PIC16C71A-10I/SS [MICROCHIP]

8-BIT, OTPROM, 10 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, SSOP-20;
PIC16C71A-10I/SS
型号: PIC16C71A-10I/SS
厂家: MICROCHIP    MICROCHIP
描述:

8-BIT, OTPROM, 10 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, SSOP-20

可编程只读存储器 时钟 光电二极管 外围集成电路
文件: 总308页 (文件大小:2351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C7X  
8-Bit CMOS Microcontrollers with A/D Converter  
• Low-power, high-speed CMOS EPROM  
technology  
Devices included in this data sheet:  
• PIC16C70  
• PIC16C71  
• PIC16C71A  
• PIC16C72  
• PIC16C73  
• PIC16C73A  
• PIC16C74  
• PIC16C74A  
• Fully static design  
• Wide operating voltage range: 3.0V to 6.0V  
• High Sink/Source Current 25/25 mA  
• Commercial, Industrial and Automotive Tempera-  
ture Range  
• Low-power consumption:  
- < 2 mA @ 5V, 4 MHz  
- 15 µA typical @ 3V, 32 kHz  
- < 1 µA typical standby current  
PIC16C7X Microcontroller Core Features:  
PIC16C7X Peripheral Features:  
• High-performance RISC CPU  
• Only 35 single word instructions to learn  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• All single cycle instructions (200 ns) except for  
program branches which are two cycle  
• Timer1: 16-bit timer/counter. TMR1 can be incre-  
mented during sleep via external crystal/clock  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
• Timer2: 8-bit timer/counter with 8-bit period regis-  
ter, prescaler and postscaler  
• Interrupt capability  
• Capture, Compare, PWM module(s)  
• Eight level deep hardware stack  
• Direct, indirect and relative addressing modes  
• Power-on Reset (POR)  
• Capture is 16-bit, max. resolution 12.5 ns, com-  
pare is 16-bit, max. resolution 200 ns, max. PWM  
resolution is 10-bit  
• Synchronous Serial Port (SSP) with SPI  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
2
and I C  
• Universal Synchronous Asynchronous Receiver  
Transmitter (USART/SCI)  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
• Parallel Slave Port (PSP) 8-bit wide, with external  
RD, WR and CS controls  
• Programmable code-protection  
• Power saving SLEEP mode  
• Brown-out detection circuitry for Brown-out Reset  
(BOR)  
• Selectable oscillator options  
• 8-bit multichannel analog-to-digital converter  
PIC16C7X Features  
70  
71  
71A  
72  
73  
73A  
74  
74A  
Program Memory (EPROM)  
Data Memory (Bytes)  
I/O Pins  
512  
36  
13  
1
1K  
36  
13  
1
1K  
68  
13  
1
2K  
128  
22  
1
4K  
192  
22  
2
4K  
192  
22  
2
4K  
192  
33  
Yes  
2
4K  
192  
33  
Yes  
2
Parallel Slave Port  
Capture/Compare/PWM Modules  
Timer Modules  
3
3
3
3
3
A/D Channels  
4
4
4
5
5
5
8
8
2
2
2
2
2
Serial Communication  
SPI/I C SPI/I C,  
USART  
SPI/I C,  
SPI/I C,  
SPI/I C,  
USART  
USART  
Yes  
USART  
In-Circuit Serial Programming  
Brown-out Reset  
Yes Yes Yes  
Yes  
Yes  
8
Yes  
Yes  
Yes  
Yes  
4
4
Yes  
4
Yes  
Yes  
Interrupt Sources  
11  
11  
12  
12  
2
I C is a trademark of Philips Corporation. SPI is a trademark of Motorola Corporation.  
1995 Microchip Technology Inc.  
DS30390B-page 1  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
Pin Diagrams  
SSOP  
PDIP, SOIC, Windowed CERDIP  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
MCLR/VPP  
VSS  
• 1  
2
18  
17  
16  
15  
14  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
MCLR/VPP  
VSS  
• 1  
2
20  
19  
18  
17  
16  
RA1/AN1  
RA0/AN0  
RA0/AN0  
3
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
3
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
4
4
5
5
RB0/INT  
RB1  
6
7
8
13  
12  
11  
RB7  
RB6  
RB5  
VSS  
RB0/INT  
RB1  
6
7
8
15  
14  
13  
VDD  
RB7  
RB6  
RB2  
RB3  
RB2  
9
10  
RB4  
9
12  
11  
RB5  
RB4  
RB3  
10  
PDIP, SOIC, Windowed CERDIP  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
MCLR/VPP  
VSS  
• 1  
2
18  
17  
16  
15  
14  
RA1/AN1  
RA0/AN0  
3
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
4
5
RB0/INT  
RB1  
6
7
8
13  
12  
11  
RB7  
RB6  
RB5  
RB2  
RB3  
9
10  
RB4  
SSOP  
PDIP, SOIC, Windowed CERDIP  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
MCLR/VPP  
VSS  
• 1  
2
18  
17  
16  
15  
14  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
MCLR/VPP  
VSS  
• 1  
2
20  
19  
18  
17  
16  
RA1/AN1  
RA0/AN0  
RA0/AN0  
3
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
3
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
4
4
5
5
RB0/INT  
RB1  
6
7
8
13  
12  
11  
RB7  
RB6  
RB5  
VSS  
RB0/INT  
RB1  
6
7
8
15  
14  
13  
VDD  
RB7  
RB6  
RB2  
RB3  
RB2  
9
10  
RB4  
9
12  
11  
RB5  
RB4  
RB3  
10  
SDIP, SOIC, Windowed Side Brazed Ceramic  
SSOP  
MCLR/VPP  
RA0/AN0  
• 1  
2
28  
27  
26  
25  
24  
RB7  
RB6  
RB5  
RB4  
RB3  
MCLR/VPP  
RA0/AN0  
• 1  
2
28  
27  
26  
25  
24  
RB7  
RB6  
RB5  
RB4  
RB3  
RA1/AN1  
3
RA1/AN1  
3
RA2/AN2  
4
RA2/AN2  
4
RA3/AN3/VREF  
5
RA3/AN3/VREF  
5
RA4/T0CKI  
RA5/AN4/SS  
VSS  
6
7
8
23  
22  
21  
RB2  
RA4/T0CKI  
RA5/AN4/SS  
VSS  
6
7
8
23  
22  
21  
RB2  
RB1  
RB1  
RB0/INT  
RB0/INT  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
9
20  
19  
18  
17  
16  
15  
VDD  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
9
20  
19  
18  
17  
16  
15  
VDD  
10  
11  
12  
13  
14  
VSS  
10  
11  
12  
13  
14  
VSS  
RC7  
RC7  
RC6  
RC6  
RC2/CCP1  
RC5/SDO  
RC4/SDI/SDA  
RC2/CCP1  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC3/SCK/SCL  
DS30390B-page 2  
1995 Microchip Technology Inc.  
PIC16C7X  
Pin Diagrams (Cont.d)  
SDIP, SOIC, Windowed Side Brazed Ceramic  
MQFP  
MCLR/VPP  
RA0/AN0  
• 1  
2
28  
27  
26  
25  
24  
RB7  
RB6  
RB5  
RB4  
RB3  
RA1/AN1  
3
RA2/AN2  
4
RA3/AN3/VREF  
5
NC  
RA4/T0CKI  
RA5/AN4/SS  
VSS  
6
7
8
23  
22  
21  
RB2  
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
VDD  
RB0/INT  
RB1  
1
2
3
4
5
6
7
8
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RC0/T1OSO/T1CKI  
OSC2/CLKOUT  
OSC1/CLKIN  
VSS  
RB1  
RB0/INT  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
9
20  
19  
18  
17  
16  
15  
VDD  
VDD  
10  
11  
12  
13  
14  
VSS  
PIC16C74  
RE2/CS/AN7  
RE1/WR/AN6  
RE0/RD/AN5  
RA5/AN4/SS  
RA4/T0CKI  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
9
10  
11  
RB2  
RB3  
RC3/SCK/SCL  
PLCC  
MQFP  
TQFP  
NC  
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
1
2
3
4
5
6
33  
32  
31  
30  
29  
28  
RA4/T0CKI  
RA5/AN4/SS  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
RB3  
RB2  
RB1  
RB0/INT  
VDD  
7
8
9
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
RC0/T1OSO/T1CKI  
OSC2/CLKOUT  
OSC1/CLKIN  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
VDD  
VSS  
7
8
9
10  
PIC16C74A 27  
VDD  
RB0/INT  
RB1  
RB2  
RB3  
RE2/CS/AN7  
RE1/WR/AN6  
RE0/RD/AN5  
RA5/AN4/SS  
RA4/T0CKI  
PIC16C74  
PIC16C74A  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
26  
25  
24  
23  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
NC  
11  
PDIP, Windowed CERDIP  
MCLR/VPP  
RA0/AN0  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
RB1  
RB0/INT  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RD0/PSP0  
RC4/SDI/SDA  
RD3/PSP3  
RD2/PSP2  
RD1/PSP1  
1995 Microchip Technology Inc.  
DS30390B-page 3  
PIC16C7X  
Table of Contents  
1.0 General Description................................................................................................................................................5  
2.0 PIC16C7X Device Varieties....................................................................................................................................7  
3.0 Architectural Overview............................................................................................................................................9  
4.0 Memory Organization ...........................................................................................................................................21  
5.0 I/O Ports ...............................................................................................................................................................43  
6.0 Overview of Timer Modules..................................................................................................................................57  
7.0 Timer0 Module......................................................................................................................................................59  
8.0 Timer1 Module......................................................................................................................................................65  
9.0 Timer2 Module......................................................................................................................................................69  
10.0 Capture/Compare/PWM Module(s) ......................................................................................................................71  
11.0 Synchronous Serial Port (SSP) Module ...............................................................................................................77  
12.0 Universal Synchronous Asynchronous Receiver Transmitter (USART) ...............................................................93  
13.0 Analog-to-Digital Converter (A/D) Module..........................................................................................................109  
14.0 Special Features of the CPU..............................................................................................................................121  
15.0 Instruction Set Summary ....................................................................................................................................141  
16.0 Development Support.........................................................................................................................................153  
17.0 Electrical Characteristics for PIC16C70 and PIC16C71A ..................................................................................159  
18.0 DC and AC Characteristics Graphs and Tables for PIC16C70 and PIC16C71A................................................173  
19.0 Electrical Characteristics for PIC16C71 .............................................................................................................175  
20.0 DC and AC Characteristics Graphs and Tables for PIC16C71...........................................................................189  
21.0 Electrical Characteristics for PIC16C72 .............................................................................................................197  
22.0 DC and AC Characteristics Graphs and Tables for PIC16C72...........................................................................217  
23.0 Electrical Characteristics for PIC16C73/74 ........................................................................................................219  
24.0 DC and AC Characteristics Graphs and Tables for PIC16C73/74......................................................................241  
25.0 Electrical Characteristics for PIC16C73A/74A....................................................................................................243  
26.0 DC and AC Characteristics Graphs and Tables for PIC16C73A/74A .................................................................265  
27.0 Packaging Information........................................................................................................................................267  
Appendix A:.................................................................................................................................................................283  
Appendix B: Compatibility ...........................................................................................................................................283  
Appendix C: What’s New.............................................................................................................................................284  
Appendix D: What’s Changed .....................................................................................................................................284  
Appendix E: PIC16/17 Microcontrollers.......................................................................................................................285  
Index...................................................................................................................................................................293  
Connecting to Microchip BBS.............................................................................................................................303  
Reader Response...............................................................................................................................................304  
Product Information System ...............................................................................................................................305  
For register and module descriptions in this data sheet, device legends show which devices apply to those sections. As  
an example, the legend below would mean that the following section applies only to the PIC16C71A, PIC16C72,  
PIC16C73A and PIC16C74A devices.  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
To Our Valued Customers  
We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional  
amount of time to ensure that these documents are correct. However, we realize that we may have missed a few  
things. If you find any information that is missing or appears in error, please use the reader response form in the  
back of this data sheet to inform us. We appreciate your assistance in making this a better document.  
DS30390B-page 4  
1995 Microchip Technology Inc.  
PIC16C7X  
Synchronous Serial Port can be configured as either a  
3-wire Serial Peripheral Interface (SPI) or the two-wire  
Inter-Integrated Circuit (I C) bus. The Universal Syn-  
1.0  
GENERAL DESCRIPTION  
The PIC16C7X is a family of low-cost, high-perfor-  
mance, CMOS, fully-static, 8-bit microcontrollers with  
integrated analog-to-digital (A/D) converters, in the  
PIC16CXX mid-range family.  
2
chronous  
Asynchronous  
Receiver  
Transmitter  
(USART) is also known as the Serial Communications  
Interface or SCI. An 8-bit Parallel Slave Port is pro-  
vided. Also an 8-channel high-speed 8-bit A/D is pro-  
vided. The 8-bit resolution is ideally suited for  
applications requiring low-cost analog interface, e.g.  
thermostat control, pressure sensing, etc.  
All PIC16/17 microcontrollers employ an advanced  
RISC architecture. The PIC16CXX microcontroller fam-  
ily has enhanced core features, eight-level deep stack,  
and multiple internal and external interrupt sources.  
The separate instruction and data buses of the Harvard  
architecture allow a 14-bit wide instruction word with  
the separate 8-bit wide data. The two stage instruction  
pipeline allows all instructions to execute in a single  
cycle, except for program branches (which require two  
cycles). A total of 35 instructions (reduced instruction  
set) are available.Additionally, a large register set gives  
some of the architectural innovations used to achieve a  
very high performance.  
The PIC16C7X family has special features to reduce  
external components, thus reducing cost, enhancing  
system reliability and reducing power consumption.  
There are four oscillator options, of which the single pin  
RC oscillator provides a low-cost solution, the LP oscil-  
lator minimizes power consumption, XT is a standard  
crystal, and the HS is for High Speed crystals. The  
SLEEP (power-down) feature provides a power saving  
mode. The user can wake up the chip from SLEEP  
through several external and internal interrupts and  
reset(s).  
PIC16CXX microcontrollers typically achieve a 2:1  
code compression and a 4:1 speed improvement over  
other 8-bit microcontrollers in their class.  
A highly reliable Watchdog Timer with its own on-chip  
RC oscillator provides protection against software lock-  
up.  
The PIC16C70/71 devices have 36 bytes of RAM, and  
the PIC16C71A has 68 bytes of RAM. The  
PIC16C70/71/71Adevices have 13 I/O pins. In addition  
a timer/counter is available. Also a 4-channel high-  
speed 8-bit A/D is provided. The 8-bit resolution is ide-  
ally suited for applications requiring low-cost analog  
interface, e.g. thermostat control, pressure sensing,  
etc.  
A UV erasable CERDIP packaged version is ideal for  
code development while the cost-effective One-Time-  
Programmable (OTP) version is suitable for production  
in any volume.  
The PIC16C7X family fits perfectly in applications rang-  
ing from security and remote sensors to appliance con-  
trol and automotive. The EPROM technology makes  
customization of application programs (transmitter  
codes, motor speeds, receiver frequencies, etc.)  
extremely fast and convenient. The small footprint  
packages make this microcontroller series perfect for  
all applications with space limitations. Low cost, low  
power, high performance, ease of use and I/O flexibility  
make the PIC16C7X very versatile even in areas  
where no microcontroller use has been considered  
before (e.g. timer functions, serial communication, cap-  
ture and compare, PWM functions and coprocessor  
applications).  
The PIC16C72 device has 128 bytes of RAM and 22  
I/O pins. In addition several peripheral features are  
available including: three timer/counters, one Cap-  
ture/Compare/PWM module and one serial port. The  
Synchronous Serial Port can be configured as either a  
3-wire Serial Peripheral Interface (SPI) or the two-wire  
2
Inter-Integrated Circuit (I C) bus. Also a 5-channel  
high-speed 8-bit A/D is provided. The 8-bit resolution  
is ideally suited for applications requiring low-cost ana-  
log interface, e.g. thermostat control, pressure sens-  
ing, etc.  
The PIC16C73/73A devices have 192 bytes of RAM  
and 22 I/O pins. In addition, several peripheral features  
are available including: three timer/counters, two Cap-  
ture/Compare/PWM modules and two serial ports. The  
Synchronous Serial Port can be configured as either a  
3-wire Serial Peripheral Interface (SPI) or the two-wire  
1.1  
Family and Upward Compatibility  
Users familiar with the PIC16C5X microcontroller fam-  
ily will realize that this is an enhanced version of the  
PIC16C5X architecture. Please refer to Appendix A for  
a detailed list of enhancements. Code written for the  
PIC16C5X can be easily ported to the PIC16CXX fam-  
ily of devices (Appendix B).  
2
Inter-Integrated Circuit (I C) bus. The Universal Syn-  
chronous  
Asynchronous  
Receiver  
Transmitter  
(USART) is also known as the Serial Communications  
Interface or SCI. Also a 5-channel high-speed 8-bit A/D  
is provided.The 8-bit resolution is ideally suited for  
applications requiring low-cost analog interface, e.g.  
thermostat control, pressure sensing, etc.  
1.2  
Development Support  
The PIC16CXX family is supported by a full-featured  
macro assembler, a software simulator, an in-circuit  
emulator, a low-cost development programmer and a  
full-featured programmer. A “C” compiler and fuzzy  
logic support tools are also available. (Section 16.0)  
The PIC16C74/74A devices have 192 bytes of RAM  
and 33 I/O pins. In addition several peripheral features  
are available including: three timer/counters, two Cap-  
ture/Compare/PWM modules and two serial ports. The  
1995 Microchip Technology Inc.  
DS30390B-page 5  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
TABLE 1-1:  
PIC16C7X FAMILY OF DEVICES  
DS30390B-page 6  
1995 Microchip Technology Inc.  
PIC16C7X  
2.3  
Quick-Turnaround-Production (QTP)  
Devices  
2.0  
PIC16C7X DEVICE VARIETIES  
A variety of frequency ranges and packaging options  
are available. Depending on application and production  
requirements, the proper device option can be selected  
using the information in the PIC16C7X Product Selec-  
tion System section at the end of this data sheet. When  
placing orders, please use that page of the data sheet  
to specify the correct part number.  
Microchip offers a QTP Programming Service for fac-  
tory production orders. This service is made available  
for users who choose not to program a medium to high  
quantity of units and whose code patterns have stabi-  
lized. The devices are identical to the OTP devices but  
with all EPROM locations and configuration options  
already programmed by the factory. Certain code and  
prototype verification procedures apply before produc-  
tion shipments are available. Please contact your local  
Microchip Technology sales office for more details.  
For the PIC16C7X family, there are two device “types”  
as indicated in the device number:  
1. C, as in PIC16C74. These devices have  
EPROM type memory and operate over the  
standard voltage range.  
2.4  
Serialized Quick-Turnaround  
Production (SQTPSM) Devices  
2. LC, as in PIC16LC74. These devices have  
EPROM type memory and operate over an  
extended voltage range.  
Microchip offers a unique programming service where  
a few user-defined locations in each device are pro-  
grammed with different serial numbers. The serial num-  
bers may be random, pseudo-random or sequential.  
2.1  
UV Erasable Devices  
The UV erasable version, offered in CERDIP package,  
is optimal for prototype development and pilot pro-  
grams.  
Serial programming allows each device to have a  
unique number which can serve as an entry-code,  
password or ID number.  
The UV erasable version can be erased and repro-  
grammed to any of the configuration modes.  
Microchip's PICSTART and PRO MATE program-  
mers both support the PIC16C7X. Third party program-  
mers also are available; refer to the Microchip Third  
Party Guide for a list of sources.  
2.2  
One-Time-Programmable (OTP)  
Devices  
The availability of OTP devices is especially useful for  
customers who need the flexibility for frequent code  
updates and small volume applications.  
The OTP devices, packaged in plastic packages, per-  
mit the user to program them once. In addition to the  
program memory, the configuration bits must also be  
programmed.  
1995 Microchip Technology Inc.  
DS30390B-page 7  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
NOTES:  
DS30390B-page 8  
1995 Microchip Technology Inc.  
PIC16C7X  
PIC16CXX devices contain an 8-bit ALU and working  
register. The ALU is a general purpose arithmetic unit.  
It performs arithmetic and Boolean functions between  
the data in the working register and any register file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16CXX family can be  
attributed to a number of architectural features com-  
monly found in RISC microprocessors. To begin with,  
the PIC16CXX uses a Harvard architecture, in which,  
program and data are accessed from separate memo-  
ries using separate buses. This improves bandwidth  
over traditional von Neumann architecture where pro-  
gram and data are fetched from the same memory  
using the same bus. Separating program and data  
buses further allows instructions to be sized differently  
than the 8-bit wide data word. Instruction opcodes are  
14-bits wide making it possible to have all single word  
instructions. A 14-bit wide program memory access  
bus fetches a 14-bit instruction in a single cycle. A two-  
stage pipeline overlaps fetch and execution of instruc-  
tions (Example 3-1). Consequently, all instructions (35)  
execute in a single cycle (200 ns @ 20 MHz) except for  
program branches.  
The ALU is 8-bits wide and capable of addition, sub-  
traction, shift and logical operations. Unless otherwise  
mentioned, arithmetic operations are two's comple-  
ment in nature. In two-operand instructions, typically  
one operand is the working register (W register). The  
other operand is a file register or an immediate con-  
stant. In single operand instructions, the operand is  
either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register. The C and DC bits  
operate as a borrow bit and a digit borrow out bit,  
respectively, in subtraction. See the SUBLWand SUBWF  
instructions for examples.  
The table below lists program memory (EPROM) and  
data memory (RAM) for each PIC16C7X device.  
Program  
Memory  
Device  
Data Memory  
PIC16C70  
PIC16C71  
PIC16C71A  
PIC16C72  
PIC16C73  
PIC16C73A  
PIC16C74  
PIC16C74A  
512 x 14  
1K x 14  
1K x 14  
2K x 14  
4K x 14  
4K x 14  
4K x 14  
4K x 14  
36 x 8  
36 x 8  
68 x 8  
128 x 8  
192 x 8  
192 x 8  
192 x 8  
192 x 8  
The PIC16CXX can directly or indirectly address its  
register files or data memory. All special function regis-  
ters, including the program counter, are mapped in the  
data memory. The PIC16CXX has an orthogonal (sym-  
metrical) instruction set that makes it possible to carry  
out any operation on any register using any addressing  
mode. This symmetrical nature and lack of ‘special  
optimal situations’ make programming with the  
PIC16CXX simple yet efficient. In addition, the learning  
curve is reduced significantly.  
1995 Microchip Technology Inc.  
DS30390B-page 9  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
FIGURE 3-1: PIC16C70/71/71A BLOCK DIAGRAM  
Device  
Program Memory Data Memory (RAM)  
PIC16C70  
PIC16C71  
PIC16C71A  
512 x 14  
1K x 14  
1K x 14  
36 x 8  
36 x 8  
68 x 8  
13  
8
PORTA  
Data Bus  
Program Counter  
EPROM  
RA0/AN0  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
Program  
Memory  
RAM  
8 Level Stack  
(13-bit)  
File  
Registers  
Program  
Bus  
14  
RAM Addr (1)  
PORTB  
9
Addr MUX  
Instruction reg  
RB0/INT  
RB7:RB1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
8
3
MUX  
Power-up  
Timer  
Instruction  
Decode &  
Control  
Oscillator  
Start-up Timer  
ALU  
8
Power-on  
Reset  
Timing  
Generation  
W reg  
Watchdog  
Timer  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset(2)  
Timer0  
MCLR VDD, VSS  
A/D  
Note 1: Higher order bits are from the STATUS register.  
2: Brown-out Reset is not available on the PIC16C71.  
DS30390B-page 10  
1995 Microchip Technology Inc.  
PIC16C7X  
FIGURE 3-2: PIC16C72 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
EPROM  
RA0/AN0  
Program  
Memory  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
RAM  
File  
Registers  
8 Level Stack  
2K x 14  
(13-bit)  
128 x 8  
Program  
14  
RAM Addr(1)  
PORTB  
Bus  
9
Addr MUX  
Instruction reg  
RB0/INT  
RB7:RB1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
RC6  
RC7  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
MCLR VDD, VSS  
Timer0  
Timer1  
Timer2  
Synchronous  
Serial Port  
A/D  
CCP1  
Note 1: Higher order bits are from the STATUS register.  
1995 Microchip Technology Inc.  
DS30390B-page 11  
PIC16C7X  
FIGURE 3-3: PIC16C73/73A BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
EPROM  
RA0/AN0  
Program  
RA1/AN1  
Memory  
RA2/AN2  
RAM  
File  
Registers  
8 Level Stack  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
4K x 14  
(13-bit)  
192 x 8  
Program  
14  
RAM Addr(1)  
PORTB  
Bus  
9
Addr MUX  
Instruction reg  
RB0/INT  
RB7:RB1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
RC6/TX/CK  
RC7/RX/DT  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset(2)  
MCLR VDD, VSS  
Timer2  
Timer0  
CCP1  
Timer1  
CCP2  
A/D  
Synchronous  
Serial Port  
USART  
Note 1: Higher order bits are from the STATUS register.  
2: Brown-out Reset is not available on the PIC16C73.  
DS30390B-page 12  
1995 Microchip Technology Inc.  
PIC16C7X  
FIGURE 3-4: PIC16C74/74A BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
EPROM  
RA0/AN0  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
Program  
Memory  
RAM  
File  
Registers  
8 Level Stack  
4K x 14  
(13-bit)  
192 x 8  
Program  
14  
RAM Addr (1)  
PORTB  
Bus  
9
Addr MUX  
Instruction reg  
RB0/INT  
RB7:RB1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
RC6/TX/CK  
RC7/RX/DT  
ALU  
Power-on  
Reset  
PORTD  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset(2)  
RD7/PSP7:RD0/PSP0  
PORTE  
Parallel Slave Port  
MCLR VDD, VSS  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
Timer0  
CCP1  
Timer1  
CCP2  
Timer2  
A/D  
Synchronous  
Serial Port  
USART  
Note 1: Higher order bits are from the STATUS register.  
2: Brown-out Reset is not available on the PIC16C74.  
1995 Microchip Technology Inc.  
DS30390B-page 13  
PIC16C7X  
TABLE 3-1:  
PIC16C70/71A PINOUT DESCRIPTION  
DIP SSOP SOIC I/O/P  
Buffer  
Type  
Pin Name  
Description  
Pin# Pin#  
Pin#  
Type  
(3)  
OSC1/CLKIN  
16  
18  
17  
16  
15  
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
OSC2/CLKOUT 15  
O
Oscillator crystal output. Connects to crystal or resonator in crystal  
oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has  
1/4 the frequency of OSC1, and denotes the instruction cycle rate.  
4
4
4
I/P  
ST  
Master clear (reset) input/programming voltage input. This pin is an  
active low reset to the device.  
MCLR/VPP  
PORTA is a bi-directional I/O port.  
Analog input0  
RA0/AN0  
17  
18  
1
19  
20  
1
17  
18  
1
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
ST  
RA1/AN1  
Analog input1  
RA2/AN2  
Analog input2  
RA3/AN3/VREF  
RA4/T0CKI  
2
2
2
Analog input3/VREF  
3
3
3
Can also be selected to be the clock input to the Timer0 module.  
Output is open drain type.  
PORTB is a bi-directional I/O port. PORTB can be software pro-  
grammed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
6
7
7
8
6
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
TTL/ST  
TTL  
RB0/INT can also be selected as an external interrupt pin.  
RB1  
RB2  
8
9
8
TTL  
RB3  
9
10  
11  
12  
13  
14  
4, 6  
9
TTL  
RB4  
10  
11  
12  
13  
5
10  
11  
12  
13  
5
TTL  
Interrupt on change pin.  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
(2)  
RB7  
VSS  
VDD  
14 15, 16  
O = output  
— = Not used  
14  
P
Legend: I = input  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
DS30390B-page 14  
1995 Microchip Technology Inc.  
PIC16C7X  
TABLE 3-2:  
PIC16C71 PINOUT DESCRIPTION  
DIP  
Pin#  
SOIC  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(3)  
OSC1/CLKIN  
16  
15  
16  
15  
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator in crystal  
oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has  
1/4 the frequency of OSC1, and denotes the instruction cycle rate.  
4
4
I/P  
ST  
Master clear (reset) input/programming voltage input. This pin is an  
active low reset to the device.  
MCLR/VPP  
PORTA is a bi-directional I/O port.  
Analog input0  
RA0/AN0  
17  
18  
1
17  
18  
1
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
ST  
RA1/AN1  
Analog input1  
RA2/AN2  
Analog input2  
RA3/AN3/VREF  
RA4/T0CKI  
2
2
Analog input3/VREF  
3
3
Can also be selected to be the clock input to the Timer0 module.  
Output is open drain type.  
PORTB is a bi-directional I/O port. PORTB can be software pro-  
grammed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
6
7
6
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
TTL/ST  
TTL  
RB0/INT can also be selected as an external interrupt pin.  
RB1  
RB2  
8
8
TTL  
RB3  
9
9
TTL  
RB4  
10  
11  
12  
13  
5
10  
11  
12  
13  
5
TTL  
Interrupt on change pin.  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
(2)  
RB7  
VSS  
VDD  
14  
14  
P
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
1995 Microchip Technology Inc.  
DS30390B-page 15  
PIC16C7X  
TABLE 3-3:  
PIC16C72 PINOUT DESCRIPTION  
DIP SSOP SOIC  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
Pin# Pin#  
Pin#  
(3)  
OSC1/CLKIN  
9
9
9
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
OSC2/CLKOUT  
10  
10  
10  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, the OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and denotes  
the instruction cycle rate.  
1
1
1
I/P  
ST  
Master clear (reset) input/programming voltage input. This pin  
is an active low reset to the device.  
MCLR/VPP  
PORTA is a bi-directional I/O port.  
Analog input0  
RA0/AN0  
2
3
4
5
6
2
3
4
5
6
2
3
4
5
6
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
ST  
RA1/AN1  
Analog input1  
RA2/AN2  
Analog input2  
RA3/AN3/VREF  
RA4/T0CKI  
Analog input3/VREF  
Can also be selected to be the clock input to the Timer0  
module. Output is open drain type.  
RA5/AN4/SS  
7
7
7
I/O  
TTL  
Analog input4 can also be the slave select for the syn-  
chronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0/INT can also be selected as an external interrupt pin.  
RB2  
TTL  
RB3  
TTL  
RB4  
TTL  
Interrupt on change pin.  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
PORTC is a bi-directional I/O port.  
(2)  
RB7  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
11  
12  
11  
12  
11  
12  
I/O  
I/O  
ST  
ST  
RC0/T1OSO/T1CKI can also be selected as a Timer1  
oscillator output/Timer1 clock input.  
RC1/T1OSI/CCP2 can also be selected as a Timer1  
oscillator input or Capture2, input/Compare2 output/  
PWM2 output.  
RC2/CCP1  
13  
14  
15  
16  
13  
14  
15  
16  
13  
14  
15  
16  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
RC2/CCP1 can also be selected as a Capture1 input/  
Compare1 output/PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC3/SCK/SCL can also be selected as the synchronous  
2
serial clock input/output for both SPI and I C modes.  
RC4/SDI/SDA can also be selected as the SPI Data In  
2
(SPI mode) or data I/O (I C mode).  
RC5/SDO can also be selected as the SPI Data Out (SPI  
mode).  
RC6  
17  
18  
17  
18  
17  
18  
I/O  
I/O  
P
ST  
ST  
RC7  
VSS  
8, 19 8, 19  
20 20  
8, 19  
20  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
P
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
DS30390B-page 16  
1995 Microchip Technology Inc.  
PIC16C7X  
TABLE 3-4:  
PIC16C73/73A PINOUT DESCRIPTION  
DIP  
Pin#  
SOIC  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(3)  
OSC1/CLKIN  
9
9
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
OSC2/CLKOUT  
10  
10  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, the OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and denotes  
the instruction cycle rate.  
1
1
I/P  
ST  
Master clear (reset) input/programming voltage input. This pin  
is an active low reset to the device.  
MCLR/VPP  
PORTA is a bi-directional I/O port.  
Analog input0  
RA0/AN0  
2
3
4
5
6
2
3
4
5
6
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
ST  
RA1/AN1  
Analog input1  
RA2/AN2  
Analog input2  
RA3/AN3/VREF  
RA4/T0CKI  
Analog input3/VREF  
Can also be selected to be the clock input to the Timer0  
module. Output is open drain type.  
RA5/AN4/SS  
7
7
I/O  
TTL  
Analog input4 can also be the slave select for the syn-  
chronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0/INT can also be selected as an external interrupt pin.  
RB2  
TTL  
RB3  
TTL  
RB4  
TTL  
Interrupt on change pin.  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
PORTC is a bi-directional I/O port.  
(2)  
RB7  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
11  
12  
11  
12  
I/O  
I/O  
ST  
ST  
RC0/T1OSO/T1CKI can also be selected as a Timer1  
oscillator output/Timer1 clock input.  
RC1/T1OSI/CCP2 can also be selected as a Timer1  
oscillator input or Capture2 input/Compare2 output/  
PWM2 output.  
RC2/CCP1  
13  
14  
15  
16  
17  
18  
13  
14  
15  
16  
17  
18  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
RC2/CCP1 can also be selected as a Capture1 input/  
Compare1 output/PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC3/SCK/SCL can also be selected as the synchronous  
2
serial clock input/output for both SPI and I C modes.  
RC4/SDI/SDA can also be selected as the SPI Data In  
2
(SPI mode) or data I/O (I C mode).  
RC5/SDO can also be selected as the SPI Data Out (SPI  
mode).  
RC6/TX/CK  
RC7/RX/DT  
RC6/TX/CK can also be selected as Asynchronous  
Transmit or USART Synchronous Clock.  
RC7/RX/DT can also be selected as the Asynchronous  
Receive or USART Synchronous Data.  
VSS  
8, 19  
20  
8, 19  
20  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
1995 Microchip Technology Inc.  
DS30390B-page 17  
PIC16C7X  
TABLE 3-5:  
PIC16C74/74A PINOUT DESCRIPTION  
DIP  
Pin#  
PLCC  
Pin#  
QFP I/O/P  
Pin# Type  
Buffer  
Type  
Pin Name  
Description  
(4)  
OSC1/CLKIN  
13  
14  
14  
15  
30  
31  
I
ST/CMOS  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator  
in crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and  
denotes the instruction cycle rate.  
MCLR/VPP  
1
2
18  
I/P  
ST  
Master clear (reset) input/programming voltage input. This  
pin is an active low reset to the device.  
PORTA is a bi-directional I/O port.  
Analog input0  
RA0/AN0  
2
3
4
5
6
3
4
5
6
7
19  
20  
21  
22  
23  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
ST  
RA1/AN1  
Analog input1  
RA2/AN2  
Analog input2  
RA3/AN3/VREF  
RA4/T0CKI  
Analog input3/VREF  
Can also be selected to be the clock input to the  
Timer0 timer/counter. Output is open drain type.  
RA5/AN4/SS  
7
8
24  
I/O  
TTL  
Analog input4 can also be the slave select for the syn-  
chronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
33  
36  
8
I/O  
TTL/ST  
RB0/INT can also be selected as an external interrupt  
pin.  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
34  
35  
36  
37  
38  
39  
40  
37  
38  
39  
41  
42  
43  
44  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
10  
11  
14  
15  
16  
17  
TTL  
TTL  
Interrupt on change pin.  
TTL  
Interrupt on change pin.  
(2)  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
(2)  
RB7  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
DS30390B-page 18  
1995 Microchip Technology Inc.  
PIC16C7X  
TABLE 3-5:  
PIC16C74/74A PINOUT DESCRIPTION (Cont.d)  
DIP  
Pin#  
PLCC  
Pin#  
QFP I/O/P  
Pin# Type  
Buffer  
Type  
Pin Name  
Description  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
15  
16  
16  
18  
32  
35  
I/O  
I/O  
ST  
ST  
RC0/T1OSO/T1CKI can also be selected as a Timer1  
oscillator output or a Timer1 clock input.  
RC1/T1OSI/CCP2 can also be selected as a Timer1  
oscillator input or Capture2 input/Compare2 output/  
PWM2 output.  
RC2/CCP1  
17  
18  
19  
20  
36  
37  
I/O  
I/O  
ST  
ST  
RC2/CCP1 can also be selected as a Capture1 input/  
Compare1 output/PWM1 output.  
RC3/SCK/SCL  
RC3/SCK/SCL can also be selected as the synchro-  
2
nous serial clock input/output for both SPI and I C  
modes.  
RC4/SDI/SDA  
RC5/SDO  
23  
24  
25  
26  
25  
26  
27  
29  
42  
43  
44  
1
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
RC4/SDI/SDA can also be selected as the SPI Data In  
(SPI mode) or data I/O (I C mode).  
2
RC5/SDO can also be selected as the SPI Data Out  
(SPI mode).  
RC6/TX/CK  
RC7/RX/DT  
RC6/TX/CK can also be selected as Asynchronous  
Transmit or USART Synchronous Clock.  
RC7/RX/DT can also be selected as the Asynchro-  
nous Receive or USART Synchronous Data.  
PORTD is a bi-directional I/O port or parallel slave port  
when interfacing to a microprocessor bus.  
(3)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
19  
20  
21  
22  
27  
28  
29  
30  
21  
22  
23  
24  
30  
31  
32  
33  
38  
39  
40  
41  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
3
4
5
PORTE is a bi-directional I/O port.  
(3)  
(3)  
(3)  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
8
9
9
25  
26  
27  
I/O  
I/O  
I/O  
ST/TTL  
ST/TTL  
ST/TTL  
RE0/RD/AN5 read control for parallel slave port, or  
analog input5.  
10  
11  
RE1/WR/AN6 write control for parallel slave port, or  
analog input6.  
10  
RE2/CS/AN7 select control for parallel slave port, or  
analog input7.  
VSS  
VDD  
NC  
12,31  
11,32  
13,34  
12,35  
6,29  
7,28  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
1,17,28, 12,13,  
40 33,34  
These pins are not internally connected. These pins should  
be left unconnected.  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
1995 Microchip Technology Inc.  
DS30390B-page 19  
PIC16C7X  
3.1  
Clocking Scheme/Instruction Cycle  
3.2  
Instruction Flow/Pipelining  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks namely Q1, Q2, Q3 and Q4. Internally, the pro-  
gram counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
is shown in Figure 3-5.  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g. GOTO)  
then two cycles are required to complete the instruction  
(Example 3-1).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register" (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 3-5: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
phase  
clock  
Q4  
PC  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3  
Flush  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
DS30390B-page 20  
1995 Microchip Technology Inc.  
PIC16C7X  
FIGURE 4-2: PIC16C71/71A PROGRAM  
MEMORY MAP AND STACK  
4.0  
MEMORY ORGANIZATION  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
4.1  
Program Memory Organization  
PC<12:0>  
The PIC16C7X family has a 13-bit program counter  
capable of addressing an 8K x 14 program memory  
space.  
CALL, RETURN  
RETFIE, RETLW  
13  
For the PIC16C70, only the first 512 x 14 (0000h-  
01FFh) is physically implemented. For the  
PIC16C71/71A only the first 1K x 14 (0000h-03FFh) is  
implemented. For the PIC16C72, only the first 2K x 14  
(0000h-07FF) is implemented. For the PIC16C73,  
PIC16C73A, PIC16C74, and PIC16C74A, only the first  
4K x 14 (0000h-0FFFh) is physically implemented.  
Accessing a location above the physically implemented  
address will cause a wraparound. The reset vector is at  
0000h and the interrupt vector is at 0004h.  
Stack Level 1  
Stack Level 8  
Reset Vector  
0000h  
FIGURE 4-1: PIC16C70 PROGRAM  
MEMORY MAP AND STACK  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory  
03FFh  
0200h  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
1FFFh  
Stack Level 1  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory  
01FFh  
0200h  
1FFFh  
1995 Microchip Technology Inc.  
DS30390B-page 21  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
FIGURE 4-3: PIC16C72 PROGRAM  
MEMORY MAP AND STACK  
FIGURE 4-4: PIC16C73/73A/74/74A  
PROGRAM MEMORY MAP  
AND STACK  
PC<12:0>  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 8  
Stack Level 1  
Stack Level 8  
Reset Vector  
0000h  
Reset Vector  
0000h  
Interrupt Vector  
0004h  
0005h  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory (Page 0)  
On-chip Program  
Memory  
07FFh  
0800h  
On-chip Program  
Memory (Page 1)  
07FFh  
0800h  
0FFFh  
1000h  
1FFFh  
1FFFh  
4.2  
Data Memory Organization  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The data memory is partitioned into two Banks which  
contain the General Purpose Registers and the Special  
Function Registers. Bit RP0 is the bank select bit.  
RP0 (STATUS<5>) = 1 Bank 1  
RP0 (STATUS<5>) = 0 Bank 0  
Each Bank extends up to 7Fh (128 bytes). The lower  
locations of each Bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers implemented as  
static RAM. Both Bank 0 and Bank 1 contain special  
function registers. Some "high use" special function  
registers from Bank 0 are mirrored in Bank 1 for code  
reduction and quicker access.  
4.2.1  
GENERAL PURPOSE REGISTER FILE  
The register file can be accessed either directly, or indi-  
rectly through the File Select Register FSR  
(Section 4.5).  
DS30390B-page 22  
1995 Microchip Technology Inc.  
PIC16C7X  
FIGURE 4-5: PIC16C70/71 REGISTER FILE  
MAP  
FIGURE 4-6: PIC16C71A REGISTER FILE  
MAP  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
(1)  
(1)  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
TMR0  
PCL  
OPTION  
PCL  
TMR0  
PCL  
OPTION  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
TRISA  
PORTA  
PORTB  
TRISA  
TRISB  
TRISB  
(2)  
PCON  
PCON  
ADCON1  
ADCON0  
ADRES  
ADCON1  
ADCON0  
ADRES  
ADRES  
ADRES  
PCLATH  
INTCON  
PCLATH  
INTCON  
PCLATH  
INTCON  
PCLATH  
INTCON  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
Mapped  
Mapped  
(3)  
(2)  
in Bank 0  
in Bank 0  
AFh  
B0h  
CFh  
D0h  
2Fh  
30h  
4Fh  
50h  
FFh  
FFh  
7Fh  
7Fh  
Bank 0  
Bank 1  
Bank 0  
Bank 1  
Unimplemented data memory locations, read  
as '0'.  
Unimplemented data memory locations, read  
as '0'.  
Note 1: Not a physical register.  
Note 1: Not a physical register.  
2: The PCON register is not implemented on the  
PIC16C71.  
3: These locations are unimplemented in Bank 1.  
Any access to these locations will access the  
corresponding Bank 0 register.  
2: These locations are unimplemented in Bank 1.  
Any access to these locations will access the  
corresponding Bank 0 register.  
1995 Microchip Technology Inc.  
DS30390B-page 23  
PIC16C7X  
FIGURE 4-7: PIC16C72 REGISTER FILE  
MAP  
FIGURE 4-8: PIC16C73/73A/74/74A  
REGISTER FILE MAP  
File  
File  
File  
File  
Address  
Address  
Address  
Address  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
OPTION  
PCL  
TMR0  
PCL  
OPTION  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
(2)  
(2)  
08h PORTD  
09h PORTE  
TRISD  
(2)  
(2)  
TRISE  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
PCLATH  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
INTCON  
PIR1  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
PR2  
SSPADD  
SSPSTAT  
SSPADD  
SSPSTAT  
17h CCP1CON  
17h CCP1CON  
18h  
19h  
1Ah  
1Bh  
1Ch  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
TXSTA  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
SPBRG  
1Dh CCP2CON  
1Eh  
1Fh  
20h  
ADRES  
1Eh  
1Fh  
20h  
ADRES  
ADCON0  
ADCON1  
ADCON0  
ADCON1  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
BFh  
C0h  
FFh  
7Fh  
Bank 0  
Bank 1  
FFh  
7Fh  
Bank 0  
Bank 1  
Unimplemented data memory locations, read  
as '0'.  
Note 1: Not a physical register.  
Unimplemented data memory locations, read  
as '0'.  
Note 1: Not a physical register.  
2: These registers are not physically imple-  
mented on the PIC16C73/73A, read as '0'.  
DS30390B-page 24  
1995 Microchip Technology Inc.  
PIC16C7X  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The special function registers can be classified into two  
sets (core and peripheral). Those registers associated  
with the “core” functions are described in this section,  
and those related to the operation of the peripheral fea-  
tures are described in the section of that peripheral fea-  
ture.  
The Special Function Registers are registers used by  
the CPU and Peripheral Modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM.  
TABLE 4-1:  
PIC16C70/71/71A SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
BOR  
other resets  
(1)  
Bank 0  
00h(3)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
01h  
TMR0  
PCL  
02h(3)  
03h(3)  
Program Counter's (PC) Least Significant Byte  
IRP(5)  
RP1(5)  
STATUS  
RP0  
Indirect data memory address pointer  
TO  
PD  
Z
DC  
C
04h(3)  
05h  
FSR  
xxxx xxxx uuuu uuuu  
---x xxxx ---u uuuu  
xxxx xxxx uuuu uuuu  
PORTA  
PORTB  
PORTA Data Latch when written: PORTA pins when read  
06h  
PORTB Data Latch when written: PORTB pins when read  
Unimplemented  
07h  
08h  
ADCON0  
ADRES  
ADCS1  
ADCS0  
(6)  
CHS1  
CHS0  
GO/DONE  
ADIF  
ADON  
00-0 0000 00-0 0000  
xxxx xxxx uuuu uuuu  
09h(3)  
A/D Result Register  
0Ah(2,3)  
PCLATH  
INTCON  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
---0 0000 ---0 0000  
0000 000x 0000 000u  
0Bh(3)  
GIE  
ADIE  
T0IE  
Bank 1  
80h(3)  
81h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
OPTION  
PCL  
RBPU  
Program Counter's (PC) Least Significant Byte  
RP0 TO  
Indirect data memory address pointer  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h(3)  
83h(3)  
IRP(5)  
RP1(5)  
STATUS  
PD  
Z
DC  
C
84h(3)  
85h  
FSR  
xxxx xxxx uuuu uuuu  
---1 1111 ---1 1111  
1111 1111 1111 1111  
---- --qq ---- --uu  
---- --00 ---- --00  
xxxx xxxx uuuu uuuu  
TRISA  
TRISB  
PCON  
ADCON1  
ADRES  
PORTA Data Direction Register  
86h  
PORTB Data Direction Control Register  
87h(4)  
88h  
POR  
BOR  
PCFG1  
PCFG0  
89h(3)  
A/D Result Register  
8Ah(2,3)  
8Bh(3)  
PCLATH  
INTCON  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
---0 0000 ---0 0000  
0000 000x 0000 000u  
GIE  
ADIE  
T0IE  
Legend: x= unknown, u= unchanged, q= value depends on condition, -= unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
3: These registers can be addressed from either bank.  
4: The PCON register is not physically implemented in the PIC16C71, read as ’0’.  
5: The IRP and RP1 bits are reserved on the PIC16C7X, always maintain these bits clear.  
6: Bit5 of ADCON0 is a General Purpose R/W bit for the PIC16C71 only. For the PIC16C70/71A, this bit is unimplemented,  
read as '0'.  
1995 Microchip Technology Inc.  
DS30390B-page 25  
PIC16C7X  
TABLE 4-2:  
PIC16C72 SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
BOR  
other resets  
(3)  
Bank 0  
00h(1)  
01h  
INDF  
TMR0  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--xx xxxx --uu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
02h(1)  
03h(1)  
04h(1)  
05h  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP(4)  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1(4)  
RP0  
TO  
PD  
Z
DC  
C
PORTA  
PORTB  
PORTC  
06h  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
Unimplemented  
07h  
08h  
09h  
Unimplemented  
0Ah(1,2) PCLATH  
GIE  
T0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000 ---0 0000  
0000 000x 0000 000u  
-0-- 0000 -0-- 0000  
0Bh(1)  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
INTCON  
PIR1  
PEIE  
ADIF  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
SSPIF  
CCP1IF  
TMR2IF  
TMR1IF  
Unimplemented  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Timer2 module’s register  
0000 0000 0000 0000  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SSPM2  
SSPM1  
SSPM0  
Capture/Compare/PWM Register (LSB)  
Capture/Compare/PWM Register (MSB)  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADRES  
ADCON0  
A/D Result Register  
ADCS1 ADCS0  
xxxx xxxx uuuu uuuu  
0000 00-0 0000 00-0  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
4: The IRP and RP1 bits are reserved on the PIC16C7X, always maintain these bits clear.  
DS30390B-page 26  
1995 Microchip Technology Inc.  
PIC16C7X  
TABLE 4-2:  
Address Name  
Bank 1  
PIC16C72 SPECIAL FUNCTION REGISTER SUMMARY (Cont.d)  
Value on: Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
BOR  
other resets  
(3)  
80h(1)  
81h  
INDF  
OPTION  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP(4) RP1(4)  
RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h(1)  
83h(1)  
84h(1)  
85h  
STATUS  
FSR  
PD  
Z
DC  
C
TRISA  
TRISB  
TRISC  
86h  
PORTB Data Direction Register  
PORTC Data Direction Register  
Unimplemented  
87h  
88h  
89h  
Unimplemented  
8Ah(1,2) PCLATH  
GIE  
T0IE  
Write Buffer for the upper 5 bits of the PC  
---0 0000 ---0 0000  
0000 000x 0000 000u  
-0-- 0000 -0-- 0000  
8Bh(1)  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INTCON  
PEIE  
ADIE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
PIE1  
SSPIE  
CCP1IE  
TMR2IE  
TMR1IE  
Unimplemented  
PCON  
POR  
BOR  
---- --qq ---- --uu  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
Timer2 Period Register  
Synchronous Serial Port (I2C mode) Address Register  
1111 1111 1111 1111  
0000 0000 0000 0000  
--00 0000 --00 0000  
SSPADD  
SSPSTAT  
D/A  
P
S
R/W  
UA  
BF  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADCON1  
PCFG2  
PCFG1  
PCFG0  
---- -000 ---- -000  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
4: The IRP and RP1 bits are reserved on the PIC16C7X, always maintain these bits clear.  
1995 Microchip Technology Inc.  
DS30390B-page 27  
PIC16C7X  
TABLE 4-3:  
PIC16C73/73A/74/74A SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
BOR  
other resets  
(2)  
Bank 0  
00h(4)  
01h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--xx xxxx --uu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
---0 0000 ---0 0000  
0000 000x 0000 000u  
0000 0000 0000 0000  
---- ---0 ---- ---0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TMR0  
02h(4)  
03h(4)  
04h(4)  
05h  
PCL  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP(7)  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1(7)  
RP0  
TO  
PD  
Z
DC  
C
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
06h  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
07h  
08h(5)  
09h(5)  
RE2  
RE1  
RE0  
0Ah(1,4) PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
0Bh(4)  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
T0IE  
RCIF  
INTE  
TXIF  
RBIE  
SSPIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
PSPIF(3)  
TMR1IF  
CCP2IF  
PIR2  
TMR1L  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
TMR1H  
T1CON  
TMR2  
T1CKPS1  
T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Timer2 module’s register  
0000 0000 0000 0000  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SSPM2  
SSPM1  
SSPM0  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
CCP1X  
SREN  
CCP1Y  
CREN  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
SPEN  
RX9  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
USART Transmit Data Register  
USART Receive Data Register  
Capture/Compare/PWM Register2 (LSB)  
Capture/Compare/PWM Register2 (MSB)  
CCP2X  
CCP2Y  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
A/D Result Register  
ADCS1 ADCS0  
xxxx xxxx uuuu uuuu  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
0000 00-0 0000 00-0  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose con-  
tents are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
4: These registers can be addressed from either bank.  
5: PORTD and PORTE are not physically implemented on the PIC16C73/73A, read as ‘0’.  
6: Brown-out Reset is not implemented on the PIC16C73 or the PIC16C74, read as '0'.  
7: The IRP and RP1 bits are reserved on the PIC16C7X, always maintain these bits clear.  
DS30390B-page 28  
1995 Microchip Technology Inc.  
PIC16C7X  
TABLE 4-3:  
Address Name  
Bank 1  
PIC16C73/73A/74/74A SPECIAL FUNCTION REGISTER SUMMARY (Cont.d)  
Value on: Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
BOR  
other resets  
(2)  
80h(4)  
81h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 -111 0000 -111  
---0 0000 ---0 0000  
0000 000x 0000 000u  
0000 0000 0000 0000  
---- ---0 ---- ---0  
---- --qq ---- --uu  
OPTION  
PCL  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP(7) RP1(7)  
RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h(4)  
83h(4)  
84h(4)  
85h  
STATUS  
FSR  
PD  
Z
DC  
C
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
86h  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
87h  
88h(5)  
89h(5)  
IBF  
OBF  
IBOV  
PSPMODE  
TRISE2  
TRISE1  
TRISE0  
8Ah(1,4) PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
8Bh(4)  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INTCON  
PIE1  
PIE2  
PCON  
GIE  
PEIE  
ADIE  
T0IE  
RCIE  
INTE  
TXIE  
RBIE  
SSPIE  
T0IF  
CCP1IE  
INTF  
TMR2IE  
RBIF  
PSPIE(3)  
TMR1IE  
CCP2IE  
BOR(6)  
POR  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
SSPADD  
SSPSTAT  
Timer2 Period Register  
1111 1111 1111 1111  
0000 0000 0000 0000  
--00 0000 --00 0000  
Synchronous Serial Port (I2C mode) Address Register  
D/A  
P
S
R/W  
UA  
BF  
Unimplemented  
Unimplemented  
Unimplemented  
CSRC  
TXSTA  
SPBRG  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
Baud Rate Generator Register  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADCON1  
PCFG2  
PCFG1  
PCFG0  
---- -000 ---- -000  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose con-  
tents are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
4: These registers can be addressed from either bank.  
5: PORTD and PORTE are not physically implemented on the PIC16C73/73A, read as ‘0’.  
6: Brown-out Reset is not implemented on the PIC16C73 or the PIC16C74, read as '0'.  
7: The IRP and RP1 bits are reserved on the PIC16C7X, always maintain these bits clear.  
1995 Microchip Technology Inc.  
DS30390B-page 29  
PIC16C7X  
4.2.2.1  
STATUS REGISTER  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions, not affecting any status bits, see the  
"Instruction Set Summary."  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The STATUS register, shown in Figure 4-9, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
Note 1: Bits IRP and RP1 (STATUS<7:6>) are not  
used by the PIC16C7X and should be  
maintained clear. Use of these bits as  
general purpose R/W bits is NOT recom-  
mended, since this may affect upward  
compatibility with future products.  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 2: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
FIGURE 4-9: STATUS REGISTER (ADDRESS 03h, 83h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
1 = Bank 2, 3 (100h - 1FFh)  
0 = Bank 0, 1 (00h - FFh)  
The IRP bit is reserved on the PIC16C7X, always maintain this bit clear.  
bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes. The RP1 bit is reserved on the PIC16C7X, always maintain this bit clear.  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
Z: Zero bit  
1 = The result of an arithmetic or logic operation is zero  
0 = The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(for borrow the polarity is reversed)  
1 = A carry-out from the 4th low order bit of the result occurred  
0 = No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1 = A carry-out from the most significant bit of the result occurred  
0 = No carry-out from the most significant bit of the result occurred  
Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of  
the source register.  
DS30390B-page 30  
1995 Microchip Technology Inc.  
PIC16C7X  
4.2.2.2  
OPTION REGISTER  
Applicable Devices  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer by setting bit PSA  
(OPTION<3>).  
70 71 71A 72 73 73A 74 74A  
The OPTION register is a readable and writable regis-  
ter which contains various control bits to configure the  
TMR0/WDT prescaler, the External INT Interrupt,  
TMR0, and the weak pull-ups on PORTB.  
FIGURE 4-10: OPTION REGISTER (ADDRESS 81h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
RBPU: PORTB Pull-up Enable bit  
1 = PORTB pull-ups are disabled  
0 = PORTB pull-ups are enabled by individual port latch values  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
INTEDG: Interrupt Edge Select bit  
1 = Interrupt on rising edge of RB0/INT pin  
0 = Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1 = Transition on RA4/T0CKI pin  
0 = Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1 = Increment on high-to-low transition on RA4/T0CKI pin  
0 = Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1 = Prescaler is assigned to the WDT  
0 = Prescaler is assigned to the Timer0 module  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1995 Microchip Technology Inc.  
DS30390B-page 31  
PIC16C7X  
4.2.2.3  
INTCON REGISTER  
Applicable Devices  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
70 71 71A 72 73 73A 74 74A  
The INTCON Register is a readable and writable regis-  
ter which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/Int Pin interrupts.  
FIGURE 4-11: INTCON REGISTER FOR PIC16C70/71/71A (ADDRESS 0Bh, 8Bh)  
R/W-0  
GIE  
R/W-0  
ADIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
(1)  
bit 7:  
GIE: Global Interrupt Enable bit  
1 = Enables all un-masked interrupts  
0 = Disables all interrupts  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
ADIE: A/D Converter Interrupt Enable bit  
1 = Enables A/D interrupt  
0 = Disables A/D interrupt  
T0IE: TMR0 Overflow Interrupt Enable bit  
1 = Enables the TMR0 interrupt  
0 = Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1 = Enables the RB0/INT external interrupt  
0 = Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1 = Enables the RB port change interrupt  
0 = Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1 = TMR0 register has overflowed (must be cleared in software)  
0 = TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1 = The RB0/INT external interrupt occurred (must be cleared in software)  
0 = The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1 = When at least one of the RB7:RB4 pins changed state (must be cleared in software)  
0 = None of the RB7:RB4 pins have changed state  
Note 1: For the PIC16C71 only, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may be unin-  
tentionally re-enabled by the RETFIEinstruction in the user’s Interrupt Service Routine. Refer to  
Section 14.5 for a detailed description.  
DS30390B-page 32  
1995 Microchip Technology Inc.  
PIC16C7X  
FIGURE 4-12: INTCON REGISTER FOR PIC16C72/73/73A/74/74A (ADDRESS 0Bh, 8Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
(1)  
bit 7:  
GIE: Global Interrupt Enable bit  
1 = Enables all un-masked interrupts  
0 = Disables all interrupts  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
PEIE: Peripheral Interrupt Enable bit  
1 = Enables all un-masked peripheral interrupts  
0 = Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1 = Enables the TMR0 interrupt  
0 = Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1 = Enables the RB0/INT external interrupt  
0 = Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1 = Enables the RB port change interrupt  
0 = Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1 = TMR0 register has overflowed (must be cleared in software)  
0 = TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1 = The RB0/INT external interrupt occurred (must be cleared in software)  
0 = The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1 = When at least one of the RB7:RB4 pins changed state (must be cleared in software)  
0 = None of the RB7:RB4 pins have changed state  
Note 1: For the PIC16C73 and PIC16C74 only, if an interrupt occurs while the GIE bit is being cleared, the GIE  
bit may be unintentionally re-enabled by the RETFIEinstruction in the user’s Interrupt Service Routine.  
Refer to Section 14.5 for a detailed description.  
1995 Microchip Technology Inc.  
DS30390B-page 33  
PIC16C7X  
4.2.2.4  
PIE1 REGISTER  
Note: Bit PEIE (INTCON<6>) must be set to  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
enable any peripheral interrupt.  
This register contains the individual enable bits for the  
Peripheral interrupts.  
FIGURE 4-13: PIE1 REGISTER PIC16C72 (ADDRESS 8Ch)  
U-0  
R/W-0  
ADIE  
U-0  
U-0  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
TMR2IE TMR1IE  
bit0  
R/W-0  
CCP1IE  
R
= Readable bit  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6:  
ADIE: A/D Converter Interrupt Enable bit  
1 = Enables the A/D converter interrupt  
0 = Disables the A/D converter interrupt  
bit 5-4: Unimplemented: Read as '0'  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1 = Enables the SSP interrupt  
0 = Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1 = Enables the CCP1 interrupt  
0 = Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1 = Enables the TMR2 to PR2 match interrupt  
0 = Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1 = Enables the TMR1 overflow interrupt  
0 = Disables the TMR1 overflow interrupt  
DS30390B-page 34  
1995 Microchip Technology Inc.  
PIC16C7X  
FIGURE 4-14: PIE1 REGISTER PIC16C73/73A/74/74A (ADDRESS 8Ch)  
R/W-0  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
TMR2IE TMR1IE  
bit0  
R/W-0  
(1)  
PSPIE  
bit7  
CCP1IE  
R
= Readable bit  
W = Writable bit  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
(1)  
bit 7:  
PSPIE : Parallel Slave Port Read/Write Interrupt Enable bit  
1 = Enables the PSP read/write interrupt  
0 = Disables the PSP read/write interrupt  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
ADIE: A/D Converter Interrupt Enable bit  
1 = Enables the A/D converter interrupt  
0 = Disables the A/D converter interrupt  
RCIE: USART Receive Interrupt Enable bit  
1 = Enables the USART receive interrupt  
0 = Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1 = Enables the USART transmit interrupt  
0 = Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1 = Enables the SSP interrupt  
0 = Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1 = Enables the CCP1 interrupt  
0 = Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1 = Enables the TMR2 to PR2 match interrupt  
0 = Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1 = Enables the TMR1 overflow interrupt  
0 = Disables the TMR1 overflow interrupt  
Note 1: PIC16C73 and PIC16C73A devices do not have a Parallel Slave Port implemented, this bit location is  
reserved on these two devices, always maintain this bit clear.  
1995 Microchip Technology Inc.  
DS30390B-page 35  
PIC16C7X  
4.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
This register contains the individual flag bits for the  
Peripheral interrupts.  
FIGURE 4-15: PIR1 REGISTER PIC16C72 (ADDRESS 0Ch)  
U-0  
R/W-0  
ADIF  
U-0  
U-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
TMR2IF TMR1IF  
bit0  
R/W-0  
CCP1IF  
R
= Readable bit  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6:  
ADIF: A/D Converter Interrupt Flag bit  
1 = An A/D conversion completed  
0 = The A/D conversion is not complete  
bit 5-4: Unimplemented: Read as '0'  
bit 3:  
SSPIF: Synchronous Serial Port Interrupt Flag bit  
1 = The transmission/reception is complete  
0 = Waiting to transmit/receive  
bit 2:  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1 = A TMR1 register capture occurred (must be cleared in software)  
0 = No TMR1 register capture occurred  
Compare Mode  
1 = A TMR1 register compare match occurred (must be cleared in software)  
0 = No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1 = TMR2 to PR2 match occurred (must be cleared in software)  
0 = No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1 = TMR1 register overflowed (must be cleared in software)  
0 = TMR1 register did not overflow  
DS30390B-page 36  
1995 Microchip Technology Inc.  
PIC16C7X  
FIGURE 4-16: PIR1 REGISTER PIC16C73/73A/74/74A (ADDRESS 0Ch)  
R/W-0  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
TMR2IF TMR1IF  
bit0  
R/W-0  
(1)  
PSPIF  
bit7  
RCIF  
TXIF  
CCP1IF  
R
= Readable bit  
W = Writable bit  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
PSPIF(1): Parallel Slave Port Read/Write Interrupt Flag bit  
1 = A read or a write operation has taken place (must be cleared in software)  
0 = No read or write has occurred  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
ADIF: A/D Converter Interrupt Flag bit  
1 = An A/D conversion completed  
0 = The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1 = The USART receive buffer is full  
0 = The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1 = The USART transmit buffer is empty  
0 = The USART transmit buffer is full  
SSPIF: Synchronous Serial Port Interrupt Flag bit  
1 = The transmission/reception is complete  
0 = Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1 = A TMR1 register capture occurred (must be cleared in software)  
0 = No TMR1 register capture occurred  
Compare Mode  
1 = A TMR1 register compare match occurred (must be cleared in software)  
0 = No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1 = TMR2 to PR2 match occurred (must be cleared in software)  
0 = No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1 = TMR1 register overflowed (must be cleared in software)  
0 = TMR1 register did not overflow  
Note 1: PIC16C73 and PIC16C73A devices do not have a Parallel Slave Port implemented, this bit location is  
reserved on these two devices, always maintain this bit clear.  
1995 Microchip Technology Inc.  
DS30390B-page 37  
PIC16C7X  
4.2.2.6  
PIE2 REGISTER  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
This register contains the individual enable bit for the  
CCP2 peripheral interrupt.  
FIGURE 4-17: PIE2 REGISTER (ADDRESS 8Dh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IE  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-1: Unimplemented: Read as '0'  
bit 0: CCP2IE: CCP2 Interrupt Enable bit  
1 = Enables the CCP2 interrupt  
0 = Disables the CCP2 interrupt  
DS30390B-page 38  
1995 Microchip Technology Inc.  
PIC16C7X  
.
4.2.2.7  
PIR2 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
This register contains the CCP2 interrupt flag bit.  
FIGURE 4-18: PIR2 REGISTER (ADDRESS 0Dh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IF  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-1: Unimplemented: Read as '0'  
bit 0:  
CCP2IF: CCP2 Interrupt Flag bit  
Capture Mode  
1 = A TMR1 register capture occurred (must be cleared in software)  
0 = No TMR1 register capture occurred  
Compare Mode  
1 = A TMR1 register compare match occurred (must be cleared in software)  
0 = No TMR1 register compare match occurred  
PWM Mode  
Unused  
1995 Microchip Technology Inc.  
DS30390B-page 39  
PIC16C7X  
4.2.2.8  
PCON REGISTER  
Note: BOR is unknown on Power-on Reset. It  
must then be set by the user and checked  
on subsequent resets to see if BOR is  
clear, indicating a brown-out has occurred.  
The BOR status bit is a don't care and is  
not necessarily predictable if the brown-out  
circuit is disabled (by clearing the BODEN  
bit in the Configuration word).  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The Power Control (PCON) register contains a flag bit  
to allow differentiation between a Power-on Reset  
(POR) to an external MCLR Reset or WDT Reset. It  
also contains a status bit to determine if a Brown-out  
Reset (BOR) occurred.  
FIGURE 4-19: PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-q  
POR  
R/W-q  
(1)  
BOR  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-2: Unimplemented: Read as '0'  
bit 1:  
POR: Power-on Reset Status bit  
1 = No Power-on Reset occurred  
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0:  
BOR(1): Brown-out Reset Status bit  
1 = No Brown-out Reset occurred  
0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: Brown-out Reset is not implemented on the PIC16C73/74.  
DS30390B-page 40  
1995 Microchip Technology Inc.  
PIC16C7X  
4.3  
PCL and PCLATH  
Applicable Devices  
Note 1: There are no status bits to indicate stack  
overflow or stack underflow conditions.  
70 71 71A 72 73 73A 74 74A  
Note 2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW, and RETFIE  
instructions, or the vectoring to an inter-  
rupt address.  
The program counter (PC) is 13-bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<12:8>) is not  
directly readable or writable and comes from PCLATH.  
On any reset, the PC is cleared. Figure 4-20 shows the  
two situations for the loading of the PC. The upper  
example in the figure shows how the PC is loaded on a  
write to PCL (PCLATH<4:0> PCH). The lower exam-  
ple in the figure shows how the PC is loaded during a  
CALLor GOTOinstruction (PCLATH<4:3> PCH).  
4.4  
Program Memory Paging  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The PIC16C73/73A and the PIC16C74/74A have 4K of  
program memory, but the CALLand GOTOinstructions  
only have a 11-bit address range. This 11-bit address  
range allows a branch within a 2K program memory  
page size. To allow CALL and GOTO instructions to  
address the entire 4K program memory address range,  
there must be another bit to specify the program mem-  
ory page. This paging bit comes from the PCLATH<3>  
bit (Figure 4-20). When doing a CALLor GOTOinstruc-  
tion, the user must ensure that this page bit  
(PCLATH<3>) is programmed so that the desired pro-  
gram memory page is addressed. If a return from a  
CALL instruction (or interrupt) is executed, the entire  
13-bit PC is PUSHed onto the stack. Therefore, manip-  
ulation of the PCLATH<3> is not required for the return  
instructions (which POPs the address from the stack).  
FIGURE 4-20: LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
12  
8
7
0
Instruction with  
PCL as  
PC  
Destination  
8
PCLATH<4:0>  
PCLATH  
5
ALU result  
PCH  
12 11 10  
PCL  
8
7
0
GOTO, CALL  
PC  
PCLATH<4:3>  
PCLATH  
11  
Note 1: The PIC16C70/71/71A/72 ignore both  
paging bits (PCLATH<4:3>, which are  
used to access program memory when  
more than one page is available. The use  
of PCLATH<4:3> as general purpose  
read/write bits for the PIC16C7X is not  
recommended since this may affect  
upward compatibility with future products.  
2
Opcode <10:0>  
4.3.1  
COMPUTED GOTO  
Acomputed GOTO is accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 byte block). Refer to the  
application note “Implementing a Table Read" (AN556).  
The PIC16C73/73A/74/74A ignores pag-  
ing bit (PCLATH<4>), which is used to  
access program memory pages 2 and 3  
(1000h - 1FFFh). The use of PCLATH<4>  
as a general purpose read/write bit is not  
recommended since this may affect  
upward compatibility with future products.  
4.3.2  
STACK  
The PIC16CXX family has an 8 level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable. The PC is PUSHed onto the stack  
when a CALL instruction is executed or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN, RETLW or a RETFIE instruction execution.  
PCLATH is not affected by a PUSH or POP operation.  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
1995 Microchip Technology Inc.  
DS30390B-page 41  
PIC16C7X  
Example 4-1 shows the calling of a subroutine in  
page 1 of the program memory. This example assumes  
that PCLATH is saved and restored by the interrupt ser-  
vice routine (if interrupts are used).  
4.5  
Indirect Addressing, INDF and FSR  
Registers  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
EXAMPLE 4-1: CALL OF A SUBROUTINE IN  
PAGE 1 FROM PAGE 0  
ORG 0x500  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses the register pointed to by the File Select Reg-  
ister, FSR. Reading the INDF register itself indirectly  
(FSR = '0') will read 00h. Writing to the INDF register  
indirectly results in a no-operation (although status bits  
may be affected). An effective 9-bit address is obtained  
by concatenating the 8-bit FSR register and the IRP bit  
(STATUS<7>), as shown in Figure 4-21. However, IRP  
is not used in the PIC16C7X.  
BSF  
PCLATH,3 ;Select page 1 (800h-FFFh)  
CALL  
SUB1_P1  
;Call subroutine in  
;page 1 (800h-FFFh)  
:
:
:
ORG 0x900  
SUB1 P1:  
;called subroutine  
;page 1 (800h-FFFh)  
:
:
RETURN  
;return to Call subroutine  
;in page 0 (000h-7FFh)  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 4-2.  
EXAMPLE 4-2: INDIRECT ADDRESSING  
movlw 0x20  
movwf FSR  
;initialize pointer  
;to RAM  
NEXT  
clrf  
incf  
INDF  
;clear INDF register  
FSR,F ;inc pointer  
btfss FSR,4 ;all done?  
goto  
NEXT  
;no clear next  
CONTINUE  
:
;yes continue  
FIGURE 4-21: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
(1)  
(1)  
from opcode  
7
RP1 RP0  
6
0
0
IRP  
FSR register  
bank select  
00h  
location select  
bank select  
location select  
00  
01  
10  
11  
00h  
not used  
Data  
Memory  
7Fh  
7Fh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
For register file map detail see Figure 4-5, Figure 4-6, Figure 4-7, and Figure 4-8.  
Note 1: The RP1 and IRP bits are reserved, always maintain these bits clear.  
DS30390B-page 42  
1995 Microchip Technology Inc.  
PIC16C7X  
Therefore a write to a port implies that the port pins are  
read, this value is modified, and then written to the port  
data latch.  
5.0  
I/O PORTS  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin.  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Other PORTA pins are multiplexed with analog inputs  
and analog VREF input. The operation of each pin is  
selected by clearing/setting the control bits in the  
ADCON1 register (A/D Control Register1).  
5.1  
PORTA and TRISA Registers  
Applicable Devices  
