT  
HS  
CONFIGURATION)  
OSC1  
8 MHz  
10 MHz  
20 MHz  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
To internal logic  
C1  
XTAL  
RS  
SLEEP  
Higher capacitance increases the stability of the oscillator  
but also increases the start-up time. These values are for  
design guidance only. Rs may be required in HS mode as  
well as XT mode to avoid overdriving crystals with low drive  
level specification. Since each crystal has its own  
characteristics, the user should consult with the crystal  
manufacturer for appropriate values of external compo-  
nents.  
RF  
OSC2  
see Note  
C2  
PIC16C55X  
See Table 7-1 and Table 7-2 for recommended  
values of C1 and C2.  
Note: A series resistor may be required for  
AT strip cut crystals.  
FIGURE 7-3: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
OSC CONFIGURATION)  
Clock from  
ext. system  
OSC1  
PIC16C55X  
OSC2  
Open  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 37  
 
 
 
 
PIC16C55X  
7.2.3  
EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
7.2.4  
RC OSCILLATOR  
For timing insensitive applications the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the  
resistor (Rext) and capacitor (Cext) values, and the  
operating temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal  
process parameter variation. Furthermore, the  
difference in lead frame capacitance between package  
types will also affect the oscillation frequency,  
especially for low Cext values. The user also needs to  
take into account variation due to tolerance of external  
R and C components used. Figure 7-6 shows how the  
R/C combination is connected to the PIC16C55X. For  
Rext values below 2.2 k, the oscillator operation may  
become unstable, or stop completely. For very high  
Rext values (e.g., 1 M), the oscillator becomes  
sensitive to noise, humidity and leakage. Thus, we  
recommend to keep Rext between 3 kand 100 k.  
Either a pre-packaged oscillator can be used or a sim-  
ple oscillator circuit with TTL gates can be built.  
Prepackaged oscillators provide a wide operating  
range and better stability. A well-designed crystal  
oscillator will provide good performance with TTL  
gates. Two types of crystal oscillator circuits can be  
used; one with series resonance, or one with parallel  
resonance.  
Figure 7-4 shows implementation of a parallel resonant  
oscillator circuit. The circuit is designed to use the  
fundamental frequency of the crystal. The 74AS04  
inverter performs the 180° phase shift that a parallel  
oscillator requires. The 4.7 kresistor provides the  
negative feedback for stability. The 10 kΩ  
potentiometers bias the 74AS04 in the linear region.  
This could be used for external oscillator designs.  
FIGURE 7-4: EXTERNAL PARALLEL  
RESONANT CRYSTAL  
Although the oscillator will operate with no external  
capacitor (Cext = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or  
package lead frame capacitance.  
OSCILLATOR CIRCUIT  
+5V  
To other  
Devices  
PIC16C55X  
10k  
74AS04  
4.7k  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin, and can be used for test  
purposes or to synchronize other logic (Figure 3-2 for  
waveform).  
CLKIN  
74AS04  
10k  
XTAL  
FIGURE 7-6: RC OSCILLATOR MODE  
10k  
VDD  
PIC16C55X  
Rext  
20 pF  
20 pF  
OSC1  
Figure 7-5 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental  
frequency of the crystal. The inverter performs a 180°  
phase shift in a series resonant oscillator circuit. The  
330 resistors provide the negative feedback to bias  
the inverters in their linear region.  
Internal Clock  
Cext  
VDD  
OSC2/CLKOUT  
Fosc/4  
FIGURE 7-5: EXTERNAL SERIES  
RESONANT CRYSTAL  
OSCILLATOR CIRCUIT  
To other  
Devices  
330 Ω  
330 Ω  
PIC16C55X  
74AS04  
74AS04  
74AS04  
CLKIN  
0.1 µF  
XTAL  
DS40143C-page 38  
Preliminary  
1998 Microchip Technology Inc.  
 
 
 
PIC16C55X  
on MCLR reset during SLEEP.They are not affected by  
a WDT wake-up, since this is viewed as the resumption  
of normal operation. TO and PD bits are set or cleared  
differently in different reset situations as indicated in  
Table 7-4.These bits are used in software to determine  
the nature of the reset. See Table 7-6 for a full descrip-  
tion of reset states of all registers.  
7.3  
Reset  
The PIC16C55X differentiates between various kinds  
of reset:  
a) Power-on reset (POR)  
b) MCLR reset during normal operation  
c) MCLR reset during SLEEP  
d) WDT reset (normal operation)  
e) WDT wake-up (SLEEP)  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 7-7.  
The MCLR reset path has a noise filter to detect and  
ignore small pulses. See Table 10-4 for pulse width  
specification.  
Some registers are not affected in any reset condition;  
their status is unknown on POR and unchanged in any  
other reset. Most other registers are reset to a “reset  
state” on Power-on reset, on MCLR or WDT reset and  
FIGURE 7-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR/  
VPP Pin  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
S
R
OST/PWRT  
OST  
Chip_Reset  
10-bit Ripple-counter  
Q
OSC1/  
CLKIN  
Pin  
PWRT  
(1)  
On-chip  
RC OSC  
10-bit Ripple-counter  
Enable PWRT  
Enable OST  
See Table 7-3 for time-out situations.  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 39  
 
