PIC16C63AT-20E/SP [MICROCHIP]

8-BIT, OTPROM, 20 MHz, RISC MICROCONTROLLER, PDIP28, 0.300 INCH, SKINNY, PLASTIC, DIP-28;
PIC16C63AT-20E/SP
型号: PIC16C63AT-20E/SP
厂家: MICROCHIP    MICROCHIP
描述:

8-BIT, OTPROM, 20 MHz, RISC MICROCONTROLLER, PDIP28, 0.300 INCH, SKINNY, PLASTIC, DIP-28

可编程只读存储器 时钟 光电二极管 外围集成电路
文件: 总152页 (文件大小:1047K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M
PIC16C63A/65B/73B/74B  
28/40-Pin 8-Bit CMOS Microcontrollers  
Pin Diagram  
Device  
Pins  
A/D  
PSP  
PDIP, Windowed CERDIP  
PIC16C63A  
PIC16C73B  
PIC16C65B  
PIC16C74B  
28  
28  
40  
40  
NO  
YES  
NO  
NO  
NO  
MCLR/VPP  
RA0/AN0  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
YES  
YES  
2
3
4
5
6
7
8
9
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
YES  
RA5/SS/AN4  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
RB1  
RB0/INT  
VDD  
Microcontroller Core Features:  
• High-performance RISC CPU  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
VSS  
• Only 35 single word instructions to learn  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
• All single cycle instructions except for program  
branches which are two cycle  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
RC3/SCK/SCL  
RD0/PSP0  
RC4/SDI/SDA  
RD3/PSP3  
RD2/PSP2  
RD1/PSP1  
• 4K x 14 words of Program Memory,  
192 x 8 bytes of Data Memory (RAM)  
• Interrupt capability (up to 12 internal/external  
interrupt sources)  
Peripheral Features:  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• Eight level deep hardware stack  
• Direct, indirect, and relative addressing modes  
• Power-on Reset (POR)  
• Timer1: 16-bit timer/counter with prescaler,  
can be incremented during sleep via external  
crystal/clock  
• Power-up Timer (PWRT) and  
Oscillator Start-up Timer (OST)  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
Two Capture, Compare, PWM modules  
• Capture is 16-bit, max. resolution is 12.5 ns,  
Compare is 16-bit, max. resolution is 200 ns,  
PWM maximum resolution is 10-bit  
• Programmable code-protection  
• Power saving SLEEP mode  
• Selectable oscillator options  
• 8-bit multi-channel Analog-to-Digital converter  
• Synchronous Serial Port (SSP) with Enhanced  
• Low-power, high-speed CMOS EPROM  
technology  
2
SPI and I C  
• Fully static design  
• Universal Synchronous Asynchronous Receiver  
Transmitter (USART/SCI)  
• In-Circuit Serial Programming™ (ICSP)  
• Wide operating voltage range: 2.5V to 5.5V  
• High Sink/Source Current 25/25 mA  
• Parallel Slave Port (PSP) 8-bits wide, with  
external RD, WR and CS controls  
• Commercial, Industrial and Extended temperature  
ranges  
• Brown-out detection circuitry for  
Brown-out Reset (BOR)  
• Low-power consumption:  
- < 2 mA @ 5V, 4 MHz  
- 22.5 µA typical @ 3V, 32 kHz  
- < 1 µA typical standby current  
1998 Microchip Technology Inc.  
DS30605A-page 1  
PIC16C63A/65B/73B/74B  
Pin Diagrams  
SDIP, SOIC, SSOP, Windowed CERDIP  
SDIP, SOIC, SSOP, Windowed CERDIP  
MCLR/VPP  
RA0/AN0  
• 1  
2
28  
27  
26  
25  
24  
RB7  
RB6  
RB5  
RB4  
RB3  
MCLR/VPP  
RA0  
• 1  
2
28  
27  
26  
25  
24  
RB7  
RB6  
RB5  
RB4  
RB3  
RA1/AN1  
3
RA1  
3
RA2/AN2  
4
RA2  
4
RA3/AN3/VREF  
5
RA3  
5
RA4/T0CKI  
RA5/SS/AN4  
VSS  
6
7
8
23  
22  
21  
RB2  
RA4/T0CKI  
RA5/SS  
VSS  
6
7
8
23  
22  
21  
RB2  
RB1  
RB1  
RB0/INT  
RB0/INT  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
9
20  
19  
18  
17  
16  
15  
VDD  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
9
20  
19  
18  
17  
16  
15  
VDD  
10  
11  
12  
13  
14  
VSS  
10  
11  
12  
13  
14  
VSS  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC3/SCK/SCL  
PIC16C73B  
PIC16C63A  
PDIP, Windowed CERDIP  
MQFP  
TQFP  
MCLR/VPP  
RA0  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RA1  
RA2  
RA3  
RA4/T0CKI  
RA5/SS  
RE0/RD  
RE1/WR  
RE2/CS  
VDD  
RB1  
RB0/INT  
VDD  
NC  
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
VDD  
RB0/INT  
RB1  
1
2
3
4
5
6
7
8
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RC0/T1OSO/T1CKI  
OSC2/CLKOUT  
OSC1/CLKIN  
VSS  
VDD  
RE2/CS  
RE1/WR  
RE0/RD  
RA5/SS  
RA4/T0CKI  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
VSS  
PIC16C65B  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
9
10  
11  
RB2  
RB3  
RC3/SCK/SCL  
RD0/PSP0  
RC4/SDI/SDA  
RD3/PSP3  
RD2/PSP2  
RD1/PSP1  
PIC16C65B  
PLCC  
RA4/T0CKI  
RA5/SS  
RE0/RD  
RE1/WR  
RE2/CS  
RB3  
RB2  
RB1  
RB0/INT  
VDD  
7
8
9
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
10  
11  
12  
13  
14  
15  
16  
17  
VDD  
VSS  
VSS  
PIC16C65B  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
NC  
DS30605A-page 2  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Pin Diagrams (Cont.d)  
PLCC  
MQFP  
TQFP  
RA4/T0CKI  
RA5/SS/AN4  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
RB3  
RB2  
RB1  
RB0/INT  
VDD  
7
8
9
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
NC  
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
VDD  
RB0/INT  
RB1  
1
2
3
4
5
6
7
8
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RC0/T1OSO/T1CKI  
OSC2/CLKOUT  
OSC1/CLKIN  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
VSS  
VDD  
PIC16C74B  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
PIC16C74B  
RE2/CS/AN7  
RE1/WR/AN6  
RE0/RD/AN5  
RA5/SS/AN4  
RA4/T0CKI  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
NC  
9
10  
11  
RB2  
RB3  
Key Features  
PICmicro Mid-Range Reference Manual  
(DS33023)  
PIC16C63A  
PIC16C65B  
PIC16C73B  
PIC16C74B  
Operating Frequency  
Resets (and Delays)  
DC - 20 MHz  
DC - 20 MHz  
DC - 20 MHz  
DC - 20 MHz  
POR, BOR  
POR, BOR  
POR, BOR  
POR, BOR  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
Program Memory (14-bit words)  
Data Memory (bytes)  
Interrupts  
4K  
4K  
192  
11  
4K  
192  
11  
4K  
192  
192  
10  
12  
I/O Ports  
Ports A,B,C  
Ports A,B,C,D,E Ports A,B,C  
Ports A,B,C,D,E  
Timers  
3
3
3
3
Capture/Compare/PWM modules  
Serial Communications  
Parallel Communications  
8-bit Analog-to-Digital Module  
Instruction Set  
2
2
2
2
SSP, USART  
SSP, USART  
SSP, USART  
SSP, USART  
PSP  
PSP  
5 input channels 8 input channels  
35 Instructions 35 Instructions 35 Instructions 35 Instructions  
1998 Microchip Technology Inc.  
DS30605A-page 3  
PIC16C63A/65B/73B/74B  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 5  
2.0 Memory Organization................................................................................................................................................................. 11  
3.0 I/O Ports..................................................................................................................................................................................... 25  
4.0 Timer0 Module ........................................................................................................................................................................... 37  
5.0 Timer1 Module ........................................................................................................................................................................... 39  
6.0 Timer2 Module ........................................................................................................................................................................... 43  
7.0 Capture/Compare/PWM (CCP) Module(s)................................................................................................................................. 45  
8.0 Synchronous Serial Port (SSP) Module..................................................................................................................................... 51  
9.0 Universal Synchronous Asynchronous Receiver Transmitter (USART) .................................................................................... 61  
10.0 Analog-to-Digital Converter (A/D) Module.................................................................................................................................. 75  
11.0 Special Features of the CPU...................................................................................................................................................... 81  
12.0 Instruction Set Summary............................................................................................................................................................ 95  
13.0 Development Support ................................................................................................................................................................ 97  
14.0 Electrical Characteristics.......................................................................................................................................................... 101  
15.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 123  
16.0 Packaging Information ............................................................................................................................................................. 125  
Appendix A: Revision History ........................................................................................................................................................... 137  
Appendix B: Device Differences ....................................................................................................................................................... 137  
Appendix C: Conversion Considerations .......................................................................................................................................... 137  
Appendix D: Migration from Baseline to Midrange Devices.............................................................................................................. 138  
Appendix E: Bit/Register Cross-Reference List................................................................................................................................ 139  
Index .................................................................................................................................................................................................. 141  
On-Line Support................................................................................................................................................................................. 147  
Reader Response .............................................................................................................................................................................. 148  
PIC16C63A/65B/73B/74B Product Identification System .................................................................................................................. 149  
To Our Valued Customers  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please check our worldwide web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number, found on the bottom outside corner  
of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of docu-  
ment DS30000.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and rec-  
ommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet.The  
errata will specify the revision of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
• Microchip’s worldwide web site at http://www.microchip.com  
Your local Microchip sales office (see last page)  
• The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet  
(include literature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation.We have spent a great deal of time  
to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any  
information that is missing or appears in error, please:  
• Fill out and mail in the reader response form in the back of this data sheet, or  
• E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
DS30605A-page 4  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
There are four devices (PIC16C63A, PIC16C65B,  
PIC16C73B, PIC16C74B) covered by this data sheet.  
These devices come in 28- and 40-pin packages. The  
28-pin devices do not have a Parallel Slave Port imple-  
mented. The PIC16C6X devices do not have the A/D  
module implemented.  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information.  
Additional information may be found in the PICmicro  
Mid-Range Reference Manual (DS33023) which may  
be obtained from your local Microchip Sales Represen-  
tative or downloaded from the Microchip web site. The  
Reference Manual should be considered a comple-  
mentary document to this data sheet, and is highly rec-  
ommended reading for a better understanding of the  
device architecture and operation of the peripheral  
modules.  
The following two figures are device block diagrams  
sorted by pin number; 28-pin for Figure 1-1 and 40-pin  
for Figure 1-2. The 28-pin and 40-pin pinouts are listed  
in Table 1-1 and Table 1-2 respectively.  
FIGURE 1-1: PIC16C63A/PIC16C73B BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0/AN0(2)  
EPROM  
RA1/AN1(2)  
4K x 14  
RA2/AN2(2)  
RAM  
Program  
Memory  
(2)  
8 Level Stack  
(13-bit)  
RA3/AN3/VREF  
RA4/T0CKI  
192 x 8  
File  
Registers  
RA5/SS/AN4(2)  
Program  
Bus  
14  
RAM Addr(1)  
PORTB  
9
Addr MUX  
Instruction reg  
RB0/INT  
RB7:RB1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
RC6/TX/CK  
RC7/RX/DT  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
MCLR VDD, VSS  
Timer2  
Timer0  
CCP1  
Timer1  
CCP2  
A/D(2)  
Synchronous  
Serial Port  
USART  
Note 1: Higher order bits are from the STATUS register.  
2: The A/D module is not available on the PIC16C63A.  
1998 Microchip Technology Inc.  
DS30605A-page 5  
 
PIC16C63A/65B/73B/74B  
FIGURE 1-2: PIC16C65B/PIC16C74B BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0/AN0(2)  
EPROM  
RA1/AN1(2)  
RA2/AN2(2)  
4K x 14  
RAM  
(2)  
RA3/AN3/VREF  
RA4/T0CKI  
8 Level Stack  
(13-bit)  
Program  
Memory  
192 x 8  
File  
Registers  
RA5/SS/AN4(2)  
Program  
Bus  
14  
RAM Addr (1)  
PORTB  
9
Addr MUX  
Instruction reg  
RB0/INT  
RB7:RB1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
RC6/TX/CK  
RC7/RX/DT  
ALU  
Power-on  
Reset  
PORTD  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
RD7/PSP7:RD0/PSP0  
PORTE  
Parallel Slave Port  
MCLR VDD, VSS  
RE0/RD/AN5(2)  
RE1/WR/AN6(2)  
RE2/CS/AN7(2)  
Timer0  
CCP1  
Timer1  
CCP2  
Timer2  
A/D(2)  
Synchronous  
Serial Port  
USART  
Note 1: Higher order bits are from the STATUS register.  
2: The A/D module is not available on the PIC16C65B.  
DS30605A-page 6  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 1-1:  
PIC16C63A/PIC16C73B PINOUT DESCRIPTION  
DIP  
Pin#  
SOIC  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(3)  
OSC1/CLKIN  
9
9
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
OSC2/CLKOUT  
10  
10  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, the OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and denotes  
the instruction cycle rate.  
1
1
I/P  
ST  
Master clear (reset) input or programming voltage input. This  
pin is an active low reset to the device.  
MCLR/VPP  
PORTA is a bi-directional I/O port.  
RA0 can also be analog input0  
(4)  
2
3
4
5
6
2
3
4
5
6
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
ST  
RA0/AN0  
(4)  
RA1 can also be analog input1  
RA1/AN1  
(4)  
RA2 can also be analog input2  
RA2/AN2  
(4)  
RA3 can also be analog input3 or analog reference voltage  
RA3/AN3/VREF  
RA4/T0CKI  
RA4 can also be the clock input to the Timer0 module.  
Output is open drain type.  
(4)  
7
7
I/O  
TTL  
RA5 can also be analog input4 or the slave select for the  
synchronous serial port.  
RA5/SS/AN4  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
RB2  
TTL  
RB3  
TTL  
RB4  
TTL  
Interrupt on change pin.  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
PORTC is a bi-directional I/O port.  
(2)  
RB7  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
11  
12  
13  
14  
15  
11  
12  
13  
14  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
RC0 can also be the Timer1 oscillator output or Timer1  
clock input.  
RC1 can also be the Timer1 oscillator input or Capture2  
input/Compare2 output/PWM2 output.  
RC2 can also be the Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC3 can also be the synchronous serial clock input/output  
2
for both SPI and I C modes.  
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5/SDO  
16  
17  
16  
17  
I/O  
I/O  
ST  
ST  
RC5 can also be the SPI Data Out (SPI mode).  
RC6/TX/CK  
RC6 can also be the USART Asynchronous Transmit or  
Synchronous Clock.  
RC7/RX/DT  
18  
18  
I/O  
ST  
RC7 can also be the USART Asynchronous Receive or  
Synchronous Data.  
VSS  
8, 19  
20  
8, 19  
20  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
4: The A/D module is not available on the PIC16C63A.  
1998 Microchip Technology Inc.  
DS30605A-page 7  
PIC16C63A/65B/73B/74B  
TABLE 1-2:  
PIC16C65B/PIC16C74B PINOUT DESCRIPTION  
DIP  
Pin#  
PLCC  
Pin#  
QFP I/O/P  
Pin# Type  
Buffer  
Type  
Pin Name  
Description  
(4)  
OSC1/CLKIN  
13  
14  
14  
15  
30  
31  
I
ST/CMOS  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and  
denotes the instruction cycle rate.  
MCLR/VPP  
1
2
18  
I/P  
ST  
Master clear (reset) input or programming voltage input.  
This pin is an active low reset to the device.  
PORTA is a bi-directional I/O port.  
RA0 can also be analog input0  
RA1 can also be analog input1  
RA2 can also be analog input2  
(5)  
RA0/AN0  
2
3
4
5
3
4
5
6
19  
20  
21  
22  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
(5)  
RA1/AN1  
(5)  
RA2/AN2  
(5)  
RA3/AN3/VREF  
RA3 can also be analog input3 or analog reference  
voltage  
RA4/T0CKI  
6
7
7
8
23  
24  
I/O  
I/O  
ST  
RA4 can also be the clock input to the Timer0 timer/  
counter. Output is open drain type.  
(5)  
RA5/SS/AN4  
TTL  
RA5 can also be analog input4 or the slave select for  
the synchronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
33  
34  
35  
36  
37  
38  
39  
40  
36  
37  
38  
39  
41  
42  
43  
44  
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
9
RB2  
10  
11  
14  
15  
16  
17  
TTL  
RB3  
TTL  
RB4  
TTL  
Interrupt on change pin.  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
(2)  
RB7  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
5: The A/D module is not available on the PIC16C65B.  
DS30605A-page 8  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 1-2:  
PIC16C65B/PIC16C74B PINOUT DESCRIPTION (Cont.d)  
DIP  
Pin#  
PLCC  
Pin#  
QFP I/O/P  
Pin# Type  
Buffer  
Type  
Pin Name  
Description  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
15  
16  
17  
18  
23  
24  
25  
26  
16  
18  
19  
20  
25  
26  
27  
29  
32  
35  
36  
37  
42  
43  
44  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
RC0 can also be the Timer1 oscillator output or a  
Timer1 clock input.  
RC1 can also be the Timer1 oscillator input or  
Capture2 input/Compare2 output/PWM2 output.  
RC2/CCP1  
RC2 can also be the Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC3 can also be the synchronous serial clock input/  
2
output for both SPI and I C modes.  
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5 can also be the SPI Data Out  
(SPI mode).  
RC6/TX/CK  
RC7/RX/DT  
RC6 can also be the USART Asynchronous Transmit or  
Synchronous Clock.  
RC7 can also be the USART Asynchronous Receive or  
Synchronous Data.  
PORTD is a bi-directional I/O port or parallel slave port  
when interfacing to a microprocessor bus.  
(3)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
19  
20  
21  
22  
27  
28  
29  
30  
21  
22  
23  
24  
30  
31  
32  
33  
38  
39  
40  
41  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
3
4
5
PORTE is a bi-directional I/O port.  
(3)  
(3)  
(3)  
(5)  
8
9
9
25  
26  
27  
I/O  
I/O  
I/O  
ST/TTL  
ST/TTL  
ST/TTL  
RE0 can also be read control for the parallel slave port,  
or analog input5.  
RE0/RD/AN5  
(5)  
10  
11  
RE1 can also be write control for the parallel slave port,  
or analog input6.  
RE1/WR/AN6  
(5)  
10  
RE2 can also be select control for the parallel slave  
port, or analog input7.  
RE2/CS/AN7  
VSS  
VDD  
NC  
12,31  
11,32  
13,34  
12,35  
6,29  
7,28  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
1,17,28, 12,13,  
40 33,34  
These pins are not internally connected. These pins should  
be left unconnected.  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
5: The A/D module is not available on the PIC16C65B.  
1998 Microchip Technology Inc.  
DS30605A-page 9  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605A-page 10  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
2.2  
Data Memory Organization  
2.0  
MEMORY ORGANIZATION  
There are two memory blocks in each of these PICmicro  
microcontrollers. Each block (Program Memory and  
Data Memory) has its own bus so that concurrent  
access can occur.  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers and the  
Special Function Registers. Bits RP1 and RP0 are the  
bank select bits.  
Additional information on device memory may be found  
RP1(1)  
RP0  
(STATUS<6:5>)  
in the PICmicro  
(DS33023).  
Mid-Range Reference Manual  
= 00 Bank0  
= 01 Bank1  
= 10 Bank2 (not implemented)  
= 11 Bank3 (not implemented)  
2.1  
Program Memory Organization  
The PIC16C63A/65B/73B/74B microcontrollers have a  
13-bit program counter capable of addressing an 8K x  
14 program memory space. Each device has 4K x 14  
words of program memory. Accessing a location above  
the physically implemented address will cause a wrap-  
around.  
Note 1: Maintain this bit clear to ensure upward compati-  
bility with future products.  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM. All implemented banks contain special  
function registers. Some “high use” special function  
registers from one bank may be mirrored in another  
bank for code reduction and quicker access.  
The reset vector is at 0000h and the interrupt vector is  
at 0004h.  
FIGURE 2-1: PROGRAM MEMORY MAP  
AND STACK  
2.2.1  
GENERAL PURPOSE REGISTER FILE  
PC<12:0>  
The register file can be accessed either directly, or indi-  
rectly through the File Select Register FSR  
(Section 2.5).  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory (Page 0)  
07FFh  
0800h  
On-chip Program  
Memory (Page 1)  
0FFFh  
1000h  
1FFFh  
1998 Microchip Technology Inc.  
DS30605A-page 11  
PIC16C63A/65B/73B/74B  
2.2.2  
SPECIAL FUNCTION REGISTERS  
FIGURE 2-2: REGISTER FILE MAP  
File  
File  
The Special Function Registers are registers used by  
the CPU and Peripheral Modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
give in Table 2-1.  
Address  
Address  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
INDF  
INDF  
80h  
TMR0  
PCL  
OPTION_REG 81h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
The special function registers can be classified into two  
sets; core (CPU) and peripheral. Those registers asso-  
ciated with the core functions are described in detail in  
this section. Those related to the operation of the  
peripheral features are described in detail in that  
peripheral feature section.  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
(2)  
(2)  
08h PORTD  
09h PORTE  
TRISD  
(2)  
(2)  
TRISE  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
PCLATH  
PCLATH  
INTCON  
PIE1  
INTCON  
PIR1  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
PR2  
SSPADD  
SSPSTAT  
17h CCP1CON  
18h  
19h  
1Ah  
1Bh  
1Ch  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
TXSTA  
SPBRG  
1Dh CCP2CON  
(3)  
1Eh ADRES  
(3)  
(3)  
1Fh ADCON0  
ADCON1  
20h  
General  
Purpose  
Register  
General  
Purpose  
Register  
FFh  
7Fh  
Bank 0  
Bank 1  
Unimplemented data memory locations, read  
as ’0’.  
Note 1: Not a physical register.  
2: These registers are not implemented on the  
PIC16C63A/73B, read as '0'.  
3: These registers are not implemented on the  
PIC16C63A/65B, read as '0'.  
DS30605A-page 12  
1998 Microchip Technology Inc.  
 
PIC16C63A/65B/73B/74B  
TABLE 2-1  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on Value on all  
Addr Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(5)  
Bank 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
INDF(1)  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
rr01 1xxx rr0q quuu  
xxxx xxxx uuuu uuuu  
--0x 0000 --0u 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
---0 0000 ---0 0000  
0000 000x 0000 000u  
TMR0  
PCL(1)  
Program Counter's (PC) Least Significant Byte  
STATUS(1)  
FSR(1)  
IRP(6)  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1(6)  
RP0  
TO  
PD  
Z
DC  
C
PORTA(7)  
PORTB(8)  
PORTC(8)  
PORTD(3,8)  
PORTE(3,8)  
PCLATH(1,2)  
INTCON(1)  
PIR1  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
RE2  
RE1  
RE0  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PEIE  
ADIF(4)  
T0IE  
RCIF  
INTE  
TXIF  
RBIE  
SSPIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
PSPIF(3)  
TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
xxxx xxxx uuuu uuuu  
PIR2  
TMR1L  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
TMR1H  
xxxx xxxx uuuu uuuu  
T1CON  
T1CKPS1  
T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
TMR2  
Timer2 module’s register  
0000 0000 0000 0000  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SSPM2  
SSPM1  
SSPM0  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
CCP1X  
SREN  
CCP1Y  
CREN  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
SPEN  
RX9  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TXREG  
USART Transmit Data Register  
USART Receive Data Register  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES(4)  
ADCON0(4)  
Capture/Compare/PWM Register2 (LSB)  
Capture/Compare/PWM Register2 (MSB)  
CCP2X  
CCP2Y  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
A/D Result Register  
ADCS1 ADCS0  
xxxx xxxx uuuu uuuu  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
0000 00-0 0000 00-0  
Legend: x= unknown, u= unchanged, q= value depends on condition, -= unimplemented, read as '0',  
Shaded locations are unimplemented, read as '0'.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents  
are transferred to the upper byte of the program counter.  
3: PORTD and PORTE are not implemented on the PIC16C63A/73B, maintain as ’0’.  
4: A/D not implemented on the PIC16C63A/65B, maintain as ’0’.  
5: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.  
6: The IRP and RP1 bits are reserved. Always maintain these bits clear.  
7: On any device reset, these pins are configured as inputs.  
8: This is the value that will be in the port output latch.  
1998 Microchip Technology Inc.  
DS30605A-page 13  
PIC16C63A/65B/73B/74B  
TABLE 2-1  
Addr Name  
Bank 1  
SPECIAL FUNCTION REGISTER SUMMARY (Cont.d)  
Value on Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(5)  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INDF(1)  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
rr01 1xxx rr0q quuu  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 -111 0000 -111  
---0 0000 ---0 0000  
0000 000x 0000 000u  
OPTION_REG  
PCL(1)  
STATUS(1)  
FSR(1)  
TRISA  
TRISB  
TRISC  
TRISD(3)  
TRISE(3)  
PCLATH(1,2)  
INTCON(1)  
PIE1  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP(6) RP1(6)  
RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
PD  
Z
DC  
C
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction Bits  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PEIE  
ADIE(4)  
T0IE  
RCIE  
INTE  
TXIE  
RBIE  
SSPIE  
T0IF  
CCP1IE  
INTF  
TMR2IE  
RBIF  
PSPIE(3)  
TMR1IE 0000 0000 0000 0000  
CCP2IE ---- ---0 ---- ---0  
PIE2  
PCON  
POR  
BOR  
---- --qq ---- --uu  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
Timer2 Period Register  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
SSPADD  
SSPSTAT  
Synchronous Serial Port (I2C mode) Address Register  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
Unimplemented  
Unimplemented  
Unimplemented  
CSRC  
TXSTA  
SPBRG  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
Baud Rate Generator Register  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADCON1(4)  
PCFG2  
PCFG1  
PCFG0  
---- -000 ---- -000  
Legend: x= unknown, u= unchanged, q= value depends on condition, -= unimplemented, read as '0',  
Shaded locations are unimplemented, read as '0'.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents  
are transferred to the upper byte of the program counter.  
3: PORTD and PORTE are not implemented on the PIC16C63A/73B, maintain as ’0’.  
4: A/D not implemented on the PIC16C63A/65B, maintain as ’0’.  
5: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.  
6: The IRP and RP1 bits are reserved. Always maintain these bits clear.  
7: On any device reset, these pins are configured as inputs.  
8: This is the value that will be in the port output latch.  
DS30605A-page 14  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
2.2.2.1  
STATUS REGISTER  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions, not affecting any status bits, see the  
"Instruction Set Summary."  
The STATUS register, shown in Figure 2-3, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled.These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: These devices do not use bits IRP and  
RP1 (STATUS<7:6>). Maintain these bits  
clear to ensure upward compatibility with  
future products.  
Note 2: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
FIGURE 2-3: STATUS REGISTER (ADDRESS 03h, 83h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
1 = Bank 2, 3 (100h - 1FFh) - not implemented, maintain clear  
0 = Bank 0, 1 (00h - FFh) - not implemented, maintain clear  
bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh) - not implemented, maintain clear  
10= Bank 2 (100h - 17Fh) - not implemented, maintain clear  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
Z: Zero bit  
1 = The result of an arithmetic or logic operation is zero  
0 = The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions) (for borrow the polarity is reversed)  
1 = A carry-out from the 4th low order bit of the result occurred  
0 = No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1 = A carry-out from the most significant bit of the result occurred  
0 = No carry-out from the most significant bit of the result occurred  
Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of  
the source register.  
1998 Microchip Technology Inc.  
DS30605A-page 15  
PIC16C63A/65B/73B/74B  
2.2.2.2  
OPTION_REG REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION_REG register is a readable and writable  
register which contains various control bits to configure  
the TMR0 prescaler/WDT postscaler (single assign-  
able register known also as the prescaler), the External  
INT Interrupt, TMR0, and the weak pull-ups on PORTB.  
FIGURE 2-4: OPTION_REG REGISTER (ADDRESS 81h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7:  
RBPU: PORTB Pull-up Enable bit  
1 = PORTB pull-ups are disabled  
0 = PORTB pull-ups are enabled by individual port latch values  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
INTEDG: Interrupt Edge Select bit  
1 = Interrupt on rising edge of RB0/INT pin  
0 = Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1 = Transition on RA4/T0CKI pin  
0 = Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1 = Increment on high-to-low transition on RA4/T0CKI pin  
0 = Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1 = Prescaler is assigned to the WDT  
0 = Prescaler is assigned to the Timer0 module  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
DS30605A-page 16  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
2.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON Register is a readable and writable regis-  
ter which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/INT pin interrupts.  
FIGURE 2-5: INTCON REGISTER (ADDRESS 0Bh, 8Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7:  
GIE: Global Interrupt Enable bit  
1 = Enables all un-masked interrupts  
0 = Disables all interrupts  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
PEIE: Peripheral Interrupt Enable bit  
1 = Enables all un-masked peripheral interrupts  
0 = Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1 = Enables the TMR0 interrupt  
0 = Disables the TMR0 interrupt  
IINTE: RB0/INT External Interrupt Enable bit  
1 = Enables the RB0/INT external interrupt  
0 = Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1 = Enables the RB port change interrupt  
0 = Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1 = TMR0 register has overflowed (must be cleared in software)  
0 = TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1 = The RB0/INT external interrupt occurred (must be cleared in software)  
0 = The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0 = None of the RB7:RB4 pins have changed state  
1998 Microchip Technology Inc.  
DS30605A-page 17  
PIC16C63A/65B/73B/74B  
2.2.2.4  
PIE1 REGISTER  
Note: Bit PEIE (INTCON<6>) must be set to  
This register contains the individual enable bits for the  
peripheral interrupts.  
enable any peripheral interrupt.  
FIGURE 2-6: PIE1 REGISTER (ADDRESS 8Ch)  
R/W-0  
R/W-0  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
TMR2IE TMR1IE  
bit0  
R/W-0  
(1)  
(2)  
PSPIE  
bit7  
ADIE  
CCP1IE  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
(1)  
bit 7:  
PSPIE : Parallel Slave Port Read/Write Interrupt Enable bit  
1 = Enables the PSP read/write interrupt  
0 = Disables the PSP read/write interrupt  
(2)  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
ADIE : A/D Converter Interrupt Enable bit  
1 = Enables the A/D interrupt  
0 = Disables the A/D interrupt  
RCIE: USART Receive Interrupt Enable bit  
1 = Enables the USART receive interrupt  
0 = Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1 = Enables the USART transmit interrupt  
0 = Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1 = Enables the SSP interrupt  
0 = Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1 = Enables the CCP1 interrupt  
0 = Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1 = Enables the TMR2 to PR2 match interrupt  
0 = Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1 = Enables the TMR1 overflow interrupt  
0 = Disables the TMR1 overflow interrupt  
Note 1: PIC16C63A/73B devices do not have a Parallel Slave Port implemented. This bit location is reserved on these  
devices. Always maintain this bit clear.  
2: PIC16C63A/65B devices do not have an A/D module.This bit location is reserved on these devices. Always maintain  
this bit clear.  
DS30605A-page 18  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
2.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the individual flag bits for the  
peripheral interrupts.  
FIGURE 2-7: PIR1 REGISTER (ADDRESS 0Ch)  
R/W-0  
R/W-0  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
TMR2IF TMR1IF  
bit0  
R/W-0  
(1)  
(2)  
PSPIF  
bit7  
ADIF  
RCIF  
TXIF  
CCP1IF  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
PSPIF(1): Parallel Slave Port Read/Write Interrupt Flag bit  
1 = A read or a write operation has taken place (must be cleared in software)  
0 = No read or write has occurred  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
ADIF(2): A/D Converter Interrupt Flag bit  
1 = An A/D conversion completed (must be cleared in software)  
0 = The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1 = The USART receive buffer is full (cleared by reading RCREG)  
0 = The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1 = The USART transmit buffer is empty (cleared by writing to TXREG)  
0 = The USART transmit buffer is full  
SSPIF: Synchronous Serial Port Interrupt Flag bit  
1 = The transmission/reception is complete (must be cleared in software)  
0 = Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1 = A TMR1 register capture occurred (must be cleared in software)  
0 = No TMR1 register capture occurred  
Compare Mode  
1 = A TMR1 register compare match occurred (must be cleared in software)  
0 = No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1 = TMR2 to PR2 match occurred (must be cleared in software)  
0 = No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1 = TMR1 register overflowed (must be cleared in software)  
0 = TMR1 register did not overflow  
Note 1: PIC16C63A/73B devices do not have a Parallel Slave Port implemented. This bit location is reserved on these  
devices. Always maintain this bit clear.  
2: PIC16C63A/65B devices do not have an A/D module.This bit location is reserved on these devices. Always maintain  
this bit clear.  
1998 Microchip Technology Inc.  
DS30605A-page 19  
PIC16C63A/65B/73B/74B  
2.2.2.6  
PIE2 REGISTER  
This register contains the individual enable bit for the  
CCP2 peripheral interrupt.  
FIGURE 2-8: PIE2 REGISTER (ADDRESS 8Dh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IE  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7-1: Unimplemented: Read as '0'  
bit 0: CCP2IE: CCP2 Interrupt Enable bit  
1 = Enables the CCP2 interrupt  
0 = Disables the CCP2 interrupt  
DS30605A-page 20  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
.
2.2.2.7  
PIR2 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the CCP2 interrupt flag bit.  
FIGURE 2-9: PIR2 REGISTER (ADDRESS 0Dh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IF  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7-1: Unimplemented: Read as '0'  
bit 0:  
CCP2IF: CCP2 Interrupt Flag bit  
Capture Mode  
1 = A TMR1 register capture occurred (must be cleared in software)  
0 = No TMR1 register capture occurred  
Compare Mode  
1 = A TMR1 register compare match occurred (must be cleared in software)  
0 = No TMR1 register compare match occurred  
PWM Mode  
Unused  
1998 Microchip Technology Inc.  
DS30605A-page 21  
PIC16C63A/65B/73B/74B  
2.2.2.8  
PCON REGISTER  
Note: If the BODEN configuration bit is set, BOR  
is ’1’ on Power-on Reset. If the BODEN  
configuration bit is clear, BOR is unknown  
on Power-on Reset.  
The Power Control (PCON) register contains a flag bit  
to allow differentiation between a Power-on Reset  
(POR) to an external MCLR Reset or WDT Reset.  
Those devices with brown-out detection circuitry con-  
tain an additional bit to differentiate a Brown-out Reset  
condition from a Power-on Reset condition.  
The BOR status bit is a "don't care" and is  
not necessarily predictable if the brown-out  
circuit is disabled (the BODEN configura-  
tion bit is clear). BOR must then be set by  
the user and checked on subsequent  
resets to see if it is clear, indicating a  
brown-out has occurred.  
FIGURE 2-10: PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-q  
BOR  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7-2: Unimplemented: Read as '0'  
bit 1:  
POR: Power-on Reset Status bit  
1 = No Power-on Reset occurred  
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0:  
BOR: Brown-out Reset Status bit  
1 = No Brown-out Reset occurred  
0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
DS30605A-page 22  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
2.3  
PCL and PCLATH  
2.4  
Program Memory Paging  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 13 bits  
wide. The low byte is called the PCL register. This reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<12:8>  
bits and is not directly readable or writable. All updates  
to the PCH register go through the PCLATH register.  
The CALL and GOTO instructions provide 11 bits of  
address to allow branching within any 2K program  
memory page. When doing a CALLor GOTOinstruction  
the upper bit of the address is provided by  
PCLATH<3>. When doing a CALLor GOTOinstruction,  
the user must ensure that the page select bit is pro-  
grammed so that the desired program memory page is  
addressed. If a return from a CALLinstruction (or inter-  
rupt) is executed, the entire 13-bit PC is pushed onto  
the stack. Therefore, manipulation of the PCLATH<3>  
bit is not required for the return instructions (which  
POPs the address from the stack).  
2.3.1  
STACK  
The stack allows a combination of up to 8 program calls  
and interrupts to occur. The stack contains the return  
address from this branch in program execution.  
Mid-Range devices have an 8 level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable.The PC is PUSHed onto the stack  
when a CALL instruction is executed or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN, RETLW or a RETFIE instruction execution.  
PCLATH is not modified when the stack is PUSHed or  
POPed.  
After the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
1998 Microchip Technology Inc.  
DS30605A-page 23  
PIC16C63A/65B/73B/74B  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-2.  
2.5  
Indirect Addressing, INDF and FSR  
Registers  
The INDF register is not a physical register. Address-  
ing INDF actually addresses the register whose  
address is contained in the FSR register (FSR is a  
pointer). This is indirect addressing.  
EXAMPLE 2-2: HOW TO CLEAR RAM  
USING INDIRECT  
ADDRESSING  
movlw 0x20 ;initialize pointer  
movwf FSR  
clrf  
incf  
;
to RAM  
INDF ;clear INDF register  
FSR ;inc pointer  
EXAMPLE 2-1: INDIRECT ADDRESSING  
• Register file 05 contains the value 10h  
• Register file 06 contains the value 0Ah  
• Load the value 05 into the FSR register  
• A read of the INDF register will return the value of  
10h  
NEXT  
btfss FSR,4 ;all done?  
goto  
NEXT ;NO, clear next  
CONTINUE  
:
;YES, continue  
• Increment the value of the FSR register by one  
(FSR = 06)  
• A read of the INDR register now will return the  
value of 0Ah.  
An effective 9-bit address is obtained by concatenating  
the 8-bit FSR register and the IRP bit (STATUS<7>), as  
shown in Figure 2-11. However, IRP is not used in the  
PIC16C63A/65B/73B/74B.  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF register indirectly results in a  
no-operation (although STATUS bits may be affected).  
FIGURE 2-11: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
from opcode  
7
RP1:RP0  
(2)  
6
0
0
IRP  
(2)  
FSR register  
bank select  
location select  
bank select  
location select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
(3)  
(3)  
Data  
Memory(1)  
7Fh  
Bank 0  
Note 1: For register file map detail see Figure 2-2.  
FFh  
17Fh  
1FFh  
Bank 3  
Bank 1 Bank 2  
2: Maintain RP1 and IRP as clear for upward compatibility with future products.  
3: Not implemented.  
DS30605A-page 24  
1998 Microchip Technology Inc.  
 