Note: On a Power-on Reset, these pins are con-  
70 71 71A 72 73 73A 74 74A  
figured as analog inputs and read as '0'.  
PORTA is a 5-bit latch for PIC16C70/71/71A.  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
PORTA is a 6-bit latch for PIC16C72/73/73A/74/74A.  
The RA4/T0CKI pin is a Schmitt Trigger input and an  
open drain output. All other RA port pins have TTL input  
levels and full CMOS output drivers. All pins have data  
direction bits (TRIS registers) which can configure  
these pins as output or input.  
EXAMPLE 5-1: INITIALIZING PORTA  
CLRF  
PORTA  
; Initialize PORTA by  
; setting output  
; data latches  
Setting a TRISAregister bit puts the corresponding out-  
put driver in a hi-impedance mode. Clearing a bit in the  
TRISA register puts the contents of the output latch on  
the selected pin(s).  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
Reading the PORTA register reads the status of the  
pins whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
MOVWF TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; TRISA<7:6> are always  
; read as '0'.  
FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS  
Data bus  
D
Q
VDD  
P
WR PORT  
CK  
Q
Data Latch  
I/O pin  
D
Q
Q
N
WR TRIS  
CK  
VSS  
Analog  
TRIS Latch  
input  
mode  
TTL  
input  
buffer  
RD TRIS  
Q
D
EN  
RD PORT  
To A/D Converter  
Note: I/O pin has protection diodes to VDD and VSS. The PIC16C70/71/71/A devices do not have a pin RA5.  
1995 Microchip Technology Inc.  
DS30390B-page 43  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
FIGURE 5-2: BLOCK DIAGRAM OF RA4/T0CKI PIN  
Data Bus  
D
Q
WR PORT  
CK  
Q
RA4/T0CKI pin  
N
Data Latch  
VSS  
D
Q
Q
Schmitt  
WR TRIS  
CK  
Trigger  
input  
buffer  
TRIS Latch  
RD TRIS  
Q
D
EN  
RD PORT  
TMR0 clock input  
Note: I/O pin has protection diodes to VSS only.  
TABLE 5-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input  
Input/output or analog input  
Input/output or analog input  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
Input/output or analog input/VREF  
Input/output or external clock input for Timer0  
Output is open drain type  
(1)  
RA5/AN4/SS  
bit5  
TTL  
Input/output, slave select input for synchronous serial port, or analog input  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: The PIC16C70/71/71A does not have PORTA<5> or TRISA<5>, read as '0'.  
TABLE 5-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on:  
POR  
BOR  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
05h  
85h  
9Fh  
PORTA  
TRISA  
RA5  
TRISA5  
RA4  
RA3  
RA2  
RA1  
RA0  
--xx xxxx  
--uu uuuu  
--11 1111  
---- -000  
(1)  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 --11 1111  
(2)  
ADCON1  
PCFG2  
PCFG1 PCFG0 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
Note 1: PORTA<5> and TRISA<5> are not implemented on the PIC16C70/71/71A.  
2: Bit PCFG2 is not implemented on the PIC16C70/71/71A.  
DS30390B-page 44  
1995 Microchip Technology Inc.  
PIC16C7X  
PORTB. The “mismatch” outputs of RB7:RB4 are  
OR’ed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
5.2  
PORTB and TRISB Registers  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a bit  
in the TRISB register puts the corresponding output  
driver in a hi-impedance input mode. Clearing a bit in  
the TRISB register puts the contents of the output latch  
on the selected pin(s).  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
EXAMPLE 5-2: INITIALIZING PORTB  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition, and  
allow flag bit RBIF to be cleared.  
CLRF  
PORTB  
; Initialize PORTB by  
; setting output  
; data latches  
This interrupt on mismatch feature, together with soft-  
ware configurable pull-ups on these four pins allow  
easy interface to a key pad and make it possible for  
wake-up on key-depression. Refer to the Embedded  
Control Handbook, "Implementing Wake-Up on Key  
Stroke" (AN552).  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF TRISB  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
Note: For the PIC16C71/73/74 only,  
if a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then interrupt flag  
bit RBIF may not get set.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
done by clearing bit RBPU (OPTION<7>). The weak  
pull-up is automatically turned off when the port pin is  
configured as an output. The pull-ups are disabled on a  
Power-on Reset.  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
FIGURE 5-3: BLOCK DIAGRAM OF  
RB3:RB0 PINS  
VDD  
RBPU(2)  
weak  
FIGURE 5-4: BLOCK DIAGRAM OF  
P
pull-up  
RB7:RB4 PINS  
Data Latch  
Data bus  
VDD  
D
Q
RBPU(2)  
weak  
I/O  
pin(1)  
P
WR Port  
pull-up  
CK  
TRIS Latch  
Data Latch  
Data bus  
D
Q
D
Q
I/O  
pin(1)  
TTL  
Input  
Buffer  
WR Port  
CK  
TRIS Latch  
WR TRIS  
CK  
D
Q
WR TRIS  
TTL  
CK  
RD TRIS  
RD Port  
Input  
Buffer  
ST  
Buffer  
Q
D
EN  
RD TRIS  
RD Port  
Latch  
Q
D
RB0/INT  
EN  
Schmitt Trigger  
Buffer  
RD Port  
Set RBIF  
Note 1: I/O pins have diode protection to VDD and VSS.  
From other  
RB7:RB4 pins  
2: TRISB = '1' enables weak pull-up if RBPU = '0'  
(OPTION<7>).  
Q
D
EN  
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e. any RB7:RB4 pin con-  
figured as an output is excluded from the interrupt on  
change comparison). The input pins (of RB7:RB4) are  
compared with the old value latched on the last read of  
RD Port  
RB7:RB6 in serial programming mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: TRISB = '1' enables weak pull-up if RBPU = '0'  
(OPTION<7>).  
1995 Microchip Technology Inc.  
DS30390B-page 45  
PIC16C7X  
TABLE 5-3:  
PORTB FUNCTIONS  
Name  
Bit#  
bit0  
Buffer  
TTL/ST  
Function  
(1)  
RB0/INT  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
RB5  
RB6  
RB7  
bit5  
bit6  
bit7  
TTL  
TTL/ST  
TTL/ST  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
(2)  
(2)  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming clock.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
TABLE 5-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on:  
POR  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
06h  
86h  
81h  
PORTB  
TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx  
uuuu uuuu  
1111 1111  
1111 1111  
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 1111 1111  
T0SE PSA PS2 PS1 PS0 1111 1111  
OPTION RBPU INTEDG T0CS  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS30390B-page 46  
1995 Microchip Technology Inc.  
PIC16C7X  
5.3  
PORTC and TRISC Registers  
Applicable Devices  
EXAMPLE 5-3: INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; setting output  
; data latches  
70 71 71A 72 73 73A 74 74A  
PORTC is an 8-bit bi-directional port. Each pin is indi-  
vidually configurable as an input or output through the  
TRISC register. PORTC is multiplexed with several  
peripheral functions (Table 5-5). PORTC pins have  
Schmitt Trigger input buffers.  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF TRISC  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. The TRIS bit override is in effect  
only while the peripheral is enabled. The user should  
refer to the corresponding peripheral section for the  
correct TRIS bit settings.  
FIGURE 5-5: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)  
(1)  
PORT/PERIPHERAL Select  
Peripheral Data-out  
0
VDD  
1
Data Bus  
D
Q
Q
P
WR PORT  
CK  
Data Latch  
I/O pin  
D
Q
Q
WR TRIS  
N
CK  
TRIS Latch  
RD TRIS  
VSS  
Schmitt  
Trigger  
(2)  
Peripheral OE  
Q
D
RD PORT  
EN  
Peripheral input  
RD PORT  
Note 1: Port/Peripheral select signal selects between port data and peripheral output.  
2: Peripheral OE (output enable) is only activated if peripheral select is active.  
3: I/O pins have diode protection to VDD and VSS.  
1995 Microchip Technology Inc.  
DS30390B-page 47  
PIC16C7X  
TABLE 5-5:  
PORTC FUNCTIONS  
Name  
Bit# Buffer Type  
Function  
bit0  
bit1  
RC0/T1OSO/T1CKI  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input  
(1)  
Input/output port pin, Timer1 oscillator input, Capture2 input/Compare2  
output/PWM2 output  
RC1/T1OSI/CCP2  
RC2/CCP1  
bit2  
bit3  
ST  
ST  
Input/output port pin or Capture1 input/Compare1 output/PWM1  
output  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC3/SCK/SCL can also be selected as the synchronous serial clock  
2
for both SPI and I C modes.  
bit4  
ST  
RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
bit5  
bit6  
ST  
ST  
Input/output port pin or Synchronous Serial Port data output  
(2)  
Input/output port pin, USART Asynchronous Transmit, or USART Syn-  
chronous Clock  
RC6/TX/CK  
(2)  
bit7  
ST  
Input/output port pin USART Asynchronous Receive, or USART Syn-  
chronous Data  
RC7/RX/DT  
Legend: ST = Schmitt Trigger Input  
Note 1: The CCP2 multiplexed function is not enabled on the PIC16C72.  
2: The TX/CK and RX/DT multiplexed functions are not enabled on the PIC16C72.  
TABLE 5-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on:  
POR  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
07h  
87h  
PORTC  
TRISC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx  
uuuu uuuu  
1111 1111  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111  
Legend: x= unknown, u= unchanged.  
DS30390B-page 48  
1995 Microchip Technology Inc.  
PIC16C7X  
PORTD can be configured as an 8-bit wide micropro-  
cessor port (or parallel slave port) by setting control bit  
PSPMODE (TRISE<4>). In this mode, the input buffers  
are TTL.  
5.4  
PORTD and TRISD Registers  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output.  
FIGURE 5-6: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)  
Data Bus  
D
Q
Q
I/O pin  
WR PORT  
CK  
Data Latch  
D
Q
Q
Schmitt  
WR TRIS  
CK  
Trigger  
input  
buffer  
TRIS Latch  
RD TRIS  
Q
D
EN  
RD PORT  
Note: I/O pins has protection diodes to VDD and VSS.  
TABLE 5-7:  
PORTD FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
(1)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST/TTL  
Input/output port pin or parallel slave port bit0  
Input/output port pin or parallel slave port bit1  
Input/output port pin or parallel slave port bit2  
Input/output port pin or parallel slave port bit3  
Input/output port pin or parallel slave port bit4  
Input/output port pin or parallel slave port bit5  
Input/output port pin or parallel slave port bit6  
Input/output port pin or parallel slave port bit7  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
Legend: ST = Schmitt Trigger Input TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port Mode.  
1995 Microchip Technology Inc.  
DS30390B-page 49  
PIC16C7X  
TABLE 5-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on:  
POR  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
88h  
89h  
PORTD  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
TRISD TRISD7 TRISD6 TRISD5  
TRISE IBF OBF  
TRISD4  
TRISD3 TRISD2 TRISD1 TRISD0 1111 1111 1111 1111  
TRISE2 TRISE1 TRISE0 0000 -111 0000 -111  
IBOV PSPMODE  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PORTD.  
DS30390B-page 50  
1995 Microchip Technology Inc.  
PIC16C7X  
Figure 5-7 shows the TRISE register, which also con-  
trols the parallel slave port operation.  
5.5  
PORTE and TRISE Register  
Applicable Devices  
PORTE pins are multiplexed with analog inputs. The  
operation of these pins is selected by control bits in the  
ADCON1 register. When selected as an analog input,  
these pins will read as '0's.  
70 71 71A 72 73 73A 74 74A  
PORTE has three pins RE0/RD/AN5, RE1/WR/AN6  
and RE2/CS/AN7, which are individually configurable  
as inputs or outputs. These pins have Schmitt Trigger  
input buffers.  
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
I/O PORTE becomes control inputs for the micropro-  
cessor port when bit PSPMODE (TRISE<4>) is set. In  
this mode, the user must make sure that the  
TRISE<2:0> bits are set (pins are configured as digital  
inputs) and that register ADCON1 is configured for dig-  
ital I/O. In this mode the input buffers are TTL.  
Note: On a Power-on Reset these pins are con-  
figured as analog inputs.  
FIGURE 5-7: TRISE REGISTER (ADDRESS 89h)  
R-0  
IBF  
R-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
TRISE1 TRISE0  
bit0  
R/W-1  
OBF  
IBOV PSPMODE  
TRISE2  
R
= Readable bit  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
IBF: Input Buffer Full Status bit  
1 = A word has been received and waiting to be read by the CPU  
0 = No word has been received  
OBF: Output Buffer Full Status bit  
1 = The output buffer still holds a previously written word  
0 = The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in microprocessor mode)  
1 = A write occurred when a previously input word has not been read (must be cleared in software)  
0 = No overflow occurred  
PSPMODE: Parallel Slave Port Mode Select bit  
1 = Parallel slave port mode  
0 = General purpose I/O mode  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
TRISE2: Direction control bit for pin RE2/CS/AN7  
1 = Input  
0 = Output  
bit 1:  
bit 0:  
TRISE1: Direction control bit for pin RE1/WR/AN6  
1 = Input  
0 = Output  
TRISE0: Direction control bit for pin RE0/RD/AN5  
1 = Input  
0 = Output  
1995 Microchip Technology Inc.  
DS30390B-page 51  
PIC16C7X  
FIGURE 5-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)  
Data Bus  
D
Q
Q
I/O pin  
WR PORT  
CK  
Data Latch  
D
Q
Q
Schmitt  
WR TRIS  
CK  
Trigger  
input  
buffer  
TRIS Latch  
RD TRIS  
Q
D
EN  
RD PORT  
TABLE 5-9:  
PORTE FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
(1)  
(1)  
(1)  
RE0/RD/AN5  
bit0  
ST/TTL  
ST/TTL  
ST/TTL  
Input/output port pin, Read control input in parallel slave port mode, or  
analog input:  
RD  
1 = Not a read operation  
0 = Read operation. Reads PORTD register (if chip selected)  
RE1/WR/AN6  
RE2/CS/AN7  
bit1  
bit2  
Input/output port pin, Write control input in parallel slave port mode, or  
analog input:  
WR  
1 = Not a write operation  
0 = Write operation. Writes PORTD register (if chip selected)  
Input/output port pin, Chip select control input in parallel slave port  
mode, or analog input:  
CS  
1 = Device is not selected  
0 = Device is selected  
Legend: ST = Schmitt Trigger Input TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port Mode.  
TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on:  
POR  
BOR  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
09h  
89h  
9fh  
PORTE  
TRISE  
RE2  
RE1  
RE0  
---- -xxx  
---- -uuu  
0000 -111  
---- -000  
IBF OBF IBOV PSPMODE  
TRISE2 TRISE1 TRISE0 0000 -111  
PCFG2 PCFG1 PCFG0 ---- -000  
ADCON1  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PORTE.  
DS30390B-page 52  
1995 Microchip Technology Inc.  
PIC16C7X  
5.6  
I/O Programming Considerations  
Applicable Devices  
EXAMPLE 5-4: READ-MODIFY-WRITE  
INSTRUCTIONS ON AN I/O  
PORT  
70 71 71A 72 73 73A 74 74A  
;Initial PORT settings: PORTB<7:4> Inputs  
;
PORTB<3:0> Outputs  
5.6.1  
BI-DIRECTIONAL I/O PORTS  
;PORTB<7:6> have external pull-ups and are  
Any instruction which writes, operates internally as a  
read followed by a write operation. The BCF and BSF  
instructions, for example, read the register into the  
CPU, execute the bit operation and write the result back  
to the register. Caution must be used when these  
instructions are applied to a port with both inputs and  
outputs defined. For example, a BSFoperation on bit5  
of PORTB will cause all eight bits of PORTB to be read  
into the CPU. Then the BSFoperation takes place on  
bit5 and PORTB is written to the output latches. If  
another bit of PORTB is used as a bi-directional I/O pin  
(e.g., bit0) and it is defined as an input at this time, the  
input signal present on the pin itself would be read into  
the CPU and rewritten to the data latch of this particular  
pin, overwriting the previous content. As long as the pin  
stays in the input mode, no problem occurs. However, if  
bit0 is switched to an output, the content of the data  
latch may now be unknown.  
;not connected to other circuitry  
;
;
;
PORT latch PORT pins  
---------- ---------  
BCF PORTB, 7  
BCF PORTB, 6  
BSF STATUS, RP0  
BCF TRISB, 7  
BCF TRISB, 6  
; 01pp ppp  
; 10pp ppp  
;
; 10pp ppp  
; 10pp ppp  
11pp ppp  
11pp ppp  
11pp ppp  
10pp ppp  
;
;Note that the user may have expected the  
;pin values to be 00pp ppp. The 2nd BCF  
;caused RB7 to be latched as the pin value  
;(high).  
A pin actively outputting a Low or High should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”, “wired-and”).  
The resulting high output currents may damage the  
chip.  
Reading the port register, reads the values of the port  
pins. Writing to the port register writes the value to the  
port latch. When using read-modify-write instructions  
(ex. BCF, BSF, etc.) on a port, the value of the port pins  
is read, the desired operation is done to this value, and  
this value is then written to the port latch.  
5.6.2  
SUCCESSIVE OPERATIONS ON I/O PORTS  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle (Figure 5-  
9). Therefore, care must be exercised if a write followed  
by a read operation is carried out on the same I/O port.  
The sequence of instructions should be such to allow  
the pin voltage to stabilize (load dependent) before the  
next instruction which causes that file to be read into  
the CPU is executed. Otherwise, the previous state of  
that pin may be read into the CPU rather than the new  
state. When in doubt, it is better to separate these  
instructions with a NOP or another instruction not  
accessing this I/O port.  
Example 5-4 shows the effect of two sequential read-  
modify-write instructions on an I/O port.  
FIGURE 5-9: SUCCESSIVE I/O OPERATION  
Q4  
Q4  
Q4  
Q1 Q2  
Q4  
Q3  
Q3  
Q3  
Q3  
Q1 Q2  
PC  
Q1 Q2  
Q1 Q2  
Note:  
This example shows a write to PORTB  
followed by a read from PORTB.  
PC + 3  
NOP  
PC  
Instruction  
fetched  
PC + 1  
PC + 2  
NOP  
MOVWF PORTB MOVF PORTB,W  
write to  
PORTB  
Note that:  
data setup time = (0.25TCY - TPD)  
RB7:RB0  
where TCY = instruction cycle  
TPD = propagation delay  
Port pin  
sampled here  
TPD  
Therefore, at higher clock frequencies,  
a write followed by a read may be prob-  
lematic.  
Instruction  
executed  
NOP  
MOVWF PORTB  
write to  
MOVF PORTB,W  
PORTB  
1995 Microchip Technology Inc.  
DS30390B-page 53  
PIC16C7X  
address). In this mode, the TRISD register is ignored,  
since the microprocessor is controlling the direction of  
data flow.  
5.7  
Parallel Slave Port  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
Input Buffer Full Status Flag bit IBF (TRISE<7>), is set  
if a received word is waiting to be read by the CPU.  
Once the PORTD input latch is read, IBF is cleared. IBF  
is a read only status bit. Output Buffer Full Status Flag  
bit OBF (TRISE<6>), is set if a word written to PORTD  
latch is waiting to be read by the external bus. Once the  
PORTD output latch is read by the microprocessor,  
OBF is cleared. Input Buffer Overflow Status Flag bit  
IBOV (TRISE<5>) is set if a second write to the micro-  
processor port is attempted when the previous word  
has not been read by the CPU (the first word is retained  
in the buffer).  
PORTD operates as an 8-bit wide Parallel Slave Port,  
or microprocessor port when control bit PSPMODE  
(TRISE<4>) is set. In slave mode it is asynchronously  
readable and writable by the external world through RD  
control input pin RE0/RD/AN5 and WR control input pin  
RE1/WR/AN6.  
It can directly interface to an 8-bit microprocessor data  
bus. The external microprocessor can read or write the  
PORTD latch as an 8-bit latch. Setting bit PSPMODE  
enables port pin RE0/RD/AN5 to be the RD input,  
RE1/WR/AN6 to be the WR input and RE2/CS/AN7 to  
be the CS (chip select) input. For this functionality, the  
corresponding data direction bits of the TRISE register  
(TRISE<2:0>) must be configured as inputs (set) and  
the A/D port configuration bits PCFG2:PCFG0  
(ADCON1<2:0> must be set, which will configure pins  
RE2:RE0 as digital I/O.  
When not in Parallel Slave Port mode, the IBF and OBF  
bits are held clear. However, if flag bit IBOV was previ-  
ously set, it must be cleared in the software.  
An interrupt is generated and latched into flag bit  
PSPIF (PIR1<7>) when a read or a write operation is  
completed. Interrupt flag bit PSPIF must be cleared by  
user software and the interrupt can be disabled by  
clearing interrupt enable bit PSPIE (PIE1<7>).  
There are actually two 8-bit latches, one for data-out  
(from the PIC16/17) and one for data input. The user  
writes 8-bit data to PORTD data latch and reads data  
from the port pin latch (note that they have the same  
FIGURE 5-10: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)  
Data bus  
Q
D
RDx pin  
WR Port  
CK  
D
Q
TTL  
EN  
RD Port  
One bit of PORTD  
Set interrupt flag  
PSPIF (PIR1<7>)  
TTL  
Read  
RD  
Chip Select  
Write  
CS  
WR  
Note: I/O pins has protection diodes to VDD and VSS.  
DS30390B-page 54  
1995 Microchip Technology Inc.  
PIC16C7X  
TABLE 5-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on:  
Value on all  
POR  
Address Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other resets  
BOR  
08h  
09h  
89h  
0Ch  
8Ch  
9fh  
PORTD  
PORTE  
TRISE  
PIR1  
RD7  
RD6 RD5  
RD4  
RD3  
RD2  
RE2  
RD1  
RE1  
RD0  
RE0  
xxxx xxxx  
---- -xxx  
uuuu uuuu  
---- -uuu  
0000 -111  
0000 0000  
0000 0000  
---- -000  
IBF  
OBF IBOV PSPMODE  
TRISE2 TRISE1 TRISE0 0000 -111  
PSPIF ADIF RCIF  
PSPIE ADIE RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000  
PIE1  
ADCON1  
PCFG2 PCFG1 PCFG0 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.  
1995 Microchip Technology Inc.  
DS30390B-page 55  
PIC16C7X  
NOTES:  
DS30390B-page 56  
1995 Microchip Technology Inc.  
PIC16C7X  
Capture/Compare/PWM module. When used with a  
CCP module, Timer1 is the time-base for 16-bit capture  
or the 16-bit compare and must be synchronized to the  
device.  
6.0  
OVERVIEW OF TIMER  
MODULES  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
6.3  
Timer2 Overview  
Applicable Devices  
The PIC16C70 and PIC16C71/71A have one timer  
module.  
70 71 71A 72 73 73A 74 74A  
The PIC16C72, PIC16C73/73A and PIC16C74/74A  
have three timer modules.  
Timer2 is an 8-bit timer with a programmable prescaler  
and postscaler, as well as an 8-bit period register  
(PR2). Timer2 can be used with the CCP1 module (in  
PWM mode) as well as the Baud Rate Generator for  
the Synchronous Serial Port (SSP). The prescaler  
option allows Timer2 to increment at the following  
rates: 1:1, 1:4, 1:16.  
Each module can generate an interrupt to indicate that  
an event has occurred (i.e. timer overflow). Each of  
these modules is explained in full detail in the following  
sections. The timer modules are:  
• Timer0 Module (Section 7.0)  
• Timer1 Module (Section 8.0)  
• Timer2 Module (Section 9.0)  
The postscaler allows the TMR2 register to match the  
period register (PR2) a programmable number of times  
before generating an interrupt. The postscaler can be  
programmed from 1:1 to 1:16 (inclusive).  
6.1  
Timer0 Overview  
Applicable Devices  
6.4  
CCP Overview  
70 71 71A 72 73 73A 74 74A  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The Timer0 module (previously known as RTCC) is a  
simple 8-bit overflow counter. The clock source can be  
either the internal system clock (Fosc/4) or an external  
clock. When the clock source is an external clock, the  
Timer0 module can be selected to increment on either  
the rising or falling edge.  
The CCP module(s) can operate in one of these three  
modes: 16-bit capture, 16-bit compare, or up to 10-bit  
Pulse Width Modulation (PWM).  
Capture mode captures the 16-bit value of TMR1 into  
the CCPRxH:CCPRxL register pair. The capture event  
can be programmed for either the falling edge, rising  
edge, fourth rising edge, or the sixteenth rising edge of  
the CCPx pin.  
The Timer0 module also has a programmable pres-  
caler option. This prescaler can be assigned to either  
the Timer0 module or the Watchdog Timer. Bit PSA  
(OPTION<3>) assigns the prescaler, and bits PS2:PS0  
(OPTION<2:0>) determine the prescaler value. Timer0  
can increment at the following rates: 1:1 (when pres-  
caler assigned to Watchdog timer), 1:2, 1:4, 1:8, 1:16,  
1:32, 1:64, 1:128, and 1:256 (Timer0 only).  
Compare mode compares the TMR1H:TMR1L register  
pair to the CCPRxH:CCPRxL register pair. When a  
match occurs an interrupt can be generated, and the  
output pin CCPx can be forced to given state (High or  
Low), TMR1 can be reset (CCP1), or Timer1 reset and  
start A/D conversion (CCP2). This depends on the con-  
trol bits CCPxM3:CCPxM0.  
Synchronization of the external clock occurs after the  
prescaler. When the prescaler is used, the external  
clock frequency may be higher then the device’s fre-  
quency. The maximum frequency is 50 MHz, given the  
high and low time requirements of the clock.  
PWM mode compares the TMR2 register to a 10-bit  
duty cycle register (CCPRxH:CCPRxL<5:4>) as well as  
to an 8-bit period register (PR2). When the TMR2 reg-  
ister = Duty Cycle register, the CCPx pin will be forced  
low. When TMR2 = PR2, TMR2 is cleared to 00h, an  
interrupt can be generated, and the CCPx pin (if an out-  
put) will be forced high.  
6.2  
Timer1 Overview  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
Timer1 is a 16-bit timer/counter. The clock source can  
be either the internal system clock (Fosc/4), an external  
clock, or an external crystal. Timer1 can operate as  
either a timer or a counter. When operating as a  
counter (external clock source), the counter can either  
operate synchronized to the device or asynchronously  
to the device. Asynchronous operation allows Timer1 to  
operate during sleep, which is useful for applications  
that require a real-time clock as well as the power sav-  
ings of SLEEP mode.  
Timer1 also has a prescaler option which allows  
Timer1 to increment at the following rates: 1:1, 1:2, 1:4,  
and 1:8. Timer1 can be used in conjunction with the  
1995 Microchip Technology Inc.  
DS30390B-page 57  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
NOTES:  
DS30390B-page 58  
1995 Microchip Technology Inc.  
PIC16C7X  
Source Edge Select bit T0SE (OPTION<4>). Clearing  
bit T0SE selects the rising edge. Restrictions on the  
external clock input are discussed in detail in  
Section 7.2.  
7.0  
TIMER0 MODULE  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The Timer0 module timer/counter has the following fea-  
tures:  
The prescaler is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. The pres-  
caler assignment is controlled in software by the control  
bit PSA (OPTION<3>). Clearing bit PSA will assign the  
prescaler to the Timer0 module. The prescaler is not  
readable or writable. When the prescaler is assigned to  
the Timer0 module, prescale values of 1:2, 1:4, ...,  
1:256 are selectable. Section 7.3 details the operation  
of the prescaler.  
• 8-bit timer/counter  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
Figure 7-1 is a simplified block diagram of the Timer0  
module.  
7.1  
Timer0 Interrupt  
Applicable Devices  
Timer mode is selected by clearing bit T0CS  
(OPTION<5>). In timer mode, the Timer0 module will  
increment every instruction cycle (without prescaler). If  
the TMR0 register is written, the increment is inhibited  
for the following two instruction cycles (Figure 7-2 and  
Figure 7-3). The user can work around this by writing  
an adjusted value to the TMR0 register.  
70 71 71A 72 73 73A 74 74A  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module interrupt ser-  
vice routine before re-enabling this interrupt. The  
TMR0 interrupt cannot awaken the processor from  
SLEEP since the timer is shut off during SLEEP. See  
Figure 7-4 for Timer0 interrupt timing.  
Counter mode is selected by setting bit T0CS  
(OPTION<5>). In counter mode, Timer0 will increment  
either on every rising or falling edge of pin RA4/T0CKI.  
The incrementing edge is determined by the Timer0  
FIGURE 7-1: TIMER0 BLOCK DIAGRAM  
Data bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
RA4/T0CKI  
pin  
PSout  
(2 cycle delay)  
T0SE  
3
Set interrupt  
flag bit T0IF  
on overflow  
PS2, PS1, PS0  
PSA  
T0CS  
Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION<5:0>).  
2: The prescaler is shared with Watchdog Timer (refer to Figure 7-6 for detailed block diagram).  
FIGURE 7-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetch  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
T0  
T0+1  
T0+2  
NT0  
NT0  
NT0  
NT0+1  
NT0+2  
TMR0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
1995 Microchip Technology Inc.  
DS30390B-page 59  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
FIGURE 7-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
6  
NT0  
TMR0  
Instruction  
Execute  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
FIGURE 7-4: TIMER0 INTERRUPT TIMING  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
OSC1  
CLKOUT(3)  
Timer0  
FEh  
FFh  
00h  
01h  
02h  
1
1
T0IF bit  
(INTCON<2>)  
GIE bit  
(INTCON<7>)  
INSTRUCTION  
FLOW  
PC  
PC  
PC +1  
PC +1  
0004h  
0005h  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Instruction  
executed  
Inst (PC-1)  
Dummy cycle  
Dummy cycle  
Inst (0004h)  
Inst (PC)  
Note 1: Interrupt flag bit T0IF is sampled here (every Q1).  
2: Interrupt latency = 4Tcy where Tcy = instruction cycle time.  
3: CLKOUT is available only in RC oscillator mode.  
DS30390B-page 60  
1995 Microchip Technology Inc.  
PIC16C7X  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple-counter type pres-  
caler so that the prescaler output is symmetrical. For  
the external clock to meet the sampling requirement,  
the ripple-counter must be taken into account. There-  
fore, it is necessary for T0CKI to have a period of at  
least 4Tosc (and a small RC delay of 40 ns) divided by  
the prescaler value. The only requirement on T0CKI  
high and low time is that they do not violate the mini-  
mum pulse width requirement of 10 ns. Refer to param-  
eters 40, 41 and 42 in the electrical specification of the  
desired device.  
7.2  
Using Timer0 with an External Clock  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
7.2.1  
EXTERNAL CLOCK SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks (Figure 7-5).  
Therefore, it is necessary for T0CKI to be high for at  
least 2Tosc (and a small RC delay of 20 ns) and low for  
at least 2Tosc (and a small RC delay of 20 ns). Refer to  
the electrical specification of the desired device.  
7.2.2  
TMR0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the Timer0 mod-  
ule is actually incremented. Figure 7-5 shows the delay  
from the external clock edge to the timer incrementing.  
FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
misses sampling  
External Clock Input or  
(2)  
Prescaler output  
(1)  
(3)  
External Clock/Prescaler  
Output after sampling  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc).  
Therefore, the error in measuring the interval between two edges on Timer0 input = ±4Tosc max.  
2: External clock if no prescaler selected, Prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
1995 Microchip Technology Inc.  
DS30390B-page 61  
PIC16C7X  
caler assignment for the Timer0 module means that  
there is no prescaler for the Watchdog Timer, and vice-  
versa.  
7.3  
Prescaler  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The PSA and PS2:PS0 bits (OPTION<3:0>) determine  
the prescaler assignment and prescale ratio.  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer, respectively (Figure 7-6). For simplicity, this  
counter is being referred to as “prescaler” throughout  
this data sheet. Note that there is only one prescaler  
available which is mutually exclusive between the  
Timer0 module and the Watchdog Timer. Thus, a pres-  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF 1, MOVWF 1,  
BSF  
1,x....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the Watchdog Timer. The pres-  
caler is not readable or writable.  
FIGURE 7-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (=Fosc/4)  
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION<5:0>).  
DS30390B-page 62  
1995 Microchip Technology Inc.  
PIC16C7X  
7.3.1  
SWITCHING PRESCALER ASSIGNMENT  
To change prescaler from the WDT to the Timer0 mod-  
ule use the sequence shown in Example 7-2.  
The prescaler assignment is fully under software con-  
trol, i.e., it can be changed “on the fly” during program  
execution.  
EXAMPLE 7-2: CHANGING PRESCALER  
(WDTTIMER0)  
Note: To avoid an unintended device RESET, the  
following instruction sequence (shown in  
Example 7-1) must be executed when  
changing the prescaler assignment from  
Timer0 to the WDT. This sequence must  
be followed even if the WDT is disabled.  
CLRWDT  
;Clear WDT and  
;prescaler  
STATUS, RP0 ;Bank 1  
b'xxxx0xxx' ;Select TMR0, new  
;prescale value and  
BSF  
MOVLW  
MOVWF  
BCF  
OPTION  
;clock source  
STATUS, RP0 ;Bank 0  
EXAMPLE 7-1: CHANGING PRESCALER  
(TIMER0WDT)  
BCF  
STATUS, RP0 ;Bank 0  
CLRF  
BSF  
TMR0  
;Clear TMR0 & Prescaler  
STATUS, RP0 ;Bank 1  
CLRWDT  
;Clears WDT  
MOVLW b'xxxx1xxx' ;Select new prescale  
MOVWF OPTION ;value & WDT  
STATUS, RP0 ;Bank 0  
BCF  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH TIMER0, PIC16C70/71/71A  
Value on:  
POR  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
TMR0  
Timer0 module’s register  
xxxx xxxx  
0000 000x  
1111 1111  
uuuu uuuu  
0000 000u  
1111 1111  
---1 1111  
0Bh/8Bh INTCON  
GIE  
OPTION RBPU INTEDG  
TRISA  
ADIE  
T0IE  
T0CS  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RBIF  
PS0  
81h  
85h  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 ---1 1111  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
TABLE 7-2:  
REGISTERS ASSOCIATED WITH TIMER0, PIC16C72/73/73A/74/74A  
Value on:  
POR  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
TMR0  
Timer0 module’s register  
xxxx xxxx  
0000 000x  
1111 1111  
uuuu uuuu  
0000 000u  
1111 1111  
--11 1111  
0Bh/8Bh INTCON  
GIE  
OPTION RBPU INTEDG  
TRISA  
PEIE  
T0IE  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RBIF  
PS0  
81h  
85h  
T0CS  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 --11 1111  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
1995 Microchip Technology Inc.  
DS30390B-page 63  
PIC16C7X  
NOTES:  
DS30390B-page 64  
1995 Microchip Technology Inc.  
PIC16C7X  
In timer mode, Timer1 increments every instruction  
cycle. In counter mode, it increments on every rising  
edge of the external clock input on pin RC0/T1OSO/  
T1CKI.  
8.0  
TIMER1 MODULE  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The Timer1 module is a 16-bit timer/counter consisting  
of two 8-bit registers (TMR1H and TMR1L) which are  
readable and writable. The TMR1 Register pair  
(TMR1H + TMR1L) increments from 0000h to FFFFh  
and rolls over to 0000h. The TMR1 Interrupt, if enabled,  
is generated on overflow which is latched in interrupt  
flag bit TMR1IF (PIR1<0>). This interrupt can be  
enabled or disabled using TMR1 interrupt enable bit  
TMR1IE (PIE1<0>).  
Timer1 can be turned on and off using the control bit  
TMR1ON (T1CON<0>).  
Timer1 also has an internal “reset input”. This reset can  
be generated by either of the two CCP modules  
(Section 10.0). Figure 8-1 shows the Timer1 control  
register.  
For the PIC16C72/73A/74A, when the Timer1 oscillator  
is enabled (T1OSCEN is set), the RC1/T1OSI/CCP2  
and RC0/T1OSO/T1CKI pins become inputs. That is,  
the TRISC<1:0> value is ignored.  
Timer1 can operate in one of two modes:  
• As a timer  
For the PIC16C73/74, when the Timer1 oscillator is  
enabled (T1OSCEN is set), RC1/T1OSI/CCP2 pin  
becomes an input, however the RC0/T1OSO/T1CKI  
pin will have to be configured as an input by setting the  
TRISC<0> bit.  
• As a counter  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
FIGURE 8-1: T1CON:TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R
= Readable bit  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit0  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3:  
bit 2:  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1 = Oscillator is enabled  
0 = Oscillator is shut off  
Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1  
1 = Do not synchronize external clock input  
0 = Synchronize external clock input  
TMR1CS = 0  
This bit is ignored. Timer1 uses the external clock when TMR1CS = 0.  
bit 1:  
bit 0:  
TMR1CS: Timer1 Clock Source Select bit  
1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0 = Internal clock (OSC/4)  
TMR1ON: Timer1 On bit  
1 = Enables Timer1  
0 = Stops Timer1  
1995 Microchip Technology Inc.  
DS30390B-page 65  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
8.2.1  
EXTERNAL CLOCK INPUT TIMING FOR  
SYNCHRONIZED COUNTER MODE  
8.1  
Timer1 Operation in Timer Mode  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
When an external clock input is used for Timer1 in syn-  
chronized counter mode, it must meet certain require-  
ments. The external clock requirement is due to  
internal phase clock (Tosc) synchronization. Also, there  
is a delay in the actual incrementing of TMR1 after syn-  
chronization.  
Timer mode is selected by clearing the TMR1CS  
(T1CON<1>) bit. In this mode, the input clock to the  
timer is OSC/4. The synchronize control bit T1SYNC  
(T1CON<2>) has no effect since the internal clock is  
always in sync.  
When the prescaler is 1:1, the external clock input is  
the same as the prescaler output. The synchronization  
of T1CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T1CKI to be high for at least 2Tosc (and  
a small RC delay of 20 ns) and low for at least 2Tosc  
(and a small RC delay of 20 ns). Refer to the appropri-  
ate electrical specifications, parameters 45, 46, and 47.  
8.2  
Timer1 Operation in Synchronized  
Counter Mode  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
Counter mode is selected by setting bit TMR1CS. In  
this mode the timer increments on every rising edge of  
clock input on pin RC1/T1OSI/CCP2 when bit  
T1OSCEN is set or pin RC0/T1OSO/T1CKI when bit  
T1OSCEN is cleared.  
When a prescaler other than 1:1 is used, the external  
clock input is divided by the asynchronous ripple-  
counter type prescaler so that the prescaler output is  
symmetrical. In order for the external clock to meet the  
sampling requirement, the ripple-counter must be  
taken into account. Therefore, it is necessary for T1CKI  
to have a period of at least 4Tosc (and a small RC delay  
of 40 ns) divided by the prescaler value. The only  
requirement on T1CKI high and low time is that they do  
not violate the minimum pulse width requirements of 10  
ns). Refer to the appropriate electrical specifications,  
parameters 40, 42, 45, 46, and 47.  
If T1SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The pres-  
caler stage is an asynchronous ripple-counter.  
In this configuration, during SLEEP mode, Timer1 will  
not increment even if the external clock is present,  
since the synchronization circuit is shut off. The pres-  
caler however will continue to increment.  
FIGURE 8-2: TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
clock input  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
(3)  
RC0/T1OSO/T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
OSC/4  
Internal  
Clock  
0
(1)  
(2)  
RC1/T1OSI/CCP2  
2
SLEEP input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
2: The CCP2 module is not implemented in the PIC16C72.  
3: For the PIC16C73 and PIC16C74, the Schmitt Trigger is not implemented in external clock mode.  
DS30390B-page 66  
1995 Microchip Technology Inc.  
PIC16C7X  
8.3  
Timer1 Operation in Asynchronous  
Counter Mode  
EXAMPLE 8-1: READING A 16-BIT FREE-  
RUNNING TIMER  
Applicable Devices  
; All interrupts are disabled  
70 71 71A 72 73 73A 74 74A  
MOVF  
MOVWF TMPH  
MOVF TMR1L, W ;Read low byte  
MOVWF TMPL  
MOVF TMR1H, W ;Read high byte  
SUBWF TMPH,  
TMR1H, W ;Read high byte  
;
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during SLEEP and can  
generate an interrupt on overflow which will wake-up  
the processor. However, special precautions in soft-  
ware are needed to read/write the timer  
(Section 8.3.2).  
;
W
;Sub 1st read  
; with 2nd read  
BTFSC STATUS,Z ;Is result = 0  
GOTO CONTINUE ;Good 16-bit read  
;
; TMR1L may have rolled over between the read  
; of the high and low bytes. Reading the high  
; and low bytes now will read a good value.  
;
In asynchronous counter mode, Timer1 can not be  
used as a time-base for capture or compare opera-  
tions.  
MOVF  
MOVWF TMPH  
MOVF TMR1L, W ;Read low byte  
MOVWF TMPL  
; Re-enable the Interrupt (if required)  
TMR1H, W ;Read high byte  
8.3.1  
EXTERNAL CLOCK INPUT TIMING WITH  
UNSYNCHRONIZED CLOCK  
;
;
If control bit T1SYNC is set, the timer will increment  
completely asynchronously. The input clock must meet  
a certain minimum high time and low time require-  
ments. Refer to the appropriate Electrical Specifica-  
tions Section, timing parameters 45, 46, and 47.  
CONTINUE  
;Continue with your code  
8.4  
Timer1 Oscillator  
Applicable Devices  
8.3.2  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER MODE  
70 71 71A 72 73 73A 74 74A  
A crystal oscillator circuit is built in between T1OSI pin  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 8-1 shows the capacitor  
selection for the Timer1 oscillator.  
Reading TMR1H or TMR1L while the timer is running,  
from an external asynchronous clock, will guarantee a  
valid read (taken care of in hardware). However, the  
user should keep in mind that reading the 16-bit timer  
in two 8-bit values itself poses certain problems since  
the timer may overflow between the reads.  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers while the  
register is incrementing. This may produce an unpre-  
dictable value in the timer register.  
TABLE 8-1:  
CAPACITOR SELECTION  
FOR THE TIMER1  
OSCILLATOR  
Reading the 16-bit value requires some care.  
Example 8-1 is an example routine to read the 16-bit  
timer value. This is useful if the timer cannot be  
stopped.  
Osc Type  
Freq  
C1  
C2  
(1)  
LP  
32 kHz  
15 pF  
15 pF  
0 - 15 pF  
15 pF  
15 pF  
0 - 15 pF  
100 kHz  
200 kHz  
Higher capacitance increases the stability of oscilla-  
tor but also increases the start-up time. These values  
are for design guidance only.  
Note 1: For VDD > 4.5V, C1 = C2 30 pF is recom-  
mended.  
Crystals Tested:  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P ± 20 PPM  
STD XTL 200.000 kHz  
± 20 PPM  
1995 Microchip Technology Inc.  
DS30390B-page 67  
PIC16C7X  
In this mode of operation, the CCPRxH:CCPRxL regis-  
ters pair effectively becomes the period register for  
Timer1.  
8.5  
Resetting Timer1 using a CCP Trigger  
Output  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
8.6  
Resetting of Timer1 Register Pair  
(TMR1H,TMR1L)  
The CCP2 module is not implemented on the  
PIC16C72 device.  
Applicable Devices  
If the CCP1 or CCP2 module is configured in compare  
70 71 71A 72 73 73A 74 74A  
mode to generate  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer1.  
a
“special event trigger"  
TMR1H and TMR1L registers are not reset on a POR  
or any other reset except by the CCP1 special event  
trigger.  
Note: The special event triggers from the CCP1  
and CCP2 modules will not set interrupt  
flag bit TMR1IF (PIR1<0>).  
T1CON register is reset to 00h on a Power-on Reset or  
a Brown-out Reset. In any other reset, the register is  
unaffected.  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature.  
If Timer1 is running in asynchronous counter mode,  
this reset operation may not work.  
8.7  
Timer1 Prescaler  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1 or CCP2, the write will  
take precedence.  
The prescaler counter is cleared on writes to the  
TMR1H or TMR1L registers.  
TABLE 8-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on:  
POR  
BOR  
Value on  
all other  
resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
0Bh/8Bh INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
(1,2)  
(2)  
(2)  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF RCIF  
ADIE RCIE  
TXIF  
TXIE  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR21E TMR1IE  
(1,2)  
(2)  
(2)  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by theTimer1 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
2: The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.  
DS30390B-page 68  
1995 Microchip Technology Inc.  
PIC16C7X  
9.1  
Timer2 Prescaler and Postscaler  
Applicable Devices  
9.0  
TIMER2 MODULE  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 is an 8-bit timer with a prescaler and a  
postscaler. It can be used as the PWM time-base for  
PWM mode of the CCP module(s). The TMR2 register  
is readable and writable, and is cleared on any device  
reset.  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device reset (Power-on Reset, MCLR reset,  
or Watchdog Timer reset)  
The input clock (FOSC/4) has a prescale option of 1:1,  
1:4  
or  
1:16  
(selected  
by  
control  
bits  
TMR2 will not clear when T2CON is written, only for a  
WDT, POR, and MCLR reset.  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
set during RESET.  
9.2  
Output of TMR2  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module which optionally uses  
it to generate shift clock.  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, PIR1<1>).  
FIGURE 9-1: TIMER2 BLOCK DIAGRAM  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
Sets flag  
TMR2  
output (1)  
bit TMR2IF  
Figure 9-2 shows the Timer2 control register.  
Reset  
Prescaler  
1:1, 1:4, 1:16  
TMR2 reg  
OSC/4  
Postscaler  
1:1 to 1:16  
2
Comparator  
EQ  
4
PR2 reg  
Note 1: TMR2 register output can be software selected  
by the SSP Module as a baud clock.  
1995 Microchip Technology Inc.  
DS30390B-page 69  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
FIGURE 9-2: T2CON:TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit0  
R
= Readable bit  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6-3: TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2:  
TMR2ON: Timer2 On bit  
1 = Timer2 is on  
0 = Timer2 is off  
bit 1-0: T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
TABLE 9-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on:  
POR  
BOR  
Value on  
all other  
resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Bh/8Bh INTCON  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0Ch  
8Ch  
11h  
12h  
92h  
PIR1  
PSPIF(1,2)  
PSPIE(1,2)  
RCIF(2)  
RCIE(2)  
TXIF(2)  
TXIE(2)  
CCP1IF  
CCP1IE  
TMR2IF  
TMR21E  
TMR1IF  
TMR1IE  
PIE1  
TMR2  
T2CON  
PR2  
Timer2 module’s register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer2 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
2: The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.  
DS30390B-page 70  
1995 Microchip Technology Inc.  
PIC16C7X  
CCP1 module:  
10.0 CAPTURE/COMPARE/PWM  
MODULE(s)  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). Both are readable and writable.  
Applicable Devices  
70 71 71A 72 73 73A 74 74A CCP1  
70 71 71A 72 73 73A 74 74A CCP2  
CCP2 module:  
Capture/Compare/PWM Register2 (CCPR2) is made  
up of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). Both are readable and writable.  
Each CCP (Capture/Compare/PWM) module contains  
a 16-bit register which can operate as a 16-bit capture  
register, as a 16-bit compare register or as a PWM out-  
put. Both the CCP1 and CCP2 modules are identical in  
operation, with the exception of the operation of the  
special event trigger. Table 10-1 and Table 10-2 show  
the resources and interactions of the CCP module(s).  
In the following sections, the operation of a CCP mod-  
ule is described with respect to CCP1. CCP2 operates  
the same as CCP1, except where noted.  
For use of the CCP modules, refer to the Embedded  
Control Handbook, "Using the CCP Modules" (AN594).  
TABLE 10-1: CCP MODE - TIMER RESOURCE  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
TABLE 10-2: INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Compare  
PWM  
Capture  
Compare  
Compare  
PWM  
Same TMR1 timebase.  
The compare should be configured for the special event trigger, which clears TMR1.  
The compare(s) should be configured for the special event trigger, which clears TMR1.  
The PWMs will have the same frequency, and update rate (TMR2 interrupt).  
PWM  
Capture  
Compare  
None  
None  
PWM  
1995 Microchip Technology Inc.  
DS30390B-page 71  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h)/CCP2CON REGISTER (ADDRESS 1Dh)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCPxX CCPxY CCPxM3 CCPxM2 CCPxM1 CCPxM0  
bit0  
R = Readable bit  
W = Writable bit  
bit7  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: CCPxX:CCPxY: PWM High Resolution, Low Order Select bits  
Capture Mode: Unused  
Compare Mode: Unused  
PWM Mode: Write the two low order bits in high resolution (10-bit) mode. May be kept constant (at '0') if  
only 8-bit resolution (in standard resolution mode) is desired.  
bit 3-0: CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/compare/PWM off (resets CCPx module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCPxIF bit is set)  
1001= Compare mode, clear output on match (CCPxIF bit is set)  
1010= Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected)  
1011= Compare mode, trigger special event (CCPxIF bit is set; CCP1 resets TMR1; CCP2 resets TMR1  
and starts an A/D conversion (if A/D module is enabled))  
11xx= PWM mode  
10.1  
Capture Mode  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
Note: If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
In Capture mode, CCPR1H:CCPR1L captures the 16-  
bit value of the TMR1 register when an event occurs on  
pin RC2/CCP1. An event is defined as:  
When the capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in operating mode.  
• A falling edge  
• A rising edge  
• Every 4th rising edge  
• Every 16th rising edge  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be reset in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value will be lost. In capture mode, the RC2/CCP1 pin  
should be configured as an input by setting its corre-  
sponding TRIS bit.  
DS30390B-page 72  
1995 Microchip Technology Inc.  
PIC16C7X  
10.1.1 PRESCALER  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, a compare interrupt is also generated. The  
user must configure the RC2/CCP1 pin as an output by  
clearing the TRISC<2> bit.  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in capture mode,  
the prescaler counter is cleared. This means that any  
reset will clear the prescaler counter.  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore the first capture may be from  
a non-zero prescaler. Example 10-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
10.2.1 COMPARE MODE SELECTION  
Timer1 must be running in timer mode or synchronized  
counter mode if the CCP module is using the compare  
feature. In asynchronous counter mode, the compare  
operation may not work.  
EXAMPLE 10-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
10.2.2 SOFTWARE INTERRUPT MODE  
Another compare mode is software interrupt mode in  
which the CCP1 pin is not affected. Only a CCP inter-  
rupt is generated (if enabled).  
CLRF  
CCP1CON  
;Turn CCP module off  
MOVLW NEW_CAPT_PS ;Load the W reg with  
; the new prescaler  
; mode value and CCP ON  
;Load CCP1CON with this  
; value  
10.2.3 SPECIAL EVENT TRIGGER  
MOVWF CCP1CON  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
10.1.2 CAPTURE MODE SELECTION  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
Timer1 must be running in timer mode or synchronized  
counter mode for the CCP module to use the capture  
feature. In asynchronous counter mode, the capture  
operation may not work.  
The special trigger output of CCP2 resets the TMR1  
register pair, and starts an A/D conversion (if the A/D  
module is enabled).  
FIGURE 10-2: CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
For the PIC16C72 only, the special event trigger output  
of CCP1 resets the TMR1 register pair, and starts an  
A/D conversion (if the A/D module is enabled).  
Set flag bit CCP1IF  
(PIR1<2>)  
Prescaler  
÷ 1, 4, 16  
Note: The special event trigger from the  
CCP1and CCP2 modules will not set inter-  
rupt flag bit TMR1IF (PIR1<0>).  
RC2/CCP1  
Pin  
CCPR1H  
CCPR1L  
TMR1L  
Capture  
Enable  
and  
edge detect  
FIGURE 10-3: COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
TMR1H  
CCP1CON<3:0>  
Q’s  
Special Event(1)  
Set flag bit CCP1IF  
(PIR1<2>)  
10.2  
Compare Mode  
Applicable Devices  
CCPR1H CCPR1L  
70 71 71A 72 73 73A 74 74A  
Q
S
R
Output  
Logic  
Comparator  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
match  
RC2/CCP1  
Pin  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
• Driven High  
Note 1: For CCP1 (if enabled), reset Timer1.  
• Driven Low  
For CCP2 (if enabled), reset Timer1, and set bit  
GO/DONE (ADCON0<2>), which starts an A/D conver-  
sion.  
• Remains Unchanged  
1995 Microchip Technology Inc.  
DS30390B-page 73  
PIC16C7X  
10.3  
PWM Mode  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
FIGURE 10-4: SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCPxCON<5:4>  
Duty cycle registers  
In Pulse Width Modulation mode (PWM), pin  
RC2/CCP1 produces up to a 10-bit resolution PWM  
output. This pin must be configured as an output by  
clearing the TRISC<2> bit. The pin is multiplexed with  
the data latch. In PWM mode, the user writes the 8-bit  
duty cycle value to the low byte of the CCPR1 register,  
namely CCPR1L. The high-byte, CCPR1H is used as  
the slave buffer to the low byte. The 8-bit data is trans-  
ferred from the master to the slave when the PWM1  
output is set (i.e. at the beginning of the duty cycle).  
This double buffering is essential for glitchless PWM  
output. In PWM mode, CCPR1H is readable but not  
writable. The period of the PWM is determined by the  
Timer2 period register (PR2).  
CCPRxL  
CCPRxH (Slave)  
Q
R
S
Comparator  
TMR2  
RCy/CCPx  
Pin  
(Note 1)  
TRISC<y>  
Comparator  
Clear Timer,  
CCP1 pin and  
latch Duty Cycle  
PWM period is =  
PR2  
[(PR2) + 1] • 4 TOSC • (TMR2 prescale value)  
PWM duty cycle =  
Note 1: 8-bit timer is concatenated with 2-bit internal Q  
clock or 2-bits of the prescaler to create 10-bit  
time-base.  
(DC1) • TOSC • (TMR2 prescale value)  
TABLE 10-3: PWM FREQUENCY vs.  
RESOLUTION AT 20 MHz  
where DC1 = 10-bit value from CCPRxL and CCPx-  
CON<5:4> concatenated.  
The PWM output resolution is therefore programmable  
up to a maximum of 10-bits.  
Max.  
Frequency  
Resolution  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 PWM output latch to the  
default low level. This is not the I/O data  
latch. The Timer2 postscaler is not used in  
the determination of the PWM frequency.  
The postscaler could be used to have a  
servo update rate at a different frequency  
than the PWM output.  
(High  
Resolution  
Mode)  
TMR2  
TMR2  
TMR2  
Prescale=1 Prescale=4 Prescale=16  
10-bit  
9-bit  
8-bit  
19.53 kHz 4.88 kHz  
39.06 kHz 9.77 kHz  
1.22 kHz  
2.44 kHz  
78.13 kHz 19.53 kHz 4.88 kHz  
TABLE 10-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
Timer Prescaler (16, 4, 1)  
1.22 kHz  
4.88 kHz  
19.53 kHz  
78.12 kHz  
156.3 kHz  
208.3 kHz  
16  
4
1
1
1
1
PR2 Value  
0xFF  
10-bit  
8-bit  
0xFF  
10-bit  
8-bit  
0xFF  
10-bit  
8-bit  
0x3F  
8-bit  
6-bit  
0x1F  
7-bit  
5-bit  
0x17  
5.5-bit  
3.5-bit  
Resolution (High-resolution mode)  
(1)  
Resolution (Standard-resolution mode)  
Note 1: Standard resolution mode has the CCPxX:CCPxY bits constant (or ‘0’), and only compares the TMR2 register value  
against the PR2 register value. The Q-cycles are not used.  
DS30390B-page 74  
1995 Microchip Technology Inc.  
PIC16C7X  
TABLE 10-5: REGISTERS ASSOCIATED WITH CAPTURE AND TIMER1  
Value on:  
POR  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh/8Bh INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
SSPIF  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1,2)  
(2)  
(2)  
0Ch  
0Dh  
8Ch  
8Dh  
0Eh  
0Fh  
10h  
15h  
16h  
17h  
PIR1  
PSPIF  
ADIF RCIF  
TXIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(2)  
(2)  
PIR2  
(1,2)  
(2)  
(2)  
PIE1  
PSPIE  
ADIE RCIE  
TXIE  
SSPIE  
PIE2  
CCP2IE ---- ---0 ---- ---0  
xxxx xxxx uuuu uuuu  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1register  
xxxx xxxx uuuu uuuu  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Capture/Compare/PWM register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR1H Capture/Compare/PWM register1 (MSB)  
CCP1CON  
CCPR2L  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
(2)  
1Bh  
Capture/Compare/PWM register2 (LSB)  
(2)  
1Ch  
1Dh  
CCPR2H Capture/Compare/PWM register2 (MSB)  
CCP2CON CCP2X CCP2Y  
xxxx xxxx uuuu uuuu  
(2)  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
2: The PIC16C72 does not have a Parallel Slave Port, USART or CCP2 module, these bits are unimplemented, read as '0'.  
TABLE 10-6: REGISTERS ASSOCIATED WITH COMPARE AND TIMER1  
Value on:  
POR  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh/8Bh INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
SSPIF  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1,2)  
(2)  
(2)  
0Ch  
0Dh  
8Ch  
8Dh  
0Eh  
0Fh  
10h  
15h  
16h  
17h  
PIR1  
PSPIF  
ADIF RCIF  
TXIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(2)  
(2)  
PIR2  
(1,2)  
(2)  
(2)  
PIE1  
PSPIE  
ADIE RCIE  
TXIE  
SSPIE  
PIE2  
CCP2IE ---- ---0 ---- ---0  
xxxx xxxx uuuu uuuu  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx uuuu uuuu  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Capture/Compare/PWM register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR1H Capture/Compare/PWM register1 (MSB)  
CCP1CON  
CCPR2L  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
(2)  
1Bh  
Capture/Compare/PWM register2 (LSB)  
(2)  
1Ch  
1Dh  
CCPR2H Capture/Compare/PWM register2 (MSB)  
CCP2CON CCP2X CCP2Y  
xxxx xxxx uuuu uuuu  
(2)  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by Compare and Timer1.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
2: The PIC16C72 does not have a Parallel Slave Port, USART or CCP2 module, these bits are unimplemented, read as '0'.  
1995 Microchip Technology Inc.  
DS30390B-page 75  
PIC16C7X  
TABLE 10-7: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on: Value on  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
BOR  
all other  
resets  
0Bh/8Bh INTCON  
GIE  
PSPIF(1,2)  
PEIE  
ADIF  
T0IE  
RCIF(2)  
INTE  
TXIF(2)  
RBIE  
SSPIF  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
0Dh(2) PIR2  
8Ch PIE1  
8Dh(2) PIE2  
PIR1  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PSPIE(1,2)  
ADIE  
RCIE(2)  
TXIE(2)  
SSPIE  
CCP2IE ---- ---0 ---- ---0  
0000 0000 0000 0000  
11h  
92h  
12h  
15h  
16h  
17h  
TMR2  
Timer2 module’s register  
Timer2 module’s period register  
PR2  
1111 1111 1111 1111  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
1Bh(2) CCPR2L  
1Ch(2) CCPR2H  
1Dh(2) CCP2CON  
Capture/Compare/PWM register2 (LSB)  
Capture/Compare/PWM register2 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP2X  
CCP2Y CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
2: The PIC16C72 does not have a Parallel Slave Port, USART or CCP2 module, these bits are unimplemented, read as '0'.  
DS30390B-page 76  
1995 Microchip Technology Inc.  
PIC16C7X  
Refer toApplication NoteAN578, "Use of the SSP Mod-  
ule in the I C Multi-Master Environment."  
11.0 SYNCHRONOUS SERIAL  
PORT (SSP) MODULE  
Applicable Devices  
2
70 71 71A 72 73 73A 74 74A  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
• Serial Peripheral Interface (SPI)  
2
• Inter-Integrated Circuit (I C)  
FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)  
U-0  
U-0  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
2
bit 5:  
bit 4:  
bit 3:  
bit 2:  
D/A: Data/Address bit (I C mode only)  
1 = Indicates that the last byte received or transmitted was data  
0 = Indicates that the last byte received or transmitted was address  
2
P: Stop bit (I C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared)  
1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET)  
0 = Stop bit was not detected last  
2
S: Start bit (I C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared)  
1 = Indicates that a start bit has been detected last (this bit is '0' on RESET)  
0 = Start bit was not detected last  
2
R/W: Read/Write bit information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid during the  
transmission.  
1 = Read  
0 = Write  
2
bit 1:  
bit 0:  
UA: Update Address (10-bit I C mode only)  
1 = Indicates that the user needs to update the address in the SSPADD register  
0 = Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes)  
1 = Receive complete, SSPBUF is full  
0 = Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only)  
1 = Transmit in progress, SSPBUF is full  
0 = Transmit complete, SSPBUF is empty  
1995 Microchip Technology Inc.  
DS30390B-page 77  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
FIGURE 11-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WCOL SSPOV SSPEN  
bit7  
SSPM3 SSPM2 SSPM1 SSPM0  
bit0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7:  
WCOL: Write Collision Detect bit  
1 = The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0 = No collision  
bit 6:  
SSPOV: Receive Overflow Indicator bit  
In SPI mode  
1 =Anew byte is received while the SSPBUF register is still holding the previous data. In case of overflow,  
the data in SSPSR is lost. Overflow can only occur in slave mode. The user must read the SSPBUF, even  
if only transmitting data, to avoid setting overflow. In master mode the overflow bit is not set since each  
new reception (and transmission) is initiated by writing to the SSPBUF register.  
0 = No overflow  
2
In I C mode  
1 =Abyte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don’t care"  
in transmit mode. SSPOV must be cleared in software in either mode.  
0 = No overflow  
bit 5:  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode  
1 = Enables serial port and configures SDK, SDO, and SDI as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
2
In I C mode  
1 = Enables the serial port and configures the SDA and SCL pins as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
In both modes, when enabled, these pins must be properly configured as input or output.  
bit 4:  
CKP: Clock Polarity Select bit  
In SPI mode  
1 = Transmit happens on falling edge, receive on rising edge. Idle state for clock is a high level  
0 = Transmit happens on rising edge, receive on falling edge. Idle state for clock is a low level  
2
In I C mode  
SCK release control  
1 = Enable clock  
0 = Holds clock low (clock stretch) (Used to ensure data setup time)  
bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI master mode, clock = FOSC/4  
0001= SPI master mode, clock = FOSC/16  
0010= SPI master mode, clock = FOSC/64  
0011= SPI master mode, clock = TMR2 output/2  
0100= SPI slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin  
2
0110= I C slave mode, 7-bit address  
2
0111= I C slave mode, 10-bit address  
2
1011= I C start and stop bit interrupts enabled (slave idle)  
2
1110= I C slave mode, 7-bit address with start and stop bit interrupts enabled  
2
1111= I C slave mode, 10-bit address with start and stop bit interrupts enabled  
DS30390B-page 78  
1995 Microchip Technology Inc.  
PIC16C7X  
11.1  
SPI Mode  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
EXAMPLE 11-1: LOADING THE SSPBUF  
(SSPSR) REGISTER  
BSF  
STATUS, RP0  
;Specify Bank 1  
;Has data been  
;received  
The SPI mode allows 8-bits of data to be synchro-  
nously transmitted and received simultaneously. To  
accomplish communication, typically three pins are  
used:  
LOOP BTFSS SSPSTAT, BF  
;(transmit  
;complete)?  
GOTO LOOP  
;No  
• Serial Data Out (SDO) RC5/SDO  
• Serial Data In (SDI) RC4/SDI  
• Serial Clock (SCK) RC3/SCK  
BCF  
STATUS, RP0  
;Specify Bank 0  
;W reg = contents  
; of SSPBUF  
MOVF SSPBUF, W  
MOVWF RXDATA  
;Save in user RAM  
Additionally a fourth pin may be used when in a slave  
mode of operation:  
MOVF TXDATA, W  
;W reg = contents  
; of TXDATA  
MOVWF SSPBUF  
;New data to xmit  
• Slave Select (SS) RA5/AN4/SS  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits in the SSPCON register (SSPCON<5:0>).  
These control bits allow the following to be specified:  
The block diagram of the SSP module, when in SPI  
mode (Figure 11-3), shows that the SSPSR is not  
directly readable or writable, and can only be accessed  
from addressing the SSPBUF register. Additionally, the  
SSP status register (SSPSTAT) indicates the various  
status conditions.  
• Master Mode (SCK is the clock output)  
• Slave Mode (SCK is the clock input)  
• Clock Polarity (Output/Input data on the  
Rising/Falling edge of SCK)  
FIGURE 11-3: SSP BLOCK DIAGRAM  
(SPI MODE)  
• Clock Rate (Master mode only)  
Internal  
data bus  
• Slave Select Mode (Slave mode only)  
The SSP consists of a transmit/receive Shift Register  
(SSPSR) and a Buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSB first. The  
SSPBUF holds the data that was previously written to  
the SSPSR, until the received data is ready. Once the  
8-bits of data have been received, that information is  
moved to the SSPBUF register. Then the buffer full  
detect bit BF (SSPSTAT <0>) and interrupt flag bit  
SSPIF (PIR1<3>) are set. This double buffering of the  
received data (SSPBUF) allows the next byte to start  
reception before reading the data that was received.  
Any write to the SSPBUF register during transmission/  
reception of data will be ignored, and the write collision  
detect bit WCOL (SSPCON<7>) will be set. User soft-  
ware must clear the WCOL bit so that it can be deter-  
mined if the following write(s) to the SSPBUF register  
completed successfully. When the application software  
is expecting to receive valid data, the SSPBUF should  
be read before the next byte of data to transfer is written  
to the SSPBUF. Buffer full bit BF (SSPSTAT<0>) indi-  
cates when SSPBUF has been loaded with the  
received data (transmission is complete). When the  
SSPBUF is read, bit BF is cleared. This data may be  
irrelevant if the SPI is only a transmitter. Generally the  
SSP Interrupt is used to determine when the transmis-  
sion/reception has completed. The SSPBUF can then  
be read (if data is meaningful) and/or the SSPBUF  
(SSPSR) can be written. If the interrupt method is not  
going to be used, then software polling can be done to  
Read  
Write  
SSPBUF reg  
SSPSR reg  
SDI  
shift  
clock  
bit0  
SDO  
Control  
Enable  
SS  
SS  
Edge  
Select  
2
Clock Select  
SSPM3:SSPM0  
4
TMR2 output  
2
Edge  
Select  
TCY  
Prescaler  
4, 16, 64  
SCK  
Data from TX/RX in SSPSR  
TRISC<3>  
ensure that  
a write collision does not occur.  
Example 11-1 shows the loading of the SSPBUF  
(SSPSR) for data transmission. The shaded instruction  
is only required if the received data is meaningful.  
1995 Microchip Technology Inc.  
DS30390B-page 79  
PIC16C7X  
To enable the serial port, SSP enable bit SSPEN (SSP-  
CON<5>) must be set. To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
ister, and then set bit SSPEN. This configures the SDI,  
SDO, SCK, and SS pins as serial port pins. For the pins  
to behave as the serial port function, they must have  
their data direction bits (in the TRISC register) appro-  
priately programmed. That is:  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2) wishes to broadcast data  
by the software protocol.  
In master mode the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SCK output could be disabled  
(programmed as an input). The SSPSR register will  
continue to shift in the signal present on the SDI pin at  
the programmed clock rate. As each byte is received, it  
will be loaded into the SSPBUF register as if a normal  
received byte (interrupts and status bits appropriately  
set). This could be useful in receiver applications as a  
“line activity monitor” mode.  
• SDI must have TRISC<4> set  
• SDO must have TRISC<5> cleared  
• SCK (Master mode) must have TRISC<3>  
cleared  
• SCK (Slave mode) must have TRISC<3> set  
• SS must have TRISA<5> set  
In slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched the interrupt flag bit SSPIF (PIR1<3>)  
is set.  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value. An example  
would be in master mode where you are only sending  
data (to a display driver), then both SDI and SS could  
be used as general purpose outputs by clearing their  
corresponding TRIS register bits.  
The clock polarity is selected by appropriately pro-  
gramming bit CKP (SSPCON<4>). This then would  
give waveforms for SPI communication as shown in  
Figure 11-5 and Figure 11-6 where the MSB is trans-  
mitted first. In master mode, the SPI clock rate (bit rate)  
is user programmable to be one of the following:  
Figure 11-4 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge, and latched on the opposite  
edge of the clock. Both processors should be pro-  
grammed to same Clock Polarity (CKP), then both con-  
trollers would send and receive data at the same time.  
Whether the data is meaningful (or dummy data)  
depends on the application software. This leads to  
three scenarios for data transmission:  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
This allows a maximum bit clock frequency (at 20 MHz)  
of 5 MHz. When in slave mode the external clock must  
meet the minimum high and low times.  
In sleep mode, the slave can transmit and receive data  
and wake the device from sleep.  
• Master sends data — Slave sends dummy data  
• Master sends data — Slave sends data  
• Master sends dummy data — Slave sends data  
FIGURE 11-4: SPI MASTER/SLAVE CONNECTION  
SPI Master (SSPM3:SSPM0 = 00xxb)  
SPI Slave (SSPM3:SSPM0 = 010xb)  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
Shift Register  
(SSPSR)  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
DS30390B-page 80  
1995 Microchip Technology Inc.  
PIC16C7X  
The SS pin allows a synchronous slave mode. The SPI  
must be in slave mode (SSPCON<3:0> = 04h) and the  
TRISA<5> bit must be set the for the synchronous  
slave mode to be enabled. When the SS pin is low,  
transmission and reception are enabled and the SDO  
pin is driven. When the SS pin goes high, the SDO pin  
is no longer driven, even if in the middle of a transmit-  
ted byte, and becomes a floating output. External pull-  
up/pull-down resistors may be desirable, depending on  
the application.  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver the SDO pin can be configured as  
an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
FIGURE 11-5: SPI MODE TIMING (MASTER MODE OR SLAVE MODE W/O SS CONTROL)  
SCK  
(CKP = 0)  
SCK  
(CKP = 1)  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
bit0  
SDO  
SDI  
bit7  
SSPIF  
Interrupt flag  
FIGURE 11-6: SPI MODE TIMING (SLAVE MODE WITH SS CONTROL)  
SS  
SCK  
(CKP = 0)  
SCK  
(CKP = 1)  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
bit0  
SDO  
SDI  
bit7  
SSPIF  
1995 Microchip Technology Inc.  
DS30390B-page 81  
PIC16C7X  
TABLE 11-1: REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on:  
POR  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh/8Bh INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1,2)  
(2)  
(2)  
0Ch  
8Ch  
13h  
14h  
85h  
94h  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF RCIF  
ADIE RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(1,2)  
(2)  
(2)  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
SSPCON WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 --11 1111 --11 1111  
D/A R/W UA BF --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
TRISA  
SSPSTAT  
P
S
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
2: The PIC16C72 does not have a Parallel Slave Port or USART, these bits are unimplemented, read as '0'.  
DS30390B-page 82  
1995 Microchip Technology Inc.  
PIC16C7X  
2
The output stages of the clock (SCL) and data (SDA)  
lines must have an open-drain or open-collector in  
order to perform the wired-AND function of the bus.  
External pull-up resistors are used to ensure a high  
level when no device is pulling the line down. The num-  
ber of devices that may be attached to the I C bus is  
limited only by the maximum bus loading specification  
of 400 pF.  
11.2  
I C Overview  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
This section provides an overview of the Inter-Inte-  
grated Circuit (I C) bus, with Section 11.3 discussing  
the operation of the SSP module in I C mode.  
2
2
2
2
The I C bus is a two-wire serial interface developed by  
the Philips Corporation. The original specification, or  
standard mode, was for data transfers of up to 100  
Kbps. An enhanced specification, or fast mode, sup-  
ports data transmission up to 400 Kbps. Both standard  
mode and fast mode devices will inter-operate if  
attached to the same bus.  
11.2.1 INITIATING AND TERMINATING DATA  
TRANSFER  
During times of no data transfer (idle time), both the  
clock line (SCL) and the data line (SDA) are pulled high  
through the external pull-up resistors. The START and  
STOP conditions determine the start and stop of data  
transmission. The START condition is defined as a high  
to low transition of the SDA when the SCL is high. The  
STOP condition is defined as a low to high transition of  
the SDA when the SCL is high. Figure 11-7 shows the  
START and STOP conditions. The master generates  
these conditions for starting and terminating data trans-  
fer. Due to the definition of the START and STOP con-  
ditions, when data is being transmitted, the SDA line  
can only change state when the SCL line is low.  
2
The I C interface employs a comprehensive protocol to  
ensure reliable transmission and reception of data.  
When transmitting data, one device is the “master”  
(generates the clock), while the other device(s) acts as  
the “slave.” All portions of the slave protocol are imple-  
mented in the SSP module’s hardware, while portions  
of the master protocol need to be addressed in the  
PIC16CXX software. Table 11-2 defines some of the  
2
I C bus terminology. For additional information on the  
2
I C interface specification, refer to the Philips docu-  
2
ment “The I C bus and how to use it., which can be  
FIGURE 11-7: START AND STOP  
CONDITIONS  
obtained from the Philips Corporation.  
2
In the I C interface protocol each device has an  
address. When a master wishes to initiate a data trans-  
fer, it first transmits the address of the device that it  
wishes to “talk” to. All devices “listen” to see if this is  
their address. Within this address, a bit specifies if the  
master wishes to read-from/write-to the slave device.  
The master and slave are always in opposite modes  
(transmitter/receiver) of operation during a data trans-  
fer. That is they can be thought of operating in either of  
these two relations:  
SDA  
S
SCL  
P
Change  
of Data  
Allowed  
Change  
of Data  
Allowed  
Start  
Stop  
Condition  
Condition  
• Master-transmitter and Slave-receiver  
• Slave-transmitter and Master-receiver  
In both cases the master generates the clock signal.  
2