PIC16C55X  
7.4.3  
OSCILLATOR START-UP TIMER (OST)  
7.4  
Power-on Reset (POR), Power-up  
Timer (PWRT), Oscillator Start-up  
Timer (OST)  
The Oscillator Start-Up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over. This ensures that the crystal  
oscillator or resonator has started and stabilized.  
7.4.1  
POWER-ON RESET (POR)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.6 V – 1.8 V). To  
take advantage of the POR, just tie the MCLR pin  
through a resistor to VDD. This will eliminate external  
RC components usually needed to create Power-on  
Reset. A maximum rise time for VDD is required. See  
Electrical Specifications for details.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on power-on reset or wake-up from  
SLEEP.  
7.4.4  
TIME-OUT SEQUENCE  
On power-up, the time-out sequence is as follows: First  
PWRT time-out is invoked after POR has expired, then  
OST is activated. The total time-out will vary based on  
oscillator configuration and PWRTE bit status. For  
example, in RC mode with PWRTE bit erased (PWRT  
disabled), there will be no time-out at all. Figure 7-8,  
Figure 7-9 and Figure 7-10 depict time-out sequences.  
The POR circuit does not produce internal reset when  
VDD declines.  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature, etc.) must be met to ensure  
operation. If these conditions are not met, the device  
must be held in reset until the operating conditions are  
met.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(see Figure 7-9). This is useful for testing purposes or  
to synchronize more than one PIC16C55X device oper-  
ating in parallel.  
For additional information, refer to Application Note  
AN607 “Power-up Trouble Shooting”.  
7.4.2  
POWER-UP TIMER (PWRT)  
Table 7-5 shows the reset conditions for some special  
registers, while Table 7-6 shows the reset conditions for  
all the registers.  
The Power-up Timer provides a fixed 72 ms (nominal)  
time-out on power-up only, from POR. The Power-up  
Timer operates on an internal RC oscillator.The chip is  
kept in reset as long as PWRT is active. The PWRT  
delay allows the VDD to rise to an acceptable level. A  
configuration bit, PWRTE can disable (if set) or enable  
(if cleared or programmed) the Power-up Timer. The  
Power-Up Time delay will vary from chip to chip and  
due to VDD, temperature and process variation. See  
DC parameters for details.  
DS40143C-page 40  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
7.4.5  
POWER CONTROL/STATUS REGISTER  
(PCON)  
Bit1 is POR (Power-on-reset). It is  
a ‘0’ on  
power-on-reset and unaffected otherwise. The user  
must write a ‘1’ to this bit following a power-on-reset.  
On a subsequent reset if POR is ‘0’, it will indicate that  
a power-on-reset must have occurred (VDD may have  
gone too low).  
TABLE 7-3:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up from  
SLEEP  
Oscillator Configuration  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
RC  
72 ms + 1024 TOSC  
72 ms  
1024 TOSC  
1024 TOSC  
TABLE 7-4:  
POR  
STATUS BITS AND THEIR SIGNIFICANCE  
TO  
PD  
Power-on-reset  
0
0
0
1
1
1
1
1
0
X
0
0
u
1
1
X
0
u
0
u
0
Illegal, TO is set on POR  
Illegal, PD is set on POR  
WDT Reset  
WDT Wake-up  
MCLR reset during normal operation  
MCLR reset during SLEEP  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 41  
PIC16C55X  
TABLE 7-5:  
INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
uuu1 0uuu  
---- --0-  
---- --u-  
---- --u-  
---- --u-  
---- --u-  
---- --u-  
MCLR reset during normal operation  
MCLR reset during SLEEP  
WDT reset  
000h  
000h  
WDT Wake-up  
PC + 1  
(1)  
Interrupt Wake-up from SLEEP  
PC + 1  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector  
(0004h) after execution of PC+1.  
TABLE 7-6:  
INITIALIZATION CONDITION FOR REGISTERS  
• MCLR Reset during  
normal operation  
• MCLR Reset during  
SLEEP  
• Wake up from SLEEP  
through interrupt  
• Wake up from SLEEP  
through WDT time-out  
Register  
W
Address  
-
Power-on Reset  
• WDT Reset  
xxxx xxxx  
-
uuuu uuuu  
-
uuuu uuuu  
-
INDF  
TMR0  
PCL  
00h  
01h  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
(2)  
02h  
PC + 1  
(3)  
(3)  
STATUS  
03h  
0001 1xxx  
000q quuu  
uuuq quuu  
FSR  
04h  
05h  
06h  
0Ah  
0Bh  
xxxx xxxx  
---x xxxx  
xxxx xxxx  
---0 0000  
0000 000x  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
---0 0000  
0000 000u  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
---u uuuu  
PORTA  
PORTB  
PCLATH  
INTCON  
(1)  
uuuu uuuu  
OPTION  
TRISA  
TRISB  
PCON  
81h  
85h  
86h  
8Eh  
1111 1111  
---1 1111  
1111 1111  
---- --0-  
1111 1111  
---1 1111  
1111 1111  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
---- --u-  
---- --u-  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’,q= value depends on condition.  
Note 1: One or more bits in INTCON will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
3: See Table 7-5 for reset value for specific condition.  
DS40143C-page 42  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C55X  
FIGURE 7-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 7-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 7-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): CASE 3  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 43  
PIC16C55X  
FIGURE 7-11: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
VDD  
VDD  
D
R
R1  
MCLR  
PIC16C55X  
C
Note 1: External power-on reset circuit is required  
only if VDD power-up slope is too slow.  
The diode D helps discharge the capaci-  
tor quickly when VDD powers down.  
2: < 40 kis recommended to make sure  
that voltage drop across R does not vio-  
late the device’s electrical specification.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capaci-  
tor C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
(ESD) or Electrical Overstress (EOS).  
DS40143C-page 44  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs (Figure 7-13).  
The latency is the same for one or two cycle  
instructions. Once in the interrupt service routine the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid multiple interrupt requests. Individual interrupt  
flag bits are set regardless of the status of their  
corresponding mask bit or the GIE bit.  
7.5  
Interrupts  
The PIC16C55X has 3 sources of interrupt:  
• External interrupt RB0/INT  
• TMR0 overflow interrupt  
• PortB change interrupts (pins RB7:RB4)  
The interrupt control register (INTCON) records  
individual interrupt requests in flag bits. It also has  
individual and global interrupt enable bits.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. Individual interrupts can be  
disabled through their corresponding enable bits in  
INTCON register. GIE is cleared on reset.  
Note 1: Individual interrupt flag bits are set  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The CPU will execute a  
NOP in the cycle immediately following  
the instruction which clears the GIE bit.  
The interrupts which were ignored are  
still pending to be serviced when the GIE  
bit is set again.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine as well as sets the GIE bit, which  
re-enables RB0/INT interrupts.  
The INT pin interrupt, the RB port change interrupt and  
the TMR0 overflow interrupt flags are contained in the  
INTCON register.  
When an interrupt is responded to, the GIE is cleared  
to disable any further interrupt, the return address is  
pushed into the stack and the PC is loaded with 0004h.  
Once in the interrupt service routine the source(s) of  
the interrupt can be determined by polling the interrupt  
flag bits.The interrupt flag bit(s) must be cleared in soft-  
ware before re-enabling interrupts to avoid RB0/INT  
recursive interrupts.  
FIGURE 7-12: INTERRUPT LOGIC  
Wake-up  
(If in SLEEP mode)  
T0IF  
T0IE  
INTF  
INTE  
Interrupt  
to CPU  
RBIF  
RBIE  
GIE  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 45  
PIC16C55X  
7.5.1  
RB0/INT INTERRUPT  
7.5.2  
TMR0 INTERRUPT  
An external interrupt on RB0/INT pin is edge triggered:  
either rising if INTEDG bit (OPTION<6>) is set, or fall-  
ing if INTEDG bit is clear. When a valid edge appears  
on the RB0/INT pin, the INTF bit (INTCON<1>) is set.  
This interrupt can be disabled by clearing the INTE  
control bit (INTCON<4>).The INTF bit must be cleared  
in software in the interrupt service routine before  
re-enabling this interrupt. The RB0/INT interrupt can  
wake-up the processor from SLEEP, if the INTE bit was  
set prior to going into SLEEP. The status of the GIE bit  
decides whether or not the processor branches to the  
interrupt vector following wake-up. See Section 7.8 for  
details on SLEEP and Figure 7-16 for timing of  
wake-up from SLEEP through RB0/INT interrupt.  
An overflow (FFh 00h) in the TMR0 register will  
set the T0IF (INTCON<2>) bit. The interrupt can  
be enabled/disabled by setting/clearing T0IE  
(INTCON<5>) bit. For operation of the Timer0 module,  
see Section 6.0.  
7.5.3  
PORTB INTERRUPT  
An input change on PORTB <7:4> sets the RBIF  
(INTCON<0>) bit. The interrupt can be enabled/dis-  
abled by setting/clearing the RBIE (INTCON<4>) bit.  
For operation of PORTB (Section 5.2).  
Note: If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF inter-  
rupt flag may get set.  
FIGURE 7-13: INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT  
3
4
INT pin  
1
1
Interrupt Latency  
INTF flag  
(INTCON<1>)  
5
2
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+1  
0004h  
0005h  
Instruction  
fetched  
Inst (PC+1)  
Inst (0004h)  
Inst (PC)  
Inst (0005h)  
Inst (0004h)  
Instruction  
executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC-1)  
Note  
1: INTF flag is sampled here (every Q1).  
2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in RC oscillator mode.  
4: For minimum width of INT pulse, refer to AC specs.  
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.  
DS40143C-page 46  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
7.6  
Context Saving During Interrupts  
7.7  
Watchdog Timer (WDT)  
During an interrupt, only the return PC value is saved  
on the stack.Typically, users may wish to save key reg-  
isters during an interrupt, e.g. W register and STATUS  
register. This will have to be implemented in software.  
The watchdog timer is a free running on-chip RC oscil-  
lator which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the CLKIN pin. That means that the WDT will run, even  
if the clock on the OSC1 and OSC2 pins of the device  
has been stopped, for example, by execution of a  
SLEEP instruction. During normal operation, a WDT  
time-out generates a device RESET. If the device is in  
SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation.The WDT  
can be permanently disabled by programming the con-  
figuration bit WDTE as clear (Section 7.1).  
Example 7-1 stores and restores the STATUS and W  
registers. The user register, W_TEMP, must be defined  
in both banks and must be defined at the same offset  
from the bank base address (i.e., W_TEMP is defined  
at 0x20 in Bank 0 and it must also be defined at 0xA0  
in Bank 1). The user register, STATUS_TEMP, must be  
defined in Bank 0. The Example 7-1:  
• Stores the W register  
7.7.1  
WDT PERIOD  
• Stores the STATUS register in Bank 0  
• Executes the ISR code  
The WDT has a nominal time-out period of 18 ms, (with  
no prescaler). The time-out periods vary with tempera-  
ture, V and process variations from part to part (see  
• Restores the STATUS (and bank select bit  
register)  
DD  
• Restores the W register  
DC specs). If longer time-out periods are desired, a  
prescaler with a division ratio of up to 1:128 can be  
assigned to the WDT under software control by writing  
to the OPTION register. Thus, time-out periods up to  
2.3 seconds can be realized.  
EXAMPLE 7-1: SAVING THE STATUS AND  
W REGISTERS IN RAM  
MOVWF  
W_TEMP  
;copy W to temp register,  
;could be in either bank  
The CLRWDTand SLEEPinstructions clear the WDT  
and the postscaler, if assigned to the WDT, and prevent  
it from timing out and generating a device RESET.  
SWAPF  
BCF  
STATUS,W  
;swap status to be saved into W  
STATUS,RP0  
;change to bank 0 regardless  
;of current bank  
The TO bit in the STATUS register will be cleared upon  
a Watchdog Timer time-out.  
MOVWF  
STATUS_TEMP  
(ISR)  
;save status to bank 0  
;register  
:
7.7.2  
WDT PROGRAMMING CONSIDERATIONS  
:
:
It should also be taken in account that under worst case  
conditions (VDD = Min., Temperature = Max., max.  
WDT prescaler) it may take several seconds before a  
WDT time-out occurs.  
SWAPF  
STATUS_TEMP,W ;swap STATUS_TEMP register  
;into W, sets bank to original  
;state  
MOVWF  
SWAPF  
SWAPF  
STATUS  
;move W into STATUS register  
;swap W_TEMP  
W_TEMP,F  
W_TEMP,W  
;swap W_TEMP into W  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 47  
 
PIC16C55X  
FIGURE 7-14: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 6-6)  
0
M
U
X
Postscaler  
8
1
Watchdog  
Timer  
PS<2:0>  
To TMR0 (Figure 6-6)  
PSA  
8 - to -1 MUX  
PSA  
WDT  
Enable Bit  
1
0
MUX  
WDT  
Time-out  
Note: T0SE, T0CS, PSA, PS0-PS2 are bits in the OPTION register.  
FIGURE 7-15: SUMMARY OF WATCHDOG TIMER REGISTERS  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5 Bit 4  
CP1  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Value on POR  
2007h  
81h  
Config. bits  
OPTION  
+
CP0 PWRTE WDTE FOSC1 FOSC0  
PS2 PS1 PS0  
RBPU INTEDG T0CS T0SE PSA  
1111 1111  
1111 1111  
Legend: Shaded cells are not used by the Watchdog Timer.  
— = Unimplemented location, read as ‘0’.  
+ = Reserved for future use.  
DS40143C-page 48  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
The first event will cause a device reset. The two latter  
events are considered a continuation of program exe-  
cution. The TO and PD bits in the STATUS register can  
be used to determine the cause of device reset. PD  
bit, which is set on power-up is cleared when SLEEP is  
invoked. TO bit is cleared if WDT Wake-up occurred.  
7.8  
Power-Down Mode (SLEEP)  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit in the STATUS register is  
cleared, the TO bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before SLEEP was executed (driving high, low, or  
hi-impedance).  
When the SLEEP instruction is being executed, the  
next instruction (PC + 1) is pre-fetched. For the device  
to wake-up through an interrupt event, the correspond-  
ing interrupt enable bit must be set (enabled). Wake-up  
is regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEPinstruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have an NOPafter the SLEEPinstruction.  
For lowest current consumption in this mode, all I/O  
pins should be either at VDD, or VSS, with no external  
circuitry drawing current from the I/O pin. I/O pins that  
are hi-impedance inputs should be pulled high or low  
externally to avoid switching currents caused by float-  
ing inputs. The T0CKI input should also be at VDD or  
VSS for lowest current consumption. The contribution  
from on chip pull-ups on PORTB should be considered.  
Note: If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the correspond-  
ing interrupt flag bits set, the device will  
immediately wakeup from sleep. The sleep  
instruction is completely executed.  
The MCLR pin must be at a logic high level (VIHMC).  
Note: It should be noted that a RESET generated  
by a WDT time-out does not drive MCLR  
pin low.  
7.8.1  
WAKE-UP FROM SLEEP  
The WDT is cleared when the device wakes-up from  
sleep, regardless of the source of wake-up.  
The device can wake-up from SLEEP through one of  
the following events:  
1. External reset input on MCLR pin  
2. Watchdog Timer Wake-up (if WDT was enabled)  
3. Interrupt from RB0/INT pin or RB Port change  
FIGURE 7-16: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
TOST(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 49  
PIC16C55X  
7.9  
Code Protection  
7.11  
In-Circuit Serial Programming™  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out for verification purposes.  
The PIC16C55X microcontrollers can be serially  
programmed while in the end application circuit.This is  
simply done with two lines for clock and data, and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
Note: Microchip does not recommend code  
protecting windowed devices.  
7.10  
ID Locations  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are  
readable and writable during program/verify. Only the  
least significant 4 bits of the ID locations are used.  
The device is placed into a program/verify mode by  
holding the RB6 and RB7 pins low while raising the  
MCLR (VPP) pin from VIL to VIHH (see programming  
specification). RB6 becomes the programming clock  
and RB7 becomes the programming data. Both RB6  
and RB7 are Schmitt Trigger inputs in this mode.  
After reset, to place the device into programming/verify  
mode, the program counter (PC) is at location 00h. A  
6-bit command is then supplied to the device.  
Depending on the command, 14-bits of program data  
are then supplied to or from the device, depending if the  
command was a load or a read. For complete details of  
serial programming, please refer to the PIC16C6X/7X  
Programming Specifications (Literature #DS30228).  
A typical in-circuit serial programming connection is  
shown in Figure 7-17.  
FIGURE 7-17: TYPICAL IN-CIRCUIT SERIAL  
PROGRAMMING  
CONNECTION  
To Normal  
Connections  
External  
Connector  
Signals  
PIC16C55X  
+5V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP  
RB6  
RB7  
CLK  
Data I/O  
VDD  
To Normal  
Connections  
DS40143C-page 50  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C55X  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
8.0  
INSTRUCTION SET SUMMARY  
Each PIC16C55X instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16C55X instruc-  
tion set summary in Table 8-2 lists byte-oriented,  
bit-oriented, and literal and control operations.  
Table 8-1 shows the opcode field descriptions.  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of an  
instruction. In this case, the execution takes two  
instruction cycles with the second cycle executed as a  
NOP. One instruction cycle consists of four oscillator  
periods.Thus, for an oscillator frequency of 4 MHz, the  
For byte-oriented instructions, 'f' represents a file  
register designator and 'd' represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
normal instruction execution time is 1 µs. If  
a
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the W register. If 'd' is one, the result is placed  
in the file register specified in the instruction.  
conditional test is true or the program counter is  
changed as a result of an instruction, the instruction  
execution time is 2 µs.  
Table 8-1 lists the instructions recognized by the  
MPASM assembler.  
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the number of the  
file in which the bit is located.  
Figure 8-1 shows the three general formats that the  
instructions can have.  
For literal and control operations, 'k' represents an  
eight or eleven bit constant or literal value.  
Note: To maintain upward compatibility with  
®
future PICmicro products, do not use the  
OPTIONand TRISinstructions.  
TABLE 8-1:  
OPCODE FIELD  
DESCRIPTIONS  
All examples use the following format to represent a  
hexadecimal number:  
Field  
Description  
0xhh  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
where h signifies a hexadecimal digit.  
FIGURE 8-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Don't care location (= 0 or 1)  
Byte-oriented file register operations  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
13  
8
7
6
0
0
OPCODE  
d
f (FILE #)  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
label Label name  
TOS Top of Stack  
PC Program Counter  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
OPCODE  
f (FILE #)  
PCLATH  
Program Counter High Latch  
GIE Global Interrupt Enable bit  
WDT Watchdog Timer/Counter  
TO Time-out bit  
b = 3-bit bit address  
f = 7-bit file register address  
PD Power-down bit  
Literal and control operations  
dest Destination either the W register or the specified  
register file location  
General  
[ ] Options  
13  
8
7
0
0
Contents  
( )  
OPCODE  
k (literal)  
Assigned to  
k = 8-bit immediate value  
Register bit field  
In the set of  
< >  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
User defined term (font is courier)  
italics  
k (literal)  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 51  
 