PIC16C63A/65B/73B/74B  
FIGURE 3-1: BLOCK DIAGRAM OF  
RA3:RA0 AND RA5 PINS  
3.0  
I/O PORTS  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Data  
bus  
D
Q
Q
VDD  
P
WR  
Port  
Additional information on I/O ports may be found in the  
PICmicro Mid-Range Reference Manual, (DS33023).  
CK  
Data Latch  
3.1  
PORTA and the TRISA Register  
I/O pin(1)  
N
D
Q
PORTA is a 6-bit wide bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (=1) will make the corresponding PORTA pin  
an input, i.e., put the corresponding output driver in a  
hi-impedance mode. Clearing a TRISA bit (=0) will  
make the corresponding PORTA pin an output, i.e., put  
the contents of the output latch on the selected pin.  
WR  
TRIS  
VSS  
Q
CK  
Analog  
input  
TRIS Latch  
mode  
(73B/74B  
only)  
Note: On a Power-on Reset, these pins are con-  
TTL  
input  
buffer  
RD TRIS  
figured as inputs and read as '0'.  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read.This value is modified and then written to the port  
data latch.  
Q
D
EN  
RD PORT  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The RA4/T0CKI  
pin is a Schmitt Trigger input and an open drain output.  
All other RA port pins have TTL input levels and full  
CMOS output drivers.  
To A/D Converter (73B/74B only)  
Note 1: I/O pins have protection diodes to VDD and  
VSS.  
On PIC16C73B/74B devices, other PORTA pins are  
multiplexed with analog inputs and analog VREF input.  
The operation of each pin is selected by clearing/set-  
ting the control bits in the ADCON1 register (A/D Con-  
trol Register1).  
FIGURE 3-2: BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
Data  
bus  
D
Q
Q
Note: On a Power-on Reset, these pins are con-  
WR  
PORT  
figured as analog inputs and read as '0'.  
CK  
I/O pin(1)  
N
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Data Latch  
D
Q
VSS  
WR  
TRIS  
Schmitt  
Trigger  
input  
Q
CK  
EXAMPLE 3-1: INITIALIZING PORTA  
TRIS Latch  
buffer  
BCF  
STATUS, RP0  
;
CLRF  
PORTA  
; Initialize PORTA by  
; clearing output  
; data latches  
RD TRIS  
BSF  
MOVLW 0xCF  
STATUS, RP0 ; Select Bank 1  
Q
D
; Value used to  
; initialize data  
; direction  
EN  
MOVWF TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; TRISA<7:6> are always  
; read as '0'.  
RD PORT  
TMR0 clock input  
Note 1: I/O pin has protection diodes to VSS only.  
1998 Microchip Technology Inc.  
DS30605A-page 25  
PIC16C63A/65B/73B/74B  
TABLE 3-1:  
PORTA FUNCTIONS  
Name  
Bit#  
bit0  
bit1  
bit2  
bit3  
bit4  
Buffer Function  
(1)  
(1)  
(1)  
(1)  
RA0/AN0  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input  
Input/output or analog input  
Input/output or analog input  
(1)  
Input/output or analog input or VREF  
Input/output or external clock input for Timer0  
Output is open drain type  
(1)  
RA5/SS/AN4  
bit5  
TTL  
Input/output or slave select input for synchronous serial port or analog input  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: On PIC16C73B/74B devices only.  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
85h  
9Fh  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
PORTA Data Direction Register  
(1)  
ADCON1  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
Note 1: On PIC16C73B/74B devices only.  
DS30605A-page 26  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e. any RB7:RB4 pin con-  
figured as an output is excluded from the interrupt on  
change comparison). The input pins (of RB7:RB4) are  
compared with the old value latched on the last read of  
PORTB. The “mismatch” outputs of RB7:RB4 are  
OR’ed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
3.2  
PORTB and the TRISB Register  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (=1) will make the corresponding PORTB pin  
an input, i.e., put the corresponding output driver in a  
hi-impedance mode. Clearing a TRISB bit (=0) will  
make the corresponding PORTB pin an output, i.e., put  
the contents of the output latch on the selected pin.  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
EXAMPLE 3-1: INITIALIZING PORTB  
BCF  
STATUS, RP0  
;
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
BSF  
STATUS, RP0 ; Select Bank 1  
b) Clear flag bit RBIF.  
MOVLW 0xCF  
; Value used to  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition, and  
allow flag bit RBIF to be cleared.  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
MOVWF TRISB  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups.This is per-  
formed by clearing bit RBPU (OPTION_REG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
FIGURE 3-4: BLOCK DIAGRAM OF  
RB7:RB4 PINS  
VDD  
FIGURE 3-3: BLOCK DIAGRAM OF  
RBPU(2)  
weak  
P
RB3:RB0 PINS  
pull-up  
VDD  
Data Latch  
Data bus  
RBPU(2)  
D
Q
weak  
P
pull-up  
I/O  
pin(1)  
WR Port  
Data Latch  
Data bus  
CK  
TRIS Latch  
D
Q
I/O  
pin(1)  
D
Q
WR Port  
CK  
TRIS Latch  
WR TRIS  
TTL  
CK  
Input  
Buffer  
D
Q
ST  
Buffer  
TTL  
Input  
Buffer  
WR TRIS  
CK  
RD TRIS  
RD Port  
Latch  
Q
Q
D
RD TRIS  
RD Port  
EN  
Q1  
Set RBIF  
Q
D
EN  
D
From other  
RB7:RB4 pins  
RD Port  
Q3  
EN  
RB0/INT  
Schmitt Trigger  
Buffer  
RB7:RB6 in serial programming mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
1998 Microchip Technology Inc.  
DS30605A-page 27  
PIC16C63A/65B/73B/74B  
TABLE 3-3:  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
(1)  
RB0/INT  
bit0  
TTL/ST  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
RB5  
RB6  
RB7  
bit5  
bit6  
bit7  
TTL  
TTL/ST  
TTL/ST  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
(2)  
(2)  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming clock.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
TABLE 3-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1 Bit 0  
06h  
86h  
81h  
PORTB  
TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
PS2  
RB1  
PS1  
RB0  
PS0  
xxxx xxxx  
1111 1111  
1111 1111  
uuuu uuuu  
1111 1111  
1111 1111  
PORTB Data Direction Register  
OPTION_ RBPU  
REG  
INTEDG  
T0CS T0SE PSA  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS30605A-page 28  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
3.3  
PORTC and the TRISC Register  
FIGURE 3-5: PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE)  
PORTC is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (=1) will make the corresponding PORTC pin  
an input, i.e., put the corresponding output driver in a  
hi-impedance mode. Clearing a TRISC bit (=0) will  
make the corresponding PORTC pin an output, i.e., put  
the contents of the output latch on the selected pin.  
PORT/PERIPHERAL Select(2)  
Peripheral Data Out  
VDD  
0
Data bus  
WR  
PORT  
D
Q
Q
P
1
CK  
PORTC is multiplexed with several peripheral functions  
(Table 3-5). PORTC pins have Schmitt Trigger input  
buffers.  
Data Latch  
I/O  
D
Q
Q
pin(1)  
WR  
TRIS  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-modify-  
write instructions (BSF, BCF, XORWF) with TRISC as  
destination should be avoided.The user should refer to  
the corresponding peripheral section for the correct  
TRIS bit settings.  
CK  
N
TRIS Latch  
VSS  
Schmitt  
Trigger  
RD TRIS  
Peripheral  
OE(3)  
Q
D
EN  
RD  
PORT  
Peripheral input  
EXAMPLE 3-1: INITIALIZING PORTC  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port  
data and peripheral output.  
BCF  
STATUS, RP0 ; Select Bank 0  
CLRF  
PORTC ; Initialize PORTC by  
; clearing output  
; data latches  
3: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF TRISC  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
1998 Microchip Technology Inc.  
DS30605A-page 29  
PIC16C63A/65B/73B/74B  
TABLE 3-5:  
Name  
PORTC FUNCTIONS  
Bit# Buffer Type  
Function  
bit0  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
ST  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input  
Input/output port pin or Timer1 oscillator input  
bit1  
bit2  
RC2/CCP1  
Input/output port pin or Capture1 input/Compare1 output/PWM1  
output  
2
RC3/SCK/SCL  
bit3  
ST  
RC3 can also be the synchronous serial clock for both SPI and I C  
modes.  
2
RC4/SDI/SDA  
bit4  
ST  
RC4 can also be the SPI Data In (SPI mode) or data I/O (I C mode).  
RC5/SDO  
RC6  
bit5  
bit6  
bit7  
ST  
ST  
ST  
Input/output port pin or Synchronous Serial Port data output  
Input/output port pin  
RC7  
Input/output port pin  
Legend: ST = Schmitt Trigger input  
TABLE 3-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
07h  
87h  
PORTC  
TRISC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
PORTC Data Direction Register  
Legend: x= unknown, u= unchanged.  
DS30605A-page 30  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
3.4  
PORTD and TRISD Registers  
section is applicable  
This  
to  
the  
PIC16C65B/PIC16C74B devices only.  
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output.  
PORTD can be configured as an 8-bit wide micropro-  
cessor port (parallel slave port) by setting control bit  
PSPMODE (TRISE<4>). In this mode, the input buffers  
are TTL.  
FIGURE 3-6: PORTD BLOCK DIAGRAM  
(IN I/O PORT MODE)  
Data  
bus  
D
Q
WR  
PORT  
I/O pin(1)  
CK  
Data Latch  
D
Q
WR  
TRIS  
Schmitt  
Trigger  
input  
CK  
TRIS Latch  
buffer  
RD TRIS  
Q
D
EN  
RD PORT  
Note 1: I/O pins have protection diodes to VDD and VSS.  
1998 Microchip Technology Inc.  
DS30605A-page 31  
PIC16C63A/65B/73B/74B  
TABLE 3-7:  
Name  
PORTD FUNCTIONS  
Bit#  
Buffer Type  
Function  
(1)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST/TTL  
Input/output port pin or parallel slave port bit0  
Input/output port pin or parallel slave port bit1  
Input/output port pin or parallel slave port bit2  
Input/output port pin or parallel slave port bit3  
Input/output port pin or parallel slave port bit4  
Input/output port pin or parallel slave port bit5  
Input/output port pin or parallel slave port bit6  
Input/output port pin or parallel slave port bit7  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
Legend: ST = Schmitt Trigger input TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port Mode.  
TABLE 3-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
88h  
89h  
PORTD RD7 RD6 RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 -111 0000 -111  
TRISD PORTD Data Direction Register  
TRISE IBF OBF IBOV PSPMODE  
PORTE Data Direction Bits  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PORTD.  
DS30605A-page 32  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
3.5  
PORTE and TRISE Register  
section is applicable  
Note: On a Power-on Reset these pins are con-  
figured as analog inputs.  
This  
to  
the  
FIGURE 3-7: PORTE BLOCK DIAGRAM  
(IN I/O PORT MODE)  
PIC16C65B/PIC16C74B devices only. The A/D multi-  
plexed functions are available on the PIC16C74B only.  
Data  
bus  
PORTE has three pins RE0/RD/AN5, RE1/WR/AN6  
and RE2/CS/AN7, which are individually configurable  
as inputs or outputs. These pins have Schmitt Trigger  
input buffers.  
D
Q
WR  
PORT  
I/O pin(1)  
CK  
Data Latch  
I/O PORTE becomes control inputs for the micropro-  
cessor port when bit PSPMODE (TRISE<4>) is set. In  
this mode, the user must make sure that the  
TRISE<2:0> bits are set (pins are configured as digital  
inputs). For the PIC16C74B ensure ADCON1 is config-  
ured for digital I/O. In this mode, the input buffers are  
TTL.  
D
Q
WR  
TRIS  
Schmitt  
Trigger  
input  
CK  
TRIS Latch  
buffer  
Figure 3-8 shows the TRISE register, which also con-  
trols the parallel slave port operation.  
RD TRIS  
PORTE pins for the PIC16C74B only are multiplexed  
with analog inputs. When selected as an analog input,  
these pins will read as '0's.  
Q
D
EN  
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
RD PORT  
Note 1: I/O pins have protection diodes to VDD and VSS.  
FIGURE 3-8: TRISE REGISTER (ADDRESS 89h)  
R-0  
IBF  
R-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
TRISE1 TRISE0  
bit0  
R/W-1  
OBF  
IBOV PSPMODE  
TRISE2  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
IBF: Input Buffer Full Status bit  
1 = A word has been received and is waiting to be read by the CPU  
0 = No word has been received  
OBF: Output Buffer Full Status bit  
1 = The output buffer still holds a previously written word  
0 = The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in microprocessor mode)  
1 = A write occurred when a previously input word has not been read (must be cleared in software)  
0 = No overflow occurred  
PSPMODE: Parallel Slave Port Mode Select bit  
1 = Parallel slave port mode  
0 = General purpose I/O mode  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
TRISE2: RE2 Direction Control bit  
1 = Input  
0 = Output  
bit 1:  
bit 0:  
TRISE1: RE2 Direction Control bit  
1 = Input  
0 = Output  
TRISE0: RE2 Direction Control bit  
1 = Input  
0 = Output  
1998 Microchip Technology Inc.  
DS30605A-page 33  
 
PIC16C63A/65B/73B/74B  
TABLE 3-9:  
PORTE FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
(2)  
(1)  
RE0/RD/AN5  
bit0  
ST/TTL  
Input/output port pin or read control input in parallel slave port mode or  
analog input:  
RD  
1 = Not a read operation  
0 = Read operation. Reads PORTD register (if chip selected)  
(2)  
(1)  
RE1/WR/AN6  
bit1  
bit2  
ST/TTL  
Input/output port pin or write control input in parallel slave port mode or  
analog input:  
WR  
1 = Not a write operation  
0 = Write operation. Writes PORTD register (if chip selected)  
(2)  
(1)  
RE2/CS/AN7  
ST/TTL  
Input/output port pin or chip select control input in parallel slave port  
mode or analog input:  
CS  
1 = Device is not selected  
0 = Device is selected  
Legend: ST = Schmitt Trigger input TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.  
2: A/D Converter module multiplexing is implemented on the PIC16C74B only.  
TABLE 3-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
POR,  
BOR  
Value on all  
other resets  
Addr Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
09h  
89h  
9Fh  
PORTE  
TRISE  
RE2  
RE1  
RE0  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
---- -000 ---- -000  
IBF OBF IBOV PSPMODE  
PORTE Data Direction Bits  
PCFG2 PCFG1 PCFG0  
(1)  
ADCON1  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PORTE.  
Note 1: A/D Converter module multiplexing is implemented on the PIC16C74B only.  
DS30605A-page 34  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
3.6  
Parallel Slave Port  
FIGURE 3-9: PORTD AND PORTE BLOCK  
DIAGRAM (PARALLEL  
The Parallel Slave Port is implemented on the 40-pin  
devices only (PIC16C65B and PIC16C74B).  
SLAVE PORT)  
PORTD operates as an 8-bit wide Parallel Slave Port,  
or microprocessor port when control bit PSPMODE  
(TRISE<4>) is set. In slave mode it is asynchronously  
readable and writable by the external world through RD  
control input pin RE0/RD and WR control input pin  
RE1/WR.  
Data bus  
D
Q
WR  
PORT  
RDx  
pin  
CK  
TTL  
Q
D
It can directly interface to an 8-bit microprocessor data  
bus. The external microprocessor can read or write the  
PORTD latch as an 8-bit latch. Setting bit PSPMODE  
enables port pin RE0/RD to be the RD input, RE1/WR  
to be the WR input and RE2/CS to be the CS (chip  
select) input. For this functionality, the corresponding  
data direction bits of the TRISE register (TRISE<2:0>)  
must be configured as inputs (set). For the  
PIC16C74B, the A/D port configuration bits  
PCFG2:PCFG0 (ADCON1<2:0>) must be set, which  
will configure pins RE2:RE0 as digital I/O.  
RD  
PORT  
EN  
One bit of PORTD  
Set interrupt flag  
PSPIF (PIR1<7>)  
Read  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. A read from the PSP occurs  
when both the CS and RD lines are first detected low.  
RD  
CS  
WR  
TTL  
Chip Select  
TTL  
TTL  
Write  
Note: I/O pin has protection diodes to VDD and VSS.  
FIGURE 3-10: PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
1998 Microchip Technology Inc.  
DS30605A-page 35  
PIC16C63A/65B/73B/74B  
FIGURE 3-11: PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 3-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on  
POR,  
BOR  
Value on all  
other resets  
Add. Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h PORTD  
09h PORTE  
89h TRISE  
0Ch PIR1  
Port data latch when written: Port pins when read  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
RE2  
RE1  
RE0  
IBF  
OBF  
IBOV PSPMODE  
PORTE Data Direction Bits  
(1)  
PSPIF ADIF  
PSPIE ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF  
TMR1IF 0000 0000 0000 0000  
(1)  
8Ch PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
(1)  
9Fh ADCON1  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.  
Note 1: On PIC16C74B only.  
DS30605A-page 36  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Additional information on external clock requirements  
is available in the PICMicro Mid-Range Reference  
Manual, (DS33023).  
4.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following fea-  
tures:  
4.2  
Prescaler  
8-bit timer/counter  
• Readable and writable  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer, respectively (Figure 4-2). For simplicity, this  
counter is being referred to as “prescaler” throughout  
this data sheet. Note that there is only one prescaler  
available, which is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. Thus, a  
prescaler assignment for the Timer0 module means  
that there is no prescaler for the Watchdog Timer and  
vice-versa.  
• Internal or external clock select  
• Edge select for external clock  
• 8-bit software programmable prescaler  
• Interrupt on overflow from FFh to 00h  
Figure 4-1 is a simplified block diagram of the Timer0  
module.  
Additional information on timer modules is available in  
the PICmicro  
(DS33023).  
Mid-Range Reference Manual,  
The prescaler is not readable or writable.  
The PSA and PS2:PS0 bits (OPTION_REG<3:0>)  
determine the prescaler assignment and prescale ratio.  
4.1  
Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In timer mode, the Timer0 mod-  
ule will increment every instruction cycle (without pres-  
caler). If the TMR0 register is written, the increment is  
inhibited for the following two instruction cycles. The  
user can work around this by writing an adjusted value  
to the TMR0 register.  
Setting bit PSA will assign the prescaler to the Watch-  
dog Timer (WDT). When the prescaler is assigned to  
the WDT, prescale values of 1:1, 1:2, ..., 1:128 are  
selectable.  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In counter mode, Timer0 will  
increment either on every rising or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed below.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF 1, MOVWF 1,  
BSF 1,x....etc.) will clear the prescaler.When assigned  
to WDT, a CLRWDT instruction will clear the prescaler  
along with the WDT.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC).There is a delay in the actual incre-  
menting of Timer0 after synchronization.  
FIGURE 4-1: TIMER0 BLOCK DIAGRAM  
Data bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
RA4/T0CKI  
pin  
PSout  
(2 cycle delay)  
T0SE  
3
Set interrupt  
flag bit T0IF  
on overflow  
PS2, PS1, PS0  
PSA  
T0CS  
Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION_REG<5:0>).  
2: The prescaler is shared with Watchdog Timer (refer to Figure 4-2 for detailed block diagram).  
1998 Microchip Technology Inc.  
DS30605A-page 37  
 
PIC16C63A/65B/73B/74B  
4.2.1  
SWITCHING PRESCALER ASSIGNMENT  
4.3  
Timer0 Interrupt  
The prescaler assignment is fully under software con-  
trol, i.e., it can be changed “on the fly” during program  
execution.  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module interrupt ser-  
vice routine before re-enabling this interrupt.The TMR0  
interrupt cannot awaken the processor from SLEEP  
since the timer is shut off during SLEEP.  
Note: To avoid an unintended device RESET, a  
specific instruction sequence (shown in the  
PICmicro Mid-Range Reference Manual,  
(DS33023). must be executed when  
changing the prescaler assignment from  
Timer0 to the WDT.This sequence must be  
followed even if the WDT is disabled.  
FIGURE 4-2: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (=Fosc/4)  
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).  
TABLE 4-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
TMR0  
Timer0 module’s register  
GIE PEIE T0IE INTE  
xxxx xxxx uuuu uuuu  
RBIF 0000 000x 0000 000u  
0Bh, 8Bh  
81h  
INTCON  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
OPTION_REG RBPU INTEDG T0CS T0SE  
TRISA  
PS0  
1111 1111 1111 1111  
--11 1111 --11 1111  
85h  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
DS30605A-page 38  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
5.1  
Timer1 Operation  
5.0  
TIMER1 MODULE  
The Timer1 module timer/counter has the following fea-  
tures:  
Timer1 can operate in one of these modes:  
• As a timer  
• 16-bit timer/counter  
(Two 8-bit registers; TMR1H and TMR1L)  
• As a synchronous counter  
• As an asynchronous counter  
• Readable and writable (Both registers)  
• Internal or external clock select  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
• Interrupt on overflow from FFFFh to 0000h  
• Reset from CCP module trigger  
In timer mode, Timer1 increments every instruction  
cycle. In counter mode, it increments on every rising  
edge of the external clock input.  
Timer1 has a control register, shown in Figure 5-1.  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
Figure 5-2 is a simplified block diagram of the Timer1  
module.  
Additional information on timer modules is available in  
Timer1 also has an internal “reset input”.This reset can  
be generated by the CCP module (Section 7.0).  
the PICmicro  
(DS33023).  
Mid-Range Reference Manual,  
FIGURE 5-1: T1CON:TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit0  
bit7  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3:  
bit 2:  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1 = Oscillator is enabled  
0 = Oscillator is shut off  
Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1  
1 = Do not synchronize external clock input  
0 = Synchronize external clock input  
TMR1CS = 0  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1:  
bit 0:  
TMR1CS: Timer1 Clock Source Select bit  
1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0 = Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1 = Enables Timer1  
0 = Stops Timer1  
1998 Microchip Technology Inc.  
DS30605A-page 39  
 