TABLE 11-2: I C BUS TERMINOLOGY  
Term  
Description  
Transmitter  
Receiver  
Master  
The device that sends the data to the bus.  
The device that receives the data from the bus.  
The device which initiates the transfer, generates the clock and terminates the transfer.  
The device addressed by a master.  
Slave  
Multi-master  
More than one master device in a system. These masters can attempt to control the bus at the  
same time without corrupting the message.  
Arbitration  
Procedure that ensures that only one of the master devices will control the bus. This ensure that  
the transfer data does not get corrupted.  
Synchronization  
Procedure where the clock signals of two or more devices are synchronized.  
1995 Microchip Technology Inc.  
DS30390B-page 83  
PIC16C7X  
2
11.2.2 ADDRESSING I C DEVICES  
11.2.3 TRANSFER ACKNOWLEDGE  
There are two address formats. The simplest is the  
7-bit address format with a R/W bit (Figure 11-8). The  
more complex is the 10-bit address with a R/W bit  
(Figure 11-9). For 10-bit address format, two bytes  
must be transmitted with the first five bits specifying this  
to be a 10-bit address.  
All data must be transmitted per byte, with no limit to  
the number of bytes transmitted per data transfer. After  
each byte, the slave-receiver generates an acknowl-  
edge bit (ACK) (Figure 11-10). When a slave-receiver  
doesn’t acknowledge the slave address or received  
data, the master must abort the transfer. The slave  
must leave SDA high so that the master can generate  
the STOP condition (Figure 11-7).  
FIGURE 11-8: 7-BIT ADDRESS FORMAT  
MSb  
LSb  
FIGURE 11-10: SLAVE-RECEIVER  
ACKNOWLEDGE  
R/W ACK  
S
Data  
Output by  
Transmitter  
slave address  
Sent by  
Slave  
Data  
Output by  
Receiver  
not acknowledge  
acknowledge  
S
R/W  
ACK  
Start Condition  
Read/Write pulse  
Acknowledge  
SCL from  
Master  
9
8
2
1
2
FIGURE 11-9: I C 10-BIT ADDRESS  
FORMAT  
S
Clock Pulse for  
Acknowledgment  
Start  
Condition  
S
1 1 1 1 0 A9 A8 R/W ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK  
sent by slave  
If the master is receiving the data (master-receiver), it  
generates an acknowledge signal for each received  
byte of data, except for the last byte. To signal the end  
of data to the slave-transmitter, the master does not  
generate an acknowledge (not acknowledge). The  
slave then releases the SDA line so the master can  
generate the STOP condition. The master can also  
generate the STOP condition during the acknowledge  
pulse for valid termination of data transfer.  
= 0 for write  
S
- Start Condition  
R/W - Read/Write Pulse  
ACK - Acknowledge  
If the slave needs to delay the transmission of the next  
byte, holding the SCL line low will force the master into  
a wait state. Data transfer continues when the slave  
releases the SCL line. This allows the slave to move  
the received data or fetch the data it needs to transfer  
before allowing the clock to start. This wait state tech-  
nique can also be implemented at the bit level,  
Figure 11-11.  
FIGURE 11-11: DATA TRANSFER WAIT STATE  
SDA  
MSB  
acknowledgment  
signal from receiver  
acknowledgment  
signal from receiver  
byte complete  
interrupt with receiver  
clock line held low while  
interrupts are serviced  
SCL  
S
1
2
7
8
9
1
2
3 8  
9
P
Start  
Condition  
Stop  
Condition  
Address  
R/W ACK Wait  
State  
Data  
ACK  
DS30390B-page 84  
1995 Microchip Technology Inc.  
PIC16C7X  
Figure 11-12 and Figure 11-13 show Master-transmit-  
ter and Master-receiver data transfer sequences.  
SCL is high), but occurs after a data transfer acknowl-  
edge pulse (not the bus-free state). This allows a mas-  
ter to send “commands” to the slave and then receive  
the requested information or to address a different  
slave device. This sequence is shown in Figure 11-14.  
When a master does not wish to relinquish the bus (by  
generating a STOP condition), a repeated START con-  
dition (Sr) must be generated. This condition is identi-  
cal to the start condition (SDA goes high-to-low while  
FIGURE 11-12: MASTER-TRANSMITTER SEQUENCE  
For 7-bit address:  
For 10-bit address:  
S Slave AddressR/W A1Slave Address A2  
S Slave AddressR/W A Data A Data A/A P  
First 7 bits  
Second byte  
'0' (write)  
data transferred  
(n bytes - acknowledge)  
(write)  
A master transmitter addresses a slave receiver with a  
7-bit address. The transfer direction is not changed.  
Data A  
Data A/A P  
A = acknowledge (SDA low)  
A = not acknowledge (SDA high)  
From master to slave  
S = Start Condition  
A master transmitter addresses a slave receiver  
with a 10-bit address.  
From slave to master  
P = Stop Condition  
FIGURE 11-13: MASTER-RECEIVER SEQUENCE  
For 10-bit address:  
S Slave AddressR/W A1Slave Address A2  
First 7 bits Second byte  
(write)  
For 7-bit address:  
S Slave AddressR/W A Data A Data A  
P
'1' (read) data transferred  
(n bytes - acknowledge)  
A master reads a slave immediately after the first byte.  
SrSlave AddressR/W A3 Data A Data A P  
First 7 bits  
A = acknowledge (SDA low)  
A = not acknowledge (SDA high)  
From master to slave  
(read)  
S = Start Condition  
A master transmitter addresses a slave receiver  
with a 10-bit address.  
From slave to master  
P = Stop Condition  
FIGURE 11-14: COMBINED FORMAT  
(read or write)  
(n bytes + acknowledge)  
S Slave AddressR/W A Data A/A Sr Slave Address R/W A Data A/A P  
(write)  
Direction of transfer  
may change at this point  
(read)  
Sr = repeated  
Start Condition  
Transfer direction of data and acknowledgment bits depends on R/W bits.  
Combined format:  
SrSlave Address R/W A Slave Address A Data A  
First 7 bits Second byte  
Data A/A Sr Slave Address R/W A Data A  
First 7 bits  
Data A P  
(read)  
(write)  
Combined format - A master addresses a slave with a 10-bit address, then transmits  
data to this slave and reads data from this slave.  
A = acknowledge (SDA low)  
A = not acknowledge (SDA high)  
From master to slave  
S = Start Condition  
From slave to master  
P = Stop Condition  
1995 Microchip Technology Inc.  
DS30390B-page 85  
PIC16C7X  
11.2.4 MULTI-MASTER  
11.2.4.2 Clock Synchronization  
Clock synchronization occurs after the devices have  
started arbitration. This is performed using a wired-  
AND connection to the SCL line. A high to low transition  
on the SCL line causes the concerned devices to start  
counting off their low period. Once a device clock has  
gone low, it will hold the SCL line low until its SCL high  
state is reached. The low to high transition of this clock  
may not change the state of the SCL line, if another  
device clock is still within its low period. The SCL line is  
held low by the device with the longest low period.  
Devices with shorter low periods enter a high wait-  
state, until the SCL line comes high. When the SCL line  
comes high, all devices start counting off their high  
periods. The first device to complete its high period will  
pull the SCL line low. The SCL line high time is deter-  
mined by the device with the shortest high period,  
Figure 11-16.  
2
The I C protocol allows a system to have more than  
one master. This is called multi-master. When two or  
more masters try to transfer data at the same time, arbi-  
tration and synchronization occur.  
11.2.4.1 ARBITRATION  
Arbitration takes place on the SDA line, while the SCL  
line is high. The master which transmits a high when  
the other master transmits a low loses arbitration  
(Figure 11-15), and turns off its data output stage. A  
master which lost arbitration can generate clock pulses  
until the end of the data byte where it lost arbitration.  
When the master devices are addressing the same  
device, arbitration continues into the data.  
FIGURE 11-15: MULTI-MASTER  
ARBITRATION  
(TWO MASTERS)  
FIGURE 11-16: CLOCK SYNCHRONIZATION  
transmitter 1 loses arbitration  
DATA 1 SDA  
start counting  
HIGH period  
wait  
state  
DATA 1  
DATA 2  
SDA  
CLK  
1
counter  
reset  
CLK  
2
SCL  
SCL  
Masters that also incorporate the slave function, and  
have lost arbitration must immediately switch over to  
slave-receiver mode. This is because the winning mas-  
ter-transmitter may be addressing it.  
Arbitration is not allowed between:  
• A repeated START condition  
• A STOP condition and a data bit  
• A repeated START condition and a STOP condi-  
tion  
Care needs to be taken to ensure that these conditions  
do not occur.  
DS30390B-page 86  
1995 Microchip Technology Inc.  
PIC16C7X  
2
2
The SSPCON register allows control of the I C opera-  
11.3  
SSP I C Operation  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I C modes to be selected:  
Applicable Devices  
2
70 71 71A 72 73 73A 74 74A  
2
• I C Slave mode (7-bit address)  
2
The SSP module in I C mode fully implements all slave  
functions, and provides interrupts on start and stop bits  
in hardware to facilitate software implementations of  
the master functions. The SSP module implements the  
standard and fast mode specifications as well as 7-bit  
and 10-bit addressing. Two pins are used for data  
transfer. These are the RC3/SCK/SCL pin, which is the  
clock (SCL), and the RC4/SDI/SDA pin, which is the  
data (SDA). The user must configure these pins as  
inputs or outputs through the TRISC<4:3> bits. The  
SSP module functions are enabled by setting SSP  
Enable bit SSPEN (SSPCON<5>).  
2
• I C Slave mode (10-bit address)  
2
• I C Slave mode (7-bit address), with start and  
stop bit interrupts enabled  
2
• I C Slave mode (10-bit address), with start and  
stop bit interrupts enabled  
2
• I C start and stop bit interrupts enabled, slave is  
idle  
2
Selection of any I C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits.  
FIGURE 11-17: SSP BLOCK DIAGRAM  
The SSPSTAT register gives the status of the data  
transfer. This information includes detection of a  
START or STOP bit, specifies if the received byte was  
data or address if the next byte is the completion of 10-  
bit address, and if this will be a read or write data trans-  
fer. The SSPSTAT register is read only.  
2
(I C MODE)  
Internal  
data bus  
Read  
Write  
The SSPBUF is the register to which transfer data is  
written to or read from. The SSPSR register shifts the  
data in or out of the device. In receive operations, the  
SSPBUF and SSPSR create a doubled buffered  
receiver. This allows reception of the next byte to begin  
before reading the last byte of received data. When the  
complete byte is received, it is transferred to the SSP-  
BUF register and flag bit SSPIF is set. If another com-  
plete byte is received before the SSPBUF register is  
read, a receiver overflow has occurred and bit SSPOV  
(SSPCON<6>) is set.  
SSPBUF reg  
SSPSR reg  
RC3/SCK/SCL  
shift  
clock  
RC4/  
SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match detect  
SSPADD reg  
The SSPADD register holds the slave address. In 10-bit  
mode, the user needs to write the high byte of the  
address (1111 0 A9 A8 0). Following the high byte  
address match, the low byte of the address needs to be  
loaded (A7:A0).  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit detect  
2
The SSP module has five registers for I C operation.  
These are the:  
• SSP Control Register (SSPCON)  
• SSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• SSP Shift Register (SSPSR) - Not directly acces-  
sible  
• SSP Address Register (SSPADD)  
1995 Microchip Technology Inc.  
DS30390B-page 87  
PIC16C7X  
11.3.1 SLAVE MODE  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
In slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The SSP module will  
override the input state with the output data when  
required (slave-transmitter).  
b) The buffer full bit, BF is set.  
c) An ACK pulse is generated.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) - on the falling  
edge of the ninth SCL pulse.  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the acknowledge (ACK) pulse, and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
In 10-bit address mode, two address bytes need to be  
received by the slave (Figure 11-9). The five Most Sig-  
nificant bits (MSbs) of the first address byte specify if  
this is a 10-bit address. Bit R/W (SSPSTAT<2>) must  
specify a write, so the slave device will receive the sec-  
ond address byte. For a 10-bit address the first byte  
would equal ‘1111 0 A9 A8 0’, where A9 and A8 are  
the two MSbs of the address. The sequence of events  
for 10-bit address are as follows, with steps 7- 9 for  
slave-transmitter:  
There are certain conditions that will cause the SSP  
module not to give this ACK pulse. These are if either  
(or both):  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
1. Receive first (high) byte of Address (bits SSPIF,  
BF, and bit UA (SSPSTAT<1>) are set).  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set.  
Table 11-3 shows what happens when a data transfer  
byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow condi-  
tion. Flag bit BF is cleared by reading the SSPBUF reg-  
ister while bit SSPOV is cleared through software.  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of Address (bits  
SSPIF, BF, and UA are set).  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I C specification as well as the requirement of the SSP  
module is shown in timing parameter #100 and param-  
eter #101.  
5. Update the SSPADD register with the first (high)  
byte of Address (clears bit UA, if match releases  
SCL line).  
2
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
7. Receive repeated START condition.  
11.3.1.1 ADDRESSING  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
Once the SSP module has been enabled, it waits for a  
START condition to occur. Following the START condi-  
tion, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
TABLE 11-3: DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
(SSP Interrupt occurs  
if Enabled)  
Generate ACK  
Pulse  
BF  
SSPOV  
SSPSR SSPBUF  
0
1
1
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
DS30390B-page 88  
1995 Microchip Technology Inc.  
PIC16C7X  
11.3.1.2 RECEPTION  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
When the address byte overflow condition exists, then  
no acknowledge (ACK) pulse is given. An overflow con-  
dition is defined as either bit BF (SSPSTAT<0>) is set  
or bit SSPOV (SSPCON<6>) is set.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware, and the SSPSTAT register is used to determine  
the status of the byte.  
2
FIGURE 11-18: I C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4  
R/W=0  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
ACK  
9
SDA  
SCL  
A3 A2 A1  
D5  
D2  
D0  
8
D5  
D2  
D0  
8
D7 D6  
D4 D3  
D7 D6  
D4 D3  
D1  
7
D1  
7
3
7
1
2
4
5
4
3
6
5
6
1
2
3
6
1
2
4
8
5
P
S
SSPIF (PIR1<3>)  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
1995 Microchip Technology Inc.  
DS30390B-page 89  
PIC16C7X  
11.3.1.3 TRANSMISSION  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF must be cleared in software, and  
the SSPSTAT register is used to determine the status  
of the byte. Flag bit SSPIF is set on the falling edge of  
the ninth clock pulse.  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the SSP-  
STAT register is set. The received address is loaded  
into the SSPBUF register. The ACK pulse will be sent  
on the ninth bit, and pin RC3/SCK/SCL is held low. The  
transmit data must be loaded into the SSPBUF register,  
which also loads the SSPSR register. Then pin RC3/  
SCK/SCL should be enabled by setting bit CKP (SSP-  
CON<4>). The eight data bits are shifted out on the fall-  
ing edge of the SCL input. This ensures that the SDA  
signal is valid during the SCL high time (Figure 11-19).  
As a slave-transmitter, the ACK pulse from the master-  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line was high (not ACK), then  
the data transfer is complete. The slave then monitors  
for another occurrence of the START bit. If the SDA line  
was low (ACK), the transmit data must be loaded into  
the SSPBUF register, which also loads the SSPSR reg-  
ister. Then pin RC3/SCK/SCL should be enabled by  
setting bit CKP.  
2
FIGURE 11-19: I C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
ACK  
9
SDA  
SCL  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
SSPIF (PIR1<3>)  
BF (SSPSTAT<0>)  
cleared in software  
SSPBUF is written in software  
From SSP interrupt  
service routine  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
DS30390B-page 90  
1995 Microchip Technology Inc.  
PIC16C7X  
11.3.3 MULTI-MASTER MODE  
11.3.2 MASTER MODE  
In multi-master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a reset or  
Master mode of operation is supported by interrupt  
generation on the detection of the START and STOP  
conditions. The STOP (P) and START (S) bits are  
cleared from a reset or when the SSP module is dis-  
2
2
when the SSP module is disabled. Control of the I C  
abled. Control of the I C bus may be taken when the P  
bus may be taken when bit P (SSPSTAT<4>) is set, or  
the bus is idle and both the S and P bits are cleared.  
When the bus is busy, enabling the SSP Interrupt will  
generate the interrupt when the STOP condition  
occurs.  
bit is set, or the bus is idle and both the S and P bits are  
clear.  
In master mode the SCL and SDA lines are manipu-  
lated by clearing the corresponding TRISC<4:3> bit(s).  
The output level is always low, irrespective of the  
value(s) in PORTB<4:3>. So when transmitting data, a  
'1' data bit must have the TRISC<4> bit set (input) and  
a '0' data bit must have the TRISC<4> bit cleared (out-  
put). The same scenario is true for the SCL line with the  
TRISC<3> bit.  
In multi-master operation, the SDA line must be moni-  
tored to see if the signal level is the expected output  
level. This check only needs to be done when a high  
level is output. If a high level is expected and a low level  
is present, the device needs to release the SDA and  
SCL lines (set TRISC<4:3>). There are two stages  
where this arbitration can be lost, these are:  
The following events will cause the SSP Interrupt Flag  
bit SSPIF to be set (SSP Interrupt if enabled):  
• Address Transfer  
• Data Transfer  
• START condition  
• STOP condition  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address trans-  
fer stage, the device may be being addressed. If  
addressed an ACK pulse will be generated. If arbitra-  
tion was lost during the data transfer stage, the device  
will need to re-transfer the data at a later time.  
• Data transfer byte transmitted/received  
Master mode of operation can be done with either the  
slave mode idle (SSPM3:SSPM0 = 1011) or with the  
slave active. When both master and slave modes are  
enabled, the software needs to differentiate the  
source(s) of the interrupt.  
2
TABLE 11-4: REGISTERS ASSOCIATED WITH I C OPERATION  
Value on:  
POR  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh/8Bh INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
--00 0000  
0000 000u  
0000 0000  
0000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
--00 0000  
1111 1111  
(1,2)  
(2)  
(2)  
0Ch  
8Ch  
13h  
93h  
14h  
94h  
89h  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF RCIF  
ADIE RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF  
SSPIE CCP1IE TMR2IE TMR1IE  
(1,2)  
(2)  
(2)  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
2
SSPADD Synchronous Serial Port (I C mode) Address Register  
SSPCON  
SSPSTAT  
TRISC  
WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0  
D/A R/W UA BF  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
P
S
1111 1111  
2
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by SSP in I C mode.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
2: The PIC16C72 does not have a Parallel Slave Port or USART, these bits are unimplemented, read as '0'.  
1995 Microchip Technology Inc.  
DS30390B-page 91  
PIC16C7X  
2
FIGURE 11-20: OPERATION OF THE I C MODULE IN IDLE_MODE, RCV_MODE OR XMIT_MODE  
IDLE_MODE (7-bit):  
if (Addr_match)  
{
Set interrupt;  
if (R/W = 1)  
{
}
Send ACK = 0;  
set XMIT_MODE;  
else if (R/W = 0) set RCV_MODE;  
}
RCV_MODE:  
if ((SSPBUF=Full) OR (SSPOV = 1))  
{
Set SSPOV;  
Do not acknowledge;  
}
{
else  
transfer SSPSR SSPBUF;  
send ACK = 0;  
}
Receive 8-bits in SSPSR;  
Set interrupt;  
XMIT_MODE:  
While ((SSPBUF = Empty) AND (CKP=0)) Hold SCL Low;  
Send byte;  
Set interrupt;  
if ( ACK Received = 1)  
{
}
End of transmission;  
Go back to IDLE_MODE;  
else if ( ACK Received = 0) Go back to XMIT_MODE;  
IDLE_MODE (10-Bit):  
If (High_byte_addr_match AND (R/W = 0))  
{
PRIOR_ADDR_MATCH = FALSE;  
Set interrupt;  
if ((SSPBUF = Full) OR ((SSPOV = 1))  
{
Set SSPOV;  
Do not acknowledge;  
}
{
else  
Set UA = 1;  
Send ACK = 0;  
While (SSPADD not updated) Hold SCL low;  
Clear UA = 0;  
Receive Low_addr_byte;  
Set interrupt;  
Set UA = 1;  
If (Low_byte_addr_match)  
{
PRIOR_ADDR_MATCH = TRUE;  
Send ACK = 0;  
while (SSPADD not updated) Hold SCL low;  
Clear UA = 0;  
Set RCV_MODE;  
}
}
}
else if (High_byte_addr_match AND (R/W = 1)  
if (PRIOR_ADDR_MATCH)  
{
{
send ACK = 0;  
set XMIT_MODE;  
}
else PRIOR_ADDR_MATCH = FALSE;  
}
DS30390B-page 92  
1995 Microchip Technology Inc.  
PIC16C7X  
as a half duplex synchronous system that can commu-  
nicate with peripheral devices such as A/D or D/A inte-  
grated circuits, Serial EEPROMs etc.  
12.0 UNIVERSAL SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
Applicable Devices  
The USART can be configured in the following modes:  
• Asynchronous (full duplex)  
70 71 71A 72 73 73A 74 74A  
• Synchronous - Master (half duplex)  
• Synchronous - Slave (half duplex)  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also know as a Serial Commu-  
nications Interface or SCI). The USART can be config-  
ured as a full duplex asynchronous system that can  
communicate with peripheral devices such as CRT ter-  
minals and personal computers, or it can be configured  
Bit SPEN (RCSTA<7>), and bits TRISC<7:6>, have to  
be set in order to configure pins RC6/TX/CK and  
RC7/RX/DT for the Serial Communication Interface.  
FIGURE 12-1: TXSTA:TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7:  
CSRC: Clock Source Select bit  
Asynchronous mode  
Don’t care  
Synchronous mode  
1 = Master mode (Clock generated internally from BRG)  
0 = Slave mode (Clock from external source)  
bit 6:  
TX9: 9-bit Transmit Enable bit  
1 = Selects 9-bit transmission  
0 = Selects 8-bit transmission  
bit 5:  
TXEN: Transmit Enable bit  
1 = Transmit enabled  
0 = Transmit disabled  
Note: SREN/CREN overrides TXEN in SYNC mode.  
bit 4:  
SYNC: USART Mode Select bit  
1 = Synchronous mode  
0 = Asynchronous mode  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode  
1 = High speed  
0 = Low speed  
Synchronous mode  
Unused in this mode  
bit 1:  
bit 0:  
TRMT: Transmit Shift Register Status bit  
1 = TSR empty  
0 = TSR full  
TX9D: 9th bit of transmit data. Can be parity bit.  
1995 Microchip Technology Inc.  
DS30390B-page 93  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
U-0  
R-0  
R-0  
R-x  
FERR  
OERR  
RX9D  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
SPEN: Serial Port Enable bit  
1 = Serial port enabled (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)  
0 = Serial port disabled  
RX9: 9-bit Receive Enable bit  
1 = Selects 9-bit reception  
0 = Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode  
Don’t care  
Synchronous mode - master  
1 = Enables single receive  
0 = Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - slave  
Unused in this mode  
bit 4:  
CREN: Continuous Receive Enable bit  
Asynchronous mode  
1 = Enables continuous receive  
0 = Disables continuous receive  
Synchronous mode  
1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0 = Disables continuous receive  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
FERR: Framing Error bit  
1 = Framing error (Can be updated by reading RCREG register)  
0 = No framing error  
bit 1:  
bit 0:  
OERR: Overrun Error bit  
1 = Overrun error (Can be cleared by clearing bit CREN)  
0 = No overrun error  
RX9D: 9th bit of received data (Can be parity bit)  
DS30390B-page 94  
1995 Microchip Technology Inc.  
PIC16C7X  
12.1  
USART Baud Rate Generator (BRG)  
Applicable Devices  
EXAMPLE 12-1: CALCULATING BAUD  
RATE ERROR  
70 71 71A 72 73 73A 74 74A  
Desired Baud rate=Fosc / (64 (X + 1))  
9600 =  
16000000 /(64 (X + 1))  
25.042 = 25  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In asynchronous  
mode bit BRGH (TXSTA<2>) also controls the baud  
rate. In synchronous mode bit BRGH is ignored.  
Table 12-1 shows the formula for computation of the  
baud rate for different USART modes which only apply  
in master mode (internal clock).  
X
=
Calculated Baud Rate=16000000 / (64 (25 + 1))  
=
=
9615  
Error  
(Calculated Baud Rate - Desired Baud Rate)  
Desired Baud Rate  
=
=
(9615 - 9600) / 9600  
0.16%  
Given the desired baud rate and Fosc, the nearest inte-  
ger value for the SPBRG register can be calculated  
using the formula in Table 12-1. From this, the error in  
baud rate can be determined.  
It may be advantageous to use the high baud rate  
(BRGH = 1) even for slower baud clocks. This is  
because the FOSC/(16(x + 1)) equation can reduce the  
baud rate error in some cases.  
Example 12-1 shows the calculation of the baud rate  
error for the following conditions:  
Writing a new value to the SPBRG register, causes the  
BRG timer to be reset (or cleared), this ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
FOSC = 16 MHz  
Desired Baud Rate = 9600  
BRGH = 0  
SYNC = 0  
TABLE 12-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+1))  
(Synchronous) Baud Rate = FOSC/(4(X+1))  
Baud Rate= FOSC/(16(X+1))  
NA  
X = value in SPBRG (0 to 255)  
TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on:  
POR  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4 Bit 3 Bit 2  
Bit 1  
Bit 0  
0000 -010  
0000 -010  
98h  
TXSTA  
CSRC TX9 TXEN SYNC  
BRGH TRMT TX9D  
FERR OERR RX9D  
0000 -00x  
0000 0000  
0000 -00x  
0000 0000  
18h  
99h  
RCSTA SPEN RX9 SREN CREN  
SPBRG Baud Rate Generator Register  
Legend: x = unknown, -= unimplemented read as '0'. Shaded cells are not used by the BRG.  
1995 Microchip Technology Inc.  
DS30390B-page 95  
PIC16C7X  
TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE  
FOSC = 20 MHz  
16 MHz  
10 MHz  
7.15909 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
KBAUD %ERROR (decimal) KBAUD %ERROR (decimal) KBAUD %ERROR (decimal) KBAUD %ERROR (decimal)  
0.3  
1.2  
2.4  
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
9.6  
NA  
-
+1.73  
+0.16  
+0.16  
-1.96  
0
-
NA  
-
+0.16  
+0.16  
-0.79  
+2.56  
0
-
9.766  
19.23  
75.76  
96.15  
312.5  
500  
+1.73  
+0.16  
-1.36  
+0.16  
+4.17  
0
255  
129  
32  
25  
7
4
0
255  
9.622  
19.24  
77.82  
94.20  
298.3  
NA  
+0.23  
+0.23  
+1.32  
-1.88  
-0.57  
-
185  
92  
22  
18  
5
-
0
255  
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
19.53  
76.92  
96.15  
294.1  
500  
255  
64  
51  
16  
9
19.23  
76.92  
95.24  
307.69  
500  
207  
51  
41  
12  
7
5000  
19.53  
-
-
0
255  
4000  
15.625  
-
-
0
255  
2500  
9.766  
-
-
1789.8  
6.991  
-
-
FOSC = 5.0688 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
KBAUD %ERROR (decimal) KBAUD %ERROR (decimal) KBAUD %ERROR (decimal) KBAUD %ERROR (decimal)  
0.3  
1.2  
2.4  
NA  
NA  
NA  
-
-
-
0
-
-
-
NA  
NA  
NA  
9.622  
19.04  
74.57  
99.43  
298.3  
NA  
-
-
-
-
-
-
92  
46  
11  
8
2
-
0
255  
NA  
1.202  
2.404  
9.615  
19.24  
83.34  
NA  
NA  
NA  
250  
0.9766  
-
-
207  
103  
25  
12  
2
-
-
-
0
0.303  
1.170  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
+1.14  
-2.48  
26  
6
-
-
-
-
-
-
-
+0.16  
+0.16  
+0.16  
+0.16  
-
-
-
-
-
-
-
-
-
9.6  
9.6  
131  
65  
15  
12  
3
-
0
255  
+0.23  
-0.83  
-2.90  
+3.57  
-0.57  
-
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
19.2  
79.2  
97.48  
316.8  
NA  
0
+3.13  
+1.54  
+5.60  
-
-
-
+8.51  
-
-
-
-
-
1267  
4.950  
894.9  
3.496  
-
-
8.192  
0.032  
0
255  
255  
TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 20 MHz  
16 MHz  
10 MHz  
7.15909 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
KBAUD %ERROR (decimal) KBAUD %ERROR (decimal) KBAUD %ERROR (decimal) KBAUD %ERROR (decimal)  
0.3  
1.2  
2.4  
NA  
-
-
255  
129  
32  
15  
3
2
0
-
0
NA  
1.202  
2.404  
9.615  
19.23  
83.33  
NA  
NA  
NA  
250  
0.977  
-
-
207  
103  
25  
12  
2
-
-
-
0
NA  
1.202  
2.404  
9.766  
19.53  
78.13  
NA  
NA  
NA  
156.3  
0.6104  
-
-
129  
64  
15  
7
1
-
-
-
NA  
1.203  
2.380  
9.322  
18.64  
NA  
NA  
NA  
NA  
111.9  
0.437  
-
-
92  
46  
11  
5
-
-
-
-
1.221  
2.404  
9.469  
19.53  
78.13  
104.2  
312.5  
NA  
+1.73  
+0.16  
-1.36  
+1.73  
+1.73  
+8.51  
+4.17  
-
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
+1.73  
+1.73  
+0.23  
-0.83  
-2.90  
-2.90  
-
-
-
-
-
-
9.6  
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
+8.51  
+1.73  
-
-
-
-
-
-
-
-
-
-
312.5  
1.221  
-
-
0
255  
0
255  
255  
255  
FOSC = 5.0688 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
KBAUD %ERROR (decimal) KBAUD %ERROR (decimal) KBAUD %ERROR (decimal) KBAUD %ERROR (decimal)  
0.3  
1.2  
2.4  
0.31  
1.2  
2.4  
+3.13  
0
0
+3.13  
+3.13  
+3.13  
-
-
-
-
-
255  
65  
32  
7
3
0
-
-
-
0
0.301  
1.190  
2.432  
9.322  
18.64  
NA  
NA  
NA  
NA  
55.93  
0.2185  
+0.23  
-0.83  
+1.32  
-2.90  
185  
46  
22  
5
2
-
-
-
-
0
0.300  
1.202  
2.232  
NA  
NA  
NA  
NA  
NA  
NA  
15.63  
0.0610  
+0.16  
+0.16  
-6.99  
51  
12  
6
-
-
-
-
-
-
0.256  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
-14.67  
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
9.6  
9.9  
-
-
-
-
-
-
-
-
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
19.8  
79.2  
NA  
NA  
NA  
-2.90  
-
-
-
-
-
-
79.2  
0.3094  
0
255  
0.512  
0.0020  
0
255  
255  
255  
DS30390B-page 96  
1995 Microchip Technology Inc.  
PIC16C7X  
TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 20 MHz  
16 MHz  
10 MHz  
7.16 MHz  
SPBRG  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
value  
KBAUD %ERROR (decimal) KBAUD %ERROR (decimal) KBAUD %ERROR (decimal) KBAUD %ERROR (decimal)  
9.6  
19.2  
38.4  
57.6  
115.2  
250  
9.615  
19.230  
37.878  
56.818  
113.636  
250  
+0.16  
+0.16  
-1.36  
-1.36  
-1.36  
0
129  
64  
32  
21  
10  
4
9.615  
19.230  
38.461  
58.823  
111.111  
250  
+0.16  
+0.16  
+0.16  
+2.12  
-3.55  
0
103  
51  
25  
16  
8
9.615  
18.939  
39.062  
56.818  
125  
+0.16  
-1.36  
+1.7  
-1.36  
+8.51  
-
64  
32  
15  
10  
4
9.520  
19.454  
37.286  
55.930  
111.860  
NA  
-0.83  
+1.32  
-2.90  
-2.90  
-2.90  
-
46  
22  
11  
7
3
-
3
NA  
-
625  
625  
0
1
NA  
-
-
625  
0
0
NA  
-
-
1250  
1250  
0
0
NA  
-
-
NA  
-
-
NA  
-
-
FOSC = 5.068 MHz  
3.579 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
KBAUD %ERROR (decimal) KBAUD %ERROR (decimal) KBAUD %ERROR (decimal) KBAUD %ERROR (decimal)  
9.6  
19.2  
38.4  
57.6  
115.2  
250  
9.6  
18.645  
39.6  
52.8  
105.6  
NA  
0
-2.94  
+3.12  
-8.33  
-8.33  
-
32  
16  
7
5
2
-
9.727  
18.643  
37.286  
55.930  
111.860  
223.721  
NA  
+1.32  
-2.90  
-2.90  
-2.90  
-2.90  
-10.51  
-
22  
11  
5
3
1
0
-
-
8.928  
20.833  
31.25  
62.5  
NA  
NA  
NA  
NA  
-6.99  
+8.51  
-18.61  
+8.51  
-
-
-
-
6
2
1
0
-
-
-
-
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
625  
1250  
NA  
NA  
-
-
-
-
NA  
-
1995 Microchip Technology Inc.  
DS30390B-page 97  
PIC16C7X  
12.1.1 SAMPLING  
set (i.e., at the high baud rates), the sampling is done  
on the 3 clock edges preceding the second rising edge  
after the first falling edge of a x4 clock (Figure 12-4 and  
Figure 12-5).  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin. If bit BRGH  
(TXSTA<2>) is clear (i.e., at the low baud rates), the  
sampling is done on the seventh, eighth and ninth fall-  
ing edges of a x16 clock (Figure 12-3). If bit BRGH is  
FIGURE 12-3: RX PIN SAMPLING SCHEME (BRGH = 0)  
Start bit  
Bit0  
RX  
(RC7/RX/DT pin)  
Baud CLK for all but start bit  
baud CLK  
x16 CLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
Samples  
FIGURE 12-4: RX PIN SAMPLING SCHEME (BRGH = 1)  
RX pin  
bit0  
bit1  
Start Bit  
baud clk  
First falling edge after RX pin goes low  
Second rising edge  
x4 clk  
1
2
3
4
1
2
3
4
1
2
Q2, Q4 clk  
Samples  
Samples  
Samples  
FIGURE 12-5: RX PIN SAMPLING SCHEME (BRGH = 1)  
RX pin  
Start Bit  
bit0  
Baud clk for all but start bit  
baud clk  
First falling edge after RX pin goes low  
Second rising edge  
x4 clk  
1
2
3
4
Q2, Q4 clk  
Samples  
DS30390B-page 98  
1995 Microchip Technology Inc.  
PIC16C7X  
flag bit TXIF (PIR1<4>) is set. This interrupt can be  
enabled or disabled by setting/clearing enable bit TXIE  
( PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicated the sta-  
tus of the TXREG register, another bit TRMT  
(TXSTA<1>) shows the status of the TSR register. Sta-  
tus bit TRMT is a read only bit which is set when the  
TSR register is empty. No interrupt logic is tied to this  
bit, so the user has to poll this bit in order to determine  
if the TSR register is empty.  
12.2  
USART Asynchronous Mode  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
In this mode, the USART uses standard nonreturn-to-  
zero (NRZ) format (one start bit, eight or nine data bits  
and one stop bit). The most common data format is  
8-bits. An on-chip dedicated 8-bit baud rate generator  
can be used to derive standard baud rate frequencies  
from the oscillator. The USART transmits and receives  
the LSb first. The USART’s transmitter and receiver are  
functionally independent but use the same data format  
and baud rate. The baud rate generator produces a  
clock either x16 or x64 of the bit shift rate, depending  
on bit BRGH (TXSTA<2>). Parity is not supported by  
the hardware, but can be implemented in software (and  
stored as the ninth data bit). Asynchronous mode is  
stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
memory so it is not available to the user.  
Note 2: Flag bit TXIF is set when enable bit TXEN  
is set.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data  
and the baud rate generator (BRG) has produced a  
shift clock (Figure 12-6). The transmission can also be  
started by first loading the TXREG register and then  
setting enable bit TXEN. Normally when transmission  
is first started, the TSR register is empty, so a transfer  
to the TXREG register will result in an immediate trans-  
fer to TSR resulting in an empty TXREG. A back-to-  
back transfer is thus possible (Figure 12-8). Clearing  
enable bit TXEN during a transmission will cause the  
transmission to be aborted and will reset the transmit-  
ter. As a result the RC6/TX/CK pin will revert to hi-  
impedance.  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
• Baud Rate Generator  
• Sampling Circuit  
• Asynchronous Transmitter  
• Asynchronous Receiver  
12.2.1 USART ASYNCHRONOUS TRANSMITTER  
The USART transmitter block diagram is shown in  
Figure 12-6. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG register is empty and  
In order to select 9-bit transmission, transmit bit TX9  
(TXSTA<6>) should be set and the ninth bit should be  
written to TX9D (TXSTA<0>). The ninth bit must be  
written before writing the 8-bit data to the TXREG reg-  
ister. This is because a data write to the TXREG regis-  
ter can result in an immediate transfer of the data to the  
TSR register (if the TSR is empty). In such a case, an  
incorrect ninth data bit maybe loaded in the TSR regis-  
ter.  
FIGURE 12-6: USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG register  
TXIE  
8
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• •  
TSR register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
1995 Microchip Technology Inc.  
DS30390B-page 99  
PIC16C7X  
Steps to follow when setting up a Asynchronous Trans-  
mission:  
4. If 9-bit transmission is desired, then set transmit  
bit TX9.  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 12.1)  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
7. Load data to the TXREG register (starts trans-  
mission).  
3. If interrupts are desired, then set enable bit  
TXIE.  
FIGURE 12-7: ASYNCHRONOUS MASTER TRANSMISSION  
Write to TXREG  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
Start Bit  
Bit 0  
Bit 1  
WORD 1  
Bit 7/8  
Stop Bit  
TXIF bit  
(Transmit buffer  
reg. empty flag)  
WORD 1  
Transmit Shift Reg  
TRMT bit  
(Transmit shift  
reg. empty flag)  
FIGURE 12-8: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
Start Bit  
Start Bit  
WORD 2  
Bit 0  
Bit 1  
Bit 7/8  
Bit 0  
Stop Bit  
TXIF bit  
(interrupt reg. flag)  
WORD 1  
TRMT bit  
(Transmit shift  
reg. empty flag)  
WORD 1  
Transmit Shift Reg.  
WORD 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on:  
POR  
BOR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0Ch  
18h  
19h  
8Ch  
PIR1  
PSPIF  
SPEN  
TX7  
ADIF  
RX9  
TX6  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
RCSTA  
TXREG  
PIE1  
SREN CREN  
FERR  
TX2  
OERR  
TX1  
RX9D  
TX0  
TX5  
RCIE  
TXEN  
TX4  
TX3  
(1)  
PSPIE  
CSRC  
ADIE  
TX9  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
SYNC BRGH TRMT TX9D  
98h  
99h  
TXSTA  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
DS30390B-page 100  
1995 Microchip Technology Inc.  
PIC16C7X  
12.2.2 USART ASYNCHRONOUS RECEIVER  
possible for two bytes of data to be received and trans-  
ferred to the RCREG FIFO and a third byte begin shift-  
ing to the RSR register. On the detection of the STOP  
bit of the third byte, if the RCREG register is still full  
then overrun error bit OERR (RCSTA<1>) will be set.  
The word in the RSR will be lost. The RCREG register  
can be read twice to retrieve the two bytes in the FIFO.  
Overrun bit OERR has to be cleared in software. This  
is done by resetting the receive logic (CREN is cleared  
and then set). If bit OERR is set, transfers from the  
RSR register to the RCREG register are inhibited, so it  
is essential to clear error bit OERR if it is set. Framing  
error bit FERR (RCSTA<2>) is set if a stop bit is  
detected as clear. Bit FERR and the 9th receive bit are  
buffered the same way as the receive data. Reading  
the RCREG, will load bits RX9D and FERR with new  
values, therefore it is essential for the user to read the  
RCSTA register before reading RCREG register in  
order not to lose the old FERR and RX9D information.  
The receiver block diagram is shown in Figure 12-9.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high speed shifter operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate or at FOSC.  
Once Asynchronous mode is selected, reception is  
enabled by setting bit CREN (RCSTA<4>).  
The heart of the receiver is the receive (serial) shift reg-  
ister (RSR). After sampling the STOP bit, the received  
data in the RSR is transferred to the RCREG register  
(if it is empty). If the transfer is complete, flag bit RCIF  
(PIR1<5>) is set. The actual interrupt can be enabled  
or disabled by setting/clearing enable bit RCIE  
(PIE1<5>). Flag bit RCIF is a read only bit which is  
reset by the hardware. It is cleared when the RCREG  
register has been read and is empty. The RCREG is a  
double buffered register, i.e. it is a two deep FIFO. It is  
FIGURE 12-9: USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
SPBRG  
÷ 64  
RSR register  
LSb  
MSb  
or  
÷ 16  
0
Baud Rate Generator  
1
7
Stop (8)  
Start  
• • •  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D  
SPEN  
RCREG register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
FIGURE 12-10: ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX (pin)  
bit0  
bit1  
Stop  
bit  
Stop  
bit  
bit7/8 Stop  
bit  
bit0  
bit7/8  
bit7/8  
Rcv shift  
reg  
Rcv buffer reg  
WORD 2  
RCREG  
WORD 1  
RCREG  
Read Rcv  
buffer reg  
RCREG  
RCIF  
(interrupt flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
1995 Microchip Technology Inc.  
DS30390B-page 101  
PIC16C7X  
Steps to follow when setting up an Asynchronous  
Reception:  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 12.1).  
8. Read the 8-bit received data by reading the  
RCREG register.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
2. Enable the asynchronous serial port by clearing  
bit SYNC, and setting bit SPEN.  
3. If interrupts are desired, then set enable bit  
RCIE.  
4. If 9-bit reception is desired, then set bit RX9.  
5. Enable the reception by setting bit CREN.  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE were set.  
TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on:  
POR  
BOR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
RX7  
ADIF  
RX9  
RX6  
ADIE  
TX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
RCSTA  
RCREG  
PIE1  
SREN CREN  
FERR  
RX2  
OERR  
RX1  
RX9D  
RX0  
0000 -00x  
0000 0000  
RX5  
RX4  
RX3  
(1)  
PSPIE  
CSRC  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010  
0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
DS30390B-page 102  
1995 Microchip Technology Inc.  
PIC16C7X  
Clearing enable bit TXEN, during a transmission, will  
cause the transmission to be aborted and will reset the  
transmitter. The DT and CK pins will revert to hi-imped-  
ance. If either bit CREN or bit SREN are set, during a  
transmission, the transmission is aborted and the DT  
pin reverts to a hi-impedance state (for a reception).  
The CK pin will remain an output if bit CSRC is set  
(internal clock). The transmitter logic however is not  
reset although it is disconnected from the pins. In order  
to reset the transmitter, the user has to clear bit TXEN.  
If bit SREN is set (to interrupt an on-going transmission  
and receive a single word), then after the single word is  
received, bit SREN will be cleared and the serial port  
will revert back to transmitting since bit TXEN is still set.  
The DT line will immediately switch from hi-impedance  
receive mode to transmit and start driving. To avoid  
this, bit TXEN should be cleared.  
12.3  
USART Synchronous Master Mode  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
In Master Synchronous mode, the data is transmitted in  
a half-duplex manner i.e. transmission and reception  
do not occur at the same time. When transmitting data,  
the reception is inhibited and vice versa. The synchro-  
nous mode is entered by setting bit SYNC  
(TXSTA<4>). In addition enable bit SPEN (RCSTA<7>)  
is set in order to configure the RC6/TX/CK and  
RC7/RX/DT I/O pins to CK (clock) and DT (data) lines  
respectively. The Master mode indicates that the pro-  
cessor transmits the master clock on the CK line. The  
Master mode is entered by setting bit CSRC  
(TXSTA<7>).  
12.3.1 USART SYNCHRONOUS MASTER  
TRANSMISSION  
In order to select 9-bit transmission, the TX9  
(TXSTA<6>) bit should be set and the ninth bit should  
be written to bit TX9D (TXSTA<0>). The ninth bit must  
be written before writing the 8-bit data to the TXREG  
register. This is because a data write to the TXREG can  
result in an immediate transfer of the data to the TSR  
register (if the TSR is empty). If the TSR was empty and  
the TXREG was written before writing the “new” TX9D,  
the “present” value of bit TX9D is loaded.  
The USART transmitter block diagram is shown in  
Figure 12-6. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer register  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one Tcycle), the TXREG is empty and an  
interrupt bit, TXIF (PIR1<4>) is set. The interrupt can  
be enabled or disabled by setting/clearing enable bit  
TXIE (PIE1<4>). Flag bit TXIF will be set regardless of  
the state of enable bit TXIE and cannot be cleared in  
software. It will reset only when new data is loaded into  
the TXREG register. While flag bit TXIF indicates the  
status of the TXREG register, another bit TRMT  
(TXSTA<1>) shows the status of the TSR register.  
TRMT is a read only bit which is set when the TSR is  
empty. No interrupt logic is tied to this bit, so the user  
has to poll this bit in order to determine if the TSR reg-  
ister is empty. The TSR is not mapped in data memory  
so it is not available to the user.  
Steps to follow when setting up a Synchronous Master  
Transmission:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 12.1).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. If interrupts are desired, then set enable bit  
TXIE.  
4. If 9-bit transmission is desired, then set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data.  
The first data bit will be shifted out on the next available  
rising edge of the clock on the CK line. Data out is sta-  
ble around the falling edge of the synchronous clock  
(Figure 12-11). The transmission can also be started by  
first loading the TXREG register and then setting bit  
TXEN. This is advantageous when slow baud rates are  
selected, since the BRG is kept in reset when bits  
TXEN, CREN, and SREN are clear. Setting enable bit  
TXEN will start the BRG, creating a shift clock immedi-  
ately. Normally when transmission is first started, the  
TSR register is empty, so a transfer to the TXREG reg-  
ister will result in an immediate transfer to TSR result-  
ing in an empty TXREG. Back-to-back transfers are  
possible.  
1995 Microchip Technology Inc.  
DS30390B-page 103  
PIC16C7X  
TABLE 12-8:  
REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTERTRANSMISSION  
Value on:  
POR  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
TX7  
ADIF  
RX9  
TX6  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
RCSTA  
TXREG  
PIE1  
SREN CREN  
FERR  
TX2  
OERR  
TX1  
RX9D  
TX0  
TX5  
TX4  
TX3  
(1)  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
TXSTA  
TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
FIGURE 12-11: SYNCHRONOUS TRANSMISSION  
Q1Q2 Q3Q4 Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2 Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
Bit 0  
Bit 1  
Bit 2  
Bit 7  
Bit 0  
Bit 1  
WORD 2  
Bit 7  
WORD 1  
Write to  
TXREG reg  
Write word1  
Write word2  
TXIF bit  
(Interrupt flag)  
TRMT bit  
'1'  
Note: Sync master mode; SPBRG = '0'. Continuous transmission of two 8-bit words  
'1'  
TXEN bit  
FIGURE 12-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit2  
bit1  
bit6  
bit7  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
DS30390B-page 104  
1995 Microchip Technology Inc.  
PIC16C7X  
12.3.2 USART SYNCHRONOUS MASTER  
RECEPTION  
it is essential to clear bit OERR if it is set. The 9th  
receive bit is buffered the same way as the receive  
data. Reading the RCREG register, will load bit RX9D  
with a new value, therefore it is essential for the user to  
read the RCSTA register before reading RCREG in  
order not to lose the old RX9D information.  
Once Synchronous mode is selected, reception is  
enabled by setting either enable bit SREN  
(RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is  
sampled on the RC7/RX/DT pin on the falling edge of  
the clock. If enable bit SREN is set, then only a single  
word is received. If enable bit CREN is set, the recep-  
tion is continuous until CREN is cleared. If both bits are  
set then CREN takes precedence. After clocking the  
last bit, the received data in the Receive Shift Register  
(RSR) is transferred to the RCREG register (if it is  
empty). When the transfer is complete, interrupt flag bit  
RCIF (PIR1<5>) is set. The actual interrupt can be  
enabled/disabled by setting/clearing enable bit RCIE  
(PIE1<5>). Flag bit RCIF is a read only bit which is  
reset by the hardware. In this case it is reset when the  
RCREG register has been read and is empty. The  
RCREG is a double buffered register, i.e. it is a two  
deep FIFO. It is possible for two bytes of data to be  
received and transferred to the RCREG FIFO and a  
third byte to begin shifting into the RSR register. On the  
clocking of the last bit of the third byte, if the RCREG  
register is still full then overrun error bit OERR  
(RCSTA<1>) is set. The word in the RSR will be lost.  
The RCREG register can be read twice to retrieve the  
two bytes in the FIFO. Bit OERR has to be cleared in  
software (by clearing bit CREN). If bit OERR is set,  
transfers from the RSR to the RCREG are inhibited, so  
Steps to follow when setting up a Synchronous Master  
Reception:  
1. Initialize the SPBRG register for the appropriate  
baud rate. (Section 12.1)  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, then set enable bit  
RCIE.  
5. If 9-bit reception is desired, then set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on:  
POR  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
RX7  
ADIF  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
RCSTA  
RCREG  
PIE1  
RX9 SREN CREN  
RX6 RX5 RX4  
ADIE RCIE  
TX9 TXEN SYNC  
FERR  
RX2  
OERR  
RX1  
RX9D  
RX0  
RX3  
(1)  
PSPIE  
CSRC  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
TXSTA  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
1995 Microchip Technology Inc.  
DS30390B-page 105  
PIC16C7X  
FIGURE 12-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
DT pin  
CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
SREN bit  
SREN bit  
CREN bit  
'0'  
'0'  
RCIF bit  
(interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates SYNC master mode with SREN = '1' and BRG = '0'.  
DS30390B-page 106  
1995 Microchip Technology Inc.  
PIC16C7X  
12.4.2 USART SYNCHRONOUS SLAVE  
12.4  
USART Synchronous Slave Mode  
Applicable Devices  
RECEPTION  
70 71 71A 72 73 73A 74 74A  
The operation of the synchronous master and slave  
modes is identical except in the case of the SLEEP  
mode. Also, bit SREN is a don't care in slave mode.  
Synchronous slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the RC6/TX/CK pin (instead of being supplied internally  
in the master mode). This allows the device to transfer  
or receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA<7>).  
If receive is enabled, by setting bit CREN, prior to the  
SLEEPinstruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector  
(0004h).  
12.4.1 USART SYNCHRONOUS SLAVE  
TRANSMIT  
The operation of the synchronous master and slave  
modes are identical except in the case of the SLEEP  
mode.  
Steps to follow when setting up a Synchronous Slave  
Reception:  
If two words are written to the TXREG and then the  
SLEEP instruction is executed, the following will occur:  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
2. If interrupts are desired, then set enable bit  
RCIE.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
3. If 9-bit reception is desired, then set bit RX9.  
4. To enable reception, set enable bit CREN.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will now be  
set.  
5. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated, if  
enable bit RCIE was set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP and if the global interrupt  
is enabled, the program will branch to the inter-  
rupt vector (0004h).  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
Steps to follow when setting up a Synchronous Slave  
Transmission:  
8. If any error occurred, clear the error by clearing  
bit CREN.  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, then set enable bit  
TXIE.  
4. If 9-bit transmission is desired, then set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
1995 Microchip Technology Inc.  
DS30390B-page 107  
PIC16C7X  
TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on:  
POR  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
TX7  
ADIF  
RX9  
TX6  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
RCSTA  
TXREG  
PIE1  
SREN CREN  
FERR  
TX2  
OERR  
TX1  
RX9D  
TX0  
TX5  
TX4  
TX3  
(1)  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
TXSTA  
TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on:  
POR  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
RX7  
ADIF  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
RCSTA  
RCREG  
PIE1  
RX9 SREN CREN  
RX6 RX5 RX4  
ADIE RCIE  
TX9 TXEN SYNC  
FERR  
RX2  
OERR  
RX1  
RX9D  
RX0  
RX3  
(1)  
PSPIE  
CSRC  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
TXSTA  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
DS30390B-page 108  
1995 Microchip Technology Inc.  
PIC16C7X  
or the voltage level on the RA3/AN3/VREF pin. The A/D  
converter has a unique feature of being able to operate  
while the device is in SLEEP mode.  
13.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
Applicable Devices  
The A/D module has three registers. These registers  
are:  
70 71 71A 72 73 73A 74 74A  
The analog-to-digital (A/D) converter module has four  
analog inputs for the PIC16C70/71/71A, five inputs for  
• A/D Result Register (ADRES)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
the  
PIC16C72/73/73A,  
and  
eight  
for  
the  
PIC16C74/74A.  
The ADCON0 register, shown in Figure 13-1 and  
Figure 13-2, controls the operation of the A/D module.  
The ADCON1 register, shown in Figure 13-3 and  
Figure 13-4, configures the functions of the port pins.  
The port pins can be configured as analog inputs (RA3  
can also be a voltage reference) or as digital I/O.  
The A/D allows conversion of an analog input signal to  
a corresponding 8-bit digital number (refer to Applica-  
tion Note AN546 for use of A/D Converter). The output  
of the sample and hold is the input into the converter,  
which generates the result via successive approxima-  
tion. The analog reference voltage is software select-  
able to either the device’s positive supply voltage (VDD)  
FIGURE 13-1: ADCON0 REGISTER, PIC16C70/71/71A (ADDRESS 08h)  
R/W-0 R/W-0  
ADCS1 ADCS0  
U-0  
R/W-0  
CHS1  
R/W-0  
R/W-0  
R/W-0  
ADIF  
R/W-0  
ADON  
(1)  
CHS0 GO/DONE  
R =Readable bit  
W = Writable bit  
U =Unimplemented  
bit, read as ‘0’  
bit7  
bit0  
- n =Value at POR reset  
bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from an RC oscillation)  
bit 5:  
Unimplemented: Read as '0'.  
bit 4-3: CHS2:CHS0: Analog Channel Select bits  
00= channel 0, (RA0/AN0)  
01= channel 1, (RA1/AN1)  
10= channel 2, (RA2/AN2)  
11= channel 3, (RA3/AN3)  
bit 2:  
GO/DONE: A/D Conversion Status bit  
If ADON = 1  
1 = A/D conversion in progress (setting this bit starts the A/D conversion)  
0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conver-  
sion is complete)  
bit 1:  
bit 0:  
ADIF: A/D Conversion Complete Interrupt Flag bit  
1 = conversion is complete (must be cleared in software)  
0 = conversion is not complete  
ADON: A/D On bit  
1 = A/D converter module is operating  
0 = A/D converter module is shutoff and consumes no operating current  
Note 1: Bit5 of ADCON0 is a General Purpose R/W bit for the PIC16C71 only. For the PIC16C70/71A, this bit is  
unimplemented, read as '0'.  
1995 Microchip Technology Inc.  
DS30390B-page 109  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
FIGURE 13-2: ADCON0 REGISTER, PIC16C72/73/73A/74/74A (ADDRESS 1Fh)  
R/W-0 R/W-0 R/W-0  
ADCS1 ADCS0 CHS2  
bit7  
R/W-0  
CHS1  
R/W-0  
R/W-0  
U-0  
R/W-0  
ADON  
CHS0 GO/DONE  
R =Readable bit  
W = Writable bit  
U =Unimplemented bit,  
read as ‘0’  
bit0  
- n = Value at POR reset  
bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from an RC oscillation)  
bit 5-3: CHS2:CHS0: Analog Channel Select bits  
000= channel 0, (RA0/AN0)  
001= channel 1, (RA1/AN1)  
010= channel 2, (RA2/AN2)  
011= channel 3, (RA3/AN3)  
100= channel 4, (RA5/AN4)  
101= channel 5, (RE0/AN5)  
110= channel 6, (RE1/AN6)  
111= channel 7, (RE2/AN7)  
bit 2:  
GO/DONE: A/D Conversion Status bit  
If ADON = 1  
1 = A/D conversion in progress (setting this bit starts the A/D conversion)  
0 =A/D conversion not in progress (This bit is automatically cleared by hardware when theA/D conversion  
is complete)  
bit 1:  
bit 0:  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1 = A/D converter module is operating  
0 = A/D converter module is shutoff and consumes no operating current  
FIGURE 13-3: ADCON1 REGISTER FOR PIC16C70/71/71A (ADDRESS 88h)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PCFG1  
PCFG0  
R =Readable bit  
W = Writable bit  
bit7  
bit0  
U =Unimplemented  
bit, read as ‘0’  
- n =Value at POR reset  
bit 7-2: Unimplemented: Read as '0'  
bit 1-0: PCFG1:PCFG0: A/D Port Configuration Control bits  
PCFG1:PCFG0 RA1 & RA0  
RA2  
RA3  
VREF  
00  
01  
10  
11  
A
A
A
D
A
A
D
D
A
VDD  
RA3  
VDD  
VDD  
VREF  
D
D
A = Analog input  
D = Digital I/O  
DS30390B-page 110  
1995 Microchip Technology Inc.  
PIC16C7X  
FIGURE 13-4: ADCON1 REGISTER, PIC16C72/73/73A/74/74A (ADDRESS 9Fh)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PCFG2  
PCFG1  
PCFG0  
R =Readable bit  
W = Writable bit  
bit7  
bit0  
U =Unimplemented  
bit, read as ‘0’  
- n = Value at POR reset  
bit 7-3: Unimplemented: Read as '0'  
bit 2-0: PCFG2:PCFG0: A/D Port Configuration Control bits  
PCFG2:PCFG0  
RA0  
RA1  
RA2  
RA5  
RA3  
RE0  
RE1  
RE2  
VREF  
VDD  
000  
001  
010  
011  
100  
101  
11x  
A
A
A
A
A
A
A
D
D
D
D
D
A
A
D
D
D
D
D
A
A
A
A
A
A
D
A
A
A
A
A
D
A
A
A
D
D
D
A
A
A
D
D
D
VREF  
A
A
D
D
D
D
D
RA3  
VDD  
RA3  
VDD  
RA3  
VREF  
A
VREF  
D
A = Analog input  
D = Digital I/O  
1995 Microchip Technology Inc.  
DS30390B-page 111  
PIC16C7X  
The ADRES register contains the result of the A/D con-  
version. When the A/D conversion is completed, the  
result is loaded into the ADRES register, the GO/DONE  
bit (ADCON0<2>) is cleared, and A/D interrupt flag bit  
ADIF is set. The block diagrams of the A/D module are  
shown in Figure 13-5 and Figure 13-6.  
3. Wait the required sampling time.  
4. Start conversion:  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
After the A/D module has been configured as desired,  
the selected channel must be sampled before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine sample time, see Section 13.1.  
After this sample time has elapsed the A/D conversion  
can be started. The following steps should be followed  
for doing an A/D conversion:  
• Waiting for the A/D interrupt  
6. Read A/D Result register (ADRES), clear bit  
ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next sampling starts.  
1. Configure the A/D module:  
• Configure analog pins / voltage reference /  
and digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
• Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
FIGURE 13-5: A/D BLOCK DIAGRAM, PIC16C70/71/71A  
CHS1:CHS0  
11  
10  
01  
00  
RA3/AN3/VREF  
RA2/AN2  
VIN  
(Input voltage)  
A/D  
Converter  
RA1/AN1  
RA0/AN0  
VDD  
00or  
10or  
11  
VREF  
(Reference  
voltage)  
01  
PCFG1:PCFG0  
DS30390B-page 112  
1995 Microchip Technology Inc.  
PIC16C7X  
FIGURE 13-6: A/D BLOCK DIAGRAM, PIC16C72/73/73A/74/74A  
CHS2:CHS0  
111  
110  
101  
100  
011  
010  
001  
000  
(1)  
RE2/AN7  
(1)  
RE1/AN6  
(1)  
RE0/AN5  
RA5/AN4  
RA3/AN3/VREF  
RA2/AN2  
VIN  
(Input voltage)  
A/D  
Converter  
RA1/AN1  
VDD  
RA0/AN0  
000or  
010or  
100  
VREF  
(Reference  
voltage)  
001or  
011or  
101  
PCFG2:PCFG0  
Note 1: Not available on PIC16C72/73/73A.  
1995 Microchip Technology Inc.  
DS30390B-page 113  
PIC16C7X  
13.1  
A/D Sampling Requirements  
Applicable Devices  
Note 1: The reference voltage (VREF) has no  
effect on the equation, since it cancels  
itself out.  
70 71 71A 72 73 73A 74 74A  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 13-7. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD), see Figure 13-7.The maximum recommended  
impedance for analog sources is 10 k. After the  
analog input channel is selected (changed) this sam-  
pling must be done before the conversion can be  
started.  
Note 2: The charge holding capacitor (CHOLD) is  
not discharged after each conversion.  
Note 3: The maximum recommended impedance  
for analog sources is 10 k. This is  
required to meet the pin leakage specifi-  
cation.  
Note 4: After a conversion has completed, a  
2.0 TAD delay must complete before sam-  
pling can begin again. During this time the  
holding capacitor is not connected to the  
selected A/D input channel.  
EXAMPLE 13-1: CALCULATING THE  
MINIMUM REQUIRED  
To calculate the minimum sampling time, Equation 13-  
1 may be used. This equation assumes that 1/2 LSb  
error is used (512 steps for the A/D). The 1/2 LSb error  
is the maximum error allowed for the A/D to meet its  
specified resolution.  
SAMPLE TIME  
TSMP = Amplifier Settling Time +  
Holding Capacitor Charging Time +  
Temperature Coefficient  
EQUATION 13-1: A/D MINIMUM CHARGING  
TIME  
TSMP = 5 µs + Tc + [(Temp - 25°C)(0.05 µs/°C)]  
(-Tc/CHOLD(RIC + RSS + RS))  
VHOLD = (VREF - (VREF/512)) • (1 - e  
)
TC =  
-CHOLD (RIC + RSS + RS) ln(1/512)  
-51.2 pF (1 k+ 7 k+ 10 k) ln(0.0020)  
-51.2 pF (18 k) ln(0.0020)  
-0.921 µs (-6.2146)  
or  
Tc = -(51.2 pF)(1 k+ RSS + RS) ln(1/511)  
Example 13-1 shows the calculation of the minimum  
required sample time TSMP. This calculation is based  
on the following system assumptions.  
5.724 µs  
TSMP = 5 µs + 5.724 µs + [(50°C - 25°C)(0.05 µs/°C)]  
Rs = 10 kΩ  
10.724 µs + 1.25 µs  
11.974 µs  
1/2 LSb error  
VDD = 5V Rss = 7 kΩ  
Temp (system max.) = 50°C  
VHOLD = 0 @ t = 0  
FIGURE 13-7: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
RAx  
SS  
RIC 1k  
RSS  
Rs  
CHOLD  
= DAC capacitance  
= 51.2 pF  
CPIN  
5 pF  
VA  
I leakage  
± 500 nA  
VT = 0.6V  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
I leakage = leakage current at the pin due to  
various junctions  
VDD 4V  
3V  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 10 11  
Sampling Switch  
( k)  
DS30390B-page 114  
1995 Microchip Technology Inc.  
PIC16C7X  
13.2  
Selecting the A/D Conversion Clock  
Applicable Devices  
13.3  
Configuring Analog Port Pins  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 9.5 TAD per 8-bit conversion.  
The source of the A/D conversion clock is software  
selected. The four possible options for TAD are:  
The ADCON1, TRISA, and TRISE registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bits set (input). If the TRIS bit is cleared (out-  
put), the digital output level (VOH or VOL) will be  
converted.  
• 2TOSC  
• 8TOSC  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
• 32TOSC  
• Internal RC oscillator  
Note 1: When reading the port register, all pins  
configured as analog input channel will  
read as cleared (a low level). Pins config-  
ured as digital inputs, will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of:  
2.0 µs for the PIC16C71  
1.6 µs for all other PIC16C7X devices  
Table 13-2 and Table 13-1 show the resultant TAD  
times derived from the device operating frequencies  
and the A/D clock source selected.  
Note 2: Analog levels on any pin that is defined as  
a digital input (including the AN7:AN0  
pins), may cause the input buffer to con-  
sume current that is out of the devices  
specification.  
TABLE 13-1: TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C71  
AD Clock Source (TAD)  
Device Frequency  
4 MHz  
Operation  
ADCS1:ADCS0  
20 MHz  
16 MHz  
1 MHz  
2.0 µs  
8.0 µs  
333.33 kHz  
(2)  
(2)  
(2)  
2TOSC  
8TOSC  
32TOSC  
RC  
00  
01  
10  
11  
6 µs  
100 ns  
125 ns  
500 ns  
(2)  
(2)  
(3)  
2.0 µs  
8.0 µs  
400 ns  
500 ns  
24 µs  
(2)  
(3)  
(3)  
2.0 µs  
1.6 µs  
32.0 µs  
2 - 6 µs  
96 µs  
(1,4)  
(1,4)  
(1,4)  
(1)  
(1)  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: While in RC mode, with device frequency above 1 MHz, conversion accuracy is out of specification.  
TABLE 13-2: TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C70/71A/72/73/73A/74/74A  
AD Clock Source (TAD)  
Operation ADCS1:ADCS0  
Device Frequency  
5 MHz 1.25 MHz  
20 MHz  
333.33 kHz  
(2)  
(2)  
2TOSC  
8TOSC  
32TOSC  
RC  
00  
01  
10  
11  
1.6 µs  
6.4 µs  
6 µs  
100 ns  
400 ns  
(2)  
(3)  
1.6 µs  
6.4 µs  
400 ns  
24 µs  
(3)  
(3)  
1.6 µs  
25.6 µs  
96 µs  
(1,4)  
(1,4)  
(1,4)  
(1)  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: While in RC mode, with device frequency above 1 MHz, conversion accuracy is out of specification.  
1995 Microchip Technology Inc.  
DS30390B-page 115  
PIC16C7X  
13.4  
A/D Conversions  
Note: The GO/DONE bit should NOT be set in  
Applicable Devices  
the same instruction that turns on the A/D.  
70 71 71A 72 73 73A 74 74A  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The ADRES register will  
NOT be updated with the partially completed A/D con-  
version sample. That is, the ADRES register will con-  
tinue to contain the value of the last completed  
conversion (or the last value written to the ADRES reg-  
ister). After the A/D conversion is aborted, a 2TAD wait  
is required before the next sampling is started. After  
this 2TAD wait, sampling is automatically started on the  
selected channel.  
Example 13-2 and Example 13-3 show how to perform  
an A/D conversion. The RA pins are configured as ana-  
log inputs. The analog reference (VREF) is the device  
VDD. The A/D interrupt is enabled, and the A/D conver-  
sion clock is FRC. The conversion is performed on the  
RA0 channel.  
EXAMPLE 13-2: DOING AN A/D CONVERSION (PIC16C70/71/71A)  
BSF  
CLRF  
BCF  
MOVLW  
MOVWF  
BSF  
STATUS, RP0  
ADCON1  
STATUS, RP0  
0xC1  
ADCON0  
INTCON, ADIE  
INTCON, GIE  
; Select Page 1  
; Configure A/D inputs  
; Select Page 0  
; RC Clock, A/D is on, Channel 0 is selected  
;
; Enable A/D Interrupt  
; Enable all interrupts  
BSF  
;
;
;
;
Ensure that the required sampling time for the selected input channel has elapsed.  
Then the conversion may be started.  
BSF  
:
ADCON0, GO  
; Start A/D Conversion  
; The ADIF bit will be set and the GO/DONE bit  
:
;
is cleared upon completion of the A/D Conversion.  
EXAMPLE 13-3: DOING AN A/D CONVERSION (PIC16C72/73/73A/74/74A)  
BSF  
CLRF  
BSF  
STATUS, RP0  
ADCON1  
; Select Page 1  
; Configure A/D inputs  
; Enable A/D interrupts  
; Select Page 0  
; RC Clock, A/D is on, Channel 0 is selected  
;
; Clear A/D interrupt flag bit  
; Enable peripheral interrupts  
; Enable all interrupts  
PIE1,  
ADIE  
BCF  
STATUS, RP0  
0xC1  
ADCON0  
MOVLW  
MOVWF  
BCF  
BSF  
BSF  
PIR1,  
ADIF  
INTCON, PEIE  
INTCON, GIE  
;
;
;
;
Ensure that the required sampling time for the selected input channel has elapsed.  
Then the conversion may be started.  
BSF  
:
ADCON0, GO  
; Start A/D Conversion  
; The ADIF bit will be set and the GO/DONE bit  
:
;
is cleared upon completion of the A/D Conversion.  
DS30390B-page 116  
1995 Microchip Technology Inc.  
PIC16C7X  
13.4.1 FASTER CONVERSION - LOWER  
RESOLUTION TRADE-OFF  
Since the TAD is based from the device oscillator, the  
user must use some method (a timer, software loop,  
etc.) to determine when the A/D oscillator may be  
changed. Example 13-4 shows a comparison of time  
required for a conversion with 4-bits of resolution, ver-  
sus the 8-bit resolution conversion. The example is for  
devices operating at 20 MHz and 16 MHz (The A/D  
clock is programmed for 32TOSC), and assumes that  
immediately after 6TAD, the A/D clock is programmed  
for 2TOSC.  
Not all applications require a result with 8-bits of reso-  
lution, but may instead require a faster conversion  
time. The A/D module allows users to make the trade-  
off of conversion speed to resolution. Regardless of the  
resolution required, the sampling time is the same. To  
speed up the conversion, the clock source of the A/D  
module may be switched so that the TAD time violates  
the minimum specified time (see the applicable electri-  
cal specification). Once the TAD time violates the mini-  
mum specified time, all the following A/D result bits are  
not valid (see A/D Conversion Timing in the Electrical  
Specifications section.) The clock sources may only be  
switched between the three oscillator versions (cannot  
be switched from/to RC). The equation to determine  
the time before the oscillator can be switched is as fol-  
lows:  
The 2TOSC violates the minimum TAD time since the  
last 4-bits will not be converted to correct values.  
Conversion time = 2TAD + N•TAD + (8 - N)(2TOSC)  
Where: N = number of bits of resolution required.  
EXAMPLE 13-4: 4-BIT vs. 8-BIT CONVERSION TIMES  
Resolution  
(1)  
Freq. (MHz)  
4-bit  
8-bit  
TAD  
20  
16  
20  
16  
20  
16  
1.6 µs  
2.0 µs  
50 ns  
1.6 µs  
2.0 µs  
50 ns  
TOSC  
62.5 ns  
10 µs  
62.5 ns  
16 µs  
2TAD + N•TAD + (8 - N)(2TOSC)  
12.5 µs  
20 µs  
Note 1: The PIC16C71 has a minimum TAD time of 2.0 µs.  
All other PIC16C7X devices have a minimum TAD time of 1.6 µs.  
1995 Microchip Technology Inc.  
DS30390B-page 117  
PIC16C7X  
In systems where the device will enter SLEEP mode  
after the start of the A/D conversion, the RC clock  
source selection is required. In this mode, the digital  
noise from the modules in SLEEP are stopped. This  
method gives high accuracy.  
13.5  
A/D Operation During Sleep  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
TheA/D module can operate during SLEEP mode. This  
requires that the A/D clock source be set to RC  
(ADCS1:ADCS0 = 11). When the RC clock source is  
selected, the A/D module waits one instruction cycle  
before starting the conversion. This allows the SLEEP  
instruction to be executed, which eliminates all digital  
switching noise from the conversion. When the conver-  
sion is completed the GO/DONE bit will be cleared, and  
the result loaded into the ADRES register. If the A/D  
interrupt is enabled, the device will wake-up from  
SLEEP. If theA/D interrupt is not enabled, theA/D mod-  
ule will then be turned off, although the ADON bit will  
remain set.  
13.7  
Effects of a RESET  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off, and any  
conversion is aborted. The value that is in the ADRES  
register is not modified for a Power-on Reset. The  
ADRES register will contain unknown data after a  
Power-on Reset.  
13.8  
Use of the CCP Trigger  
Applicable Devices  
When the A/D clock source is another clock option (not  
RC), a SLEEPinstruction will cause the present conver-  
sion to be aborted and the A/D module to be turned off,  
though the ADON bit will remain set.  
70 71 71A 72 73 73A 74 74A  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
Note: In the PIC16C72 the "special event trigger"  
is implemented in the CCP1 module.  
An A/D conversion can be started by the “special event  
trigger” of the CCP2 module (CCP1 on the PIC16C72  
only). This requires that the CCP2M3:CCP2M0 bits  
(CCP2CON<3:0>) be programmed as 1011 and that  
the A/D module is enabled (ADON bit is set). When the  
trigger occurs, the GO/DONE bit will be set, starting the  
A/D conversion, and the Timer1 counter will be reset to  
zero. Timer1 is reset to automatically repeat the A/D  
sampling period with minimal software overhead (mov-  
ing the ADRES to the desired location). The appropri-  
ate analog input channel must be selected and the  
minimum sampling done before the “special event trig-  
ger” sets the GO/DONE bit (starts a conversion).  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be set to RC  
(ADCS1:ADCS0 = 11). To perform an A/D  
conversion in SLEEP, the GO/DONE bit  
must be set, followed by the SLEEPinstruc-  
tion.  
13.6  
A/D Accuracy/Error  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The overall accuracy of the A/D is less than ± 1 LSb for  
VDD = 5V ± 10% and the analog VREF = VDD. This over-  
all accuracy includes offset error, full scale error, and  
integral error. The A/D converter is guaranteed to be  
monotonic. The resolution and accuracy may be less  
when either the analog reference (VDD) is less than  
5.0V or when the analog reference (VREF) is less than  
VDD.  
If the A/D module is not enabled (ADON is cleared),  
then the “special event trigger” will be ignored by the  
A/D module, but will still reset the Timer1 counter.  
The maximum pin leakage current is ± 5 µA.  
In systems where the device frequency is low, use of  
the A/D RC clock derived from the device oscillator, is  
preferred. At moderate to high frequencies, TAD should  
be derived from the device oscillator. TAD must not vio-  
late the minimum and should be 8 µs for preferred  
operation. This is because TAD, when derived from  
TOSC, is kept away from on-chip phase clock transi-  
tions. This reduces, to a large extent, the effects of dig-  
ital switching noise. This is not possible with the RC  
derived clock. The loss of accuracy due to digital  
switching noise can be significant if many I/O pins are  
active.  
DS30390B-page 118  
1995 Microchip Technology Inc.  
PIC16C7X  
13.9  
Connection Considerations  
Applicable Devices  
FIGURE 13-8: A/D TRANSFER FUNCTION  
70 71 71A 72 73 73A 74 74A  
If the input voltage exceeds the rail values (VSS or VDD)  
by greater than 0.2V, then the accuracy of the conver-  
sion is out of specification.  
Note: For the PIC16C70/71/71A,  
care must be taken when using the RA0  
pin in A/D conversions due to its proximity  
to the OSC1 pin.  
FFh  
FEh  
An external RC filter is sometimes added for anti-alias-  
ing of the input signal. The R component should be  
selected to ensure that the total source impedance is  
kept under the 10 krecommended specification. Any  
external components connected (via hi-impedance) to  
an analog input pin (capacitor, zener diode, etc.)  
should have very little leakage current at the pin.  
04h  
03h  
02h  
01h  
00h  
13.10 Transfer Function  
Applicable Devices  
Analog input voltage  
70 71 71A 72 73 73A 74 74A  
The ideal transfer function of theA/D converter is as fol-  
lows: the first transition occurs when the analog input  
voltage (VAIN) is 1 LSb (or Analog VREF / 256)  
(Figure 13-8).  
FIGURE 13-9: FLOWCHART OF A/D OPERATION  
ADON = 0  
Yes  
ADON = 0?  
No  
Sample  
Selected Channel  
Yes  
GO = 0?  
No  
Yes  
Yes  
Start of A/D  
Conversion Delayed  
1 Instruction Cycle  
Finish Conversion  
SLEEP  
Instruction?  
A/D Clock  
= RC?  
GO = 0  
ADIF = 1  
No  
No  
Yes  
Yes  
Abort Conversion  
GO = 0  
Wake-up  
From Sleep?  
Finish Conversion  
Device in  
SLEEP?  
Wait 2 TAD  
GO = 0  
ADIF = 1  
ADIF = 0  
No  
No  
SLEEP  
Power-down A/D  
Finish Conversion  
Stay in Sleep  
Power-down A/D  
Wait 2 TAD  
GO = 0  
ADIF = 1  
Wait 2 TAD  
1995 Microchip Technology Inc.  
DS30390B-page 119  
PIC16C7X  
TABLE 13-3: SUMMARY OF A/D REGISTERS, PIC16C70/71/71A  
Value on:  
POR  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
ADRES  
ADCON0 ADCS1 ADCS0  
GIE  
ADIE T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
xxxx xxxx  
0000 000u  
uuuu uuuu  
00-0 0000  
---- --00  
---u uuuu  
---1 1111  
0Bh/8Bh  
89h  
A/D Result Register  
CHS1  
CHS0 GO/DONE  
ADIF  
ADON 00-0 0000  
08h  
ADCON1  
PCFG1 PCFG0 ---- --00  
88h  
---x xxxx  
---1 1111  
05h  
PORTA  
TRISA  
RA4  
RA3  
RA2  
RA1  
RA0  
85h  
TRISA4 TRISA3  
TRISA2 TRISA1 TRISA0  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
TABLE 13-4: SUMMARY OF A/D REGISTERS, PIC16C72  
Value on:  
POR  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 000u  
-0-- 0000  
-0-- 0000  
uuuu uuuu  
0000 00-0  
---- -000  
--uu uuuu  
--11 1111  
0Bh/8Bh  
0Ch  
8Ch  
1Eh  
PIR1  
CCP1IF TMR2IF TMR1IF -0-- 0000  
CCP1IE TMR2IE TMR1IE -0-- 0000  
xxxx xxxx  
PIE1  
ADRES  
A/D Result Register  
ADCON0 ADCS1 ADCS0 CHS2  
CHS1  
CHS0 GO/DONE  
ADON 0000 00-0  
1Fh  
ADCON1  
PCFG2  
RA2  
PCFG1 PCFG0 ---- -000  
9Fh  
--xx xxxx  
--11 1111  
05h  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA1  
RA0  
85h  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