 
PIC16C55X  
TABLE 8-2:  
PIC16C55X INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0000 0011  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
10bb bfff ffff  
11bb bfff ffff  
1,2  
1,2  
3
1 (2) 01  
1 (2) 01  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11  
11  
10  
00  
10  
11  
11  
00  
11  
00  
00  
11  
11  
111x kkkk kkkk C,DC,Z  
1001 kkkk kkkk  
0kkk kkkk kkkk  
Z
0000 0110 0100 TO,PD  
1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
1000 kkkk kkkk  
00xx kkkk kkkk  
0000 0000 1001  
01xx kkkk kkkk  
0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
0000 0110 0011 TO,PD  
110x kkkk kkkk C,DC,Z  
1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external  
device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS40143C-page 52  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
8.1  
Instruction Descriptions  
ANDLW  
AND Literal with W  
ADDLW  
Add Literal and W  
Syntax:  
[ label ] ANDLW  
k
Syntax:  
[ label ] ADDLW  
k
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 k 255  
(W) + k (W)  
C, DC, Z  
(W) .AND. (k) (W)  
Operation:  
Z
Status Affected:  
Encoding:  
11  
1001  
kkkk  
kkkk  
11  
111x  
kkkk  
kkkk  
The contents of W register are  
AND’ed with the eight bit literal 'k'.The  
result is placed in the W register.  
The contents of the W register are  
added to the eight bit literal 'k' and the  
result is placed in the W register.  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
ANDLW  
0x5F  
ADDLW  
0x15  
Before Instruction  
Before Instruction  
W
=
0xA3  
0x03  
W
=
0x10  
0x25  
After Instruction  
After Instruction  
W
=
W
=
ADDWF  
Syntax:  
Add W and f  
ANDWF  
Syntax:  
AND W with f  
[ label ] ADDWF f,d  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) + (f) (dest)  
Operation:  
(W) .AND. (f) (dest)  
Status Affected:  
Encoding:  
C, DC, Z  
Status Affected:  
Encoding:  
Z
00  
0111  
dfff  
ffff  
00  
0101  
dfff  
ffff  
Add the contents of the W register  
with register 'f'. If 'd' is 0 the result is  
stored in the W register. If 'd' is 1 the  
result is stored back in register 'f'.  
AND the W register with register 'f'. If  
'd' is 0 the result is stored in the W  
register. If 'd' is 1 the result is stored  
back in register 'f'.  
Description:  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
ADDWF  
FSR,  
0
ANDWF  
FSR, 1  
Before Instruction  
Before Instruction  
W
FSR =  
=
0x17  
0xC2  
W
FSR =  
=
0x17  
0xC2  
After Instruction  
After Instruction  
W
FSR =  
=
0xD9  
0xC2  
W
FSR =  
=
0x17  
0x02  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 53  
PIC16C55X  
BCF  
Bit Clear f  
BTFSC  
Bit Test, Skip if Clear  
Syntax:  
Operands:  
[ label ] BCF f,b  
Syntax:  
[ label ] BTFSC f,b  
0 f 127  
0 b 7  
Operands:  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
0 (f<b>)  
Operation:  
skip if (f<b>) = 0  
None  
None  
Status Affected:  
Encoding:  
01  
00bb  
bfff  
ffff  
01  
10bb  
bfff  
ffff  
If bit 'b' in register 'f' is '0' then the next  
instruction is skipped.  
Bit 'b' in register 'f' is cleared.  
Description:  
1
1
If bit 'b' is '0' then the next instruction  
fetched during the current instruction  
execution is discarded, and a NOP is  
executed instead, making this a  
two-cycle instruction.  
Cycles:  
BCF  
FLAG_REG, 7  
Example  
Before Instruction  
FLAG_REG = 0xC7  
After Instruction  
Words:  
Cycles:  
Example  
1
1(2)  
FLAG_REG = 0x47  
HERE  
FALSE  
TRUE  
BTFSC FLAG,1  
GOTO  
PROCESS_CODE  
Before Instruction  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
address TRUE  
if FLAG<1>=1,  
PC =  
address FALSE  
BSF  
Bit Set f  
Syntax:  
Operands:  
[ label ] BSF f,b  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
1 (f<b>)  
None  
01  
01bb  
bfff  
ffff  
Bit 'b' in register 'f' is set.  
1
1
Cycles:  
BSF  
FLAG_REG,  
7
Example  
Before Instruction  
FLAG_REG = 0x0A  
After Instruction  
FLAG_REG = 0x8A  
DS40143C-page 54  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
BTFSS  
Bit Test f, Skip if Set  
CLRF  
Clear f  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
[ label ] CLRF  
f
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
0 f 127  
00h (f)  
1 Z  
Operation:  
skip if (f<b>) = 1  
None  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
Z
01  
11bb  
bfff  
ffff  
00  
0001  
1fff  
ffff  
If bit 'b' in register 'f' is '1' then the next  
instruction is skipped.  
If bit 'b' is '1', then the next instruction  
fetched during the current instruction  
execution, is discarded and a NOP is  
executed instead, making this a  
two-cycle instruction.  
The contents of register 'f' are cleared  
and the Z bit is set.  
Description:  
Description:  
Words:  
Cycles:  
Example  
1
1
CLRF  
FLAG_REG  
Words:  
Cycles:  
Example  
1
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
Z
1(2)  
=
0x5A  
HERE  
FALSE  
TRUE  
BTFSS FLAG,1  
=
=
0x00  
1
GOTO  
PROCESS_CODE  
Before Instruction  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
address FALSE  
if FLAG<1> = 1,  
PC =  
address TRUE  
CLRW  
Clear W  
CALL  
Call Subroutine  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] CLRW  
None  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
00h (W)  
1 Z  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
0001  
0000  
0011  
10  
0kkk  
kkkk  
kkkk  
W register is cleared. Zero bit (Z) is  
set.  
Description:  
Call Subroutine. First, return address  
(PC+1) is pushed onto the stack. The  
eleven bit immediate address is loaded  
into PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two-cycle instruction.  
Description:  
Words:  
Cycles:  
Example  
1
1
CLRW  
Words:  
Cycles:  
Example  
1
2
Before Instruction  
W
=
0x5A  
After Instruction  
HERE  
CALL THERE  
W
=
0x00  
1
Before Instruction  
Z
=
PC  
=
Address HERE  
After Instruction  
PC  
= Address THERE  
TOS = Address HERE+1  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 55  
PIC16C55X  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
DECF  
Decrement f  
[ label ] DECF f,d  
0 f 127  
[ label ] CLRWDT  
None  
Syntax:  
Operands:  
Operands:  
Operation:  
d
[0,1]  
00h WDT  
0 WDT prescaler,  
1 TO  
Operation:  
(f) - 1 (dest)  
Status Affected:  
Encoding:  
Z
1 PD  
00  
0011  
dfff  
ffff  
Status Affected:  
Encoding:  
TO, PD  
Decrement register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd'  
is 1 the result is stored back in register  
'f'.  
Description:  
00  
0000  
0110  
0100  
CLRWDTinstruction resets the  
Description:  
Watchdog Timer. It also resets the  
prescaler of the WDT. Status bits TO  
and PD are set.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
DECF  
CNT, 1  
1
Before Instruction  
CLRWDT  
CNT  
Z
=
=
0x01  
0
Before Instruction  
After Instruction  
WDT counter  
After Instruction  
=
=
?
CNT  
Z
=
=
0x00  
1
WDT counter  
0x00  
WDT prescaler=  
0
1
1
TO  
PD  
=
=
COMF  
Complement f  
[ label ] COMF f,d  
0 f 127  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 127  
Syntax:  
Operands:  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(f) (dest)  
Operation:  
(f) - 1 (dest); skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
1001  
dfff  
ffff  
00  
1011  
dfff  
ffff  
The contents of register 'f' are  
The contents of register 'f' are  
Description:  
Description:  
decremented. If 'd' is 0 the result is  
placed in the W register. If 'd' is 1 the  
result is placed back in register 'f'.  
If the result is 0, the next instruction,  
which is already fetched, is discarded. A  
NOP is executed instead making it a  
two-cycle instruction.  
complemented. If 'd' is 0 the result is  
stored in W. If 'd' is 1 the result is  
stored back in register 'f'.  
Words:  
Cycles:  
Example  
1
1
COMF  
REG1,0  
Words:  
Cycles:  
Example  
1
Before Instruction  
1(2)  
REG1  
After Instruction  
REG1  
=
0x13  
HERE  
DECFSZ  
GOTO  
CNT, 1  
LOOP  
=
=
0x13  
0xEC  
CONTINUE •  
W
Before Instruction  
PC  
=
address HERE  
After Instruction  
CNT  
if CNT =  
PC  
if CNT ≠  
PC  
=
CNT - 1  
0,  
address CONTINUE  
0,  
address HERE+1  
=
=
DS40143C-page 56  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 2047  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d
[0,1]  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Operation:  
(f) + 1 (dest), skip if result = 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
10  
1kkk  
kkkk  
kkkk  
00  
1111  
dfff  
ffff  
GOTOis an unconditional branch. The  
eleven bit immediate value is loaded  
into PC bits <10:0>. The upper bits of  
PC are loaded from PCLATH<4:3>.  
GOTOis a two-cycle instruction.  
The contents of register 'f' are  
Description:  
Description:  
incremented. If 'd' is 0 the result is  
placed in the W register. If 'd' is 1 the  
result is placed back in register 'f'.  
If the result is 0, the next instruction,  
which is already fetched, is discarded.  
A NOP is executed instead making it  
a two-cycle instruction.  
Words:  
Cycles:  
Example  
1
2
Words:  
Cycles:  
Example  
1
GOTO THERE  
1(2)  
After Instruction  
HERE  
INCFSZ  
GOTO  
CNT,  
LOOP  
1
PC  
=
Address THERE  
CONTINUE •  
Before Instruction  
PC  
=
address HERE  
After Instruction  
CNT  
=
CNT + 1  
if CNT=  
0,  
PC  
if CNT≠  
=
address CONTINUE  
0,  
PC  
=
address HERE +1  
INCF  
Increment f  
IORLW  
Inclusive OR Literal with W  
[ label ] IORLW k  
0 k 255  
Syntax:  
Operands:  
[ label ] INCF f,d  
Syntax:  
0 f 127  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
(W) .OR. k (W)  
Z
Operation:  
(f) + 1 (dest)  
Status Affected:  
Encoding:  
Z
11  
1000  
kkkk  
kkkk  
00  
1010  
dfff  
ffff  
The contents of the W register is  
OR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
The contents of register 'f' are  
Description:  
incremented. If 'd' is 0 the result is  
placed in the W register. If 'd' is 1 the  
result is placed back in register 'f'.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