PIC16C63A/65B/73B/74B  
FIGURE 5-2: TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
clock input  
0
TMR1  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
2
SLEEP input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS30605A-page 40  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
5.2  
Timer1 Oscillator  
5.3  
Timer1 Interrupt  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>).The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 5-1 shows the capacitor  
selection for the Timer1 oscillator.  
The TMR1 Register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 Interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit TMR1IF (PIR1<0>).  
This interrupt can be enabled/disabled by setting/clear-  
ing TMR1 interrupt enable bit TMR1IE (PIE1<0>).  
5.4  
Resetting Timer1 using a CCPTrigger  
Output  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
If the CCP module is configured in compare mode to  
generate a “special event trigger" (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer1 and start an A/D  
conversion (if the A/D module is enabled).  
TABLE 5-1:  
CAPACITOR SELECTION  
FOR THE TIMER1  
OSCILLATOR  
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature. If  
Timer1 is running in asynchronous counter mode, this  
reset operation may not work.  
These values are for design guidance only.  
Crystals Tested:  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1, the write will take prece-  
dence.  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P  
STD XTL 200.000 kHz  
± 20 PPM  
± 20 PPM  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair effectively becomes the period register for  
Timer1.  
Note 1: Higher capacitance increases the stability  
of the oscillator but also increases the start-  
up time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
TABLE 5-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Address Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
0Bh,8Bh INTCON GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
(1)  
(1)  
(1)  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
PIE1  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
(1)  
(1)  
(1)  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer1 module.  
Note 1: These bits are reserved, maintain as '0'.  
1998 Microchip Technology Inc.  
DS30605A-page 41  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605A-page 42  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
6.1  
Timer2 Operation  
6.0  
TIMER2 MODULE  
The Timer2 module timer has the following features:  
Timer2 can be used as the PWM time-base for PWM  
mode of the CCP module.  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
The TMR2 register is readable and writable, and is  
cleared on any device reset.  
• Readable and writable (Both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match of PR2  
The input clock (FOSC/4) has a prescale option of 1:1,  
1:4  
or  
1:16,  
selected  
by  
control  
bits  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
• SSP module optional use of TMR2 output to gen-  
erate clock shift  
Timer2 has a control register, shown in Figure 6-1.  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Figure 6-2 is a simplified block diagram of the Timer2  
module.  
• a write to the TMR2 register  
• a write to the T2CON register  
Additional information on timer modules is available in  
• any device reset (Power-on Reset, MCLR reset,  
Watchdog Timer reset, or Brown-out Reset)  
the PICmicro  
(DS33023).  
Mid-Range Reference Manual,  
TMR2 is not cleared when T2CON is written.  
FIGURE 6-1: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6-3: TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2:  
TMR2ON: Timer2 On bit  
1 = Timer2 is on  
0 = Timer2 is off  
bit 1-0: T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
1998 Microchip Technology Inc.  
DS30605A-page 43  
 
PIC16C63A/65B/73B/74B  
6.2  
Timer2 Interrupt  
FIGURE 6-2: TIMER2 BLOCK DIAGRAM  
Sets flag  
TMR2  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register.The PR2 register is ini-  
tialized to FFh upon reset.  
output (1)  
bit TMR2IF  
Reset  
Prescaler  
1:1, 1:4, 1:16  
TMR2 reg  
FOSC/4  
Postscaler  
1:1 to 1:16  
2
Comparator  
6.3  
Output ofTMR2  
EQ  
4
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module, which optionally uses  
it to generate shift clock.  
PR2 reg  
Note 1: TMR2 register output can be software selected  
by the SSP Module as a baud clock.  
TABLE 6-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
(1)  
(1)  
(1)  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
(1)  
(1)  
(1)  
8Ch  
PIE1  
11h  
TMR2  
T2CON  
PR2  
Timer2 module’s register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
12h  
92h  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer2  
module.  
Note 1: These bits are reserved, maintain as '0'.  
DS30605A-page 44  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
CCP2 Module  
7.0  
CAPTURE/COMPARE/PWM  
(CCP) MODULE(S)  
Capture/Compare/PWM Register2 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. All are readable and writable.  
Each CCP (Capture/Compare/PWM) module contains  
a 16-bit register which can operate as a 16-bit capture  
register, as a 16-bit compare register or as a PWM  
master/slave Duty Cycle register. Table 7-1 shows the  
timer resources of the CCP module modes.  
Additional information on the CCP module is available  
in the PICmicro  
(DS33023).  
Mid-Range Reference Manual,  
The operation of CCP1 is identical to that of CCP2, with  
the exception of the special trigger. Therefore, opera-  
tion of a CCP module in the following sections is  
described with respect to CCP1.  
TABLE 7-1:  
CCP MODE - TIMER  
RESOURCE  
CCP Mode  
Timer Resource  
Table 7-2 shows the interaction of the CCP modules.  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
CCP1 Module  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
TABLE 7-2:  
INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Compare  
PWM  
Capture  
Compare  
Compare  
PWM  
Same TMR1 time-base.  
The compare should be configured for the special event trigger, which clears TMR1.  
The compare(s) should be configured for the special event trigger, which clears TMR1.  
The PWMs will have the same frequency, and update rate (TMR2 interrupt).  
PWM  
Capture  
Compare  
None  
None  
PWM  
FIGURE 7-1: CCP1CON REGISTER (ADDRESS 17h) / CCP2CON REGISTER (ADDRESS 1Dh)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCPxX CCPxY CCPxM3 CCPxM2 CCPxM1 CCPxM0  
bit0  
R = Readable bit  
W = Writable bit  
bit7  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: CCPxX:CCPxY: PWM Least Significant bits  
Capture Mode: Unused  
Compare Mode: Unused  
PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0: CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM off (resets CCPx module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCPxIF bit is set)  
1001= Compare mode, clear output on match (CCPxIF bit is set)  
1010= Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected)  
1011= Compare mode, trigger special event (CCPxIF bit is set; CCP1 resets TMR1; CCP2 resets TMR1  
and starts an A/D conversion (if A/D module is enabled))  
11xx= PWM mode  
1998 Microchip Technology Inc.  
DS30605A-page 45  
 
PIC16C63A/65B/73B/74B  
7.1.4  
CCP PRESCALER  
7.1  
Capture Mode  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in capture mode,  
the prescaler counter is cleared. This means that any  
reset will clear the prescaler counter.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1. An event is defined as:  
• every falling edge  
• every rising edge  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore the first capture may be from  
a non-zero prescaler. Example 7-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
• every 4th rising edge  
• every 16th rising edge  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value will be lost.  
EXAMPLE 7-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
7.1.1  
CCP PIN CONFIGURATION  
CLRF  
CCP1CON  
;Turn CCP module off  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
MOVLW NEW_CAPT_PS ;Load the W reg with  
; the new prescaler  
; mode value and CCP ON  
;Load CCP1CON with this  
; value  
Note: If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
MOVWF CCP1CON  
FIGURE 7-2: CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
Set flag bit CCP1IF  
(PIR1<2>)  
Prescaler  
÷ 1, 4, 16  
RC2/CCP1  
Pin  
CCPR1H  
CCPR1L  
TMR1L  
Capture  
Enable  
and  
edge detect  
TMR1H  
CCP1CON<3:0>  
Q’s  
7.1.2  
TIMER1 MODE SELECTION  
Timer1 must be running in timer mode or synchronized  
counter mode for the CCP module to use the capture  
feature. In asynchronous counter mode, the capture  
operation may not work.  
7.1.3  
SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in operating mode.  
DS30605A-page 46  
1998 Microchip Technology Inc.  
 
PIC16C63A/65B/73B/74B  
7.2.1  
CCP PIN CONFIGURATION  
7.2  
Compare Mode  
The user must configure the RC2/CCP1 pin as an out-  
put by clearing the TRISC<2> bit.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
• driven High  
• driven Low  
• remains Unchanged  
7.2.2  
TIMER1 MODE SELECTION  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, interrupt flag bit CCP1IF is set.  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
FIGURE 7-3: COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
7.2.3  
SOFTWARE INTERRUPT MODE  
When generate software interrupt is chosen the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
Special event trigger will  
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>),  
and set bit GO/DONE (ADCON0<2>),  
which starts an A/D conversion  
7.2.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
Special Event Trigger (CCP2 only)  
Set flag bit CCP1IF  
(PIR1<2>)  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
Comparator  
match  
RC2/CCP1  
Pin  
The special trigger output of CCP2 resets the TMR1  
register pair, and starts an A/D conversion (if the A/D  
module is enabled).  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
Note: The special event trigger from the CCP2  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
TABLE 7-3:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
8Ch  
87h  
INTCON  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
(1)  
(1)  
PIR1  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
1111 1111 1111 1111  
(1)  
(1)  
(1)  
PIE1  
TRISC  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
PORTC Data Direction Register  
0Eh  
0Fh  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
10h  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
15h  
Capture/Compare/PWM register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
CCPR1H Capture/Compare/PWM register1 (MSB)  
CCP1CON CCP1X CCP1Y  
17h  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.  
Note 1: These bits/registers are reserved, maintain as '0'.  
1998 Microchip Technology Inc.  
DS30605A-page 47  
PIC16C63A/65B/73B/74B  
7.3.1  
PWM PERIOD  
7.3  
PWM Mode  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
PWM period = [(PR2) + 1] ¥ 4 ¥ TOSC ¥  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
• TMR2 is cleared  
Figure 7-4 shows a simplified block diagram of the CCP  
module in PWM mode.  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 7.3.3.  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
FIGURE 7-4: SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note: The Timer2 postscaler (see Section 6.0) is  
not used in the determination of the PWM  
frequency.The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
CCP1CON<5:4>  
Duty cycle registers  
CCPR1L  
7.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available: the CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Q
R
S
Comparator  
TMR2  
RC2/CCP1  
(Note 1)  
PWM DUTY CYCLE = (CCPR1L:CCP1CON<5:4>) •  
TOSC (TMR2 PRESCALE VALUE)  
TRISC<2>  
Comparator  
Clear Timer,  
CCP1 pin and  
latch D.C.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
PR2  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock  
or 2 bits of the prescaler to create 10-bit time-base.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
A PWM output (Figure 7-5) has a time base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period (1/  
period).  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.=  
FIGURE 7-5: PWM OUTPUT  
Maximum PWM resolution (bits) for a given PWM fre-  
quency:  
Period  
FOSC  
---------------  
log  
FPWM  
-----------------------------  
=
bits  
log(2)  
Duty Cycle  
TMR2 = PR2  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
TMR2 = Duty Cycle  
TMR2 = PR2  
For an example PWM period and duty cycle calcula-  
tion, see the PICmicro Mid-Range Reference Manual  
(DS33023).  
DS30605A-page 48  
1998 Microchip Technology Inc.  
 
 
PIC16C63A/65B/73B/74B  
7.3.3  
SET-UP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2 regis-  
ter.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP1 module for PWM operation.  
TABLE 7-4:  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
5.5  
Maximum Resolution (bits)  
TABLE 7-5:  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
all other  
resets  
0Bh,8Bh  
0Ch  
8Ch  
87h  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
(1)  
(1)  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
1111 1111 1111 1111  
(1)  
(1)  
(1)  
PIE1  
TRISC  
TMR2  
PORTC Data Direction Register  
Timer2 module’s register  
11h  
0000 0000 0000 0000  
92h  
PR2  
Timer2 module’s period register  
1111 1111 1111 1111  
12h  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
15h  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
17h  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.  
Note 1: These bits/registers are reserved, maintain as '0'.  
1998 Microchip Technology Inc.  
DS30605A-page 49  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605A-page 50  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
8.0  
SYNCHRONOUS SERIAL  
PORT (SSP) MODULE  
8.1  
SSP Module Overview  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
For more information on SSP operation (including an  
2
I C Overview), refer to the PICmicro Mid-Range Ref-  
erence Manual (DS33023). Also, refer to Application  
2
Note AN578, “Use of the SSP Module in the I C Multi-  
Master Environment.”  
1998 Microchip Technology Inc.  
DS30605A-page 51  
PIC16C63A/65B/73B/74B  
FIGURE 8-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)  
R/W-0 R/W-0  
SMP CKE  
bit7  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit0  
- n =Value at POR reset  
bit 7:  
bit 6:  
SMP: SPI data input sample phase  
SPI Master Operation  
1 = Input data sampled at end of data output time  
0 = Input data sampled at middle of data output time  
SPI Slave Mode  
SMP must be cleared when SPI is used in slave mode  
CKE: SPI Clock Edge Select  
CKP = 0  
1 = Data transmitted on rising edge of SCK  
0 = Data transmitted on falling edge of SCK  
CKP = 1  
1 = Data transmitted on falling edge of SCK  
0 = Data transmitted on rising edge of SCK  
2
bit 5:  
bit 4:  
D/A: Data/Address bit (I C mode only)  
1 = Indicates that the last byte received or transmitted was data  
0 = Indicates that the last byte received or transmitted was address  
2
P: Stop bit (I C mode only. This bit is cleared when the SSP module is disabled, or when the Start bit is  
detected last, SSPEN is cleared)  
1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET)  
0 = Stop bit was not detected last  
2
bit 3:  
bit 2:  
S: Start bit (I C mode only. This bit is cleared when the SSP module is disabled, or when the Stop bit is  
detected last, SSPEN is cleared)  
1 = Indicates that a start bit has been detected last (this bit is '0' on RESET)  
0 = Start bit was not detected last  
2
R/W: Read/Write bit information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next start bit, stop bit, or ACK bit.  
1 = Read  
0 = Write  
2
bit 1:  
bit 0:  
UA: Update Address (10-bit I C mode only)  
1 = Indicates that the user needs to update the address in the SSPADD register  
0 = Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes)  
1 = Receive complete, SSPBUF is full  
0 = Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only)  
1 = Transmit in progress, SSPBUF is full  
0 = Transmit complete, SSPBUF is empty  
DS30605A-page 52  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 8-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WCOL SSPOV SSPEN  
bit7  
SSPM3 SSPM2 SSPM1 SSPM0  
bit0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7:  
WCOL: Write Collision Detect bit  
1 = The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0 = No collision  
bit 6:  
SSPOV: Receive Overflow Indicator bit  
In SPI mode  
1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow,  
the data in SSPSR is lost. Overflow can only occur in slave mode.The user must read the SSPBUF, even  
if only transmitting data, to avoid setting overflow. In master operation, the overflow bit is not set since  
each new reception (and transmission) is initiated by writing to the SSPBUF register.  
0 = No overflow  
2
In I C mode  
1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don’t care"  
in transmit mode. SSPOV must be cleared in software in either mode.  
0 = No overflow  
bit 5:  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode  
1 = Enables serial port and configures SCK, SDO, and SDI as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
2
In I C mode  
1 = Enables the serial port and configures the SDA and SCL pins as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
In both modes, when enabled, these pins must be properly configured as input or output.  
bit 4:  
CKP: Clock Polarity Select bit  
In SPI mode  
1 = Idle state for clock is a high level  
0 = Idle state for clock is a low level  
2
In I C mode  
SCK release control  
1 = Enable clock  
0 = Holds clock low (clock stretch) (Used to ensure data setup time)  
bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI master operation, clock = FOSC/4  
0001= SPI master operation, clock = FOSC/16  
0010= SPI master operation, clock = FOSC/64  
0011= SPI master operation, clock = TMR2 output/2  
0100= SPI slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin  
2
0110= I C slave mode, 7-bit address  
2
0111= I C slave mode, 10-bit address  
2
1011= I C firmware controlled master operation (slave idle)  
2
1110= I C slave mode, 7-bit address with start and stop bit interrupts enabled  
2
1111= I C slave mode, 10-bit address with start and stop bit interrupts enabled  
1998 Microchip Technology Inc.  
DS30605A-page 53  
PIC16C63A/65B/73B/74B  
8.2  
SPI Mode  
Note: When the SPI is in Slave Mode with SS pin  
control enabled, (SSPCON<3:0> = 0100)  
the SPI module will reset if the SS pin is set  
to VDD.  
This section contains register definitions and opera-  
tional characteristics of the SPI module.  
Additional information on SPI operation may be found  
in the PICmicro  
(DS33023).  
Mid-Range Reference Manual  
Note: If the SPI is used in Slave Mode with  
CKE = '1', then the SS pin control must be  
enabled.  
8.2.1  
OPERATION OF SSP MODULE IN SPI  
MODE  
FIGURE 8-3: SSP BLOCK DIAGRAM  
(SPI MODE)  
A block diagram of the SSP Module in SPI Mode is  
shown in Figure 8-3.  
Internal  
data bus  
The SPI mode allows 8-bits of data to be synchro-  
nously transmitted and received simultaneously. To  
accomplish communication, typically three pins are  
used:  
Read  
Write  
SSPBUF reg  
SSPSR reg  
• Serial Data Out (SDO) RC5/SDO  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
RC4/SDI/SDA  
RC3/SCK/SCL  
Additionally a fourth pin may be used when in a slave  
mode of operation:  
shift  
clock  
RC4/SDI/SDA  
RC5/SDO  
bit0  
• Slave Select (SS)  
RA5/SS/AN4  
When initializing the SPI, several options need to be  
specified.This is done by programming the appropriate  
control bits in the SSPCON register (SSPCON<5:0>)  
and SSPSTAT<7:6>. These control bits allow the fol-  
lowing to be specified:  
Control  
Enable  
SS  
RA5/SS/AN4  
Edge  
Select  
• Master Operation (SCK is the clock output)  
• Slave Mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
2
Clock Select  
• Clock Edge (Output data on rising/falling edge of  
SCK)  
SSPM3:SSPM0  
4
TMR2 output  
2
• Clock Rate (master operation only)  
• Slave Select Mode (Slave mode only)  
Edge  
Select  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON<5>) must be set.To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
ister and then set bit SSPEN. This configures the SDI,  
SDO, SCK and SS pins as serial port pins. For the pins  
to behave as the serial port function, they must have  
their data direction bits (in the TRISC register) appro-  
priately programmed. That is:  
TCY  
Prescaler  
4, 16, 64  
RC3/SCK/  
SCL  
TRISC<3>  
• SDI must have TRISC<4> set  
• SDO must have TRISC<5> cleared  
• SCK (master operation) must have TRISC<3>  
cleared  
• SCK (Slave mode) must have TRISC<3> set  
• SS must have TRISA<5> set  
DS30605A-page 54  
1998 Microchip Technology Inc.  
 
PIC16C63A/65B/73B/74B  
TABLE 8-1:  
REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
(1)  
(1)  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
(1)  
(1)  
(1)  
8Ch  
87h  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TRISC  
PORTC Data Direction Register  
1111 1111 1111 1111  
13h  
14h  
85h  
94h  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
SSPCON WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
TRISA  
PORTA Data Direction Register  
D/A R/W  
--11 1111 --11 1111  
0000 0000 0000 0000  
SSPSTAT  
SMP  
CKE  
P
S
UA  
BF  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.  
Note 1: Always maintain these bits clear.  
1998 Microchip Technology Inc.  
DS30605A-page 55  
PIC16C63A/65B/73B/74B  
2
2
The SSPCON register allows control of the I C opera-  
8.3  
SSP I C Operation  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I C modes to be selected:  
2
2
The SSP module in I C mode fully implements all slave  
functions, except general call support, and provides  
interrupts on start and stop bits in hardware to facilitate  
firmware implementations of the master functions. The  
SSP module implements the standard mode specifica-  
tions as well as 7-bit and 10-bit addressing.  
2
• I C Slave mode (7-bit address)  
2
• I C Slave mode (10-bit address)  
2
• I C Slave mode (7-bit address), with start and  
stop bit interrupts enabled  
2
• I C Slave mode (10-bit address), with start and  
Two pins are used for data transfer.These are the RC3/  
SCK/SCL pin, which is the clock (SCL), and the RC4/  
SDI/SDA pin, which is the data (SDA). The user must  
configure these pins as inputs or outputs through the  
TRISC<4:3> bits.  
stop bit interrupts enabled  
2
• I C Firmware controlled master operation, slave  
is idle  
2
Selection of any I C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits.  
The SSP module functions are enabled by setting SSP  
Enable bit SSPEN (SSPCON<5>).  
2
FIGURE 8-4: SSP BLOCK DIAGRAM  
Additional information on SSP I C operation may be  
2
(I C MODE)  
found in the PICMicro Mid-Range Reference Manual  
(DS33023).  
8.3.1  
SLAVE MODE  
Internal  
data bus  
In slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The SSP module will  
override the input state with the output data when  
required (slave-transmitter).  
Read  
Write  
SSPBUF reg  
SSPSR reg  
RC3/SCK/SCL  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the acknowledge (ACK) pulse, and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
shift  
clock  
RC4/  
SDI/  
MSb  
LSb  
SDA  
There are certain conditions that will cause the SSP  
module not to give this ACK pulse. These are if either  
(or both):  
Addr Match  
Match detect  
SSPADD reg  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit detect  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set.  
Table 8-2 shows what happens when a data transfer  
byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow condi-  
tion. Flag bit BF is cleared by reading the SSPBUF reg-  
ister while bit SSPOV is cleared through software.  
2
The SSP module has five registers for I C operation.  
These are the:  
• SSP Control Register (SSPCON)  
• SSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• SSP Shift Register (SSPSR) - Not directly acces-  
sible  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
• SSP Address Register (SSPADD)  
2
I C specification as well as the requirement of the SSP  
module is shown in timing parameter #100 and param-  
eter #101.  
DS30605A-page 56  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
8.3.1.1  
ADDRESSING  
1111 0 A9 A8 0’, where A9 and A8 are the two MSbs  
of the address. The sequence of events for 10-bit  
address is as follows with steps 7- 9 for slave-transmit-  
ter:  
Once the SSP module has been enabled, it waits for a  
START condition to occur. Following the START condi-  
tion, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
1. Receive first (high) byte of Address (bits SSPIF,  
BF, and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
4. Receive second (low) byte of Address (bits  
SSPIF, BF, and UA are set).  
b) The buffer full bit, BF is set.  
c) An ACK pulse is generated.  
5. Update the SSPADD register with the first (high)  
byte of Address. If match releases SCL line, this  
will clear bit UA.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) - on the falling  
edge of the ninth SCL pulse.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
In 10-bit address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write  
so the slave device will receive the second address  
byte. For a 10-bit address the first byte would equal  
7. Receive repeated START condition.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
TABLE 8-2:  
DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
Generate ACK  
Pulse  
(SSP Interrupt occurs  
if enabled)  
BF  
SSPOV  
SSPSR SSPBUF  
0
1
1
0
0
0
1
1
Yes  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
1998 Microchip Technology Inc.  
DS30605A-page 57  
PIC16C63A/65B/73B/74B  
8.3.1.2  
RECEPTION  
When the address byte overflow condition exists, then  
no acknowledge (ACK) pulse is given. An overflow con-  
dition is defined as either bit BF (SSPSTAT<0>) is set  
or bit SSPOV (SSPCON<6>) is set.  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
2
FIGURE 8-5:  
I C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4  
R/W=0  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
ACK  
9
SDA  
SCL  
A3 A2 A1  
D5  
D2  
D0  
8
D5  
D2  
D0  
8
D7 D6  
D4 D3  
D7 D6  
D4 D3  
D1  
7
D1  
7
3
7
1
2
4
5
4
3
6
5
6
1
2
3
6
1
2
4
8
5
P
S
SSPIF (PIR1<3>)  
Cleared in software  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
DS30605A-page 58  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
8.3.1.3  
TRANSMISSION  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF must be cleared in software, and  
the SSPSTAT register is used to determine the status  
of the byte. Flag bit SSPIF is set on the falling edge of  
the ninth clock pulse.  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit, and pin RC3/SCK/SCL is held  
low. The transmit data must be loaded into the SSP-  
BUF register, which also loads the SSPSR register.  
Then pin RC3/SCK/SCL should be enabled by setting  
bit CKP (SSPCON<4>). The master must monitor the  
SCL pin prior to asserting another clock pulse. The  
slave devices may be holding off the master by stretch-  
ing the clock. The eight data bits are shifted out on the  
falling edge of the SCL input.This ensures that the SDA  
signal is valid during the SCL high time (Figure 8-6).  
As a slave-transmitter, the ACK pulse from the master-  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line was high (not ACK), then the  
data transfer is complete. When the ACK is latched by  
the slave, the slave logic is reset (resets SSPSTAT reg-  
ister) and the slave then monitors for another occur-  
rence of the START bit. If the SDA line was low (ACK),  
the transmit data must be loaded into the SSPBUF reg-  
ister, which also loads the SSPSR register. Then pin  
RC3/SCK/SCL should be enabled by setting bit CKP.  
2
FIGURE 8-6: I C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
ACK  
9
SDA  
SCL  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
cleared in software  
SSPIF (PIR1<3>)  
BF (SSPSTAT<0>)  
From SSP interrupt  
service routine  
SSPBUF is written in software  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written-to  
before the CKP bit can be set)  
1998 Microchip Technology Inc.  
DS30605A-page 59  
 
PIC16C63A/65B/73B/74B  
8.3.2  
MASTER OPERATION  
8.3.3  
MULTI-MASTER OPERATION  
Master operation is supported in firmware using inter-  
rupt generation on the detection of the START and  
STOP conditions. The STOP (P) and START (S) bits  
are cleared from a reset or when the SSP module is  
disabled. The STOP (P) and START (S) bits will toggle  
based on the START and STOP conditions. Control of  
In multi-master operation, the interrupt generation on  
the detection of the START and STOP conditions  
allows the determination of when the bus is free. The  
STOP (P) and START (S) bits are cleared from a reset  
or when the SSP module is disabled. The STOP (P)  
and START (S) bits will toggle based on the START and  
2
2
the I C bus may be taken when the P bit is set, or the  
STOP conditions. Control of the I C bus may be taken  
bus is idle and both the S and P bits are clear.  
when bit P (SSPSTAT<4>) is set, or the bus is idle and  
both the S and P bits clear. When the bus is busy,  
enabling the SSP Interrupt will generate the interrupt  
when the STOP condition occurs.  
In master operation, the SCL and SDA lines are manip-  
ulated in firmware by clearing the corresponding  
TRISC<4:3> bit(s). The output level is always low, irre-  
spective of the value(s) in PORTC<4:3>. So when  
In multi-master operation, the SDA line must be moni-  
tored to see if the signal level is the expected output  
level. This check only needs to be done when a high  
level is output. If a high level is expected and a low level  
is present, the device needs to release the SDA and  
SCL lines (set TRISC<4:3>). There are two stages  
where this arbitration can be lost, these are:  
transmitting data,  
a '1' data bit must have the  
TRISC<4> bit set (input) and a '0' data bit must have  
the TRISC<4> bit cleared (output). The same scenario  
is true for the SCL line with the TRISC<3> bit.  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP Interrupt if enabled):  
• Address Transfer  
• Data Transfer  
• START condition  
• STOP condition  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address trans-  
fer stage, communication to the device may be in  
progress. If addressed, an ACK pulse will be gener-  
ated. If arbitration was lost during the data transfer  
stage, the device will need to re-transfer the data at a  
later time.  
• Data transfer byte transmitted/received  
Master operation can be done with either the slave  
mode idle (SSPM3:SSPM0 = 1011) or with the slave  
active. When both master operation and slave modes  
are used, the software needs to differentiate the  
source(s) of the interrupt.  
For more information on master operation, see AN554  
For more information on master operation, see AN578  
2
- Software Implementation of I C Bus Master.  
2
- Use of the SSP Module in the of I C Multi-Master  
Environment.  
2
TABLE 8-3:  
REGISTERS ASSOCIATED WITH I C OPERATION  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh, 8Bh  
0Ch  
8Ch  
13h  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
(1)  
(1)  
(1)  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(1)  
(1)  
(1)  
PIE1  
ADIE  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
2
93h  
SSPADD Synchronous Serial Port (I C mode) Address Register  
14h  
SSPCON  
SSPSTAT  
TRISC  
WCOL  
SMP  
SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0  
CKE D/A R/W UA BF  
94h  
P
S
PORTC Data Direction register  
87h  
1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'.  
Shaded cells are not used by SSP module in SPI mode.  
Note 1: These bits are unimplemented, read as '0'.  
DS30605A-page 60  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
The USART can be configured in the following modes:  
9.0  
UNIVERSAL SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
• Asynchronous (full duplex)  
• Synchronous - Master (half duplex)  
• Synchronous - Slave (half duplex)  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial Com-  
munications Interface or SCI).The USART can be con-  
figured as a full duplex asynchronous system that can  
communicate with peripheral devices such as CRT ter-  
minals and personal computers, or it can be configured  
as a half duplex synchronous system that can commu-  
nicate with peripheral devices such as A/D or D/A inte-  
grated circuits, Serial EEPROMs etc.  
Bit SPEN (RCSTA<7>), and bits TRISC<7:6>, have to  
be set in order to configure pins RC6/TX/CK and RC7/  
RX/DT as the Universal Synchronous Asynchronous  
Receiver Transmitter.  
FIGURE 9-1: TXSTA:TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n =Value at POR reset  
bit 7:  
CSRC: Clock Source Select bit  
Asynchronous mode  
Don’t care  
Synchronous mode  
1 = Master mode (Clock generated internally from BRG)  
0 = Slave mode (Clock from external source)  
bit 6:  
TX9: 9-bit Transmit Enable bit  
1 = Selects 9-bit transmission  
0 = Selects 8-bit transmission  
bit 5:  
TXEN: Transmit Enable bit  
1 = Transmit enabled  
0 = Transmit disabled  
Note: SREN/CREN overrides TXEN in SYNC mode.  
bit 4:  
SYNC: USART Mode Select bit  
1 = Synchronous mode  
0 = Asynchronous mode  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode  
1 = High speed  
0 = Low speed  
Synchronous mode  
Unused in this mode  
bit 1:  
bit 0:  
TRMT: Transmit Shift Register Status bit  
1 = TSR empty  
0 = TSR full  
TX9D: 9th bit of transmit data. Can be parity bit.  
1998 Microchip Technology Inc.  
DS30605A-page 61  
PIC16C63A/65B/73B/74B  
FIGURE 9-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
U-0  
R-0  
R-0  
R-x  
FERR  
OERR  
RX9D  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n =Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
SPEN: Serial Port Enable bit  
1 = Serial port enabled (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)  
0 = Serial port disabled  
RX9: 9-bit Receive Enable bit  
1 = Selects 9-bit reception  
0 = Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode  
Don’t care  
Synchronous mode - master  
1 = Enables single receive  
0 = Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - slave  
Unused in this mode  
bit 4:  
CREN: Continuous Receive Enable bit  
Asynchronous mode  
1 = Enables continuous receive  
0 = Disables continuous receive  
Synchronous mode  
1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0 = Disables continuous receive  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
FERR: Framing Error bit  
1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)  
0 = No framing error  
bit 1:  
bit 0:  
OERR: Overrun Error bit  
1 = Overrun error (Can be cleared by clearing bit CREN)  
0 = No overrun error  
RX9D: 9th bit of received data (Can be parity bit)  
DS30605A-page 62  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
9.1  
USART Baud Rate Generator (BRG)  
EXAMPLE 9-1: CALCULATING BAUD  
RATE ERROR  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In asynchronous  
mode bit BRGH (TXSTA<2>) also controls the baud  
rate. In synchronous mode bit BRGH is ignored.  
Table 9-1 shows the formula for computation of the  
baud rate for different USART modes which only apply  
in master mode (internal clock).  
Desired Baud rate  
=Fosc / (64 (X + 1))  
=16000000 /(64 (X + 1))  
= 25.042 = 25  
9600  
X
Calculated Baud Rate =16000000 / (64 (25 + 1))  
=
=
9615  
Error  
(Calculated Baud Rate-Desired Baud Rate)  
Desired Baud Rate  
=
=
(9615 - 9600) / 9600  
0.16%  
Given the desired baud rate and Fosc, the nearest inte-  
ger value for the SPBRG register can be calculated  
using the formula in Table 9-1. From this, the error in  
baud rate can be determined.  
It may be advantageous to use the high baud rate  
(BRGH = 1) even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
Example 9-1 shows the calculation of the baud rate  
error for the following conditions:  
FOSC = 16 MHz  
Desired Baud Rate = 9600  
BRGH = 0  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
SYNC = 0  
9.1.1  
SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
TABLE 9-1:  
SYNC  
BAUD RATE FORMULA  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+1))  
(Synchronous) Baud Rate = FOSC/(4(X+1))  
Baud Rate= FOSC/(16(X+1))  
NA  
X = value in SPBRG (0 to 255)  
TABLE 9-2:  
REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4 Bit 3 Bit 2  
Bit 1  
Bit 0  
0000 -010 0000 -010  
98h  
18h  
99h  
TXSTA CSRC TX9  
RCSTA SPEN RX9  
TXEN SYNC  
SREN CREN  
BRGH TRMT TX9D  
FERR OERR RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x = unknown, -= unimplemented read as '0'. Shaded cells are not used by the BRG.  
1998 Microchip Technology Inc.  
DS30605A-page 63  
 