TABLE 13-5: SUMMARY OF A/D REGISTERS, PIC16C73/73A/74/74A  
Value on:  
POR  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
RCIF  
RCIE  
INTE  
TXIF  
TXIE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 000u  
0000 0000  
0000 0000  
---- ---0  
---- ---0  
uuuu uuuu  
0000 00-0  
---- -000  
--uu uuuu  
--11 1111  
---- -uuu  
0000 -111  
0Bh/8Bh  
0Ch  
8Ch  
0Dh  
8Dh  
1Eh  
1Fh  
(1)  
PIR1  
PIE1  
PSPIF  
PSPIE  
CCP1IF TMR2IF TMR1IF 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000  
(1)  
PIR2  
CCP2IF ---- ---0  
CCP2IE ---- ---0  
xxxx xxxx  
PIE2  
ADRES  
A/D Result Register  
ADCON0 ADCS1 ADCS0 CHS2  
CHS1  
CHS0 GO/DONE  
ADON 0000 00-0  
ADCON1  
PCFG2  
RA2  
PCFG1 PCFG0 ---- -000  
9Fh  
--xx xxxx  
--11 1111  
---- -xxx  
0000 -111  
05h  
PORTA  
TRISA  
PORTE  
TRISE  
RA5  
RA4  
RA3  
RA1  
RA0  
85h  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0  
09h  
RE2  
RE1  
RE0  
89h  
IBF  
OBF  
IBOV PSPMODE  
TRISE2 TRISE1 TRISE0  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC6C73/73A, always maintain these bits clear.  
DS30390B-page 120  
1995 Microchip Technology Inc.  
PIC16C7X  
designed to keep the part in reset while the power sup-  
ply stabilizes. With these two timers on-chip, most  
applications need no external reset circuitry.  
14.0 SPECIAL FEATURES OF THE  
CPU  
Applicable Devices  
SLEEP mode is designed to offer a very low current  
power-down mode. The user can wake-up from SLEEP  
through external reset, Watchdog Timer Wake-up or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
70 71 71A 72 73 73A 74 74A  
What sets a microcontroller apart from other proces-  
sors are special circuits to deal with the needs of real-  
time applications. The PIC16CXX family has a host of  
such features intended to maximize system reliability,  
minimize cost through elimination of external compo-  
nents, provide power saving operating modes and offer  
code protection. These are:  
14.1  
Configuration Bits  
Applicable Devices  
• OSC selection  
• Reset  
70 71 71A 72 73 73A 74 74A  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
The user will note that address 2007h is beyond the  
user program memory space. In fact, it belongs to the  
special test/configuration memory space (2000h -  
3FFFh), which can be accessed only during program-  
ming.  
• Watchdog Timer (WDT)  
• SLEEP  
• Code protection  
• ID locations  
• In-circuit serial programming  
The PIC16CXX has a Watchdog Timer which can be  
shut off only through configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 72 ms (nominal) on power-up only,  
FIGURE 14-1: CONFIGURATION WORD FOR PIC16C71  
CP0 PWRTE WDTE F0SC1 F0SC0  
bit0  
Register: CONFIG  
Address 2007h  
bit13  
bit 13-5: Unimplemented: Read as '1'  
bit 4:  
bit 3:  
bit 2:  
CP0: Code protection bit  
1 = Code protection off  
0 = All memory is code protected, but 00h - 3Fh is writable  
PWRTE: Power-up Timer Enable bit  
1 = Power-up Timer enabled  
0 = Power-up Timer disabled  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
1995 Microchip Technology Inc.  
DS30390B-page 121  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
FIGURE 14-2: CONFIGURATION WORD FOR PIC16C70/71A  
CP0  
CP0  
CP0  
CP0  
CP0  
CP0  
CP0 BODEN CP0  
CP0 PWRTE WDTE F0SC1 F0SC0  
bit0  
Register: CONFIG  
Address 2007h  
bit13  
(2)  
bit 13-7 CP0: Code protection bits  
5-4: 1 = Code protection off  
0 = All memory is code protected, but 00h - 3Fh is writable  
(1)  
bit 6:  
bit 3:  
bit 2:  
BODEN: Brown-out Reset Enable bit  
1 = BOR enabled  
0 = BOR disabled  
(1)  
PWRTE: Power-up Timer Enable bit  
1 = PWRT disabled  
0 = PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.  
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2: All of the CP0 bits have to be given the same value to enable the code protection scheme listed.  
FIGURE 14-3: CONFIGURATION WORD FOR PIC16C73/74  
CP1  
CP0 PWRTE WDTE F0SC1 F0SC0  
bit0  
Register: CONFIG  
Address 2007h  
bit13  
bit 13-5: Unimplemented: Read as '1'  
bit 4:  
CP1:CP0: Code protection bits  
11= Code protection off  
10= Upper half of program memory code protected  
01= Upper 3/4th of program memory code protected  
00= All memory is code protected  
bit 3:  
bit 2:  
PWRTE: Power-up Timer Enable bit  
1 = Power-up Timer enabled  
0 = Power-up Timer disabled  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
DS30390B-page 122  
1995 Microchip Technology Inc.  
PIC16C7X  
FIGURE 14-4: CONFIGURATION WORD FOR PIC16C72/73A/74A  
CP1  
CP0  
CP1  
CP0  
CP1  
CP0  
BODEN CP1  
CP0 PWRTE WDTE F0SC1 F0SC0  
bit0  
Register: CONFIG  
Address  
2007h  
bit13  
(2)  
bit 13-8 CP1:CP0: Code Protection bits  
5-4: 11= Code protection off  
10= Upper half of program memory code protected  
01= Upper 3/4th of program memory code protected  
00= All memory is code protected  
bit 7:  
bit 6:  
Unimplemented: Read as '1'  
(1)  
BODEN: Brown-out Reset Enable bit  
1 = BOR enabled  
0 = BOR disabled  
(1)  
bit 3:  
bit 2:  
PWRTE: Power-up Timer Enable bit  
1 = PWRT disabled  
0 = PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.  
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.  
14.2  
Oscillator Configurations  
Applicable Devices  
FIGURE 14-5: CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(HS, XT OR LP  
70 71 71A 72 73 73A 74 74A  
OSC CONFIGURATION)  
14.2.1 OSCILLATOR TYPES  
OSC1  
To internal  
(2)  
The PIC16CXX can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
logic  
C1  
XTAL  
OSC2  
SLEEP  
PIC16CXX  
RF  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
To internal  
logic  
RS  
(2)  
C2  
Note1  
Crystal/Resonator  
High Speed Crystal/Resonator  
Resistor/Capacitor  
See Table 14-1, Table 14-2, Table 14-3 and Table 14-4 for  
recommended values of C1 and C2.  
Note 1: A series resistor may be required for AT strip  
cut crystals.  
14.2.2 CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
2: For the PIC16C70/71/71A the buffer is on the  
OSC2 pin, all other devices have the buffer on  
the OSC1 pin.  
In XT, LP or HS modes a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 14-5). The  
PIC16CXX Oscillator design requires the use of a par-  
allel cut crystal. Use of a series cut crystal may give a  
frequency out of the crystal manufacturers specifica-  
tions. When in XT, LP or HS modes, the device can  
have an external clock source to drive the OSC1/  
CLKIN pin (Figure 14-6).  
FIGURE 14-6: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
OSC CONFIGURATION)  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16CXX  
Open  
1995 Microchip Technology Inc.  
DS30390B-page 123  
PIC16C7X  
TABLE 14-1: CERAMIC RESONATORS  
PIC16C71  
TABLE 14-3: CERAMIC RESONATORS  
PIC16C70/71A/72/73/73A/74/  
74A  
Ranges Tested:  
Ranges Tested:  
Mode  
XT  
Freq  
OSC1  
OSC2  
Mode  
XT  
Freq  
OSC1  
OSC2  
455 kHz  
2.0 MHz  
4.0 MHz  
47 - 100 pF 47 - 100 pF  
15 - 68 pF 15 - 68 pF  
15 - 68 pF 15 - 68 pF  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
HS  
8.0 MHz  
16.0 MHz  
15 - 68 pF 15 - 68 pF  
10 - 47 pF 10 - 47 pF  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
Note: Recommended values of C1 and C2 are identical to  
the ranges tested table.  
Note: Recommended values of C1 and C2 are identical to  
the ranges tested table.  
Higher capacitance increases the stability of oscilla-  
tor but also increases the start-up time. These val-  
ues are for design guidance only. Since each  
resonator has its own characteristics, the user  
should consult the resonator manufacturer for  
appropriate values of external components.  
Higher capacitance increases the stability of oscil-  
lator but also increases the start-up time. These  
values are for design guidance only. Since each  
resonator has its own characteristics, the user  
should consult the resonator manufacturer for  
appropriate values of external components.  
Resonators Used:  
Resonators Used:  
455 kHz  
Panasonic EFO-A455K04B ± 0.3%  
455 kHz Panasonic EFO-A455K04B ± 0.3%  
2.0 MHz Murata Erie CSA2.00MG  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
± 0.5%  
± 0.5%  
± 0.5%  
2.0 MHz Murata Erie CSA2.00MG  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
16.0 MHz Murata Erie CSA16.00MX  
± 0.5%  
± 0.5%  
± 0.5%  
± 0.5%  
16.0 MHz Murata Erie CSA16.00MX ± 0.5%  
All resonators used did not have built-in capacitors.  
All resonators used did not have built-in capacitors.  
TABLE 14-4: CAPACITOR SELECTION  
FOR CRYSTAL OSCILLATOR  
FOR PIC16C70/71A/72/73/73A/  
74/74A  
TABLE 14-2: CAPACITOR SELECTION  
FOR CRYSTAL OSCILLATOR  
FOR PIC16C71  
Mode  
Freq  
OSC1  
OSC2  
Mode  
Freq  
OSC1  
OSC2  
32 kHz(1)  
200 kHz  
LP  
33 - 68 pF  
15 - 47 pF  
33 - 68 pF  
15 - 47 pF  
LP  
15 - 47 pF  
15 - 33 pF  
15 - 47 pF  
15 - 33 pF  
32 kHz  
200 kHz  
XT  
100 kHz  
500 kHz  
1 MHz  
2 MHz  
4 MHz  
47 - 100 pF  
20 - 68 pF  
15 - 68 pF  
15 - 47 pF  
15 - 33 pF  
47 - 100 pF  
20 - 68 pF  
15 - 68 pF  
15 - 47 pF  
15 - 33 pF  
XT  
100 kHz  
500 kHz  
1 MHz  
2 MHz  
4 MHz  
47 - 100 pF  
20 - 68 pF  
15 - 68 pF  
15 - 47 pF  
15 - 33 pF  
47 - 100 pF  
20 - 68 pF  
15 - 68 pF  
15 - 47 pF  
15 - 33 pF  
HS  
8 MHz  
20 MHz  
15 - 47 pF  
15 - 47 pF  
15 - 47 pF  
15 - 47 pF  
HS  
8 MHz  
20 MHz  
15 - 47 pF  
15 - 47 pF  
15 - 47 pF  
15 - 47 pF  
Note: Higher capacitance increases the stability of oscil-  
lator but also increases the start-up time. These  
values are for design guidance only. Rs may be  
required in HS mode as well as XT mode to avoid  
overdriving crystals with low drive level specifica-  
tion. Since each crystal has its own characteristics,  
the user should consult the crystal manufacturer for  
appropriate values of external components.  
Note: Higher capacitance increases the stability of oscil-  
lator but also increases the start-up time. These  
values are for design guidance only. Rs may be  
required in HS mode as well as XT mode to avoid  
overdriving crystals with low drive level specifica-  
tion. Since each crystal has its own characteristics,  
the user should consult the crystal manufacturer for  
appropriate values of external components.  
Note 1: For VDD > 4.5V, C1 = C2 30 pF is recom-  
mended.  
DS30390B-page 124  
1995 Microchip Technology Inc.  
PIC16C7X  
14.2.3 EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
14.2.4 RC OSCILLATOR  
For timing insensitive applications the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (Rext) and capacitor (Cext) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
Cext values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 14-9 shows how the R/C combina-  
tion is connected to the PIC16CXX. For Rext values  
below 2.2 k, the oscillator operation may become  
unstable, or stop completely. For very high Rext values  
(e.g. 1 M), the oscillator becomes sensitive to noise,  
humidity and leakage. Thus, we recommend to keep  
Rext between 3 kand 100 k.  
Either a prepackaged oscillator can be used or a simple  
oscillator circuit with TTL gates can be built. Prepack-  
aged oscillators provide a wide operating range and  
better stability. A well-designed crystal oscillator will  
provide good performance with TTL gates. Two types of  
crystal oscillator circuits can be used; one with series  
resonance, or one with parallel resonance.  
Figure 14-7 shows implementation of a parallel reso-  
nant oscillator circuit. The circuit is designed to use the  
fundamental frequency of the crystal. The 74AS04  
inverter performs the 180-degree phase shift that a par-  
allel oscillator requires. The 4.7 kresistor provides  
the negative feedback for stability. The 10 kpotenti-  
ometer biases the 74AS04 in the linear region. This  
could be used for external oscillator designs.  
FIGURE 14-7: EXTERNAL PARALLEL  
RESONANT CRYSTAL  
Although the oscillator will operate with no external  
capacitor (Cext = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or pack-  
age lead frame capacitance.  
OSCILLATOR CIRCUIT  
+5V  
To Other  
Devices  
10k  
74AS04  
4.7k  
CLKIN  
74AS04  
See characterization data for desired device for RC fre-  
quency variation from part to part due to normal pro-  
cess variation. The variation is larger for larger R (since  
leakage current variation will affect RC frequency more  
for large R) and for smaller C (since variation of input  
capacitance will affect RC frequency more).  
10k  
XTAL  
10k  
See characterization data for desired device for varia-  
tion of oscillator frequency due to VDD for given Rext/  
Cext values as well as frequency variation due to oper-  
ating temperature for given R, C, and VDD values.  
20 pF  
20 pF  
Figure 14-8 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental fre-  
quency of the crystal. The inverter performs a 180-  
degree phase shift in a series resonant oscillator cir-  
cuit. The 330 kresistors provide the negative feed-  
back to bias the inverters in their linear region.  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin, and can be used for test pur-  
poses or to synchronize other logic (see Figure 3-5 for  
waveform).  
FIGURE 14-9: RC OSCILLATOR MODE  
FIGURE 14-8: EXTERNAL SERIES  
RESONANT CRYSTAL  
VDD  
OSCILLATOR CIRCUIT  
Rext  
Internal  
OSC1  
To Other  
clock  
Devices  
330 kΩ  
330 kΩ  
PIC16CXX  
Cext  
74AS04  
74AS04  
74AS04  
PIC16CXX  
VSS  
CLKIN  
0.1 µF  
OSC2/CLKOUT  
Fosc/4  
XTAL  
1995 Microchip Technology Inc.  
DS30390B-page 125  
PIC16C7X  
Table 14-7 and Table 14-8. These bits are used in soft-  
ware to determine the nature of the reset. See  
Table 14-10 for a full description of reset states of all  
registers.  
14.3  
Reset  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The PIC16CXX differentiates between various kinds of  
reset:  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 14-10.  
• Power-on Reset (POR)  
The PIC16C70/71A/72/73A/74A have a MCLR noise  
filter in the MCLR reset path. The filter will detect and  
ignore small pulses.  
• MCLR reset during normal operation  
• MCLR reset during SLEEP  
• WDT Reset (normal operation)  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
• Brown-out Reset (BOR) (PIC16C70/71A/72/73A/  
74A only)  
Some registers are not affected in any reset condition;  
their status is unknown on POR and unchanged in any  
other reset. Most other registers are reset to a “reset  
state” on Power-on Reset (POR), on the MCLR and  
WDT Reset, on MCLR reset during SLEEP, and Brown-  
out Reset (BOR). They are not affected by a WDT  
Wake-up, which is viewed as the resumption of normal  
operation. The TO and PD bits are set or cleared differ-  
ently in different reset situations as indicated in  
FIGURE 14-10: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
Brown-out  
(2)  
S
R
Reset  
BODEN  
OST/PWRT  
OST  
10-bit Ripple counter  
Chip_Reset  
Q
OSC1  
PWRT  
10-bit Ripple counter  
(1)  
On-chip  
RC OSC  
Note 1: This is a separate oscillator from the RC  
oscillator of the CLKIN pin.  
Enable PWRT  
Enable OST  
See Table 14-5 and Table 14-6 for time-  
out situations.  
2: Brown-out Reset is implemented on the  
PIC16C70/71A/72/73A/74A only.  
DS30390B-page 126  
1995 Microchip Technology Inc.  
PIC16C7X  
The power-up time delay will vary from chip to chip and  
due to VDD, temperature, and process variation. See  
DC parameters for details.  
14.4  
Power-on Reset (POR), Power-up  
Timer (PWRT) and Oscillator Start-up  
Timer (OST), Brown-out Reset (BOR)  
Applicable Devices  
14.4.3 OSCILLATOR START-UP TIMER (OST)  
70 71 71A 72 73 73A 74 74A  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over. This ensures that the crystal oscil-  
lator or resonator has started and stabilized.  
14.4.1 POWER-ON RESET (POR)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.5V - 2.1V). To  
take advantage of the POR, just tie the MCLR pin  
directly (or through a resistor) to VDD. This will elimi-  
nate external RC components usually needed to create  
a Power-on Reset. A maximum rise time for VDD is  
specified. See Electrical Specifications for details.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
14.4.4 BROWN-OUT RESET (BOR)  
Applicable Devices  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature, ...) must be meet to ensure  
operation. If these conditions are not met, the device  
must be held in reset until the operating conditions are  
met.  
70 71 71A 72 73 73A 74 74A  
A configuration bit, BODEN, can disable (if clear/pro-  
grammed) or enable (if set) the Brown-out Reset cir-  
cuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for  
greater than parameter #35, the brown-out situation  
will reset the chip. A reset may not occur if VDD falls  
below 4.0V for less than parameter #35. The chip will  
remain in Brown-out Reset until VDD rises above BVDD.  
The Power-up Timer will now be invoked and will keep  
the chip in RESET an additional 72 ms. If VDD drops  
below BVDD while the Power-up Timer is running, the  
chip will go back into a Brown-out Reset and the  
Power-up Timer will be initialized. Once VDD rises  
above BVDD, the Power-up Timer will execute a 72 ms  
reset. The Power-up Timer should always be enabled  
when Brown-out Reset is enabled. Figure 14-11 shows  
typical brown-out situations.  
For additional information, refer to Application Note  
AN607, "Power-up Trouble Shooting."  
14.4.2 POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up only, from the POR. The Power-  
up Timer operates on an internal RC oscillator. The  
chip is kept in reset as long as the PWRT is active. The  
PWRT’s time delay allows VDD to rise to an acceptable  
level. A configuration bit is provided to enable/disable  
the PWRT.  
FIGURE 14-11: BROWN-OUT SITUATIONS  
VDD  
BVDD Max.  
BVDD Min.  
Internal  
Reset  
72 ms  
VDD  
BVDD Max.  
BVDD Min.  
Internal  
Reset  
<72 ms  
72 ms  
VDD  
BVDD Max.  
BVDD Min.  
Internal  
Reset  
72 ms  
1995 Microchip Technology Inc.  
DS30390B-page 127  
PIC16C7X  
14.4.5 TIME-OUT SEQUENCE  
14.4.6 POWER CONTROL/STATUS REGISTER  
(PCON)  
On power-up the time-out sequence is as follows: First  
PWRT time-out is invoked after the POR time delay  
has expired. Then OST is activated. The total time-out  
will vary based on oscillator configuration and the sta-  
tus of the PWRT. For example, in RC mode with the  
PWRT disabled, there will be no time-out at all.  
Figure 14-12, Figure 14-13, and Figure 14-14 depict  
time-out sequences on power-up.  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The Power Control/Status Register, PCON has up to 2  
bits, depending upon the device. Bit0 is not imple-  
mented on the PIC16C73 or PIC16C74.  
Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is  
unknown on a Power-on Reset. It must then be set by  
the user and checked on subsequent resets to see if bit  
BOR cleared, indicating a BOR occurred. The BOR bit  
is a "Don’t Care" bit and is not necessarily predictable  
if the Brown-out Reset circuitry is disabled (by clearing  
bit BODEN in the Configuration Word).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(Figure 14-13). This is useful for testing purposes or to  
synchronize more than one PIC16CXX device operat-  
ing in parallel.  
Bit1 is Power-on Reset Status bit POR. It is cleared on  
a Power-on Reset and unaffected otherwise. The user  
must set this bit following a Power-on Reset.  
Table 14-9 shows the reset conditions for some special  
function registers, while Table 14-10 shows the reset  
conditions for all the registers.  
TABLE 14-5: TIME-OUT IN VARIOUS SITUATIONS, PIC16C71/73/74  
Oscillator Configuration  
Power-up  
Wake-up from SLEEP  
PWRTE = 1  
PWRTE = 0  
1024TOSC  
XT, HS, LP  
RC  
72 ms + 1024TOSC  
72 ms  
1024 TOSC  
TABLE 14-6: TIME-OUT IN VARIOUS SITUATIONS, PIC16C70/71A/72/73A/74A  
Oscillator Configuration  
Power-up  
PWRTE = 0  
Wake-up from SLEEP  
Brown-out  
PWRTE = 1  
1024TOSC  
XT, HS, LP  
RC  
72 ms + 1024TOSC  
72 ms  
72 ms + 1024TOSC  
72 ms  
1024TOSC  
TABLE 14-7: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C71/73/74  
(1)  
POR  
TO  
PD  
0
0
0
1
1
1
1
1
0
x
0
0
1
1
1
x
0
1
0
1
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
Note 1: Bit POR is not implemented on the PIC16C71.  
TABLE 14-8: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C70/71A/72/73A/74A  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
x
0
0
1
1
1
x
0
x
1
0
1
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
DS30390B-page 128  
1995 Microchip Technology Inc.  
PIC16C7X  
TABLE 14-9: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
PCON  
Register  
PCON  
Register  
Condition  
Power-on Reset  
PIC16C70/71A  
PIC16C73/74  
PIC16C72/73A/74A  
000h  
000h  
000h  
000h  
PC + 1  
000h  
0001 1xxx  
0001 1uuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
---- --0-  
---- --u-  
---- --u-  
---- --u-  
---- --u-  
N/A  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
WDT Wake-up  
Brown-out Reset  
(1)  
Interrupt wake-up from SLEEP  
PC + 1  
---- --u-  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded  
with the interrupt vector (0004h).  
TABLE 14-10: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Register  
Applicable Devices  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via  
WDT or  
Interrupt  
W
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
PCL  
xxxx xxxx  
0000h  
uuuu uuuu  
0000h  
uuuu uuuu  
(2)  
PC + 1  
(3)  
(3)  
STATUS  
FSR  
70 71 71A 72 73 73A 74 74A  
0001 1xxx  
000q quuu  
uuuq quuu  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
xxxx xxxx  
---x xxxx  
--xx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- -xxx  
---0 0000  
0000 000x  
uuuu uuuu  
---u uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---0 0000  
0000 000u  
uuuu uuuu  
---u uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---u uuuu  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
(1)  
uuuu uuuu  
(1)  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
-0-- 0000  
-000 0000  
0000 0000  
---- ---0  
-0-- 0000  
-000 0000  
0000 0000  
---- ---0  
-u-- uuuu  
(1)  
PIR1  
PIR2  
-uuu uuuu  
(1)  
uuuu uuuu  
(1)  
---- ---u  
TMR1L  
TMR1H  
T1CON  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
xxxx xxxx  
xxxx xxxx  
--00 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 14-9 for reset value for specific condition.  
1995 Microchip Technology Inc.  
DS30390B-page 129  
PIC16C7X  
TABLE 14-10: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.d)  
Register  
Applicable Devices  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via  
WDT or  
Interrupt  
TMR2  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 -00x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
00-0 0000  
0000 00-0  
1111 1111  
---1 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
-0-- 0000  
-000 0000  
0000 0000  
---- ---0  
---- --0-  
---- --0u  
1111 1111  
0000 0000  
--00 0000  
0000 -010  
0000 0000  
---- --00  
---- -000  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 -00x  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
00-0 0000  
0000 00-0  
1111 1111  
---1 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
-0-- 0000  
-000 0000  
0000 0000  
---- ---0  
---- --u-  
---- --uu  
1111 1111  
0000 0000  
--00 0000  
0000 -010  
0000 0000  
---- --00  
---- -000  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu-u uuuu  
uuuu uu-u  
uuuu uuuu  
---u uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
-u-- uuuu  
-uuu uuuu  
uuuu uuuu  
---- ---u  
---- --u-  
---- --uu  
1111 1111  
uuuu uuuu  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
---- --uu  
---- -uuu  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON 70 71 71A 72 73 73A 74 74A  
RCSTA  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON 70 71 71A 72 73 73A 74 74A  
ADRES  
ADCON0  
OPTION  
TRISA  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
TRISB  
TRISC  
TRISD  
TRISE  
PIE1  
PIE2  
PCON  
PR2  
SSPADD  
SSPSTAT  
TXSTA  
SPBRG  
ADCON1  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 14-9 for reset value for specific condition.  
DS30390B-page 130  
1995 Microchip Technology Inc.  
PIC16C7X  
FIGURE 14-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 14-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 14-14: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
1995 Microchip Technology Inc.  
DS30390B-page 131  
PIC16C7X  
FIGURE 14-15: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
FIGURE 14-16: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 1  
VDD  
VDD  
33k  
VDD  
10k  
MCLR  
D
R
R1  
40k  
PIC16CXX  
MCLR  
PIC16CXX  
C
Note 1: This circuit will activate reset when VDD  
goes below (Vz + 0.7V) where Vz = Zener  
voltage.  
Note 1: External Power-on Reset circuit is required  
only if VDD power-up slope is too slow. The  
diode D helps discharge the capacitor  
quickly when VDD powers down.  
2: Internal brown-out detection on the  
PIC16C70/71A/72/73A/74A should be dis-  
abled when using this circuit.  
3: Resistors should be adjusted for the char-  
acteristics of the transistor.  
2: R < 40 kis recommended to make sure  
that voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
FIGURE 14-17: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 2  
(ESD) or Electrical Overstress (EOS).  
VDD  
VDD  
R1  
R2  
Q1  
MCLR  
40k  
PIC16CXX  
Note 1: This brown-out circuit is less expensive,  
albeit less accurate. Transistor Q1 turns  
off when VDD is below a certain level  
such that:  
R1  
= 0.7V  
VDD •  
R1 + R2  
2: Internal brown-out detection on the  
PIC16C70/71A/72/73A/74A should be  
disabled when using this circuit.  
3: Resistors should be adjusted for the  
characteristics of the transistor.  
DS30390B-page 132  
1995 Microchip Technology Inc.  
PIC16C7X  
14.5  
Interrupts  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The PIC16C7X family has up to 12 sources of interrupt:  
Interrupt Sources  
Applicable Devices  
External interrupt RB0/INT  
TMR0 overflow interrupt  
PORTB change interrupts (pins RB7:RB4)  
A/D Interrupt  
70 71  
70 71  
70 71  
70 71  
70 71  
70 71  
70 71  
70 71  
70 71  
70 71  
70 71  
70 71  
71A  
71A  
71A  
71A  
71A  
71A  
71A  
71A  
71A  
71A  
71A  
71A  
72 73  
72 73  
72 73  
72 73  
72 73  
72 73  
72 73  
72 73  
72 73  
72 73  
72 73  
72 73  
73A  
73A  
73A  
73A  
73A  
73A  
73A  
73A  
73A  
73A  
73A  
73A  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74A  
74A  
74A  
74A  
74A  
74A  
74A  
74A  
74A  
74A  
74A  
74A  
TMR1 overflow interrupt  
TMR2 matches period interrupt  
CCP1 interrupt  
CCP2 interrupt  
USART Receive  
USART Transmit  
Synchronous serial port interrupt  
Parallel slave port read/write interrupt  
The interrupt control register (INTCON) records individ-  
ual interrupt requests in flag bits. It also has individual  
and global interrupt enable bits.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs (Figure 14-  
22). The latency is the same for one or two cycle  
instructions. Individual interrupt flag bits are set regard-  
less of the status of their corresponding mask bit or the  
GIE bit.  
Note: Individual interrupt flag bits are set regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupt’s flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set  
regardless of the status of the GIE bit. The GIE bit is  
cleared on reset.  
Note: For the PIC16C71/73/74 only,  
If an interrupt occurs while the Global Inter-  
rupt Enable (GIE) bit is being cleared, the  
GIE bit may unintentionally be re-enabled  
by the user’s Interrupt Service Routine (the  
RETFIE instruction). The events that  
would cause this to occur are:  
1. An instruction clears the GIE bit while  
an interrupt is acknowledged.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine as well as sets the GIE bit, which  
re-enables interrupts.  
2. The program branches to the Interrupt  
vector and executes the Interrupt Ser-  
vice Routine.  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
3. The Interrupt Service Routine com-  
pletes with the execution of the RET-  
FIE instruction. This causes the GIE  
bit to be set (enables interrupts), and  
the program returns to the instruction  
after the one which was meant to dis-  
able interrupts.  
The peripheral interrupt flags are contained in the spe-  
cial function registers PIR1 and PIR2. The correspond-  
ing interrupt enable bits are contained in special  
function registers PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in special function reg-  
ister INTCON.  
Perform the following to ensure that inter-  
rupts are globally disabled:  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the interrupt service routine the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
LOOP BCF  
INTCON, GIE ; Disable global  
interrupt bit  
BTFSC INTCON, GIE ; Global interrupt  
disabled?  
; NO, try again  
;
;
GOTO LOOP  
:
;
;
;
Yes, continue  
with program  
flow  
1995 Microchip Technology Inc.  
DS30390B-page 133  
PIC16C7X  
FIGURE 14-18: INTERRUPT LOGIC FOR PIC16C70/71/71A  
Wakeup  
(If in SLEEP mode)  
T0IF  
T0IE  
INTF  
INTE  
Interrupt to CPU  
RBIF  
RBIE  
ADIF  
ADIE  
GIE  
FIGURE 14-19: INTERRUPT LOGIC FOR PIC16C72  
TMR1IF  
TMR1IE  
Wake-up (If in SLEEP mode)  
Interrupt to CPU  
T0IF  
T0IE  
INTF  
INTE  
TMR2IF  
TMR2IE  
RBIF  
RBIE  
ADIF  
ADIE  
PEIF  
PEIE  
GIE  
CCP1IF  
CCP1IE  
SSPIF  
SSPIE  
FIGURE 14-20: INTERRUPT LOGIC FOR PIC16C73/73A  
TMR1IF  
TMR1IE  
Wake-up (If in SLEEP mode)  
Interrupt to CPU  
TMR2IF  
TMR2IE  
T0IF  
T0IE  
CCP1IF  
CCP1IE  
INTF  
INTE  
CCP2IF  
CCP2IE  
RBIF  
RBIE  
ADIF  
ADIE  
PEIF  
PEIE  
TXIF  
TXIE  
GIE  
RCIF  
RCIE  
SSPIF  
SSPIE  
DS30390B-page 134  
1995 Microchip Technology Inc.  
PIC16C7X  
FIGURE 14-21: INTERRUPT LOGIC FOR PIC16C74/74A  
TMR1IF  
TMR1IE  
Wake-up (If in SLEEP mode)  
Interrupt to CPU  
TMR2IF  
TMR2IE  
T0IF  
T0IE  
CCP1IF  
CCP1IE  
INTF  
INTE  
CCP2IF  
CCP2IE  
RBIF  
RBIE  
ADIF  
ADIE  
PEIF  
PEIE  
TXIF  
TXIE  
GIE  
RCIF  
RCIE  
SSPIF  
SSPIE  
PSPIF  
PSPIE  
FIGURE 14-22: INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT  
3
4
INT pin  
1
1
Interrupt Latency  
INTF flag  
(INTCON<1>)  
5
2
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
0004h  
PC+1  
PC+1  
0005h  
PC  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC-1)  
Note  
1: INTF flag is sampled here (every Q1).  
2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in RC oscillator mode.  
4: For minimum width of INT pulse, refer to AC specs.  
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.  
1995 Microchip Technology Inc.  
DS30390B-page 135  
PIC16C7X  
14.5.1 INT INTERRUPT  
Note: For the PIC16C71/73/74 only,  
if a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF inter-  
rupt flag may not get set.  
External interrupt on RB0/INT pin is edge triggered:  
either rising if bit INTEDG (OPTION<6>) is set, or fall-  
ing, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the interrupt service rou-  
tine before re-enabling this interrupt. The INT interrupt  
can wake-up the processor from SLEEP, if bit INTE  
was set prior to going into SLEEP. The status of global  
interrupt enable bit GIE decides whether or not the pro-  
cessor branches to the interrupt vector following wake-  
up. See Section 14.8 for details on SLEEP mode.  
14.6  
Context Saving During Interrupts  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt i.e., W register and STATUS  
register. This will have to be implemented in software.  
Example 14-1 and Example 14-2 store and restore the  
STATUS and W registers. For PIC16C72/73/73A/74/  
74A, the register, W_TEMP, must be defined in both  
banks and must be defined at the same offset from the  
bank base address (i.e., if W_TEMP is defined at 0x20  
in bank 0, it must also be defined at 0xA0 in bank 1).  
14.5.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>). (Section 7.0)  
For  
PIC16C70/71/71A,  
the  
user  
register,  
STATUS_TEMP, must be defined in bank 0.  
14.5.3 PORTB INTCON CHANGE  
The example:  
An input change on PORTB <7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>).  
(Section 5.2)  
a) Stores the W register.  
b) Stores the STATUS register in bank 0.  
c) Executes the ISR code.  
d) Restores the STATUS register (and bank select  
bit).  
e) Restores the W register.  
EXAMPLE 14-1: SAVING STATUS AND W REGISTERS IN RAM (PIC16C70/71/71A)  
MOVWF  
SWAPF  
MOVWF  
:
W_TEMP  
STATUS,W  
STATUS_TEMP  
;Copy W to TEMP register, could be bank one or zero  
;Swap status to be saved into W  
;Save status to bank zero STATUS_TEMP register  
:(ISR)  
:
SWAPF  
STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
EXAMPLE 14-2: SAVING STATUS AND W REGISTERS IN RAM (PIC16C72/73/73A/74/74A)  
MOVWF  
SWAPF  
BCF  
MOVWF  
:
W_TEMP  
;Copy W to TEMP register, could be bank one or zero  
;Swap status to be saved into W  
;Change to bank zero, regardless of current bank  
;Save status to bank zero STATUS_TEMP register  
STATUS,W  
STATUS,RP0  
STATUS_TEMP  
:(ISR)  
:
SWAPF  
STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
DS30390B-page 136  
1995 Microchip Technology Inc.  
PIC16C7X  
prescaler with a division ratio of up to 1:128 can be  
assigned to the WDT under software control by writing  
to the OPTION register. Thus, time-out periods up to  
2.3 seconds can be realized.  
14.7  
Watchdog Timer (WDT)  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The Watchdog Timer is as a free running on-chip RC  
oscillator which does not require any external compo-  
nents. This RC oscillator is separate from the RC oscil-  
lator of the OSC1/CLKIN pin. That means that the WDT  
will run, even if the clock on the OSC1/CLKIN and  
OSC2/CLKOUT pins of the device has been stopped,  
for example, by execution of a SLEEPinstruction. Dur-  
ing normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device  
is in SLEEP mode, a WDT time-out causes the device  
to wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The WDT can be permanently  
disabled by clearing configuration bit WDTE  
(Section 14.1).  
The CLRWDTand SLEEPinstructions clear the WDT and  
the postscaler, if assigned to the WDT, and prevent it  
from timing out and generating a device RESET condi-  
tion.  
The TO bit in the STATUS register will be cleared upon  
a Watchdog Timer time-out.  
14.7.2 WDT PROGRAMMING CONSIDERATIONS  
It should also be taken into account that under worst  
case conditions (VDD = Min., Temperature = Max., and  
max. WDT prescaler) it may take several seconds  
before a WDT time-out occurs.  
14.7.1 WDT PERIOD  
The WDT has a nominal time-out period of 18 ms, (with  
no prescaler). The time-out periods vary with tempera-  
DD  
ture, V and process variations from part to part (see  
DC specs). If longer time-out periods are desired, a  
FIGURE 14-23: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 7-6)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 7-6)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION register.  
FIGURE 14-24: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
2007h  
81h  
Name  
Bit 7  
(1)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
WDTE  
PS2  
Bit 1  
FOSC1  
PS1  
Bit 0  
FOSC0  
PS0  
(1)  
(1)  
Config. bits  
OPTION  
CP1  
CP0  
BODEN  
PWRTE  
PSA  
RBPU  
INTEDG  
T0CS T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Figure 14-1, Figure 14-2, Figure 14-3, and Figure 14-4 for operation of these bits.  
1995 Microchip Technology Inc.  
DS30390B-page 137  
PIC16C7X  
power-up is cleared when SLEEPis invoked. The TO bit  
is cleared if WDT time-out occurred (and caused wake-  
up).  
14.8  
Power-down Mode (SLEEP)  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The following peripheral interrupts can wake the device  
from SLEEP:  
Power-down mode is entered by executing a SLEEP  
instruction.  
1. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
2. SSP (Start/Stop) bit detect interrupt.  
3. SSP transmit or receive in slave mode (SPI/  
2
I C).  
4. CCP capture mode interrupt.  
5. Parallel Slave Port read or write.  
6. A/D conversion (when A/D clock source is RC).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD, or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D, disable external clocks. Pull all I/O pins, that  
are hi-impedance inputs, high or low externally to avoid  
switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
7. Special event trigger (Timer1 in asynchronous  
mode using an external clock).  
8. USART TX or RX (synchronous slave mode).  
Other peripherals can not generate interrupts since  
during SLEEP, no on-chip Q clocks are present.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEPinstruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
The MCLR pin must be at a logic high level (VIHMC).  
14.8.1 WAKE-UP FROM SLEEP  
The device can wake up from SLEEP through one of  
the following events:  
1. External reset input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change, or some  
Peripheral Interrupts.  
Note: Interrupts that are capable of waking the  
device from SLEEP will still set the individ-  
ual flag bits regardless of the state of the  
global enable bit, GIE.  
External MCLR Reset will cause a device reset. All  
other events are considered a continuation of program  
execution and cause a "wake-up". The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device reset. The PD bit, which is set on  
The WDT is cleared when the device wakes-up from  
sleep, regardless of the source of wake-up.  
FIGURE 14-25: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
TOST(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
DS30390B-page 138  
1995 Microchip Technology Inc.  
PIC16C7X  
14.9  
Program Verification/Code Protection  
Applicable Devices  
14.11 In-Circuit Serial Programming  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
70 71 71A 72 73 73A 74 74A  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
PIC16CXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
Note: Microchip does not recommend code pro-  
tecting windowed devices.  
14.10 ID Locations  
Applicable Devices  
70 71 71A 72 73 73A 74 74A  
The device is placed into a program/verify mode by  
holding the RB6 and RB7 pins low while raising the  
MCLR (VPP) pin from VIL to VIHH (see programming  
specification). RB6 becomes the programming clock  
and RB7 becomes the programming data. Both RB6  
and RB7 are Schmitt Trigger inputs in this mode.  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 least significant bits of ID  
location are used.  
After reset, to place the device into programming/verify  
mode, the program counter (PC) is at location 00h. A 6-  
bit command is then supplied to the device. Depending  
on the command, 14-bits of program data are then sup-  
plied to or from the device, depending if the command  
was a load or a read. For complete details of serial pro-  
gramming, please refer to the PIC16C6X/7X Program-  
ming Specifications (Literature #DS30228).  
FIGURE 14-26: TYPICAL IN-CIRCUIT SERIAL  
PROGRAMMING  
CONNECTION  
To Normal  
Connections  
External  
Connector  
Signals  
PIC16CXX  
+5V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP  
RB6  
RB7  
CLK  
Data I/O  
VDD  
To Normal  
Connections  
1995 Microchip Technology Inc.  
DS30390B-page 139  
PIC16C7X  
NOTES:  
DS30390B-page 140  
1995 Microchip Technology Inc.  
PIC16C7X  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
15.0 INSTRUCTION SET SUMMARY  
Applicable Devices  
Byte-oriented operations  
Bit-oriented operations  
70 71 71A 72 73 73A 74 74A  
Each PIC16CXX instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CXX instruction  
set summary in Table 15-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 15-1  
shows the opcode field descriptions.  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
For byte-oriented instructions, 'f' represents a file reg-  
ister designator and 'd' represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the W register. If 'd' is one, the result is placed  
in the file register specified in the instruction.  
Table 15-2 lists the instructions recognized by the  
MPASM assembler.  
Figure 15-1 shows the three general formats that the  
instructions can have.  
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the number of the  
file in which the bit is located.  
Note: To maintain upward compatibility with  
future PIC16CXX products, do not use the  
OPTIONand TRISinstructions.  
For literal and control operations, 'k' represents an  
eight or eleven bit constant or literal value.  
All examples use the following format to represent a  
hexadecimal number:  
TABLE 15-1: OPCODE FIELD  
DESCRIPTIONS  
0xhh  
where h signifies a hexadecimal digit.  
Field  
Description  
FIGURE 15-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Byte-oriented file register operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
13  
8
7
6
0
0
OPCODE  
d
f (FILE #)  
Don't care location (= 0 or 1)  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
OPCODE  
f (FILE #)  
label Label name  
TOS Top of Stack  
PC Program Counter  
b = 3-bit bit address  
f = 7-bit file register address  
PCLATH  
Program Counter High Latch  
GIE Global Interrupt Enable bit  
WDT Watchdog Timer/Counter  
TO Time-out bit  
Literal and control operations  
General  
13  
8
7
0
0
PD Power-down bit  
OPCODE  
k (literal)  
dest Destination either the W register or the specified  
register file location  
k = 8-bit immediate value  
[ ] Options  
Contents  
( )  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
Assigned to  
Register bit field  
In the set of  
< >  
k (literal)  
User defined term (font is courier)  
italics  
1995 Microchip Technology Inc.  
DS30390B-page 141  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
TABLE 15-2: PIC16CXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0xxx xxxx  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
10bb bfff ffff  
11bb bfff ffff  
1,2  
1,2  
3
1 (2) 01  
1 (2) 01  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11  
11  
10  
00  
10  
11  
11  
00  
11  
00  
00  
11  
11  
111x kkkk kkkk C,DC,Z  
1001 kkkk kkkk  
0kkk kkkk kkkk  
0000 0110 0100  
1kkk kkkk kkkk  
1000 kkkk kkkk  
00xx kkkk kkkk  
0000 0000 1001  
01xx kkkk kkkk  
0000 0000 1000  
0000 0110 0011  
Z
TO,PD  
Z
Inclusive OR literal with W  
Move literal to W  
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
TO,PD  
110x kkkk kkkk C,DC,Z  
1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external  
device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS30390B-page 142  
1995 Microchip Technology Inc.  
PIC16C7X  
15.1  
Instruction Descriptions  
ANDLW  
And Literal with W  
ADDLW  
Add Literal and W  
Syntax:  
[ label ] ANDLW  
k
Syntax:  
[ label ] ADDLW  
k
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 k 255  
(W) + k (W)  
C, DC, Z  
(W) .AND. (k) (W)  
Operation:  
Z
Status Affected:  
Encoding:  
11  
1001  
kkkk  
kkkk  
11  
111x  
kkkk  
kkkk  
The contents of W register are  
AND’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
The contents of the W register are  
added to the eight bit literal 'k' and the  
result is placed in the W register.  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
ANDLW  
0x5F  
ADDLW  
0x15  
Before Instruction  
Before Instruction  
W
=
0xA3  
0x03  
W
=
0x10  
0x25  
After Instruction  
After Instruction  
W
=
W
=
ADDWF  
Syntax:  
Add W and f  
ANDWF  
Syntax:  
AND W with f  
[ label ] ADDWF f,d  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) + (f) (dest)  
Operation:  
(W) .AND. (f) (dest)  
Status Affected:  
Encoding:  
C, DC, Z  
Status Affected:  
Encoding:  
Z
00  
0111  
dfff  
ffff  
00  
0101  
dfff  
ffff  
Add the contents of the W register  
with register 'f'. If 'd' is 0 the result is  
stored in the W register. If 'd' is 1 the  
result is stored back in register 'f'.  
AND the W register with register 'f'. If  
'd' is 0 the result is stored in the W  
register. If 'd' is 1 the result is stored  
back in register 'f'.  
Description:  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
ADDWF  
FSR,  
0
ANDWF  
FSR, 1  
Before Instruction  
Before Instruction  
W
FSR =  
=
0x17  
0xC2  
W
FSR =  
=
0x17  
0xC2  
After Instruction  
After Instruction  
W
FSR =  
=
0xD9  
0xC2  
W
FSR =  
=
0x17  
0x02  
1995 Microchip Technology Inc.  
DS30390B-page 143  
PIC16C7X  
BCF  
Bit Clear f  
BTFSC  
Bit Test, Skip if Clear  
Syntax:  
Operands:  
[ label ] BCF f,b  
Syntax:  
[ label ] BTFSC f,b  
0 f 127  
0 b 7  
Operands:  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
0 (f<b>)  
Operation:  
skip if (f<b>) = 0  
None  
None  
Status Affected:  
Encoding:  
01  
00bb  
bfff  
ffff  
01  
10bb  
bfff  
ffff  
If bit 'b' in register 'f' is '0' then the next  
instruction is skipped.  
Bit 'b' in register 'f' is cleared.  
Description:  
1
1
If bit 'b' is '0' then the next instruction  
fetched during the current instruction  
execution is discarded, and a NOP is  
executed instead, making this a 2 cycle  
instruction.  
Cycles:  
BCF  
FLAG_REG, 7  
Example  
Before Instruction  
FLAG_REG = 0xC7  
After Instruction  
Words:  
Cycles:  
Example  
1
1(2)  
FLAG_REG = 0x47  
HERE  
FALSE  
TRUE  
BTFSC FLAG,1  
GOTO  
PROCESS_CODE  
Before Instruction  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
address TRUE  
if FLAG<1>=1,  
PC =  
address FALSE  
BSF  
Bit Set f  
Syntax:  
Operands:  
[ label ] BSF f,b  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
1 (f<b>)  
None  
01  
01bb  
bfff  
ffff  
Bit 'b' in register 'f' is set.  
1
1
Cycles:  
BSF  
FLAG_REG,  
7
Example  
Before Instruction  
FLAG_REG = 0x0A  
After Instruction  
FLAG_REG = 0x8A  
DS30390B-page 144  
1995 Microchip Technology Inc.  
PIC16C7X  
BTFSS  
Bit Test f, Skip if Set  
CLRF  
Clear f  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
[ label ] CLRF  
f
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
0 f 127  
00h (f)  
1 Z  
Operation:  
skip if (f<b>) = 1  
None  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
Z
01  
11bb  
bfff  
ffff  
00  
0001  
1fff  
ffff  
If bit 'b' in register 'f' is '1' then the next  
instruction is skipped.  
If bit 'b' is '1', then the next instruction  
fetched during the current instruction  
execution, is discarded and a NOP is  
executed instead, making this a 2 cycle  
instruction.  
The contents of register 'f' are cleared  
and the Z bit is set.  
Description:  
Description:  
Words:  
Cycles:  
Example  
1
1
CLRF  
FLAG_REG  
Words:  
Cycles:  
Example  
1
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
Z
1(2)  
=
0x5A  
HERE  
FALSE  
TRUE  
BTFSC FLAG,1  
=
=
0x00  
1
GOTO  
PROCESS_CODE  
Before Instruction  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
address FALSE  
if FLAG<1> = 1,  
PC =  
address TRUE  
CLRW  
Clear W  
CALL  
Call Subroutine  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] CLRW  
None  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
00h (W)  
1 Z  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
0001  
0xxx  
xxxx  
10  
0kkk  
kkkk  
kkkk  
W register is cleared. Zero bit (Z) is  
set.  
Description:  
Call Subroutine. First, return address  
(PC+1) is pushed onto the stack. The  
eleven bit immediate address is loaded  
into PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two cycle instruction.  
Description:  
Words:  
Cycles:  
Example  
1
1
CLRW  
Words:  
Cycles:  
Example  
1
2
Before Instruction  
W
=
0x5A  
After Instruction  
HERE  
CALL THERE  
W
=
0x00  
1
Before Instruction  
Z
=
PC  
=
Address HERE  
After Instruction  
PC  
= Address THERE  
TOS = Address HERE+1  
1995 Microchip Technology Inc.  
DS30390B-page 145  
PIC16C7X  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
DECF  
Decrement f  
[ label ] DECF f,d  
0 f 127  
[ label ] CLRWDT  
None  
Syntax:  
Operands:  
Operands:  
Operation:  
d
[0,1]  
00h WDT  
0 WDT prescaler,  
1 TO  
Operation:  
(f) - 1 (dest)  
Status Affected:  
Encoding:  
Z
1 PD  
00  
0011  
dfff  
ffff  
Status Affected:  
Encoding:  
TO, PD  
Decrement register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd'  
is 1 the result is stored back in register  
'f'.  
Description:  
00  
0000  
0110  
0100  
CLRWDTinstruction resets the Watch-  
dog Timer. It also resets the prescaler  
of the WDT. Status bits TO and PD  
are set.  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
DECF  
CNT,  
1
1
Before Instruction  
CLRWDT  
CNT  
Z
=
=
0x01  
0
Before Instruction  
After Instruction  
WDT counter  
After Instruction  
=
=
?
CNT  
Z
=
=
0x00  
1
WDT counter  
0x00  
WDT prescaler=  
0
1
1
TO  
PD  
=
=
COMF  
Complement f  
[ label ] COMF f,d  
0 f 127  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 127  
Syntax:  
Operands:  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(f) (dest)  
Operation:  
(f) - 1 (dest); skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
1001  
dfff  
ffff  
00  
1011  
dfff  
ffff  
The contents of register 'f' are decre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
The contents of register 'f' are comple-  
mented. If 'd' is 0 the result is stored in  
W. If 'd' is 1 the result is stored back in  
register 'f'.  
Description:  
Description:  
If the result is 0, the next instruction,  
which is already fetched, is discarded. A  
NOP is executed instead making it a two  
cycle instruction.  
Words:  
Cycles:  
Example  
1
1
COMF  
REG1,0  
Words:  
Cycles:  
Example  
1
Before Instruction  
1(2)  
REG1  
After Instruction  
REG1  
=
0x13  
HERE  
DECFSZ  
GOTO  
CNT, 1  
LOOP  
=
=
0x13  
0xEC  
CONTINUE •  
W
Before Instruction  
PC  
=
address HERE  
After Instruction  
CNT  
if CNT =  
PC  
if CNT ≠  
PC  
=
CNT - 1  
0,  
address CONTINUE  
0,  
address HERE+1  
=
=
DS30390B-page 146  
1995 Microchip Technology Inc.  
PIC16C7X  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 2047  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d
[0,1]  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Operation:  
(f) + 1 (dest), skip if result = 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
10  
1kkk  
kkkk  
kkkk  
00  
1111  
dfff  
ffff  
GOTOis an unconditional branch. The  
eleven bit immediate value is loaded  
into PC bits <10:0>. The upper bits of  
PC are loaded from PCLATH<4:3>.  
GOTOis a two cycle instruction.  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed  
in the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
If the result is 0, the next instruction,  
which is already fetched, is discarded.  
A NOP is executed instead making it a  
two cycle instruction.  
Description:  
Description:  
Words:  
Cycles:  
Example  
1
2
Words:  
Cycles:  
Example  
1
GOTO THERE  
1(2)  
After Instruction  
HERE  
INCFSZ  
GOTO  
CNT,  
LOOP  
1
PC  
=
Address THERE  
CONTINUE •  
Before Instruction  
PC  
=
address HERE  
After Instruction  
CNT  
=
CNT + 1  
if CNT=  
0,  
PC  
if CNT≠  
=
address CONTINUE  
0,  
PC  
=
address HERE +1  
INCF  
Increment f  
IORLW  
Inclusive OR Literal with W  
[ label ] IORLW k  
0 k 255  
Syntax:  
Operands:  
[ label ] INCF f,d  
Syntax:  
0 f 127  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
(W) .OR. k (W)  
Z
Operation:  
(f) + 1 (dest)  
Status Affected:  
Encoding:  
Z
11  
1000  
kkkk  
kkkk  
00  
1010  
dfff  
ffff  
The contents of the W register is  
OR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed  
in the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
IORLW  
0x35  
Before Instruction  
INCF  
CNT, 1  
W
=
0x9A  
Before Instruction  
After Instruction  
CNT  
Z
=
=
0xFF  
0
W
=
0xBF  
1
Z
=
After Instruction  
CNT  
Z
=
=
0x00  
1
1995 Microchip Technology Inc.  
DS30390B-page 147  
PIC16C7X  
IORWF  
Inclusive OR W with f  
MOVF  
Move f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
0 f 127  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) .OR. (f) (dest)  
Operation:  
(f) (dest)  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
Z
00  
0100  
dfff  
ffff  
00  
1000  
dfff  
ffff  
Inclusive OR the W register with regis-  
ter 'f'. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
The contents of register f is moved to  
a destination dependant upon the sta-  
tus of d. If d = 0, destination is W reg-  
ister. If d = 1, the destination is file  
register f itself. d = 1 is useful to test a  
file register since status flag Z is  
affected.  
Description:  
Description:  
Words:  
Cycles:  
Example  
1
1
IORWF  
RESULT, 0  
Words:  
Cycles:  
Example  
1
1
Before Instruction  
RESULT =  
0x13  
0x91  
MOVF  
FSR, 0  
W
=
After Instruction  
After Instruction  
RESULT =  
W
Z
0x13  
0x93  
1
W = value in FSR register  
=
=
Z
= 1  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
Syntax:  
Syntax:  
f
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
k (W)  
None  
None  
11  
00xx  
kkkk  
kkkk  
00  
0000  
1fff  
ffff  
The eight bit literal 'k' is loaded into W  
register. The don’t cares will assemble  
as 0’s.  
Move data from W register to register  
'f'.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
MOVWF  
OPTION  
MOVLW  
0x5A  
Before Instruction  
OPTION =  
After Instruction  
0xFF  
0x4F  
W
=
0x5A  
W
=
After Instruction  
OPTION =  
0x4F  
0x4F  
W
=
DS30390B-page 148  
1995 Microchip Technology Inc.  
PIC16C7X  
NOP  
No Operation  
[ label ] NOP  
None  
RETFIE  
Return from Interrupt  
Syntax:  
Syntax:  
[ label ] RETFIE  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Operands:  
Operation:  
No operation  
None  
TOS PC,  
1 GIE  
Status Affected:  
Encoding:  
None  
00  
0000  
0xx0  
0000  
00  
0000  
0000  
1001  
No operation.  
Return from Interrupt. Stack is POPed  
and Top of Stack (TOS) is loaded in  
the PC. Interrupts are enabled by set-  
ting Global Interrupt Enable bit, GIE  
(INTCON<7>). This is a two cycle  
instruction.  
Description:  
1
Cycles:  
1
NOP  
Example  
Words:  
Cycles:  
Example  
1
2
RETFIE  
After Interrupt  
PC  
GIE =  
=
TOS  
1
RETLW  
Return with Literal in W  
[ label ] RETLW k  
0 k 255  
OPTION  
Syntax:  
Load Option Register  
[ label ] OPTION  
None  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
(W) OPTION  
k (W);  
TOS PC  
Status Affected: None  
00  
0000  
0110  
0010  
Encoding:  
Status Affected:  
Encoding:  
None  
The contents of the W register are  
loaded in the OPTION register. This  
instruction is supported for code com-  
patibility with PIC16C5X products.  
Since OPTION is a readable/writable  
register, the user can directly address  
it.  
Description:  
11  
01xx  
kkkk  
kkkk  
The W register is loaded with the eight  
bit literal 'k'. The program counter is  
loaded from the top of the stack (the  
return address). This is a two cycle  
instruction.  
Description:  
Words:  
Cycles:  
Example  
1
2
Words:  
Cycles:  
Example  
1
1
CALL TABLE  
;W contains table  
;offset value  
;W now has table value  
To maintain upward compatibility  
with future PIC16CXX products, do  
not use this instruction.  
TABLE  
ADDWF PC  
;W = offset  
;Begin table  
;
RETLW k1  
RETLW k2  
RETLW kn  
; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
1995 Microchip Technology Inc.  
DS30390B-page 149  
PIC16C7X  
RETURN  
Return from Subroutine  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 127  
Syntax:  
[ label ] RETURN  
None  
Syntax:  
Operands:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
TOS PC  
None  
Operation:  
See description below  
C
Status Affected:  
Encoding:  
00  
0000  
0000  
1000  
00  
1100  
dfff  
ffff  
Return from subroutine. The stack is  
POPed and the top of the stack (TOS)  
is loaded into the program counter.  
This is a two cycle instruction.  
The contents of register 'f' are rotated  
one bit to the right through the Carry  
Flag. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Words:  
Cycles:  
Example  
1
2
C
Register f  
RETURN  
After Interrupt  
Words:  
Cycles:  
Example  
1
1
PC  
=
TOS  
RRF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
RLF  
Rotate Left f through Carry  
SLEEP  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
[ label ] SLEEP  
None  
0 f 127  
Operands:  
Operation:  
d
[0,1]  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Operation:  
See description below  
C
Status Affected:  
Encoding:  
0 PD  
00  
1101  
dfff  
ffff  
Status Affected:  
Encoding:  
TO, PD  
The contents of register 'f' are rotated  
one bit to the left through the Carry  
Flag. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
stored back in register 'f'.  
Description:  
00  
0000  
0110  
0011  
The power-down status bit, PD is  
cleared. Time-out status bit, TO is  
set. Watchdog Timer and its pres-  
caler are cleared.  
Description:  
C
Register f  
The processor is put into SLEEP  
mode with the oscillator stopped.  
Words:  
Cycles:  
Example  
1
1
See Section 14.8 for more details.  
Words:  
1
RLF  
REG1,0  
Cycles:  
Example:  
1
Before Instruction  
SLEEP  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
DS30390B-page 150  
1995 Microchip Technology Inc.  
PIC16C7X  
SUBLW  
Subtract W from Literal  
SUBWF  
Syntax:  
Subtract W from f  
Syntax:  
[ label ]  
SUBLW k  
[ label ]  
SUBWF f,d  
Operands:  
Operation:  
0 k 255  
Operands:  
0 f 127  
d
[0,1]  
k - (W) → (W)  
Operation:  
(f) - (W) → (dest)  
Status  
C, DC, Z  
Affected:  
Status  
C, DC, Z  
Affected:  
Encoding:  
11  
110x  
kkkk  
kkkk  
Encoding:  
00  
0010  
dfff  
ffff  
The W register is subtracted (2’s com-  
plement method) from the eight bit literal  
'k'. The result is placed in the W register.  
Description:  
Subtract (2’s complement method) W reg-  
ister from register 'f'. If 'd' is 0 the result is  
stored in the W register. If 'd' is 1 the  
result is stored back in register 'f'.  
Description:  
Words:  
1
1
Cycles:  
Words:  
1
1
Example 1:  
SUBLW  
0x02  
Cycles:  
Before Instruction  
Example 1:  
SUBWF  
REG1,1  
W
C
=
=
1
?
Before Instruction  
REG1  
W
C
=
=
=
3
2
?
After Instruction  
W
C
=
=
1
1; result is positive  
After Instruction  
Example 2:  
Example 3:  
Before Instruction  
REG1  
W
C
=
=
=
1
2
W
C
=
=
2
?
1; result is positive  
After Instruction  
Example 2:  
Before Instruction  
W
C
=
=
0
REG1  
W
=
=
=
2
2
?
1; result is zero  
C
Before Instruction  
After Instruction  
W
C
=
=
3
?
REG1  
W
C
=
=
=
0
2
After Instruction  
1; result is zero  
W
C
=
=
0xFF  
0; result is nega-  
Example 3:  
Before Instruction  
tive  
REG1  
W
C
=
=
=
1
2
?
After Instruction  
REG1  
W
C
=
=
=
0xFF  
2
0; result is negative  
1995 Microchip Technology Inc.  
DS30390B-page 151  
PIC16C7X  
SWAPF  
Syntax:  
Swap Nibbles in f  
XORLW  
Exclusive OR Literal with W  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 127  
Operands:  
Operation:  
Status Affected:  
Encoding:  
d
[0,1]  
(W) .XOR. k → (W)  
Z
Operation:  
(f<3:0>) (dest<7:4>),  
(f<7:4>) (dest<3:0>)  
11  
1010 kkkk kkkk  
Status Affected:  
Encoding:  
None  
The contents of the W register are  
XOR’ed with the eight bit literal 'k'.  
The result is placed in the W regis-  
ter.  
Description:  
00  
1110  
dfff  
ffff  
The upper and lower nibbles of regis-  
ter 'f' are exchanged. If 'd' is 0 the  
result is placed in W register. If 'd' is 1  
the result is placed in register 'f'.  
Description:  
Words:  
1
1
Cycles:  
Example:  
Words:  
Cycles:  
Example  
1
1
XORLW  
0xAF  
Before Instruction  
SWAPF REG,  
0
W
=
0xB5  
0x1A  
Before Instruction  
REG1  
After Instruction  
=
0xA5  
W
=
After Instruction  
REG1  
W
=
=
0xA5  
0x5A  
TRIS  
Load TRIS Register  
XORWF  
Syntax:  
Exclusive OR W with f  
[ label ] XORWF f,d  
0 f 127  
Syntax:  
[ label ] TRIS  
f
Operands:  
Operation:  
5 f 7  
Operands:  
d
[0,1]  
(W) TRIS register f;  
Status Affected: None  
Operation:  
(W) .XOR. (f) → (dest)  
00  
Encoding:  
0000 0110  
0fff  
Status Affected:  
Encoding:  
Z
The instruction is supported for code  
compatibility with the PIC16C5X prod-  
ucts. Since TRIS registers are read-  
able and writable, the user can directly  
address them.  
Description:  
00  
0110  
dfff  
ffff  
Exclusive OR the contents of the W  
register with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd'  
is 1 the result is stored back in register  
'f'.  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
To maintain upward compatibility  
with future PIC16CXX products, do  
not use this instruction.  
REG  
1
XORWF  
Before Instruction  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS30390B-page 152  
1995 Microchip Technology Inc.  
PIC16C7X  
The PICMASTER Emulator System has been  
designed as a real-time emulation system with  
advanced features that are generally found on more  
expensive development tools. The PC compatible 386  
(and better) machine platform and Microsoft Win-  
dows 3.x environment was chosen to best make  
these features available to you, the end user.  
16.0 DEVELOPMENT SUPPORT  
16.1  
Development Tools  
The PIC16/17 microcontrollers are supported with a full  
range of hardware and software development tools:  
• PICMASTER Real-Time In-Circuit Emulator  
• PRO MATE Universal Programmer  
• PICSTART Low-Cost Prototype Programmer  
• PICDEM-1 Low-Cost Demonstration Board  
• PICDEM-2 Low-Cost Demonstration Board  
• MPASM Assembler  
The PICMASTER Universal Emulator System consists  
primarily of four major components:  
• Host-Interface Card  
• Emulator Control Pod  
Target-Specific Emulator Probe  
• PC-Host Emulation Control Software  
• MPSIM Software Simulator  
• C Compiler (MP-C)  
The Windows operating system allows the developer to  
take full advantage of the many powerful features and  
functions of the PICMASTER system.  
• Fuzzy logic development system  
(fuzzyTECH MP)  
PICMASTER emulation can operate in one window,  
while a text editor is running in a second window.  
16.2  
PICMASTER: High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
PC-Host Emulation Control software takes full advan-  
tage of Dynamic Data Exchange (DDE), a feature of  
Windows. DDE allows data to be dynamically trans-  
ferred between two or more Windows programs. With  
this feature, data collected with PICMASTER can be  
automatically transferred to a spreadsheet or database  
program for further analysis.  
The PICMASTER Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for all  
microcontrollers in the PIC16C5X, PIC16CXX and  
PIC17CXX families. PICMASTER is supplied with the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, "make" and download, and  
source debugging from a single environment. A  
PICMASTER System configuration is shown in  
Figure 16-1.  
Under Windows, as many as four PICMASTER emula-  
tors can be run simultaneously from the same PC mak-  
ing development of multi-microcontroller systems  
possible (e.g., a system containing a PIC16CXX pro-  
cessor and a PIC17CXX processor).  
Interchangeable target probes allow the system to be  
easily reconfigured for emulation of different proces-  
sors. The universal architecture of the PICMASTER  
allows expansion to support all new PIC16C5X,  
PIC16CXX and PIC17CXX microcontrollers.  
The PICMASTER probes specifications are shown in  
Table 16-1.  
FIGURE 16-1: PICMASTER SYSTEM CONFIGURATION  
In-Line  
5 VDC  
Power Supply  
(Optional)  
90 - 250 VAC  
Windows 3.x  
Power Switch  
Interchangeable  
Emulator Probe  
Power Connector  
PC Bus  
PC-Interface  
PICMASTER Emulator Pod  
Common Interface Card  
PC Compatible Computer  
Logic Probes  
1995 Microchip Technology Inc.  
DS30390B-page 153  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
TABLE 16-1: PICMASTER PROBE  
SPECIFICATION (Cont.d)  
TABLE 16-1: PICMASTER PROBE  
SPECIFICATION  
PROBE  
PROBE  
PICMASTER  
PICMASTER  
PROBE  
Devices  
Devices  
Maximum Operating  
PROBE  
Maximum Operating  
Frequency  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
20 MHz  
20 MHz  
20 MHz  
Voltage  
Frequency  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
Voltage  
(1)  
(1)  
PIC16C64A  
PIC16CR64  
PIC16C65  
PIC16C65A  
PIC16C620  
PIC16C621  
PIC16C622  
PIC16C70  
PIC16C71  
PIC16C71A  
PIC16C72  
PIC16C73  
PIC16C73A  
PIC16C74  
PIC16C74A  
PIC16C83  
PIC16C84  
PIC17C42  
PIC17C43  
PIC17C44  
PROBE-16E  
PROBE-16E  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
PIC16C54  
PROBE-16D  
PROBE-16D  
PROBE-16D  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
PIC16C54A  
PIC16CR54  
PIC16CR54A  
PIC16CR54B  
PIC16C55  
PROBE-16F  
(1)  
(1)  
PROBE-16F  
PROBE-16H  
PROBE-16H  
PROBE-16H  
PROBE-16D  
PROBE-16D  
(1)  
PROBE-16D  
(1)  
PIC16CR55  
PIC16C56  
PROBE-16D  
PROBE-16D  
(1)  
PROBE-16B  
PROBE-16B  
(1)  
PIC16CR56  
PIC16C57  
PROBE-16D  
PROBE-16D  
PROBE-16D  
(1)  
PROBE-16B  
PROBE-16F  
(1)  
PIC16CR57A  
PIC16CR57B  
PIC16C58A  
PIC16CR58A  
PIC16CR58B  
PIC16C61  
(1)  
PROBE-16F  
PROBE-16D  
PROBE-16D  
PROBE-16D  
(1)  
PROBE-16F  
PROBE-16F  
(1)  
(1)  
PROBE-16F  
PROBE-16C  
PROBE-16C  
PROBE-17B  
PROBE-17B  
PROBE-17B  
PROBE-16D  
PROBE-16G  
PROBE-16E  
PIC16C62  
(1)  
PIC16C62A  
PIC16CR62  
PIC16C63  
PROBE-16E  
PROBE-16E  
PROBE-16F  
(1)  
(1)  
Note 1: This PICMASTER probe can be used to  
functionally emulate the device listed in the  
previous column. Contact your Microchip sales  
office for details.  
PIC16C64  
PROBE-16E  
DS30390B-page 154  
1995 Microchip Technology Inc.  
PIC16C7X  
16.3  
PRO MATE: Universal Programmer  
16.5  
PICDEM-1 Low-Cost PIC16/17  
Demonstration Board  
The PRO MATE Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode.  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
The PRO MATE has programmable VDD and VPP sup-  
plies which allows it to verify programmed memory at  
VDD min and VDD max for maximum reliability. It has an  
LCD display for displaying error messages, keys to  
enter commands and a modular detachable socket  
assembly to support various package types. In stand-  
alone mode the PRO MATE can read, verify or program  
PIC16C5X, PIC16CXX and PIC17CXX devices. It can  
also set configuration and code-protect bits in this  
mode.  
the PICDEM-1 board, on  
a
PRO MATE or  
PICSTART-16B programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the PICMASTER emulator and download  
the firmware to the emulator for testing. Additional pro-  
totype area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
In PC-hosted mode, the PRO MATE connects to the PC  
via one of the COM (RS-232) ports. PC based user-  
interface software makes using the programmer simple  
and efficient. The user interface is full-screen and  
menu-based. Full screen display and editing of data,  
easy selection of bit configuration and part type, easy  
selection of VDD min, VDD max and VPP levels, load and  
store to and from disk files (Intel hex format) are some  
of the features of the software. Essential commands  
such as read, verify, program and blank check can be  
issued from the screen. Additionally, serial program-  
ming support is possible where each part is pro-  
grammed with a different serial number, sequential or  
random.  
16.6  
PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE pro-  
grammer or PICSTART-16C, and easily test firmware.  
The PICMASTER emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
The PRO MATE has a modular “programming socket  
module”. Different socket modules are required for dif-  
ferent processor types and/or package types.  
PRO MATE supports all PIC16C5X, PIC16CXX and  
PIC17CXX processors.  
16.4  
PICSTART Low-Cost Development  
System  
The PICSTART programmer is an easy to use, very  
low-cost prototype programmer. It connects to the PC  
via one of the COM (RS-232) ports. A PC-based user  
interface software makes using the programmer simple  
and efficient. The user interface is full-screen and  
menu-based. PICSTART is not recommended for pro-  
duction programming.  
2
usage of the I C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
1995 Microchip Technology Inc.  
DS30390B-page 155  
PIC16C7X  
16.7  
MPLABTM Integrated Development  
Environment Software.  
16.8  
Assembler (MPASM)  
The MPASM CrossAssembler is a PC-hosted symbolic  
assembler. It supports all microcontroller series includ-  
ing the PIC16C5X, PIC16CXX and PIC17CXX families.  
The MPLAB Software brings an ease of software devel-  
opment previously unseen in the 8-bit microcontroller  
market. MPLAB is a windows based application which  
contains:  
MPASM offers full featured Macro capabilities, condi-  
tional assembly, and several source and listing formats.  
It generates various object code formats to support  
Microchip's development tools as well as third party  
programmers.  
• A full featured editor  
• Three operating modes  
- editor  
- emulator  
- simulator (available soon)  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar with project information  
MPASM allows full symbolic debugging from  
the Microchip Universal Emulator System  
(PICMASTER).  
MPASM has the following features to assist in develop-  
ing software for specific use applications.  
• Extensive on-line help  
MPLAB allows you to:  
• Provides translation of Assembler source code to  
object code for all Microchip microcontrollers.  
• Edit your source files (either assembly or "C")  
• One touch assemble (or compile) and download  
to PIC16/17 tools (automatically updates all  
project information)  
• Debug using:  
- source files  
• Macro assembly capability.  
• Produces all the files (Object, Listing, Symbol,  
and special) required for symbolic debug with  
Microchip’s emulator systems.  
• Supports Hex (default), Decimal and Octal source  
and listing formats.  
- absolute listing file  
• Transfer data dynamically via DDE (soon to be  
replaced by OLE)  
• Run up to four emulators on the same PC  
MPASM provides a rich directive language to support  
programming of the PIC16/17. Directives are helpful in  
making the development of your assemble source code  
shorter and more maintainable.  
The ability to use MPLAB with Microchip’s simulator  
(available soon) allows a consistent platform and the  
ability to easily switch from the low cost simulator to the  
full featured emulator with minimal retraining due to  
development tools.  
Data Directives are those that control the alloca-  
tion of memory and provide a way to refer to data  
items symbolically, i.e., by meaningful names.  
Control Directives control the MPASM listing dis-  
play. They allow the specification of titles and sub-  
titles, page ejects and other listing control. This  
eases the readability of the printed output file.  
Conditional Directives permit sections of condi-  
tionally assembled code. This is most useful  
where additional functionality may wished to be  
added depending on the product (less functional-  
ity for the low end product, then for the high end  
product). Also this is very helpful in the debugging  
of a program.  
Macro Directives control the execution and data  
allocation within macro body definitions. This  
makes very simple the re-use of functions in a  
program as well as between programs.  
DS30390B-page 156  
1995 Microchip Technology Inc.  
PIC16C7X  
16.9  
Software Simulator (MPSIM)  
16.11 Fuzzy Logic Development System  
(fuzzyTECH-MP)  
The MPSIM Software Simulator allows code develop-  
ment in a PC host environment. It allows the user to  
simulate the PIC16/17 series microcontrollers on an  
instruction level. On any given instruction, the user may  
examine or modify any of the data areas or provide  
external stimulus to any of the pins. The input/output  
radix can be set by the user and the execution can be  
performed in; single step, execute until break, or in a  
trace mode. MPSIM fully supports symbolic debugging  
using MP-C and MPASM. The Software Simulator  
offers the low cost flexibility to develop and debug code  
outside of the laboratory environment making it an  
excellent multi-project software development tool.  
fuzzyTECH-MP fuzzy logic development tool is avail-  
able in two versions - a low cost introductory version,  
MP Explorer, for designers to gain a comprehensive  
working knowledge of fuzzy logic system design; and a  
full-featured version, fuzzyTECH-MP, edition for imple-  
menting more complex systems.  
Both versions include Microchip’s fuzzyLAB demon-  
stration board for hands-on experience with fuzzy logic  
systems implementation.  
16.12 Development Systems  
For convenience, the development tools are packaged  
into comprehensive systems as listed in Table 16-2.  
16.10 C Compiler (MP-C)  
The MP-C Code Development System is a complete 'C'  
compiler and integrated development environment for  
Microchip’s PIC16/17 family of microcontrollers. The  
compiler provides powerful integration capabilities and  
ease of use not found with other compilers.  
For easier source level debugging, the compiler pro-  
vides symbol information that is compatible with the  
PICMASTER Universal Emulator memory display  
(PICMASTER emulator software versions 1.13 and  
later).  
The MP-C Code Development System is supplied  
directly by Byte Craft Limited of Waterloo, Ontario,  
Canada. If you have any questions, please contact  
your regional Microchip FAE or Microchip technical  
support personnel at (602) 786-7627.  
TABLE 16-2: DEVELOPMENT SYSTEM PACKAGES  
Item  
Name  
System Description  
1.  
PICMASTER System  
PICMASTER In-Circuit Emulator, PRO MATE Programmer, Assembler, Soft-  
ware Simulator, Samples and your choice of Target Probe.  
2.  
3.  
PICSTART System  
PRO MATE System  
PICSTART Low-Cost Prototype Programmer, Assembler, Software Simulator  
and Samples.  
PRO MATE Universal Programmer, full featured stand-alone or PC-hosted pro-  
grammer, Assembler, Simulator  
1995 Microchip Technology Inc.  
DS30390B-page 157  
PIC16C7X  
NOTES:  
DS30390B-page 158  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
17.0 ELECTRICAL CHARACTERISTICS FOR PIC16C70 AND PIC16C71A  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125˚C  
Storage temperature .............................................................................................................................. -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD and MCLR) ...................................................-0.6V to (VDD + 0.6V)  
Voltage on VDD with respect to VSS ................................................................................................................ 0 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) .................................................................................................0 to +14V  
Total power dissipation (Note 1)................................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD) .....................................................................................................................±20 mA  
Output clamp current, IOK (V0 < 0 or V0 > VDD)..............................................................................................................±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA........................................................................................................................200 mA  
Maximum current sourced by PORTA...................................................................................................................200 mA  
Maximum current sunk by PORTB........................................................................................................................200 mA  
Maximum current sourced by PORTB ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLR pin rather than pulling  