IORLW  
0x35  
Before Instruction  
INCF  
CNT, 1  
W
=
0x9A  
Before Instruction  
After Instruction  
CNT  
Z
=
=
0xFF  
0
W
=
0xBF  
1
Z
=
After Instruction  
CNT  
Z
=
=
0x00  
1
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 57  
PIC16C55X  
IORWF  
Inclusive OR W with f  
MOVF  
Move f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
0 f 127  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) .OR. (f) (dest)  
Operation:  
(f) (dest)  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
Z
00  
0100  
dfff  
ffff  
00  
1000  
dfff  
ffff  
Inclusive OR the W register with  
register 'f'. If 'd' is 0 the result is placed  
in the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
The contents of register f is moved to  
a destination dependant upon the  
status of d. If d = 0, destination is W  
register. If d = 1, the destination is file  
register f itself. d = 1 is useful to test a  
file register since status flag Z is  
affected.  
Description:  
Description:  
Words:  
Cycles:  
Example  
1
1
IORWF  
RESULT, 0  
Words:  
Cycles:  
Example  
1
1
Before Instruction  
RESULT =  
0x13  
0x91  
MOVF  
FSR, 0  
W
=
After Instruction  
After Instruction  
RESULT =  
W
Z
0x13  
0x93  
1
W = value in FSR register  
=
=
Z
= 1  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
Syntax:  
Syntax:  
f
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
k (W)  
None  
None  
11  
00xx  
kkkk  
kkkk  
00  
0000  
1fff  
ffff  
The eight bit literal 'k' is loaded into W  
register.The don’t cares will assemble  
as 0’s.  
Move data from W register to register  
'f'.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
MOVWF  
OPTION  
MOVLW  
0x5A  
Before Instruction  
OPTION =  
After Instruction  
0xFF  
0x4F  
W
=
0x5A  
W
=
After Instruction  
OPTION =  
0x4F  
0x4F  
W
=
DS40143C-page 58  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
NOP  
No Operation  
[ label ] NOP  
None  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
Syntax:  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Operands:  
Operation:  
No operation  
None  
TOS PC,  
1 GIE  
Status Affected:  
Encoding:  
None  
00  
0000  
0xx0  
0000  
00  
0000  
0000  
1001  
No operation.  
Return from Interrupt. Stack is POPed  
and Top of Stack (TOS) is loaded in  
the PC. Interrupts are enabled by  
setting Global Interrupt Enable bit,  
GIE (INTCON<7>).This is a two-cycle  
instruction.  
Description:  
1
Cycles:  
1
NOP  
Example  
Words:  
Cycles:  
Example  
1
2
RETFIE  
After Interrupt  
PC  
GIE =  
=
TOS  
1
RETLW  
Return with Literal in W  
[ label ] RETLW k  
0 k 255  
OPTION  
Syntax:  
Load Option Register  
[ label ] OPTION  
None  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
(W) OPTION  
k (W);  
TOS PC  
Status Affected: None  
00  
0000  
0110  
0010  
Encoding:  
Status Affected:  
Encoding:  
None  
The contents of the W register are  
loaded in the OPTION register. This  
instruction is supported for code  
compatibility with PIC16C5X products.  
Since OPTION is a readable/writable  
register, the user can directly  
address it.  
Description:  
11  
01xx  
kkkk  
kkkk  
The W register is loaded with the eight  
bit literal 'k'. The program counter is  
loaded from the top of the stack (the  
return address). This is a two-cycle  
instruction.  
Description:  
Words:  
Cycles:  
Example  
1
2
Words:  
Cycles:  
Example  
1
1
CALL TABLE  
;W contains table  
;offset value  
;W now has table  
To maintain upward compatibility  
with future PICmicro™ products,  
do not use this instruction.  
value  
TABLE  
ADDWF PC  
;W = offset  
;Begin table  
;
RETLW k1  
RETLW k2  
RETLW kn  
; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 59  
PIC16C55X  
RETURN  
Return from Subroutine  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 127  
Syntax:  
[ label ] RETURN  
None  
Syntax:  
Operands:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
TOS PC  
None  
Operation:  
See description below  
C
Status Affected:  
Encoding:  
00  
0000  
0000  
1000  
00  
1100  
dfff  
ffff  
Return from subroutine. The stack is  
POPed and the top of the stack (TOS)  
is loaded into the program counter.  
This is a two cycle instruction.  
The contents of register 'f' are rotated  
one bit to the right through the Carry  
Flag. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Words:  
Cycles:  
Example  
1
2
C
Register f  
RETURN  
After Interrupt  
Words:  
Cycles:  
Example  
1
1
PC  
=
TOS  
RRF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
RLF  
Rotate Left f through Carry  
SLEEP  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
[ label ] SLEEP  
None  
0 f 127  
Operands:  
Operation:  
d
[0,1]  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Operation:  
See description below  
C
Status Affected:  
Encoding:  
0 PD  
00  
1101  
dfff  
ffff  
Status Affected:  
Encoding:  
TO, PD  
The contents of register 'f' are rotated  
one bit to the left through the Carry  
Flag. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
stored back in register 'f'.  
Description:  
00  
0000  
0110  
0011  
The power-down status bit, PD is  
cleared. Time-out status bit, TO is  
set. Watchdog Timer and its  
Description:  
C
Register f  
prescaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
See Section 7.8 for more details.  
Words:  
Cycles:  
Example  
1
1
Words:  
1
RLF  
REG1,0  
Cycles:  
Example:  
1
Before Instruction  
SLEEP  
REG1  
=
=
1110 0110  
0
C
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
DS40143C-page 60  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
SUBLW  
Subtract W from Literal  
SUBWF  
Syntax:  
Subtract W from f  
Syntax:  
[ label ]  
SUBLW k  
[ label ]  
SUBWF f,d  
Operands:  
Operation:  
0 k 255  
Operands:  
0 f 127  
d
[0,1]  
k - (W) → (W)  
Operation:  
(f) - (W) → (dest)  
Status  
C, DC, Z  
Affected:  
Status  
C, DC, Z  
Affected:  
Encoding:  
11  
110x  
kkkk  
kkkk  
Encoding:  
00  
0010  
dfff  
ffff  
The W register is subtracted (2’s com-  
plement method) from the eight bit literal  
'k'. The result is placed in the W register.  
Description:  
Subtract (2’s complement method)  
Description:  
W register from register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is 1  
the result is stored back in register 'f'.  
Words:  
1
1
Cycles:  
Words:  
1
1
Example 1:  
SUBLW  
0x02  
Cycles:  
Before Instruction  
Example 1:  
SUBWF  
REG1,1  
W
C
=
=
1
?
Before Instruction  
REG1  
W
C
=
=
=
3
2
?
After Instruction  
W
=
1
C
=
1; result is posi-  
After Instruction  
tive  
REG1  
W
C
=
=
=
1
2
Example 2:  
Example 3:  
Before Instruction  
W
C
=
=
2
?
1; result is positive  
Example 2:  
Before Instruction  
After Instruction  
REG1  
W
C
=
=
=
2
2
?
W
C
=
=
0
1; result is zero  
Before Instruction  
After Instruction  
W
C
=
=
3
?
REG1  
W
C
=
=
=
0
2
1; result is zero  
After Instruction  
Example 3:  
Before Instruction  
W
=
0xFF  
C
tive  
=
0; result is nega-  
REG1  
W
C
=
=
=
1
2
?
After Instruction  
REG1  
W
C
=
=
=
0xFF  
2
0; result is negative  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 61  
PIC16C55X  
SWAPF  
Syntax:  
Swap Nibbles in f  
XORLW  
Exclusive OR Literal with W  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 127  
Operands:  
Operation:  
Status Affected:  
Encoding:  
d
[0,1]  
(W) .XOR. k → (W)  
Z
Operation:  
(f<3:0>) (dest<7:4>),  
(f<7:4>) (dest<3:0>)  
11  
1010 kkkk kkkk  
Status Affected:  
Encoding:  
None  
The contents of the W register are  
XOR’ed with the eight bit literal 'k'.  
The result is placed in the  
W register.  
Description:  
00  
1110  
dfff  
ffff  
The upper and lower nibbles of  
Description:  
register 'f' are exchanged. If 'd' is 0  
the result is placed in W register. If 'd'  
is 1 the result is placed in register 'f'.  
Words:  
1
1
Cycles:  
Example:  
Words:  
Cycles:  
Example  
1
1
XORLW  
0xAF  
Before Instruction  
SWAPF REG,  
0
W
=
0xB5  
0x1A  
Before Instruction  
REG1  
After Instruction  
=
0xA5  
W
=
After Instruction  
REG1  
W
=
=
0xA5  
0x5A  
TRIS  
Load TRIS Register  
XORWF  
Syntax:  
Exclusive OR W with f  
[ label ] XORWF f,d  
0 f 127  
Syntax:  
[ label ] TRIS  
f
Operands:  
Operation:  
5 f 7  
Operands:  
d
[0,1]  
(W) TRIS register f;  
Status Affected: None  
Operation:  
(W) .XOR. (f) → (dest)  
00  
Encoding:  
0000 0110  
0fff  
Status Affected:  
Encoding:  
Z
The instruction is supported for code  
compatibility with the PIC16C5X  
products. Since TRIS registers are  
readable and writable, the user can  
directly address them.  
Description:  
00  
0110  
dfff  
ffff  
Exclusive OR the contents of the  
W register with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd'  
is 1 the result is stored back in register  
'f'.  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
To maintain upward compatibility  
with future PICmicro™ products,  
do not use this instruction.  
REG  
1
XORWF  
Before Instruction  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS40143C-page 62  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
9.3  
ICEPIC: Low-Cost PICmicro  
In-Circuit Emulator  
9.0  
DEVELOPMENT SUPPORT  
9.1  
Development Tools  
ICEPIC is a low-cost in-circuit emulator solution for the  
Microchip PIC12CXXX, PIC16C5X and PIC16CXXX  
families of 8-bit OTP microcontrollers.  
The PICmicrο microcontrollers are supported with a  
full range of hardware and software development tools:  
• MPLAB™-ICE Real-Time In-Circuit Emulator  
ICEPIC is designed to operate on PC-compatible  
machines ranging from 386 through Pentium based  
machines under Windows 3.x, Windows 95, or Win-  
dows NT environment. ICEPIC features real time,  
non-intrusive emulation.  
• ICEPIC Low-Cost PIC16C5X and PIC16CXXX  
In-Circuit Emulator  
• PRO MATE II Universal Programmer  
• PICSTART Plus Entry-Level Prototype  
Programmer  
9.4  
PRO MATE II: Universal Programmer  
• SIMICE  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode. PRO MATE II is CE  