 
PIC16C63A/65B/73B/74B  
TABLE 9-3:  
BAUD RATES FOR SYNCHRONOUS MODE  
BAUD FOSC = 20 MHz SPBRG  
16 MHz  
SPBRG  
value  
10 MHz  
SPBRG 7.15909 MHz  
value  
SPBRG  
value  
RATE  
(K)  
value  
KBAUD  
NA  
%
KBAUD  
%
-
KBAUD  
%
KBAUD  
NA  
%
-
(decimal)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
-
-
-
NA  
NA  
NA  
NA  
-
-
NA  
-
-
-
-
-
NA  
-
-
NA  
-
-
NA  
-
2.4  
NA  
-
-
-
-
NA  
-
NA  
-
-
9.6  
NA  
-
+1.73  
+0.16  
+0.16  
-1.96  
0
-
-
-
9.766  
19.23  
75.76  
96.15  
312.5  
500  
+1.73  
+0.16  
-1.36  
+0.16  
+4.17  
0
255  
129  
32  
25  
7
9.622 +0.23  
19.24 +0.23  
77.82 +1.32  
185  
92  
22  
18  
5
19.2  
76.8  
96  
19.53  
76.92  
96.15  
294.1  
500  
255  
64  
51  
16  
9
19.23 +0.16  
76.92 +0.16  
207  
51  
41  
12  
7
95.24  
-0.79  
94.20  
298.3  
NA  
-1.88  
300  
500  
HIGH  
LOW  
307.69 +2.56  
-0.57  
500  
4000  
0
-
4
-
-
-
-
5000  
19.53  
-
0
0
2500  
9.766  
-
0
1789.8  
6.991  
0
-
255  
15.625  
-
255  
-
255  
255  
BAUD  
RATE  
(K)  
FOSC = 5.0688 MHz  
4 MHz  
SPBRG 3.579545 MHz SPBRG  
1 MHz  
SPBRG  
value  
32.768 kHz  
SPBRG  
value  
value  
value  
KBAUD  
NA  
%
SPBRG KBAUD  
%
-
KBAUD  
NA  
%
KBAUD  
NA  
%
-
KBAUD  
%
(decimal)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
207  
103  
25  
12  
2
0.303  
1.170  
NA  
+1.14  
26  
NA  
-
-
NA  
-
1.202 +0.16  
2.404 +0.16  
9.615 +0.16  
19.24 +0.16  
83.34 +8.51  
-2.48  
6
2.4  
NA  
-
-
-
-
NA  
-
-
-
-
-
-
-
-
-
-
-
-
9.6  
9.6  
0
131  
65  
15  
12  
3
9.615 +0.16  
19.231 +0.16  
76.923 +0.16  
103  
51  
12  
9
9.622  
19.04  
74.57  
99.43  
298.3  
NA  
+0.23  
-0.83  
-2.90  
+3.57  
-0.57  
-
92  
46  
11  
8
NA  
-
19.2  
76.8  
96  
19.2  
79.2  
97.48  
316.8  
NA  
0
NA  
-
+3.13  
NA  
-
+1.54  
1000  
NA  
+4.17  
NA  
NA  
-
-
-
-
-
-
NA  
-
300  
500  
HIGH  
LOW  
+5.60  
-
-
-
-
-
2
-
NA  
-
-
-
-
-
-
NA  
-
-
NA  
-
NA  
1267  
4.950  
0
100  
0
894.9  
3.496  
-
0
250  
0
8.192  
0.032  
0
255  
3.906  
255  
-
255  
0.9766  
255  
255  
TABLE 9-4:  
BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
BAUD FOSC = 20 MHz SPBRG  
16 MHz  
SPBRG  
value  
10 MHz  
SPBRG 7.15909 MHz  
value  
SPBRG  
value  
RATE  
(K)  
value  
%
-
%
%
%
(decimal)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
-
255  
129  
32  
15  
3
NA  
-
-
207  
103  
25  
12  
2
NA  
1.202  
2.404  
9.766  
19.53  
78.13  
NA  
-
-
129  
64  
15  
7
NA  
-
-
92  
46  
11  
5
1.221  
2.404  
9.469  
19.53  
78.13  
104.2  
312.5  
NA  
+1.73  
+0.16  
-1.36  
+1.73  
+1.73  
+8.51  
+4.17  
-
1.202 +0.16  
2.404 +0.16  
9.615 +0.16  
19.23 +0.16  
83.33 +8.51  
+0.16  
1.203 +0.23  
2.4  
+0.16  
2.380  
9.322  
18.64  
NA  
-0.83  
9.6  
+1.73  
-2.90  
19.2  
76.8  
96  
+1.73  
-2.90  
+1.73  
1
-
-
-
-
-
-
-
2
NA  
NA  
-
-
-
-
-
-
-
-
-
-
-
-
NA  
-
300  
500  
HIGH  
LOW  
0
-
NA  
-
NA  
-
-
NA  
-
NA  
-
NA  
-
312.5  
1.221  
-
0
250  
0.977  
0
156.3  
0.6104  
0
111.9  
0.437  
0
-
255  
255  
255  
255  
BAUD  
RATE  
(K)  
FOSC = 5.0688 MHz  
4 MHz  
SPBRG 3.579545 MHz SPBRG  
1 MHz  
SPBRG  
value  
(decimal)  
32.768 kHz  
SPBRG  
value  
(decimal)  
value  
value  
%
SPBRG  
%
%
%
%
(decimal)  
(decimal)  
0.3  
1.2  
0.31  
1.2  
+3.13  
255  
65  
32  
7
0.3005 -0.17  
1.202 +1.67  
2.404 +1.67  
207  
0.301  
1.190  
2.432  
9.322  
18.64  
NA  
+0.23  
185  
46  
22  
5
0.300 +0.16  
1.202 +0.16  
51  
0.256 -14.67  
1
0
51  
-0.83  
12  
NA  
NA  
-
-
-
-
-
-
-
-
-
-
-
2.4  
2.4  
0
25  
+1.32  
2.232  
NA  
-6.99  
6
-
9.6  
9.9  
+3.13  
NA  
NA  
-
-
-
-
-
-
-
-
-
-2.90  
-
-
-
-
-
-
-
-
-
NA  
-
19.2  
76.8  
96  
19.8  
79.2  
NA  
+3.13  
3
-
-2.90  
2
NA  
-
NA  
-
+3.13  
0
NA  
-
-
-
-
-
-
-
-
NA  
-
NA  
-
-
-
-
-
-
-
NA  
-
NA  
-
NA  
-
NA  
-
300  
500  
HIGH  
NA  
-
NA  
-
-
NA  
-
NA  
-
-
NA  
-
-
NA  
-
NA  
NA  
-
NA  
NA  
79.2  
0
62.500  
3.906  
0
55.93  
0.2185  
0
15.63  
0.0610  
0
0.512  
0.0020  
0
LOW 0.3094  
255  
255  
255  
255  
255  
DS30605A-page 64  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 9-5:  
BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
BAUD FOSC = 20 MHz SPBRG  
16 MHz  
SPBRG  
value  
10 MHz  
SPBRG  
value  
7.16 MHz  
SPBRG  
value  
RATE  
(K)  
value  
%
+0.16  
+0.16  
-1.36  
-1.36  
-1.36  
0
%
%
%
(decimal)  
(deci-  
(decimal)  
(deci-  
9.6  
9.615  
19.230  
37.878  
56.818  
129  
64  
32  
21  
10  
4
9.615 +0.16  
19.230 +0.16  
38.461 +0.16  
58.823 +2.12  
111.111 -3.55  
103  
51  
25  
16  
8
9.615  
18.939 -1.36  
39.062 +1.7  
56.818 -1.36  
+0.16  
64  
32  
15  
10  
4
9.520  
-0.83  
46  
22  
11  
7
19.2  
38.4  
57.6  
19.454 +1.32  
37.286 -2.90  
55.930 -2.90  
111.860 -2.90  
115.2 113.636  
125  
NA  
+8.51  
3
250  
625  
250  
625  
250  
NA  
NA  
0
-
3
-
0
-
-
NA  
NA  
NA  
-
-
-
-
0
1
-
625  
NA  
0
-
1250  
1250  
0
0
-
-
-
-
BAUD  
RATE  
(K)  
FOSC = 5.068  
%
SPBRG  
value  
4 MHz  
SPBRG  
value  
3.579 MHz  
%
SPBRG  
value  
1 MHz  
SPBRG  
value  
32.768 kHz  
%
SPBRG  
value  
%
-
%
(decimal)  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
9.6  
19.2  
38.4  
57.6  
115.2  
250  
9.6  
18.645  
39.6  
52.8  
105.6  
NA  
0
-2.94  
+3.12  
-8.33  
-8.33  
-
32  
16  
7
5
2
-
NA  
-
207  
103  
25  
12  
-
9.727 +1.32  
18.643 -2.90  
37.286 -2.90  
55.930 -2.90  
111.860 -2.90  
223.721 -10.51  
22  
11  
5
8.928  
-6.99  
6
2
1
0
-
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.202 +0.17  
2.403 +0.13  
9.615 +0.16  
19.231 +0.16  
20.833 +8.51  
31.25 -18.61  
3
62.5  
NA  
NA  
NA  
NA  
+8.51  
1
-
-
-
-
NA  
NA  
NA  
-
-
-
0
-
625  
NA  
-
-
-
NA  
NA  
-
-
-
-
1250  
NA  
-
-
-
-
-
1998 Microchip Technology Inc.  
DS30605A-page 65  
PIC16C63A/65B/73B/74B  
(occurs in one TCY), the TXREG register is empty and  
flag bit TXIF (PIR1<4>) is set. This interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
( PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register.While flag bit TXIF indicated the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. Status bit TRMT  
is a read only bit which is set when the TSR register is  
empty. No interrupt logic is tied to this bit, so the user  
has to poll this bit in order to determine if the TSR reg-  
ister is empty.  
9.2  
USART Asynchronous Mode  
In this mode, the USART uses standard non-return-to-  
zero (NRZ) format (one start bit, eight or nine data bits  
and one stop bit). The most common data format is  
8-bits. An on-chip dedicated 8-bit baud rate generator  
can be used to derive standard baud rate frequencies  
from the oscillator. The USART transmits and receives  
the LSb first.The USART’s transmitter and receiver are  
functionally independent, but use the same data format  
and baud rate. The baud rate generator produces a  
clock, either x16 or x64 of the bit shift rate, depending  
on bit BRGH (TXSTA<2>). Parity is not supported by  
the hardware, but can be implemented in software (and  
stored as the ninth data bit). Asynchronous mode is  
stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
memory so it is not available to the user.  
Note 2: Flag bit TXIF is set when enable bit TXEN  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
is set.  
Steps to follow when setting up an asynchronous trans-  
mission:  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 9.1)  
Baud Rate Generator  
• Sampling Circuit  
• Asynchronous Transmitter  
• Asynchronous Receiver  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
3. If interrupts are desired, then set enable bit  
TXIE.  
9.2.1  
USART ASYNCHRONOUS TRANSMITTER  
The USART transmitter block diagram is shown in  
Figure 9-3. The heart of the transmitter is the transmit  
(serial) shift register (TSR).The shift register obtains its  
data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available). Once the  
TXREG register transfers the data to the TSR register  
4. If 9-bit transmission is desired, then set transmit  
bit TX9.  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts trans-  
mission).  
FIGURE 9-3: USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG register  
TXIE  
8
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
TSR register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
DS30605A-page 66  
1998 Microchip Technology Inc.  
 
PIC16C63A/65B/73B/74B  
FIGURE 9-4: ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
Start Bit  
Bit 0  
Bit 1  
WORD 1  
Bit 7/8  
Stop Bit  
TXIF bit  
(Transmit buffer  
reg. empty flag)  
WORD 1  
Transmit Shift Reg  
TRMT bit  
(Transmit shift  
reg. empty flag)  
FIGURE 9-5: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
Start Bit  
Start Bit  
WORD 2  
Bit 0  
Bit 1  
Bit 7/8  
Bit 0  
Stop Bit  
TXIF bit  
(interrupt reg. flag)  
WORD 1  
TRMT bit  
(Transmit shift  
reg. empty flag)  
WORD 1  
Transmit Shift Reg.  
WORD 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 9-6:  
REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
POR,  
BOR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 0000 0000 0000  
(1)  
(2)  
0Ch  
PIR1  
RCIF  
SREN  
TXREG USART Transmit Register  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
CREN FERR OERR RX9D  
PSPIF  
ADIF  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0000 0000 0000  
18h  
19h  
8Ch  
RCSTA SPEN  
RX9  
(1)  
(2)  
RCIE  
PIE1  
TXSTA CSRC  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
SYNC BRGH TRMT TX9D  
PSPIE  
ADIE  
TX9  
0000 -010 0000 -010  
0000 0000 0000 0000  
98h  
99h  
TXEN  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.  
Note 1: PORTD and PORTE not implemented on the PIC16C63A/73B, maintain as ’0’.  
2: A/D not implemented on the PIC16C63A/65B, maintain as ’0’.  
1998 Microchip Technology Inc.  
DS30605A-page 67  
PIC16C63A/65B/73B/74B  
9.2.2  
USART ASYNCHRONOUS RECEIVER  
3. If interrupts are desired, then set enable bit  
RCIE.  
The receiver block diagram is shown in Figure 9-6.The  
data is received on the RC7/RX/DT pin and drives the  
data recovery block.The data recovery block is actually  
a high speed shifter operating at x16 times the baud  
rate, whereas the main receive serial shifter operates  
at the bit rate or at FOSC.  
4. If 9-bit reception is desired, then set bit RX9.  
5. Enable the reception by setting bit CREN.  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
Steps to follow when setting up an Asynchronous  
Reception:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 9.1).  
8. Read the 8-bit received data by reading the  
RCREG register.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
2. Enable the asynchronous serial port by clearing  
bit SYNC, and setting bit SPEN.  
FIGURE 9-6: USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
SPBRG  
÷ 64  
RSR register  
LSb  
MSb  
or  
÷ 16  
0
Baud Rate Generator  
1
7
Stop (8)  
Start  
• •  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D  
SPEN  
RCREG register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
FIGURE 9-7: ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX (pin)  
bit0  
bit1  
Stop  
bit  
Stop  
bit  
bit7/8 Stop  
bit  
bit0  
bit7/8  
bit7/8  
Rcv shift  
reg  
Rcv buffer reg  
WORD 2  
RCREG  
WORD 1  
RCREG  
Read Rcv  
buffer reg  
RCREG  
RCIF  
(interrupt flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
DS30605A-page 68  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 9-7:  
REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
POR,  
BOR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(2)  
0Ch  
PIR1  
RCIF  
SREN  
RCREG USART Receive Register  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PSPIF  
ADIF  
RX9  
18h  
1Ah  
8Ch  
RCSTA SPEN  
CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
(1)  
(2)  
PIE1  
TXSTA CSRC  
RCIE  
TXIE  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PSPIE  
ADIE  
TX9  
98h  
99h  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B, always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B, always maintain these bits clear.  
1998 Microchip Technology Inc.  
DS30605A-page 69  
PIC16C63A/65B/73B/74B  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register.While flag bit TXIF indicates the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. TRMT is a read  
only bit which is set when the TSR is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
The TSR is not mapped in data memory so it is not  
available to the user.  
9.3  
USART Synchronous Master Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner, i.e. transmission and reception  
do not occur at the same time. When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA<4>). In  
addition, enable bit SPEN (RCSTA<7>) is set in order  
to configure the RC6/TX/CK and RC7/RX/DT I/O pins  
to CK (clock) and DT (data) lines respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit CSRC (TXSTA<7>).  
Steps to follow when setting up a Synchronous Master  
Transmission:  
9.3.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 9.1).  
The USART transmitter block diagram is shown in  
Figure 9-3. The heart of the transmitter is the transmit  
(serial) shift register (TSR).The shift register obtains its  
data from the read/write transmit buffer register  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one Tcycle), the TXREG is empty and inter-  
rupt bit TXIF (PIR1<4>) is set. The interrupt can be  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. If interrupts are desired, then set enable bit  
TXIE.  
4. If 9-bit transmission is desired, then set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
TABLE 9-8:  
REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 0000  
0000 0000  
(1)  
(2)  
0Ch  
PIR1  
RCSTA SPEN  
TXREG USART Transmit Register  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF  
— FERR OERR RX9D  
PSPIF  
ADIF  
0000 -00x  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
18h  
19h  
8Ch  
RX9  
SREN CREN  
(1)  
(2)  
PIE1  
TXSTA CSRC  
RCIE TXIE  
TXEN SYNC  
SSPIE CCP1IE TMR2IE TMR1IE  
— BRGH TRMT TX9D  
PSPIE  
ADIE  
TX9  
0000 -010  
0000 0000  
0000 -010  
0000 0000  
98h  
99h  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B, always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B, always maintain these bits clear.  
DS30605A-page 70  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 9-8: SYNCHRONOUS TRANSMISSION  
Q1Q2 Q3Q4 Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2 Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
Bit 0  
Bit 1  
Bit 2  
Bit 7  
Bit 0  
Bit 1  
WORD 2  
Bit 7  
WORD 1  
Write to  
TXREG reg  
Write word1  
Write word2  
TXIF bit  
(Interrupt flag)  
TRMT bit  
'1'  
Note: Sync master mode; SPBRG = '0'. Continuous transmission of two 8-bit words  
'1'  
TXEN bit  
FIGURE 9-9: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit2  
bit1  
bit6  
bit7  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
1998 Microchip Technology Inc.  
DS30605A-page 71  
PIC16C63A/65B/73B/74B  
9.3.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, then set enable bit  
RCIE.  
Once synchronous mode is selected, reception is  
enabled by setting either enable bit SREN (RCSTA<5>)  
or enable bit CREN (RCSTA<4>). Data is sampled on  
the RC7/RX/DT pin on the falling edge of the clock. If  
enable bit SREN is set, then only a single word is  
received. If enable bit CREN is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
5. If 9-bit reception is desired, then set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
Steps to follow when setting up a Synchronous Master  
Reception:  
9. Read the 8-bit received data by reading the  
RCREG register.  
1. Initialize the SPBRG register for the appropriate  
baud rate. (Section 9.1)  
10. If any error occurred, clear the error by clearing  
bit CREN.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
TABLE 9-9:  
REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 0000  
0000 0000  
(1)  
(2)  
0Ch  
PIR1  
RCSTA SPEN  
RCREG USART Receive Register  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF  
— FERR OERR RX9D  
PSPIF  
ADIF  
0000 -00x  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
18h  
1Ah  
8Ch  
RX9  
SREN CREN  
(1)  
(2)  
PIE1  
RCIE TXIE  
TXEN SYNC  
SSPIE CCP1IE TMR2IE TMR1IE  
— BRGH TRMT TX9D  
PSPIE  
CSRC  
ADIE  
TX9  
0000 -010  
0000 0000  
0000 -010  
0000 0000  
98h  
99h  
TXSTA  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B. Always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B. Allways maintain these bits clear.  
FIGURE 9-10: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
bit SREN  
SREN bit  
CREN bit  
'0'  
'0'  
RCIF bit  
(interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates SYNC master mode with bit SREN = '1' and bit BRGH = '0'.  
DS30605A-page 72  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
9.4.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
9.4  
USART Synchronous Slave Mode  
Synchronous slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the RC6/TX/CK pin (instead of being supplied internally  
in master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA<7>).  
The operation of the synchronous master and slave  
modes is identical except in the case of the SLEEP  
mode and bit SREN, which is a "don't care" in slave  
mode.  
If receive is enabled by setting bit CREN prior to the  
SLEEPinstruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector  
(0004h).  
9.4.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
The operation of the synchronous master and slave  
modes are identical, except in the case of the SLEEP  
mode.  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
Steps to follow when setting up a Synchronous Slave  
Reception:  
a) The first word will immediately transfer to the  
TSR register and transmit.  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
2. If interrupts are desired, then set enable bit  
RCIE.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will now be  
set.  
3. If 9-bit reception is desired, then set bit RX9.  
4. To enable reception, set enable bit CREN.  
5. Flag bit RCIF will be set when reception is com-  
plete. An interrupt will be generated if enable bit  
RCIE was set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector (0004h).  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
Steps to follow when setting up a Synchronous Slave  
Transmission:  
7. Read the 8-bit received data by reading the  
RCREG register.  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, then set enable bit  
TXIE.  
4. If 9-bit transmission is desired, then set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
1998 Microchip Technology Inc.  
DS30605A-page 73  
PIC16C63A/65B/73B/74B  
TABLE 9-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 0000  
0000 0000  
(1)  
(2)  
0Ch  
PIR1  
RCSTA SPEN  
TXREG USART Transmit Register  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF  
— FERR OERR RX9D  
PSPIF  
ADIF  
0000 -00x  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
18h  
19h  
8Ch  
RX9  
SREN CREN  
(1)  
(2)  
PIE1  
TXSTA CSRC  
RCIE TXIE  
TXEN SYNC  
SSPIE CCP1IE TMR2IE TMR1IE  
— BRGH TRMT TX9D  
PSPIE  
ADIE  
TX9  
0000 -010  
0000 0000  
0000 -010  
0000 0000  
98h  
99h  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B. Always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B. Always maintain these bits clear.  
TABLE 9-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 0000  
0000 0000  
(1)  
(2)  
0Ch  
PIR1  
RCSTA SPEN  
RCREG USART Receive Register  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF  
— FERR OERR RX9D  
PSPIF  
ADIF  
0000 -00x  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
18h  
1Ah  
8Ch  
RX9  
SREN CREN  
(1)  
(2)  
PIE1  
RCIE TXIE  
TXEN SYNC  
SSPIE CCP1IE TMR2IE TMR1IE  
— BRGH TRMT TX9D  
PSPIE  
CSRC  
ADIE  
TX9  
0000 -010  
0000 0000  
0000 -010  
0000 0000  
98h  
99h  
TXSTA  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B. Always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B. Always maintain these bits clear.  
DS30605A-page 74  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Additional information on the A/D module is available in  
10.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
the PICmicro  
(DS33023).  
Mid-Range Reference Manual,  
This section applies to the PIC16C73B and  
PIC16C74B only.The analog-to-digital (A/D) converter  
module has five inputs for the PIC16C73B, and eight for  
the PIC16C74B.  
The A/D module has three registers. These registers  
are:  
• A/D Result Register (ADRES)  
A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
The A/D allows conversion of an analog input signal to  
a corresponding 8-bit digital number (refer to Applica-  
tion Note AN546 for use of A/D Converter). The output  
of the sample and hold is the input into the converter,  
which generates the result via successive approxima-  
tion. The analog reference voltage is software select-  
able to either the device’s positive supply voltage (VDD)  
or the voltage level on the RA3/AN3/VREF pin.  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off and any  
conversion is aborted.  
The ADCON0 register, shown in Figure 10-1, controls  
the operation of the A/D module. The ADCON1 regis-  
ter, shown in Figure 10-2, configures the functions of  
the port pins. The port pins can be configured as ana-  
log inputs (RA3 can also be a voltage reference) or as  
digital I/O.  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode.To oper-  
ate in sleep, the A/D conversion clock must be derived  
from the A/D’s internal RC oscillator.  
FIGURE 10-1: ADCON0 REGISTER (ADDRESS 1Fh)  
R/W-0 R/W-0 R/W-0  
ADCS1 ADCS0 CHS2  
bit7  
R/W-0  
CHS1  
R/W-0  
R/W-0  
U-0  
R/W-0  
ADON  
CHS0 GO/DONE  
R =Readable bit  
W = Writable bit  
U =Unimplemented bit,  
read as ‘0’  
bit0  
- n = Value at POR reset  
bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from an internal RC oscillator)  
bit 5-3: CHS2:CHS0: Analog Channel Select bits  
000= channel 0, (RA0/AN0)  
001= channel 1, (RA1/AN1)  
010= channel 2, (RA2/AN2)  
011= channel 3, (RA3/AN3)  
100= channel 4, (RA5/AN4)  
bit 2:  
GO/DONE: A/D Conversion Status bit  
If ADON = 1  
1 = A/D conversion in progress (setting this bit starts the A/D conversion)  
0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion  
is complete)  
bit 1:  
bit 0:  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1 = A/D converter module is operating  
0 = A/D converter module is shutoff and consumes no operating current  
1998 Microchip Technology Inc.  
DS30605A-page 75  
PIC16C63A/65B/73B/74B  
FIGURE 10-2: ADCON1 REGISTER (ADDRESS 9Fh)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PCFG2  
PCFG1  
PCFG0  
R =Readable bit  
W = Writable bit  
bit7  
bit0  
U =Unimplemented  
bit, read as ‘0’  
- n = Value at POR reset  
bit 7-3: Unimplemented: Read as '0'  
bit 2-0: PCFG2:PCFG0: A/D Port Configuration Control bits  
PCFG2:PCFG0  
RA0  
RA1  
RA2  
RA5  
RA3  
VREF  
VDD  
000  
001  
010  
011  
100  
101  
11x  
A
A
A
A
A
A
A
A
A
A
D
A
A
A
A
A
D
A
A
A
D
D
D
A
A
A
D
D
D
VREF  
A
RA3  
VDD  
RA3  
VDD  
RA3  
VDD  
VREF  
A
VREF  
D
A = Analog input  
D = Digital I/O  
DS30605A-page 76  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
The ADRES register contains the result of the A/D con-  
version. When the A/D conversion is complete, the  
result is loaded into the ADRES register, the GO/DONE  
bit (ADCON0<2>) is cleared, and A/D interrupt flag bit  
ADIF is set. The block diagram of the A/D module is  
shown in Figure 10-3.  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
3. Wait the required acquisition time.  
4. Start conversion:  
The value that is in the ADRES register is not modified  
for a Power-on Reset. The ADRES register will contain  
unknown data after a Power-on Reset.  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 10.1.  
After this acquisition time has elapsed the A/D conver-  
sion can be started. The following steps should be fol-  
lowed for doing an A/D conversion:  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result register (ADRES), clear bit  
ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
1. Configure the A/D module:  
• Configure analog pins / voltage reference /  
and digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
FIGURE 10-3: A/D BLOCK DIAGRAM  
CHS2:CHS0  
111  
(1)  
RE2/AN7  
110  
(1)  
RE1/AN6  
101  
(1)  
RE0/AN5  
100  
RA5/AN4  
VIN  
011  
(Input voltage)  
RA3/AN3/VREF  
010  
RA2/AN2  
A/D  
Converter  
001  
RA1/AN1  
000  
VDD  
RA0/AN0  
000or  
010or  
100  
VREF  
(Reference  
voltage)  
001or  
011or  
101  
PCFG2:PCFG0  
Note 1: Available on the PIC16C74B only.  
1998 Microchip Technology Inc.  
DS30605A-page 77  
PIC16C63A/65B/73B/74B  
To calculate the minimum acquisition time, TACQ, see  
the PICmicro Mid-Range Reference Manual,  
(DS33023). This equation calculates the acquisition  
time to within 1/2 LSb error (512 steps for the A/D).The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified accuracy.  
10.1  
A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 10-4.The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD). The  
source impedance affects the offset voltage at the ana-  
log input (due to pin leakage current). The maximum  
recommended impedance for analog sources is 10  
k. After the analog input channel is selected  
(changed) this acquisition must be done before the  
conversion can be started.  
Note: When the conversion is started, the hold-  
ing capacitor is disconnected from the  
input pin.  
FIGURE 10-4: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CHOLD  
= DAC capacitance  
= 51.2 pF  
CPIN  
5 pF  
VA  
I leakage  
± 500 nA  
VT = 0.6V  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
I leakage = leakage current at the pin due to  
various junctions  
VDD 4V  
3V  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance (from DAC)  
5
6 7 8 9 10 11  
Sampling Switch  
( k)  
DS30605A-page 78  
1998 Microchip Technology Inc.  
 