this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 159  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 17-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
DS30390B-page 160  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
(5)  
17.1  
DC Characteristics:  
PIC16C70-04 (Commercial, Industrial, Automotive )  
(5)  
PIC16C71A-04 (Commercial, Industrial, Automotive )  
(5)  
PIC16C70-10 (Commercial, Industrial, Automotive )  
(5)  
PIC16C71A-10 (Commercial, Industrial, Automotive )  
(5)  
PIC16C70-20 (Commercial, Industrial, Automotive )  
(5)  
PIC16C71A-20 (Commercial, Industrial, Automotive )  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40˚C  
TA +125˚C for automotive,  
TA +85˚C for industrial and  
TA +70˚C for commercial  
DC CHARACTERISTICS  
-40˚C  
0˚C  
Param.  
No.  
Characteristic  
Sym  
Min Typ† Max Units  
Conditions  
D001  
D001A  
Supply Voltage  
VDD  
4.0  
4.5  
-
-
6.0  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002  
D003  
D004  
D010  
RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5*  
VSS  
-
-
V
Device in SLEEP mode  
VDD start voltage to  
ensure Power-on Reset  
VPOR  
-
0.05*  
-
-
V
See section on Power-on Reset for details  
VDD rise rate to ensure SVDD  
Power-on Reset  
-
V/ms See section on Power-on Reset for details  
Supply Current (Note 2) IDD  
2.7  
5
mA XT, RC osc configuration (PIC16C70/71A-04)  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
D015  
-
-
13.5 30  
mA HS osc configuration (PIC16C70/71A-20)  
FOSC = 20 MHz, VDD = 5.5V  
Brown-out Reset Cur-  
rent (Note 6)  
IBOR  
300* 500 µA BOR enabled VDD = 5.0V  
D020  
D021  
D021A  
D021B  
Power-down Current  
(Note 3)  
IPD  
-
-
-
-
10.5 42 µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
1.5  
1.5  
21  
24  
µA VDD = 4.0V, WDT disabled, -0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
1.5 TBD µA VDD = 4.0V, WDT disabled, -40°C to +125°C  
D023  
Brown-out Reset Cur-  
rent (Note 6)  
IBOR  
-
300* 500 µA BOR enabled VDD = 5.0V  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Automotive operating range is Advanced information for this device.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 161  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
(5)  
17.2  
DC Characteristics:  
PIC16LC70-04 (Commercial, Industrial, Automotive )  
(5)  
PIC16LC71A-04 (Commercial, Industrial, Automotive )  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40˚C  
TA +125˚C for automotive,  
TA +85˚C for industrial and  
TA +70˚C for commercial  
DC CHARACTERISTICS  
-40˚C  
0˚C  
Param  
No.  
Characteristic  
Supply Voltage  
Sym Min Typ† Max Units  
Conditions  
D001  
D002  
VDD  
3.0  
-
-
6.0  
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)  
Device in SLEEP mode  
RAM Data Retention VDR  
Voltage (Note 1)  
1.5*  
D003  
D004  
D010  
VDD start voltage to  
ensure Power-on  
Reset  
VPOR  
-
VSS  
-
-
-
V
See section on Power-on Reset for details  
VDD rise rate to  
ensure Power-on  
Reset  
SVDD 0.05*  
V/ms See section on Power-on Reset for details  
Supply Current  
(Note 2,5)  
IDD  
-
2.0  
3.8  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
D015  
-
-
22.5 48  
300* 500  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
Brown-out Reset Cur- IBOR  
µA BOR enabled VDD = 3.0V  
rent (Note 6)  
D020  
D021  
D021A  
D021B  
Power-down Current IPD  
(Note 3,5)  
-
-
-
-
7.5  
0.9  
0.9  
0.9  
30  
5
5
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, -40°C to +125°C  
10  
D023  
Brown-out Reset Cur- IBOR  
-
300* 500  
µA BOR enabled VDD = 3.0V  
rent (Note 6)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Automotive operating range is Advanced information for this device.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
DS30390B-page 162  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
(4)  
17.3  
DC Characteristics:  
PIC16C70-04 (Commercial, Industrial, Automotive )  
(4)  
PIC16C71A-04 (Commercial, Industrial, Automotive )  
(4)  
PIC16C70-10 (Commercial, Industrial, Automotive )  
(4)  
PIC16C71A-10 (Commercial, Industrial, Automotive )  
(4)  
PIC16C70-20 (Commercial, Industrial, Automotive )  
(4)  
PIC16C71A-20 (Commercial, Industrial, Automotive )  
(4)  
PIC16LC70-04 (Commercial, Industrial, Automotive )  
(4)  
PIC16LC71A-04 (Commercial, Industrial, Automotive )  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +125˚C for automotive,  
-40˚C TA +85˚C for industrial and  
DC CHARACTERISTICS  
0˚C  
TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 17.1  
and Section 17.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D031  
D032  
with TTL buffer  
VSS  
VSS  
VSS  
-
-
-
0.5V  
0.2VDD  
0.2VDD  
V
V
V
with Schmitt Trigger buffer  
MCLR, RA4/T0CKI,OSC1  
(in RC mode)  
D033  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports  
VSS  
-
0.3VDD  
V
Note1  
VIH  
-
-
-
-
-
-
-
D040  
D040A  
D041  
D042  
with TTL buffer  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
4.5 VDD 5.5V  
For VDD > 5.5V or VDD < 4.5V  
For entire VDD range  
0.8VDD  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
50  
with Schmitt Trigger buffer  
MCLR, RA4/T0CKI RB0/INT  
D042A OSC1 (XT, HS and LP)  
D043  
D070  
Note1  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current (Notes 2, 3)  
I/O ports  
IPURB  
IIL  
250 400  
µA VDD = 5V, VPIN = VSS  
D060  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-  
impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP  
osc configuration  
Output Low Voltage  
D080  
D080A  
D083  
D083A  
I/O ports  
VOL  
-
-
-
-
-
-
-
-
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKOUT (RC osc config)  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
4: Automotive operating range is Advanced information for this device.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 163  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +125˚C for automotive,  
-40˚C TA +85˚C for industrial and  
DC CHARACTERISTICS  
0˚C  
TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 17.1  
and Section 17.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Output High Voltage  
D090  
I/O ports (Note 3)  
VOH VDD - 0.7 -  
VDD - 0.7 -  
-
-
-
-
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D090A  
D092  
OSC2/CLKOUT (RC osc config)  
VDD - 0.7 -  
D092A  
VDD - 0.7 -  
Capacitive Loading Specs on Out-  
put Pins  
D100  
OSC2 pin  
COSC2  
-
-
-
-
15  
50  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1.  
D101  
All I/O pins and OSC2 (in RC mode) CIO  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
pF  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
4: Automotive operating range is Advanced information for this device.  
DS30390B-page 164  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
17.4  
Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
2
1. TppS2ppS  
2. TppS  
3. TCC:ST  
4. Ts  
(I C specifications only)  
2
(I C specifications only)  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
2
I C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
2
TCC:ST (I C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 17-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 165  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
17.5  
Timing Diagrams and Specifications  
FIGURE 17-2: EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
3
3
4
2
CLKOUT  
TABLE 17-2: CLOCK TIMING REQUIREMENTS  
Parameter Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units Conditions  
Fos External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
4
MHz XT and RC osc mode  
(Note 1)  
MHz HS osc mode (PIC16C70/71A-04,)  
MHz HS osc mode (PIC16C70/71A-20)  
kHz LP osc mode  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
4
MHz HS osc mode (PIC16C70/71A-04)  
MHz HS osc mode (PIC16C70/71A-10)  
4
10  
4
20  
MHz HS osc mode (PIC16C70/71A-20)  
kHz LP osc mode  
5
200  
1
Tosc External CLKIN Period  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
XT and RC osc mode  
(Note 1)  
HS osc mode (PIC16C70/71A-04)  
HS osc mode (PIC16C70/71A-10)  
HS osc mode (PIC16C70/71A-20)  
LP osc mode  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
100  
RC osc mode  
10,000  
250  
250  
XT osc mode  
HS osc mode (PIC16C70/71A-04)  
HS osc mode (PIC16C70/71A-10)  
50  
5
250  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
HS osc mode (PIC16C70/71A-20)  
LP osc mode  
2
3
TCY  
Instruction Cycle Time (Note 1) 200  
DC  
TCY = 4/FOSC  
TosL, External Clock in (OSC1) High  
TosH or Low Time  
50  
2.5  
10  
XT oscillator  
LP oscillator  
HS oscillator  
4
TosR, External Clock in (OSC1) Rise  
TosF or Fall Time  
25  
50  
15  
XT oscillator  
LP oscillator  
HS oscillator  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected  
(has no loading) for the PIC16C70/71A.  
DS30390B-page 166  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 17-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: Refer to Figure 17-1 for load conditions.  
TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
15  
15  
5
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
30  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
15  
15  
5
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
0.25TCY + 25  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
80 - 100  
Port out valid  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
TBD  
ns  
Port input invalid (I/O in hold time)  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
TBD  
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C70/71A  
PIC16LC70/71A  
PIC16C70/71A  
PIC16LC70/71A  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
20  
20  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 167  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 17-1 for load conditions.  
FIGURE 17-5: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
1
µs VDD = 5V, -40˚C to +125˚C  
Twdt  
Watchdog Timer Time-out Period  
7*  
18  
33*  
ms VDD = 5V, -40˚C to +125˚C  
(No Prescaler)  
32  
33  
34  
Tost  
Oscillation Start-up Timer Period  
28*  
1024TOSC  
132*  
1.1  
TOSC = OSC1 period  
Tpwrt Power up Timer Period  
72  
ms VDD = 5V, -40˚C to +125˚C  
TIOZ  
I/O Hi-impedance from MCLR Low  
µs  
or Watchdog Timer Reset  
35  
TBOR  
Brown-out Reset pulse width  
100  
µs 3.8V VDD 4.2V  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390B-page 168  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 17-6: TIMER0 CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
TMR0  
Note: Refer to Figure 17-1 for load conditions.  
TABLE 17-5: TIMER0 CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5TCY + 20*  
10*  
Greater of:  
ns N = prescale value  
(1, 2, 4,..., 256)  
20µs or TCY + 40*  
N
48  
Tcke2tmrI Delay from external clock edge to timer increment  
These parameters are characterized but not tested.  
2Tosc  
7Tosc  
*
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 169  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 17-6: A/D CONVERTER CHARACTERISTICS:  
(3)  
PIC16C70-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
PIC16C71A-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
PIC16C70-10 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
PIC16C71A-10 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
PIC16C70-20 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
PIC16C71A-20 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
(3)  
(3)  
(3)  
(3)  
(3)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
NR  
Resolution  
8-bits  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
NINT Integral error  
less than  
±1 LSb  
NDIF Differential error  
less than  
±1 LSb  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
VSS AIN VREF  
NFS  
Full scale error  
less than  
±1 LSb  
NOFF Offset error  
less than  
±1 LSb  
Monotonicity  
guaranteed  
V
VREF Reference voltage  
3.0V  
VDD + 0.3  
VREF + 0.3  
10.0  
VAIN Analog input voltage VSS - 0.3  
V
ZAIN Recommended  
impedance of analog  
kΩ  
voltage source  
IAD  
A/D conversion cur-  
rent (VDD)  
180  
µA Average current consumption when  
A/D is on. (Note 1)  
IREF  
VREF input current  
(Note 2)  
1
10  
mA During sampling  
µA All other times  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
3: Automotive operating range is Advanced information for this device.  
DS30390B-page 170  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 17-7: A/D CONVERTER CHARACTERISTICS:  
PIC16LC70-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
(4)  
(4)  
PIC16LC71A-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
NR  
Resolution  
8-bits  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
NINT  
Integral error  
less than  
±1 LSb  
NDIF  
NFS  
Differential error  
Full scale error  
less than  
±1 LSb  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
VSS AIN VREF  
less than  
±1 LSb  
NOFF Offset error  
less than  
±1 LSb  
Monotonicity  
guaranteed  
V
VREF Reference voltage  
3.0V  
VDD + 0.3  
VREF + 0.3  
10.0  
VAIN  
ZAIN  
Analog input voltage VSS - 0.3  
V
Recommended  
kΩ  
impedance of ana-  
log voltage source  
IAD  
A/D conversion cur-  
rent (VDD)  
90  
µA Average current consumption when  
A/D is on. (Note 2)  
IREF  
VREF input current  
(Note 3)  
1
10  
mA During sampling  
µA All other times  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: These specifications apply if VREF = 3.0V and if VDD 3.0V. VIN must be between VSS and VREF  
2: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
3: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
4: Automotive operating range is Advanced information for this device.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 171  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 17-7: A/D CONVERSION TIMING  
BSF ADCON0, GO  
(TOSC/2) (1)  
1 Tcy  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 17-8: A/D CONVERSION REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VREF 3.0V  
130  
TAD  
TAD  
A/D clock period  
1.6  
2.0  
µs  
µs VREF full range  
130  
A/D Internal RC  
Oscillator source  
ADCS1:ADCS0 = 11  
(RC oscillator source)  
µs PIC16LC70, VDD = 3.0V  
µs PIC16C70  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
131  
132  
TCNV Conversion time  
(not including S/H  
time). Note 1  
9.5TAD  
TSMP Sampling time  
Note 2  
20  
µs  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 13.1 for min conditions.  
DS30390B-page 172  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C70  
AND PIC16C71A  
NOT AVAILABLE AT THIS TIME  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 173  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
NOTES:  
DS30390B-page 174  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
19.0 ELECTRICAL CHARACTERISTICS FOR PIC16C71  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125˚C  
Storage temperature .............................................................................................................................. -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD and MCLR) ...................................................-0.6V to (VDD + 0.6V)  
Voltage on VDD with respect to VSS ................................................................................................................ 0 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) .................................................................................................0 to +14V  
Total power dissipation (Note 1)...........................................................................................................................800 mW  
Maximum current out of VSS pin ...........................................................................................................................150 mA  
Maximum current into VDD pin ..............................................................................................................................100 mA  
Input clamp current, IIK (VI < 0 or VI > VDD) .....................................................................................................................±20 mA  
Output clamp current, IOK (V0 < 0 or V0 > VDD)..............................................................................................................±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................20 mA  
Maximum current sunk by PORTA..........................................................................................................................80 mA  
Maximum current sourced by PORTA.....................................................................................................................50 mA  
Maximum current sunk by PORTB........................................................................................................................150 mA  
Maximum current sourced by PORTB ..................................................................................................................100 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLR pin rather than pulling  
this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
TABLE 19-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16C71-04  
PIC16C71-20  
PIC16LC71-04  
VDD: 3.0V to 6.0V  
JW Devices  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 4.0V to 6.0V  
IDD: 3.3 mA max. at 5.5V  
IPD: 14 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 1.8 mA typ. at 5.5V  
IPD: 1.0 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 1.4 mA typ. at 3.0V  
IPD: 0.6 µA typ. at 3V  
Freq: 4 MHz max.  
IDD: 3.3 mA max. at 5.5V  
IPD: 14 µA max. at 4V  
Freq: 4 MHz max.  
RC  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 3.0V to 6.0V  
VDD: 4.0V to 6.0V  
IDD: 3.3 mA max. at 5.5V  
IPD: 14 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 1.8 mA typ. at 5.5V  
IPD: 1.0 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 1.4 mA typ. at 3.0V  
IPD: 0.6 µA typ. at 3V  
Freq: 4 MHz max.  
IDD: 3.3 mA max. at 5.5V  
IPD: 14 µA max. at 4V  
Freq: 4 MHz max.  
XT  
HS  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 13.5 mA typ. at 5.5V  
IPD: 1.0 µA typ. at 4.5V  
Freq: 4 MHz max.  
IDD: 30 mA max. at 5.5V  
IPD: 1.0 µA typ. at 4.5V  
Freq: 20 MHz max.  
IDD: 30 mA max. at 5.5V  
IPD: 1.0 µA typ. at 4.5V  
Freq: 20 MHz max.  
Do not use in HS mode  
VDD: 4.0V to 6.0V  
IDD: 15 µA typ. at 32 kHz,  
4.0V  
VDD: 3.0V to 6.0V  
IDD: 32 µA max. at 32 kHz,  
3.0V  
VDD: 3.0V to 6.0V  
IDD: 32 µA max. at 32 kHz,  
3.0V  
LP  
Do not use in LP mode  
IPD: 0.6 µA typ. at 4.0V  
Freq: 200 kHz max.  
IPD: 9 µA max. at 3.0V  
Freq: 200 kHz max.  
IPD: 9 µA max. at 3.0V  
Freq: 200 kHz max.  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recom-  
mended that the user select the device type that ensures the specifications required.  
1995 Microchip Technology Inc.  
DS30390B-page 175  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
19.1  
DC Characteristics:  
PIC16C71-04 (Commercial, Industrial)  
PIC16C71-20 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40˚C  
0˚C  
TA +85˚C for industrial and  
TA +70˚C for commercial  
Param  
No.  
Characteristic  
Sym Min Typ† Max Units  
Conditions  
D001 Supply Voltage  
D001A  
VDD  
VDR  
4.0  
4.5  
-
-
6.0  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002 RAM Data Retention  
Voltage (Note 1)  
-
1.5*  
VSS  
-
-
-
-
V
Device in SLEEP mode  
D003 VDD start voltage to  
guarantee Power-on Reset  
VPO  
R
-
V
See section on Power-on Reset for details  
D004 VDD rise rate to guarantee SVD 0.05*  
V/ms See section on Power-on Reset for details  
Power-on Reset  
D
D010 Supply Current (Note 2)  
IDD  
-
-
1.8 3.3 mA FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
13.5 30  
mA HS osc configuration (PIC16C71-20)  
FOSC = 20 MHz, VDD = 5.5V  
D020 Power-down Current  
D021 (Note 3)  
D021A  
IPD  
-
-
-
7
1.0  
1.0  
28  
14  
16  
µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
µA VDD = 4.0V, WDT disabled, -0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
DS30390B-page 176  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
19.2  
DC Characteristics: PIC16LC71-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40˚C  
0˚C  
TA +85˚C for industrial and  
TA +70˚C for commercial  
Param  
No.  
Characteristic  
Sym Min Typ† Max Units  
Conditions  
D001  
D002  
Supply Voltage  
VDD  
VDR  
3.0  
-
-
6.0  
-
V
V
XT, RC, and LP osc configuration  
Device in SLEEP mode  
RAM Data Retention  
Voltage (Note 1)  
1.5*  
D003  
D004  
VDD start voltage to  
ensure Power-on Reset  
VPOR  
-
VSS  
-
-
-
V
See section on Power-on Reset for details  
VDD rise rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See section on Power-on Reset for details  
D010  
Supply Current (Note 2)  
IDD  
IPD  
-
-
1.4  
15  
2.5  
32  
mA FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
µA FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D020  
D021  
D021A  
Power-down Current  
(Note 3)  
-
-
-
5
0.6  
0.6  
20  
9
12  
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
1995 Microchip Technology Inc.  
DS30390B-page 177  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
19.3  
DC Characteristics:  
PIC16C71-04 (Commercial, Industrial)  
PIC16C71-20 (Commercial, Industrial)  
PIC16LC71-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +85˚C for industrial and  
0˚C TA +70˚C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 19.1  
and Section 19.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D031  
D032  
with TTL buffer  
VSS  
VSS  
VSS  
-
-
-
0.5V  
0.2VDD  
0.2VDD  
V
V
V
with Schmitt Trigger buffer  
MCLR, RA4/T0CKI,OSC1  
(in RC mode)  
D033  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports (Note 4)  
with TTL buffer  
VSS  
-
0.3VDD  
V
Note1  
VIH  
-
-
-
-
-
-
-
D040  
D040A  
D041  
D042  
D042A  
D043  
D070  
0.36VDD  
0.45VDD  
0.85VDD  
0.85VDD  
0.7VDD  
0.9VDD  
50  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
4.5 VDD 5.5V  
For VDD > 5.5V or VDD < 4.5V  
For entire VDD range  
with Schmitt Trigger buffer  
MCLR RA4/T0CKI  
OSC1 (XT, HS and LP)  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current (Notes 2, 3)  
I/O ports  
V
V
V
Note1  
IPURB  
IIL  
250 †400  
µA VDD = 5V, VPIN = VSS  
D060  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-  
impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and  
LP osc configuration  
Output Low Voltage  
D080  
D083  
I/O ports  
VOL  
-
-
-
-
0.6  
0.6  
V
V
IOL = 8.5mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.6mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config)  
Output High Voltage  
D090  
D092  
I/O ports (Note 3)  
VOH VDD - 0.7 -  
VDD - 0.7 -  
-
-
V
V
IOH = -3.0mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.3mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config)  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the  
PIC16C71 be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input  
buffer.  
DS30390B-page 178  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +85˚C for industrial and  
0˚C TA +70˚C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 19.1  
and Section 19.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Capacitive Loading Specs on Out-  
put Pins  
D100  
OSC2 pin  
COSC2  
15  
50  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1.  
D101  
All I/O pins and OSC2 (in RC mode) CIO  
pF  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the  
PIC16C71 be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input  
buffer.  
1995 Microchip Technology Inc.  
DS30390B-page 179  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
19.4  
Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
2
1. TppS2ppS  
2. TppS  
3. TCC:ST  
4. Ts  
(I C specifications only)  
2
(I C specifications only)  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
2
I C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
2
TCC:ST (I C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 19-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKOUT  
15 pF for OSC2 output  
DS30390B-page 180  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
19.5  
Timing Diagrams and Specifications  
FIGURE 19-2: EXTERNAL CLOCK TIMING  
Q1  
1
Q2  
Q3  
Q4  
Q4  
Q1  
OSC1  
3
3
4
4
2
CLKOUT  
TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
Fos External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
0.1  
1
4
4
MHz XT and RC osc mode  
MHz HS osc mode (PIC16C71-04)  
MHz HS osc mode (PIC16C71-20)  
kHz LP osc mode  
(Note 1)  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
4
MHz HS osc mode (PIC16C71-04)  
MHz HS osc mode (PIC16C71-20)  
1
20  
1
Tosc External CLKIN Period  
250  
250  
50  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
µs  
ns  
ns  
ns  
ns  
XT and RC osc mode  
HS osc mode (PIC16C71-04)  
HS osc mode (PIC16C71-20)  
LP osc mode  
(Note 1)  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
50  
RC osc mode  
10,000  
1,000  
1,000  
XT osc mode  
HS osc mode (PIC16C71-04)  
HS osc mode (PIC16C71-20)  
LP osc mode  
5
2
3
TCY  
Instruction Cycle Time (Note 1)  
1.0  
50  
DC  
Tcy = 4/Fosc  
TosL, Clock in (OSC1) High or Low Time  
TosH  
XT oscillator  
2.5  
10  
LP oscillator  
HS oscillator  
4
TosR, Clock in (OSC1) Rise or Fall Time  
TosF  
25  
XT oscillator  
50  
LP oscillator  
15  
HS oscillator  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected  
(has no loading) for the PIC16C71.  
1995 Microchip Technology Inc.  
DS30390B-page 181  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 19-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
19  
18  
14  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: Refer to Figure 19-1 for load conditions.  
TABLE 19-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
15  
15  
5
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
30  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
15  
15  
5
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
0.25TCY + 25  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
80 - 100  
Port out valid  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
TBD  
ns  
Port input invalid (I/O in hold time)  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
TBD  
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C71  
PIC16LC71  
PIC16C71  
PIC16LC71  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
20  
20  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS30390B-page 182  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 19-1 for load conditions.  
TABLE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
200  
7*  
ns  
VDD = 5V, -40˚C to +85˚C  
VDD = 5V, -40˚C to +85˚C  
Twdt  
Watchdog Timer Time-out Period  
18  
33*  
ms  
(No Prescaler)  
32  
33  
34  
Tost  
Oscillation Start-up Timer Period  
1024 TOSC  
72  
TOSC = OSC1 period  
Tpwrt Power-up Timer Period  
I/O High Impedance from MCLR  
Low  
28*  
132*  
100  
ms  
ns  
VDD = 5V, -40˚C to +85˚C  
TIOZ  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
1995 Microchip Technology Inc.  
DS30390B-page 183  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 19-5: TIMER0 CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
TMR0  
Note: Refer to Figure 19-1 for load conditions.  
TABLE 19-5: TIMER0 CLOCK REQUIREMENTS  
Param  
No.  
Sym Characteristic  
Min  
Typ† Max Units Conditions  
40  
Tt0H T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L T0CKI Low Pulse Width  
Tt0P T0CKI Period  
0.5TCY + 20*  
10*  
Greater of:  
ns N = prescale value  
(2, 4,..., 256)  
20µs or TCY + 40*  
N
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390B-page 184  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 19-6: A/D CONVERTER CHARACTERISTICS:  
PIC16C71-04 (COMMERCIAL, INDUSTRIAL)  
PIC16C71-20 (COMMERCIAL, INDUSTRIAL)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
NR Resolution  
8 bits  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
NINT Integral error  
less than  
±1 LSb  
NDIF Differential error  
less than  
±1 LSb  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
VSS AIN VREF  
NFS  
Full scale error  
less than  
±1 LSb  
NOFF Offset error  
less than  
±1 LSb  
Monotonicity  
guaranteed  
VDD + 0.3  
VREF  
V
VREF Reference voltage  
3.0V  
VAIN Analog input voltage VSS - 0.3  
V
ZAIN Recommended  
impedance of analog  
10.0  
kΩ  
voltage source  
IAD  
A/D conversion cur-  
rent (VDD)  
180  
µA Average current consumption when  
A/D is on. (Note 1)  
IREF  
VREF input current  
(Note 2)  
1
40  
mA During sampling  
µA All other times  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
1995 Microchip Technology Inc.  
DS30390B-page 185  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 19-7: A/D CONVERTER CHARACTERISTICS:  
PIC16LC71-04 (COMMERCIAL, INDUSTRIAL)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
NR  
Resolution  
8 bits  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
NINT  
Integral error  
less than  
±2 LSb  
NDIF  
NFS  
Differential error  
Full scale error  
less than  
±2 LSb  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
VSS AIN VREF  
less than  
±2 LSb  
NOFF Offset error  
less than  
±2 LSb  
Monotonicity  
guaranteed  
VDD + 0.3  
VREF  
V
VREF Reference voltage  
3.0V  
VAIN  
ZAIN  
Analog input voltage VSS - 0.3  
V
Recommended  
10.0  
kΩ  
impedance of ana-  
log voltage source  
IAD  
A/D conversion cur-  
rent (VDD)  
90  
µA Average current consumption when  
A/D is on. (Note 2)  
IREF  
VREF input current  
(Note 3)  
1
10  
mA During sampling  
µA All other times  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: These specifications apply if VREF = 3.0V and if VDD 3.0V. VIN must be between VSS and VREF  
2: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
3: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
DS30390B-page 186  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 19-6: A/D CONVERSION TIMING  
BSF ADCON0, GO  
(TOSC/2) (1)  
1 Tcy  
131  
Q4  
130  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 19-8: A/D CONVERSION REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
130  
130  
TAD  
TAD  
A/D clock period  
2.0  
µs  
A/D Internal RC  
Oscillator source  
ADCS1:ADCS0 = 11(RC oscillator  
source)  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
µs PIC16LC71, VDD = 3.0V  
µs PIC16C71  
131  
132  
TCNV Conversion time  
(not including S/H  
time) (Note 1)  
10TAD  
TSMP Sampling time  
Note 2  
20  
µs  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 13.1 for min conditions.  
1995 Microchip Technology Inc.  
DS30390B-page 187  
PIC16C7X  
NOTES:  
DS30390B-page 188  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 20-2: TYPICAL RC OSCILLATOR  
FREQUENCY VS. VDD  
20.0 DC AND AC  
CHARACTERISTICS GRAPHS  
5.0  
AND TABLES FOR PIC16C71  
R = 4.7k  
The graphs and tables provided in this section are for  
design guidance and are not tested or guaranteed. In  
some graphs or tables the data presented are out-  
side specified operating range (e.g. outside speci-  
fied VDD range). This is for information only and  
devices are guaranteed to operate properly only  
within the specified range.  
4.5  
4.0  
3.5  
3.0  
The data presented in this section is a statistical sum-  
mary of data collected on units from different lots over  
a period of time. 'Typical' represents the mean of the  
distribution while 'max' or 'min' represents (mean + 3σ)  
and (mean - 3σ) respectively where σ is standard devi-  
ation.  
R = 10k  
2.5  
2.0  
1.5  
FIGURE 20-1: TYPICAL RC OSCILLATOR  
FREQUENCY VS.  
Cext = 20 pF, T = 25°C  
1.0  
TEMPERATURE  
R = 100k  
Fosc  
0.5  
Fosc (25°C)  
Frequency Normalized to 25°C  
1.050  
0.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
1.025  
1.000  
Rext = 10k  
Cext = 100 pF  
VDD (Volts)  
FIGURE 20-3: TYPICAL RC OSCILLATOR  
FREQUENCY VS. VDD  
VDD = 5.5V  
0.975  
0.950  
2.0  
VDD = 3.5V  
0.925  
0.900  
0.875  
0.850  
R = 3.3k  
1.8  
1.6  
1.4  
R = 4.7k  
0
10  
20  
30  
40  
50  
60  
70  
1.2  
1.0  
0.8  
T(°C)  
R = 10k  
0.6  
Cext = 100 pF, T = 25°C  
0.4  
0.2  
0.0  
R = 100k  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
6.0  
VDD (Volts)  
1995 Microchip Technology Inc.  
DS30390B-page 189  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 20-4: TYPICAL RC OSCILLATOR  
FREQUENCY VS. VDD  
TABLE 20-1: RC OSCILLATOR  
FREQUENCIES  
8.0  
Average  
R = 3.3k  
Cext  
20 pf  
Rext  
4.7k  
10k  
100k  
FOSC @ 5V, 25°C  
7.0  
4.52 MHz  
2.47 MHz  
±17.35%  
±10.10%  
R = 4.7k  
6.0  
5.0  
290.86 kHz ±11.90%  
100 pf  
300 pf  
3.3k  
4.7k  
10k  
1.92 MHz  
1.49 MHz  
±9.43%  
±9.83%  
788.77 kHz ±10.92%  
88.11 kHz ±16.03%  
100k  
3.3k  
4.7k  
10k  
726.89 kHz ±10.97%  
573.95 kHz ±10.14%  
307.31 kHz ±10.43%  
4.0  
3.0  
2.0  
1.0  
R = 10k  
100k  
33.82 kHz  
±11.24%  
The percentage variation indicated here is part to part  
variation due to normal process distribution. The varia-  
tion indicated is ±3 standard deviation from average  
value for VDD = 5V.  
Cext = 300 pF, T = 25°C  
R = 100k  
5.5  
FIGURE 20-6: TYPICAL IPD VS. VDD  
WATCHDOGTIMER ENABLED  
25°C  
0.0  
3.0  
3.5  
4.0  
4.5  
5.0  
6.0  
VDD (Volts)  
14  
FIGURE 20-5: TYPICAL IPD VS. VDD  
WATCHDOG TIMER  
DISABLED 25°C  
12  
10  
0.6  
0.5  
0.4  
0.3  
0.2  
8
6
4
2
0
0.1  
0.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5 6.0  
VDD (Volts)  
DS30390B-page 190  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 20-7: MAXIMUM IPD VS. VDD  
WATCHDOG DISABLED  
FIGURE 20-8: MAXIMUM IPD VS. VDD  
WATCHDOG ENABLED  
45  
25  
-55°C  
40  
35  
30  
25  
20  
-40°C  
125°C  
20  
15  
125°C  
0°C  
15  
10  
5
70°C  
85°C  
10  
5
85°C  
70°C  
0
3.0 3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0°C  
-40°C  
-55°C  
VDD (Volts)  
IPD, with Watchdog Timer enabled, has two components:  
The leakage current which increases with higher tempera-  
ture and the operating current of the Watchdog Timer logic  
which increases with lower temperature. At -40°C, the latter  
dominates explaining the apparently anomalous behavior.  
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 20-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS VS. VDD  
2.00  
1.80  
Max (-40˚C to 85˚C)  
1.60  
25˚C, TYP  
1.40  
1.20  
Min (-40˚C to 85˚C)  
1.00  
0.80  
0.60  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
1995 Microchip Technology Inc.  
DS30390B-page 191  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 20-10: VIH, VIL OF MCLR,T0CKI AND OSC1 (IN RC MODE) VS. VDD  
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
VIH, Max (-40°C to 85°C)  
VIH, Typ (25°C)  
VIH, Min (-40°C to 85°C)  
VIL, Max (-40°C to 85°C)  
VIL, Typ (25°C)  
VIL, Min (-40°C to 85°C)  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
Note: These input pins have a Schmitt Trigger input buffer.  
FIGURE 20-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES)  
VS. VDD  
Min (-40°C to 85°C)  
3.60  
TYP (25°C)  
3.40  
3.20  
3.00  
2.80  
2.60  
2.40  
2.20  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
Max (-40°C to 85°C)  
Min (-40°C to 85°C)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
VDD (Volts)  
DS30390B-page 192  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 20-12: TYPICAL IDD VS. FREQ (EXT CLOCK, 25°C)  
10,000  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
1,000  
100  
10  
1
100,000,000  
1,000,000  
10,000  
10,000,000  
100,000  
Frequency (Hz)  
FIGURE 20-13: MAXIMUM, IDD VS. FREQ (EXT CLOCK, -40° TO +85°C)  
10,000  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
1,000  
100  
10  
100,000,000  
1,000,000  
Frequency (Hz)  
10,000  
10,000,000  
100,000  
1995 Microchip Technology Inc.  
DS30390B-page 193  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 20-14: MAXIMUM IDD VS. FREQ WITH A/D OFF (EXT CLOCK, -55° TO +125°C)  
10,000  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
1,000  
100  
10  
100,000,000  
10,000  
100,000  
1,000,000  
10,000,000  
Frequency (Hz)  
FIGURE 20-15: WDT TIMER TIME-OUT  
PERIOD VS. VDD  
FIGURE 20-16: TRANSCONDUCTANCE (gm)  
OF HS OSCILLATOR VS. VDD  
9000  
8000  
50  
45  
7000  
40  
Max, -40°C  
6000  
35  
Max, 85°C  
5000  
Max, 70°C  
30  
4000  
Typ, 25°C  
25  
20  
3000  
Min, 85°C  
2000  
Typ, 25°C  
Min, 0°C  
1000  
0
15  
10  
5
2
3
4
5
6
7
Min, -40°C  
VDD (Volts)  
2
3
4
5
6
7
VDD (Volts)  
DS30390B-page 194  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 20-17: TRANSCONDUCTANCE (gm)  
OF LP OSCILLATOR VS. VDD  
FIGURE 20-19: IOH VS. VOH, VDD = 3V  
0
225  
200  
-5  
Max, -40°C  
Min, 85°C  
175  
150  
-10  
Typ, 25°C  
125  
Typ, 25°C  
100  
75  
Min, 85°C  
-15  
Max, -40°C  
50  
-20  
25  
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
-25  
VDD (Volts)  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOH (Volts)  
FIGURE 20-20: IOH VS. VOH, VDD = 5V  
FIGURE 20-18: TRANSCONDUCTANCE (gm)  
OF XT OSCILLATOR VS. VDD  
0
-5  
2500  
Max, -40°C  
-10  
-15  
2000  
Typ, 25°C  
-20  
Min @ 85°C  
1500  
-25  
Typ @ 25°C  
-30  
1000  
-35  
-40  
Max @ -40°C  
Min, 85°C  
500  
-45  
-50  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOH (Volts)  
0
2
3
4
5
6
7
VDD (Volts)  
1995 Microchip Technology Inc.  
DS30390B-page 195  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 20-21: IOL VS. VOL, VDD = 3V  
TABLE 20-2: INPUT CAPACITANCE*  
35  
Pin Name  
Typical Capacitance (pF)  
18L PDIP  
5.0  
18L SOIC  
4.3  
Max @ -40°C  
RA port  
30  
RB port  
5.0  
4.3  
MCLR  
17.0  
4.0  
17.0  
3.5  
25  
OSC1/CLKN  
OSC2/CLKOUT  
TMR0  
Typ @ 25°C  
4.3  
3.5  
20  
3.2  
2.8  
*All capacitance values are typical at 25°C. A part-to-  
part variation of ±25% (three standard deviations)  
should be taken into account.  
15  
Min @ +85°C  
10  
5
0
0.0  
1.0  
VOL (Volts)  
0.5  
1.5  
2.0  
2.5  
3.0  
FIGURE 20-22: IOL VS. VOL, VDD = 5V  
90  
80  
Max @ -40°C  
70  
60  
Typ @ 25°C  
50  
40  
Min @ +85°C  
30  
20  
10  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOL (Volts)  
DS30390B-page 196  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
21.0 ELECTRICAL CHARACTERISTICS FOR PIC16C72  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125˚C  
Storage temperature .............................................................................................................................. -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD and MCLR) ...................................................-0.6V to (VDD + 0.6V)  
Voltage on VDD with respect to VSS ................................................................................................................ 0 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) .................................................................................................0 to +14V  
Total power dissipation (Note 1)................................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD) .....................................................................................................................±20 mA  
Output clamp current, IOK (V0 < 0 or V0 > VDD)..............................................................................................................±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA and PORTB (combined).................................................................................200 mA  
Maximum current sourced by PORTA and PORTB (combined)............................................................................200 mA  
Maximum current sunk by PORTC .......................................................................................................................200 mA  
Maximum current sourced by PORTC ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLR pin rather than pulling  
this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 197  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 21-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
DS30390B-page 198  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
(6)  
21.1  
DC Characteristics:  
PIC16C72-04 (Commercial, Industrial, Automotive )  
(6)  
PIC16C72-10 (Commercial, Industrial, Automotive )  
(6)  
PIC16C72-20 (Commercial, Industrial, Automotive )  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40˚C  
TA +125˚C for automotive,  
TA +85˚C for industrial and  
TA +70˚C for commercial  
DC CHARACTERISTICS  
-40˚C  
0˚C  
Param  
No.  
Characteristic  
Sym  
VDD  
Min Typ† Max Units  
Conditions  
D001  
D001A  
Supply Voltage  
4.0  
4.5  
-
-
6.0  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002  
D003  
D004  
D010  
RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5*  
VSS  
-
-
V
Device in SLEEP mode  
VDD start voltage to  
ensure Power-on Reset  
VPOR  
-
-
V
See section on Power-on Reset for details  
VDD rise rate to ensure  
Power-on Reset  
SVDD 0.05*  
-
V/ms See section on Power-on Reset for details  
Supply Current  
(Note 2,5)  
IDD  
-
2.7  
5
mA XT, RC osc configuration (PIC16C72-04)  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
D015  
-
-
13.5 30  
mA HS osc configuration (PIC16C72-20)  
FOSC = 20 MHz, VDD = 5.5V  
Brown-out Reset Current IBOR  
300* 500 µA BOR enabled VDD = 5.0V  
(Note 7)  
D020  
D021  
D021A  
D021B  
Power-down Current  
(Note 3,5)  
IPD  
-
-
-
-
10.5 42 µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
1.5  
1.5  
21  
24  
µA VDD = 4.0V, WDT disabled, -0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
1.5 TBD µA VDD = 4.0V, WDT disabled, -40°C to +125°C  
D023  
Brown-out Reset Current IBOR  
-
300* 500 µA BOR enabled VDD = 5.0V  
(Note 7)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: Automotive operating range is Advanced information for this device.  
7: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 199  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
(6)  
21.2  
DC Characteristics:  
PIC16LC72-04 (Commercial, Industrial, Automotive )  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40˚C  
TA +125˚C for automotive,  
TA +85˚C for industrial and  
TA +70˚C for commercial  
DC CHARACTERISTICS  
-40˚C  
0˚C  
Param  
No.  
Characteristic  
Sym Min Typ† Max Units  
Conditions  
D001  
D002  
Supply Voltage  
VDD  
VDR  
3.0  
-
-
6.0  
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)  
Device in SLEEP mode  
RAM Data Retention  
Voltage (Note 1)  
1.5*  
D003  
D004  
D010  
VDD start voltage to  
ensure Power-on Reset  
VPOR  
-
VSS  
-
-
-
V
See section on Power-on Reset for details  
VDD rise rate to ensure SVDD 0.05*  
Power-on Reset  
V/ms See section on Power-on Reset for details  
Supply Current  
(Note 2,5)  
IDD  
-
2.0  
3.8  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
D015  
-
-
22.5 48  
300* 500  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
Brown-out Reset Cur-  
rent (Note 7)  
IBOR  
µA BOR enabled VDD = 3.0V  
D020  
D021  
D021A  
D021B  
Power-down Current  
(Note 3,5)  
IPD  
-
-
-
-
7.5  
0.9  
0.9  
0.9  
30  
5
5
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, -40°C to +125°C  
10  
D023  
Brown-out Reset Cur-  
rent (Note 7)  
IBOR  
-
300* 500  
µA BOR enabled VDD = 3.0V  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: Automotive operating range is Advanced information for this device.  
7: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
DS30390B-page 200  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
(4)  
21.3  
DC Characteristics:  
PIC16C72-04 (Commercial, Industrial, Automotive )  
(4)  
PIC16C72-10 (Commercial, Industrial, Automotive )  
(4)  
PIC16C72-20 (Commercial, Industrial, Automotive )  
(4)  
PIC16LC72-04 (Commercial, Industrial, Automotive )  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +125˚C for automotive,  
-40˚C TA +85˚C for industrial and  
DC CHARACTERISTICS  
0˚C  
TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 21.1  
and Section 21.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D031  
D032  
with TTL buffer  
VSS  
VSS  
VSS  
-
-
-
0.5V  
0.2VDD  
0.2VDD  
V
V
V
with Schmitt Trigger buffer  
MCLR, RA4/T0CKI,OSC1 (in RC  
mode)  
D033  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports  
VSS  
-
0.3VDD  
V
Note1  
VIH  
-
-
-
-
-
D040  
D040A  
D041  
D042  
with TTL buffer  
2.0  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
4.5 VDD 5.5V  
For VDD > 5.5V or VDD < 4.5V  
For entire VDD range  
0.8VDD  
0.8VDD  
0.8VDD  
with Schmitt Trigger buffer  
MCLR, RA4/T0CKI, RC7:RC4, RB0/  
INT  
D042A  
D043  
D070  
OSC1 (XT, HS and LP)  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current (Notes 2, 3)  
I/O ports  
0.7VDD  
0.9VDD  
50  
-
-
VDD  
VDD  
V
V
Note1  
IPURB  
IIL  
250 †400  
µA VDD = 5V, VPIN = VSS  
D060  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-  
impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and  
LP osc configuration  
Output Low Voltage  
D080  
D080A  
D083  
D083A  
I/O ports  
VOL  
-
-
-
-
-
-
-
-
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKOUT (RC osc config)  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
4: Automotive operating range is Advanced information for this device.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 201  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +125˚C for automotive,  
-40˚C TA +85˚C for industrial and  
DC CHARACTERISTICS  
0˚C  
TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 21.1  
and Section 21.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Output High Voltage  
D090  
I/O ports (Note 3)  
VOH VDD - 0.7 -  
VDD - 0.7 -  
-
-
-
-
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D090A  
D092  
OSC2/CLKOUT (RC osc config)  
VDD - 0.7 -  
D092A  
VDD - 0.7 -  
Capacitive Loading Specs on Out-  
put Pins  
D100  
OSC2 pin  
COSC2  
-
-
15  
pF In XT, HS and LP modes  
when external clock is used to  
drive OSC1.  
D101  
D102  
All I/O pins and OSC2 (in RC mode) CIO  
-
-
-
-
50  
400  
pF  
pF  
2
CB  
SCL, SDA in I C mode  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
4: Automotive operating range is Advanced information for this device.  
DS30390B-page 202  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
21.4  
Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
2
1. TppS2ppS  
2. TppS  
3. TCC:ST  
4. Ts  
(I C specifications only)  
2
(I C specifications only)  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
2
I C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
2
TCC:ST (I C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 21-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 203  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
21.5  
Timing Diagrams and Specifications  
FIGURE 21-2: EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
3
3
4
2
CLKOUT  
TABLE 21-2: CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
Fos External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
4
MHz XT and RC osc mode  
MHz HS osc mode (PIC16C72-04)  
MHz HS osc mode (PIC16C72-20)  
kHz LP osc mode  
(Note 1)  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
4
MHz HS osc mode (PIC16C72-04)  
MHz HS osc mode (PIC16C72-10)  
4
10  
4
20  
MHz HS osc mode (PIC16C72-20)  
kHz LP osc mode  
5
200  
1
Tosc External CLKIN Period  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
XT and RC osc mode  
HS osc mode (PIC16C72-04)  
HS osc mode (PIC16C72-10)  
HS osc mode (PIC16C72-20)  
LP osc mode  
(Note 1)  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
100  
RC osc mode  
10,000  
250  
250  
XT osc mode  
HS osc mode (PIC16C72-04)  
HS osc mode (PIC16C72-10)  
50  
5
250  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
HS osc mode (PIC16C72-20)  
LP osc mode  
2
3
TCY  
Instruction Cycle Time (Note 1)  
200  
50  
2.5  
10  
DC  
TCY = 4/FOSC  
XT oscillator  
TosL, External Clock in (OSC1) High or  
TosH Low Time  
LP oscillator  
HS oscillator  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
25  
50  
15  
XT oscillator  
LP oscillator  
HS oscillator  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
DS30390B-page 204  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 21-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: Refer to Figure 21-1 for load conditions.  
TABLE 21-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
15  
15  
5
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
30  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
15  
15  
5
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
0.25TCY + 25  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
80 - 100  
Port out valid  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
TBD  
ns  
Port input invalid (I/O in hold time)  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
TBD  
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C72  
PIC16LC72  
PIC16C72  
PIC16LC72  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
20  
20  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 205  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 21-1 for load conditions.  
FIGURE 21-5: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
1
µs VDD = 5V, -40˚C to +125˚C  
Twdt  
Watchdog Timer Time-out Period  
7*  
18  
33*  
ms VDD = 5V, -40˚C to +125˚C  
(No Prescaler)  
32  
33  
34  
Tost  
Oscillation Start-up Timer Period  
1024TOSC  
72  
TOSC = OSC1 period  
ms VDD = 5V, -40˚C to +125˚C  
µs  
Tpwrt Power-up Timer Period  
28*  
132*  
1.1  
TIOZ  
I/O Hi-impedance from MCLR Low  
or Watchdog Timer Reset  
35  
TBOR  
Brown-out Reset pulse width  
100  
µs 3.8V VDD 4.2V  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390B-page 206  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 21-6: TIMER0 AND TIMER1 CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 21-1 for load conditions.  
TABLE 21-5: TIMER0 AND TIMER1 CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40  
Tt0H  
T0CKI High Pulse  
Width  
0.5TCY + 20*  
ns  
No Prescaler  
With Prescaler  
10*  
0.5TCY + 20*  
10*  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse No Prescaler  
Width  
With Prescaler  
T0CKI Period  
Greater of:  
ns N = prescale value  
(1, 2, 4, ..., 256)  
20µs or TCY + 40*  
N
45  
46  
47  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, no prescaler  
Synchronous, PIC16C72  
0.5Tcy + 20  
10*  
ns  
ns  
with prescaler  
PIC16LC72  
20*  
Asynchronous  
2Tcy  
ns  
ns  
ns  
T1CKI Low Time  
Synchronous, no prescaler  
Synchronous, PIC16C72  
0.5Tcy + 20  
10*  
with prescaler  
PIC16LC72  
20*  
Asynchronous  
2Tcy  
ns  
T1CKI input period Synchronous  
Greater of:  
20µs or TCY + 40*  
ns N = prescale value  
(1, 2, 4, 8)  
N
Asynchronous  
Greater of:  
20µs or 4Tcy  
ns  
Ft1  
Timer1 oscillator input frequency range  
(oscillator enabled by setting the T1OSCEN bit)  
DC  
200 kHz  
7Tosc  
48  
Tcke2tmrI Delay from external clock edge to timer increment  
These parameters are characterized but not tested.  
2Tosc  
*
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 207  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 21-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1)  
RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC2/CCP1  
(Compare or PWM Mode)  
53  
54  
Note: Refer to Figure 21-1 for load conditions.  
TABLE 21-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)  
Param Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
50  
TccL CCP1 input low time  
No Prescaler  
0.5TCY + 20*  
ns  
ns  
ns  
ns  
ns  
ns  
With Prescaler PIC16C72  
PIC16LC72  
10*  
20*  
51  
52  
TccH  
TccP  
No Prescaler  
0.5TCY + 20*  
10*  
CCP1 input high time  
CCP1 input period  
With Prescaler PIC16C72  
PIC16LC72  
20*  
3TCY + 40*  
N
ns N = prescale  
value (1,4 or 16)  
53  
54  
TccR CCP1 output rise time  
TccF CCP1 output fall time  
10  
10  
25  
25  
ns  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390B-page 208  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 21-8: SPI MODE TIMING  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
SDO  
77  
75, 76  
SDI  
74  
73  
Note: Refer to Figure 21-1 for load conditions  
TABLE 21-7: SPI MODE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
70  
TssL2scH,  
TssL2scL  
SSto SCKor SCKinput  
TCY  
ns  
71  
72  
73  
TscH  
TscL  
SCK input high time (slave mode)  
SCK input low time (slave mode)  
TCY + 20  
TCY + 20  
TCY  
ns  
ns  
ns  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK  
edge  
74  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK  
edge  
0.5TCY  
ns  
75  
76  
77  
78  
79  
80  
TdoR  
SDO data output rise time  
10  
10  
10  
10  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TdoF  
SDO data output fall time  
TssH2doZ  
TscR  
SSto SDO output hi-impedance  
SCK output rise time (master mode)  
SCK output fall time (master mode)  
TscF  
TscH2doV,  
TscL2doV  
SDO data output valid after SCK  
edge  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 209  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
2
FIGURE 21-9: I C BUS START/STOP BITS TIMING  
SCL  
93  
91  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 21-1 for load conditions  
2
TABLE 21-8: I C BUS START/STOP BITS REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min Typ Max Units  
Conditions  
90  
91  
92  
93  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
Only relevant for repeated START  
condition  
ns  
ns  
ns  
ns  
THD:STA START condition  
Hold time  
4000  
600  
After this period the first clock  
pulse is generated  
TSU:STO STOP condition  
Setup time  
4700  
600  
THD:STO STOP condition  
Hold time  
4000  
600  
DS30390B-page 210  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
2
FIGURE 21-10: I C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 21-1 for load conditions  
2
TABLE 21-9: I C BUS DATA REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock high time  
100 kHz mode  
400 kHz mode  
4.0  
0.6  
µs  
µs  
PIC16C72 must operate at a  
minimum of 1.5 MHz  
PIC16C72 must operate at a  
minimum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
PIC16C72 must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
PIC16C72 must operate at a  
minimum of 10 MHz  
SSP Module  
1.5TCY  
102  
103  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
SDA and SCL fall time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
90  
91  
TSU:STA START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for repeated  
START condition  
THD:STA START condition hold 100 kHz mode  
After this period the first clock  
pulse is generated  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
106  
107  
92  
THD:DAT Data input hold time  
0
0.9  
TSU:DAT Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
Note 2  
TSU:STO STOP condition setup 100 kHz mode  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
109  
110  
TAA  
Output valid from  
clock  
3500  
Note 1  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
Cb  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast-mode I C-bus device can be used in a standard-mode I C-bus system, but the requirement tsu;DAT 250 ns must  
then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a  
device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
2
TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I C bus specification) before the SCL line is  
released.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 211  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 21-10: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
120  
TckH2dtV  
SYNC XMIT (MASTER &  
SLAVE)  
Clock high to data out valid  
PIC16C72  
50  
100  
25  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16LC72  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time PIC16C72  
(Master Mode)  
PIC16LC72  
50  
Data out rise time and fall time  
PIC16C72  
25  
PIC16LC72  
50  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
TABLE 21-11: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
125  
TdtV2ckl  
TckL2dtl  
SYNC RCV (MASTER & SLAVE)  
Data hold before CK (DT hold time)  
15  
15  
ns  
ns  
126  
Data hold after CK (DT hold time)  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390B-page 212  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 21-12: A/D CONVERTER CHARACTERISTICS:  
(3)  
PIC16C72-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
PIC16C72-10 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
PIC16C72-20 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
(3)  
(3)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
NR  
Resolution  
8-bits  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
NINT Integral error  
less than  
±1 LSb  
NDIF Differential error  
less than  
±1 LSb  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
VSS AIN VREF  
NFS  
Full scale error  
less than  
±1 LSb  
NOFF Offset error  
less than  
±1 LSb  
Monotonicity  
guaranteed  
V
VREF Reference voltage  
3.0V  
VDD + 0.3  
VREF + 0.3  
10.0  
VAIN Analog input voltage VSS - 0.3  
V
ZAIN Recommended  
impedance of analog  
kΩ  
voltage source  
IAD  
A/D conversion cur-  
rent (VDD)  
180  
µA Average current consumption when  
A/D is on. (Note 1)  
IREF  
VREF input current  
(Note 2)  
1
10  
mA During sampling  
µA All other times  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
3: Automotive operating range is Advanced information for this device.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 213  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 21-13: A/D CONVERTER CHARACTERISTICS:  
(4)  
PIC16LC72-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
NR  
Resolution  
8-bits  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
NINT  
Integral error  
less than  
±1 LSb  
NDIF  
NFS  
Differential error  
Full scale error  
less than  
±1 LSb  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
VSS AIN VREF  
less than  
±1 LSb  
NOFF Offset error  
less than  
±1 LSb  
Monotonicity  
guaranteed  
V
VREF Reference voltage  
3.0V  
VDD + 0.3  
VREF + 0.3  
10.0  
VAIN  
ZAIN  
Analog input voltage VSS - 0.3  
V
Recommended  
kΩ  
impedance of ana-  
log voltage source  
IAD  
A/D conversion cur-  
rent (VDD)  
90  
µA Average current consumption when  
A/D is on. (Note 2)  
IREF  
VREF input current  
(Note 3)  
1
10  
mA During sampling  
µA All other times  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: These specifications apply if VREF = 3.0V and if VDD 3.0V. Vin must be between VSS and VREF  
2: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
3: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
4: Automotive operating range is Advanced information for this device.  
DS30390B-page 214  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 21-11: A/D CONVERSION TIMING  
BSF ADCON0, GO  
(TOSC/2) (1)  
1 Tcy  
131  
Q4  
130  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 21-14: A/D CONVERSION REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VREF 3.0V  
130  
TAD  
TAD  
A/D clock period  
1.6  
2.0  
µs  
µs VREF full range  
130  
A/D Internal RC  
Oscillator source  
ADCS1:ADCS0 = 11  
(RC oscillator source)  
µs PIC16LC72, VDD = 3.0V  
µs PIC16C72  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
131  
132  
TCNV Conversion time  
(not including S/H  
time) (Note 1)  
9.5TAD  
TSMP Sampling time  
Note 2  
20  
µs  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 13.1 for min conditions.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 215  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
NOTES:  
DS30390B-page 216  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
22.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C72  
NOT AVAILABLE AT THIS TIME  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 217  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
NOTES:  
DS30390B-page 218  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
23.0 ELECTRICAL CHARACTERISTICS FOR PIC16C73/74  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125˚C  
Storage temperature .............................................................................................................................. -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD and MCLR) ...................................................-0.6V to (VDD + 0.6V)  
Voltage on VDD with respect to VSS ................................................................................................................ 0 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) .................................................................................................0 to +14V  
Total power dissipation (Note 1)................................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD) .....................................................................................................................±20 mA  
Output clamp current, IOK (V0 < 0 or V0 > VDD)..............................................................................................................±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3) ...................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)..............................................200 mA  
Maximum current sunk by PORTC and PORTD (combined) (Note 3)..................................................................200 mA  
Maximum current sourced by PORTC and PORTD (combined) (Note 3).............................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLR pin rather than pulling  
this pin directly to VSS.  
Note 3: PORTD and PORTE are not implemented on the PIC16C73.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 219  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 23-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
DS30390B-page 220  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
23.1  
DC Characteristics:  
PIC16C73-04 (Commercial, Industrial)  
PIC16C74-04 (Commercial, Industrial)  
PIC16C73-10 (Commercial, Industrial)  
PIC16C74-10 (Commercial, Industrial)  
PIC16C73-20 (Commercial, Industrial)  
PIC16C74-20 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40˚C  
0˚C  
TA +85˚C for industrial and  
TA +70˚C for commercial  
Param  
No.  
Characteristic  
Sym  
VDD  
Min Typ† Max Units  
Conditions  
D001 Supply Voltage  
D001A  
4.0  
4.5  
-
-
6.0  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002 RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5*  
VSS  
-
-
V
Device in SLEEP mode  
D003  
VDD start voltage to  
VPOR  
-
-
V
See section on Power-on Reset for details  
ensure Power-on Reset  
D004  
VDD rise rate to ensure  
Power-on Reset  
SVDD 0.05*  
-
V/ms See section on Power-on Reset for details  
D010 Supply Current (Note 2,5) IDD  
-
-
2.7  
5
mA XT, RC osc configuration (PIC16C74-04)  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
13.5 30  
10.5 42  
1.5  
1.5  
mA HS osc configuration (PIC16C74-20)  
FOSC = 20 MHz, VDD = 5.5V  
D020 Power-down Current  
D021 (Note 3,5)  
D021A  
IPD  
-
-
-
µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
µA VDD = 4.0V, WDT disabled, -0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
21  
24  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 221  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
23.2  
DC Characteristics:  
PIC16LC73-04 (Commercial, Industrial)  
PIC16LC74-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40˚C  
0˚C  
TA +85˚C for industrial and  
TA +70˚C for commercial  
Param  
No.  
Characteristic  
Sym Min Typ† Max Units  
Conditions  
D001  
D002  
Supply Voltage  
VDD  
VDR  
3.0  
-
-
6.0  
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)  
Device in SLEEP mode  
RAM Data Retention  
Voltage (Note 1)  
1.5*  
D003  
D004  
D010  
VDD start voltage to  
ensure Power-on Reset  
VPOR  
-
VSS  
-
-
-
V
See section on Power-on Reset for details  
VDD rise rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See section on Power-on Reset for details  
Supply Current (Note 2,5) IDD  
-
-
2.0  
3.8  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
22.5 48  
7.5 30  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D020  
D021  
D021A  
Power-down Current  
(Note 3,5)  
IPD  
-
-
-
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
0.9 13.5 µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
0.9 18 µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
DS30390B-page 222  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
23.3  
DC Characteristics:  
PIC16C73-04 (Commercial, Industrial)  
PIC16C74-04 (Commercial, Industrial)  
PIC16C73-10 (Commercial, Industrial)  
PIC16C74-10 (Commercial, Industrial)  
PIC16C73-20 (Commercial, Industrial)  
PIC16C74-20 (Commercial, Industrial)  
PIC16LC73-04 (Commercial, Industrial)  
PIC16LC74-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +85˚C for industrial and  
0˚C TA +70˚C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 23.1 and  
Section 23.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D031  
D032  
with TTL buffer  
VSS  
VSS  
VSS  
-
-
-
0.5V  
0.2VDD  
0.2VDD  
V
V
V
with Schmitt Trigger buffer  
MCLR, RA4/T0CKI,OSC1  
(in RC mode)  
D033  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports  
VSS  
-
0.3VDD  
V
Note1  
VIH  
-
-
-
-
-
D040  
D040A  
D041  
D042  
with TTL buffer  
2.0  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
4.5V VDD 5.5V  
For VDD > 5.5V or VDD < 4.5V  
For entire VDD range  
0.8VDD  
0.8VDD  
0.8VDD  
with Schmitt Trigger buffer  
MCLR, RA4/T0CKI, RC7:RC4,  
RD7:RD4, RB0/INT  
D042A RE2:RE0, OSC1 (XT, HS and LP)  
0.7VDD  
0.9VDD  
50  
-
-
VDD  
VDD  
V
V
Note1  
D043  
D070  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current  
(Notes 2, 3)  
IPURB  
IIL  
250 400  
µA VDD = 5V, VPIN = VSS  
D060  
I/O ports  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-imped-  
ance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP osc  
configuration  
Output Low Voltage  
D080  
D083  
I/O ports  
VOL  
-
-
-
-
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config)  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 223  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40˚C TA +85˚C for industrial and  
0˚C TA +70˚C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 23.1 and  
Section 23.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Output High Voltage  
D090  
D092  
I/O ports (Note 3)  
VOH VDD - 0.7 -  
VDD - 0.7 -  
-
-
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config)  
Capacitive Loading Specs on  
Output Pins  
D100  
OSC2 pin  
COSC2  
-
-
15  
pF In XT, HS and LP modes when exter-  
nal clock is used to drive OSC1.  
D101  
D102  
All I/O pins and OSC2 (in RC  
CIO  
CB  
-
-
-
-
50  
400  
pF  
pF  
2
mode) SCL, SDA in I C mode  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
DS30390B-page 224  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
23.4  
Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
2
1. TppS2ppS  
2. TppS  
3. TCC:ST  
4. Ts  
(I C specifications only)  
2
(I C specifications only)  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
2
I C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
2
TCC:ST (I C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 23-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 100 pF for PORTD and PORTE outputs when used as system bus  
50 pF for all pins except OSC2, but including PORTD and PORTE outputs as  
ports  
15 pF for OSC2 output  
Note: PORTD and PORTE are not implemented on the PIC16C73.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 225  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
23.5  
Timing Diagrams and Specifications  
FIGURE 23-2: EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
3
3
4
2
CLKOUT  
TABLE 23-2: CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
Fos External CLKIN Frequency  
DC  
DC  
4
4
MHz XT and RC osc mode  
(Note 1)  
MHz HS osc mode (PIC16C73-04,  
PIC16C74-04)  
DC  
20  
MHz HS osc mode (PIC16C73-20,  
PIC16C74-20)  
DC  
DC  
0.1  
4
200  
4
kHz LP osc mode  
MHz RC osc mode  
MHz XT osc mode  
Oscillator Frequency  
(Note 1)  
4
4
MHz HS osc mode (PIC16C73-04,  
PIC16C74-04)  
4
4
10  
20  
MHz HS osc mode (PIC16C73-10,  
PIC16C74-10)  
MHz HS osc mode (PIC16C73-20,  
PIC16C74-20)  
5
200  
kHz LP osc mode  
1
Tosc External CLKIN Period  
250  
250  
ns  
ns  
XT and RC osc mode  
(Note 1)  
HS osc mode (PIC16C73-04,  
PIC16C74-04)  
100  
50  
ns  
ns  
HS osc mode (PIC16C73-10,  
PIC16C74-10)  
HS osc mode (PIC16C73-20,  
PIC16C74-20)  
5
µs  
ns  
ns  
ns  
LP osc mode  
RC osc mode  
XT osc mode  
Oscillator Period  
(Note 1)  
250  
250  
250  
10,000  
250  
HS osc mode (PIC16C73-04,  
PIC16C74-04)  
100  
50  
250  
250  
ns  
ns  
HS osc mode (PIC16C73-10,  
PIC16C74-10)  
HS osc mode (PIC16C73-20,  
PIC16C74-20)  
5
µs  
LP osc mode  
TCY = 4/FOSC  
2
TCY  
Instruction Cycle Time (Note 1)  
200  
DC  
ns  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
DS30390B-page 226  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 23-2: CLOCK TIMING REQUIREMENTS (Cont.d)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
3
TosL, External Clock in (OSC1) High or  
TosH Low Time  
50  
2.5  
10  
25  
50  
15  
ns  
µs  
ns  
ns  
ns  
ns  
XT oscillator  
LP oscillator  
HS oscillator  
XT oscillator  
LP oscillator  
HS oscillator  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 227  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 23-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
18  
19  
14  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: Refer to Figure 23-1 for load conditions.  
TABLE 23-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
15  
15  
5
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
30  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
15  
15  
5
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
0.25TCY + 25  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
80 - 100  
Port out valid  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
TBD  
ns  
Port input invalid (I/O in hold time)  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
TBD  
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C73/74  
PIC16LC73/74  
PIC16C73/74  
PIC16LC73/74  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
20  
20  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS30390B-page 228  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 23-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 23-1 for load conditions.  
TABLE 23-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
100  
7*  
ns VDD = 5V, -40˚C to +85˚C  
ms VDD = 5V, -40˚C to +85˚C  
Twdt  
Watchdog Timer Time-out Period  
18  
33*  
(No Prescaler)  
32  
33  
34  
Tost  
Oscillation Start-up Timer Period  
1024TOSC  
72  
TOSC = OSC1 period  
ms VDD = 5V, -40˚C to +85˚C  
ns  
Tpwrt Power up Timer Period  
I/O Hi-impedance from MCLR Low  
or Watchdog Timer Reset  
These parameters are characterized but not tested.  
28*  
132*  
100  
TIOZ  
*
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 229  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 23-5: TIMER0 AND TIMER1 CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 23-1 for load conditions.  
TABLE 23-5: TIMER0 AND TIMER1 CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5TCY + 20*  
10*  
Greater of:  
ns N = prescale value  
(1, 2, 4,..., 256)  
20µs or TCY + 40*  
N
45  
46  
47  
Tt1H  
Tt1L  
Tt1P  
T1CKI High  
Time  
Synchronous, no prescaler  
0.5Tcy + 20  
10*  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Synchronous,  
with prescaler  
PIC16C73/74  
PIC16LC73/74  
20*  
Asynchronous  
2Tcy  
T1CKI Low  
Time  
Synchronous, no prescaler  
0.5Tcy + 20  
10*  
Synchronous,  
with prescaler  
PIC16C73/74  
PIC16LC73/74  
20*  
Asynchronous  
Synchronous  
2Tcy  
T1CKI input  
period  
Greater of:  
20µs or TCY + 40*  
ns N = prescale value  
(1, 2, 4, 8)  
N
Asynchronous  
Greater of:  
20µs or 4Tcy  
ns  
Ft1  
Timer1 oscillator input frequency range  
(oscillator enabled by setting the T1OSCEN bit)  
DC  
200 kHz  
7Tosc  
48  
Tcke2tmrI Delay from external clock edge to timer increment  
These parameters are characterized but not tested.  
2Tosc  
*
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390B-page 230  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 23-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 23-1 for load conditions.  
54  
TABLE 23-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Parameter Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
50  
TccL CCP1 and CCP2 No Prescaler  
input low time  
0.5TCY + 20*  
ns  
PIC16C73/74  
PIC16LC73/74  
10*  
20*  
ns  
ns  
ns  
ns  
With Prescaler  
51  
52  
TccH  
No Prescaler  
0.5TCY + 20*  
10*  
CCP1 and CCP2  
input high time  
PIC16C73/74  
PIC16LC73/74  
With Prescaler  
20*  
ns  
TccP  
3TCY + 40*  
N
ns N = prescale value  
(1,4 or 16)  
CCP1 and CCP2 input period  
53  
54  
TccR CCP1 and CCP2 output rise time  
TccF CCP1 and CCP2 output fall time  
10  
10  
25  
25  
ns  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 231  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 23-7: PARALLEL SLAVE PORT TIMING FOR THE PIC16C74 ONLY  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 23-1 for load conditions  
TABLE 23-7: PARALLEL SLAVE PORT REQUIREMENTS FOR THE PIC16C74 ONLY  
Parameter  
No.  
Sym  
Characteristic  
Min Typ† Max Units Conditions  
62  
63  
TdtV2wrH Data in valid before WRor CS(setup time)  
TwrH2dtI WRor CSto data–in invalid (hold time)  
20  
20*  
35*  
60  
30  
ns  
ns  
ns  
ns  
ns  
PIC16C74  
PIC16LC74  
64  
65  
TrdL2dtV RDand CSto data–out valid  
TrdH2dtI RDor CSto data–out invalid  
10  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390B-page 232  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 23-8: SPI MODE TIMING  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
SDO  
77  
75, 76  
SDI  
74  
73  
Note: Refer to Figure 23-1 for load conditions  
TABLE 23-8: SPI MODE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
70  
TssL2scH,  
TssL2scL  
SSto SCKor SCKinput  
TCY  
ns  
71  
72  
73  
TscH  
TscL  
SCK input high time (slave mode)  
SCK input low time (slave mode)  
TCY + 20  
TCY + 20  
TCY  
ns  
ns  
ns  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK  
edge  
74  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK  
edge  
0.5TCY  
ns  
75  
76  
77  
78  
79  
80  
TdoR  
SDO data output rise time  
10  
10  
10  
10  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TdoF  
SDO data output fall time  
TssH2doZ  
TscR  
SSto SDO output hi-impedance  
SCK output rise time (master mode)  
SCK output fall time (master mode)  
TscF  
TscH2doV,  
TscL2doV  
SDO data output valid after SCK  
edge  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 233  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
2
FIGURE 23-9: I C BUS START/STOP BITS TIMING  
SCL  
93  
91  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 23-1 for load conditions  
2
TABLE 23-9: I C BUS START/STOP BITS REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min Typ Max Units  
Conditions  
90  
91  
92  
93  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
Only relevant for repeated START  
condition  
ns  
ns  
ns  
ns  
THD:STA START condition  
Hold time  
4000  
600  
After this period the first clock  
pulse is generated  
TSU:STO STOP condition  
Setup time  
4700  
600  
THD:STO STOP condition  
Hold time  
4000  
600  
DS30390B-page 234  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
2
FIGURE 23-10: I C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 23-1 for load conditions  
2
TABLE 23-10: I C BUS DATA REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock high time  
100 kHz mode  
400 kHz mode  
4.0  
0.6  
µs  
µs  
PIC16C73/74 must operate at  
a minimum of 1.5 MHz  
PIC16C73/74 must operate at  
a minimum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
PIC16C73/74 must operate at  
a minimum of 1.5 MHz  
400 kHz mode  
1.3  