compliant.  
• PICDEM-1 Low-Cost Demonstration Board  
• PICDEM-2 Low-Cost Demonstration Board  
• PICDEM-3 Low-Cost Demonstration Board  
• MPASM Assembler  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for displaying error messages, keys to  
enter commands and a modular detachable socket  
assembly to support various package types. In stand-  
alone mode the PRO MATE II can read, verify or pro-  
• MPLAB SIM Software Simulator  
• MPLAB-C17 (C Compiler)  
• Fuzzy Logic Development System  
(fuzzyTECH MP)  
®
• KEELOQ Evaluation Kits and Programmer  
9.2  
MPLAB-ICE: High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
gram  
PIC12CXXX,  
PIC14C000,  
PIC16C5X,  
PIC16CXXX and PIC17CXX devices. It can also set  
configuration and code-protect bits in this mode.  
9.5  
PICSTART Plus Entry Level  
Development System  
The MPLAB-ICE Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers (MCUs). MPLAB-ICE is sup-  
plied with the MPLAB Integrated Development Environ-  
ment (IDE), which allows editing, “make” and  
download, and source debugging from a single envi-  
ronment.  
The PICSTART programmer is an easy-to-use,  
low-cost prototype programmer. It connects to the PC  
via one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient. PICSTART Plus is  
not recommended for production programming.  
Interchangeable processor modules allow the system  
to be easily reconfigured for emulation of different pro-  
cessors. The universal architecture of the MPLAB-ICE  
allows expansion to support all new Microchip micro-  
controllers.  
PICSTART Plus supports all PIC12CXXX, PIC14C000,  
PIC16C5X, PIC16CXXX and PIC17CXX devices with  
up to 40 pins. Larger pin count devices such as the  
PIC16C923, PIC16C924 and PIC17C756 may be sup-  
ported with an adapter socket. PICSTART Plus is CE  
compliant.  
The MPLAB-ICE Emulator System has been designed  
as a real-time emulation system with advanced fea-  
tures that are generally found on more expensive  
development tools.The PC compatible 386 (and higher)  
machine platform and Microsoft Windows 3.x or  
Windows 95 environment were chosen to best make  
these features available to you, the end user.  
MPLAB-ICE  
is  
available  
in  
two  
versions.  
MPLAB-ICE 1000 is a basic, low-cost emulator system  
with simple trace capabilities. It shares processor mod-  
ules with the MPLAB-ICE 2000. This is a full-featured  
emulator system with enhanced trace, trigger, and data  
monitoring features. Both systems will operate across  
the entire operating speed reange of the PICmicro  
MCU.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 63  
PIC16C55X  
9.6  
SIMICE Entry-Level Hardware  
Simulator  
9.8  
PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
SIMICE is an entry-level hardware development sys-  
tem designed to operate in a PC-based environment  
with Microchip’s simulator MPLAB™-SIM. Both SIM-  
ICE and MPLAB-SIM run under Microchip Technol-  
ogy’s MPLAB Integrated Development Environment  
(IDE) software. Specifically, SIMICE provides hardware  
simulation for Microchip’s PIC12C5XX, PIC12CE5XX,  
and PIC16C5X families of PICmicro 8-bit microcontrol-  
lers. SIMICE works in conjunction with MPLAB-SIM to  
provide non-real-time I/O port emulation. SIMICE  
enables a developer to run simulator code for driving  
the target system. In addition, the target system can  
provide input to the simulator code. This capability  
allows for simple and interactive debugging without  
having to manually generate MPLAB-SIM stimulus  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The MPLAB-ICE emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
2
files. SIMICE is  
a
valuable debugging tool for  
usage of the I C bus and separate headers for connec-  
entry-level system development.  
tion to an LCD module and a keypad.  
9.7  
PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
9.9  
PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
the PICDEM-1 board, on a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the MPLAB-ICE emulator and download the  
firmware to the emulator for testing. Additional proto-  
type area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The MPLAB-ICE emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
DS40143C-page 64  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
9.10  
MPLAB Integrated Development  
Environment Software  
9.12  
Software Simulator (MPLAB-SIM)  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment. It allows the  
user to simulate the PICmicro series microcontrollers  
on an instruction level. On any given instruction, the  
user may examine or modify any of the data areas or  
provide external stimulus to any of the pins. The  
input/output radix can be set by the user and the exe-  
cution can be performed in; single step, execute until  
break, or in a trace mode.  
The MPLAB IDE Software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. MPLAB is a windows based application  
which contains:  
• A full featured editor  
• Three operating modes  
- editor  
- emulator  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C17 and MPASM. The Software Simulator  
offers the low cost flexibility to develop and debug code  
outside of the laboratory environment making it an  
excellent multi-project software development tool.  
- simulator  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar with project information  
• Extensive on-line help  
MPLAB allows you to:  
9.13  
MPLAB-C17 Compiler  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Debug using:  
- source files  
The MPLAB-C17 Code Development System is a  
complete ANSI ‘C’ compiler and integrated develop-  
ment environment for Microchip’s PIC17CXXX family of  
microcontrollers. The compiler provides powerful inte-  
gration capabilities and ease of use not found with  
other compilers.  
- absolute listing file  
For easier source level debugging, the compiler pro-  
vides symbol information that is compatible with the  
MPLAB IDE memory display.  
The ability to use MPLAB with Microchip’s simulator  
allows a consistent platform and the ability to easily  
switch from the low cost simulator to the full featured  
emulator with minimal retraining due to development  
tools.  
9.14  
Fuzzy Logic Development System  
(fuzzyTECH-MP)  
9.11  
Assembler (MPASM)  
fuzzyTECH-MP fuzzy logic development tool is avail-  
able in two versions - a low cost introductory version,  
MP Explorer, for designers to gain a comprehensive  
working knowledge of fuzzy logic system design; and a  
full-featured version, fuzzyTECH-MP, Edition for imple-  
menting more complex systems.  
The MPASM Universal Macro Assembler is  
a
PC-hosted symbolic assembler. It supports all micro-  
controller series including the PIC12C5XX, PIC14000,  
PIC16C5X, PIC16CXXX, and PIC17CXX families.  
MPASM offers full featured Macro capabilities, condi-  
tional assembly, and several source and listing formats.  
It generates various object code formats to support  
Microchip's development tools as well as third party  
programmers.  
Both versions include Microchip’s fuzzyLAB demon-  
stration board for hands-on experience with fuzzy logic  
systems implementation.  
9.15  
SEEVAL Evaluation and  
Programming System  
MPASM allows full symbolic debugging from  
MPLAB-ICE, Microchip’s Universal Emulator System.  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
MPASM has the following features to assist in develop-  
ing software for specific use applications.  
• Provides translation of Assembler source code to  
object code for all Microchip microcontrollers.  
• Macro assembly capability.  
The Total Endurance  
Disk is included to aid in  
• Produces all the files (Object, Listing, Symbol, and  
special) required for symbolic debug with  
Microchip’s emulator systems.  
trade-off analysis and reliability calculations. The total  
kit can significantly reduce time-to-market and result in  
an optimized system.  
• Supports Hex (default), Decimal and Octal source  
and listing formats.  
MPASM provides a rich directive language to support  
programming of the PICmicro. Directives are helpful in  
making the development of your assemble source code  
shorter and more maintainable.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 65  
PIC16C55X  
9.16  
KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products.The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
DS40143C-page 66  
Preliminary  
1998 Microchip Technology Inc.  
24CXX  
HCS200  
HCS300  
HCS301  
PIC12C5XX PIC14000 PIC16C5X PIC16CXXX PIC16C6X PIC16C7XX PIC16C8X PIC16C9XX PIC17C4X PIC17C7XX 25CXX  
93CXX  
MPLAB™-ICE  
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ICEPIC Low-Cost  
In-Circuit Emulator  
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
MPLAB  
Integrated  
Development  
Environment  
ü
ü
ü
ü
ü
ü
ü
ü
ü
MPLAB C17*  
Compiler  
fuzzyTECH -MP  
Explorer/Edition  
Fuzzy Logic  
ü
ü
ü
ü
ü
ü
Dev. Tool  
Total Endurance  
Software Model  
ü
PICSTART Plus  
Low-Cost  
Universal Dev. Kit  
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
PRO MATE II  
Universal  
ü
ü
ü
ü
Programmer  
KEELOQ  
Programmer  
SEEVAL  
Designers Kit  
SIMICE  
ü
ü
ü
PICDEM-14A  
PICDEM-1  
PICDEM-2  
PICDEM-3  
ü
ü
ü
ü
ü
ü
ü
®
KEELOQ  
Evaluation Kit  
ü
ü
KEELOQ  
Transponder Kit  
PIC16C55X  
NOTES:  
DS40143C-page 68  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
10.0 ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings †  
Ambient Temperature under bias ............................................................................................................. –40° to +125°C  
Storage Temperature................................................................................................................................ –65° to +150°C  
Voltage on any pin with respect to VSS (except VDD and MCLR)...................................................... –0.6V to VDD +0.6V  