PIC16C63A/65B/73B/74B  
10.2  
Selecting the A/D Conversion Clock  
10.3  
Configuring Analog Port Pins  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 9.5TAD per 8-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The four possible options for TAD are:  
The ADCON1, TRISA, and TRISE registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bits set (input). If the TRIS bit is cleared (out-  
put), the digital output level (VOH or VOL) will be  
converted.  
• 2TOSC  
• 8TOSC  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
• 32TOSC  
• Internal RC oscillator  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs, will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
Table 10-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
Note 2: Analog levels on any pin that is defined as  
a digital input (including the AN4:AN0  
pins) may cause the input buffer to con-  
sume current that is out of the devices  
specification.  
TABLE 10-1: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD) Device Frequency  
Operation ADCS1:ADCS0  
20 MHz  
5 MHz  
1.25 MHz  
1.6 µs  
333.33 kHz  
(2)  
(2)  
2TOSC  
8TOSC  
32TOSC  
00  
01  
10  
11  
6 µs  
100 ns  
400 ns  
(2)  
(3)  
1.6 µs  
6.4 µs  
400 ns  
24 µs  
(3)  
(3)  
1.6 µs  
6.4 µs  
25.6 µs  
96 µs  
(5)  
(1,4)  
(1,4)  
(1,4)  
(1)  
RC  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for  
sleep operation only.  
5: For extended voltage devices (LC), please refer to Electrical Specifications section.  
1998 Microchip Technology Inc.  
DS30605A-page 79  
PIC16C63A/65B/73B/74B  
GO/DONE bit will be set, starting the A/D conversion,  
and the Timer1 counter will be reset to zero. Timer1 is  
reset to automatically repeat the A/D acquisition period  
with minimal software overhead (moving the ADRES to  
the desired location). The appropriate analog input  
channel must be selected and the minimum acquisition  
done before the “special event trigger” sets the  
GO/DONE bit (starts a conversion).  
10.4  
A/D Conversions  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
10.5  
Use of the CCPTrigger  
An A/D conversion can be started by the “special event  
trigger” of the CCP2 module. This requires that the  
CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be pro-  
grammed as 1011and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the  
If the A/D module is not enabled (ADON is cleared),  
then the “special event trigger” will be ignored by the  
A/D module, but will still reset the Timer1 counter.  
TABLE 10-2: SUMMARY OF A/D REGISTERS  
Value on  
POR,  
Value on all  
other  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
Resets  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
RCIF  
RCIE  
INTE  
TXIF  
TXIE  
RBIE  
T0IF  
INTF  
RBIF 0000 000x 0000 000u  
0Bh,8Bh  
0Ch  
(1)  
PSPIF  
PSPIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(1)  
PIE1  
8Ch  
PIR2  
CCP2IF ---- ---0 ---- ---0  
CCP2IE ---- ---0 ---- ---0  
xxxx xxxx uuuu uuuu  
0Dh  
PIE2  
8Dh  
ADRES  
A/D Result Register  
1Eh  
ADCON0 ADCS1 ADCS0 CHS2  
CHS1  
CHS0 GO/DON  
E
ADON 0000 00-0 0000 00-0  
1Fh  
ADCON1  
PCFG2  
PCFG1 PCFG0 ---- -000 ---- -000  
9Fh  
05h  
85h  
09h  
89h  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
PORTA  
TRISA  
PORTE  
TRISE  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
PORTA Data Direction Register  
RE2  
RE1  
RE0  
IBF  
OBF  
IBOV PSPMODE  
PORTE Data Direction Bits  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC6C73B. Always maintain these bits clear.  
DS30605A-page 80  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
other is the Power-up Timer (PWRT), which provides a  
fixed delay on power-up only, designed to keep the part  
in reset while the power supply stabilizes. With these  
two timers on-chip, most applications need no external  
reset circuitry.  
11.0 SPECIAL FEATURES OF THE  
CPU  
The PIC16C63A/65B/73B/74B devices have a host of  
features intended to maximize system reliability, mini-  
mize cost through elimination of external components,  
provide power saving operating modes and offer code  
protection. These are:  
SLEEP mode is designed to offer a very low current  
power-down mode.The user can wake-up from SLEEP  
through external reset, Watchdog Timer Wake-up or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost, while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
• OSC Selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
Additional information on special features is available in  
the PICmicro  
(DS33023).  
Mid-Range Reference Manual,  
• Watchdog Timer (WDT)  
• SLEEP  
11.1  
Configuration Bits  
• Code protection  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
• ID locations  
• In-circuit serial programming  
These devices have a Watchdog Timer which can be  
shut off only through configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in reset until the crystal oscillator is stable.The  
The user will note that address 2007h is beyond the  
user program memory space. In fact, it belongs to the  
special test/configuration memory space (2000h -  
3FFFh), which can be accessed only during program-  
ming.  
FIGURE 11-1: CONFIGURATION WORD  
CP1 CP0 CP1 CP0 CP1 CP0  
bit13  
BODEN CP1 CP0 PWRTE WDTE FOSC1 FOSC0  
bit0  
Register:CONFIG  
Address2007h  
(2)  
bit 13-8 CP1:CP0: Code Protection bits  
5-4: 11= Code protection off  
10= Upper half of program memory code protected  
01= Upper 3/4th of program memory code protected  
00= All memory is code protected  
bit 7:  
bit 6:  
Unimplemented: Read as '1'  
(1)  
BODEN: Brown-out Reset Enable bit  
1 = BOR enabled  
0 = BOR disabled  
(1)  
bit 3:  
bit 2:  
PWRTE: Power-up Timer Enable bit  
1 = PWRT disabled  
0 = PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.  
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.  
1998 Microchip Technology Inc.  
DS30605A-page 81  
 
 
PIC16C63A/65B/73B/74B  
11.2  
Oscillator Configurations  
TABLE 11-1: CERAMIC RESONATORS  
Ranges Tested:  
11.2.1 OSCILLATOR TYPES  
The PIC16CXXX can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
Mode  
XT  
Freq  
OSC1  
OSC2  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
Crystal/Resonator  
These values are for design guidance only. See  
notes at bottom of page.  
High Speed Crystal/Resonator  
Resistor/Capacitor  
Resonators Used:  
11.2.2 CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
455 kHz Panasonic EFO-A455K04B ± 0.3%  
2.0 MHz Murata Erie CSA2.00MG  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
16.0 MHz Murata Erie CSA16.00MX  
± 0.5%  
± 0.5%  
± 0.5%  
± 0.5%  
In XT, LP or HS modes a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 11-2). The  
PIC16CXXX oscillator design requires the use of a par-  
allel cut crystal. Use of a series cut crystal may give a  
frequency out of the crystal manufacturers specifica-  
tions. When in XT, LP or HS modes, the device can  
have an external clock source to drive the OSC1/  
CLKIN pin (Figure 11-3).  
All resonators used did not have built-in capacitors.  
TABLE 11-2: CAPACITOR SELECTION  
FOR CRYSTAL OSCILLATOR  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
Osc Type  
FIGURE 11-2: CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(HS, XT OR LP  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
OSC CONFIGURATION)  
(1)  
C1  
4 MHz  
15 pF  
15 pF  
OSC1  
4 MHz  
15 pF  
15 pF  
To  
internal  
logic  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
XTAL  
(3)  
RF  
20 MHz  
OSC2  
These values are for design guidance only. See  
notes at bottom of page.  
SLEEP  
PIC16CXXX  
(2)  
RS  
(1)  
C2  
Crystals Used  
32 kHz  
200 kHz  
1 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
± 30 PPM  
Note1: See Table 11-1 and Table 11-2 for recom-  
mended values of C1 and C2.  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
3: RF varies with the crystal chosen.  
4 MHz  
ECS ECS-40-20-1  
8 MHz  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
20 MHz  
FIGURE 11-3: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
Note 1: Recommended values of C1 and C2 are  
identical to the ranges tested (Table 11-1).  
2: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
OSC CONFIGURATION)  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16CXXX  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
Open  
4: Rs may be required in HS mode, as well as  
XT mode, to avoid overdriving crystals with  
low drive level specification.  
DS30605A-page 82  
1998 Microchip Technology Inc.  
 
PIC16C63A/65B/73B/74B  
11.2.3 RC OSCILLATOR  
11.3  
Reset  
For timing insensitive applications, the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 11-4 shows how the R/C combina-  
tion is connected to the PIC16CXXX.  
The PIC16CXXX differentiates between various kinds  
of reset:  
• Power-on Reset (POR)  
• MCLR reset during normal operation  
• MCLR reset during SLEEP  
• WDT Reset (during normal operation)  
• WDT Wake-up (during SLEEP)  
• Brown-out Reset (BOR)  
Some registers are not affected in any reset condition.  
Their status is unknown on POR and unchanged in any  
other reset. Most other registers are reset to a “reset  
state” on Power-on Reset (POR), on the MCLR and  
WDT Reset, on MCLR reset during SLEEP and Brown-  
out Reset (BOR). They are not affected by a WDT  
Wake-up, which is viewed as the resumption of normal  
operation.The TO and PD bits are set or cleared differ-  
ently in different reset situations as indicated in  
Table 11-4. These bits are used in software to deter-  
mine the nature of the reset. See Table 11-6 for a full  
description of reset states of all registers.  
FIGURE 11-4: RC OSCILLATOR MODE  
VDD  
Rext  
Internal  
OSC1  
clock  
Cext  
VSS  
PIC16CXXX  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 11-5.  
OSC2/CLKOUT  
Fosc/4  
The PICmicros have a MCLR noise filter in the MCLR  
reset path.The filter will detect and ignore small pulses.  
Recommended values: 3 kΩ ≤ Rext 100 kΩ  
Cext > 20pF  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
1998 Microchip Technology Inc.  
DS30605A-page 83  
 
PIC16C63A/65B/73B/74B  
FIGURE 11-5: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
R
BODEN  
OST/PWRT  
OST  
10-bit Ripple counter  
Chip_Reset  
Q
OSC1  
(1)  
On-chip  
RC OSC  
PWRT  
10-bit Ripple counter  
Enable PWRT  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
DS30605A-page 84  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
11.4  
Power-On Reset (POR)  
11.5  
Power-up Timer (PWRT)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.5V - 2.1V). To  
take advantage of the POR, just tie the MCLR pin  
directly (or through a resistor) to VDD.This will eliminate  
external RC components usually needed to create a  
Power-on Reset. A maximum rise time for VDD is spec-  
ified (parameter D004). For a slow rise time, see  
Figure 11-6.  
The Power-up Timer provides a fixed nominal time-out  
(parameter #33) on power-up only, from the POR. The  
Power-up Timer operates on an internal RC oscillator.  
The chip is kept in reset as long as the PWRT is active.  
The PWRT’s time delay allows VDD to rise to an accept-  
able level. A configuration bit is provided to enable/dis-  
able the PWRT.  
The power-up time delay will vary from chip to chip due  
to VDD, temperature and process variation. See DC  
parameters for details.  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature,...) must be met to ensure oper-  
ation. If these conditions are not met, the device must  
be held in reset until the operating conditions are met.  
Brown-out Reset may be used to meet the start-up con-  
ditions.  
11.6  
Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter #32).This ensures that  
the crystal oscillator or resonator has started and sta-  
bilized.  
FIGURE 11-6: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
VDD  
11.7  
Brown-Out Reset (BOR)  
D
R
A configuration bit, BODEN, can disable (if clear/pro-  
grammed) or enable (if set) the Brown-out Reset cir-  
cuitry. If VDD falls below parameter D005 for greater  
than parameter #35, the brown-out situation will reset  
the chip. A reset may not occur if VDD falls below  
parameter D005 for less than parameter #35. The chip  
will remain in Brown-out Reset until VDD rises above  
BVDD.The Power-up Timer will then be invoked and will  
keep the chip in RESET an additional time delay  
(parameter #33). If VDD drops below BVDD while the  
Power-up Timer is running, the chip will go back into a  
Brown-out Reset and the Power-up Timer will be initial-  
ized. Once VDD rises above BVDD, the Power-up Timer  
will execute the additional time delay. The Power-up  
Timer should always be enabled when Brown-out  
Reset is enabled.  
R1  
MCLR  
PIC16CXXX  
C
Note 1: External Power-on Reset circuit is required  
only if VDD power-up slope is too slow.The  
diode D helps discharge the capacitor  
quickly when VDD powers down.  
2: R < 40 kis recommended to make sure  
that voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
(ESD) or Electrical Overstress (EOS).  
1998 Microchip Technology Inc.  
DS30605A-page 85  
 
PIC16C63A/65B/73B/74B  
11.8  
Time-out Sequence  
11.9  
Power Control/Status Register  
(PCON)  
On power-up, the time-out sequence is as follows: First  
PWRT time-out is invoked after the POR time delay has  
expired. Then OST is activated. The total time-out will  
vary based on oscillator configuration and the status of  
the PWRT. For example, in RC mode with the PWRT  
disabled, there will be no time-out at all. Figure 11-7,  
Figure 11-8, Figure 11-9 and Figure 11-10 depict time-  
out sequences on power-up.  
The Power Control/Status Register, PCON, has up to  
two bits, depending upon the device.  
Bit0 is Brown-out Reset Status bit, BOR. If the BODEN  
configuration bit is set, BOR is ’1’ on Power-on Reset.  
If the BODEN configuration bit is clear, BOR is  
unknown on Power-on Reset.  
The BOR status bit is a "don't care" and is not neces-  
sarily predictable if the brown-out circuit is disabled (the  
BODEN configuration bit is clear). BOR must then be  
set by the user and checked on subsequent resets to  
see if it is clear, indicating a brown-out has occurred.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(Figure 11-9). This is useful for testing purposes or to  
synchronize more than one PIC16CXXX device operat-  
ing in parallel.  
Bit1 is POR (Power-on Reset Status bit). It is cleared  
on a Power-on Reset and unaffected otherwise. The  
user must set this bit following a Power-on Reset.  
Table 11-5 shows the reset conditions for some special  
function registers, while Table 11-6 shows the reset  
conditions for all the registers.  
TABLE 11-3: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up from  
Oscillator Configuration  
Brown-out  
SLEEP  
PWRTE = 0  
72 ms + 1024TOSC  
72 ms  
PWRTE = 1  
XT, HS, LP  
RC  
1024TOSC  
72 ms + 1024TOSC  
72 ms  
1024TOSC  
TABLE 11-4: STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 11-5: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
000h  
000h  
PC + 1  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
WDT Wake-up  
Brown-out Reset  
(1)  
Interrupt wake-up from SLEEP  
PC + 1  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
DS30605A-page 86  
1998 Microchip Technology Inc.  
 
PIC16C63A/65B/73B/74B  
TABLE 11-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Register  
Applicable Devices  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
W
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
PCL  
xxxx xxxx  
0000h  
uuuu uuuu  
0000h  
uuuu uuuu  
(2)  
PC + 1  
(3)  
(3)  
STATUS  
FSR  
63A 65B 73B 74B  
0001 1xxx  
000q quuu  
uuuq quuu  
63A 65B 73B 74B  
63A 65B 73B 74B  
xxxx xxxx  
--0x 0000  
uuuu uuuu  
--0u 0000  
uuuu uuuu  
--uu uuuu  
(4)  
PORTA  
PORTB  
(5)  
(5)  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- -xxx  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---u uuuu  
PORTC  
PORTD  
(5)  
(5)  
PORTE  
PCLATH  
INTCON  
63A 65B 73B 74B  
63A 65B 73B 74B  
---0 0000  
0000 000x  
---0 0000  
0000 000u  
(1)  
uuuu uuuu  
(1)  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
--00 0000  
-000 0000  
0-00 0000  
0000 0000  
---- ---0  
--00 0000  
-000 0000  
0-00 0000  
0000 0000  
---- ---0  
--uu uuuu  
(1)  
-uuu uuuu  
PIR1  
PIR2  
(1)  
u-uu uuuu  
(1)  
uuuu uuuu  
(1)  
---- ---u  
TMR1L  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 -00x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 -00x  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
Legend: u = unchanged,  
x = unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 11-5 for reset value for specific condition.  
4: On any device reset, these pins are configured as inputs.  
5: This is the value that will be in the port output latch.  
1998 Microchip Technology Inc.  
DS30605A-page 87  
PIC16C63A/65B/73B/74B  
TABLE 11-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.d)  
Register  
Applicable Devices  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
ADRES  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
0000 -000  
--00 0000  
0-00 0000  
-000 0000  
0000 0000  
---- ---0  
---- --0q  
1111 1111  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
---- -000  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
0000 -000  
--00 0000  
0-00 0000  
-000 0000  
0000 0000  
---- ---0  
---- --uq  
1111 1111  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
---- -000  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu -uuu  
--uu uuuu  
u-uu uuuu  
-uuu uuuu  
uuuu uuuu  
---- ---u  
---- --uq  
1111 1111  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
---- -uuu  
ADCON0  
OPTION_REG  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PIE1  
PIE2  
PCON  
PR2  
SSPADD  
SSPSTAT  
TXSTA  
SPBRG  
ADCON1  
Legend: u = unchanged,  
x = unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 11-5 for reset value for specific condition.  
4: On any device reset, these pins are configured as inputs.  
5: This is the value that will be in the port output latch.  
FIGURE 11-7: TIME-OUT SEQUENCE ON POWER-UP (MCLRTIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
DS30605A-page 88  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 11-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 11-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 11-10: SLOW RISE TIME (MCLRTIED TO VDD)  
5V  
1V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
1998 Microchip Technology Inc.  
DS30605A-page 89  
PIC16C63A/65B/73B/74B  
The RB0/INT pin interrupt, the RB port change inter-  
rupt and the TMR0 overflow interrupt flags are con-  
tained in the INTCON register.  
11.10 Interrupts  
The PIC16CXX family has up to 12 sources of interrupt.  
The interrupt control register (INTCON) records individ-  
ual interrupt requests in flag bits. It also has individual  
and global interrupt enable bits.  
The peripheral interrupt flags are contained in the spe-  
cial function registers PIR1 and PIR2.The correspond-  
ing interrupt enable bits are contained in special  
function registers PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in special function reg-  
ister INTCON.  
Note: Individual interrupt flag bits are set regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
A
global interrupt enable bit, GIE (INTCON<7>)  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the interrupt service routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupt’s flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set  
regardless of the status of the GIE bit. The GIE bit is  
cleared on reset.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs. The latency  
is the same for one or two cycle instructions. Individual  
interrupt flag bits are set regardless of the status of  
their corresponding mask bit or the GIE bit.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine as well as sets the GIE bit, which  
re-enables interrupts.  
FIGURE 11-11: INTERRUPT LOGIC  
PSPIF  
PSPIE  
Wake-up (If in SLEEP mode)  
ADIF  
ADIE  
T0IF  
T0IE  
RCIF  
RCIE  
INTF  
INTE  
Interrupt to CPU  
TXIF  
TXIE  
RBIF  
RBIE  
SSPIF  
SSPIE  
PEIE  
GIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
CCP2IF  
CCP2IE  
The following table shows which devices have which interrupts.  
Device  
T0IF INTF RBIF PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF CCP2IF  
PIC16C63A  
PIC16C65B  
PIC16C73B  
PIC16C74B  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
-
Yes  
Yes  
Yes  
DS30605A-page 90  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
11.10.1 INT INTERRUPT  
11.11 Context Saving During Interrupts  
External interrupt on RB0/INT pin is edge triggered;  
either rising if bit INTEDG (OPTION_REG<6>) is set,  
or falling, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the interrupt service rou-  
tine before re-enabling this interrupt. The INT interrupt  
can wake-up the processor from SLEEP, if bit INTE was  
set prior to going into SLEEP.The status of global inter-  
rupt enable bit GIE decides whether or not the proces-  
sor branches to the interrupt vector following wake-up.  
See Section 11.13 for details on SLEEP mode.  
During an interrupt, only the return PC value is saved  
on the stack.Typically, users may wish to save key reg-  
isters during an interrupt, i.e., W register and STATUS  
register. This will have to be implemented in software.  
Example 11-1 stores and restores the W and STATUS  
registers. The register, W_TEMP, must be defined in  
each bank and must be defined at the same offset from  
the bank base address (i.e., if W_TEMP is defined at  
0x20 in bank 0. It must also be defined at 0xA0 in bank  
1).  
The example:  
a) Stores the W register.  
b) Stores the STATUS register in bank 0.  
c) Stores the PCLATH register.  
11.10.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>). (Section 4.0)  
d) Executes the interrupt service routine code  
(User-generated).  
e) Restores the STATUS register (and bank select  
bit).  
f) Restores the W and PCLATH registers.  
11.10.3 PORTB INTCON CHANGE  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>).  
(Section 3.2)  
EXAMPLE 11-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
MOVF  
MOVWF  
CLRF  
BCF  
W_TEMP  
STATUS,W  
STATUS  
STATUS_TEMP  
PCLATH, W  
PCLATH_TEMP  
PCLATH  
STATUS, IRP  
FSR, W  
;Copy W to TEMP register, could be bank one or zero  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
;Only required if using pages 1, 2 and/or 3  
;Save PCLATH into W  
;Page zero, regardless of current page  
;Return to Bank 0  
;Copy FSR to W  
MOVF  
MOVWF  
:
FSR_TEMP  
;Copy FSR from W to FSR_TEMP  
:(ISR)  
:
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP, W  
PCLATH  
STATUS_TEMP,W  
;Restore PCLATH  
;Move W into PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
1998 Microchip Technology Inc.  
DS30605A-page 91  
PIC16C63A/65B/73B/74B  
WDT time-out period values may be found in the Elec-  
trical Specifications section under parameter #31. Val-  
ues for the WDT prescaler (actually a postscaler, but  
shared with the Timer0 prescaler) may be assigned  
using the OPTION_REG register.  
11.12 Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC oscil-  
lator, which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the OSC1/CLKIN pin. That means that the WDT will  
run, even if the clock on the OSC1/CLKIN and OSC2/  
CLKOUT pins of the device has been stopped, for  
example, by execution of a SLEEPinstruction.  
Note: The CLRWDT and SLEEP instructions clear  
the WDT and the postscaler if assigned to  
the WDT, and prevent it from timing out and  
generating a device RESET condition.  
During normal operation, a WDT time-out generates a  
.
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up).The TO bit in the STATUS register  
will be cleared upon a Watchdog Timer time-out.  
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
The WDT can be permanently disabled by clearing  
configuration bit WDTE (Section 11.1).  
FIGURE 11-12: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 4-2)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 4-2)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION_REG register.  
FIGURE 11-13: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
2007h  
81h  
Name  
Bit 7  
(1)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
WDTE  
PS2  
Bit 1  
FOSC1  
PS1  
Bit 0  
FOSC0  
PS0  
(1)  
(1)  
Config. bits  
OPTION_REG  
CP1  
CP0  
BODEN  
PWRTE  
PSA  
RBPU  
INTEDG  
T0CS T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Figure 11-1 for operation of these bits.  
DS30605A-page 92  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Other peripherals cannot generate interrupts since dur-  
ing SLEEP, no on-chip clocks are present.  
11.13 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD, or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D, disable external clocks. Pull all I/O pins, that  
are hi-impedance inputs, high or low externally to avoid  
switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
11.13.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The MCLR pin must be at a logic high level (VIHMC).  
11.13.1 WAKE-UP FROM SLEEP  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
The device can wake up from SLEEP through one of  
the following events:  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will immedi-  
ately wake up from sleep. The SLEEPinstruction  
will be completely executed before the wake-up.  
Therefore, the WDT and WDT postscaler will be  
cleared, the TO bit will be set and the PD bit will  
be cleared.  
1. External reset input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change, or some  
Peripheral Interrupts.  
External MCLR Reset will cause a device reset. All  
other events are considered a continuation of program  
execution and cause a "wake-up". The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device reset. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked.The TO bit  
is cleared if a WDT time-out occurred (and caused  
wake-up).  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes.To  
determine whether a SLEEP instruction executed, test  
the PD bit. If the PD bit is set, the SLEEPinstruction was  
executed as a NOP.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. PSP read or write.  
2. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
3. CCP capture mode interrupt.  
4. Special event trigger (Timer1 in asynchronous  
mode using an external clock).  
5. SSP (Start/Stop) bit detect interrupt.  
2
6. SSP transmit or receive in slave mode (SPI/I C).  
7. USART RX or TX (synchronous slave mode).  
8. A/D conversion (when A/D clock source is RC).  
1998 Microchip Technology Inc.  
DS30605A-page 93  
PIC16C63A/65B/73B/74B  
FIGURE 11-14: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
TOST(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
11.14 Program Verification/Code Protection  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
Note: Microchip Technology does not recom-  
mend code protecting windowed devices.  
11.15 ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 least significant bits of the ID  
location are used.  
For ROM devices, these values are submitted along  
with the ROM code.  
11.16 In-Circuit Serial Programming  
PIC16CXXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground and the programming volt-  
age.This allows customers to manufacture boards with  
unprogrammed devices, and then program the micro-  
controller just before shipping the product. This also  
allows the most recent firmware or a custom firmware  
to be programmed.  
For complete details of serial programming, please  
refer to the In-Circuit Serial Programming (ICSP™)  
Guide, (DS30277B).  
DS30605A-page 94  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Table 12-2 lists the instructions recognized by the  
MPASM assembler.  
12.0 INSTRUCTION SET SUMMARY  
Each PIC16CXXX instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CXX instruction  
set summary in Table 12-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 12-1  
shows the opcode field descriptions.  
Figure 12-1 shows the general formats that the instruc-  
tions can have.  
Note: To maintain upward compatibility with  
future PIC16CXXX products, do not use  
the OPTIONand TRISinstructions.  
All examples use the following format to represent a  
hexadecimal number:  
For byte-oriented instructions, 'f' represents a file reg-  
ister designator and 'd' represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
0xhh  
where h signifies a hexadecimal digit.  
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the W register. If 'd' is one, the result is placed  
in the file register specified in the instruction.  
FIGURE 12-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
8
7
6
0
0
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the number of the  
file in which the bit is located.  
OPCODE  
d
f (FILE #)  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
For literal and control operations, 'k' represents an  
eight or eleven bit constant or literal value.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
TABLE 12-1: OPCODE FIELD  
DESCRIPTIONS  
7
6
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Field  
Description  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Literal and control operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
General  
Don't care location (= 0 or 1)  
13  
8
7
0
0
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip Technology software tools.  
OPCODE  
k (literal)  
k = 8-bit immediate value  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
PC  
TO  
PD  
Program Counter  
Time-out bit  
k (literal)  
Power-down bit  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
A description of each instruction is available in the  
PICmicro  
Mid-Range  
Reference  
Manual,  
Byte-oriented operations  
Bit-oriented operations  
(DS33023).  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
1998 Microchip Technology Inc.  
DS30605A-page 95  
PIC16C63A/65B/73B/74B  
TABLE 12-2: PIC16CXXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0xxx xxxx  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
1,2  
1,2  
3
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO,PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external  
device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS30605A-page 96  
1998 Microchip Technology Inc.  
PIC16C62X(A)  
13.3  
ICEPIC: Low-Cost PICmicro™  
In-Circuit Emulator  
13.0 DEVELOPMENT SUPPORT  
13.1  
Development Tools  
ICEPIC is a low-cost in-circuit emulator solution for the  
Microchip PIC12CXXX, PIC16C5X and PIC16CXXX  
families of 8-bit OTP microcontrollers.  
The PICmicrο microcontrollers are supported with a  
full range of hardware and software development tools:  
• PICMASTER /PICMASTER CE Real-Time  
In-Circuit Emulator  
ICEPIC is designed to operate on PC-compatible  
machines ranging from 286-AT through Pentium  
based machines under Windows 3.x environment.  
ICEPIC features real time, non-intrusive emulation.  
• ICEPIC Low-Cost PIC16C5X and PIC16CXXX  
In-Circuit Emulator  
• PRO MATE II Universal Programmer  
13.4  
PRO MATE II: Universal Programmer  
• PICSTART Plus Entry-Level Prototype  
Programmer  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode. PRO MATE II is CE  
compliant.  
• PICDEM-1 Low-Cost Demonstration Board  
• PICDEM-2 Low-Cost Demonstration Board  
• PICDEM-3 Low-Cost Demonstration Board  
• MPASM Assembler  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for displaying error messages, keys to  
enter commands and a modular detachable socket  
assembly to support various package types. In stand-  
alone mode the PRO MATE II can read, verify or pro-  
• MPLAB SIM Software Simulator  
• MPLAB-C17 (C Compiler)  
• Fuzzy Logic Development System  
(fuzzyTECH MP)  
13.2  
PICMASTER: High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
gram  
PIC12CXXX,  
PIC14C000,  
PIC16C5X,  
PIC16CXXX and PIC17CXX devices. It can also set  
configuration and code-protect bits in this mode.  
The PICMASTER Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for all  
microcontrollers in the PIC14C000, PIC12CXXX,  
PIC16C5X, PIC16CXXX and PIC17CXX families.  
PICMASTER is supplied with the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
“make” and download, and source debugging from a  
single environment.  
13.5  
PICSTART Plus Entry Level  
Development System  
The PICSTART programmer is an easy-to-use,  
low-cost prototype programmer. It connects to the PC  
via one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient. PICSTART Plus is  
not recommended for production programming.  
Interchangeable target probes allow the system to be  
easily reconfigured for emulation of different proces-  
sors. The universal architecture of the PICMASTER  
allows expansion to support all new Microchip micro-  
controllers.  
PICSTART Plus supports all PIC12CXXX, PIC14C000,  
PIC16C5X, PIC16CXXX and PIC17CXX devices with  
up to 40 pins. Larger pin count devices such as the  
PIC16C923, PIC16C924 and PIC17C756 may be sup-  
ported with an adapter socket. PICSTART Plus is CE  
compliant.  
The PICMASTER Emulator System has been  
designed as  
a real-time emulation system with  
advanced features that are generally found on more  
expensive development tools. The PC compatible 386  
(and higher) machine platform and Microsoft Windows  
3.x environment were chosen to best make these fea-  
tures available to you, the end user.  
A CE compliant version of PICMASTER is available for  
European Union (EU) countries.  
1998 Microchip Technology Inc.  
DS30605A-page 97  
PIC16C62X(A)  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
13.6  
PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
the PICDEM-1 board, on  
a PRO MATE II or  
13.9  
MPLAB™ Integrated Development  
Environment Software  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the PICMASTER emulator and download  
the firmware to the emulator for testing. Additional pro-  
totype area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
The MPLAB IDE Software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. MPLAB is a windows based application  
which contains:  
• A full featured editor  
• Three operating modes  
- editor  
- emulator  
- simulator  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar with project information  
• Extensive on-line help  
13.7  
PICDEM-2 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The PICMASTER emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
MPLAB allows you to:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Debug using:  
- source files  
- absolute listing file  
Transfer data dynamically via DDE (soon to be  
replaced by OLE)  
• Run up to four emulators on the same PC  
The ability to use MPLAB with Microchip’s simulator  
allows a consistent platform and the ability to easily  
switch from the low cost simulator to the full featured  
emulator with minimal retraining due to development  
tools.  
2
usage of the I C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
13.8  
PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
13.10 Assembler (MPASM)  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The PICMASTER emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
The MPASM Universal Macro Assembler is  
a
PC-hosted symbolic assembler. It supports all micro-  
controller series including the PIC12C5XX, PIC14000,  
PIC16C5X, PIC16CXXX, and PIC17CXX families.  
MPASM offers full featured Macro capabilities, condi-  
tional assembly, and several source and listing formats.  
It generates various object code formats to support  
Microchip's development tools as well as third party  
programmers.  
MPASM allows full symbolic debugging from  
PICMASTER, Microchip’s Universal Emulator System.  
DS30605A-page 98  
1998 Microchip Technology Inc.  
PIC16C62X(A)  
MPASM has the following features to assist in develop-  
ing software for specific use applications.  
13.14 MP-DriveWay – Application Code  
Generator  
• Provides translation of Assembler source code to  
object code for all Microchip microcontrollers.  
MP-DriveWay is an easy-to-use Windows-based Appli-  
cation Code Generator. With MP-DriveWay you can  
visually configure all the peripherals in a PICmicro  
device and, with a click of the mouse, generate all the  
initialization and many functional code modules in C  
language. The output is fully compatible with Micro-  
chip’s MPLAB-C C compiler. The code produced is  
highly modular and allows easy integration of your own  
code. MP-DriveWay is intelligent enough to maintain  
your code through subsequent code generation.  
• Macro assembly capability.  
• Produces all the files (Object, Listing, Symbol,  
and special) required for symbolic debug with  
Microchip’s emulator systems.  
• Supports Hex (default), Decimal and Octal source  
and listing formats.  
MPASM provides a rich directive language to support  
programming of the PICmicro. Directives are helpful in  
making the development of your assemble source code  
shorter and more maintainable.  
13.15 SEEVAL Evaluation and  
Programming System  
13.11 Software Simulator (MPLAB-SIM)  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment. It allows the  
user to simulate the PICmicro series microcontrollers  
on an instruction level. On any given instruction, the  
user may examine or modify any of the data areas or  
provide external stimulus to any of the pins. The  
input/output radix can be set by the user and the exe-  
cution can be performed in; single step, execute until  
break, or in a trace mode.  
The Total Endurance  
Disk is included to aid in  
trade-off analysis and reliability calculations. The total  
kit can significantly reduce time-to-market and result in  
an optimized system.  
13.16 KEELOQ Evaluation and  
Programming Tools  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C and MPASM. The Software Simulator offers  
the low cost flexibility to develop and debug code out-  
side of the laboratory environment making it an excel-  
lent multi-project software development tool.  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products.The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
13.12 C Compiler (MPLAB-C17)  
The MPLAB-C Code Development System is  
a
complete ‘C’ compiler and integrated development  
environment for Microchip’s PIC17CXXX family of  
microcontrollers. The compiler provides powerful inte-  
gration capabilities and ease of use not found with  
other compilers.  
For easier source level debugging, the compiler pro-  
vides symbol information that is compatible with the  
MPLAB IDE memory display.  
13.13 Fuzzy Logic Development System  
(fuzzyTECH-MP)  
fuzzyTECH-MP fuzzy logic development tool is avail-  
able in two versions - a low cost introductory version,  
MP Explorer, for designers to gain a comprehensive  
working knowledge of fuzzy logic system design; and a  
full-featured version, fuzzyTECH-MP, Edition for imple-  
menting more complex systems.  
Both versions include Microchip’s fuzzyLAB demon-  
stration board for hands-on experience with fuzzy logic  
systems implementation.  
1998 Microchip Technology Inc.  
DS30605A-page 99  
PIC16C62X(A)  
TABLE 13-1  
DEVELOPMENT TOOLS FROM MICROCHIP  
ufzy  
DS30605A-page 100  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
14.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias............................................................................................................ .-55˚C to +125˚C  
Storage temperature .............................................................................................................................. -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4)..........................................-0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2).......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to Vss ............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1)................................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)......................................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD)..............................................................................................................±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)....................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined) ..............................................200 mA  
Maximum current sunk by PORTC and PORTD (Note 3) (combined) ..................................................................200 mA  
Maximum current sourced by PORTC and PORTD (Note 3) (combined) .............................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR/VPP pin rather  
than pulling this pin directly to VSS.  
Note 3: PORTD and PORTE not available on the PIC16C63A/73B.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device.This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
TABLE 14-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR MODES AND  
FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
PIC16C63A-04  
PIC16C65B-04  
PIC16C73B-04  
PIC16C74B-04  
PIC16C63A-20  
PIC16C65B-20  
PIC16C73B-20  
PIC16C74B-20  
PIC16LC63A-04  
PIC16LC65B-04  
PIC16LC73B-04  
PIC16LC74B-04  
OSC  
Windowed (JW) Devices  
RC  
VDD: 4.0V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 5.5V  
VDD: 2.5V to 5.5V  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3V  
IPD: 5 µA max. at 3V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3V  
IPD: 5 µA max. at 3V  
Freq: 4 MHz max.  
XT  
HS  
VDD: 4.0V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 5.5V  
VDD: 2.5V to 5.5V  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3V  
IPD: 5 µA max. at 3V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3V  
IPD: 5 µA max. at 3V  
Freq: 4 MHz max.  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 13.5 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 4 MHz max.  
IDD: 20 mA max. at 5.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 20 MHz max.  
IDD: 20 mA max. at 5.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 20 MHz max.  
VDD: 2.5V to 5.5V  
Not recommended for use in  
HS mode  
LP  
VDD: 4.0V to 5.5V  
IDD: 52.5 µA typ.  
at 32 kHz, 4.0V  
IPD: 0.9 µA typ. at 4.0V  
Freq: 200 kHz max.  
VDD: 2.5V to 5.5V  
IDD: 48 µA max. at 32 kHz, IDD: 48 µA max. at 32 kHz,  
Not recommended for use in  
LP mode  
3.0V  
3.0V  
IPD: 5 µA max. at 3.0V  
Freq: 200 kHz max.  
IPD: 5 µA max. at 3.0V  
Freq: 200 kHz max.  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recom-  
mended that the user select the device type that ensures the specifications required.  
1998 Microchip Technology Inc.  
Preliminary  
DS30605A-page 101  
PIC16C63A/65B/73B/74B  
14.1  
DC Characteristics:  
PIC16C63A/65B/73B/74B-04 (Commercial, Industrial, Extended)  
PIC16C6A/65B/73B/74B-20 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
0˚C TA +70˚C for commercial  
-40˚C TA +85˚C for industrial  
-40˚C TA +125˚C for extended  
DC CHARACTERISTICS  
Param Sym  
No.  
Characteristic  
Min Typ† Max Units  
Conditions  
D001  
D001A  
VDD  
Supply Voltage  
4.0  
4.5  
VBOR*  
-
-
-
5.5  
5.5  
5.5  
V
V
V
XT, RC and LP osc mode  
HS osc mode  
BOR enabled (Note 7)  
D002*  
D003  
VDR  
RAM Data Retention  
Voltage (Note 1)  
-
1.5  
-
V
VPOR VDD Start Voltage to  
ensure internal  
-
VSS  
-
V
See section on Power-on Reset for details  
Power-on Reset signal  
D004*  
D004A*  
SVDD VDD Rise Rate to  
ensure internal  
0.05  
TBD  
-
-
-
-
V/ms PWRT enabled (PWRTE bit clear)  
PWRT disabled (PWRTE bit set)  
Power-on Reset signal  
See section on Power-on Reset for details  
D005  
D010  
VBOR Brown-out Reset  
3.65  
-
-
4.35  
5
V
BODEN bit set  
voltage trip point  
IDD  
IPD  
Supply Current  
(Note 2, 5)  
2.7  
mA XT, RC osc modes  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
D020  
-
10  
20  
mA HS osc mode  
FOSC = 20 MHz, VDD = 5.5V  
Power-down Current  
-
-
-
-
10.5  
1.5  
1.5  
2.5  
42  
16  
19  
19  
µA VDD = 4.0V, WDT enabled,-40°C to +85°C  
µA VDD = 4.0V, WDT disabled, 0°C to +70°C  
µA VDD = 4.0V, WDT disabled,-40°C to +85°C  
µA VDD = 4.0V, WDT disabled,-40°C to +125°C  
(Note 3, 5)  
D021  
D021B  
Module Differential  
Current (Note 6)  
D022*  
IWDT Watchdog Timer  
-
-
6.0  
350  
20  
425  
µA WDTE bit set, VDD = 4.0V  
µA BODEN bit set, VDD = 5.0V  
D022A* IBOR Brown-out Reset  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
Note1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc mode, current through Rext is not included.The current through the resistor can be estimated by  
the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
DS30605A-page 102  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
14.2  
DC Characteristics: PIC16LC63A/65B/73B/74B-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
0˚C TA +70˚C for commercial  
-40˚C TA +85˚C for industrial  
Param Sym  
No.  
Characteristic  
Min Typ† Max Units  
Conditions  
D001  
D002*  
D003  
VDD  
Supply Voltage  
2.5  
VBOR*  
-
-
5.5  
5.5  
V
V
LP, XT, RC osc modes (DC - 4 MHz)  
BOR enabled (Note 7)  
VDR  
RAM Data Retention  
Voltage (Note 1)  
-
-
1.5  
-
V
VPOR VDD Start Voltage to  
ensure internal  
VSS  
-
V
See section on Power-on Reset for details  
Power-on Reset signal  
D004*  
D004A*  
SVDD VDD Rise Rate to  
ensure internal  
0.05  
TBD  
-
-
-
-
V/ms PWRT enabled (PWRTE bit clear)  
PWRT disabled (PWRTE bit set)  
Power-on Reset signal  
See section on Power-on Reset for details  
D005  
D010  
VBOR Brown-out Reset  
3.65  
-
-
4.35  
3.8  
V
BODEN bit set  
voltage trip point  
IDD  
IPD  
Supply Current  
(Note 2, 5)  
2.0  
mA XT, RC osc modes  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
-
22.5  
48  
µA LP osc mode  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D020  
D021  
D021A  
Power-down Current  
-
-
-
7.5  
0.9  
0.9  
30  
5
5
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
(Note 3, 5)  
Module Differential  
Current (Note 6)  
D022*  
IWDT Watchdog Timer  
-
-
6.0  
350  
20  
425  
µA WDTE bit set, VDD = 4.0V  
µA BODEN bit set, VDD = 5.0V  
D022A* IBOR Brown-out Reset  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
Note1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc mode, current through Rext is not included.The current through the resistor can be estimated by  
the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached..  
1998 Microchip Technology Inc.  
Preliminary  
DS30605A-page 103  
 