PIC16C73/74 must operate at  
a minimum of 10 MHz  
SSP Module  
1.5TCY  
102  
103  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
SDA and SCL fall time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
90  
91  
TSU:STA START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for repeated  
START condition  
THD:STA START condition hold 100 kHz mode  
After this period the first clock  
pulse is generated  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
106  
107  
92  
THD:DAT Data input hold time  
0
0.9  
TSU:DAT Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
Note 2  
TSU:STO STOP condition setup 100 kHz mode  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
109  
110  
TAA  
Output valid from  
clock  
3500  
Note 1  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
Cb  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast-mode I C-bus device can be used in a standard-mode I C-bus system, but the requirement tsu;DAT 250 ns must  
then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a  
device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
2
TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I C bus specification) before the SCL line is  
released.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 235  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 23-11: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
121  
pin  
121  
RC7/RX/DT  
pin  
120  
122  
Note: Refer to Figure 23-1 for load conditions  
TABLE 23-11: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
120  
TckH2dtV  
SYNC XMIT (MASTER &  
SLAVE)  
Clock high to data out valid  
PIC16C73/74  
PIC16LC73/74  
50  
100  
25  
ns  
ns  
ns  
ns  
ns  
ns  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time PIC16C73/74  
(Master Mode)  
PIC16LC73/74  
50  
Data out rise time and fall time  
PIC16C73/74  
PIC16LC73/74  
25  
50  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 23-12: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
125  
pin  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 23-1 for load conditions  
TABLE 23-12: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
125  
TdtV2ckl  
SYNC RCV (MASTER & SLAVE)  
Data hold before CK (DT hold time)  
15  
15  
ns  
ns  
126  
TckL2dtl  
Data hold after CK (DT hold time)  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390B-page 236  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 23-13: A/D CONVERTER CHARACTERISTICS:  
PIC16C73-04 (COMMERCIAL, INDUSTRIAL)  
PIC16C74-04 (COMMERCIAL, INDUSTRIAL)  
PIC16C73-10 (COMMERCIAL, INDUSTRIAL)  
PIC16C74-10 (COMMERCIAL, INDUSTRIAL)  
PIC16C73-20 (COMMERCIAL, INDUSTRIAL)  
PIC16C74-20 (COMMERCIAL, INDUSTRIAL)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
NR  
Resolution  
8-bits  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
NINT Integral error  
less than  
±1 LSb  
NDIF Differential error  
less than  
±1 LSb  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
VSS AIN VREF  
NFS  
Full scale error  
less than  
±1 LSb  
NOFF Offset error  
less than  
±1 LSb  
Monotonicity  
guaranteed  
V
VREF Reference voltage  
3.0V  
VDD + 0.3  
VREF + 0.3  
10.0  
VAIN Analog input voltage VSS - 0.3  
V
ZAIN Recommended  
impedance of analog  
kΩ  
voltage source  
IAD  
A/D conversion cur-  
rent (VDD)  
180  
µA Average current consumption when  
A/D is on. (Note 1)  
IREF  
VREF input current  
(Note 2)  
1
10  
mA During sampling  
µA All other times  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 237  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 23-14: A/D CONVERTER CHARACTERISTICS:  
PIC16LC73-04 (COMMERCIAL, INDUSTRIAL)  
PIC16LC74-04 (COMMERCIAL, INDUSTRIAL)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
NR  
Resolution  
8-bits  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
NINT  
Integral error  
less than  
±1 LSb  
NDIF  
NFS  
Differential error  
Full scale error  
less than  
±1 LSb  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
VSS AIN VREF  
less than  
±1 LSb  
NOFF Offset error  
less than  
±1 LSb  
Monotonicity  
guaranteed  
V
VREF Reference voltage  
3.0V  
VDD + 0.3  
VREF + 0.3  
10.0  
VAIN  
ZAIN  
Analog input voltage VSS - 0.3  
V
Recommended  
kΩ  
impedance of ana-  
log voltage source  
IAD  
A/D conversion cur-  
rent (VDD)  
90  
µA Average current consumption when  
A/D is on. (Note 2)  
IREF  
VREF input current  
(Note 3)  
1
10  
mA During sampling  
µA All other times  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: These specifications apply if VREF = 3.0V and if VDD 3.0V. VIN must be between VSS and VREF  
2: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
3: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
DS30390B-page 238  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 23-13: A/D CONVERSION TIMING  
BSF ADCON0, GO  
(TOSC/2) (1)  
1 Tcy  
131  
Q4  
130  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 23-15: A/D CONVERSION REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
130  
TAD  
TAD  
A/D clock period  
1.6  
2.0  
µs  
VREF 3.0V  
µs VREF full range  
130  
A/D Internal RC  
Oscillator source  
ADCS1:ADCS0 = 11  
(RC oscillator source)  
µs PIC16LC73, PIC16LC74, VDD = 3.0V  
µs PIC16C73, PIC16C74  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
131  
132  
TCNV Conversion time  
(not including S/H  
time) (Note 1)  
9.5TAD  
TSMP Sampling time  
Note 2  
20  
µs  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 13.1 for min conditions.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 239  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
NOTES:  
DS30390B-page 240  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
24.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C73/74  
NOT AVAILABLE AT THIS TIME  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 241  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
NOTES:  
DS30390B-page 242  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
25.0 ELECTRICAL CHARACTERISTICS FOR PIC16C73A/74A  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125˚C  
Storage temperature .............................................................................................................................. -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD and MCLR) ...................................................-0.6V to (VDD + 0.6V)  
Voltage on VDD with respect to VSS ................................................................................................................ 0 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) .................................................................................................0 to +14V  
Total power dissipation (Note 1)................................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD) .....................................................................................................................±20 mA  
Output clamp current, IOK (V0 < 0 or V0 > VDD)..............................................................................................................±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3) ...................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)..............................................200 mA  
Maximum current sunk by PORTC and PORTD (combined) (Note 3)..................................................................200 mA  
Maximum current sourced by PORTC and PORTD (combined) (Note 3).............................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLR pin rather than pulling  
this pin directly to VSS.  
Note 3: PORTD and PORTE are not implemented on the PIC16C73A.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 243  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 25-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
DS30390B-page 244  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
(6)  
25.1  
DC Characteristics:  
PIC16C73A-04 (Commercial, Industrial, Automotive )  
(6)  
PIC16C74A-04 (Commercial, Industrial, Automotive )  
(6)  
PIC16C73A-10 (Commercial, Industrial, Automotive )  
(6)  
PIC16C74A-10 (Commercial, Industrial, Automotive )  
(6)  
PIC16C73A-20 (Commercial, Industrial, Automotive )  
(6)  
PIC16C74A-20 (Commercial, Industrial, Automotive )  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40˚C  
TA +125˚C for automotive,  
TA +85˚C for industrial and  
TA +70˚C for commercial  
DC CHARACTERISTICS  
-40˚C  
0˚C  
Param  
No.  
Characteristic  
Sym  
VDD  
Min Typ† Max Units  
Conditions  
D001 Supply Voltage  
D001A  
4.0  
4.5  
-
-
6.0  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002 RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5*  
VSS  
-
-
V
Device in SLEEP mode  
D003  
VDD start voltage to  
VPOR  
-
-
V
See section on Power-on Reset for details  
ensure Power-on Reset  
D004  
VDD rise rate to ensure  
Power-on Reset  
SVDD 0.05*  
-
V/ms See section on Power-on Reset for details  
D010 Supply Current (Note 2,5) IDD  
-
2.7  
5
mA XT, RC osc configuration (PIC16C74A-04)  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
-
-
13.5 30  
mA HS osc configuration (PIC16C74A-20)  
FOSC = 20 MHz, VDD = 5.5V  
D015 Brown-out Reset Current IBOR  
300* 500 µA BOR enabled VDD = 5.0V  
(Note 7)  
D020 Power-down Current  
D021 (Note 3,5)  
D021A  
IPD  
-
-
-
-
10.5 42 µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
1.5  
1.5  
21  
24  
µA VDD = 4.0V, WDT disabled, -0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
D021B  
1.5 TBD µA VDD = 4.0V, WDT disabled, -40°C to +125°C  
D023 Brown-out Reset Current IBOR  
-
300* 500 µA BOR enabled VDD = 5.0V  
(Note 7)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: Automotive operating range is Advanced information for this device.  
7: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 245  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
(6)  
25.2  
DC Characteristics:  
PIC16LC73A-04 (Commercial, Industrial, Automotive )  
(6)  
PIC16LC74A-04 (Commercial, Industrial, Automotive )  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40˚C  
TA +125˚C for automotive,  
TA +85˚C for industrial and  
TA +70˚C for commercial  
DC CHARACTERISTICS  
-40˚C  
0˚C  
Param  
No.  
Characteristic  
Sym Min Typ† Max Units  
Conditions  
D001  
D002  
Supply Voltage  
VDD  
VDR  
3.0  
-
-
6.0  
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)  
Device in SLEEP mode  
RAM Data Retention  
Voltage (Note 1)  
1.5*  
D003  
D004  
D010  
VDD start voltage to  
ensure Power-on Reset  
VPOR  
-
VSS  
-
-
-
V
See section on Power-on Reset for details  
VDD rise rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See section on Power-on Reset for details  
Supply Current (Note 2,5) IDD  
-
2.0  
3.8  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
D015  
-
-
22.5 48  
300* 500  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
Brown-out Reset Current IBOR  
µA BOR enabled VDD = 3.0V  
(Note 7)  
D020  
D021  
D021A  
D021B  
Power-down Current  
(Note 3,5)  
IPD  
-
-
-
-
7.5  
0.9  
0.9  
0.9  
30  
5
5
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, -40°C to +125°C  
10  
D023  
Brown-out Reset Current IBOR  
-
300* 500  
µA BOR enabled VDD = 3.0V  
(Note 7)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: Automotive operating range is Advanced information for this device.  
7: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
DS30390B-page 246  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
(4)  
25.3  
DC Characteristics:  
PIC16C73A-04 (Commercial, Industrial, Automotive )  
(4)  
PIC16C74A-04 (Commercial, Industrial, Automotive )  
(4)  
PIC16C73A-10 (Commercial, Industrial, Automotive )  
(4)  
PIC16C74A-10 (Commercial, Industrial, Automotive )  
(4)  
PIC16C73A-20 (Commercial, Industrial, Automotive )  
(4)  
PIC16C74A-20 (Commercial, Industrial, Automotive )  
(4)  
PIC16LC73A-04 (Commercial, Industrial, Automotive )  
(4)  
PIC16LC74A-04 (Commercial, Industrial, Automotive )  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +125˚C for automotive,  
-40˚C TA +85˚C for industrial and  
DC CHARACTERISTICS  
0˚C  
TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 25.1 and  
Section 25.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D031  
D032  
with TTL buffer  
VSS  
VSS  
VSS  
-
-
-
0.5V  
0.2VDD  
0.2VDD  
V
V
V
with Schmitt Trigger buffer  
MCLR, RA4/T0CKI,OSC1  
(in RC mode)  
D033  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports  
VSS  
-
0.3VDD  
V
Note1  
VIH  
-
-
-
-
-
D040  
D040A  
D041  
D042  
with TTL buffer  
2.0  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
4.5V VDD 5.5V  
For VDD > 5.5V or VDD < 4.5V  
For entire VDD range  
0.8VDD  
0.8VDD  
0.8VDD  
with Schmitt Trigger buffer  
MCLR, RA4/T0CKI, RC7:RC4,  
RD7:RD4, RB0/INT  
D042A RE2:RE0, OSC1 (XT, HS and LP)  
0.7VDD  
0.9VDD  
50  
-
-
VDD  
VDD  
V
V
Note1  
D043  
D070  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current  
(Notes 2, 3)  
IPURB  
IIL  
250 400  
µA VDD = 5V, VPIN = VSS  
D060  
I/O ports  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-imped-  
ance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP osc  
configuration  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
4: Automotive operating range is Advanced information for this device.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 247  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +125˚C for automotive,  
-40˚C TA +85˚C for industrial and  
DC CHARACTERISTICS  
0˚C  
TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 25.1 and  
Section 25.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Output Low Voltage  
D080  
I/O ports  
VOL  
-
-
-
-
-
-
-
-
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
D080A  
D083  
OSC2/CLKOUT (RC osc config)  
D083A  
Output High Voltage  
D090  
I/O ports (Note 3)  
VOH VDD - 0.7 -  
VDD - 0.7 -  
-
-
-
-
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D090A  
D092  
OSC2/CLKOUT (RC osc config)  
VDD - 0.7 -  
D092A  
VDD - 0.7 -  
Capacitive Loading Specs on  
Output Pins  
D100  
OSC2 pin  
COSC2  
-
-
15  
pF In XT, HS and LP modes when exter-  
nal clock is used to drive OSC1.  
D101  
D102  
All I/O pins and OSC2 (in RC  
CIO  
CB  
-
-
-
-
50  
400  
pF  
pF  
2
mode) SCL, SDA in I C mode  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
4: Automotive operating range is Advanced information for this device.  
DS30390B-page 248  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
25.4  
Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
2
1. TppS2ppS  
2. TppS  
3. TCC:ST  
4. Ts  
(I C specifications only)  
2
(I C specifications only)  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
2
I C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
2
TCC:ST (I C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 25-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 100 pF for PORTD and PORTE outputs when used as system bus  
50 pF for all pins except OSC2, but including PORTD and PORTE outputs as  
ports  
15 pF for OSC2 output  
Note: PORTD and PORTE are not implemented on the PIC16C73A.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 249  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
25.5  
Timing Diagrams and Specifications  
FIGURE 25-2: EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
3
3
4
2
CLKOUT  
TABLE 25-2: CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
Fos External CLKIN Frequency  
DC  
DC  
4
4
MHz XT and RC osc mode  
(Note 1)  
MHz HS osc mode (PIC16C73A-04,  
PIC16C74A-04)  
DC  
20  
MHz HS osc mode (PIC16C73A-20,  
PIC16C74A-20)  
DC  
DC  
0.1  
4
200  
4
kHz LP osc mode  
MHz RC osc mode  
MHz XT osc mode  
Oscillator Frequency  
(Note 1)  
4
4
MHz HS osc mode (PIC16C73A-04,  
PIC16C74A-04)  
4
4
10  
20  
MHz HS osc mode (PIC16C73A-10,  
PIC16C74A-10)  
MHz HS osc mode (PIC16C73A-20,  
PIC16C74A-20)  
5
200  
kHz LP osc mode  
1
Tosc External CLKIN Period  
250  
250  
ns  
ns  
XT and RC osc mode  
(Note 1)  
HS osc mode (PIC16C73A-04,  
PIC16C74A-04)  
100  
50  
ns  
ns  
HS osc mode (PIC16C73A-10,  
PIC16C74A-10)  
HS osc mode (PIC16C73A-20,  
PIC16C74A-20)  
5
µs  
ns  
ns  
ns  
LP osc mode  
RC osc mode  
XT osc mode  
Oscillator Period  
(Note 1)  
250  
250  
250  
10,000  
250  
HS osc mode (PIC16C73A-04,  
PIC16C74A-04)  
100  
50  
250  
250  
ns  
ns  
HS osc mode (PIC16C73A-10,  
PIC16C74A-10)  
HS osc mode (PIC16C73A-20,  
PIC16C74A-20)  
5
µs  
LP osc mode  
TCY = 4/FOSC  
2
TCY  
Instruction Cycle Time (Note 1)  
200  
DC  
ns  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
DS30390B-page 250  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 25-2: CLOCK TIMING REQUIREMENTS (Cont.d)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
3
TosL, External Clock in (OSC1) High or  
TosH Low Time  
50  
2.5  
10  
25  
50  
15  
ns  
µs  
ns  
ns  
ns  
ns  
XT oscillator  
LP oscillator  
HS oscillator  
XT oscillator  
LP oscillator  
HS oscillator  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 251  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 25-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
18  
19  
14  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
15  
15  
5
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
30  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
15  
15  
5
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
0.25TCY + 25  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
80 - 100  
Port out valid  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
TBD  
ns  
Port input invalid (I/O in hold time)  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
TBD  
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C73/74  
PIC16LC73/74  
PIC16C73/74  
PIC16LC73/74  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
20  
20  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS30390B-page 252  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 25-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 25-1 for load conditions.  
FIGURE 25-5: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 25-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
1
µs VDD = 5V, -40˚C to +125˚C  
Twdt  
Watchdog Timer Time-out Period  
7*  
18  
33*  
ms VDD = 5V, -40˚C to +125˚C  
(No Prescaler)  
32  
33  
34  
Tost  
Oscillation Start-up Timer Period  
28*  
1024TOSC  
132*  
1.1  
TOSC = OSC1 period  
Tpwrt Power up Timer Period  
72  
ms VDD = 5V, -40˚C to +125˚C  
TIOZ  
I/O Hi-impedance from MCLR Low  
µs  
or Watchdog Timer Reset  
35  
TBOR  
Brown-out Reset pulse width  
100  
µs 3.8V VDD 4.2V  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 253  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 25-6: TIMER0 AND TIMER1 CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-5: TIMER0 AND TIMER1 CLOCK REQUIREMENTS  
Parameter No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
Tt0L  
T0CKI Low Pulse Width  
T0CKI Period  
0.5TCY + 20*  
10*  
42  
45  
Tt0P  
Tt1H  
TCY + 40*  
N
ns N = prescale value  
(1, 2, 4,..., 256)  
T1CKI High Synchronous, no prescaler  
0.5Tcy + 20  
10*  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Time  
Synchronous, PIC16C73A/74A  
with prescaler  
PIC16LC73A/74A  
20*  
Asynchronous  
2Tcy  
46  
47  
Tt1L  
T1CKI Low Synchronous, no prescaler  
0.5Tcy + 20  
10*  
Time  
Synchronous, PIC16C73A/74A  
with prescaler  
PIC16LC73A/74A  
20*  
Asynchronous  
2Tcy  
Tt1P  
Ft1  
T1CKI input Synchronous  
period  
Tcy + 40*  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
4Tcy  
DC  
ns  
Timer1 oscillator input frequency range  
200 kHz  
(oscillator enabled by setting the T1OSCEN bit)  
48  
Tcke2tmrI Delay from external clock edge to timer increment  
These parameters are characterized but not tested.  
2Tosc  
7Tosc  
*
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390B-page 254  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 25-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 25-1 for load conditions.  
54  
TABLE 25-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
50  
TccL CCP1 and CCP2 No Prescaler  
input low time  
0.5TCY + 20*  
ns  
PIC16C73A/74A  
PIC16LC73A/74A  
10*  
20*  
ns  
ns  
ns  
ns  
With Prescaler  
51  
52  
TccH  
No Prescaler  
0.5TCY + 20*  
10*  
CCP1 and CCP2  
input high time  
PIC16C73A/74A  
PIC16LC73A/74A  
With Prescaler  
20*  
ns  
TccP  
3TCY + 40*  
N
ns N = prescale value  
(1,4 or 16)  
CCP1 and CCP2 input period  
53  
54  
TccR CCP1 and CCP2 output rise time  
TccF CCP1 and CCP2 output fall time  
10  
10  
25  
25  
ns  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 255  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 25-8: PARALLEL SLAVE PORT TIMING FOR THE PIC16C74A ONLY  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 25-1 for load conditions  
TABLE 25-7: PARALLEL SLAVE PORT REQUIREMENTS FOR THE PIC16C74A ONLY  
Parameter  
No.  
Sym  
Characteristic  
Min Typ† Max Units Conditions  
62  
63  
TdtV2wrH Data in valid before WRor CS(setup time)  
TwrH2dtI WRor CSto data–in invalid (hold time) PIC16C74A  
PIC16LC74A  
20  
20*  
35*  
60  
30  
ns  
ns  
ns  
ns  
ns  
64  
65  
TrdL2dtV RDand CSto data–out valid  
TrdH2dtI RDor CSto data–out invalid  
10  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390B-page 256  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 25-9: SPI MODE TIMING  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
SDO  
77  
75, 76  
SDI  
74  
73  
Note: Refer to Figure 25-1 for load conditions  
TABLE 25-8: SPI MODE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
70  
TssL2scH,  
TssL2scL  
SSto SCKor SCKinput  
TCY  
ns  
71  
72  
73  
TscH  
TscL  
SCK input high time (slave mode)  
SCK input low time (slave mode)  
TCY + 20  
TCY + 20  
TCY  
ns  
ns  
ns  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK  
edge  
74  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK  
edge  
0.5TCY  
ns  
75  
76  
77  
78  
79  
80  
TdoR  
SDO data output rise time  
10  
10  
10  
10  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TdoF  
SDO data output fall time  
TssH2doZ  
TscR  
SSto SDO output hi-impedance  
SCK output rise time (master mode)  
SCK output fall time (master mode)  
TscF  
TscH2doV,  
TscL2doV  
SDO data output valid after SCK  
edge  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 257  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
2
FIGURE 25-10: I C BUS START/STOP BITS TIMING  
SCL  
93  
91  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 25-1 for load conditions  
2
TABLE 25-9: I C BUS START/STOP BITS REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min Typ Max Units  
Conditions  
90  
91  
92  
93  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
Only relevant for repeated START  
condition  
ns  
ns  
ns  
ns  
THD:STA START condition  
Hold time  
4000  
600  
After this period the first clock  
pulse is generated  
TSU:STO STOP condition  
Setup time  
4700  
600  
THD:STO STOP condition  
Hold time  
4000  
600  
DS30390B-page 258  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
2
FIGURE 25-11: I C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 25-1 for load conditions  
2
TABLE 25-10: I C BUS DATA REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock high time  
100 kHz mode  
400 kHz mode  
4.0  
0.6  
µs  
µs  
PIC16C73A/74Amust operate  
at a minimum of 1.5 MHz  
PIC16C73A/74Amust operate  
at a minimum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
PIC16C73A/74Amust operate  
at a minimum of 1.5 MHz  
400 kHz mode  
1.3  
PIC16C73A/74Amust operate  
at a minimum of 10 MHz  
SSP Module  
1.5TCY  
102  
103  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
SDA and SCL fall time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
90  
91  
TSU:STA START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for repeated  
START condition  
THD:STA START condition hold 100 kHz mode  
After this period the first clock  
pulse is generated  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
106  
107  
92  
THD:DAT Data input hold time  
0
0.9  
TSU:DAT Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
Note 2  
TSU:STO STOP condition setup 100 kHz mode  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
109  
110  
TAA  
Output valid from  
clock  
3500  
Note 1  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
Cb  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast-mode I C-bus device can be used in a standard-mode I C-bus system, but the requirement tsu;DAT 250 ns must  
then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a  
device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
2
TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I C bus specification) before the SCL line is  
released.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 259  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 25-12: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
121  
pin  
121  
RC7/RX/DT  
pin  
120  
122  
Note: Refer to Figure 25-1 for load conditions  
TABLE 25-11: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
120  
TckH2dtV  
SYNC XMIT (MASTER &  
SLAVE)  
Clock high to data out valid  
PIC16C73A/74A  
PIC16LC73A/74A  
50  
100  
25  
ns  
ns  
ns  
ns  
ns  
ns  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time PIC16C73A/74A  
(Master Mode)  
PIC16LC73A/74A  
50  
Data out rise time and fall time PIC16C73A/74A  
PIC16LC73A/74A  
25  
50  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 25-13: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
125  
pin  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 25-1 for load conditions  
TABLE 25-12: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
125  
TdtV2ckl  
SYNC RCV (MASTER & SLAVE)  
Data hold before CK (DT hold time)  
15  
15  
ns  
ns  
126  
TckL2dtl  
Data hold after CK (DT hold time)  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390B-page 260  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 25-13: A/D CONVERTER CHARACTERISTICS:  
(3)  
PIC16C73A-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
PIC16C74A-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
PIC16C73A-10 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
PIC16C74A-10 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
PIC16C73A-20 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
PIC16C74A-20 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
(3)  
(3)  
(3)  
(3)  
(3)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
NR  
Resolution  
8-bits  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
NINT Integral error  
less than  
±1 LSb  
NDIF Differential error  
less than  
±1 LSb  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
VREF = VDD = 5.12V, VSS AIN VREF  
VSS AIN VREF  
NFS  
Full scale error  
less than  
±1 LSb  
NOFF Offset error  
less than  
±1 LSb  
Monotonicity  
guaranteed  
V
VREF Reference voltage  
3.0V  
VDD + 0.3  
VREF + 0.3  
10.0  
VAIN Analog input voltage VSS - 0.3  
V
ZAIN Recommended  
impedance of analog  
kΩ  
voltage source  
IAD  
A/D conversion cur-  
rent (VDD)  
180  
µA Average current consumption when  
A/D is on. (Note 1)  
IREF  
VREF input current  
(Note 2)  
1
10  
mA During sampling  
µA All other times  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
3: Automotive operating range is Advanced information for this device.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 261  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
TABLE 25-14: A/D CONVERTER CHARACTERISTICS:  
(4)  
PIC16LC73A-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
PIC16LC74A-04 (COMMERCIAL, INDUSTRIAL, AUTOMOTIVE )  
(4)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
NR  
Resolution  
8-bits  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
NINT  
Integral error  
less than  
±1 LSb  
NDIF  
NFS  
Differential error  
Full scale error  
less than  
±1 LSb  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
VREF = VDD = 3.0V (Note 1)  
VSS AIN VREF  
less than  
±1 LSb  
NOFF Offset error  
less than  
±1 LSb  
Monotonicity  
guaranteed  
V
VREF Reference voltage  
3.0V  
VDD + 0.3  
VREF + 0.3  
10.0  
VAIN  
ZAIN  
Analog input voltage VSS - 0.3  
V
Recommended  
kΩ  
impedance of ana-  
log voltage source  
IAD  
A/D conversion cur-  
rent (VDD)  
90  
µA Average current consumption when  
A/D is on. (Note 2)  
IREF  
VREF input current  
(Note 3)  
1
10  
mA During sampling  
µA All other times  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: These specifications apply if VREF = 3.0V and if VDD 3.0V. VIN must be between VSS and VREF  
2: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
3: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
4: Automotive operating range is Advanced information for this device.  
DS30390B-page 262  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
FIGURE 25-14: A/D CONVERSION TIMING  
BSF ADCON0, GO  
(TOSC/2) (1)  
1 Tcy  
131  
Q4  
130  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 25-15: A/D CONVERSION REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VREF 3.0V  
130  
TAD  
TAD  
A/D clock period  
1.6  
2.0  
µs  
µs VREF full range  
130  
A/D Internal RC  
Oscillator source  
ADCS1:ADCS0 = 11  
(RC oscillator source)  
3.0  
6.0  
9.0  
µs PIC16LC73A, PIC16LC74A,  
VDD = 3.0V  
2.0  
4.0  
6.0  
µs PIC16C73A, PIC16C74A  
131  
132  
TCNV Conversion time  
(not including S/H  
time) (Note 1)  
9.5TAD  
TSMP Sampling time  
Note 2  
20  
µs  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 13.1 for min conditions.  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 263  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
NOTES:  
DS30390B-page 264  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
26.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C73A/  
74A  
NOT AVAILABLE AT THIS TIME  
1995 Microchip Technology Inc.  
Preliminary  
DS30390B-page 265  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
Applicable Devices 70 71 71A 72 73 73A 74 74A  
NOTES:  
DS30390B-page 266  
Preliminary  
1995 Microchip Technology Inc.  
PIC16C7X  
27.0 PACKAGING INFORMATION  
27.1  
18-Lead Ceramic CERDIP Dual In-line with Window (300 mil)  
N
α
C
E1  
E
eA  
eB  
Pin No. 1  
Indicator  
Area  
D
S
S1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A3  
A2  
A1  
D1  
Package Group: Ceramic CERDIP Dual In-Line (CDP)  
Millimeters  
Inches  
Max  
Symbol  
Min  
Max  
Notes  
Min  
Notes  
α
0°  
10°  
0°  
10°  
A
5.080  
1.7780  
4.699  
4.445  
0.585  
1.651  
0.381  
23.622  
20.320  
8.382  
7.874  
2.540  
8.128  
10.160  
3.810  
18  
0.200  
0.070  
0.185  
0.175  
0.023  
0.065  
0.015  
0.930  
0.800  
0.330  
0.310  
0.100  
0.320  
0.400  
0.150  
18  
A1  
A2  
A3  
B
0.381  
3.810  
3.810  
0.355  
1.270  
0.203  
22.352  
20.320  
7.620  
5.588  
2.540  
7.366  
7.620  
3.175  
18  
0.015  
0.150  
0.150  
0.014  
0.050  
0.008  
0.880  
0.800  
0.300  
0.220  
0.100  
0.290  
0.300  
0.125  
18  
B1  
C
Typical  
Typical  
Typical  
Typical  
D
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Reference  
Typical  
Reference  
Typical  
N
S
0.508  
0.381  
1.397  
1.270  
0.020  
0.015  
0.055  
0.050  
S1  
1995 Microchip Technology Inc.  
DS30390B-page 267  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
27.2  
28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)  
N
C
E1 E  
eA  
eB  
α
Pin #1  
Indicator Area  
D
S1  
S
Base  
Plane  
Seating  
Plane  
A3  
A2  
L
A
A1  
B1  
e1  
B
D1  
Package Group: Ceramic Side Brazed Dual In-Line (CER)  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
Notes  
Min  
Notes  
α
0°  
10°  
5.030  
1.524  
3.506  
2.388  
0.508  
1.321  
0.305  
35.916  
33.147  
8.128  
7.620  
2.667  
7.874  
8.179  
4.064  
28  
0°  
10°  
A
3.937  
1.016  
2.921  
1.930  
0.406  
1.219  
0.228  
35.204  
32.893  
7.620  
7.366  
2.413  
7.366  
7.594  
3.302  
28  
0.155  
0.040  
0.115  
0.076  
0.016  
0.048  
0.009  
1.386  
1.295  
0.300  
0.290  
0.095  
0.290  
0.299  
0.130  
28  
0.198  
0.060  
0.138  
0.094  
0.020  
0.052  
0.012  
1.414  
1.305  
0.320  
0.300  
0.105  
0.310  
0.322  
0.160  
28  
A1  
A2  
A3  
B
B1  
C
Typical  
Typical  
D
D1  
E
Reference  
E1  
e1  
eA  
eB  
L
Typical  
Reference  
N
S
1.143  
0.533  
1.397  
0.737  
0.045  
0.021  
0.055  
0.029  
S1  
DS30390B-page 268  
1995 Microchip Technology Inc.  
PIC16C7X  
27.3  
40-Lead Ceramic CERDIP Dual In-line with Window (600 mil)  
N
E1  
E
α
C
Pin No. 1  
Indicator  
Area  
eA  
eB  
D
S
S1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A3  
A2  
A1  
D1  
Package Group: Ceramic CERDIP Dual In-Line (CDP)  
Millimeters  
Inches  
Max  
Symbol  
Min  
Max  
Notes  
Min  
Notes  
α
0°  
10°  
0°  
10°  
A
4.318  
0.381  
3.810  
3.810  
0.355  
1.270  
0.203  
5.715  
1.778  
4.699  
4.445  
0.585  
1.651  
0.381  
52.705  
48.260  
15.875  
15.240  
2.540  
16.002  
18.034  
3.810  
40  
0.170  
0.015  
0.150  
0.150  
0.014  
0.050  
0.008  
2.025  
1.900  
0.600  
0.510  
0.100  
0.590  
0.600  
0.125  
40  
0.225  
0.070  
0.185  
0.175  
0.023  
0.065  
0.015  
2.075  
1.900  
0.625  
0.600  
0.100  
0.630  
0.710  
0.150  
40  
A1  
A2  
A3  
B
B1  
C
Typical  
Typical  
Typical  
Typical  
D
51.435  
48.260  
15.240  
12.954  
2.540  
14.986  
15.240  
3.175  
40  
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Reference  
Typical  
Reference  
Typical  
N
S
1.016  
0.381  
2.286  
1.778  
0.040  
0.015  
0.090  
0.070  
S1  
1995 Microchip Technology Inc.  
DS30390B-page 269  
PIC16C7X  
27.4  
18-Lead Plastic Dual In-line (300 mil)  
N
α
C
E1  
E
eA  
eB  
Pin No. 1  
Indicator  
Area  
D
S
S1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A2  
A1  
D1  
Package Group: Plastic Dual In-Line (PLA)  
Millimeters  
Inches  
Symbol  
Min  
Max  
Notes  
Min  
Max  
Notes  
α
0°  
10°  
4.064  
0°  
10°  
0.160  
A
A1  
A2  
B
0.381  
3.048  
0.355  
1.524  
0.203  
22.479  
20.320  
7.620  
6.096  
2.489  
7.620  
7.874  
3.048  
18  
0.015  
0.120  
0.014  
0.060  
0.008  
0.885  
0.800  
0.300  
0.240  
0.098  
0.300  
0.310  
0.120  
18  
3.810  
0.559  
1.524  
0.381  
23.495  
20.320  
8.255  
7.112  
2.591  
7.620  
9.906  
3.556  
18  
0.150  
0.022  
0.060  
0.015  
0.925  
0.800  
0.325  
0.280  
0.102  
0.300  
0.390  
0.140  
18  
B1  
C
Reference  
Typical  
Reference  
Typical  
D
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Typical  
Typical  
Reference  
Reference  
N
S
0.889  
0.127  
0.035  
0.005  
S1  
DS30390B-page 270  
1995 Microchip Technology Inc.  
PIC16C7X  
27.5  
28-Lead Plastic Dual In-line (300 mil)  
N
α
E1  
E
C
eA  
eB  
Pin No. 1  
Indicator  
Area  
B2  
B1  
D
S
Base  
Plane  
Seating  
Plane  
L
Detail A  
B
Detail A  
B3  
A
A2  
A1  
e1  
D1  
Package Group: Plastic Dual In-Line (PLA)  
Millimeters  
Inches  
Max  
Symbol  
Min  
Max  
Notes  
Min  
Notes  
α
0°  
10°  
4.572  
0°  
10°  
A
3.632  
0.381  
3.175  
0.406  
1.016  
0.762  
0.203  
0.203  
0.143  
0.015  
0.125  
0.016  
0.040  
0.030  
0.008  
0.008  
1.385  
1.300  
0.310  
0.280  
0.100  
0.310  
0.320  
0.125  
28  
0.180  
A1  
A2  
B
3.556  
0.559  
1.651  
1.016  
0.508  
0.331  
35.179  
33.020  
8.382  
7.493  
2.540  
7.874  
9.652  
3.683  
-
0.140  
0.022  
0.065  
0.040  
0.020  
0.013  
1.395  
1.300  
0.330  
0.295  
0.100  
0.310  
0.380  
0.145  
-
B1  
B2  
B3  
C
Typical  
4 places  
4 places  
Typical  
Typical  
4 places  
4 places  
Typical  
D
34.163  
33.020  
7.874  
7.112  
2.540  
7.874  
8.128  
3.175  
28  
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Typical  
Typical  
Reference  
Reference  
N
S
0.584  
1.220  
0.023  
0.048  
1995 Microchip Technology Inc.  
DS30390B-page 271  
PIC16C7X  
27.6  
40-Lead Plastic Dual In-line (600 mil)  
N
α
E1  
E
C
eA  
eB  
Pin No. 1  
Indicator  
Area  
D
S
S1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A2  
A1  
D1  
Package Group: Plastic Dual In-Line (PLA)  
Millimeters  
Inches  
Symbol  
Min  
Max  
Notes  
Min  
Max  
Notes  
α
0°  
10°  
5.080  
0°  
10°  
0.200  
A
A1  
A2  
B
0.381  
3.175  
0.355  
1.270  
0.203  
0.015  
0.125  
0.014  
0.050  
0.008  
2.015  
1.900  
0.600  
0.530  
0.098  
0.600  
0.600  
0.115  
40  
4.064  
0.559  
1.778  
0.381  
52.197  
48.260  
15.875  
13.970  
2.591  
15.240  
17.272  
3.683  
40  
0.160  
0.022  
0.070  
0.015  
2.055  
1.900  
0.625  
0.550  
0.102  
0.600  
0.680  
0.145  
40  
B1  
C
Typical  
Typical  
Typical  
Typical  
D
51.181  
48.260  
15.240  
13.462  
2.489  
15.240  
15.240  
2.921  
40  
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Typical  
Typical  
Reference  
Reference  
N
S
1.270  
0.508  
0.050  
0.020  
S1  
DS30390B-page 272  
1995 Microchip Technology Inc.  
PIC16C7X  
27.7  
18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)  
e
B
h x 45°  
N
Index  
Area  
E
H
α
C
Chamfer  
h x 45°  
L
1
2
3
D
Base  
Plane  
CP  
Seating  
Plane  
A1  
A
Package Group: Plastic SOIC (SO)  
Millimeters  
Max  
Inches  
Symbol  
Min  
0°  
Notes  
Min  
Max  
Notes  
α
A
8°  
0°  
8°  
2.362  
0.101  
0.355  
0.241  
11.353  
7.416  
1.270  
10.007  
0.381  
0.406  
18  
2.642  
0.300  
0.483  
0.318  
11.735  
7.595  
1.270  
10.643  
0.762  
1.143  
18  
0.093  
0.004  
0.014  
0.009  
0.447  
0.292  
0.050  
0.394  
0.015  
0.016  
18  
0.104  
0.012  
0.019  
0.013  
0.462  
0.299  
0.050  
0.419  
0.030  
0.045  
18  
A1  
B
C
D
E
e
Reference  
Reference  
H
h
L
N
CP  
0.102  
0.004  
1995 Microchip Technology Inc.  
DS30390B-page 273  
PIC16C7X  
27.8  
28-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)  
e
B
N
h x 45°  
Index  
Area  
E
H
α
C
Chamfer  
h x 45°  
L
1
2
3
D
Base  
Plane  
CP  
Seating  
Plane  
A1  
A
Package Group: Plastic SOIC (SO)  
Millimeters  
Max  
Inches  
Symbol  
Min  
0°  
Notes  
Min  
Max  
Notes  
α
A
8°  
0°  
8°  
2.362  
0.101  
0.355  
0.241  
17.703  
7.416  
1.270  
10.007  
0.381  
0.406  
28  
2.642  
0.300  
0.483  
0.318  
18.085  
7.595  
1.270  
10.643  
0.762  
1.143  
28  
0.093  
0.004  
0.014  
0.009  
0.697  
0.292  
0.050  
0.394  
0.015  
0.016  
28  
0.104  
0.012  
0.019  
0.013  
0.712  
0.299  
0.050  
0.419  
0.030  
0.045  
28  
A1  
B
C
D
E
e
Typical  
Typical  
H
h
L
N
CP  
0.102  
0.004  
DS30390B-page 274  
1995 Microchip Technology Inc.  
PIC16C7X  
27.9  
20-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm)  
N
Index  
area  
E
H
α
C
L
1 2 3  
e
B
A
Base plane  
CP  
Seating plane  
D
A1  
Package Group: Plastic SSOP  
Millimeters  
Max  
Inches  
Symbol  
Min  
Notes  
Min  
Max  
Notes  
α
A
0°  
8°  
0°  
8°  
1.730  
0.050  
0.250  
0.130  
7.070  
5.200  
0.650  
7.650  
0.550  
20  
1.990  
0.210  
0.380  
0.220  
7.330  
5.380  
0.650  
7.900  
0.950  
20  
0.068  
0.002  
0.010  
0.005  
0.278  
0.205  
0.026  
0.301  
0.022  
20  
0.078  
0.008  
0.015  
0.009  
0.289  
0.212  
0.026  
0.311  
0.037  
20  
A1  
B
C
D
E
e
Reference  
Reference  
H
L
N
CP  
-
0.102  
-
0.004  
1995 Microchip Technology Inc.  
DS30390B-page 275  
PIC16C7X  
27.10 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm)  
N
Index  
area  
E
H
α
C
L
1 2 3  
e
B
A
Base plane  
CP  
Seating plane  
D
A1  
Package Group: Plastic SSOP  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
Notes  
Min  
Notes  
α
A
0°  
8°  
0°  
8°  
1.730  
0.050  
0.250  
0.130  
10.070  
5.200  
0.650  
7.650  
0.550  
28  
1.990  
0.210  
0.380  
0.220  
10.330  
5.380  
0.650  
7.900  
0.950  
28  
0.068  
0.002  
0.010  
0.005  
0.396  
0.205  
0.026  
0.301  
0.022  
28  
0.078  
0.008  
0.015  
0.009  
0.407  
0.212  
0.026  
0.311  
0.037  
28  
A1  
B
C
D
E
e
Reference  
Reference  
H
L
N
CP  
-
0.102  
-
0.004  
DS30390B-page 276  
1995 Microchip Technology Inc.  
PIC16C7X  
27.11 44-Lead Plastic Leaded Chip Carrier (Square)  
D
0.812/0.661  
N Pics  
.032/.026  
1.27  
.050  
2 Sides  
0.177  
.007  
S
B D-E S  
-A-  
0.177  
.007  
2 Sides  
-H-  
B A S  
9
S
A
D1  
A1  
-D-  
3
D3/E3  
D2  
0.101  
.004  
Seating  
Plane  
D
0.38  
.015  
-C-  
F-G  
E2  
S
S
3
-G-  
4
4
3
-F-  
8
E1  
E
0.38  
.015  
F-G  
-B-  
-E-  
3
0.177  
.007  
A F-G S  
S
10  
0.812/0.661  
.032/.026  
3
0.254  
.010  
0.254  
.010  
11  
Max  
Max  
11  
1.524  
.060  
0.508  
.020  
0.508  
.020  
Min  
-H-  
2
-H-  
2
6
6
-C-  
5
1.651  
.065  
1.651  
.065  
0.64  
.025  
0.533/0.331  
.021/.013  
Min  
R
R
1.14/0.64  
.045/.025  
1.14/0.64  
.045/.025  
0.177  
.007  
D-E S  
F-G S ,  
A
M
Package Group: Plastic Leaded Chip Carrier (PLCC)  
Millimeters  
Inches  
Max  
Symbol  
Min  
Max  
Notes  
Min  
Notes  
A
A1  
D
4.191  
2.413  
17.399  
16.510  
15.494  
12.700  
17.399  
16.510  
15.494  
12.700  
44  
4.572  
2.921  
0.165  
0.095  
0.685  
0.650  
0.610  
0.500  
0.685  
0.650  
0.610  
0.500  
44  
0.180  
0.115  
0.695  
0.656  
0.630  
0.500  
0.695  
0.656  
0.630  
0.500  
44  
17.653  
16.663  
16.002  
12.700  
17.653  
16.663  
16.002  
12.700  
44  
D1  
D2  
D3  
E
Reference  
Reference  
Reference  
Reference  
E1  
E2  
E3  
N
CP  
LT  
0.102  
0.004  
0.015  
0.203  
0.381  
0.008  
1995 Microchip Technology Inc.  
DS30390B-page 277  
PIC16C7X  
27.12 44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form))  
0.20 M C A-B S D S  
D
4
0.20 M H A-B S D S  
0.05 mm/mm A-B  
D1  
5
7
0.20 min.  
D3  
0.13 R min.  
Index  
area  
6
PARTING  
LINE  
0.13/0.30 R  
b
α
9
L
C
E3  
E1  
E
1.60 Ref.  
0.20 M C A-B S D S  
4
TYP 4x  
10  
0.20 M H A-B S D S  
0.05 mm/mm D  
5
7
e
B
A2  
A
Base  
Plane  
Seating  
Plane  
A1  
Package Group: Plastic MQFP  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
Notes  
Min  
Notes  
α
A
0°  
7°  
0°  
7°  
2.000  
0.050  
1.950  
0.300  
0.150  
12.950  
9.900  
8.000  
12.950  
9.900  
8.000  
0.800  
0.730  
44  
2.350  
0.250  
2.100  
0.450  
0.180  
13.450  
10.100  
8.000  
13.450  
10.100  
8.000  
0.800  
1.030  
44  
0.078  
0.002  
0.768  
0.011  
0.006  
0.510  
0.390  
0.315  
0.510  
0.390  
0.315  
0.031  
0.028  
44  
0.093  
0.010  
0.083  
0.018  
0.007  
0.530  
0.398  
0.315  
0.530  
0.398  
0.315  
0.032  
0.041  
44  
A1  
A2  
b
Typical  
Typical  
C
D
D1  
D3  
E
Reference  
Reference  
Reference  
Reference  
E1  
E3  
e
L
N
CP  
0.102  
0.004  
DS30390B-page 278  
1995 Microchip Technology Inc.  
PIC16C7X  
27.13 44-Lead Plastic Surface Mount (TQFP 10x10 mm Body 1.0/0.10 mm Lead Form)  
D
D1  
1.0ø (0.039ø) Ref.  
11°/13°(4x)  
0° Min  
Pin#1  
2
Pin#1  
2
E
E1  
Θ
11°/13°(4x)  
Detail B  
e
3.0ø (0.118ø) Ref.  
R1 0.08 Min  
R 0.08/0.20  
Option 1 (TOP side)  
Option 2 (TOP side)  
Gage Plane  
0.250  
A1  
Base Metal  
Lead Finish  
b
A2  
A
S
0.20  
Min  
L
L
c
c1  
L1  
Detail A  
Detail B  
1.00 Ref  
1.00 Ref.  
b1  
Detail A  
Detail B  
Package Group: Plastic TQFP  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
Notes  
Min  
Notes  
A
A1  
A2  
D
1.00  
0.05  
0.95  
11.75  
9.90  
11.75  
9.90  
0.45  
1.20  
0.15  
0.039  
0.002  
0.037  
0.463  
0.390  
0.463  
0.390  
0.018  
0.047  
0.006  
0.041  
0.482  
0.398  
0.482  
0.398  
0.030  
1.05  
12.25  
10.10  
12.25  
10.10  
0.75  
D1  
E
E1  
L
e
0.80 BSC  
0.031 BSC  
b
0.30  
0.30  
0.09  
0.09  
44  
0.45  
0.40  
0.20  
0.16  
44  
0.012  
0.012  
0.004  
0.004  
44  
0.018  
0.016  
0.008  
0.006  
44  
b1  
c
c1  
N
Θ
0°  
7°  
0°  
7°  
Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010”) per  
side. D1 and E1 dimensions including mold mismatch.  
2: Dimension “b” does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m  
(0.003”)max.  
3: This outline conforms to JEDEC MS-026.  
1995 Microchip Technology Inc.  
DS30390B-page 279  
PIC16C7X  
27.14 Package Marking Information  
18-Lead PDIP  
Example  
PIC16C71-04/P  
9452CBA  
MMMMMMMMMMMMM  
XXXXXXXXXXXXXXXX  
AABBCDE  
18-Lead SOIC  
Example  
PIC16C71  
MMMMMMMMMM  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
-20/50  
AABBCDE  
9447CBA  
18-Lead CERDIP Windowed  
Example  
MMMMMM  
XXXXXXXX  
PIC16C71  
/JW  
AABBCDE  
945/CBT  
20-Lead SSOP  
Example  
XXXXXXXX  
XXXXXXXX  
PIC16C70  
20I/SS025  
AABBCAE  
9517SBP  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C72  
20I/SS025  
AABBCAE  
9517SBP  
Legend:  
MM...M  
XX...X  
AA  
Microchip part number information  
Customer specific information*  
Year code (last 2 digits of calender year)  
Week code (week of January 1 is week '01’)  
BB  
C
Facility code of the plant at which wafer is manufactured.  
C = Chandler, Arizona, U.S.A.  
S = Tempe, Arizona, U.S.A.  
D
1
E
Mask revision number for microcontroller  
Assembly code of the plant or country of origin in which  
part was assembled.  
In the event the full Microchip part number cannot be marked on one  
line, it will be carried over to the next line thus limiting the number of  
available characters for customer specific information.  
Note:  
*
Standard OTP marking consists of Microchip part number, year code, week code,  
facility code, mask revision number, and assembly code. For OTP marking beyond  
this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
DS30390B-page 280  
1995 Microchip Technology Inc.  
PIC16C7X  
Package Marking Information (Cont’d)  
28-Lead PDIP (Skinny DIP)  
Example  
PIC16C73-10/SP  
MMMMMMMMMMMM  
XXXXXXXXXXXXXXX  
AABBCDE  
AABBCDE  
28-Lead Side Brazed Skinny Windowed  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
AABBCDE  
PIC16C73/JW  
9517CAT  
28-Lead SOIC  
Example  
MMMMMMMMMMMMMMMM  
XXXXXXXXXXXXXXXXXXXX  
PIC16C73-10/SO  
AABBCDE  
945/CAA  
40-Lead PDIP  
Example  
MMMMMMMMMMMMMM  
XXXXXXXXXXXXXXXXXX  
PIC16C74-04/P  
AABBCDE  
9512CAA  
Legend:  
MM...M  
XX...X  
AA  
Microchip part number information  
Customer specific information*  
Year code (last 2 digits of calender year)  
Week code (week of January 1 is week '01’)  
BB  
C
Facility code of the plant at which wafer is manufactured.  
C = Chandler, Arizona, U.S.A.  
S = Tempe, Arizona, U.S.A.  
D
1
E
Mask revision number for microcontroller  
Assembly code of the plant or country of origin in which  
part was assembled.  
In the event the full Microchip part number cannot be marked on one  
line, it will be carried over to the next line thus limiting the number of  
available characters for customer specific information.  
Note:  
*
Standard OTP marking consists of Microchip part number, year code, week code,  
facility code, mask revision number, and assembly code. For OTP marking beyond  
this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
1995 Microchip Technology Inc.  
DS30390B-page 281  
PIC16C7X  
Package Marking Information (Cont’d)  
40-Lead CERDIP Windowed  
Example  
MMMMMMMMM  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16C74/JW  
AABBCDE  
AABBCDE  
44-Lead PLCC  
Example  
MMMMMMMM  
XXXXXXXXXX  
XXXXXXXXXX  
AABBCDE  
PIC16C74  
-10/L  
AABBCDE  
44-Lead MQFP  
Example  
MMMMMMMM  
XXXXXXXXXX  
XXXXXXXXXX  
PIC16C74  
-10/PQ  
AABBCDE  
AABBCDE  
44-Lead TQFP  
Example  
MMMMMMMM  
XXXXXXXXXX  
XXXXXXXXXX  
PIC16C74A  
-10/TQ  
AABBCDE  
AABBCDE  
Legend:  
MM...M  
XX...X  
AA  
Microchip part number information  
Customer specific information*  
Year code (last 2 digits of calender year)  
BB  
Week code (week of January 1 is week '01’)  
C
Facility code of the plant at which wafer is manufactured.  
C = Chandler, Arizona, U.S.A.  
S = Tempe, Arizona, U.S.A.  
D
1
E
Mask revision number for microcontroller  
Assembly code of the plant or country of origin in which  
part was assembled.  
In the event the full Microchip part number cannot be marked on one  
line, it will be carried over to the next line thus limiting the number of  
available characters for customer specific information.  
Note:  
*
Standard OTP marking consists of Microchip part number, year code, week code,  
facility code, mask revision number, and assembly code. For OTP marking beyond  
this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
DS30390B-page 282  
1995 Microchip Technology Inc.  
PIC16C7X  
APPENDIX A:  
APPENDIX B: COMPATIBILITY  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
To convert code written for PIC16C5X to PIC16CXX,  
the user should take the following steps:  
1. Instruction word length is increased to 14-bits.  
This allows larger page sizes both in program  
memory (4K now as opposed to 512 before) and  
register file (192 bytes now versus 32 bytes  
before).  
1. Remove any program memory page select  
operations (PA2, PA1, PA0 bits) for CALL, GOTO.  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
2. A PC high latch register (PCLATH) is added to  
handle program memory paging. Bits PA2, PA1,  
PA0 are removed from STATUS register.  
3. Eliminate any data memory page switching.  
Redefine data variables to reallocate them.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
3. Data memory paging is redefined slightly. STA-  
TUS register is modified.  
5. Change reset vector to 0000h.  
4. Four new instructions have been added:  
RETURN, RETFIE, ADDLW, and SUBLW.  
Two instructions TRIS and OPTION are being  
phased out although they are kept for compati-  
bility with PIC16C5X.  
5. OPTION and TRIS registers are made address-  
able.  
6. Interrupt capability is added. Interrupt vector is  
at 0004h.  
7. Stack size is increased to 8 deep.  
8. Reset vector is changed to 0000h.  
9. Reset of all registers is revisited. Five different  
reset (and wake-up) types are recognized. Reg-  
isters are reset differently.  
10. Wake up from SLEEP through interrupt is  
added.  
11. Two separate timers, Oscillator Start-up Timer  
(OST) and Power-up Timer (PWRT) are  
included for more reliable power-up. These tim-  
ers are invoked selectively to avoid unnecessary  
delays on power-up and wake-up.  
12. PORTB has weak pull-ups and interrupt on  
change feature.  
13. T0CKI pin is also a port pin (RA4) now.  
14. FSR is made a full eight bit register.  
15. “In-circuit serial programming” is made possible.  
The user can program PIC16CXX devices using  
only five pins: VDD, VSS, MCLR/VPP, RB6 (clock)  
and RB7 (data in/out).  
16. PCON status register is added with a Power-on  
Reset status bit (POR).  
17. Code protection scheme is enhanced such that  
portions of the program memory can be pro-  
tected, while the remainder is unprotected.  
1995 Microchip Technology Inc.  
DS30390B-page 283  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
APPENDIX C: WHAT’S NEW  
APPENDIX D: WHAT’S CHANGED  
The format of this data sheet has been changed to be  
consistent with other product families. This ensures  
that important topics are covered across all PIC16/17  
microcontroller families. Here is an overview list of new  
features:  
All product and device family tables have been updated  
for the latest devices and specifications.  
TX8/9 (TXSTA<6>) has been changed to TX9 - 9-bit  
Transmit Enable bit.  
RC8/9 (RCSTA<6>) has been changed to RX9 - 9-bit  
Receive Enable bit.  
Added the following devices:  
PIC16C70  
RCD8 (RCSTA<0>) has been changed to RX9D.  
TXD8 (TXSTA<0>) has been changed to TX9D.  
PIC16C71A  
PIC16C72  
PIC16C73A  
PIC16C74A  
The above devices have an on-chip Brown-out Detect  
circuit added.  
A Brown-out Detect Enable Bit (BODEN) has been  
added to the Configuration Word register.  
A Brown-out Reset detect bit (BOR) has been added to  
the PCON register (for the devices with brown-out  
detect circuitry).  
A MCLR filter circuit has been added to minimize the  
influence of pin state changes to the MCLR line.  
DS30390B-page 284  
1995 Microchip Technology Inc.  
PIC16C7X  
APPENDIX E: PIC16/17 MICROCONTROLLERS  
TABLE E-1:  
PIC16C5X FAMILY OF DEVICES  
1995 Microchip Technology Inc.  
DS30390B-page 285  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
TABLE E-2:  
PIC16C62X FAMILY OF DEVICES  
DS30390B-page 286  
1995 Microchip Technology Inc.  
PIC16C7X  
TABLE E-3:  
PIC16C6X FAMILY OF DEVICES  
1995 Microchip Technology Inc.  
DS30390B-page 287  
PIC16C7X  
TABLE E-4:  
PIC16C7X FAMILY OF DEVICES  
DS30390B-page 288  
1995 Microchip Technology Inc.  
PIC16C7X  
TABLE E-5:  
PIC16C8X FAMILY OF DEVICES  
1995 Microchip Technology Inc.  
DS30390B-page 289  
PIC16C7X  
TABLE E-6:  
PIC17CXX FAMILY OF DEVICES  
DS30390B-page 290  
1995 Microchip Technology Inc.  
PIC16C7X  
E.1  
Pin Compatibility  
Devices that have the same package type and VDD,  
VSS and MCLR pin locations are said to be pin  
compatible. This allows these different devices to  
operate in the same socket. Compatible devices may  
only requires minor software modification to allow  
proper operation in the application socket (ex.,  
PIC16C56 and PIC16C61 devices). Not all devices in  
the same package size are pin compatible; for  
example, the PIC16C62 is compatible with the  
PIC16C63, but not the PIC16C55.  
Pin compatibility does not mean that the devices offer  
the same features. As an example, the PIC16C54 is  
pin compatible with the PIC16C71, but does not have  
an A/D converter, weak pull-ups on PORTB, or  
interrupts.  
TABLE E-7:  
PIN COMPATIBLE DEVICES  
Pin Compatible Devices  
Package  
PIC16C54, PIC16C54A,  
18 pin  
PIC16CR54, PIC16CR54A, PIC16CR54B,  
PIC16C56, PIC16CR56,  
(20 pin)  
PIC16C58A, PIC16CR58A, PIC16CR58B,  
PIC16C61,  
PIC16C620, PIC16C621, PIC16C622,  
PIC16C70, PIC16C71, PIC16C71A  
PIC16C83, PIC16CR83,  
PIC16C84, PIC16C84A, PIC16CR84  
PIC16C55, PIC16CR55,  
PIC16C57, PIC16CR57A, PIC16CR57B  
28 pin  
28 pin  
40 pin  
PIC16C62, PIC16CR62, PIC16C62A, PIC16C63,  
PIC16C72, PIC16C73, PIC16C73A  
PIC16C64, PIC16CR64, PIC16C64A,  
PIC16C65, PIC16C65A,  
PIC16C74, PIC16C74A  
PIC17C42, PIC17C43, PIC17C44  
40 pin  
1995 Microchip Technology Inc.  
DS30390B-page 291  
PIC16C7X  
NOTES:  
DS30390B-page 292  
1995 Microchip Technology Inc.  
PIC16C7X  
Block Diagrams  
INDEX  
A/D ............................................................................113  
Analog Input Model ...................................................114  
Capture .......................................................................73  
Compare .....................................................................73  
Interrupt Logic ...........................................................134  
On-Chip Reset Circuit ...............................................126  
PIC16C70 ...................................................................10  
PIC16C71 ...................................................................10  
PIC16C71A .................................................................10  
PIC16C72 ...................................................................11  
PIC16C73 ...................................................................12  
PIC16C73A .................................................................12  
PIC16C74 ...................................................................13  
PIC16C74A .................................................................13  
PORTC .......................................................................47  
PORTD (In I/O Port Mode) .........................................49  
PORTD and PORTE as a Parallel Slave Port ............54  
PORTE (In I/O Port Mode) .........................................52  
PWM ...........................................................................74  
RA3:RA0 and RA5 Port Pins ......................................43  
RA4/T0CKI Pin ...........................................................44  
RB3:RB0 Port Pins .....................................................45  
RB7:RB4 Port Pins .....................................................45  
SPI Master/Slave Connection .....................................80  
A
A/D  
Accuracy/Error ......................................................... 118  
ADCON0 Register .................................................... 109  
ADCON1 Register .................................................... 111  
ADIF bit .................................................................... 112  
Analog Input Model Block Diagram .......................... 114  
Analog-to-Digital Converter ...................................... 109  
Block Diagram .......................................................... 113  
Configuring Analog Port Pins ................................... 115  
Configuring the Interrupt .......................................... 112  
Configuring the Module ............................................ 112  
Connection Considerations ...................................... 119  
Conversion Clock ..................................................... 115  
Conversion Time ...................................................... 117  
Conversions ............................................................. 116  
Converter Characteristics ........ 170, 185, 213, 237, 261  
Delays ...................................................................... 114  
Effects of a Reset ..................................................... 118  
Equations ................................................................. 114  
Faster Conversion - Lower Resolution Tradeoff ...... 117  
Flowchart of A/D Operation ...................................... 119  
GO/DONE bit ........................................................... 112  
Internal Sampling Switch (Rss) Impedence ............. 114  
Operation During Sleep ........................................... 118  
Sampling Requirements ........................................... 114  
Sampling Time ......................................................... 114  
Source Impedence ................................................... 114  
Time Delays ............................................................. 114  
Transfer Function ..................................................... 119  
Using the CCP Trigger ............................................. 118  
Absolute Maximum Ratings ............. 159, 175, 197, 219, 243  
ACK ........................................................................ 84, 88, 89  
ADCS0 bit ........................................................................ 109  
ADCS1 bit ........................................................................ 109  
ADDLW Instruction .......................................................... 143  
ADDWF Instruction .......................................................... 143  
ADIE bit ........................................................................ 32, 34  
ADIF bit ...................................................................... 36, 109  
ADON bit .......................................................................... 109  
ADRES Register .......................................... 26, 28, 109, 112  
ALU ...................................................................................... 9  
ANDLW Instruction .......................................................... 143  
ANDWF Instruction .......................................................... 143  
Application Notes  
2
SSP (I C Mode) ..........................................................87  
SSP (SPI Mode) .........................................................79  
Timer0 ........................................................................59  
Timer0/WDT Prescaler ...............................................62  
Timer1 ........................................................................66  
Timer2 ........................................................................69  
USART Receive .......................................................101  
USART Transmit ........................................................99  
Watchdog Timer .......................................................137  
BODEN bit ........................................................................122  
BOR bit .......................................................................40, 128  
BRGH bit ......................................................................93, 95  
BSF Instruction .................................................................144  
BTFSC Instruction ............................................................144  
BTFSS Instruction ............................................................145  
C
C bit ....................................................................................30  
C Compiler (MP-C) ...................................................153, 157  
CALL Instruction ...............................................................145  
Capture/Compare/PWM  
Capture  
Block Diagram ....................................................73  
CCP1CON Register ...........................................72  
CCP1IF ...............................................................72  
CCPR1 ...............................................................72  
CCPR1H:CCPR1L .............................................72  
Mode ..................................................................72  
Prescaler ............................................................73  
CCP Timer Resources ................................................71  
Compare  
Block Diagram ....................................................73  
Mode ..................................................................73  
Software Interrupt Mode .....................................73  
Special Event Trigger .........................................73  
Special Trigger Output of CCP1 .........................73  
Special Trigger Output of CCP2 .........................73  
Interaction of Two CCP Modules ................................71  
AN546 ...................................................................... 109  
AN552 ........................................................................ 45  
AN556 ........................................................................ 41  
AN578 ........................................................................ 77  
AN594 ........................................................................ 71  
Architecture  
Harvard ........................................................................ 9  
Overview ...................................................................... 9  
von Neumann ............................................................... 9  
Assembler ........................................................................ 156  
B
Baud Rate Error ................................................................. 95  
Baud Rate Formula ............................................................ 95  
Baud Rates .................................................................. 96, 97  
BCF Instruction ................................................................ 144  
BF bit ...................................................................... 77, 88, 89  
1995 Microchip Technology Inc.  
DS30390B-page 293  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
PWM  
DECF Instruction ............................................................. 146  
DECFSZ Instruction ......................................................... 146  
Development Support .................................................. 5, 153  
Development Systems ..................................................... 157  
Development Tools .......................................................... 153  
Diagrams - See Block Diagrams  
Block Diagram .................................................... 74  
CCP1CON ......................................................... 74  
Duty Cycle .......................................................... 74  
Example Frequencies and Resolutions ............. 74  
Mode .................................................................. 74  
Period ................................................................. 74  
Digit Carry bit ....................................................................... 9  
Direct Addressing .............................................................. 42  
Dynamic Data Exchange (DDE) ...................................... 153  
Section ....................................................................... 71  
Special Event Trigger and A/D Conversions .............. 73  
Carry bit ................................................................................ 9  
CCP1IE bit ......................................................................... 34  
CCP1IF bit .................................................................... 36, 37  
CCP2IE bit ......................................................................... 38  
CCP2IF bit .......................................................................... 39  
CCPR1H Register ........................................................ 28, 71  
CCPR1L Register ............................................................... 71  
CCPR2H Register ........................................................ 28, 71  
CCPR2L Register ......................................................... 28, 71  
CCPxM0 bit ........................................................................ 72  
CCPxM1 bit ........................................................................ 72  
CCPxM2 bit ........................................................................ 72  
CCPxM3 bit ........................................................................ 72  
CCPxX bit ........................................................................... 72  
CCPxY bit ........................................................................... 72  
CHS0 bit ........................................................................... 109  
CHS1 bit ........................................................................... 109  
CKP bit ............................................................................... 78  
Clocking Scheme ............................................................... 20  
CLRF Instruction .............................................................. 145  
CLRW Instruction ............................................................. 145  
CLRWDT Instruction ........................................................ 146  
Code Examples  
Call of a Subroutine in Page 1 from Page 0 ............... 42  
Changing Between Capture Prescalers ..................... 73  
Changing Prescaler (Timer0 to WDT) ........................ 63  
Changing Prescaler (WDT to Timer0) ........................ 63  
Doing an A/D Conversion ........................................ 116  
I/O Programming ........................................................ 53  
Indirect Addressing .................................................... 42  
Initializing PORTA ...................................................... 43  
Initializing PORTB ...................................................... 45  
Initializing PORTC ...................................................... 47  
Loading the SSPBUF Register .................................. 79  
Saving W register and STATUS in RAM .................. 136  
Code Protection ....................................................... 121, 139  
COMF Instruction ............................................................. 146  
Computed GOTO ............................................................... 41  
Configuration Bits ............................................................. 121  
Configuration Word .......................................................... 122  
CP0 bit ............................................................................. 122  
CP1 bit ............................................................................. 122  
CREN bit ............................................................................ 94  
CS pin ................................................................................ 54  
CSRC bit ............................................................................ 93  
E
Electrical Characteristics  
PIC16C70 ................................................................ 159  
PIC16C71 ................................................................ 175  
PIC16C71A .............................................................. 159  
PIC16C72 ................................................................ 197  
PIC16C73 ................................................................ 219  
PIC16C73A .............................................................. 243  
PIC16C74 ................................................................ 219  
PIC16C74A .............................................................. 243  
External Brown-out Protection Circuit .............................. 132  
External Power-on Reset Circuit ...................................... 132  
F
Family of Devices  
PIC16C5X ................................................................ 285  
PIC16C62X .............................................................. 286  
PIC16C6X ................................................................ 287  
PIC16C7X ............................................................ 6, 288  
PIC16C8X ................................................................ 289  
PIC17CXX ............................................................... 290  
FERR bit ............................................................................ 94  
FOSC0 bit ........................................................................ 122  
FOSC1 bit ........................................................................ 122  
FSR Register ............................................. 26, 27, 28, 29, 42  
Fuzzy Logic Dev. System (fuzzyTECH -MP) ......... 153, 157  
G
General Description ............................................................. 5  
GIE bit ........................................................................ 32, 133  
GO/DONE bit ................................................................... 109  
GOTO Instruction ............................................................. 147  
Graphs and Charts, PIC16C71 ........................................ 189  
I
I/O Ports  
PORTA ...................................................................... 43  
PORTB ...................................................................... 45  
PORTC ...................................................................... 47  
PORTD ................................................................ 49, 54  
PORTE ...................................................................... 51  
Section ....................................................................... 43  
I/O Programming Considerations ...................................... 53  
2
I C, See Synchronous Serial Port  
IBF bit ................................................................................ 54  
IDLE_MODE ...................................................................... 92  
INCF Instruction ............................................................... 147  
INCFSZ Instruction .......................................................... 147  
In-Circuit Serial Programming .................................. 121, 139  
INDF Register ................................ 25–??, 25, 27, 28, 29, 42  
Indirect Addressing ............................................................ 42  
Initialization Condition for all Register .............................. 129  
Instruction Cycle ................................................................ 20  
Instruction Flow/Pipelining ................................................. 20  
Instruction Format ............................................................ 141  
D
D/A bit ................................................................................ 77  
DC bit ................................................................................. 30  
DC Characteristics  
PIC16C70 ................................................................ 161  
PIC16C71 ................................................................ 176  
PIC16C71A .............................................................. 161  
PIC16C72 ................................................................ 199  
PIC16C73 ................................................................ 221  
PIC16C73A .............................................................. 245  
PIC16C74 ................................................................ 221  
PIC16C74A .............................................................. 245  
DS30390B-page 294  
1995 Microchip Technology Inc.  
PIC16C7X  
Instruction Set  
ADDLW .................................................................... 143  
M
MCLR .......................................................................126, 129  
Memory  
ADDWF .................................................................... 143  
ANDLW .................................................................... 143  
ANDWF .................................................................... 143  
BCF .......................................................................... 144  
BSF .......................................................................... 144  
BTFSC ..................................................................... 144  
BTFSS ..................................................................... 145  
CALL ........................................................................ 145  
CLRF ........................................................................ 145  
CLRW ...................................................................... 145  
CLRWDT .................................................................. 146  
COMF ...................................................................... 146  
DECF ....................................................................... 146  
DECFSZ ................................................................... 146  
GOTO ...................................................................... 147  
INCF ......................................................................... 147  
INCFSZ .................................................................... 147  
IORLW ..................................................................... 147  
IORWF ..................................................................... 148  
MOVF ....................................................................... 148  
MOVLW ................................................................... 148  
MOVWF ................................................................... 148  
NOP ......................................................................... 149  
OPTION ................................................................... 149  
RETFIE .................................................................... 149  
RETLW .................................................................... 149  
RETURN .................................................................. 150  
RLF .......................................................................... 150  
RRF .......................................................................... 150  
SLEEP ..................................................................... 150  
SUBLW .................................................................... 151  
SUBWF .................................................................... 151  
SWAPF .................................................................... 152  
TRIS ......................................................................... 152  
XORLW .................................................................... 152  
XORWF .................................................................... 152  
Section ..................................................................... 141  
Summary Table ........................................................ 142  
INT Interrupt ..................................................................... 136  
INTCON Register ............................................................... 32  
INTE bit .............................................................................. 32  