Voltage on VDD with respect to VSS ............................................................................................................... 0 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2)................................................................................................. 0 to +14V  
Total power Dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum Current out of VSS pin...........................................................................................................................300 mA  
Maximum Current into VDD pin..............................................................................................................................250 mA  
Input Clamp Current, IIK (VI<0 or VI> VDD) ...................................................................................................................... ±20 mA  
Output Clamp Current, IOK (V0 <0 or V0>VDD) ............................................................................................................... ±20 mA  
Maximum Output Current sunk by any I/O pin ........................................................................................................25 mA  
Maximum Output Current sourced by any I/O pin...................................................................................................25 mA  
Maximum Current sunk by PORTA and PORTB ...................................................................................................200 mA  
Maximum Current sourced by PORTA and PORTB..............................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above  
those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 69  
PIC16C55X  
TABLE 10-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
PIC16C55X  
JW Devices  
OSC  
PIC16C55X-04  
VDD: 3.0V to  
5.5V  
IDD: 3.3 mA  
max.@5.5V  
IPD: 20 µA max.  
@4.0V  
Freq: 4.0 MHz  
max.  
PIC16C55X-20  
PIC16LC55X-04  
RC  
VDD: 4.5V to 5.5V  
IDD: 1.8 mA typ.  
@5.5V  
IPD: 1.0 µA typ.  
@4.5V  
Freq: 4.0 MHz  
max.  
VDD: 2.5V to 5.5V  
IDD: 1.4 mA typ.  
@3.0V  
IPD: 0.7 µA typ.  
@3.0V  
Freq: 4.0 MHz  
max.  
VDD: 3.0V to 5.5V  
IDD: 3.3 mA max.  
@5.5V  
IPD: 20 µA max.  
@4.0V  
Freq: 4.0 MHz  
max.  
XT  
HS  
LP  
VDD: 3.0V to  
5.5V  
IDD: 3.3 mA  
max.@5.5V  
IPD: 20 µA max.  
@4.0V  
VDD: 4.5V to 5.5V  
IDD: 1.8 mA typ.  
@5.5V  
IPD: 1.0 µA typ.  
@4.5V  
VDD: 2.5V to 5.5V  
IDD: 1.4 mA typ.  
@3.0V  
IPD: 0.7 µA typ.  
@3.0V  
VDD: 3.0V to 5.5V  
IDD: 3.3 mA max.  
@5.5V  
IPD: 20 µA max.  
@4.0V  
Freq: 4.0 MHz  
max.  
Freq: 4.0 MHz  
max.  
Freq: 4.0 MHz  
max.  
Freq: 4.0 MHz  
max.  
VDD: 4.5V to  
5.5V  
IDD: 9.0 mA typ.  
@5.5V  
IPD: 1.0 µA typ.  
@4.0V  
Freq: 4.0 MHz  
max.  
VDD: 4.5V to  
5.5V  
IDD: 20 mA  
max. @5.5V  
IPD: 1.0 µA typ.  
@4.5V  
VDD: 4.5V to  
5.5V  
IDD: 20 mA  
max.@5.5V  
IPD: 1.0 µA typ.  
@4.5V  
Do not use in  
HS mode  
Freq: 20 MHz  
max.  
Freq: 20 MHz  
max.  
VDD: 3.0V to  
5.5V  
VDD: 2.5V to  
5.5V  
VDD: 2.5V to  
5.5V  
IDD: 35 µA typ.  
@32 kHz,  
3.0V  
IPD: 1.0 µA typ.  
@4.0 V  
IDD: 32 µA max.  
@32 kHz,  
3.0V  
IPD: 9.0 µA  
max. @3.0V  
Freq: 200 kHz  
max.  
IDD: 32 µA max.  
@32 kHz,  
3.0V  
IPD: 9.0 µA  
max. @3.0V  
Freq: 200 kHz  
max.  
Do not use in LP mode  
Freq: 200 kHz  
maxi.  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications.  
It is recommended that the user select the device type that ensures the specifications required.  
DS40143C-page 70  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C55X  
(A)  
10.1  
DC CHARACTERISTICS:  
PIC16C55X-04 (Commercial, Industrial, Extended)  
PIC16C55X-20 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature –40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
–40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Supply Voltage  
Min Typ† Max Units  
Conditions  
D001  
D001A  
VDD  
3.0  
4.5  
-
-
5.5  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002  
D003  
D004  
D010  
VDR  
VPOR  
SVDD  
IDD  
RAM Data Retention  
Voltage (Note 1)  
1.5*  
VSS  
V
Device in SLEEP mode  
VDD start voltage to  
ensure Power-on Reset  
V
See section on power-on reset for  
details  
VDD rise rate to ensure  
Power-on Reset  
0.05*  
V/ms See section on power-on reset for  
details  
Supply Current (Note 2)  
1.8  
3.3 mA XT and RC osc configuration  
FOSC = 4 MHz, VDD = 5.5V, WDT  
disabled (Note 4)  
D010A  
35  
70  
µA LP osc configuration,  
PIC16C55X-04 only  
FOSC = 32 kHz, VDD = 4.0V, WDT  
disabled  
mA HS osc configuration  
FOSC = 20 MHz, VDD = 5.5V, WDT  
disabled  
D013  
D020  
9.0  
20  
IPD  
Power Down Current (Note 3)  
WDT Current (Note 5)  
1.0  
6.0  
2.5  
15  
µA VDD=4.0V, WDT disabled  
µA (+85°C to +125°C)  
IWDT  
20  
µA VDD=4.0V  
(+85°C to +125°C)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins configured as input, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins configured as input and tied to VDD or VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2Rext (mA) with Rext in k.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 71  
PIC16C55X  
10.2  
DC CHARACTERISTICS:  
PIC16LC55X-04 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature –40˚C TA +85˚C for industrial and  
0˚C TA +70˚C for commercial and  
–40˚C TA +125˚C for extended  
Param  
No.  
Sym  
Characteristic  
Supply Voltage  
Min Typ† Max Units  
Conditions  
D001  
D002  
D003  
D004  
D010  
VDD  
3.0  
2.5  
-
5.5  
5.5  
V
V
V
XT and RC osc configuration  
LP osc configuration  
VDR  
VPOR  
SVDD  
IDD  
RAM Data Retention  
Voltage (Note 1)  
1.5*  
VSS  
Device in SLEEP mode  
VDD start voltage to  
ensure Power-on Reset  
See section on Power-on Reset for  
details  
VDD rise rate to ensure  
Power-on Reset  
0.05*  
V/ms See section on Power-on Reset for  
details  
Supply Current (Note 2)  
1.4  
2.5 mA XT and RC osc configuration  
FOSC = 2.0 MHz, VDD = 3.0V, WDT  
disabled (Note 4)  
D010A  
D020  
26  
53  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT  
disabled  
IPD  
Power Down Current (Note 3)  
WDT Current (Note 5)  
0.7  
6.0  
2
µA VDD=3.0V, WDT disabled  
µA VDD=3.0V  
IWDT  
15  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1=external square wave, from rail to rail; all I/O pins configured as input, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins configured as input and tied to VDD or VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2Rext (mA) with Rext in k.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
DS40143C-page 72  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
10.3  
DC CHARACTERISTICS:  
PIC16C55X (Commercial, Industrial, Extended)  
PIC16LC55X (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature –40˚C TA +85˚C for industrial and  
0˚C TA +70˚C for commercial and  
–40˚C TA +125˚C for automotive  
Operating voltage VDD range as described in DC spec Table 10-1  
Sym  
Param.  
No.  
Characteristic  
Min Typ†  
Max  
Unit  
Conditions  
VIL  
Input Low Voltage  
I/O ports  
D030  
with TTL buffer  
VSS  
-
-
0.8V  
V
VDD = 4.5V to 5.5V  
otherwise  
0.15VDD  
0.2VDD  
0.2VDD  
D031  
D032  
with Schmitt Trigger input  
MCLR, RA4/T0CKI,OSC1 (in  
RC mode)  
VSS  
Vss  
V
V
Note1  
D033  
OSC1 (in XT* and HS)  
OSC1 (in LP*)  
Vss  
Vss  
-
-
0.3VDD  
0.6VDD-1.0  
V
V
VIH Input High Voltage  
I/O ports  
-
-
D040  
D041  
with TTL buffer  
2.0V  
VDD  
VDD  
V
VDD = 4.5V to 5.5V  
otherwise  
with Schmitt Trigger input 0.25VDD  
+ 0.8V  
D042  
D043  
D043A  
D070  
MCLR RA4/T0CKI  
OSC1 (XT*, HS and LP*)  
OSC1 (in RC mode)  
0.8VDD  
0.7VDD  
0.9VDD  
50  
-
-
VDD  
VDD  
V
V
Note1  
IPURB PORTB weak pull-up current  
200  
400  
µA VDD = 5.0V, VPIN = VSS  
Input Leakage Current  
IIL  
(Notes 2, 3)  
I/O ports (Except PORTA)  
PORTA  
RA4/T0CKI  
OSC1, MCLR  
±1.0  
±0.5  
±1.0  
±5.0  
µA VSS VPIN VDD, pin at hi-impedance  
µA Vss VPIN VDD, pin at hi-impedance  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP osc  
configuration  
D060  
D061  
D063  
-
-
-
-
-
-
VOL Output Low Voltage  
D080  
D083  
I/O ports  
-
-
-
-
-
-
-
-
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL=8.5 mA, VDD=4.5V, -40° to +85°C  
IOL=7.0 mA, VDD=4.5V, +125°C  
IOL=1.6 mA, VDD=4.5V, -40° to +85°C  
IOL=1.2 mA, VDD=4.5V, +125°C  
OSC2/CLKOUT  
(RC only)  
VOH Output High Voltage (Note 3)  
I/O ports (Except RA4)  
D090  
D092  
VDD-0.7  
VDD-0.7  
-
-
-
-
V
V
IOH=-3.0 mA, VDD=4.5V, -40° to +85°C  
IOH=-2.5 mA,  
VDD=4.5V, +125°C  
IOH=-1.3 mA, VDD=4.5V, -40° to +85°C  
IOH=-1.0 mA,  
OSC2/CLKOUT  
VDD-0.7  
VDD-0.7  
-
-
-
-
V
V
(RC only)  
VDD=4.5V, +125°C  
*
VOD Open-Drain High Voltage  
10*  
V
RA4 pin  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C55X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 73  
PIC16C55X  
10.3  
DC CHARACTERISTICS:  
PIC16C55X (Commercial, Industrial, Extended)  
PIC16LC55X (Commercial, Industrial, Extended) (Cont.)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature –40˚C TA +85˚C for industrial and  
0˚C TA +70˚C for commercial and  
–40˚C TA +125˚C for automotive  
Operating voltage VDD range as described in DC spec Table 10-1  
Sym  
Param.  
No.  
Characteristic  
Min Typ†  
Max  
Unit  
Conditions  
Capacitive Loading Specs  
on Output Pins  
OSC2 pin  
COSC2  
Cio  
D100  
D101  
15  
50  
pF In XT, HS and LP modes when external  
clock used to drive OSC1.  
All I/O pins/OSC2 (in RC  
mode)  
pF  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C55X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
DS40143C-page 74  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
10.4  
Timing Parameter Symbology  
The timing parameter symbols have been created with one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
ck  
T
Time  
CLKOUT  
I/O port  
MCLR  
os  
t0  
OSC1  
T0CKI  
io  
mc  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-Impedance  
FIGURE 10-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 75  
 