PIC16C63A/65B/73B/74B  
14.3  
DC Characteristics:  
PIC16C63A/65B/73B/74B-04 (Commercial, Industrial, Extended)  
PIC16C63A/65B/73B/74B-20 (Commercial, Industrial, Extended)  
PIC16LC63A/65B/73B/74B-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
0˚C TA +70˚C for commercial  
-40˚C TA +85˚C for industrial  
-40˚C TA +125˚C for extended  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 14.1  
and Section 14.2  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D030A  
D031  
D032  
D033  
with TTL buffer  
VSS  
VSS  
VSS  
Vss  
Vss  
-
-
-
-
-
0.15VDD  
0.8V  
0.2VDD  
0.2VDD  
0.3VDD  
V
V
V
V
V
For entire VDD range  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP  
modes)  
Note1  
Input High Voltage  
I/O ports  
VIH  
-
-
-
D040  
D040A  
with TTL buffer  
2.0  
0.25VDD  
+ 0.8V  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
For entire VDD range  
D041  
D042  
D042A  
D043  
with Schmitt Trigger buffer 0.8VDD  
-
-
-
-
VDD  
VDD  
VDD  
VDD  
V
V
V
V
For entire VDD range  
Note1  
MCLR  
0.8VDD  
OSC1 (XT, HS and LP modes) 0.7VDD  
OSC1 (in RC mode)  
Input Leakage Current (Notes  
2, 3)  
0.9VDD  
D060  
IIL  
I/O ports  
-
-
±1  
µA Vss VPIN VDD,  
Pin at hi-impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD,  
XT, HS and LP osc modes  
µA VDD = 5V, VPIN = VSS  
D070  
D080  
IPURB PORTB weak pull-up current  
50  
-
250  
400  
0.6  
0.6  
0.6  
0.6  
Output Low Voltage  
I/O ports  
VOL  
-
-
-
-
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
-
D083  
OSC2/CLKOUT (RC osc  
mode)  
-
-
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PICmi-  
cro be driven with external clock in RC mode.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input volt-  
ages.  
3: Negative current is defined as current sourced by the pin.  
DS30605A-page 104  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
0˚C TA +70˚C for commercial  
-40˚C TA +85˚C for industrial  
-40˚C TA +125˚C for extended  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 14.1  
and Section 14.2  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Output High Voltage  
D090  
VOH  
I/O ports (Note 3)  
VDD-0.7  
VDD-0.7  
VDD-0.7  
VDD-0.7  
-
-
-
-
-
-
-
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
-
-
D092  
OSC2/CLKOUT (RC osc  
mode)  
-
D150* VOD  
Open-Drain High Voltage  
Capacitive Loading Specs  
on Output Pins  
8.5  
RA4 pin  
D100  
COSC2 OSC2 pin  
-
-
15  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1.  
D101  
D102  
CIO  
Cb  
All I/O pins and OSC2 (in RC  
mode)  
-
-
-
-
50  
pF  
2
400  
pF  
SCL, SDA in I C mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PICmi-  
cro be driven with external clock in RC mode.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input volt-  
ages.  
3: Negative current is defined as current sourced by the pin.  
1998 Microchip Technology Inc.  
Preliminary  
DS30605A-page 105  
PIC16C63A/65B/73B/74B  
14.4  
AC (Timing) Characteristics  
14.4.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created fol-  
lowing one of the following formats:  
2
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I C specifications only)  
2
(I C specifications only)  
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
2
I C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
2
TCC:ST (I C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
DS30605A-page 106  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
14.4.2 TIMING CONDITIONS  
The temperature and voltages specified in Table 14-1  
apply to all timing specifications unless otherwise  
noted. Figure 14-1 specifies the load conditions for the  
timing specifications.  
TABLE 14-1: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
0˚C TA +70˚C for commercial  
-40˚C TA +85˚C for industrial  
-40˚C TA +125˚C for extended  
AC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 14.1 and Section 14.2.  
LC parts operate for commercial/industrial temp’s only.  
FIGURE 14-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load condition 1 Load condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKOUT  
but including D and E outputs as ports  
VSS  
Note1: PORTD and PORTE are not imple-  
mented on the PIC16C63A/73B.  
15 pF for OSC2 output  
1998 Microchip Technology Inc.  
Preliminary  
DS30605A-page 107  
 