INTEDG bit ................................................................. 31, 136  
Data Memory ..............................................................22  
Program Memory ........................................................21  
Program Memory Maps  
PIC16C70 ...........................................................21  
PIC16C71 ...........................................................21  
PIC16C71A ........................................................21  
PIC16C72 ...........................................................22  
PIC16C73 ...........................................................22  
PIC16C73A ........................................................22  
PIC16C74 ...........................................................22  
PIC16C74A ........................................................22  
Register File Maps  
PIC16C70 ...........................................................23  
PIC16C71 ...........................................................23  
PIC16C71A ........................................................23  
PIC16C72 ...........................................................24  
PIC16C73 ...........................................................24  
PIC16C73A ........................................................24  
PIC16C74 ...........................................................24  
PIC16C74A ........................................................24  
MOVF Instruction ..............................................................148  
MOVLW Instruction ..........................................................148  
MOVWF Instruction ..........................................................148  
MPASM Assembler ..................................................153, 156  
MP-C C Compiler .............................................................157  
MPSIM Software Simulator ......................................153, 157  
N
NOP Instruction ................................................................149  
O
OBF bit ...............................................................................54  
OERR bit ............................................................................94  
Opcode .............................................................................141  
OPTION Instruction ..........................................................149  
OPTION Register ...............................................................31  
Orthogonal ............................................................................9  
OSC selection ...................................................................121  
Oscillator  
HS .....................................................................123, 128  
LP .....................................................................123, 128  
RC ............................................................................123  
XT .....................................................................123, 128  
Oscillator Configurations ..................................................123  
Output of TMR2 ..................................................................69  
2
Inter-Integrated Circuit (I C) ............................................... 77  
Internal Sampling Switch (Rss) Impedence ..................... 114  
Interrupts .......................................................................... 121  
A/D ........................................................................... 133  
CCP1 ....................................................................... 133  
CCP2 ....................................................................... 133  
PortB Change .......................................................... 136  
PSP .......................................................................... 133  
RB7:RB4 Port Change ............................................... 45  
Section ..................................................................... 133  
SSP .......................................................................... 133  
TMR0 ....................................................................... 136  
TMR1 Overflow ........................................................ 133  
TMR2 Matches PR2 ................................................. 133  
USART RX ............................................................... 133  
USART TX ............................................................... 133  
INTF bit .............................................................................. 32  
IORLW Instruction ............................................................ 147  
IORWF Instruction ........................................................... 148  
IRP bit ................................................................................ 30  
P
P bit ....................................................................................77  
Packaging  
18-Lead CERDIP w/Window ....................................267  
18-Lead PDIP ...........................................................270  
18-Lead SOIC ...........................................................273  
20-Lead SSOP .........................................................275  
28-Lead Ceramic w/Window .....................................268  
28-Lead PDIP ...........................................................271  
28-Lead SOIC ...........................................................274  
28-Lead SSOP .........................................................276  
40-Lead CERDIP w/Window ....................................269  
40-Lead PDIP ...........................................................272  
44-Lead MQFP .........................................................278  
44-Lead PLCC ..........................................................277  
44-Lead TQFP ..........................................................279  
Paging, Program Memory ...................................................41  
L
Loading of PC .................................................................... 41  
1995 Microchip Technology Inc.  
DS30390B-page 295  
PIC16C7X  
Parallel Slave Port ........................................................ 49, 54  
PCFG0 bit ........................................................................ 111  
PCFG1 bit ........................................................................ 111  
PCFG2 bit ........................................................................ 111  
PCL Register ........................................25, 26, 27, 28, 29, 41  
PCLATH ........................................................................... 129  
PCLATH Register .................................25, 26, 27, 28, 29, 41  
PCON Register .......................................................... 40, 128  
PD bit ................................................................. 30, 126, 128  
PICDEM-1 Low-Cost PIC16/17 Demo Board ........... 153, 155  
PICDEM-2 Low-Cost PIC16CXX Demo Board ........ 153, 155  
PICMASTER Probes ........................................................ 154  
PICMASTER System Configuration ................................. 153  
PICMASTER RT In-Circuit Emulator ............................. 153  
PICSTART Low-Cost Development System ......... 153, 155  
PIE1 Register ..................................................................... 34  
PIE2 Register ..................................................................... 38  
Pin Compatible Devices ................................................... 291  
Pin Functions  
MCLR/VPP ..........................................14, 15, 16, 17, 18  
OSC1/CLKIN ......................................14, 15, 16, 17, 18  
OSC2/CLKOUT ..................................14, 15, 16, 17, 18  
RA0/AN0 ............................................14, 15, 16, 17, 18  
RA1/AN1 ............................................14, 15, 16, 17, 18  
RA2/AN2 ............................................14, 15, 16, 17, 18  
RA3/AN3/VREF ...................................14, 15, 16, 17, 18  
RA4/T0CKI .........................................14, 15, 16, 17, 18  
RA5/AN4/SS .................................................. 16, 17, 18  
RB0/INT .............................................14, 15, 16, 17, 18  
RB1 ....................................................14, 15, 16, 17, 18  
RB2 ....................................................14, 15, 16, 17, 18  
RB3 ....................................................14, 15, 16, 17, 18  
RB4 ....................................................14, 15, 16, 17, 18  
RB5 ....................................................14, 15, 16, 17, 18  
RB6 ....................................................14, 15, 16, 17, 18  
RB7 ....................................................14, 15, 16, 17, 18  
RC0/T1OSO/T1CKI ....................................... 16, 17, 19  
RC1/T1OSI ................................................................ 16  
RC1/T1OSI/CCP2 ................................................ 17, 19  
RC2/CCP1 ..................................................... 16, 17, 19  
RC3/SCK/SCL ............................................... 16, 17, 19  
RC4/SDI/SDA ................................................ 16, 17, 19  
RC5/SDO ....................................................... 16, 17, 19  
RC6 ............................................................................ 16  
RC6/TX/CK ............................................17, 19, 93–107  
RC7 ............................................................................ 16  
RC7/RX/DT ............................................17, 19, 93–107  
RD0/PSP0 .................................................................. 19  
RD1/PSP1 .................................................................. 19  
RD2/PSP2 .................................................................. 19  
RD3/PSP3 .................................................................. 19  
RD4/PSP4 .................................................................. 19  
RD5/PSP5 .................................................................. 19  
RD6/PSP6 .................................................................. 19  
RD7/PSP7 .................................................................. 19  
RE0/RD/AN5 .............................................................. 19  
RE1/WR/AN6 ............................................................. 19  
RE2/CS/AN7 .............................................................. 19  
VDD ....................................................14, 15, 16, 17, 19  
VSS .....................................................14, 15, 16, 17, 19  
Pinout Descriptions  
PIC16C73A ................................................................ 17  
PIC16C74 .................................................................. 18  
PIC16C74A ................................................................ 18  
PIR1 Register .................................................................... 36  
PIR2 Register .................................................................... 39  
POP ................................................................................... 41  
POR ......................................................................... 127, 128  
Oscillator Start-up Timer (OST) ....................... 121, 127  
Power Control Register (PCON) .............................. 128  
Power-on Reset (POR) ............................ 121, 127, 129  
Power-up Timer (PWRT) ................................. 121, 127  
Power-Up-Timer (PWRT) ........................................ 127  
Time-out Sequence ................................................. 128  
Time-out Sequence on Power-up ............................ 131  
TO .................................................................... 126, 128  
POR bit ...................................................................... 40, 128  
Port RB Interrupt .............................................................. 136  
PORTA ............................................................................ 129  
PORTA Register .............................................. 25, 26, 28, 43  
PORTB ............................................................................ 129  
PORTB Register .............................................. 25, 26, 28, 45  
PORTC ............................................................................ 129  
PORTC Register .................................................... 26, 28, 47  
PORTD ............................................................................ 129  
PORTD Register .......................................................... 28, 49  
PORTE ............................................................................ 129  
PORTE Register .......................................................... 28, 51  
Power-down Mode (SLEEP) ............................................ 138  
PR2 Register ............................................................... 29, 69  
Prescaler, Switching Between Timer0 and WDT ............... 63  
PRO MATE Universal Programmer ...................... 153, 155  
Probes ............................................................................. 154  
Program Branches ............................................................... 9  
Program Memory  
Paging ....................................................................... 41  
Program Memory Maps  
PIC16C70 .................................................................. 21  
PIC16C71 .................................................................. 21  
PIC16C71A ................................................................ 21  
PIC16C72 .................................................................. 22  
PIC16C73 .................................................................. 22  
PIC16C73A ................................................................ 22  
PIC16C74 .................................................................. 22  
PIC16C74A ................................................................ 22  
Program Verification ........................................................ 139  
PS0 bit ............................................................................... 31  
PS1 bit ............................................................................... 31  
PS2 bit ............................................................................... 31  
PSA bit ............................................................................... 31  
PSPIE bit ..................................................................... 35, 54  
PSPIF bit ...................................................................... 37, 54  
PSPMODE bit ........................................................ 49, 51, 54  
PUSH ................................................................................. 41  
PWRTE bit ....................................................................... 122  
R
R/W bit ............................................................. 84, 88, 89, 90  
R/W bit ............................................................................... 77  
RBIE bit .............................................................................. 32  
RBIF bit ................................................................ 32, 45, 136  
RBPU bit ............................................................................ 31  
RC Oscillator ............................................................ 125, 128  
RCIE bit ............................................................................. 35  
RCIF bit .............................................................................. 37  
RCSTA Register ................................................................ 94  
RCV_MODE ...................................................................... 92  
PIC16C70 ............................................................ 14, 15  
PIC16C71 ............................................................ 14, 15  
PIC16C71A .......................................................... 14, 15  
PIC16C72 .................................................................. 16  
PIC16C73 .................................................................. 17  
DS30390B-page 296  
1995 Microchip Technology Inc.  
PIC16C7X  
RD pin ................................................................................ 54  
Read-Modify-Write ............................................................. 53  
Register File ....................................................................... 22  
Registers  
SSPM2 bit ...........................................................................78  
SSPM3 bit ...........................................................................78  
SSPOV bit ....................................................................78, 88  
SSPSR Register .................................................................88  
SSPSTAT Register ...........................................27, 29, 77, 89  
Stack ...................................................................................41  
Overflows ....................................................................41  
Underflow ...................................................................41  
STATUS Register ...............................................................30  
SUBLW Instruction ...........................................................151  
SUBWF Instruction ...........................................................151  
SWAPF Instruction ...........................................................152  
SYNC bit .............................................................................93  
Synchronous Serial Port  
Initialization Conditions ............................................ 129  
Maps  
PIC16C70 .......................................................... 23  
PIC16C71 .......................................................... 23  
PIC16C71A ........................................................ 23  
PIC16C72 .......................................................... 24  
PIC16C73 .......................................................... 24  
PIC16C73A ........................................................ 24  
PIC16C74 .......................................................... 24  
PIC16C74A ........................................................ 24  
Reset Conditions ...................................................... 129  
Summary .............................................................. 25–28  
Reset ........................................................................ 121, 126  
Reset Conditions for Special Registers ........................... 129  
RETFIE Instruction ........................................................... 149  
RETLW Instruction ........................................................... 149  
RETURN Instruction ........................................................ 150  
RLF Instruction ................................................................. 150  
RP0 bit ......................................................................... 22, 30  
RP1 bit ............................................................................... 30  
RRF Instruction ................................................................ 150  
RX9 bit ............................................................................... 94  
RX9D bit ............................................................................. 94  
2
I C  
Addressing .........................................................88  
2
Addressing I C Devices .....................................84  
Arbitration ...........................................................86  
Block Diagram ....................................................87  
Clock Synchronization ........................................86  
Combined Format ...............................................85  
2
I C Operation .....................................................87  
2
I C Overview ......................................................83  
Initiating and Terminating Data Transfer ............83  
Master-Receiver Sequence ................................85  
Master-Transmitter Sequence ............................85  
Multi-master ........................................................86  
Multi-master Mode ..............................................91  
Reception ...........................................................89  
Slave Mode ........................................................88  
START ..........................................................83, 90  
START (S) ..........................................................91  
STOP ............................................................83, 84  
STOP (P) ............................................................91  
Transfer Acknowledge ........................................84  
Transmission ......................................................90  
SPI  
S
S bit .................................................................................... 77  
SCL .............................................................................. 88, 91  
SDA .............................................................................. 90, 91  
Serial Communication Interface (SCI) Module, See USART  
Serial Peripheral Interface (SPI) ........................................ 77  
Services  
One-Time-Programmable (OTP) ................................. 7  
Quick-Turnaround-Production (QTP) ........................... 7  
Serialized Quick-Turnaround Production (SQTP) ........ 7  
SLEEP ..................................................................... 121, 126  
SLEEP Instruction ............................................................ 150  
Software Simulator (MPSIM) ........................................... 157  
SPBRG Register ................................................................ 29  
Special Event Trigger ....................................................... 118  
Special Features of the CPU ........................................... 121  
Special Function Registers  
PIC16C70 .................................................................. 25  
PIC16C71 .................................................................. 25  
PIC16C71A ................................................................ 25  
PIC16C72 .................................................................. 26  
PIC16C73 .................................................................. 28  
PIC16C73A ................................................................ 28  
PIC16C74 .................................................................. 28  
PIC16C74A ................................................................ 28  
Special Function Registers, Section .................................. 25  
SPEN bit ............................................................................ 94  
SPI, See Synchronous Serial Port  
SREN bit ............................................................................ 94  
SS bit ................................................................................. 81  
SSPADD Register .................................................. 27, 29, 88  
SSPBUF Register ........................................................ 28, 88  
SSPCON Register ................................................. 28, 78, 89  
SSPEN bit .......................................................................... 78  
SSPIE bit ............................................................................ 34  
SSPIF bit .......................................................... 36, 37, 88, 89  
SSPM0 bit .......................................................................... 78  
SSPM1 bit .......................................................................... 78  
Block Diagram ....................................................79  
Block Diagram of Master/Slave Connection .......80  
Master Mode ......................................................80  
Serial Clock ........................................................79  
Serial Data In ......................................................79  
Serial Data Out ...................................................79  
Slave Select .......................................................79  
SPI Clock ............................................................80  
SPI Mode ............................................................79  
SSPBUF Register ...............................................80  
SSPSR Register .................................................80  
Synchronous Serial Port Module ........................................77  
T
T0CS bit ..............................................................................31  
T0IE bit ...............................................................................32  
T0IF bit ...............................................................................32  
T1CKPS0 bit .......................................................................65  
T1CKPS1 bit .......................................................................65  
T1CON Register .................................................................65  
T1OSCEN bit ......................................................................65  
T1SYNC bit .........................................................................65  
T2CKPS0 bit .......................................................................70  
T2CKPS1 bit .......................................................................70  
T2CON Register .................................................................70  
TAD ...................................................................................115  
Timer Modules, Overview ...................................................57  
Timer0  
RTCC ........................................................................129  
1995 Microchip Technology Inc.  
DS30390B-page 297  
PIC16C7X  
Timers  
Timer0  
USART Asynchronous Master Transmission .......... 100  
USART Asynchronous Reception ........................... 101  
USART RX Pin Sampling .......................................... 98  
USART Synchronous Receive ........................ 236, 260  
USART Synchronous Reception ............................. 106  
USART Synchronous Transmission ........ 104, 236, 260  
Wake-up from Sleep via Interrupt ............................ 138  
Watchdog Timer ...................... 168, 183, 206, 229, 253  
TMR0 Register ................................................................... 28  
TMR1CS bit ....................................................................... 65  
TMR1H Register .......................................................... 26, 28  
TMR1IE bit ......................................................................... 34  
TMR1IF bit ................................................................... 36, 37  
TMR1L Register ........................................................... 26, 28  
TMR1ON bit ....................................................................... 65  
TMR2 Register ............................................................. 26, 28  
TMR2IE bit ......................................................................... 34  
TMR2IF bit ................................................................... 36, 37  
TMR2ON bit ....................................................................... 70  
TO bit ................................................................................. 30  
TOUTPS0 bit ..................................................................... 70  
TOUTPS1 bit ..................................................................... 70  
TOUTPS2 bit ..................................................................... 70  
TOUTPS3 bit ..................................................................... 70  
TRIS Instruction ............................................................... 152  
TRISA Register ................................................ 25, 27, 29, 43  
TRISB Register ................................................ 25, 27, 29, 45  
TRISC Register ...................................................... 27, 29, 47  
TRISD Register ...................................................... 25, 29, 49  
TRISE Register ............................................................ 29, 51  
TRMT bit ............................................................................ 93  
Two’s Complement .............................................................. 9  
TX9 bit ............................................................................... 93  
TX9D bit ............................................................................. 93  
TXEN bit ............................................................................ 93  
TXIE bit .............................................................................. 35  
TXIF bit .............................................................................. 37  
TXSTA Register ................................................................. 93  
Block Diagram .................................................... 59  
External Clock .................................................... 61  
External Clock Timing ........................................ 61  
Increment Delay ................................................. 61  
Interrupt .............................................................. 59  
Interrupt Timing .................................................. 60  
Overview ............................................................ 57  
Prescaler ............................................................ 62  
Prescaler Block Diagram ................................... 62  
Section ............................................................... 59  
Switching Prescaler Assignment ........................ 63  
Synchronization ................................................. 61  
T0CKI ................................................................. 61  
T0IF .................................................................. 136  
Timing ................................................................ 59  
TMR0 Interrupt ................................................. 136  
Timer1  
Asynchronous Counter Mode ............................ 67  
Block Diagram .................................................... 66  
Capacitor Selection ............................................ 67  
External Clock Input ........................................... 66  
External Clock Input Timing ............................... 67  
Operation in Timer Mode ................................... 66  
Oscillator ............................................................ 67  
Overview ............................................................ 57  
Prescaler ...................................................... 66, 68  
Resetting of Timer1 Registers ........................... 68  
Resetting Timer1 using a CCP Trigger Output .. 68  
Synchronized Counter Mode ............................. 66  
T1CON ............................................................... 65  
TMR1H ............................................................... 67  
TMR1L ............................................................... 67  
Timer2  
Block Diagram .................................................... 69  
Module ............................................................... 69  
Overview ............................................................ 57  
Postscaler .......................................................... 69  
Prescaler ............................................................ 69  
T2CON ............................................................... 70  
U
UA bit ................................................................................. 77  
Universal Synchronous Asynchronous Receiver Transmitter  
(USART) ............................................................................ 93  
USART  
Timing Diagrams  
A/D Conversion ........................172, 187, 215, 239, 263  
Brown-out Reset ..............................127, 168, 206, 253  
Capture/Compare/PWM ...........................208, 231, 255  
CLKOUT and I/O ......................167, 182, 205, 228, 252  
External Clock Timing ..............166, 181, 204, 226, 250  
Asynchronous Mode .................................................. 99  
Asynchronous Receiver ........................................... 101  
Asynchronous Reception ......................................... 102  
Asynchronous Transmission ................................... 100  
Asynchronous Transmitter ......................................... 99  
Baud Rate Generator (BRG) ..................................... 95  
Receive Block Diagram ........................................... 101  
Sampling .................................................................... 98  
Synchronous Master Mode ...................................... 103  
Synchronous Master Reception .............................. 105  
Synchronous Master Transmission ......................... 103  
Synchronous Slave Mode ........................................ 107  
Synchronous Slave Reception ................................ 107  
Synchronous Slave Transmit ................................... 107  
Transmit Block Diagram ............................................ 99  
UV Erasable Devices ........................................................... 7  
2
I C Bus Data ............................................211, 235, 259  
2
I C Bus Start/Stop bits .............................210, 234, 258  
2
I C Clock Synchronization ......................................... 86  
2
I C Data Transfer Wait State ..................................... 84  
2
I C Multi-Master Arbitration ........................................ 86  
2
I C Reception ............................................................. 89  
2
I C Transmission ....................................................... 90  
Parallel Slave Port ........................................... 232, 256  
Power-up Timer .......................168, 183, 206, 229, 253  
Reset ........................................168, 183, 206, 229, 253  
SPI Mode .................................................209, 233, 257  
SPI Mode Timing (No SS Control) ............................. 81  
SPI Mode Timing (SS Control) ................................... 81  
Start-up Timer ..........................168, 183, 206, 229, 253  
Time-out Sequence .................................................. 131  
Timer0 ................................59, 169, 184, 207, 230, 254  
Timer0 Interrupt Timing .............................................. 60  
Timer0 with External Clock ........................................ 61  
Timer1 ......................................................207, 230, 254  
W
W Register  
ALU .............................................................................. 9  
Wake-up from SLEEP ...................................................... 138  
Watchdog Timer (WDT) ........................... 121, 126, 129, 137  
WCOL bit ........................................................................... 78  
DS30390B-page 298  
1995 Microchip Technology Inc.  
PIC16C7X  
WDT ................................................................................. 129  
Block Diagram .......................................................... 137  
Period ....................................................................... 137  
Programming Considerations .................................. 137  
Timeout .................................................................... 129  
WDTE bit .......................................................................... 122  
Word ................................................................................ 122  
WR pin ............................................................................... 54  
Figure 4-9:  
Figure 4-10:  
Figure 4-11:  
Status Register (Address 03h, 83h)...........30  
OPTION Register (Address 81h)...............31  
INTCON Register for PIC16C70/71/71A  
(Address 0Bh, 8Bh) ...................................32  
INTCON Register for PIC16C72/73/  
73A/74/74A (Address 0Bh, 8Bh)................33  
PIE1 Register PIC16C72 (Address 8Ch)...34  
PIE1 Register PIC16C73/73A/74/74A  
Figure 4-12:  
Figure 4-13:  
Figure 4-14:  
(Address 8Ch)............................................35  
PIR1 Register PIC16C72 (Address 0Ch)...36  
PIR1 Register PIC16C73/73A/74/74A  
X
Figure 4-15:  
Figure 4-16:  
XMIT_MODE ...................................................................... 92  
XORLW Instruction .......................................................... 152  
XORWF Instruction .......................................................... 152  
(Address 0Ch)............................................37  
PIE2 Register (Address 8Dh) ....................38  
PIR2 Register (Address 0Dh) ....................39  
PCON Register (Address 8Eh)..................40  
Loading of PC In Different Situations.........41  
Direct/Indirect Addressing..........................42  
Block Diagram of RA3:RA0 and RA5 Pins 43  
Block Diagram of RA4/T0CKI Pin..............44  
Block Diagram of RB3:RB0 Pins ...............45  
Block Diagram of RB7:RB4 Pins ...............45  
PORTC Block Diagram (Peripheral Output  
Override)....................................................47  
PORTD Block Diagram (in I/O Port Mode) 49  
TRISE Register (Address 89h) ..................51  
PORTE Block Diagram (in I/O Port Mode) 52  
Successive I/O Operation..........................53  
PORTD and PORTE Block Diagram  
Figure 4-17:  
Figure 4-18:  
Figure 4-19:  
Figure 4-20:  
Figure 4-21:  
Figure 5-1:  
Figure 5-2:  
Figure 5-3:  
Figure 5-4:  
Figure 5-5:  
Z
Z bit .................................................................................... 30  
Zero bit ................................................................................. 9  
LIST OF EXAMPLES  
Example 3-1: Instruction Pipeline Flow........................... 20  
Example 4-1: Call of a Subroutine in Page 1 from  
Page 0...................................................... 42  
Example 4-2: Indirect Addressing................................... 42  
Example 5-1: Initializing PORTA .................................... 43  
Figure 5-6:  
Figure 5-7:  
Figure 5-8:  
Figure 5-9:  
Figure 5-10:  
Example 5-2:  
Initializing PORTB ................................... 45  
Example 5-3: Initializing PORTC .................................... 47  
Example 5-4: Read-Modify-Write Instructions on an  
I/O Port..................................................... 53  
Example 7-1: Changing Prescaler (Timer0WDT)........ 63  
Example 7-2: Changing Prescaler (WDTTimer0)........ 63  
Example 8-1: Reading a 16-bit Free-Running Timer...... 67  
Example 10-1: Changing Between Capture Prescalers ... 73  
Example 11-1: Loading the SSPBUF (SSPSR)  
Register .................................................... 79  
Example 12-1: Calculating Baud Rate Error..................... 95  
Equation 13-1: A/D Minimum Charging Time ................. 114  
Example 13-1: Calculating the Minimum Required  
Sample Time .......................................... 114  
(Parallel Slave Port)...................................54  
Timer0 Block Diagram ...............................59  
Timer0 Timing: Internal Clock/No  
Prescale.....................................................59  
Timer0 Timing: Internal Clock/  
Prescale 1:2...............................................60  
Timer0 Interrupt Timing .............................60  
Timer0 Timing with External Clock ............61  
Block Diagram of the Timer0/WDT  
Prescaler....................................................62  
T1CON: Timer1 Control Register  
(Address 10h) ............................................65  
Timer1 Block Diagram ...............................66  
Timer2 Block Diagram ...............................69  
T2CON: Timer2 Control Register  
(Address 12h) ............................................70  
CCP1CON Register (Address 17h)/  
Figure 7-1:  
Figure 7-2:  
Figure 7-3:  
Figure 7-4:  
Figure 7-5:  
Figure 7-6:  
Example 13-2: Doing an A/D Conversion  
(PIC16C70/71/71A)................................ 116  
Example 13-3: Doing an A/D Conversion  
Figure 8-1:  
Figure 8-2:  
Figure 9-1:  
Figure 9-2:  
(PIC16C72/73/73A/74/74A).................... 116  
Example 13-4: 4-bit vs. 8-bit Conversion Times............. 117  
Example 14-1: Saving STATUS and W Registers in RAM  
(PIC16C70/71/71A)................................ 136  
Figure 10-1:  
Example 14-2: Saving STATUS and W Registers in RAM  
(PIC16C72/73/73A/74/74A).................... 136  
CCP2CON Register (Address 1Dh)...........72  
Capture Mode Operation Block Diagram...73  
Compare Mode Operation Block Diagram.73  
Simplified PWM Block Diagram.................74  
SSPSTAT: Sync Serial Port Status Register  
(Address 94h) ............................................77  
SSPCON: Sync Serial Port Control Register  
(Address 14h) ............................................78  
SSP Block Diagram (SPI Mode)................79  
SPI Master/Slave Connection....................80  
SPI Mode Timing (Master Mode or Slave  
Mode w/o SS Control)................................81  
SPI Mode Timing (Slave Mode with  
Figure 10-2:  
Figure 10-3:  
Figure 10-4:  
Figure 11-1:  
LIST OF FIGURES  
Figure 3-1:  
Figure 3-2:  
Figure 3-3:  
Figure 3-4:  
Figure 3-5:  
Figure 4-1:  
PIC16C70/71/71A Block Diagram............. 10  
PIC16C72 Block Diagram ......................... 11  
PIC16C73/73A Block Diagram.................. 12  
PIC16C74/74A Block Diagram.................. 13  
Clock/Instruction Cycle.............................. 20  
PIC16C70 Program Memory Map and  
Figure 11-2:  
Figure 11-3:  
Figure 11-4:  
Figure 11-5:  
Stack ......................................................... 21  
PIC16C71/71A Program Memory Map  
and Stack .................................................. 21  
PIC16C72 Program Memory Map and  
Stack ......................................................... 22  
PIC16C73/73A/74/74A Program Memory  
Map and Stack .......................................... 22  
PIC16C70/71 Register File Map ............... 23  
PIC16C71A Register File Map.................. 23  
PIC16C72 Register File Map .................... 24  
PIC16C73/73A/74/74A Register File  
Figure 4-2:  
Figure 4-3:  
Figure 4-4:  
Figure 11-6:  
SS Control) ................................................81  
Start and Stop Conditions..........................83  
7-bit Address Format .................................84  
Figure 11-7:  
Figure 11-8:  
Figure 11-9:  
2
I C 10-bit Address Format.........................84  
Figure 4-5:  
Figure 4-6:  
Figure 4-7:  
Figure 4-8:  
Figure 11-10: Slave-Receiver Acknowledge....................84  
Figure 11-11: Data Transfer Wait State ...........................84  
Figure 11-12: Master-transmitter Sequence ....................85  
Figure 11-13: Master-receiver Sequence.........................85  
Map ........................................................... 24  
1995 Microchip Technology Inc.  
DS30390B-page 299  
PIC16C7X  
Figure 11-14: Combined Format ..................................... 85  
Figure 11-15: Multi-master Arbitration (Two Masters)..... 86  
Figure 11-16: Clock Synchronization............................... 86  
Figure 14-16: External Brown-out Protection Circuit 1.. 132  
Figure 14-17: External Brown-out Protection Circuit 2.. 132  
Figure 14-18: Interrupt Logic for PIC16C70/71/71A...... 134  
Figure 14-19: Interrupt Logic for PIC16C72.................. 134  
Figure 14-20: Interrupt Logic for PIC16C73/73A........... 134  
Figure 14-21: Interrupt Logic for PIC16C74/74A........... 135  
Figure 14-22: INT Pin Interrupt Timing.......................... 135  
Figure 14-23: Watchdog Timer Block Diagram............. 137  
Figure 14-24: Summary of Watchdog Timer Registers. 137  
Figure 14-25: Wake-up from Sleep Through Interrupt .. 138  
Figure 14-26: Typical In-Circuit Serial Programming  
2
Figure 11-17: SSP Block Diagram (I C Mode)................ 87  
2
Figure 11-18: I C Waveforms for Reception  
(7-bit Address)........................................... 89  
2
Figure 11-19: I C Waveforms for Transmission  
(7-bit Address)........................................... 90  
Figure 11-20: Operation of the I2C Module in IDLE_MODE,  
RCV_MODE or XMIT_MODE ................... 92  
Figure 12-1:  
TXSTA: Transmit Status and Control  
Register (Address 98h) ............................. 93  
RCSTA: Receive Status and Control  
Connection.............................................. 139  
Figure 12-2:  
Figure 15-1:  
Figure 16-1:  
Figure 17-1:  
Figure 17-2:  
Figure 17-3:  
Figure 17-4:  
General Format for Instructions.............. 141  
PICMASTER System Configuration ....... 153  
Load Conditions...................................... 165  
External Clock Timing............................. 166  
CLKOUT and I/O Timing......................... 167  
Reset, Watchdog Timer, Oscillator Start-up  
Timer and Power-up Timer Timing ......... 168  
Brown-out Reset Timing ......................... 168  
Timer0 Clock Timings............................. 169  
A/D Conversion Timing........................... 172  
Load Conditions...................................... 180  
External Clock Timing............................. 181  
CLKOUT and I/O Timing......................... 182  
Reset, Watchdog Timer, Oscillator Start-up  
Timer and Power-up Timer Timing ......... 183  
Timer0 Clock Timings............................. 184  
A/D Conversion Timing........................... 187  
Typical RC Oscillator Frequency vs.  
Temperature ........................................... 189  
Typical RC Oscillator Frequency vs.  
VDD ......................................................... 189  
Typical RC Oscillator Frequency vs.  
VDD ......................................................... 189  
Typical RC Oscillator Frequency vs. VDD 190  
Typical Ipd vs. VDD Watchdog Timer  
Disabled 25°C......................................... 190  
Typical Ipd vs. VDD Watchdog Timer  
Register (Address 18h)............................. 94  
RX Pin Sampling Scheme (BRGH = 0)..... 98  
RX Pin Sampling Scheme (BRGH = 1)..... 98  
RX Pin Sampling Scheme (BRGH = 1)..... 98  
USART Transmit Block Diagram............... 99  
Asynchronous Master Transmission....... 100  
Asynchronous Master Transmission  
Figure 12-3:  
Figure 12-4:  
Figure 12-5:  
Figure 12-6:  
Figure 12-7:  
Figure 12-8:  
Figure 17-5:  
Figure 17-6:  
Figure 17-7:  
Figure 19-1:  
Figure 19-2:  
Figure 19-3:  
Figure 19-4:  
(Back to Back)......................................... 100  
USART Receive Block Diagram.............. 101  
Figure 12-9:  
Figure 12-10: Asynchronous Reception ........................ 101  
Figure 12-11: Synchronous Transmission..................... 104  
Figure 12-12: Synchronous Transmission  
(Through TXEN)...................................... 104  
Figure 12-13: Synchronous Reception (Master Mode,  
SREN)..................................................... 106  
Figure 19-5:  
Figure 19-6:  
Figure 20-1:  
Figure 13-1:  
Figure 13-2:  
Figure 13-3:  
Figure 13-4:  
ADCON0 Register, PIC16C70/71/71A  
(Address 08h).......................................... 109  
ADCON0 Register, PIC16C72/73/73A/74/  
74A (Address 1Fh).................................. 110  
ADCON1 Register for PIC16C70/71/71A  
(Address 88h).......................................... 110  
ADCON1 Register, PIC16C72/73/73A/74/  
74A (Address 9Fh).................................. 111  
A/D Block Diagram, PIC16C70/71/71A... 112  
A/D Block Diagram, PIC16C72/73/73A/74/  
74A.......................................................... 113  
Analog Input Model ................................. 114  
A/D Transfer Function............................. 119  
Flowchart of A/D Operation..................... 119  
Configuration Word for PIC16C71 .......... 121  
Configuration Word for PIC16C70/71A... 122  
Configuration Word for PIC16C73/74 ..... 122  
Configuration Word for PIC16C72/73A/  
Figure 20-2:  
Figure 20-3:  
Figure 20-4:  
Figure 20-5:  
Figure 13-5:  
Figure 13-6:  
Figure 20-6:  
Figure 20-7:  
Figure 20-8:  
Figure 20-9:  
Figure 13-7:  
Figure 13-8:  
Figure 13-9:  
Figure 14-1:  
Figure 14-2:  
Figure 14-3:  
Figure 14-4:  
Enabled 25°C.......................................... 190  
Maximum Ipd vs. VDD Watchdog  
Disabled.................................................. 191  
Maximum Ipd vs. VDD Watchdog  
Enabled................................................... 191  
Vth (Input Threshold Voltage) of I/O Pins vs.  
VDD ......................................................... 191  
74A.......................................................... 123  
Crystal/Ceramic Resonator Operation  
(HS, XT or LP OSC Configuration) ......... 123  
External Clock Input Operation  
(HS, XT or LP OSC Configuration) ......... 123  
External Parallel Resonant Crystal Oscillator  
Circuit...................................................... 125  
External Series Resonant Crystal Oscillator  
Circuit...................................................... 125  
RC Oscillator Mode................................. 125  
Figure 20-10: VIH, VIL of MCLR, T0CKI and OSC1 (in RC  
Mode) vs. VDD ........................................ 192  
Figure 20-11: VTH (Input Threshold Voltage) of OSC1 Input  
(in XT, HS, and LP Modes) vs. VDD........ 192  
Figure 20-12: Typical IDD vs. Freq (Ext Clock, 25°C).... 193  
Figure 20-13: Maximum, IDD vs. Freq (Ext Clock, -40° to  
+85°C) .................................................... 193  
Figure 20-14: Maximum Idd vs. Freq with A/D Off  
(Ext Clock, -55° to +125°C) .................... 194  
Figure 14-5:  
Figure 14-6:  
Figure 14-7:  
Figure 14-8:  
Figure 14-9:  
Figure 20-15: WDT Timer Time-out Period vs. VDD...... 194  
Figure 20-16: Transconductance (gm) of HS Oscillator vs.  
VDD ......................................................... 194  
Figure 14-10: Simplified Block Diagram of On-chip Reset  
Circuit...................................................... 126  
Figure 14-11: Brown-out Situations............................... 127  
Figure 14-12: Time-out Sequence on Power-up  
(MCLR not Tied to VDD): Case 1............. 131  
Figure 14-13: Time-out Sequence on Power-up  
(MCLR Not Tied To VDD): Case 2........... 131  
Figure 14-14: Time-out Sequence on Power-up  
(MCLR Tied to VDD)................................ 131  
Figure 14-15: External Power-on Reset Circuit (for Slow  
VDD Power-up)........................................ 132  
Figure 20-17: Transconductance (gm) of LP Oscillator vs.  
VDD ......................................................... 195  
Figure 20-18: Transconductance (gm) of XT Oscillator vs.  
VDD ......................................................... 195  
Figure 20-19: IOH vs. VOH, VDD = 3V.......................... 195  
Figure 20-20: IOH vs. VOH, VDD = 5V.......................... 195  
Figure 20-21: IOL vs. VOL, VDD = 3V ........................... 196  
Figure 20-22: IOL vs. VOL, VDD = 5V ........................... 196  
DS30390B-page 300  
1995 Microchip Technology Inc.  
PIC16C7X  
Figure 21-1:  
Figure 21-2:  
Figure 21-3:  
Figure 21-4:  
Load Conditions ...................................... 203  
External Clock Timing ............................. 204  
CLKOUT and I/O Timing......................... 205  
Reset, Watchdog Timer, Oscillator Start-up  
Timer and Power-up Timer Timing.......... 206  
Brown-out Reset Timing.......................... 206  
Timer0 and Timer1 Clock Timings .......... 207  
Capture/Compare/PWM Timings  
Table 5-2:  
Summary of Registers Associated with  
PORTA ......................................................44  
PORTB Functions......................................46  
Summary of Registers Associated with  
PORTB ......................................................46  
PORTC Functions......................................48  
Summary of Registers Associated with  
PORTC ......................................................48  
PORTD Functions......................................49  
Summary of Registers Associated with  
PORTD ......................................................50  
PORTE Functions......................................52  
Summary of Registers Associated with  
PORTE ......................................................52  
Registers Associated with Parallel Slave  
Port ............................................................55  
Registers Associated with Timer0,  
Table 5-3:  
Table 5-4:  
Figure 21-5:  
Figure 21-6:  
Figure 21-7:  
Table 5-5:  
Table 5-6:  
(CCP1) .................................................... 208  
SPI Mode Timing..................................... 209  
Table 5-7:  
Table 5-8:  
Figure 21-8:  
Figure 21-9:  
2
I C Bus Start/Stop Bits Timing................ 210  
2
Figure 21-10: I C Bus Data Timing ............................... 211  
Figure 21-11: A/D Conversion Timing ........................... 215  
Figure 23-1:  
Figure 23-2:  
Figure 23-3:  
Figure 23-4:  
Table 5-9:  
Table 5-10:  
Load Conditions ...................................... 225  
External Clock Timing ............................. 226  
CLKOUT and I/O Timing......................... 228  
Reset, Watchdog Timer, Oscillator Start-up  
Timer and Power-up Timer Timing.......... 229  
Timer0 and Timer1 Clock Timings .......... 230  
Capture/Compare/PWM Timings (CCP1 and  
CCP2) ..................................................... 231  
Parallel Slave Port Timing for the PIC16C74  
Only......................................................... 232  
SPI Mode Timing..................................... 233  
Table 5-11:  
Table 7-1:  
Table 7-2:  
Table 8-1:  
Table 8-2:  
Table 9-1:  
PIC16C70/71/71A......................................63  
Registers Associated with Timer0,  
PIC16C72/73/73A/74/74A .........................63  
Capacitor Selection for the Timer1  
Figure 23-5:  
Figure 23-6:  
Figure 23-7:  
Oscillator....................................................67  
Registers Associated with Timer1 as a  
Timer/Counter............................................68  
Registers Associated with Timer2 as a  
Timer/Counter............................................70  
CCP Mode - Timer Resource ....................71  
Interaction of Two CCP Modules...............71  
PWM Frequency vs. Resolution at  
20 MHz ......................................................74  
Example PWM Frequencies and Resolutions  
at 20 MHz ..................................................74  
Registers Associated with Capture and  
Timer1........................................................75  
Registers Associated with Compare and  
Timer1........................................................75  
Registers Associated with PWM and  
Figure 23-8:  
Figure 23-9:  
2
I C Bus Start/Stop Bits Timing................ 234  
2
Figure 23-10: I C Bus Data Timing ............................... 235  
Figure 23-11: USART Module: Synchronous Transmission  
(Master/Slave) Timing............................. 236  
Figure 23-12: USART Module: Synchronous Receive  
(Master/Slave) Timing............................. 236  
Table 10-1:  
Table 10-2:  
Table 10-3:  
Figure 23-13: A/D Conversion Timing ........................... 239  
Table 10-4:  
Table 10-5:  
Table 10-6:  
Table 10-7:  
Figure 25-1:  
Figure 25-2:  
Figure 25-3:  
Figure 25-4:  
Load Conditions ...................................... 249  
External Clock Timing ............................. 250  
CLKOUT and I/O Timing......................... 252  
Reset, Watchdog Timer, Oscillator Start-up  
Timer and Power-up Timer Timing.......... 253  
Brown-out Reset Timing.......................... 253  
Timer0 and Timer1 Clock Timings .......... 254  
Capture/Compare/PWM Timings (CCP1 and  
CCP2) ..................................................... 255  
Parallel Slave Port Timing for the PIC16C74A  
Only......................................................... 256  
Figure 25-5:  
Figure 25-6:  
Figure 25-7:  
Timer2........................................................76  
Registers Associated with SPI Operation..82  
Table 11-1:  
Table 11-2:  
Table 11-3:  
Table 11-4:  
Table 12-1:  
Table 12-2:  
2
I C Bus Terminology..................................83  
Figure 25-8:  
Figure 25-9:  
Data Transfer Received Byte Actions........88  
2
Registers Associated with I C Operation...91  
SPI Mode Timing..................................... 257  
Baud Rate Formula....................................95  
Registers Associated with Baud Rate  
Generator...................................................95  
Baud Rates for Synchronous Mode...........96  
Baud Rates for Asynchronous Mode  
2
Figure 25-10: I C Bus Start/Stop Bits Timing................ 258  
Figure 25-11: I C Bus Data Timing ............................... 259  
Figure 25-12: USART Module: Synchronous Transmission  
(Master/Slave) Timing............................. 260  
2
Table 12-3:  
Table 12-4:  
Figure 25-13: USART Module: Synchronous Receive  
(Master/Slave) Timing............................. 260  
Figure 25-14: A/D Conversion Timing ........................... 263  
(BRGH = 0)................................................96  
Baud Rates for Asynchronous Mode  
Table 12-5:  
Table 12-6:  
Table 12-7:  
Table 12-8:  
Table 12-9:  
Table 12-10:  
Table 12-11:  
Table 13-1:  
Table 13-2:  
(BRGH = 1)................................................97  
Registers Associated with Asynchronous  
Transmission ...........................................100  
Registers Associated with Asynchronous  
Reception.................................................102  
Registers Associated with Synchronous  
Master Transmission ...............................104  
Registers Associated with Synchronous  
Master Reception.....................................105  
Registers Associated with Synchronous  
Slave Transmission .................................108  
Registers Associated with Synchronous  
Slave Reception.......................................108  
TAD vs. Device Operating Frequencies,  
PIC16C71 ................................................115  
TAD vs. Device Operating Frequencies,  
PIC16C70/71A/72/73/73A/74/74A...........115  
LIST OF TABLES  
Table 1-1:  
Table 3-1:  
Table 3-2:  
Table 3-3:  
Table 3-4:  
Table 3-5:  
Table 4-1:  
PIC16C7X Family of Devices...................... 6  
PIC16C70/71A Pinout Description............ 14  
PIC16C71 Pinout Description ................... 15  
PIC16C72 Pinout Description ................... 16  
PIC16C73/73A Pinout Description............ 17  
PIC16C74/74A Pinout Description............ 18  
PIC16C70/71/71A Special Function Register  
Summary................................................... 25  
PIC16C72 Special Function Register  
Summary................................................... 26  
PIC16C73/73A/74/74A Special Function  
Register Summary .................................... 28  
PORTA Functions ..................................... 44  
Table 4-2:  
Table 4-3:  
Table 5-1:  
1995 Microchip Technology Inc.  
DS30390B-page 301  
PIC16C7X  
Table 13-3:  
Summary of A/D Registers, PIC16C70/71/  
Table 19-7:  
A/D Converter Characteristics:  
71A.......................................................... 120  
Summary of A/D Registers, PIC16C72... 120  
Summary of A/D Registers, PIC16C73/73A/  
74/74A..................................................... 120  
Ceramic Resonators PIC16C71.............. 124  
Capacitor Selection for Crystal Oscillator for  
PIC16C71................................................ 124  
Ceramic Resonators PIC16C70/71A/72/73/  
73A/74/74A ............................................. 124  
Capacitor Selection for Crystal Oscillator for  
PIC16C70/71A/72/73/73A/74/74A .......... 124  
Time-out in Various Situations, PIC16C71/  
73/74 ....................................................... 128  
Time-out in Various Situations, PIC16C70/  
71A/72/73A/74A...................................... 128  
Status Bits and Their Significance,  
PIC16LC71-04 (Commercial, Industrial). 186  
A/D Conversion Requirements ............... 187  
RC Oscillator Frequencies...................... 190  
Input Capacitance* ................................. 196  
Cross Reference of Device Specs for  
Oscillator Configurations and Frequencies  
of Operation (Commercial Devices)........ 198  
Clock Timing Requirements.................... 204  
CLKOUT and I/O Timing Requirements . 205  
Reset, Watchdog Timer, Oscillator  
Table 13-4:  
Table 13-5:  
Table 19-8:  
Table 20-1:  
Table 20-2:  
Table 21-1:  
Table 14-1:  
Table 14-2:  
Table 14-3:  
Table 14-4:  
Table 14-5:  
Table 14-6:  
Table 14-7:  
Table 14-8:  
Table 21-2:  
Table 21-3:  
Table 21-4:  
Start-up Timer and Power-up Timer  
Requirements ......................................... 206  
Timer0 and Timer1 Clock Requirements 207  
Capture/Compare/PWM Requirements  
(CCP1).................................................... 208  
SPI Mode Requirements......................... 209  
Table 21-5:  
Table 21-6:  
Table 21-7:  
Table 21-8:  
Table 21-9:  
Table 21-10:  
2
PIC16C71/73/74...................................... 128  
Status Bits and Their Significance,  
I C Bus Start/Stop Bits Requirements.... 210  
2
I C Bus Data Requirements ................... 211  
PIC16C70/71A/72/73A/74A .................... 128  
Reset Condition for Special Registers .... 129  
Initialization Conditions for all Registers . 129  
Opcode Field Descriptions...................... 141  
PIC16CXX Instruction Set....................... 142  
PICMASTER Probe Specification ........... 154  
Development System Packages ............. 157  
Cross Reference of Device Specs for  
Oscillator Configurations and Frequencies of  
Operation (Commercial Devices)............ 160  
Clock Timing Requirements.................... 166  
CLKOUT and I/O Timing Requirements.. 167  
Reset, Watchdog Timer, Oscillator Start-up  
Timer and Power-up Timer Requirements....  
168  
Serial Port Synchronous Transmission  
Requirements ......................................... 212  
Serial Port Synchronous Receive  
Requirements ......................................... 212  
A/D Converter Characteristics:  
PIC16C72-04 (Commercial, Industrial,  
Automotive)  
PIC16C72-10 (Commercial, Industrial,  
Automotive)  
Table 14-9:  
Table 14-10:  
Table 15-1:  
Table 15-2:  
Table 16-1:  
Table 16-2:  
Table 17-1:  
Table 21-11:  
Table 21-12:  
PIC16C72-20 (Commercial, Industrial,  
Automotive)............................................. 213  
A/D Converter Characteristics:  
Table 17-2:  
Table 17-3:  
Table 17-4:  
Table 21-13:  
PIC16LC72-04 (Commercial, Industrial,  
Automotive)............................................. 214  
A/D Conversion Requirements ............... 215  
Cross Reference of Device Specs for  
Oscillator Configurations and Frequencies  
of Operation (Commercial Devices)........ 220  
Clock Timing Requirements.................... 226  
CLKOUT and I/O Timing Requirements . 228  
Reset, Watchdog Timer, Oscillator  
Table 21-14:  
Table 23-1:  
Table 17-5:  
Table 17-6:  
Timer0 Clock Requirements.................... 169  
A/D Converter Characteristics:  
PIC16C70-04 (Commercial, Industrial,  
Automotive)  
PIC16C71A-04 (Commercial, Industrial,  
Automotive)  
Table 23-2:  
Table 23-3:  
Table 23-4:  
PIC16C70-10 (Commercial, Industrial,  
Automotive)  
PIC16C71A-10 (Commercial, Industrial,  
Automotive)  
PIC16C70-20 (Commercial, Industrial,  
Automotive)  
PIC16C71A-20 (Commercial, Industrial,  
Automotive)............................................. 170  
A/D Converter Characteristics:  
Start-up Timer and Power-up Timer  
Requirements ......................................... 229  
Timer0 and Timer1 Clock Requirements 230  
Capture/Compare/PWM Requirements  
(CCP1 and CCP2) .................................. 231  
Parallel Slave Port Requirements for the  
PIC16C74 Only....................................... 232  
SPI Mode Requirements......................... 233  
Table 23-5:  
Table 23-6:  
Table 23-7:  
Table 23-8:  
Table 23-9:  
Table 23-10:  
Table 23-11:  
2
Table 17-7:  
I C Bus Start/Stop Bits Requirements.... 234  
2
PIC16LC70-04 (Commercial, Industrial,  
Automotive)  
I C Bus Data Requirements ................... 235  
Serial Port Synchronous Transmission  
Requirements ......................................... 236  
Serial Port Synchronous Receive  
Requirements ......................................... 236  
A/D Converter Characteristics:  
PIC16C73-04 (Commercial, Industrial)  
PIC16C74-04 (Commercial, Industrial)  
PIC16C73-10 (Commercial, Industrial)  
PIC16C74-10 (Commercial, Industrial)  
PIC16C73-20 (Commercial, Industrial)  
PIC16C74-20 (Commercial, Industrial)... 237  
A/D Converter Characteristics:  
PIC16LC73-04 (Commercial, Industrial)  
PIC16LC74-04 (Commercial, Industrial). 238  
A/D Conversion Requirements ............... 239  
PIC16LC71A-04 (Commercial, Industrial,  
Automotive)............................................. 171  
A/D Conversion Requirements................ 172  
Cross Reference of Device Specs for  
Oscillator Configurations and Frequencies of  
Operation (Commercial Devices)............ 175  
External Clock Timing Requirements...... 181  
CLKOUT and I/O Timing Requirements.. 182  
Reset, Watchdog Timer, Oscillator  
Start-up Timer and Power-up Timer  
Requirements.......................................... 183  
Timer0 Clock Requirements.................... 184  
A/D Converter Characteristics:  
Table 23-12:  
Table 23-13:  
Table 17-8:  
Table 19-1:  
Table 19-2:  
Table 19-3:  
Table 19-4:  
Table 23-14:  
Table 23-15:  
Table 19-5:  
Table 19-6:  
PIC16C71-04 (Commercial, Industrial)  
PIC16C71-20 (Commercial, Industrial) ... 185  
DS30390B-page 302  
1995 Microchip Technology Inc.  
PIC16C7X  
Table 25-1:  
Cross Reference of Device Specs for  
Table 25-14:  
A/D Converter Characteristics:  
Oscillator Configurations and Frequencies  
of Operation (Commercial Devices)........ 244  
Clock Timing Requirements.................... 250  
CLKOUT and I/O Timing Requirements.. 252  
Reset, Watchdog Timer, Oscillator  
PIC16LC73A-04 (Commercial, Industrial,  
Automotive)  
Table 25-2:  
Table 25-3:  
Table 25-4:  
PIC16LC74A-04 (Commercial, Industrial,  
Automotive)..............................................262  
A/D Conversion Requirements ................263  
PIC16C5X Family of Devices ..................285  
PIC16C62X Family of Devices ................286  
PIC16C6X Family of Devices ..................287  
PIC16C7X Family of Devices ..................288  
PIC16C8X Family of Devices ..................289  
PIC17CXX Family of Devices..................290  
Pin Compatible Devices...........................291  
Table 25-15:  
Table E-1:  
Table E-2:  
Table E-3:  
Table E-4:  
Table E-5:  
Table E-6:  
Table E-7:  
Start-up Timer and Power-up Timer  
Requirements.......................................... 253  
Timer0 and Timer1 Clock Requirements 254  
Capture/Compare/PWM Requirements  
(CCP1 and CCP2)................................... 255  
Parallel Slave Port Requirements for the  
PIC16C74A Only..................................... 256  
SPI Mode Requirements......................... 257  
Table 25-5:  
Table 25-6:  
Table 25-7:  
Table 25-8:  
Table 25-9:  
Table 25-10:  
Table 25-11:  
2
I C Bus Start/Stop Bits Requirements .... 258  
2
I C Bus Data Requirements.................... 259  
Serial Port Synchronous Transmission  
Requirements.......................................... 260  
Serial Port Synchronous Receive  
Requirements.......................................... 260  
A/D Converter Characteristics:  
PIC16C73A-04 (Commercial, Industrial,  
Automotive)  
Table 25-12:  
Table 25-13:  
PIC16C74A-04 (Commercial, Industrial,  
Automotive)  
PIC16C73A-10 (Commercial, Industrial,  
Automotive)  
PIC16C74A-10 (Commercial, Industrial,  
Automotive)  
PIC16C73A-20 (Commercial, Industrial,  
Automotive)  
PIC16C74A-20 (Commercial, Industrial,  
Automotive)............................................. 261  
1995 Microchip Technology Inc.  
DS30390B-page 303  
PIC16C7X  
NOTES:  
DS30390B-page 304  
1995 Microchip Technology Inc.  
PIC16C7X  
CONNECTING TO MICROCHIP BBS  
Trademarks:  
The Microchip logo, name and PIC are registered  
trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Connect worldwide to the Microchip BBS using the  
CompuServe communications network. In most  
cases a local call is your only expense. The Microchip  
BBS connection does not use CompuServe member-  
ship services, therefore you do not need CompuServe  
membership to join Microchip's BBS.  
PICMASTER, MPLAB, PICSTART, PRO MATE  
and fuzzyLAB are trademarks, and SQTP is a ser-  
vice mark of Microchip Technology Incorporated.  
There is no charge for connecting to the BBS,  
except for a toll charge to the CompuServe access  
number, where applicable. You do not need to be a  
CompuServe member to take advantage of this con-  
nection (you never actually log in to CompuServe).  
fuzzyTECH is a registered trademark of Inform  
Software Corporation.  
2
I C is a trademark of Philips Corporation.  
IBM, IBM PC-AT are registered trademarks of  
International Business Machines Corp.  
The procedure to connect will vary slightly from country  
to country. Please check with your local CompuServe  
agent for details if you have a problem. CompuServe  
service allows multiple users at baud rates up to 14400  
bps.  
Pentium is a trademark of Intel Corporation.  
MS-DOS and Microsoft Windows are registered  
trademarks of Microsoft Corporation. Windows is a  
trademark of Microsoft Corporation.  
The following connect procedure applies in most loca-  
tions:  
CompuServe is a registered trademark of  
CompuServe Incorporated.  
1. Set your modem to 8 bit, No parity, and One stop  
(8N1). This is not the normal CompuServe set-  
ting which is 7E1.  
All other trademarks mentioned herein are the  
property of their respective companies.  
2. Dial your local CompuServe access number.  
3. Depress <ENTER > and a garbage string will  
appear because CompuServe is expecting a  
7E1 setting.  
4. Type +, depress <ENTER > and Host Name:  
will appear.  
5. Type MCHIPBBS, depress < ENTER > and  
you will be connected to the Microchip BBS.  
In the United States, to find CompuServe's phone num-  
ber closest to you, set your modem to 7E1 and dial  
(800) 848-4480 for 300-2400 baud or (800) 331-7166  
for 9600-14400 baud connection. After the system  
responds with Host Name:, type  
NETWORK, depress < ENTER  
>
and follow CompuServe's directions.  
For voice information (or calling from overseas), you  
may call (614) 457-1550 for your local CompuServe  
number.  
1995 Microchip Technology Inc.  
DS30390B-page 305  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Device:  
PIC16C7X  
Literature Number:  
DS30390B  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefullness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30390B-page 306  
1995 Microchip Technology Inc.  
PIC16C7X  
PIC16C7X Product Identification System  
To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.  
Examples  
PART NO. -XX X /XX XXX  
Pattern:  
QTP, SQTP, ROM Code or Special Requirements  
a)  
PIC16C71 - 04/P 301  
Commercial Temp.,  
PDIP Package, 4 MHz,  
normal VDD limits, QTP  
pattern #301  
Package:  
JW  
PQ  
TQ  
SO  
SP  
SJ  
P
= Windowed CERDIP  
= MQFP (Metric PQFP)  
= TQFP (Thin Quad Flatpack)  
= SOIC  
= Skinny plastic carrier  
= Skinny CERDIP  
= PDIP  
b)  
c)  
PIC16LC73 - 041/SO  
Industrial Temp., SOIC  
package, 4 MHz,  
L
= PLCC  
extended VDD limits  
Temperature  
Range:  
-
= 0°C to +70°C (T for Tape/Reel)  
= -40°C to +85°C (S for Tape/Reel)  
= -40°C to +125°C  
I
PIC16C74A - 10E/P  
Automotive Temp.,  
PDIP package, 10 MHz,  
normal VDD limits  
E
Frequency  
Range:  
04  
04  
10  
16  
20  
= 200 kHz (PIC16C7X-04)  
= 4 MHz  
= 10 MHz  
= 16 MHz  
= 20 MHz  
Device  
PIC16C7X  
:VDD range 4.0V to 6.0V  
PIC16C7XT :VDD range 4.0V to 6.0V (Tape/Reel)  
PIC16LC7X :VDD range 3.0V to 6.0V  
PIC16LC7XT :VDD range 3.0V to 6.0V (Tape/Reel)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type (including LC devices).  
Sales and Support  
Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office (see below)  
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277  
3. The Microchip’s Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.  
1995 Microchip Technology Inc.  
DS30390B-page 307  
This document was created with FrameMaker 4 0 4  
WORLDWIDE SALES & SERVICE  
AMERICAS  
AMERICAS (continued)  
EUROPE  
Corporate Office  
San Jose  
United Kingdom  
Microchip Technology Inc.  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 602 786-7200 Fax: 602 786-7277  
Technical Support: 602 786-7627  
Web: http://www.mchip.com/microchip  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Arizona Microchip Technology Ltd.  
Unit 6, The Courtyard  
Meadow Bank, Furlong Road  
Bourne End, Buckinghamshire SL8 5AJ  
Tel: 44 0 1628 851077 Fax: 44 0 1628 850259  
Tel: 408 436-7950 Fax: 408 436-7955  
ASIA/PACIFIC  
Hong Kong  
Microchip Technology  
Unit No. 3002-3004, Tower 1  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T. Hong Kong  
Tel: 852 2 401 1200 Fax: 852 2 401 3431  
France  
Arizona Microchip Technology SARL  
2 Rue du Buisson aux Fraises  
91300 Massy - France  
Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 Muenchen, Germany  
Tel: 49 89 627 144 0 Fax: 49 89 627 144 44  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770 640-0034 Fax: 770 640-0307  
Boston  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Korea  
Microchip Technology  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku,  
Seoul, Korea  
Tel: 82 2 554 7200 Fax: 82 2 558 5934  
Singapore  
Microchip Technology  
200 Middle Road  
#10-03 Prime Centre  
Singapore 188980  
Tel: 65 334 8870 Fax: 65 334 8850  
Taiwan  
Microchip Technology  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
Tel: 886 2 717 7175 Fax: 886 2 545 0139  
Italy  
Tel: 508 480-9990  
Fax: 508 480-8575  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Pegaso Ingresso No. 2  
Via Paracelso 23, 20041  
Agrate Brianza (MI) Italy  
Tel: 39 039 689 9939 Fax: 39 039 689 9883  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 708 285-0071 Fax: 708 285-0075  
Dallas  
Microchip Technology Inc.  
14651 Dallas Parkway, Suite 816  
Dallas, TX 75240-8809  
Tel: 214 991-7177 Fax: 214 991-8588  
JAPAN  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
3-18-20, Shin Yokohama  
Kohoku-Ku, Yokohama  
Kanagawa 222 Japan  
Dayton  
Microchip Technology, Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 513 291-1654 Fax: 513 291-9175  
Tel: 81 45 471 6166 Fax: 81 45 471 6122  
Los Angeles  
Microchip Technology Inc.  
18201 Von Karman, Suite 455  
Irvine, CA 92715  
Tel: 714 263-1888 Fax: 714 263-1338  
NewYork  
Microchip Technology Inc.  
150 Motor Parkway, Suite 416  
Hauppauge, NY 11788  
Tel: 516 273-5305 Fax: 516 273-5335  
Printed in the USA, 12/5/95  
1995, Microchip Technology Inc.  
Information contained in this publication regarding device applications and the like is intended by way of suggestion only. No representation or warranty is given and no liability is  
assumed by Microchip Technology Inc. with respect to the accuracy or use of such information. Use of Microchip’s products as critical components in life support systems is not autho-  
rized except with express written approval by Microchip. The Microchip logo and name are registered trademarks of Microchip Technology Inc. All rights reserved. All other trademarks  
mentioned herein are the property of their respective companies.  
DS30390B-page 308  
1995 Microchip Technology Inc.  

相关型号:

PIC16C71A-20/JW

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,DIP,18PIN,CERAMIC
MICROCHIP

PIC16C71A-20/P

8-BIT, OTPROM, 20 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18
MICROCHIP

PIC16C71A-20/SO

8-BIT, OTPROM, 20 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SOIC-18
MICROCHIP

PIC16C71A-20/SS

8-BIT, OTPROM, 20 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, SSOP-20
MICROCHIP

PIC16C71A-20E/JW

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,DIP,18PIN,CERAMIC
MICROCHIP

PIC16C71A-20E/P

8-BIT, OTPROM, 20 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18
MICROCHIP

PIC16C71A-20E/SS

8-BIT, OTPROM, 20 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, SSOP-20
MICROCHIP

PIC16C71A-E/JW

8-BIT, UVPROM, 10 MHz, RISC MICROCONTROLLER, CDIP18, 0.300 INCH, WINDOWED, CERDIP-18
MICROCHIP

PIC16C71AT-04E/SS

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, SSOP-20
MICROCHIP

PIC16C71AT-04I/SO

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SOIC-18
MICROCHIP

PIC16C71AT-04I/SS

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, SSOP-20
MICROCHIP

PIC16C71AT-10/SS

8-BIT, OTPROM, 10 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, SSOP-20
MICROCHIP