PIC16C55X  
10.5  
Timing Diagrams and Specifications  
FIGURE 10-2: EXTERNAL CLOCK TIMING  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 10-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units Conditions  
Fos External CLKIN Frequency  
DC  
DC  
DC  
DC  
0.1  
1
4
20  
MHz XT and RC osc mode, VDD=5.0V  
MHz HS osc mode  
(Note 1)  
200  
4
kHz LP osc mode  
Oscillator Frequency  
(Note 1)  
MHz RC osc mode, VDD=5.0V  
MHz XT osc mode  
4
20  
MHz HS osc mode  
DC  
250  
50  
200  
kHz LP osc mode  
1
Tosc External CLKIN Period  
Fos/4  
ns  
ns  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
µs  
ns  
ns  
ns  
ns  
XT and RC osc mode  
HS osc mode  
LP osc mode  
RC osc mode  
XT osc mode  
HS osc mode  
LP osc mode  
TCY=FOS/4  
(Note 1)  
5
Oscillator Period  
(Note 1)  
250  
250  
50  
10,000  
1,000  
5
2
TCY  
Instruction Cycle Time (Note 1)  
1.0  
100*  
2*  
DC  
3*  
TosL, External Clock in (OSC1) High or  
TosH Low Time  
XT osc mode  
LP osc mode  
HS osc mode  
XT osc mode  
LP osc mode  
HS osc mode  
20*  
25*  
50*  
15*  
4*  
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at "min." values with an  
external clock applied to the OSC1 pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
DS40143C-page 76  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
FIGURE 10-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
22  
23  
CLKOUT  
13  
14  
12  
16  
18  
19  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: All tests must be do with specified capacitance loads (Figure 10-1) 50 pF on I/O pins and CLKOUT  
TABLE 10-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter # Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
10*  
TosH2ckL  
OSC1to CLKOUT(Note1)  
75  
200  
400  
ns  
ns  
11*  
TosH2ckH  
75  
ns  
ns  
OSC1to CLKOUT(Note1)  
200  
400  
12*  
13*  
TckR  
TckF  
35  
100  
200  
ns  
ns  
CLKOUT rise time (Note1)  
CLKOUT fall time (Note1)  
35  
100  
200  
ns  
ns  
14*  
15*  
TckL2ioV  
TioV2ckH  
20  
ns  
CLKOUT to Port out valid (Note1)  
Port in valid before CLKOUT (Note1)  
Tosc +200 ns  
Tosc +400 ns  
ns  
ns  
16*  
17*  
TckH2ioI  
TosH2ioV  
0
ns  
Port in hold after CLKOUT (Note1)  
OSC1(Q1 cycle) to Port out valid  
50  
150  
300  
ns  
ns  
18*  
TosH2ioI  
OSC1(Q2 cycle) to Port input invalid (I/O in hold  
time)  
100  
200  
ns  
ns  
19*  
20*  
TioV2osH  
TioR  
Port input valid to OSC1(I/O in setup time)  
0
ns  
Port output rise time  
10  
40  
80  
ns  
ns  
21*  
22*  
23  
TioF  
Tinp  
Trbp  
Port output fall time  
10  
40  
80  
ns  
ns  
RB0/INT pin high or low time  
RB<7:4> change interrupt high or low time  
25  
40  
ns  
ns  
Tcy  
ns  
*
These parameters are characterized but not tested  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 77  
PIC16C55X  
FIGURE 10-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Timeout  
32  
OSC  
Timeout  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
TABLE 10-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
2000  
7*  
ns  
-40° to +85°C  
Twdt  
Watchdog Timer Time-out Period  
18  
33*  
ms  
VDD = 5.0V, -40° to +85°C  
(No Prescaler)  
32  
33  
34  
Tost  
Oscillation Start-up Timer Period  
1024 TOSC  
132*  
2.0  
ms  
µs  
TOSC = OSC1 period  
Tpwrt Power-up Timer Period  
I/O hi-impedance from MCLR low  
28*  
72  
VDD = 5.0V, -40° to +85°C  
TIOZ  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
DS40143C-page 78  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
FIGURE 10-5: TIMER0 CLOCK TIMING  
RA4/T0CKI  
41  
40  
42  
TMR0  
TABLE 10-5: TIMER0 CLOCK REQUIREMENTS  
Parameter Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
40  
41  
42  
Tt0H T0CKI High Pulse Width  
Tt0L T0CKI Low Pulse Width  
Tt0P T0CKI Period  
No Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
ns  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20*  
10*  
TCY + 40*  
N
N = prescale value  
(1, 2, 4, ..., 256)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 10-6: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 79  
PIC16C55X  
NOTES:  
DS40143C-page 80  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
11.0 PACKAGING INFORMATION  
11.1  
Package Marking Information  
18-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC16C558  
-04I / P456  
9823 CBA  
AABBCDE  
18-Lead SOIC (.300")  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C558  
-04I / S0218  
AABBCDE  
9818 CDK  
18-Lead CERDIP Windowed  
Example  
XXXXXXXX  
XXXXXXXX  
AABBCDE  
16C558  
/JW  
9801 CBA  
20-Lead SSOP  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
AABBCDE  
PIC16C558  
-04I / 218  
9851 CBP  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
AA  
BB  
C
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
O = Outside Vendor  
C = 5” Line  
S = 6” Line  
H = 8” Line  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 81  
PIC16C55X  
Package Type: K04-010 18-Lead Ceramic Dual In-line with Window (JW) – 300 mil  
E
D
W2  
2
1
n
W1  
E1  
A
A1  
R
L
c
A2  
B1  
eB  
p
B
Units  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
INCHES*  
NOM  
0.300  
18  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
7.62  
18  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
W1  
W2  
0.098  
0.100  
0.019  
0.055  
0.013  
0.010  
0.183  
0.111  
0.023  
0.138  
0.900  
0.298  
0.270  
0.385  
0.140  
0.200  
0.102  
2.49  
0.41  
2.54  
0.47  
1.40  
0.32  
0.25  
4.64  
2.82  
0.57  
3.49  
22.86  
7.56  
6.86  
9.78  
0.14  
0.2  
2.59  
0.016  
0.050  
0.010  
0.008  
0.175  
0.091  
0.015  
0.125  
0.880  
0.285  
0.255  
0.345  
0.130  
0.190  
0.021  
0.060  
0.015  
0.012  
0.190  
0.131  
0.030  
0.150  
0.920  
0.310  
0.285  
0.425  
0.150  
0.210  
0.53  
1.52  
0.38  
0.30  
4.83  
3.33  
0.76  
3.81  
23.37  
7.87  
7.24  
10.80  
0.15  
0.21  
1.27  
0.25  
0.20  
4.45  
2.31  
0.00  
3.18  
22.35  
7.24  
6.48  
8.76  
0.13  
0.19  
Package Width  
Radius to Radius Width  
Overall Row Spacing  
Window Width  
Window Length  
* Controlling Parameter.  
JEDEC equivalent:  
MO-036 AE  
DS40143C-page 82  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
Package Type: K04-007 18-Lead Plastic Dual In-line (P) – 300 mil  
E
D
2
α
n
1
E1  
A1  
A
R
L
c
A2  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
0.300  
18  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
7.62  
18  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
α
0.100  
0.018  
0.060  
0.005  
0.010  
0.155  
0.095  
0.020  
0.130  
0.895  
0.255  
0.250  
0.349  
10  
2.54  
0.013  
0.023  
0.33  
1.40  
0.46  
1.52  
0.13  
0.25  
3.94  
2.41  
0.51  
3.30  
22.73  
6.48  
6.35  
8.85  
10  
0.58  
0.055  
0.000  
0.005  
0.110  
0.075  
0.000  
0.125  
0.890  
0.245  
0.230  
0.310  
5
0.065  
0.010  
0.015  
0.155  
0.115  
0.020  
0.135  
0.900  
0.265  
0.270  
0.387  
15  
1.65  
0.25  
0.38  
3.94  
2.92  
0.51  
3.43  
22.86  
6.73  
6.86  
9.83  
15  
0.00  
0.13  
2.79  
1.91  
0.00  
3.18  
22.61  
6.22  
5.84  
7.87  
5
β
5
10  
15  
5
10  
15  
* Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MS-001 AC  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 83  
PIC16C55X  
Package Type: K04-051 18-Lead Plastic Small Outline (SO) – Wide, 300 mil  
E1  
p
E
D
2
B
1
n
X
α
45°  
L
R2  
c
A
A1  
R1  
φ
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES*  
NOM  
0.050  
18  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
1.27  
18  
MAX  
p
n
A
A1  
A2  
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Chamfer Distance  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
0.093  
0.099  
0.058  
0.008  
0.456  
0.296  
0.407  
0.020  
0.005  
0.005  
0.016  
4
0.104  
2.36  
1.22  
2.50  
1.47  
0.19  
11.58  
7.51  
10.33  
0.50  
0.13  
0.13  
0.41  
4
2.64  
1.73  
0.28  
11.73  
7.59  
10.64  
0.74  
0.25  
0.25  
0.53  
8
0.048  
0.004  
0.450  
0.292  
0.394  
0.010  
0.005  
0.005  
0.011  
0
0.068  
0.011  
0.462  
0.299  
0.419  
0.029  
0.010  
0.010  
0.021  
8
0.10  
11.43  
7.42  
10.01  
0.25  
0.13  
0.13  
0.28  
0
D
E
E1  
X
R1  
R2  
L
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.010  
0.009  
0.014  
0
0.015  
0.011  
0.017  
12  
0.020  
0.012  
0.019  
15  
0.25  
0.23  
0.36  
0
0.38  
0.27  
0.42  
12  
0.51  
0.30  
0.48  
15  
0
12  
15  
0
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MS-013 AB  
DS40143C-page 84  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
Package Type: K04-072 20-Lead Plastic Shrink Small Outine (SS) – 5.30 mm  
E1  
E
p
D
B
2
1
n
α
L
R2  
c
A
A1  
R1  
φ
L1  
A2  
β
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.026  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.65  
20  
MAX  
p
n
A
A1  
A2  
D
E
E1  
R1  
R2  
L
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
20  
0.073  
0.036  
0.005  
0.283  
0.208  
0.306  
0.005  
0.005  
0.020  
4
0.068  
0.078  
1.73  
0.66  
1.86  
0.91  
0.13  
7.20  
5.29  
7.78  
0.13  
0.13  
0.51  
4
1.99  
0.026  
0.002  
0.278  
0.205  
0.301  
0.005  
0.005  
0.015  
0
0.046  
0.008  
0.289  
0.212  
0.311  
0.010  
0.010  
0.025  
8
1.17  
0.21  
7.33  
5.38  
7.90  
0.25  
0.25  
0.64  
8
0.05  
7.07  
5.20  
7.65  
0.13  
0.13  
0.38  
0
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
L1  
c
B
α
β
0.000  
0.005  
0.010  
0
0.005  
0.007  
0.012  
5
0.010  
0.009  
0.015  
10  
0.00  
0.13  
0.25  
0
0.13  
0.18  
0.32  
5
0.25  
0.22  
0.38  
10  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
*
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MO-150 AE  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 85  
PIC16C55X  
NOTES:  
DS40143C-page 86  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
APPENDIX A: ENHANCEMENTS  
APPENDIX B: COMPATIBILITY  
The following are the list of enhancements over the  
PIC16C5X microcontroller family:  
To convert code written for PIC16C5X to PIC16C55X,  
the user should take the following steps:  
1. Instruction word length is increased to 14 bits.  
This allows larger page sizes both in program  
memory (4K now as opposed to 512 before) and  
register file (up to 128 bytes now versus 32  
bytes before).  
1. Remove any program memory page select  
operations (PA2, PA1, PA0 bits) for CALL, GOTO.  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
2. A PC high latch register (PCLATH) is added to  
handle program memory paging. PA2, PA1, PA0  
bits are removed from STATUS register.  
3. Eliminate any data memory page switching.  
Redefine data variables to reallocate them.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
3. Data memory paging is slightly redefined.  
STATUS register is modified.  
5. Change reset vector to 0000h.  
4. Four new instructions have been added:  
RETURN, RETFIE, ADDLW, and SUBLW.  
Two instructions TRIS and OPTION are being  
phased out although they are kept for  
compatibility with PIC16C5X.  
5. OPTION and TRIS registers are made  
addressable.  
6. Interrupt capability is added. Interrupt vector is  
at 0004h.  
7. Stack size is increased to 8 deep.  
8. Reset vector is changed to 0000h.  
9. Reset of all registers is revised. Three different  
reset (and wake-up) types are recognized.  
Registers are reset differently.  
10. Wake up from SLEEP through interrupt is  
added.  
11. Two separate timers, Oscillator Start-up Timer  
(OST) and Power-up Timer (PWRT) are  
included for more reliable power-up. These  
timers are invoked selectively to avoid  
unnecessary delays on power-up and wake-up.  
12. PORTB has weak pull-ups and interrupt on  
change feature.  
13. Timer0 clock input, T0CKI pin is also a port pin  
(RA4/T0CKI) and has a TRIS bit.  
14. FSR is made a full 8-bit register.  
15. “In-circuit programming” is made possible. The  
user can program PIC16C55X devices using  
only five pins: VDD, VSS, VPP, RB6 (clock) and  
RB7 (data in/out).  
16. PCON status register is added with  
Power-on-Reset (POR) status bit.  
a
17. Code protection scheme is enhanced such that  
portions of the program memory can be  
protected, while the remainder is unprotected.  
18. PORTA inputs are now Schmitt Trigger inputs.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 87  
PIC16C55X  
NOTES:  
DS40143C-page 88  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
CLRWDT .................................................................... 56  
COMF......................................................................... 56  
DECF.......................................................................... 56  
DECFSZ ..................................................................... 56  
GOTO......................................................................... 57  
INCF ........................................................................... 57  
INCFSZ....................................................................... 57  
IORLW........................................................................ 57  
IORWF........................................................................ 58  
MOVF ......................................................................... 58  
MOVLW...................................................................... 58  
MOVWF...................................................................... 58  
NOP............................................................................ 59  
OPTION...................................................................... 59  
RETFIE....................................................................... 59  
RETLW....................................................................... 59  
RETURN..................................................................... 60  
RLF............................................................................. 60  
RRF ............................................................................ 60  
SLEEP........................................................................ 60  
SUBLW....................................................................... 61  
SUBWF....................................................................... 61  
SWAPF....................................................................... 62  
TRIS ........................................................................... 62  
XORLW ...................................................................... 62  
XORWF ...................................................................... 62  
Instruction Set Summary .................................................... 51  
INT Interrupt ....................................................................... 46  
INTCON Register ............................................................... 18  
Interrupts ............................................................................ 45  
IORLW Instruction .............................................................. 57  
IORWF Instruction.............................................................. 58  
INDEX  
A
ADDLW Instruction ............................................................. 53  
ADDWF Instruction ............................................................. 53  
ANDLW Instruction ............................................................. 53  
ANDWF Instruction ............................................................. 53  
Architectural Overview.......................................................... 9  
Assembler  
MPASM Assembler..................................................... 65  
B
BCF Instruction ................................................................... 54  
Block Diagram  
TIMER0....................................................................... 29  
TMR0/WDT PRESCALER .......................................... 32  
BSF Instruction ................................................................... 54  
BTFSC Instruction............................................................... 54  
BTFSS Instruction............................................................... 55  
C
CALL Instruction ................................................................. 55  
Clocking Scheme/Instruction Cycle .................................... 12  
CLRF Instruction................................................................. 55  
CLRW Instruction................................................................ 55  
CLRWDT Instruction........................................................... 56  
Code Protection .................................................................. 50  
COMF Instruction................................................................ 56  
Configuration Bits................................................................ 36  
D
Data Memory Organization................................................. 13  
DECF Instruction................................................................. 56  
DECFSZ Instruction............................................................ 56  
Development Support ......................................................... 63  
Development Tools............................................................. 63  
K
KeeLoq Evaluation and Programming Tools ................... 66  
E
M
Errata .................................................................................... 3  
MOVF Instruction................................................................ 58  
MOVLW Instruction ............................................................ 58  
MOVWF Instruction ............................................................ 58  
MPLAB Integrated Development Environment Software.... 65  
External Crystal Oscillator Circuit ....................................... 38  
F
Fuzzy Logic Dev. System (fuzzyTECH -MP) .................... 65  
N
G
NOP Instruction .................................................................. 59  
General purpose Register File............................................ 13  
GOTO Instruction................................................................ 57  
O
One-Time-Programmable (OTP) Devices .............................7  
OPTION Instruction ............................................................ 59  
OPTION Register ............................................................... 17  
Oscillator Configurations .................................................... 37  
Oscillator Start-up Timer (OST).......................................... 40  
I
I/O Ports.............................................................................. 23  
I/O Programming Considerations........................................ 27  
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator ............ 63  
ID Locations........................................................................ 50  
INCF Instruction.................................................................. 57  
INCFSZ Instruction ............................................................. 57  
In-Circuit Serial Programming............................................. 50  
Indirect Addressing, INDF and FSR Registers ................... 21  
Instruction Flow/Pipelining .................................................. 12  
Instruction Set  
P
Package Marking Information............................................. 81  
Packaging Information........................................................ 81  
PCL and PCLATH .............................................................. 20  
PCON Register................................................................... 19  
PICDEM-1 Low-Cost PICmicro Demo Board ..................... 64  
PICDEM-2 Low-Cost PIC16CXX Demo Board................... 64  
PICDEM-3 Low-Cost PIC16CXXX Demo Board ................ 64  
PICSTART Plus Entry Level Development System......... 63  
Pinout Description .............................................................. 11  
Port RB Interrupt................................................................. 46  
PORTA ............................................................................... 23  
PORTB ............................................................................... 25  
Power Control/Status Register (PCON) ............................. 41  
Power-Down Mode (SLEEP).............................................. 49  
Power-On Reset (POR)...................................................... 40  
Power-up Timer (PWRT).................................................... 40  
ADDLW....................................................................... 53  
ADDWF....................................................................... 53  
ANDLW....................................................................... 53  
ANDWF....................................................................... 53  
BCF............................................................................. 54  
BSF............................................................................. 54  
BTFSC ........................................................................ 54  
BTFSS ........................................................................ 55  
CALL........................................................................... 55  
CLRF........................................................................... 55  
CLRW ......................................................................... 55  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 89  
PIC16C55X  
Prescaler.............................................................................32  
PRO MATE II Universal Programmer...............................63  
Program Memory Organization...........................................13  
Q
Quick-Turnaround-Production (QTP) Devices ......................7  
R
RC Oscillator.......................................................................38  
Reset...................................................................................39  
RETFIE Instruction..............................................................59  
RETLW Instruction..............................................................59  
RETURN Instruction............................................................60  
RLF Instruction....................................................................60  
RRF Instruction ...................................................................60  
S
SEEVAL Evaluation and Programming System...............65  
Serialized Quick-Turnaround-Production (SQTP) Devices...7  
SLEEP Instruction...............................................................60  
Software Simulator (MPLAB-SIM).......................................65  
Special Features of the CPU...............................................35  
Special Function Registers .................................................15  
Stack ...................................................................................20  
Status Register....................................................................16  
SUBLW Instruction..............................................................61  
SUBWF Instruction..............................................................61  
SWAPF Instruction..............................................................62  
T
Timer0  
TIMER0.......................................................................29  
TIMER0 (TMR0) Interrupt ...........................................29  
TIMER0 (TMR0) Module.............................................29  
TMR0 with External Clock...........................................31  
Timer1  
Switching Prescaler Assignment.................................33  
Timing Diagrams and Specifications...................................76  
TMR0 Interrupt....................................................................46  
TRIS Instruction ..................................................................62  
TRISA..................................................................................23  
TRISB..................................................................................25  
W
Watchdog Timer (WDT) ......................................................47  
WWW, On-Line Support........................................................3  
X
XORLW Instruction .............................................................62  
XORWF Instruction .............................................................62  
DS40143C-page 90  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-602-786-7302 for the rest of the world.  
981103  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICSTART, PICMASTER and PRO MATE are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries. FlexROM, MPLAB and fuzzy-  
LAB are trademarks and SQTP is a service mark of Micro-  
chip in the U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
1998 Microchip Technology Inc.  
DS40143C-page 91  
PIC16C55X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS40143C  
Device:  
PIC16C55X  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS40143C-page 92  
1998 Microchip Technology Inc.  
PIC16C55X  
PIC16C55X Product Identification System  
To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed  
sales offices.  
PART NO. -XX X /XX XXX  
Pattern:  
3-Digit Pattern Code for QTP (blank otherwise)  
Package:  
P
=
=
=
=
PDIP  
SO  
SS  
JW*  
SOIC (Gull Wing, 300 mil body)  
SSOP (209 mil)  
Examples:  
Windowed CERDIP  
f) PIC16C554 - 04/P 301 =  
Commercial temp., PDIP pack-  
age, 4 MHz, normal VDD limits,  
QTP pattern #301.  
g) PIC16LC558- 04I/SO =  
Industrial temp., SOIC pack-  
age, 200kHz, extended VDD  
limits.  
Temperature  
Range:  
-
=
=
=
0˚C to +70˚C  
I
–40˚C to +85˚C  
–40˚C to +125˚C  
E
Frequency  
Range:  
04  
04  
20  
=
=
=
200kHz (LP osc)  
4 MHz (XT and RC osc)  
20 MHz (HS osc)  
Device:  
PIC16C55X :VDD range 3.0V to 5.5V  
PIC16C55XT:VDD range 3.0V to 5.5V (Tape and Reel)  
PIC16LC55X:VDD range 2.5V to 5.5V  
PIC16LC55XT:VDD range 2.5V to 5.5V (Tape and Reel)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type (including LC devices).  
Sales and Support  
Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office (see below)  
.
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 93  
PIC16C55X  
NOTES:  
DS40143C-page 94  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C55X  
NOTES:  
1998 Microchip Technology Inc.  
Preliminary  
DS40143C-page 95  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Beijing  
United Kingdom  
Microchip Technology, Beijing  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing 100027 PRC  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 86-10-85282100 Fax: 86-10-85282104  
India  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75248  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Japan  
France  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Italy  
Los Angeles  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
11/15/99  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
1999 Microchip Technology Inc.  

相关型号:

PIC16C554-04I/SS

EPROM-Based 8-Bit CMOS Microcontroller
MICROCHIP

PIC16C554-04I/SS301

PIC16C554-04I/SS301
MICROCHIP

PIC16C554-04IJW

8-BIT, UVPROM, 4 MHz, RISC MICROCONTROLLER, CDIP18, 0.300 INCH, WINDOWED, CERDIP-18
MICROCHIP

PIC16C554-04IP

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18
MICROCHIP

PIC16C554-04ISO

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SOIC-18
MICROCHIP

PIC16C554-04ISS

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, SSOP-20
MICROCHIP

PIC16C554-04JW

8-BIT, UVPROM, 4 MHz, RISC MICROCONTROLLER, CDIP18, 0.300 INCH, WINDOWED, CERDIP-18
MICROCHIP

PIC16C554-04P

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18
MICROCHIP

PIC16C554-04SO

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SOIC-18
MICROCHIP

PIC16C554-04SS

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, SSOP-20
MICROCHIP

PIC16C554-20/JW

EPROM-Based 8-Bit CMOS Microcontroller
MICROCHIP

PIC16C554-20/P

EPROM-Based 8-Bit CMOS Microcontroller
MICROCHIP