PIC16C63A/65B/73B/74B  
14.4.3 TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 14-2: EXTERNAL CLOCK TIMING  
Q1  
1
Q2  
Q3  
Q4  
4
Q4  
Q1  
OSC1  
3
3
4
2
CLKOUT  
TABLE 14-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
1A  
Fosc External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
4
MHz RC and XT osc modes  
MHz HS osc mode (-04)  
MHz HS osc mode (-20)  
kHz LP osc mode  
(Note 1)  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
20  
200  
MHz HS osc mode  
5
kHz LP osc mode  
1
Tosc  
External CLKIN Period  
250  
250  
50  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
RC and XT osc modes  
HS osc mode (-04)  
HS osc mode (-20)  
LP osc mode  
(Note 1)  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
50  
RC osc mode  
XT osc mode  
10,000  
250  
250  
HS osc mode (-04)  
HS osc mode (-20)  
LP osc mode  
5
2
TCY  
Instruction Cycle Time (Note 1)  
200  
100  
2.5  
15  
DC  
TCY = 4/FOSC  
3*  
TosL,  
TosH  
External Clock in (OSC1) High or  
Low Time  
XT oscillator  
LP oscillator  
HS oscillator  
4*  
TosR,  
TosF  
External Clock in (OSC1) Rise or  
Fall Time  
25  
50  
15  
XT oscillator  
LP oscillator  
HS oscillator  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at "min." values with an external  
clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
DS30605A-page 108  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 14-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
19  
18  
14  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: Refer to Figure 14-1 for load conditions.  
TABLE 14-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
10  
10  
200  
200  
100  
100  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
12*  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
13*  
14*  
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20 ns  
15*  
Tosc + 200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
16*  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
17*  
TosH2ioV OSC1(Q1 cycle) to Port out valid  
150  
18*  
TosH2ioI  
OSC1(Q2 cycle) to Port input Standard  
100  
200  
0
invalid (I/O in hold time)  
18A*  
19*  
Extended (LC)  
TioV2osH Port input valid to OSC1(I/O in setup time)  
20*  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
Standard  
40  
80  
40  
80  
20A*  
21*  
Extended (LC)  
Standard  
TioF  
21A*  
Extended (LC)  
22††* Tinp  
23††* Trbp  
TCY  
TCY  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
†† These parameters are asynchronous events not related to any internal clock edge.  
Note1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
1998 Microchip Technology Inc.  
Preliminary  
DS30605A-page 109  
PIC16C63A/65B/73B/74B  
FIGURE 14-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 14-1 for load conditions.  
FIGURE 14-5: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 14-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
2
7
µs VDD = 5V, -40˚C to +125˚C  
31*  
Twdt  
Watchdog Timer Time-out Period  
(No Prescaler)  
18  
33  
ms  
VDD = 5V, -40˚C to +125˚C  
32  
33*  
34  
Tost  
Oscillation Start-up Timer Period  
28  
1024 TOSC  
132  
2.1  
ms  
µs  
TOSC = OSC1 period  
Tpwrt Power-up Timer Period  
72  
VDD = 5V, -40˚C to +125˚C  
TIOZ  
I/O Hi-impedance from MCLR  
Low or WDT reset  
35  
TBOR  
Brown-out Reset Pulse Width  
100  
VDD BVDD (D005)  
µs  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30605A-page 110  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 14-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 14-1 for load conditions.  
TABLE 14-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40*  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
0.5TCY + 20  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
10  
0.5TCY + 20  
10  
ns  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
With Prescaler  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4,..., 256)  
N
0.5TCY + 20  
15  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler =  
2,4,8  
ns  
ns  
Standard  
25  
Extended (LC)  
Asynchronous  
30  
ns  
ns  
Standard  
50  
Extended (LC)  
T1CKI Low Time  
Synchronous, Prescaler = 1  
0.5TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler =  
2,4,8  
15  
25  
ns  
ns  
Standard  
Extended (LC)  
Asynchronous  
30  
50  
ns  
ns  
Standard  
Extended (LC)  
Standard  
T1CKI input period Synchronous  
Greater of:  
30 OR TCY + 40  
ns N = prescale value  
(1, 2, 4, 8)  
N
Greater of:  
50 OR TCY + 40  
N
N = prescale value  
(1, 2, 4, 8)  
Extended (LC)  
Asynchronous  
60  
ns  
ns  
Standard  
100  
DC  
Extended (LC)  
Ft1  
Timer1 oscillator input frequency range  
200  
kHz  
(oscillator enabled by setting bit T1OSCEN)  
48  
*
TCKEZtmr1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS30605A-page 111  
PIC16C63A/65B/73B/74B  
FIGURE 14-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 14-1 for load conditions.  
TABLE 14-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param  
No.  
Sym Characteristic  
Min  
Typ† Max Units Conditions  
50*  
TccL CCP1 and CCP2 No Prescaler  
input low time  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
With Prescaler Standard  
10  
Extended (LC)  
20  
51*  
TccH  
No Prescaler  
With Prescaler Standard  
0.5TCY + 20  
CCP1 and CCP2  
input high time  
10  
20  
Extended (LC)  
52*  
53*  
TccP  
3TCY + 40  
N
ns N = prescale value  
(1,4, or 16)  
CCP1 and CCP2 input period  
TccR CCP1 and CCP2 output rise time  
TccF CCP1 and CCP2 output fall time  
Standard  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
Extended (LC)  
Standard  
54*  
Extended (LC)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30605A-page 112  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 14-8: PARALLEL SLAVE PORT TIMING (PIC16C65B/74B)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 14-1 for load conditions.  
TABLE 14-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C65B/74B)  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
62*  
63*  
TdtV2wrH Data in valid before WRor CS(setup time)  
TwrH2dtI WRor CSto data–in invalid Standard  
20  
20  
35  
10  
80  
30  
ns  
ns  
ns  
ns  
ns  
(hold time)  
Extended (LC)  
64  
TrdL2dtV RDand CSto data–out valid  
TrdH2dtI RDor CSto data–out invalid  
65*  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS30605A-page 113  
PIC16C63A/65B/73B/74B  
FIGURE 14-9: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
BIT6 - - - - - -1  
MSb  
LSb  
SDO  
SDI  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Refer to Figure 14-1 for load conditions.  
TABLE 14-8: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param.  
Symbol Characteristic  
Min  
Typ† Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71  
71A  
72  
TscH  
TscL  
SCK input high time  
(slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
40  
1.25TCY + 30  
40  
ns Note 1  
SCK input low time  
(slave mode)  
ns  
72A  
73  
ns Note 1  
ns  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
100  
ns Note 1  
ns  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
75  
TdoR  
SDO data output rise time Standard  
Extended (LC)  
10  
20  
10  
10  
20  
10  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(master mode)  
Standard  
Extended (LC)  
79  
80  
TscF  
SCK output fall time (master mode)  
TscH2doV, SDO data output valid  
TscL2doV after SCK edge  
Standard  
Extended (LC)  
† Data in “Typ” column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note1: Specification 73A is only required if specifications 71A and 72A are used.  
DS30605A-page 114  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 14-10: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
SDO  
SDI  
75, 76  
MSb IN  
74  
LSb IN  
Refer to Figure 14-1 for load conditions.  
TABLE 14-9: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
Symbol Characteristic  
Min  
Typ† Max Units Conditions  
No.  
71  
TscH  
TscL  
SCK input high time  
(slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
ns Note 1  
SCK input low time  
(slave mode)  
ns  
72A  
73  
ns Note 1  
ns  
TdiV2scH, Setup time of SDI data input to SCK  
100  
TdiV2scL  
edge  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
ns Note 1  
ns  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
TdoR  
SDO data output rise  
time  
Standard  
10  
20  
10  
10  
20  
10  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Extended (LC)  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(master mode)  
Standard  
Extended (LC)  
79  
80  
TscF  
SCK output fall time (master mode)  
TscH2doV, SDO data output valid  
TscL2doV after SCK edge  
Standard  
Extended (LC)  
81  
TdoV2scH, SDO data output setup to SCK edge  
TdoV2scL  
TCY  
† Data in “Typ” column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note1: Specification 73A is only required if specifications 71A and 72A are used.  
1998 Microchip Technology Inc.  
Preliminary  
DS30605A-page 115  
PIC16C63A/65B/73B/74B  
FIGURE 14-11: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
BIT6 - - - - - -1  
77  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Refer to Figure 14-1 for load conditions.  
TABLE 14-10: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0)  
Param.  
Symbol Characteristic  
Min  
Typ† Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71  
71A  
72  
TscH  
TscL  
SCK input high time  
(slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
40  
1.25TCY + 30  
40  
ns Note 1  
SCK input low time  
(slave mode)  
ns  
72A  
73  
ns Note 1  
ns  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
ns Note 1  
ns  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
TdoR  
SDO data output rise time Standard  
Extended (LC)  
10  
20  
10  
10  
20  
10  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
77  
78  
TdoF  
SDO data output fall time  
10  
TssH2doZ SSto SDO output hi-impedance  
TscR  
SCK output rise time  
(master mode)  
Standard  
Extended (LC)  
79  
80  
TscF  
SCK output fall time (master mode)  
TscH2doV, SDO data output valid  
TscL2doV after SCK edge  
Standard  
Extended (LC)  
83  
TscH2ssH, SS after SCK edge  
TscL2ssH  
1.5TCY + 40  
Data in “Typ” column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note1: Specification 73A is only required if specifications 71A and 72A are used.  
DS30605A-page 116  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 14-12: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb IN  
74  
LSb IN  
Refer to Figure 14-1 for load conditions.  
TABLE 14-11: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param.  
Symbol Characteristic  
Min  
Typ† Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71  
71A  
72  
TscH  
TscL  
TB2B  
SCK input high time  
(slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
40  
ns  
ns Note 1  
ns  
SCK input low time  
(slave mode)  
1.25TCY + 30  
40  
72A  
73A  
ns Note 1  
ns Note 1  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
74  
75  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
ns  
TdoR  
SDO data output rise  
time  
Standard  
10  
20  
10  
10  
20  
10  
25  
45  
25  
50  
25  
45  
25  
50  
100  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Extended (LC)  
76  
77  
78  
TdoF  
SDO data output fall time  
TssH2doZ SSto SDO output hi-impedance  
10  
TscR  
SCK output rise time  
(master mode)  
Standard  
Extended (LC)  
79  
80  
TscF  
SCK output fall time (master mode)  
TscH2doV, SDO data output valid  
TscL2doV after SCK edge  
Standard  
Extended (LC)  
Standard  
82  
TssL2doV SDO data output valid  
after SSedge  
Extended (LC)  
83  
TscH2ssH, SS after SCK edge  
TscL2ssH  
1.5TCY + 40  
Data in “Typ” column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note1: Specification 73A is only required if specifications 71A and 72A are used.  
1998 Microchip Technology Inc.  
Preliminary  
DS30605A-page 117  
PIC16C63A/65B/73B/74B  
2
FIGURE 14-13: I C BUS START/STOP BITS TIMING  
SCL  
91  
93  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 14-1 for load conditions.  
2
TABLE 14-12: I C BUS START/STOP BITS REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min Typ Max Units  
Conditions  
90*  
91*  
92*  
93  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
Only relevant for repeated START  
condition  
ns  
ns  
ns  
ns  
THD:STA START condition  
Hold time  
4000  
600  
After this period the first clock  
pulse is generated  
TSU:STO STOP condition  
Setup time  
4700  
600  
THD:STO STOP condition  
Hold time  
4000  
600  
*
These parameters are characterized but not tested.  
DS30605A-page 118  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
2
FIGURE 14-14: I C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 14-1 for load conditions.  
2
TABLE 14-13: I C BUS DATA REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Max  
Units  
Conditions  
100*  
THIGH  
Clock high time  
100 kHz mode  
400 kHz mode  
4.0  
0.6  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101*  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
400 kHz mode  
1.3  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
102*  
103*  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10-400 pF  
SDA and SCL fall time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10-400 pF  
90*  
91*  
TSU:STA START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for repeated  
START condition  
THD:STA START condition hold 100 kHz mode  
After this period the first clock  
pulse is generated  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
106*  
107*  
92*  
THD:DAT Data input hold time  
0
0.9  
TSU:DAT Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
Note 2  
TSU:STO STOP condition setup 100 kHz mode  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
109*  
110*  
TAA  
Output valid from  
clock  
3500  
Note 1  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
Cb  
Bus capacitive loading  
400  
pF  
*
These parameters are characterized but not tested.  
Note1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast-mode (400 kHz) I C-bus device can be used in a standard-mode (100 kHz) I C-bus system, but the requirement  
Tsu:DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of  
the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA  
2
line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I C bus specification) before the SCL line  
is released.  
1998 Microchip Technology Inc.  
Preliminary  
DS30605A-page 119  
PIC16C63A/65B/73B/74B  
FIGURE 14-15: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
Note: Refer to Figure 14-1 for load conditions.  
122  
TABLE 14-14: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Standard  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
120*  
TckH2dtV SYNC XMIT (MASTER & SLAVE)  
Clock high to data out valid  
Extended (LC)  
Standard  
121*  
Tckrf  
Clock out rise time and fall time  
(Master Mode)  
Extended (LC)  
Standard  
50  
122*  
Tdtrf  
Data out rise time and fall time  
45  
Extended (LC)  
50  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 14-16: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
125  
pin  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 14-1 for load conditions.  
TABLE 14-15: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
125*  
TdtV2ckL  
TckL2dtl  
SYNC RCV (MASTER & SLAVE)  
Data setup before CK (DT setup time)  
15  
15  
ns  
ns  
126*  
Data hold after CK (DT hold time)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30605A-page 120  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 14-16: A/D CONVERTER CHARACTERISTICS:  
PIC16C73B/74B-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16C73B/74B-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16LC73B/74B-04 (COMMERCIAL, INDUSTRIAL)  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR Resolution  
8-bits  
bit VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A02 EABS Total Absolute error  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
LSb  
LSb  
LSb  
LSb  
LSb  
A03  
A04  
A05  
EIL Integral linearity error  
EDL Differential linearity error  
EFS Full scale error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A06 EOFF Offset error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A10  
Monotonicity  
2.5V  
guaranteed  
V
VSS VAIN VREF  
A20 VREF Reference voltage  
VDD + 0.3  
VREF + 0.3  
10.0  
A25  
A30  
VAIN Analog input voltage  
VSS - 0.3  
V
ZAIN Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD A/D conversion current Standard  
(VDD)  
180  
90  
µA Average current consump-  
tion when A/D is on.  
(Note 1)  
Extended (LC)  
µA  
IREF VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN to charge  
CHOLD, see Section 10.1.  
10  
µA During A/D Conversion  
cycle  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
1998 Microchip Technology Inc.  
Preliminary  
DS30605A-page 121  
PIC16C63A/65B/73B/74B  
FIGURE 14-17: A/D CONVERSION TIMING  
BSF ADCON0, GO  
1 Tcy  
(TOSC/2) (1)  
134  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This  
allows the SLEEPinstruction to be executed.  
TABLE 14-17: A/D CONVERSION REQUIREMENTS  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
Standard  
130  
TAD A/D clock period  
1.6  
2.0  
2.0  
3.0  
11  
µs  
TOSC based, VREF 3.0V  
Extended (LC)  
Standard  
µs TOSC based, VREF full range  
µs A/D RC Mode  
µs A/D RC Mode  
TAD  
4.0  
6.0  
6.0  
9.0  
11  
Extended (LC)  
131  
132  
TCNV Conversion time (not including S/H time)  
(Note 1)  
TACQ Acquisition time  
Note 2  
5*  
20  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if  
the "new" input voltage has not  
changed by more than 1 LSb (i.e.,  
20.0 mV @ 5.12V) from the last  
sampled voltage (as stated on  
CHOLD).  
134  
135  
TGO Q4 to A/D clock start  
TOSC/2 §  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
TSWC Switching from convert sample time  
1.5 §  
TAD  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
§
This specification ensured by design.  
Note1: ADRES register may be read on the following TCY cycle.  
2: See Section 10.1 for min conditions.  
DS30605A-page 122  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
15.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
Graphs andTables not available at this  
time.  
1998 Microchip Technology Inc.  
DS30605A-page 123  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605A-page 124  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
16.0 PACKAGING INFORMATION  
16.1  
Package Marking Information  
28-Lead PDIP (Skinny DIP)  
Example  
MMMMMMMMMMMM  
XXXXXXXXXXXXXXX  
AABBCDE  
PIC16C73B-04/SP  
9817HAT  
28-Lead CERDIP Windowed  
Example  
XXXXXXXXXXX  
PIC16C73B/JW  
XXXXXXXXXXX  
AABBCDE  
9817CAT  
28-Lead SOIC  
Example  
MMMMMMMMMMMMMMMM  
XXXXXXXXXXXXXXXXXXXX  
PIC16C73B-20/SO  
9810/SAA  
AABBCDE  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C73B  
20I/SS025  
9817SBP  
AABBCAE  
Legend: XX...X  
Microchip part number & customer specific information*  
Year code (last two digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
C = Chandler, Arizona, U.S.A.,  
AA  
BB  
C
S = Tempe, Arizona, U.S.A. - 6”  
H = Tempe, Arizona, U.S.A. - 8”  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line,  
it will be carried over to the next line, thus limiting the number of available  
characters for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week  
code, facility code, mask rev# and assembly code. For OTP marking beyond  
this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
1998 Microchip Technology Inc.  
DS30605A-page 125  
PIC16C63A/65B/73B/74B  
Package Marking Information (Cont’d)  
40-Lead PDIP  
Example  
PIC16C74B-04/P  
9812SAA  
MMMMMMMMMMMMMM  
XXXXXXXXXXXXXXXXXX  
AABBCDE  
40-Lead CERDIP Windowed  
Example  
MMMMMMMMM  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16C74B/JW  
9805HAT  
AABBCDE  
Legend: XX...X  
Microchip part number & customer specific information*  
Year code (last two digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
C = Chandler, Arizona, U.S.A.,  
AA  
BB  
C
S = Tempe, Arizona, U.S.A. - 6”  
H = Tempe, Arizona, U.S.A. - 8”  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line,  
it will be carried over to the next line, thus limiting the number of available  
characters for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week  
code, facility code, mask rev# and assembly code. For OTP marking beyond  
this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
DS30605A-page 126  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Package Marking Information (Cont’d)  
44-Lead TQFP  
Example  
MMMMMMMM  
XXXXXXXXXX  
XXXXXXXXXX  
PIC16C74B  
-20/PT  
AABBCDE  
9811HAT  
44-Lead MQFP  
Example  
MMMMMMMM  
XXXXXXXXXX  
XXXXXXXXXX  
PIC16C74B  
-20/PQ  
9804SAT  
AABBCDE  
44-Lead PLCC  
Example  
MMMMMMMM  
XXXXXXXXXX  
XXXXXXXXXX  
AABBCDE  
PIC16C74B  
-20/L  
9803SAT  
Legend: XX...X  
Microchip part number & customer specific information*  
Year code (last two digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
C = Chandler, Arizona, U.S.A.,  
AA  
BB  
C
S = Tempe, Arizona, U.S.A. - 6”  
H = Tempe, Arizona, U.S.A. - 8”  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line,  
it will be carried over to the next line, thus limiting the number of available  
characters for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week  
code, facility code, mask rev# and assembly code. For OTP marking beyond  
this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
1998 Microchip Technology Inc.  
DS30605A-page 127  
PIC16C63A/65B/73B/74B  
16.2  
K04-070 28-Lead Skinny Plastic Dual In-line (SP) – 300 mil  
E
D
2
α
n
1
E1  
A1  
A
R
L
c
B1  
β
A2  
p
eB  
B
Units  
INCHES*  
NOM  
0.300  
28  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
7.62  
28  
MAX  
n
p
B
B1  
R
c
0.100  
0.019  
0.053  
0.005  
0.010  
0.150  
0.090  
0.020  
0.130  
1.365  
0.288  
0.283  
0.350  
10  
2.54  
0.016  
0.022  
0.41  
1.02  
0.48  
1.33  
0.13  
0.25  
3.81  
2.29  
0.51  
3.30  
34.67  
7.30  
7.18  
8.89  
10  
0.56  
0.040  
0.000  
0.008  
0.140  
0.070  
0.015  
0.125  
1.345  
0.280  
0.270  
0.320  
5
0.065  
0.010  
0.012  
0.160  
0.110  
0.025  
0.135  
1.385  
0.295  
0.295  
0.380  
15  
1.65  
0.25  
0.30  
4.06  
2.79  
0.64  
3.43  
35.18  
7.49  
7.49  
9.65  
15  
0.00  
0.20  
3.56  
1.78  
0.38  
3.18  
34.16  
7.11  
6.86  
8.13  
5
A
A1  
A2  
L
D
E
E1  
eB  
α
β
5
10  
15  
5
10  
15  
*
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS30605A-page 128  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
16.3  
K04-080 28-Lead Ceramic Dual In-line with Window (JW) – 300 mil  
E
D
W2  
2
1
n
W1  
E1  
A
A1  
R
L
c
B1  
B
A2  
eB  
p
Units  
INCHES*  
NOM  
0.300  
28  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
MIN  
MAX  
MIN  
NOM  
7.62  
28  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
W1  
W2  
0.098  
0.100  
0.019  
0.058  
0.013  
0.010  
0.183  
0.125  
0.023  
0.140  
1.458  
0.290  
0.270  
0.385  
0.140  
0.300  
0.102  
2.49  
0.41  
2.54  
0.47  
1.46  
0.32  
0.25  
4.64  
3.18  
0.57  
3.56  
37.02  
7.37  
6.86  
9.78  
0.14  
0.3  
2.59  
0.016  
0.050  
0.010  
0.008  
0.170  
0.107  
0.015  
0.135  
1.430  
0.285  
0.255  
0.345  
0.130  
0.290  
0.021  
0.065  
0.015  
0.012  
0.195  
0.143  
0.030  
0.145  
1.485  
0.295  
0.285  
0.425  
0.150  
0.310  
0.53  
1.65  
0.38  
0.30  
4.95  
3.63  
0.76  
3.68  
37.72  
7.49  
7.24  
10.80  
0.15  
0.31  
1.27  
0.25  
0.20  
4.32  
2.72  
0.00  
3.43  
36.32  
7.24  
6.48  
8.76  
0.13  
0.29  
Package Width  
Radius to Radius Width  
Overall Row Spacing  
Window Width  
Window Length  
*
Controlling Parameter.  
1998 Microchip Technology Inc.  
DS30605A-page 129  
PIC16C63A/65B/73B/74B  
16.4  
K04-052 28-Lead Plastic Small Outline (SO) Wide, 300 mil  
E1  
E
p
D
B
2
1
n
X
α
45°  
L
R2  
c
A
A1  
φ
R1  
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES*  
NOM  
0.050  
28  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
1.27  
28  
MAX  
p
n
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Chamfer Distance  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
A
A1  
A2  
0.093  
0.099  
0.058  
0.008  
0.706  
0.296  
0.407  
0.020  
0.005  
0.005  
0.016  
4
0.104  
2.36  
1.22  
2.50  
1.47  
0.19  
17.93  
7.51  
10.33  
0.50  
0.13  
0.13  
0.41  
4
2.64  
0.048  
0.004  
0.700  
0.292  
0.394  
0.010  
0.005  
0.005  
0.011  
0
0.068  
0.011  
0.712  
0.299  
0.419  
0.029  
0.010  
0.010  
0.021  
8
1.73  
0.28  
18.08  
7.59  
10.64  
0.74  
0.25  
0.25  
0.53  
8
0.10  
17.78  
7.42  
10.01  
0.25  
0.13  
0.13  
0.28  
0
D
E
E1  
X
R1  
R2  
L
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.010  
0.009  
0.014  
0
0.015  
0.011  
0.017  
12  
0.020  
0.012  
0.019  
15  
0.25  
0.23  
0.36  
0
0.38  
0.27  
0.42  
12  
0.51  
0.30  
0.48  
15  
0
12  
15  
0
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS30605A-page 130  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
16.5  
K04-073 28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm  
E1  
E
p
D
B
2
1
n
α
L
A
R2  
c
A1  
R1  
A2  
φ
L1  
β
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.026  
28  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.65  
28  
MAX  
p
n
A
A1  
A2  
D
E
E1  
R1  
R2  
L
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
0.068  
0.073  
0.036  
0.005  
0.402  
0.208  
0.306  
0.005  
0.005  
0.020  
4
0.078  
1.73  
0.66  
1.86  
0.91  
0.13  
10.20  
5.29  
7.78  
0.13  
0.13  
0.51  
4
1.99  
0.026  
0.002  
0.396  
0.205  
0.301  
0.005  
0.005  
0.015  
0
0.046  
0.008  
0.407  
0.212  
0.311  
0.010  
0.010  
0.025  
8
1.17  
0.21  
10.33  
5.38  
7.90  
0.25  
0.25  
0.64  
8
0.05  
10.07  
5.20  
7.65  
0.13  
0.13  
0.38  
0
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.000  
0.005  
0.010  
0
0.005  
0.007  
0.012  
5
0.010  
0.009  
0.015  
10  
0.00  
0.13  
0.25  
0
0.13  
0.18  
0.32  
5
0.25  
0.22  
0.38  
10  
0
5
10  
0
5
10  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1998 Microchip Technology Inc.  
DS30605A-page 131  
PIC16C63A/65B/73B/74B  
16.6  
K04-016 40-Lead Plastic Dual In-line (P) – 600 mil  
E
D
α
2
n
1
A1  
L
E1  
R
A
c
B1  
B
β
A2  
p
eB  
Units  
INCHES*  
NOM  
0.600  
40  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
15.24  
40  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
α
0.100  
0.018  
0.050  
0.005  
0.010  
0.160  
0.093  
0.020  
0.130  
2.018  
0.535  
0.565  
0.610  
10  
2.54  
0.016  
0.020  
0.41  
1.14  
0.46  
1.27  
0.13  
0.25  
4.06  
2.36  
0.51  
3.30  
51.26  
13.59  
14.35  
15.49  
10  
0.51  
0.045  
0.000  
0.009  
0.110  
0.073  
0.020  
0.125  
2.013  
0.530  
0.545  
0.630  
5
0.055  
0.010  
0.011  
0.160  
0.113  
0.040  
0.135  
2.023  
0.540  
0.585  
0.670  
15  
1.40  
0.25  
0.28  
4.06  
2.87  
1.02  
3.43  
51.38  
13.72  
14.86  
17.02  
15  
0.00  
0.23  
2.79  
1.85  
0.51  
3.18  
51.13  
13.46  
13.84  
16.00  
5
β
5
10  
15  
5
10  
15  
*
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS30605A-page 132  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
16.7  
K04-014 40-Lead Ceramic Dual In-line with Window (JW) – 600 mil  
E
W
D
2
1
n
A1  
L
E1  
A
R
c
eB  
B1  
A2  
p
B
Units  
INCHES*  
NOM  
0.600  
40  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
MIN  
MAX  
MIN  
NOM  
15.24  
40  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
W
0.098  
0.100  
0.020  
0.053  
0.005  
0.011  
0.205  
0.135  
0.045  
0.140  
2.050  
0.520  
0.580  
0.660  
0.350  
0.102  
2.49  
0.41  
2.54  
0.50  
2.59  
0.58  
1.40  
0.25  
0.36  
5.59  
3.89  
1.52  
3.68  
52.32  
13.36  
15.24  
18.03  
9.14  
0.016  
0.050  
0.000  
0.008  
0.190  
0.117  
0.030  
0.135  
2.040  
0.514  
0.560  
0.610  
0.340  
0.023  
0.055  
0.010  
0.014  
0.220  
0.153  
0.060  
0.145  
2.060  
0.526  
0.600  
0.710  
0.360  
1.27  
0.00  
1.33  
0.13  
0.20  
0.28  
4.83  
5.21  
2.97  
3.43  
0.00  
1.14  
3.43  
3.56  
51.82  
13.06  
14.22  
15.49  
8.64  
52.07  
13.21  
14.73  
16.76  
8.89  
Package Width  
Radius to Radius Width  
Overall Row Spacing  
Window Diameter  
*
Controlling Parameter.  
1998 Microchip Technology Inc.  
DS30605A-page 133  
PIC16C63A/65B/73B/74B  
16.8  
K04-076 44-Lead PlasticThin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.1 mm Lead Form  
E1  
E
# leads = n1  
p
D
D1  
2
1
B
n
X x 45°  
α
L
A
R2  
c
φ
R1  
A1  
β
A2  
L1  
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.031  
44  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.80  
44  
MAX  
p
n
n1  
A
A1  
A2  
R1  
R2  
L
Number of Pins  
Pins along Width  
Overall Pack. Height  
Shoulder Height  
Standoff  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
11  
11  
0.039  
0.015  
0.002  
0.003  
0.003  
0.005  
0
0.043  
0.025  
0.004  
0.003  
0.006  
0.010  
3.5  
0.047  
1.00  
0.38  
1.10  
0.64  
0.10  
0.08  
0.14  
0.25  
3.5  
1.20  
0.035  
0.006  
0.010  
0.008  
0.015  
7
0.89  
0.15  
0.25  
0.20  
0.38  
7
0.05  
0.08  
0.08  
0.13  
0
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Outside Tip Length  
Outside Tip Width  
Molded Pack. Length  
Molded Pack. Width  
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
0.003  
0.004  
0.012  
0.463  
0.463  
0.390  
0.390  
0.025  
5
0.008  
0.006  
0.015  
0.472  
0.472  
0.394  
0.394  
0.035  
10  
0.013  
0.008  
0.018  
0.482  
0.482  
0.398  
0.398  
0.045  
15  
0.08  
0.09  
0.30  
11.75  
11.75  
9.90  
9.90  
0.64  
5
0.20  
0.15  
0.38  
12.00  
12.00  
10.00  
10.00  
0.89  
10  
0.33  
0.20  
0.45  
12.25  
12.25  
10.10  
10.10  
1.14  
15  
D1  
E1  
D
E
X
α
β
5
12  
15  
5
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MS-026 ACB  
DS30605A-page 134  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
16.9  
K04-071 44-Lead Plastic Quad Flatpack (PQ) 10x10x2 mm Body, 1.6/0.15 mm Lead Form  
E1  
E
# leads = n1  
p
D
D1  
2
1
B
n
X x 45°  
α
L
R2  
c
A
R1  
φ
A1  
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.031  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.80  
44  
MAX  
p
n
n1  
A
A1  
A2  
R1  
R2  
L
Number of Pins  
Pins along Width  
Overall Pack. Height  
Shoulder Height  
Standoff  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
44  
11  
11  
0.079  
0.086  
0.044  
0.006  
0.005  
0.012  
0.020  
3.5  
0.093  
2.00  
0.81  
2.18  
1.11  
0.15  
0.13  
0.30  
0.51  
3.5  
2.35  
0.032  
0.002  
0.005  
0.005  
0.015  
0.056  
0.010  
0.010  
0.015  
0.025  
1.41  
0.25  
0.25  
0.38  
0.64  
7
0.05  
0.13  
0.13  
0.38  
0
Foot Angle  
φ
0
7
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Outside Tip Length  
Outside Tip Width  
Molded Pack. Length  
Molded Pack. Width  
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
L1  
c
B
0.011  
0.005  
0.012  
0.510  
0.510  
0.390  
0.390  
0.025  
0.016  
0.007  
0.015  
0.520  
0.520  
0.394  
0.394  
0.035  
10  
0.021  
0.009  
0.018  
0.530  
0.530  
0.398  
0.398  
0.045  
15  
0.28  
0.13  
0.30  
12.95  
12.95  
9.90  
9.90  
0.635  
5
0.41  
0.18  
0.37  
13.20  
13.20  
10.00  
10.00  
0.89  
10  
0.53  
0.23  
0.45  
13.45  
13.45  
10.10  
10.10  
1.143  
15  
D1  
E1  
D
E
X
α
β
5
5
Mold Draft Angle Bottom  
*
12  
15  
5
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MS-022 AB  
1998 Microchip Technology Inc.  
DS30605A-page 135  
PIC16C63A/65B/73B/74B  
16.10 K04-048 44-Lead Plastic Leaded Chip Carrier (L) – Square  
E1  
E
# leads = n1  
D1  
D
n 1 2  
α
A3  
CH2 x 45°  
CH1 x 45°  
R1  
c
L
A
35°  
A1  
B1  
B
R2  
β
A2  
p
E2  
D2  
Units  
INCHES*  
NOM  
44  
MILLIMETERS  
Dimension Limits  
Number of Pins  
Pitch  
Overall Pack. Height  
Shoulder Height  
Standoff  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
A
A1  
A2  
A3  
CH1  
CH2  
E1  
D1  
E
D
E2  
D2  
n1  
c
B1  
B
L
0.050  
0.173  
0.103  
0.023  
0.029  
0.045  
0.005  
0.690  
0.690  
0.653  
0.653  
0.620  
0.620  
11  
0.010  
0.029  
0.018  
0.058  
0.005  
0.025  
5
1.27  
0.165  
0.180  
4.19  
2.41  
0.38  
0.61  
1.02  
0.00  
17.40  
17.40  
16.51  
16.51  
15.49  
15.49  
4.38  
2.60  
0.57  
0.74  
1.14  
0.13  
17.53  
17.53  
16.59  
16.59  
15.75  
15.75  
11  
4.57  
2.79  
0.76  
0.86  
1.27  
0.095  
0.015  
0.024  
0.040  
0.000  
0.685  
0.685  
0.650  
0.650  
0.610  
0.610  
0.110  
0.030  
0.034  
0.050  
0.010  
0.695  
0.695  
0.656  
0.656  
0.630  
0.630  
Side 1 Chamfer Dim.  
Corner Chamfer (1)  
Corner Chamfer (other)  
Overall Pack. Width  
Overall Pack. Length  
Molded Pack. Width  
Molded Pack. Length  
Footprint Width  
Footprint Length  
Pins along Width  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Upper Lead Length  
Shoulder Inside Radius  
J-Bend Inside Radius  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
0.25  
17.65  
17.65  
16.66  
16.66  
16.00  
16.00  
0.008  
0.026  
0.015  
0.050  
0.003  
0.015  
0
0.012  
0.032  
0.021  
0.065  
0.010  
0.035  
10  
0.20  
0.66  
0.38  
1.27  
0.08  
0.38  
0
0.25  
0.74  
0.46  
1.46  
0.13  
0.64  
5
0.30  
0.81  
0.53  
1.65  
0.25  
0.89  
10  
R1  
R2  
α
β
0
5
10  
0
5
10  
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MO-047 AC  
DS30605A-page 136  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
APPENDIX A: REVISION HISTORY  
Version  
Date  
Revision Description  
A
7/98  
This is a new data sheet. However, the devices described in this data sheet are  
the upgrades to the devices found in the PIC16C6X Data Sheet, DS30234D, and  
the PIC16C7X Data Sheet, DS30390E.  
APPENDIX B: DEVICE DIFFERENCES  
The differences between the devices in this data sheet  
are listed in Table B-1.  
TABLE B-1:  
Difference  
DEVICE DIFFERENCES  
PIC16C63A  
PIC16C65B  
PIC16C73B  
PIC16C74B  
A/D  
no  
no  
5 channels, 8 bits  
no  
8 channels, 8 bits  
yes  
Parallel Slave Port  
Packages  
no  
yes  
28-pin PDIP, 28-pin  
windowed CERDIP,  
28-pin SOIC, 28-pin  
SSOP  
40-pin PDIP, 40-pin  
windowed CERDIP,  
44-pin TQFP, 44-pin  
28-pin PDIP, 28-pin  
windowed CERDIP,  
28-pin SOIC, 28-pin  
40-pin PDIP, 40-pin  
windowed CERDIP,  
44-pin TQFP, 44-pin  
MQFP, 44-pin PLCC  
MQFP, 44-pin PLCC SSOP  
APPENDIX C: CONVERSION CONSIDERATIONS  
Considerations for converting from previous versions of  
devices to the ones listed in this data sheet are listed in  
Table C-1.  
TABLE C-1:  
CONVERSION CONSIDERATIONS  
PIC16C63/65A/73A/74A  
2.5V - 6.0V  
Difference  
PIC16C63A/65B/73B/74B  
2.5V - 5.5V  
Voltage Range  
SSP module  
SSP module  
single mode SPI  
4-mode SPI  
N/A  
Can only transmit one word in SPI mode  
of enhanced SSP.  
CCP module  
CCP does not reset TMR1 when in special  
event trigger mode.  
N/A  
USART module  
Timer1 module  
USART receiver errata in BRGH=1 mode.  
N/A  
Writing to TMR1L register can cause over- N/A  
flow in TMR1H register.  
1998 Microchip Technology Inc.  
DS30605A-page 137  
 
 
PIC16C63A/65B/73B/74B  
18. Brown-out protection circuitry has been added.  
Controlled by configuration word bit BODEN.  
Brown-out reset ensures the device is placed in  
a reset condition if VDD dips below a fixed set-  
point.  
APPENDIX D: MIGRATION FROM  
BASELINE TO  
MIDRANGE DEVICES  
This section discusses how to migrate from a baseline  
device (i.e., PIC16C5X) to a midrange device (i.e.,  
PIC16CXXX).  
To convert code written for PIC16C5X to PIC16CXXX,  
the user should take the following steps:  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
1. Remove any program memory page select  
operations (PA2, PA1, PA0 bits) for CALL, GOTO.  
1. Instruction word length is increased to 14-bits.  
This allows larger page sizes both in program  
memory (2K now as opposed to 512 before) and  
register file (128 bytes now versus 32 bytes  
before).  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
3. Eliminate any data memory page switching.  
Redefine data variables to reallocate them.  
2. A PC high latch register (PCLATH) is added to  
handle program memory paging. Bits PA2, PA1,  
PA0 are removed from STATUS register.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
5. Change reset vector to 0000h.  
3. Data memory paging is redefined slightly.  
STATUS register is modified.  
4. Four new instructions have been added:  
RETURN, RETFIE, ADDLW, and SUBLW.  
Two instructions TRIS and OPTION are being  
phased out although they are kept for compati-  
bility with PIC16C5X.  
5. OPTION and TRIS registers are made address-  
able.  
6. Interrupt capability is added. Interrupt vector is  
at 0004h.  
7. Stack size is increased to 8 deep.  
8. Reset vector is changed to 0000h.  
9. Reset of all registers is revisited. Five different  
reset (and wake-up) types are recognized. Reg-  
isters are reset differently.  
10. Wake up from SLEEP through interrupt is  
added.  
11. Two separate timers, Oscillator Start-up Timer  
(OST) and Power-up Timer (PWRT) are  
included for more reliable power-up. These tim-  
ers are invoked selectively to avoid unnecessary  
delays on power-up and wake-up.  
12. PORTB has weak pull-ups and interrupt on  
change feature.  
13. T0CKI pin is also a port pin (RA4) now.  
14. FSR is made a full eight bit register.  
15. “In-circuit serial programming” is made possible.  
The user can program PIC16CXX devices using  
only five pins: VDD, VSS, MCLR/VPP, RB6 (clock)  
and RB7 (data in/out).  
16. PCON status register is added with a Power-on  
Reset status bit (POR).  
17. Code protection scheme is enhanced such that  
portions of the program memory can be pro-  
tected, while the remainder is unprotected.  
DS30605A-page 138  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
T0IE ................................................... INTCON<5>  
T0IF ................................................... INTCON<2>  
T0SE .................................................. OPTION_REG<4>  
T1CKPS1:T1CKPS0 .......................... T1CON<5:4>  
T1OSCEN .......................................... T1CON<3>  
T1SYNC ............................................ T1CON<2>  
T2CKPS1:T2CKPS0 .......................... T2CON<1:0>  
TMR1CS ............................................ T1CON<1>  
TMR1IE ............................................. PIE1<0>  
TMR1IF .............................................. PIR1<0>  
TMR1ON ........................................... T1CON<0>  
TMR2IE ............................................. PIE1<1>  
TMR2IF .............................................. PIR1<1>  
TMR2ON ........................................... T2CON<2>  
TO ...................................................... STATUS<4>  
TOUTPS3:TOUTPS0 ......................... T2CON<6:3>  
TRMT ................................................. TXSTA<1>  
TX9 .................................................... TXSTA<6>  
TX9D ................................................. TXSTA<0>  
TXEN ................................................. TXSTA<5>  
TXIE ................................................... PIE1<4>  
TXIF ................................................... PIR1<4>  
UA ...................................................... SSPSTAT<1>  
WCOL ................................................ SSPCON<7>  
Z ........................................................ STATUS<2>  
APPENDIX E: BIT/REGISTER CROSS-  
REFERENCE LIST  
ADCS1:ADCS0 ..................................ADCON0<7:6>  
ADIE ...................................................PIE1<6>  
ADIF ...................................................PIR1<6>  
ADON .................................................ADCON0<0>  
BF ......................................................SSPSTAT<0>  
BOR ...................................................PCON<0>  
BRGH .................................................TXSTA<2>  
C ........................................................STATUS<0>  
CCP1IE ..............................................PIE1<2>  
CCP1IF ..............................................PIR1<2>  
CCP1M3:CCP1M0 .............................CCP1CON<3:0>  
CCP1X:CCP1Y ..................................CCP1CON<5:4>  
CCP2IE ..............................................PIE2<0>  
CCP2IF ..............................................PIR2<0>  
CCP2M3:CCP2M0 .............................CCP2CON<3:0>  
CCP2X:CCP2Y ..................................CCP2CON<5:4>  
CHS2:CHS0 .......................................ADCON0<5:3>  
CKE ....................................................SSPSTAT<6>  
CKP ....................................................SSPCON<4>  
CREN .................................................RCSTA<4>  
CSRC .................................................TXSTA<7>  
D/A .....................................................SSPSTAT<5>  
DC ......................................................STATUS<1>  
FERR .................................................RCSTA<2>  
GIE .....................................................INTCON<7>  
GO/DONE ..........................................ADCON0<2>  
IBF .....................................................TRISE<7>  
IBOV ...................................................TRISE<5>  
INTE ...................................................INTCON<4>  
INTEDG .............................................OPTION_REG<6>  
INTF ...................................................INTCON<1>  
IRP .....................................................STATUS<7>  
OBF ....................................................TRISE<6>  
OERR .................................................RCSTA<1>  
P .........................................................SSPSTAT<4>  
PCFG2:PCFG0 ..................................ADCON1<2:0>  
PD ......................................................STATUS<3>  
PEIE ...................................................INTCON<6>  
POR ...................................................PCON<1>  
PS2:PS0 ............................................OPTION_REG<2:0>  
PSA ....................................................OPTION_REG<3>  
PSPIE ................................................PIE1<7>  
PSPIF .................................................PIR1<7>  
PSPMODE .........................................TRISE<4>  
R/W ....................................................SSPSTAT<2>  
RBIE ...................................................INTCON<3>  
RBIF ...................................................INTCON<0>  
RBPU .................................................OPTION_REG<7>  
RCIE ..................................................PIE1<5>  
RCIF ...................................................PIR1<5>  
RP1:RP0 ............................................STATUS<6:5>  
RX9 ....................................................RCSTA<6>  
RX9D .................................................RCSTA<0>  
S .........................................................SSPSTAT<3>  
SMP ...................................................SSPSTAT<7>  
SPEN .................................................RCSTA<7>  
SREN .................................................RCSTA<5>  
SSPEN ...............................................SSPCON<5>  
SSPIE ................................................PIE1<3>  
SSPIF .................................................PIR1<3>  
SSPM3:SSPM0 ..................................SSPCON<3:0>  
SSPOV ...............................................SSPCON<6>  
SYNC .................................................TXSTA<4>  
T0CS ..................................................OPTION_REG<5>  
1998 Microchip Technology Inc.  
DS30605A-page 139  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605A-page 140  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Flag (CCP2IF Bit)............................................... 21  
RC1/T1OSI/CCP2 Pin...................................... 7, 9  
Interaction of Two CCP Modules................................ 45  
Timer Resources ........................................................ 45  
Timing Diagram ........................................................ 112  
CCP1CON Register............................................................ 45  
CCP1M3:CCP1M0 Bits .............................................. 45  
CCP1X:CCP1Y Bits.................................................... 45  
CCP2CON Register............................................................ 45  
CCP2M3:CCP2M0 Bits .............................................. 45  
CCP2X:CCP2Y Bits.................................................... 45  
Code Protection............................................................ 81, 94  
CP1:CP0 Bits.............................................................. 81  
Compare (CCP Module)..................................................... 47  
Block Diagram ............................................................ 47  
CCP Pin Configuration ............................................... 47  
CCPR1H:CCPR1L Registers ..................................... 47  
Software Interrupt....................................................... 47  
Special Event Trigger ..................................... 41, 47, 80  
Timer1 Mode Selection............................................... 47  
Configuration Bits ............................................................... 81  
Conversion Considerations .............................................. 137  
D
Data Memory...................................................................... 11  
Bank Select (RP1:RP0 Bits)................................. 11, 15  
General Purpose Registers ........................................ 11  
Register File Map ....................................................... 12  
Special Function Registers................................... 12, 13  
DC Characteristics.................................................... 102, 104  
Development Support......................................................... 97  
Development Tools............................................................. 97  
Device Differences ........................................................... 137  
Direct Addressing ............................................................... 24  
E
INDEX  
A
A/D...................................................................................... 75  
A/D Converter Enable (ADIE Bit)................................ 18  
A/D Converter Flag (ADIF Bit) .............................. 19, 77  
A/D Converter Interrupt, Configuring .......................... 77  
ADCON0 Register................................................. 13, 75  
ADCON1 Register........................................... 14, 75, 76  
ADRES Register ............................................. 13, 75, 77  
Analog Port Pins ....................................... 7, 8, 9, 34, 35  
Analog Port Pins, Configuring..................................... 79  
Block Diagram............................................................. 77  
Block Diagram, Analog Input Model............................ 78  
Channel Select (CHS2:CHS0 Bits)............................. 75  
Clock Select (ADCS1:ADCS0 Bits)............................. 75  
Configuring the Module............................................... 77  
Conversion Clock (TAD) .............................................. 79  
Conversion Status (GO/DONE Bit)....................... 75, 77  
Conversions................................................................ 80  
Converter Characteristics ......................................... 121  
Module On/Off (ADON Bit).......................................... 75  
Port Configuration Control (PCFG2:PCFG0 Bits)....... 76  
Sampling Requirements.............................................. 78  
Special Event Trigger (CCP)................................. 47, 80  
Timing Diagram......................................................... 122  
Absolute Maximum Ratings .............................................. 101  
ADCON0 Register......................................................... 13, 75  
ADCS1:ADCS0 Bits.................................................... 75  
ADON Bit .................................................................... 75  
CHS2:CHS0 Bits......................................................... 75  
GO/DONE Bit........................................................ 75, 77  
ADCON1 Register................................................... 14, 75, 76  
PCFG2:PCFG0 Bits.................................................... 76  
ADRES Register ..................................................... 13, 75, 77  
Architecture  
Electrical Characteristics .................................................. 101  
Errata.....................................................................................4  
External Power-on Reset Circuit ........................................ 85  
F
PIC16C63A/PIC16C73B Block Diagram....................... 5  
PIC16C65B/PIC16C74B Block Diagram....................... 6  
Assembler  
Firmware Instructions ......................................................... 95  
ftp site............................................................................... 147  
Fuzzy Logic Dev. System (fuzzyTECH -MP).................... 99  
I
MPASM Assembler..................................................... 98  
B
Banking, Data Memory ................................................. 11, 15  
Brown-out Reset (BOR).............................. 81, 83, 85, 86, 87  
BOR Enable (BODEN Bit)........................................... 81  
BOR Status (BOR Bit)................................................. 22  
Timing Diagram......................................................... 110  
C
I/O Ports ............................................................................. 25  
2
I C (SSP Module)............................................................... 56  
ACK Pulse .......................................... 56, 57, 58, 59, 60  
Addressing.................................................................. 57  
Block Diagram ............................................................ 56  
Buffer Full Status (BF Bit)........................................... 52  
Clock Polarity Select (CKP Bit)................................... 53  
Data/Address (D/A Bit) ............................................... 52  
Master Mode............................................................... 60  
Mode Select (SSPM3:SSPM0 Bits)............................ 53  
Multi-Master Mode...................................................... 60  
Read/Write Bit Information (R/W Bit)........ 52, 57, 58, 59  
Receive Overflow Indicator (SSPOV Bit).................... 53  
Reception ................................................................... 58  
Reception Timing Diagram......................................... 58  
Serial Clock (RC3/SCK/SCL) ..................................... 59  
Slave Mode................................................................. 56  
Start (S Bit)........................................................... 52, 60  
Stop (P Bit) ........................................................... 52, 60  
Synchronous Serial Port Enable (SSPEN Bit)............ 53  
Timing Diagram, Data............................................... 119  
Timing Diagram, Start/Stop Bits ............................... 118  
Transmission .............................................................. 59  
Update Address (UA Bit) ............................................ 52  
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator............ 97  
Capture (CCP Module) ....................................................... 46  
Block Diagram............................................................. 46  
CCP Pin Configuration................................................ 46  
CCPR1H:CCPR1L Registers...................................... 46  
Changing Between Capture Prescalers...................... 46  
Software Interrupt ....................................................... 46  
Timer1 Mode Selection............................................... 46  
Capture/Compare/PWM (CCP)........................................... 45  
CCP1 .......................................................................... 45  
CCP1CON Register...................................... 13, 45  
CCPR1H Register......................................... 13, 45  
CCPR1L Register ......................................... 13, 45  
Enable (CCP1IE Bit)........................................... 18  
Flag (CCP1IF Bit) ............................................... 19  
RC2/CCP1 Pin.................................................. 7, 9  
CCP2 .......................................................................... 45  
CCP2CON Register...................................... 13, 45  
CCPR2H Register......................................... 13, 45  
CCPR2L Register ......................................... 13, 45  
Enable (CCP2IE Bit)........................................... 20  
1998 Microchip Technology Inc.  
DS30605A-page 141  
PIC16C63A/65B/73B/74B  
ID Locations ..................................................................81, 94  
In-Circuit Serial Programming (ICSP) ...........................81, 94  
Indirect Addressing .............................................................24  
FSR Register ..................................................11, 13, 24  
INDF Register .............................................................13  
Instruction Format ...............................................................95  
Instruction Set .....................................................................95  
Summary Table...........................................................96  
INTCON Register..........................................................13, 17  
GIE Bit.........................................................................17  
INTE Bit.......................................................................17  
INTF Bit.......................................................................17  
PEIE Bit.......................................................................17  
RBIE Bit ......................................................................17  
RBIF Bit.................................................................17, 27  
T0IE Bit .......................................................................17  
T0IF Bit .......................................................................17  
Interrupt Sources...........................................................81, 90  
A/D Conversion Complete ..........................................77  
Block Diagram.............................................................90  
Capture Complete (CCP)............................................46  
Compare Complete (CCP)..........................................47  
Interrupt on Change (RB7:RB4 ).................................27  
RB0/INT Pin, External.........................................7, 8, 91  
SSP Receive/Transmit Complete ...............................51  
TMR0 Overflow.....................................................38, 91  
TMR1 Overflow.....................................................39, 41  
TMR2 to PR2 Match ...................................................44  
TMR2 to PR2 Match (PWM) .................................43, 48  
USART Receive/Transmit Complete ..........................61  
Interrupts, Context Saving During.......................................91  
Interrupts, Enable Bits  
Memory Organization  
Data Memory.............................................................. 11  
Program Memory........................................................ 11  
MP-DriveWay™ - Application Code Generator .................. 99  
MPLAB C............................................................................ 99  
MPLAB Integrated Development Environment  
Software ..................................................................... 98  
O
On-Line Support ............................................................... 147  
OPCODE Field Descriptions............................................... 95  
OPTION_REG Register................................................ 14, 16  
INTEDG Bit................................................................. 16  
PS2:PS0 Bits........................................................ 16, 37  
PSA Bit ................................................................. 16, 37  
RBPU Bit .................................................................... 16  
T0CS Bit ............................................................... 16, 37  
T0SE Bit ............................................................... 16, 37  
OSC1/CLKIN Pin .............................................................. 7, 8  
OSC2/CLKOUT Pin .......................................................... 7, 8  
Oscillator Configuration ................................................ 81, 82  
HS......................................................................... 82, 86  
LP ......................................................................... 82, 86  
RC .................................................................. 82, 83, 86  
Selection (FOSC1:FOSC0 Bits) ................................. 81  
XT......................................................................... 82, 86  
Oscillator, Timer1.......................................................... 39, 41  
Oscillator, WDT................................................................... 92  
P
Packaging......................................................................... 125  
Paging, Program Memory............................................. 11, 23  
Parallel Slave Port (PSP).......................................... 9, 31, 35  
Block Diagram ............................................................ 35  
RE0/RD/AN5 Pin .............................................. 9, 34, 35  
RE1/WR/AN6 Pin ............................................. 9, 34, 35  
RE2/CS/AN7 Pin .............................................. 9, 34, 35  
Read Waveforms........................................................ 36  
Read/Write Enable (PSPIE Bit) .................................. 18  
Read/Write Flag (PSPIF Bit)....................................... 19  
Select (PSPMODE Bit)................................... 31, 33, 35  
Timing Diagram ........................................................ 113  
Write Waveforms........................................................ 35  
PCON Register............................................................. 22, 86  
BOR Bit....................................................................... 22  
POR Bit....................................................................... 22  
PICDEM-1 Low-Cost PICmicro Demo Board ..................... 98  
PICDEM-2 Low-Cost PIC16CXX Demo Board................... 98  
PICDEM-3 Low-Cost PIC16CXXX Demo Board ................ 98  
PICMASTER In-Circuit Emulator ..................................... 97  
PICSTART Plus Entry Level Development System......... 97  
PIE1 Register................................................................ 14, 18  
ADIE Bit...................................................................... 18  
CCP1IE Bit ................................................................. 18  
PSPIE Bit.................................................................... 18  
RCIE Bit...................................................................... 18  
SSPIE Bit.................................................................... 18  
TMR1IE Bit ................................................................. 18  
TMR2IE Bit ................................................................. 18  
TXIE Bit ...................................................................... 18  
PIE2 Register................................................................ 14, 20  
CCP2IE Bit ................................................................. 20  
Pinout Descriptions  
A/D Converter Enable (ADIE Bit)................................18  
CCP1 Enable (CCP1IE Bit)...................................18, 46  
CCP2 Enable (CCP2IE Bit).........................................20  
Global Interrupt Enable (GIE Bit) ..........................17, 90  
Interrupt on Change (RB7:RB4) Enable  
(RBIE Bit)..............................................................17, 91  
Peripheral Interrupt Enable (PEIE Bit) ........................17  
PSP Read/Write Enable (PSPIE Bit) ..........................18  
RB0/INT Enable (INTE Bit) .........................................17  
SSP Enable (SSPIE Bit) .............................................18  
TMR0 Overflow Enable (T0IE Bit)...............................17  
TMR1 Overflow Enable (TMR1IE Bit).........................18  
TMR2 to PR2 Match Enable (TMR2IE Bit) .................18  
USART Receive Enable (RCIE Bit) ............................18  
USART Transmit Enable (TXIE Bit)............................18  
Interrupts, Flag Bits  
A/D Converter Flag (ADIF Bit) ..............................19, 77  
CCP1 Flag (CCP1IF Bit).................................19, 46, 47  
CCP2 Flag (CCP2IF Bit).............................................21  
Interrupt on Change (RB7:RB4) Flag  
(RBIF Bit) ........................................................17, 27, 91  
PSP Read/Write Flag (PSPIF Bit)...............................19  
RB0/INT Flag (INTF Bit)..............................................17  
SSP Flag (SSPIF Bit)..................................................19  
TMR0 Overflow Flag (T0IF Bit).............................17, 91  
TMR1 Overflow Flag (TMR1IF Bit) .............................19  
TMR2 to PR2 Match Flag (TMR2IF Bit)......................19  
USART Receive Flag (RCIF Bit).................................19  
USART Transmit Flag (TXIE Bit) ................................19  
K
KeeLoq Evaluation and Programming Tools....................99  
M
Master Clear (MCLR)........................................................7, 8  
MCLR Reset, Normal Operation.....................83, 86, 87  
MCLR Reset, SLEEP......................................83, 86, 87  
PIC16C63A/PIC16C73B............................................... 7  
PIC16C65B/PIC16C74B............................................... 8  
PIR1 Register ............................................................... 13, 19  
ADIF Bit ...................................................................... 19  
CCP1IF Bit.................................................................. 19  
PSPIF Bit.................................................................... 19  
DS30605A-page 142  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
RCIF Bit ...................................................................... 19  
SSPIF Bit .................................................................... 19  
TMR1IF Bit.................................................................. 19  
TMR2IF Bit.................................................................. 19  
TXIF Bit....................................................................... 19  
PIR2 Register................................................................ 13, 21  
CCP2IF Bit.................................................................. 21  
Pointer, FSR ....................................................................... 24  
PORTA.............................................................................. 7, 8  
Analog Port Pins ....................................................... 7, 8  
Initialization ................................................................. 25  
PORTA Register ................................................... 13, 25  
RA3:RA0 and RA5 Port Pins ...................................... 25  
RA4/T0CKI Pin.................................................... 7, 8, 25  
RA5/SS/AN4 Pin................................................. 7, 8, 54  
TRISA Register..................................................... 14, 25  
PORTB.............................................................................. 7, 8  
Initialization ................................................................. 27  
PORTB Register ................................................... 13, 27  
Pull-up Enable (RBPU Bit).......................................... 16  
RB0/INT Edge Select (INTEDG Bit)............................ 16  
RB0/INT Pin, External......................................... 7, 8, 91  
RB3:RB0 Port Pins ..................................................... 27  
RB7:RB4 Interrupt on Change.................................... 91  
RB7:RB4 Interrupt on Change Enable  
Power-on Reset (POR)............................... 81, 83, 85, 86, 87  
Oscillator Start-up Timer (OST)............................ 81, 85  
POR Status (POR Bit) ................................................ 22  
Power Control (PCON) Register................................. 86  
Power-down (PD Bit)............................................ 15, 83  
Power-on Reset Circuit, External ............................... 85  
Power-up Timer (PWRT)...................................... 81, 85  
PWRT Enable (PWRTE Bit) ....................................... 81  
Time-out (TO Bit).................................................. 15, 83  
Time-out Sequence .................................................... 86  
Time-out Sequence on Power-up......................... 88, 89  
Timing Diagram ........................................................ 110  
Prescaler, Capture.............................................................. 46  
Prescaler, Timer0 ............................................................... 37  
Assignment (PSA Bit)........................................... 16, 37  
Block Diagram ............................................................ 38  
Rate Select (PS2:PS0 Bits).................................. 16, 37  
Switching Between Timer0 and WDT......................... 38  
Prescaler, Timer1 ............................................................... 40  
Select (T1CKPS1:T1CKPS0 Bits) .............................. 39  
Prescaler, Timer2 ............................................................... 48  
Select (T2CKPS1:T2CKPS0 Bits) .............................. 43  
PRO MATE II Universal Programmer.............................. 97  
Product Identification System........................................... 149  
Program Counter  
(RBIE Bit).............................................................. 17, 91  
RB7:RB4 Interrupt on Change Flag  
PCL Register ........................................................ 13, 23  
PCLATH Register........................................... 13, 23, 91  
Reset Conditions ........................................................ 86  
Program Memory................................................................ 11  
Interrupt Vector........................................................... 11  
Paging .................................................................. 11, 23  
Program Memory Map................................................ 11  
Reset Vector............................................................... 11  
Program Verification........................................................... 94  
Programming Pin (VPP) .................................................... 7, 8  
Programming, Device Instructions...................................... 95  
PWM (CCP Module)........................................................... 48  
Block Diagram ............................................................ 48  
CCPR1H:CCPR1L Registers ..................................... 48  
Duty Cycle .................................................................. 48  
Example Frequencies/Resolutions............................. 49  
Output Diagram .......................................................... 48  
Period ......................................................................... 48  
Set-Up for PWM Operation......................................... 49  
TMR2 to PR2 Match............................................. 43, 48  
TMR2 to PR2 Match Enable (TMR2IE Bit)................. 18  
TMR2 to PR2 Match Flag (TMR2IF Bit) ..................... 19  
Q
(RBIF Bit) ........................................................ 17, 27, 91  
RB7:RB4 Port Pins ..................................................... 27  
TRISB Register..................................................... 14, 27  
PORTC ............................................................................. 7, 9  
Block Diagram............................................................. 29  
Initialization ................................................................. 29  
PORTC Register................................................... 13, 29  
RC0/T1OSO/T1CKI Pin ............................................ 7, 9  
RC1/T1OSI/CCP2 Pin............................................... 7, 9  
RC2/CCP1 Pin.......................................................... 7, 9  
RC3/SCK/SCL Pin ........................................ 7, 9, 54, 59  
RC4/SDI/SDA Pin ............................................... 7, 9, 54  
RC5/SDO Pin...................................................... 7, 9, 54  
RC6/TX/CK Pin................................................... 7, 9, 62  
RC7/RX/DT Pin............................................. 7, 9, 62, 63  
TRISC Register............................................... 14, 29, 61  
PORTD ........................................................................... 9, 35  
Block Diagram............................................................. 31  
Parallel Slave Port (PSP) Function............................. 31  
PORTD Register................................................... 13, 31  
TRISD Register..................................................... 14, 31  
PORTE.................................................................................. 9  
Analog Port Pins ............................................... 9, 34, 35  
Block Diagram............................................................. 33  
Input Buffer Full Status (IBF Bit) ................................. 33  
Input Buffer Overflow (IBOV Bit)................................. 33  
Output Buffer Full Status (OBF Bit)............................. 33  
PORTE Register ................................................... 13, 33  
PSP Mode Select (PSPMODE Bit) ................. 31, 33, 35  
RE0/RD/AN5 Pin............................................... 9, 34, 35  
RE1/WR/AN6 Pin.............................................. 9, 34, 35  
RE2/CS/AN7 Pin............................................... 9, 34, 35  
TRISE Register..................................................... 14, 33  
Postscaler, Timer2  
Q-Clock............................................................................... 48  
R
RCSTA Register................................................................. 62  
CREN Bit .................................................................... 62  
FERR Bit..................................................................... 62  
OERR Bit.................................................................... 62  
RX9 Bit ....................................................................... 62  
RX9D Bit..................................................................... 62  
SPEN Bit............................................................... 61, 62  
SREN Bit .................................................................... 62  
Reader Response............................................................. 148  
Register File ....................................................................... 11  
Register File Map ............................................................... 12  
Reset ............................................................................ 81, 83  
Block Diagram ............................................................ 84  
Reset Conditions for All Registers.............................. 87  
Reset Conditions for PCON Register ......................... 86  
Reset Conditions for Program Counter ...................... 86  
Reset Conditions for STATUS Register ..................... 86  
Select (TOUTPS3:TOUTPS0 Bits) ............................. 43  
Postscaler, WDT................................................................. 37  
Assignment (PSA Bit) ........................................... 16, 37  
Block Diagram............................................................. 38  
Rate Select (PS2:PS0 Bits) .................................. 16, 37  
Switching Between Timer0 and WDT ......................... 38  
1998 Microchip Technology Inc.  
DS30605A-page 143  
PIC16C63A/65B/73B/74B  
Timing Diagram.........................................................110  
Revision History ................................................................137  
S
SEEVAL Evaluation and Programming System...............99  
SLEEP.....................................................................81, 83, 93  
Software Simulator (MPLAB-SIM).......................................99  
Special Features of the CPU...............................................81  
Special Function Registers ...........................................12, 13  
Speed, Operating..........................................................1, 101  
SPI (SSP Module)  
TMR1CS Bit................................................................ 39  
TMR1ON Bit ............................................................... 39  
T2CON Register ........................................................... 13, 43  
T2CKPS1:T2CKPS0 Bits............................................ 43  
TMR2ON Bit ............................................................... 43  
TOUTPS3:TOUTPS0 Bits .......................................... 43  
Timer0................................................................................. 37  
Block Diagram ............................................................ 37  
Clock Source Edge Select (T0SE Bit) .................. 16, 37  
Clock Source Select (T0CS Bit) ........................... 16, 37  
Overflow Enable (T0IE Bit)......................................... 17  
Overflow Flag (T0IF Bit) ....................................... 17, 91  
Overflow Interrupt................................................. 38, 91  
RA4/T0CKI Pin, External Clock................................ 7, 8  
Timing Diagram ........................................................ 111  
TMR0 Register ........................................................... 13  
Timer1................................................................................. 39  
Block Diagram ............................................................ 40  
Capacitor Selection .................................................... 41  
Clock Source Select (TMR1CS Bit)............................ 39  
External Clock Input Sync (T1SYNC Bit).................... 39  
Module On/Off (TMR1ON Bit) .................................... 39  
Oscillator............................................................... 39, 41  
Oscillator Enable (T1OSCEN Bit)............................... 39  
Overflow Enable (TMR1IE Bit) ................................... 18  
Overflow Flag (TMR1IF Bit)........................................ 19  
Overflow Interrupt................................................. 39, 41  
RC0/T1OSO/T1CKI Pin............................................ 7, 9  
RC1/T1OSI/CCP2 Pin .............................................. 7, 9  
Special Event Trigger (CCP) ................................ 41, 47  
T1CON Register................................................... 13, 39  
Timing Diagram ........................................................ 111  
TMR1H Register................................................... 13, 39  
TMR1L Register ................................................... 13, 39  
Timer2  
Block Diagram.............................................................54  
Buffer Full Status (BF Bit) ...........................................52  
Clock Edge Select (CKE Bit).......................................52  
Clock Polarity Select (CKP Bit)...................................53  
Data Input Sample Phase (SMP Bit)...........................52  
Mode Select (SSPM3:SSPM0 Bits) ............................53  
Receive Overflow Indicator (SSPOV Bit)....................53  
Serial Clock (RC3/SCK/SCL)......................................54  
Serial Data In (RC4/SDI/SDA) ....................................54  
Serial Data Out (RC5/SDO)........................................54  
Slave Select (RA5/SS/AN4)........................................54  
Synchronous Serial Port Enable (SSPEN Bit) ............53  
SSP.....................................................................................51  
Enable (SSPIE Bit)......................................................18  
Flag (SSPIF Bit)..........................................................19  
RA5/SS/AN4 Pin.......................................................7, 8  
RC3/SCK/SCL Pin ....................................................7, 9  
RC4/SDI/SDA Pin .....................................................7, 9  
RC5/SDO Pin............................................................7, 9  
RCSTA Register .........................................................13  
SPBRG Register.........................................................14  
SSPADD Register.......................................................14  
SSPBUF Register .......................................................13  
SSPCON Register ................................................13, 53  
SSPSTAT Register ...............................................14, 52  
TMR2 Output for Clock Shift.................................43, 44  
TXSTA Register..........................................................14  
Write Collision Detect (WCOL Bit) ..............................53  
SSPCON Register...............................................................53  
CKP Bit .......................................................................53  
SSPEN Bit...................................................................53  
SSPM3:SSPM0 Bits....................................................53  
SSPOV Bit ..................................................................53  
WCOL Bit....................................................................53  
SSPSTAT Register .............................................................52  
BF Bit ..........................................................................52  
CKE Bit .......................................................................52  
D/A Bit.........................................................................52  
P bit.......................................................................52, 60  
R/W Bit......................................................52, 57, 58, 59  
S Bit ......................................................................52, 60  
SMP Bit.......................................................................52  
UA Bit..........................................................................52  
Stack ...................................................................................23  
STATUS Register....................................................13, 15, 91  
C Bit ............................................................................15  
DC Bit..........................................................................15  
IRP Bit.........................................................................15  
PD Bit....................................................................15, 83  
RP1:RP0 Bits..............................................................15  
TO Bit....................................................................15, 83  
Z Bit.............................................................................15  
T
Block Diagram ............................................................ 44  
PR2 Register .................................................. 14, 43, 48  
SSP Clock Shift .................................................... 43, 44  
T2CON Register................................................... 13, 43  
TMR2 Register ..................................................... 13, 43  
TMR2 to PR2 Match Enable (TMR2IE Bit)................. 18  
TMR2 to PR2 Match Flag (TMR2IF Bit) ..................... 19  
TMR2 to PR2 Match Interrupt......................... 43, 44, 48  
Timing Diagrams  
2
I C Reception (7-bit Address)..................................... 58  
Time-out Sequence on Power-up......................... 88, 89  
USART Asynchronous Master Transmission ............. 67  
USART Asynchronous Reception .............................. 68  
USART Synchronous Reception ................................ 72  
USART Synchronous Transmission........................... 71  
Wake-up from SLEEP via Interrupt ............................ 94  
Timing Diagrams and Specifications ................................ 108  
A/D Conversion ........................................................ 122  
Brown-out Reset (BOR)............................................ 110  
Capture/Compare/PWM (CCP) ................................ 112  
CLKOUT and I/O ...................................................... 109  
External Clock .......................................................... 108  
2
I C Bus Data............................................................. 119  
2
I C Bus Start/Stop Bits ............................................. 118  
Oscillator Start-up Timer (OST)................................ 110  
Parallel Slave Port (PSP) ......................................... 113  
Power-up Timer (PWRT).......................................... 110  
Reset ........................................................................ 110  
Timer0 and Timer1 ................................................... 111  
USART Synchronous Receive  
T1CON Register............................................................13, 39  
T1CKPS1:T1CKPS0 Bits............................................39  
T1OSCEN Bit..............................................................39  
T1SYNC Bit.................................................................39  
( Master/Slave) ......................................................... 120  
USART SynchronousTransmission  
DS30605A-page 144  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
( Master/Slave).......................................................... 120  
Watchdog Timer (WDT)............................................ 110  
TRISE Register............................................................. 14, 33  
IBF Bit ......................................................................... 33  
IBOV Bit ...................................................................... 33  
OBF Bit ....................................................................... 33  
PSPMODE Bit................................................. 31, 33, 35  
TXSTA Register.................................................................. 61  
BRGH Bit .............................................................. 61, 63  
CSRC Bit..................................................................... 61  
SYNC Bit..................................................................... 61  
TRMT Bit..................................................................... 61  
TX9 Bit ........................................................................ 61  
TX9D Bit...................................................................... 61  
TXEN Bit ..................................................................... 61  
U
Timing Diagram .......................................................... 94  
WDT Reset................................................................. 87  
Watchdog Timer (WDT)................................................ 81, 92  
Block Diagram ............................................................ 92  
Enable (WDTE Bit) ............................................... 81, 92  
Programming Considerations..................................... 92  
RC Oscillator .............................................................. 92  
Time-out Period.......................................................... 92  
Timing Diagram ........................................................ 110  
WDT Reset, Normal Operation....................... 83, 86, 87  
WDT Reset, SLEEP ....................................... 83, 86, 87  
WWW, On-Line Support............................................... 4, 147  
USART................................................................................ 61  
Asynchronous Mode ................................................... 66  
Master Transmission .......................................... 67  
Receive Block Diagram ...................................... 68  
Reception............................................................ 68  
Transmit Block Diagram ..................................... 66  
Baud Rate Generator (BRG)....................................... 63  
Baud Rate Error, Calculating.............................. 63  
Baud Rate Formula............................................. 63  
Baud Rates, Asynchronous Mode  
(BRGH=0)........................................................... 64  
Baud Rates, Asynchronous Mode  
(BRGH=1)........................................................... 65  
Baud Rates, Synchronous Mode........................ 64  
High Baud Rate Select (BRGH Bit) .............. 61, 63  
Sampling............................................................. 63  
Clock Source Select (CSRC Bit)................................. 61  
Continuous Receive Enable (CREN Bit)..................... 62  
Framing Error (FERR Bit) ........................................... 62  
Mode Select (SYNC Bit) ............................................. 61  
Overrun Error (OERR Bit)........................................... 62  
RC6/TX/CK Pin......................................................... 7, 9  
RC7/RX/DT Pin......................................................... 7, 9  
RCREG Register......................................................... 13  
RCSTA Register ......................................................... 62  
Receive Data, 9th bit (RX9D Bit) ................................ 62  
Receive Enable (RCIE Bit).......................................... 18  
Receive Enable, 9-bit (RX9 Bit) .................................. 62  
Receive Flag (RCIF Bit).............................................. 19  
Serial Port Enable (SPEN Bit)............................... 61, 62  
Single Receive Enable (SREN Bit) ............................. 62  
Synchronous Master Mode......................................... 70  
Reception............................................................ 72  
Timing Diagram, Synchronous Receive ........... 120  
Timing Diagram, Synchronous  
Transmission .................................................... 120  
Transmission ...................................................... 71  
Synchronous Slave Mode........................................... 73  
Transmit Data, 9th Bit (TX9D)..................................... 61  
Transmit Enable (TXEN Bit)........................................ 61  
Transmit Enable (TXIE Bit) ......................................... 18  
Transmit Enable, Nine-bit (TX9 Bit) ............................ 61  
Transmit Flag (TXIE Bit) ............................................. 19  
Transmit Shift Register Status (TRMT Bit).................. 61  
TXREG Register ......................................................... 13  
TXSTA Register.......................................................... 61  
W
W Register .......................................................................... 91  
Wake-up from SLEEP................................................... 81, 93  
Interrupts............................................................... 86, 87  
MCLR Reset ............................................................... 87  
1998 Microchip Technology Inc.  
DS30605A-page 145  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605A-page 146  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-602-786-7302 for the rest of the world.  
980106  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.futureone.com/pub/microchip  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
• Latest Microchip Press Releases  
Trademarks: The Microchip name, logo, PIC, PICSTART,  
PICMASTER and PRO MATE are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries. PICmicro, FlexROM, MPLAB and fuzzyLAB are  
trademarks and SQTP is a service mark of Microchip in  
the U.S.A.  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Sys-  
tems, technical information and more  
• Listing of seminars and events  
1998 Microchip Technology Inc.  
DS30605A-page 147  
PIC16C63A/65B/73B/74B  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30605A  
Device:  
PIC16C63A/65B/73B/74B  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30605A-page 148  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
PIC16C63A/65B/73B/74B PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
-XX  
Examples:  
Frequency Temperature Package  
Range Range  
Pattern  
a) PIC16C74B -04/P 301 = Commercial temp.,  
PDIP package, 4 MHz, normal VDD limits, QTP  
pattern #301.  
b)  
PIC16LC63A - 04I/SO = Industrial temp., SOIC  
package, 200 kHz, Extended VDD limits.  
Device  
PIC16C6X(1), PIC16C6XT(2);VDD range 4.0V to 5.5V  
PIC16LC6X(1), PIC16LC6XT(2);VDD range 2.5V to 5.5V  
PIC16C7X(1), PIC16C7XT(2);VDD range 4.0V to 5.5V  
PIC16LC7X(1), PIC16LC7XT(2);VDD range 2.5V to 5.5V  
c)  
PIC16C65B - 20I/P = Industrial temp., PDIP  
package, 20MHz, normal VDD limits.  
Frequency Range  
04  
20  
= 4 MHz  
= 20 MHz  
Note 1:  
2:  
C
= CMOS  
LC = Low Power CMOS  
T
= in tape and reel - SOIC, SSOP,  
PLCC, QFP, TQ and FP  
packages only.  
Temperature Range  
blank  
I
E
=
=
=
0°C to  
70°C (Commercial)  
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
Package  
JW  
PQ  
PT  
SO  
SP  
P
=
=
=
=
=
=
=
=
Windowed CERDIP  
MQFP (Metric PQFP)  
TQFP (Thin Quad Flatpack)  
SOIC  
Skinny plastic dip  
PDIP  
L
PLCC  
SSOP  
SS  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type (including LC devices).  
1998 Microchip Technology Inc.  
DS30605A-page 149  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605A-page 150  
1998 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
NOTES:  
1998 Microchip Technology Inc.  
DS30605A-page 151  
M
WORLDWIDE SALES AND SERVICE  
AMERICAS  
Corporate Office  
AMERICAS (continued)  
Toronto  
ASIA/PACIFIC (continued)  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
2355 West Chandler Blvd.  
5925 Airport Road, Suite 200  
200 Middle Road  
Chandler, AZ 85224-6199  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Tel: 602-786-7200 Fax: 602-786-7277  
Technical Support: 602 786-7627  
Web: http://www.microchip.com  
ASIA/PACIFIC  
Hong Kong  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Atlanta  
Microchip Technology Inc.  
Microchip Asia Pacific  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tung Hua North Road  
Taipei, Taiwan, ROC  
RM 3801B, Tower Two  
Metroplaza  
Tel: 770-640-0034 Fax: 770-640-0307  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Boston  
Microchip Technology Inc.  
EUROPE  
5 Mount Royal Avenue  
Marlborough, MA 01752  
India  
Microchip Technology Inc.  
United Kingdom  
Arizona Microchip Technology Ltd.  
Tel: 508-480-9990 Fax: 508-480-8575  
India Liaison Office  
505 Eskdale Road  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-1189-21-5858 Fax: 44-1189-21-5835  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Japan  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Tel: 630-285-0071 Fax: 630-285-0075  
France  
Arizona Microchip Technology SARL  
Zone Industrielle de la Bonde  
2 Rue du Buisson aux Fraises  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Dallas  
Microchip Technology Inc.  
14651 Dallas Parkway, Suite 816  
Dallas, TX 75240-8809  
Tel: 972-991-7177 Fax: 972-991-8588  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Korea  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 Müchen, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Italy  
Detroit  
Microchip Technology Inc.  
42705 Grand River, Suite 201  
Novi, MI 48375-1727  
Tel: 248-374-1888 Fax: 248-374-2874  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
Tel: 39-39-6899939 Fax: 39-39-6899883  
Los Angeles  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
7/7/98  
Tel: 714-263-1888 Fax: 714-263-1338  
Microchip received ISO 9001 Quality  
System certification for its worldwide  
headquarters, design, and wafer  
fabrication facilities in January, 1997.  
Our field-programmable PICmicro™  
8-bit MCUs, Serial EEPROMs,  
related specialty memory products  
and development systems conform  
to the stringent quality standards of  
the International Standard  
NewYork  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 516-273-5305 Fax: 516-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Organization (ISO).  
All rights reserved. © 1998, Microchip Technology Incorporated, USA. 8/98  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no  
liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use  
or otherwise. Use of Microchips products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or  
otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other  
trademarks mentioned herein are the property of their respective companies.  
DS30605A-page 152  
1998 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY