PIC16C72T-20E/SO [MICROCHIP]

8-Bit CMOS Microcontrollers with A/D Converter; 8位CMOS微控制器与A / D转换器
PIC16C72T-20E/SO
型号: PIC16C72T-20E/SO
厂家: MICROCHIP    MICROCHIP
描述:

8-Bit CMOS Microcontrollers with A/D Converter
8位CMOS微控制器与A / D转换器

转换器 微控制器和处理器 外围集成电路 光电二极管 可编程只读存储器 时钟
文件: 总124页 (文件大小:1359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M
PIC16C72 SERIES  
8-Bit CMOS Microcontrollers with A/D Converter  
Devices included:  
Pin Diagrams  
• PIC16C72  
SDIP, SOIC, SSOP,  
Windowed Side Brazed Ceramic  
• PIC16CR72  
Microcontroller Core Features:  
MCLR/VPP  
RA0/AN0  
• 1  
2
28  
27  
26  
25  
24  
RB7  
RB6  
RB5  
RB4  
RB3  
• High-performance RISC CPU  
RA1/AN1  
3
RA2/AN2  
4
• Only 35 single word instructions to learn  
RA3/AN3/VREF  
5
• All single cycle instructions except for program  
branches which are two cycle  
RA4/T0CKI  
RA5/SS/AN4  
VSS  
6
7
8
23  
22  
21  
RB2  
RB1  
RB0/INT  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
9
20  
19  
18  
17  
16  
15  
VDD  
10  
11  
12  
13  
14  
VSS  
RC7  
• 2K x 14 words of Program Memory,  
128 x 8 bytes of Data Memory (RAM)  
RC6  
RC2/CCP1  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
• Interrupt capability  
PIC16C72  
PIC16CR72  
• Eight level deep hardware stack  
• Direct, indirect, and relative addressing modes  
• Power-on Reset (POR)  
• Power-up Timer (PWRT) and  
Oscillator Start-up Timer (OST)  
Peripheral Features:  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
• Timer1: 16-bit timer/counter with prescaler,  
can be incremented during sleep via external  
crystal/clock  
• Programmable code-protection  
• Power saving SLEEP mode  
• Selectable oscillator options  
• Low-power, high-speed CMOS technology  
• Fully static design  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Capture, Compare, PWM (CCP) module  
- Capture is 16-bit, max. resolution is 12.5 ns  
- Compare is 16-bit, max. resolution is 200 ns  
- PWM max. resolution is 10-bit  
• Wide operating voltage range:  
- 2.5V to 6.0V (PIC16C72)  
- 2.5V to 5.5V (PIC16CR72)  
• High Sink/Source Current 25/25 mA  
• 8-bit 5-channel analog-to-digital converter  
• Synchronous Serial Port (SSP) with  
• Commercial, Industrial and Extended temperature  
ranges  
2
SPI and I C  
• Brown-out detection circuitry for  
Brown-out Reset (BOR)  
• Low-power consumption:  
- < 2 mA @ 5V, 4 MHz  
- 15 µA typical @ 3V, 32 kHz  
- < 1 µA typical standby current  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 1  
PIC16C72 Series  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 3  
2.0 Memory Organization................................................................................................................................................................... 5  
3.0 I/O Ports ..................................................................................................................................................................................... 19  
4.0 Timer0 Module ........................................................................................................................................................................... 25  
5.0 Timer1 Module ........................................................................................................................................................................... 27  
6.0 Timer2 Module ........................................................................................................................................................................... 31  
7.0 Capture/Compare/PWM (CCP) Module ..................................................................................................................................... 33  
8.0 Synchronous Serial Port (SSP) Module ..................................................................................................................................... 39  
9.0 Analog-to-Digital Converter (A/D) Module.................................................................................................................................. 53  
10.0 Special Features of the CPU...................................................................................................................................................... 59  
11.0 Instruction Set Summary............................................................................................................................................................ 73  
12.0 Development Support................................................................................................................................................................. 75  
13.0 Electrical Characteristics - PIC16C72 Series............................................................................................................................. 77  
14.0 DC and AC Characteristics Graphs and Tables - PIC16C72..................................................................................................... 97  
15.0 DC and AC Characteristics Graphs and Tables - PIC16CR72 ................................................................................................ 107  
16.0 Packaging Information.............................................................................................................................................................. 109  
Appendix A: What’s New in this Data Sheet .................................................................................................................................. 115  
Appendix B: What’s Changed in this Data Sheet........................................................................................................................... 115  
Appendix C: Device Differences..................................................................................................................................................... 115  
Index .................................................................................................................................................................................................. 117  
On-Line Support................................................................................................................................................................................. 121  
Reader Response .............................................................................................................................................................................. 122  
PIC16C72 Series Product Identification System................................................................................................................................ 125  
Sales and Support.............................................................................................................................................................................. 125  
To Our Valued Customers  
We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional  
amount of time to ensure that these documents are correct. However, we realize that we may have missed a few  
things. If you find any information that is missing or appears in error, please use the reader response form in the  
back of this data sheet to inform us. We appreciate your assistance in making this a better document.  
Key Reference Manual Features  
Operating Frequency  
PIC16C72  
DC - 20MHz  
POR, PWRT, OST, BOR POR, PWRT, OST, BOR  
PIC16CR72  
DC - 20MHz  
Resets  
Program Memory - (14-bit words)  
Data Memory - RAM (8-bit bytes)  
Interrupts  
2K (EPROM)  
2K (ROM)  
128  
128  
8
8
I/O Ports  
PortA, PortB, PortC  
PortA, PortB, PortC  
Timers  
Timer0, Timer1, Timer2  
Timer0, Timer1, Timer2  
Capture/Compare/PWM Modules  
Serial Communications  
8-Bit A/D Converter  
Instruction Set (No. of Instructions)  
1
1
Basic SSP  
5 channels  
35  
SSP  
5 channels  
35  
DS39016A-page 2  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
The program memory contains 2K words which trans-  
late to 2048 instructions, since each 14-bit program  
memory word is the same width as each device instruc-  
tion. The data memory (RAM) contains 128 bytes.  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information for  
the operation of the PIC16C72 device. Additional infor-  
mation may be found in the PICmicro™ Mid-Range  
MCU Reference Manual (DS33023) which may be  
downloaded from the Microchip website. The Refer-  
ence Manual should be considered a complementary  
document to this data sheet, and is highly recom-  
mended reading for a better understanding of the  
device architecture and operation of the peripheral  
modules.  
There are also 22 I/O pins that are user-configurable on  
a pin-to-pin basis. Some pins are multiplexed with other  
device functions. These functions include:  
• External interrupt  
• Change on PORTB interrupt  
• Timer0 clock input  
• Timer1 clock/oscillator  
• Capture/Compare/PWM  
• A/D converter  
The PIC16C72 belongs to the Mid-Range family of the  
PICmicro devices. A block diagram of the device is  
shown in Figure 1-1.  
2
• SPI/I C  
Table 1-1 details the pinout of the device with descrip-  
tions and details for each pin.  
FIGURE 1-1: PIC16C72/CR72 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
EPROM/  
ROM  
Program  
Memory  
RA0/AN0  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/SS/AN4  
RAM  
File  
Registers  
8 Level Stack  
2K x 14  
(13-bit)  
128 x 8  
Program  
14  
RAM Addr(1)  
PORTB  
Bus  
9
Addr MUX  
Instruction reg  
RB0/INT  
RB7:RB1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
RC6  
RC7  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
MCLR VDD, VSS  
Timer0  
Timer1  
Timer2  
Synchronous  
Serial Port  
A/D  
CCP1  
Note 1: Higher order bits are from the STATUS register.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 3  
 
PIC16C72 Series  
TABLE 1-1  
PIC16C72/CR72 PINOUT DESCRIPTION  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Pin#  
Description  
(3)  
OSC1/CLKIN  
9
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
OSC2/CLKOUT  
10  
O
Oscillator crystal output. Connects to crystal or resonator in crystal  
oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which  
has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.  
1
I/P  
ST  
Master clear (reset) input or programming voltage input. This pin is an  
active low reset to the device.  
MCLR/VPP  
PORTA is a bi-directional I/O port.  
RA0/AN0  
2
3
4
5
6
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
ST  
RA0 can also be analog input0.  
RA1/AN1  
RA1 can also be analog input1.  
RA2/AN2  
RA2 can also be analog input2.  
RA3/AN3/VREF  
RA4/T0CKI  
RA3 can also be analog input3 or analog reference voltage  
RA4 can also be the clock input to the Timer0 module. Output is  
open drain type.  
RA5/SS/AN4  
7
I/O  
TTL  
RA5 can also be analog input4 or the slave select for the  
synchronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
21  
22  
23  
24  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
RB2  
TTL  
RB3  
TTL  
RB4  
TTL  
Interrupt on change pin.  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
PORTC is a bi-directional I/O port.  
(2)  
RB7  
RC0/T1OSO/T1CKI  
11  
I/O  
ST  
RC0 can also be the Timer1 oscillator output or Timer1 clock  
input.  
RC1/T1OSI  
RC2/CCP1  
12  
13  
I/O  
I/O  
ST  
ST  
RC1 can also be the Timer1 oscillator input.  
RC2 can also be the Capture1 input/Compare1 output/PWM1  
output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
14  
15  
I/O  
I/O  
ST  
ST  
RC3 can also be the synchronous serial clock input/output for both  
SPI and I C modes.  
2
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5/SDO  
16  
17  
I/O  
I/O  
I/O  
P
ST  
ST  
ST  
RC5 can also be the SPI Data Out (SPI mode).  
RC6  
RC7  
18  
VSS  
8, 19  
20  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
P
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
DS39016A-page 4  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
FIGURE 2-1: PROGRAM MEMORY MAP  
AND STACK  
2.0  
MEMORY ORGANIZATION  
There are two memory blocks in PIC16C72 Series  
devices. These are the program memory and the data  
memory. Each block has its own bus, so that access to  
both blocks can occur during the same oscillator cycle.  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
The data memory can further be broken down into the  
general purpose RAM and the Special Function  
Registers (SFRs). The operation of the SFRs that  
control the “core” are described here. The SFRs used  
to control the peripheral modules are described in the  
section discussing each individual peripheral module.  
Stack Level 1  
Stack Level 8  
Additional information on device memory may be found  
in the PICmicro™ Mid-Range Reference Manual,  
DS33023.  
Reset Vector  
0000h  
2.1  
Program Memory Organization  
Interrupt Vector  
0004h  
0005h  
PIC16C72 Series devices have a 13-bit program  
counter capable of addressing a 2K x 14 program  
memory space. The address range for this program  
memory is 0000h - 07FFh. Accessing a location above  
the physically implemented address will cause a wrap-  
around.  
On-chip Program  
Memory  
The reset vector is at 0000h and the interrupt vector is  
at 0004h.  
07FFh  
0800h  
1FFFh  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 5  
PIC16C72 Series  
2.2  
Data Memory Organization  
FIGURE 2-2: REGISTER FILE MAP  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers and the  
Special Function Registers. Bits RP1 and RP0 are the  
bank select bits.  
File  
File  
Address  
Address  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
OPTION  
PCL  
RP1* RP0  
(STATUS<6:5>)  
= 00 Bank0  
= 01 Bank1  
= 10 Bank2 (not implemented)  
= 11 Bank3 (not implemented)  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
*
Maintain this bit clear to ensure upward com-  
patibility with future products.  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM.  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
All implemented banks contain special function regis-  
ters. Some “high use” special function registers from  
one bank may be mirrored in another bank for code  
reduction and quicker access (ex; the STATUS register  
is in Bank 0 and Bank 1).  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
PR2  
2.2.1  
GENERAL PURPOSE REGISTER FILE  
SSPADD  
SSPSTAT  
The register file can be accessed either directly or indi-  
rectly through the File Select Register FSR  
(Section 2.5).  
17h CCP1CON  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
ADRES  
ADCON0  
ADCON1  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
BFh  
C0h  
FFh  
7Fh  
Bank 0  
Bank 1  
Unimplemented data memory locations, read as '0'.  
Note 1: Not a physical register.  
DS39016A-page 6  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C72 Series  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The special function registers can be classified into two  
sets (core and peripheral). Those registers associated  
with the “core” functions are described in this section,  
and those related to the operation of the peripheral fea-  
tures are described in the section of that peripheral fea-  
ture.  
The Special Function Registers are registers used by  
the CPU and Peripheral Modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM.  
TABLE 2-1  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(3)  
Bank 0  
00h(1)  
01h  
INDF  
TMR0  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--0x 0000 --0u 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
02h(1)  
03h(1)  
04h(1)  
05h  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP(4)  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1(4)  
RP0  
TO  
PD  
Z
DC  
C
PORTA  
PORTB  
PORTC  
06h  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
Unimplemented  
07h  
08h  
09h  
Unimplemented  
0Ah(1,2) PCLATH  
GIE  
T0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000 ---0 0000  
0000 000x 0000 000u  
0Bh(1)  
0Ch  
0Dh  
0Eh  
0Fh  
INTCON  
PIR1  
PEIE  
ADIF  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
SSPIF  
CCP1IF  
TMR2IF  
TMR1IF -0-- 0000 -0-- 0000  
Unimplemented  
TMR1L  
TMR1H  
T1CON  
TMR2  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
10h  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
11h  
Timer2 module’s register  
0000 0000 0000 0000  
12h  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
13h  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
14h  
SSPM2  
SSPM1  
SSPM0  
15h  
Capture/Compare/PWM Register (LSB)  
Capture/Compare/PWM Register (MSB)  
16h  
17h  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
18h-1Dh  
1Eh  
1Fh  
Unimplemented  
ADRES  
ADCON0  
A/D Result Register  
ADCS1 ADCS0  
xxxx xxxx uuuu uuuu  
0000 00-0 0000 00-0  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose con-  
tents are transferred to the upper byte of the program counter.  
3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
4: The IRP and RP1 bits are reserved on the PIC16C72/CR72. Always maintain these bits clear.  
5: SSPSTAT<7:6> are not implemented on the PIC16C72, read as '0'.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 7  
PIC16C72 Series  
TABLE 2-1  
Address Name  
Bank 1  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on: Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(3)  
80h(1)  
81h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
OPTION_REG  
PCL  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP(4) RP1(4)  
RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h(1)  
83h(1)  
84h(1)  
85h  
STATUS  
FSR  
PD  
Z
DC  
C
TRISA  
TRISB  
TRISC  
86h  
PORTB Data Direction Register  
PORTC Data Direction Register  
Unimplemented  
87h  
88h  
89h  
Unimplemented  
8Ah(1,2) PCLATH  
GIE  
T0IE  
Write Buffer for the upper 5 bits of the PC  
---0 0000 ---0 0000  
0000 000x 0000 000u  
8Bh(1)  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INTCON  
PEIE  
ADIE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
PIE1  
SSPIE  
CCP1IE  
TMR2IE  
TMR1IE -0-- 0000 -0-- 0000  
Unimplemented  
PCON  
POR  
BOR  
---- --qq ---- --uu  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
Timer2 Period Register  
Synchronous Serial Port (I2C mode) Address Register  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
SSPADD  
SSPSTAT  
SMP(5)  
CKE(5)  
D/A  
P
S
R/W  
UA  
BF  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADCON1  
PCFG2  
PCFG1  
PCFG0  
---- -000 ---- -000  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose con-  
tents are transferred to the upper byte of the program counter.  
3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
4: The IRP and RP1 bits are reserved on the PIC16C72/CR72. Always maintain these bits clear.  
5: SSPSTAT<7:6> are not implemented on the PIC16C72, read as '0'.  
DS39016A-page 8  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
2.2.2.1  
STATUS REGISTER  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions, not affecting any status bits, see the  
"Instruction Set Summary."  
The STATUS register, shown in Figure 2-3, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled.These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: These devices do not use bits IRP and  
RP1 (STATUS<7:6>). Maintain these bits  
clear to ensure upward compatibility with  
future products.  
Note 2: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
FIGURE 2-3: STATUS REGISTER (ADDRESS 03h, 83h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
1 = Bank 2, 3 (100h - 1FFh)  
0 = Bank 0, 1 (00h - FFh)  
bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes. For devices with only Bank0 and Bank1, the IRP bit is reserved. Always maintain  
this bit clear.  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
Z: Zero bit  
1 = The result of an arithmetic or logic operation is zero  
0 = The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions) (for borrow the polarity is reversed)  
1 = A carry-out from the 4th low order bit of the result occurred  
0 = No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1 = A carry-out from the most significant bit of the result occurred  
0 = No carry-out from the most significant bit of the result occurred  
Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of  
the source register.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 9  
PIC16C72 Series  
2.2.2.2  
OPTION_REG REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION_REG register is a readable and writable  
register which contains various control bits to configure  
the TMR0 prescaler/WDT postscaler (single assign-  
able register known also as the prescaler), the External  
INT Interrupt, TMR0, and the weak pull-ups on PORTB.  
FIGURE 2-4: OPTION_REG REGISTER (ADDRESS 81h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7:  
RBPU: PORTB Pull-up Enable bit  
1 = PORTB pull-ups are disabled  
0 = PORTB pull-ups are enabled by individual port latch values  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
INTEDG: Interrupt Edge Select bit  
1 = Interrupt on rising edge of RB0/INT pin  
0 = Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1 = Transition on RA4/T0CKI pin  
0 = Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1 = Increment on high-to-low transition on RA4/T0CKI pin  
0 = Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1 = Prescaler is assigned to the WDT  
0 = Prescaler is assigned to the Timer0 module  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
DS39016A-page 10  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
2.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON Register is a readable and writable regis-  
ter which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/INT pin interrupts.  
FIGURE 2-5: INTCON REGISTER (ADDRESS 0Bh, 8Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7:  
GIE: Global Interrupt Enable bit  
1 = Enables all un-masked interrupts  
0 = Disables all interrupts  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
PEIE: Peripheral Interrupt Enable bit  
1 = Enables all un-masked peripheral interrupts  
0 = Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1 = Enables the TMR0 interrupt  
0 = Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1 = Enables the RB0/INT external interrupt  
0 = Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1 = Enables the RB port change interrupt  
0 = Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1 = TMR0 register has overflowed (must be cleared in software)  
0 = TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1 = The RB0/INT external interrupt occurred (must be cleared in software)  
0 = The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0 = None of the RB7:RB4 pins have changed state  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 11  
PIC16C72 Series  
2.2.2.4  
PIE1 REGISTER  
Note: Bit PEIE (INTCON<6>) must be set to  
This register contains the individual enable bits for the  
peripheral interrupts.  
enable any peripheral interrupt.  
FIGURE 2-6: PIE1 REGISTER (ADDRESS 8Ch)  
U-0  
R/W-0  
ADIE  
U-0  
U-0  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
TMR2IE TMR1IE  
bit0  
R/W-0  
CCP1IE  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6:  
ADIE: A/D Converter Interrupt Enable bit  
1 = Enables the A/D interrupt  
0 = Disables the A/D interrupt  
bit 5-4: Unimplemented: Read as '0'  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1 = Enables the SSP interrupt  
0 = Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1 = Enables the CCP1 interrupt  
0 = Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1 = Enables the TMR2 to PR2 match interrupt  
0 = Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1 = Enables the TMR1 overflow interrupt  
0 = Disables the TMR1 overflow interrupt  
DS39016A-page 12  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
2.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the individual flag bits for the  
Peripheral interrupts.  
FIGURE 2-7: PIR1 REGISTER (ADDRESS 0Ch)  
U-0  
R/W-0  
ADIF  
U-0  
U-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
TMR2IF TMR1IF  
bit0  
R/W-0  
CCP1IF  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
ADIF: A/D Converter Interrupt Flag bit  
bit 6:  
1 = An A/D conversion completed (must be cleared in software)  
0 = The A/D conversion is not complete  
bit 5-4: Unimplemented: Read as '0'  
bit 3:  
SSPIF: Synchronous Serial Port Interrupt Flag bit  
1 = The transmission/reception is complete (must be cleared in software)  
0 = Waiting to transmit/receive  
bit 2:  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1 = A TMR1 register capture occurred (must be cleared in software)  
0 = No TMR1 register capture occurred  
Compare Mode  
1 = A TMR1 register compare match occurred (must be cleared in software)  
0 = No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1 = TMR2 to PR2 match occurred (must be cleared in software)  
0 = No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1 = TMR1 register overflowed (must be cleared in software)  
0 = TMR1 register did not overflow  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 13  
PIC16C72 Series  
2.2.2.6  
PCON REGISTER  
Note: BOR is unknown on Power-on Reset. It  
must then be set by the user and checked  
on subsequent resets to see if BOR is  
clear, indicating a brown-out has occurred.  
The BOR status bit is a don't care and is  
not necessarily predictable if the brown-out  
circuit is disabled (by clearing the BODEN  
bit in the Configuration word).  
The Power Control (PCON) register contains a flag bit  
to allow differentiation between a Power-on Reset  
(POR) to an external MCLR Reset or WDT Reset.  
Those devices with brown-out detection circuitry con-  
tain an additional bit to differentiate a Brown-out Reset  
condition from a Power-on Reset condition.  
FIGURE 2-8: PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-q  
BOR  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7-2: Unimplemented: Read as '0'  
bit 1:  
POR: Power-on Reset Status bit  
1 = No Power-on Reset occurred  
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0:  
BOR: Brown-out Reset Status bit  
1 = No Brown-out Reset occurred  
0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
DS39016A-page 14  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
Figure 2-9 shows the four situations for the loading of  
the PC. Example 1 shows how the PC is loaded on a  
write to PCL (PCLATH<4:0> PCH). Example 2  
shows how the PC is loaded during a GOTOinstruction  
(PCLATH<4:3> PCH). Example 3 shows how the PC  
is loaded during a CALLinstruction (PCLATH<4:3> →  
PCH), with the PC loaded (PUSHed) onto the Top of  
Stack. Finally, example 4 shows how the PC is loaded  
during one of the return instructions where the PC is  
loaded (POPed) from the Top of Stack.  
2.3  
PCL and PCLATH  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 13 bits  
wide. The low byte is called the PCL register. This reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<12:8>  
bits and is not directly readable or writable. All updates  
to the PCH register go through the PCLATH register.  
FIGURE 2-9: LOADING OF PC IN DIFFERENT SITUATIONS  
STACK (13-bits x 8)  
Situation 1 - Instruction with PCL as destination  
PCH PCL  
Top of STACK  
12  
8
7
0
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU result  
STACK (13-bits x 8)  
Top of STACK  
Situation 2 - GOTO Instruction  
PCH  
PCL  
12 11 10  
8
7
0
PC  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
Situation 3 - CALL Instruction  
STACK (13-bits x 8)  
Top of STACK  
13  
PCH  
PCL  
12 11 10  
8
7
0
PC  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
Situation 4 - RETURN, RETFIE, or RETLW Instruction  
STACK (13-bits x 8)  
Top of STACK  
13  
PCH  
PCL  
12 11 10  
8
7
0
PC  
11  
Opcode <10:0>  
PCLATH  
Note: PCLATH is not updated with the contents of PCH.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 15  
PIC16C72 Series  
2.3.1  
STACK  
2.4  
Program Memory Paging  
The stack allows a combination of up to 8 program calls  
and interrupts to occur. The stack contains the return  
address from this branch in program execution.  
The CALL and GOTO instructions provide 11 bits of  
address to allow branching within any 2K program  
memory page. When doing a CALLor GOTOinstruction  
the upper 2 bits of the address are provided by  
PCLATH<4:3>.When doing a CALLor GOTOinstruction,  
the user must ensure that the page select bits are pro-  
grammed so that the desired program memory page is  
addressed. If a return from a CALLinstruction (or inter-  
rupt) is executed, the entire 13-bit PC is pushed onto  
Midrange devices have an 8 level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable.The PC is PUSHed onto the stack  
when a CALL instruction is executed or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN, RETLW or a RETFIE instruction execution.  
PCLATH is not modified when the stack is PUSHed or  
POPed.  
the  
stack. Therefore,  
manipulation  
of  
the  
PCLATH<4:3> bits are not required for the return  
instructions (which POPs the address from the stack).  
Note: PIC16C72 Series devices ignore paging  
bit PCLATH<4>. The use of PCLATH<4>  
as a general purpose read/write bit is not  
recommended since this may affect  
upward compatibility with future products.  
After the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on). An example of the overwriting of the stack is  
shown in Figure 2-10.  
FIGURE 2-10: STACK MODIFICATION  
STACK  
Push1 Push9  
Top of STACK  
Push2 Push10  
Push3  
Push4  
Push5  
Push6  
Push7  
Push8  
DS39016A-page 16  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C72 Series  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-2.  
2.5  
Indirect Addressing, INDF and FSR  
Registers  
The INDF register is not a physical register. Address-  
ing INDF actually addresses the register whose  
address is contained in the FSR register (FSR is a  
pointer). This is indirect addressing.  
EXAMPLE 2-2: HOW TO CLEAR RAM  
USING INDIRECT  
ADDRESSING  
movlw 0x20 ;initialize pointer  
movwf FSR  
clrf  
incf  
;
to RAM  
INDF ;clear INDF register  
FSR ;inc pointer  
EXAMPLE 2-1: INDIRECT ADDRESSING  
• Register file 05 contains the value 10h  
• Register file 06 contains the value 0Ah  
• Load the value 05 into the FSR register  
• A read of the INDF register will return the value of  
10h  
NEXT  
btfss FSR,4 ;all done?  
goto  
NEXT ;NO, clear next  
CONTINUE  
:
;YES, continue  
• Increment the value of the FSR register by one  
(FSR = 06)  
• A read of the INDR register now will return the  
value of 0Ah.  
An effective 9-bit address is obtained by concatenating  
the 8-bit FSR register and the IRP bit (STATUS<7>), as  
shown in Figure 2-11. However, IRP is not used in the  
PIC16C72 Series.  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF register indirectly results in a  
no-operation (although STATUS bits may be affected).  
FIGURE 2-11: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
from opcode  
7
RP1:RP0  
(2)  
6
0
0
IRP  
(2)  
FSR register  
bank select  
location select  
bank select  
location select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
not used  
(3)  
(3)  
Data  
Memory(1)  
7Fh  
Bank 0  
Note 1: For register file map detail see Figure 2-2.  
FFh  
17Fh  
1FFh  
Bank 3  
Bank 1 Bank 2  
2: Maintain RP1 and IRP as clear for upward compatibility with future products.  
3: Not implemented.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 17  
 
PIC16C72 Series  
NOTES:  
DS39016A-page 18  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
FIGURE 3-1: BLOCK DIAGRAM OF  
RA3:RA0 AND RA5 PINS  
3.0  
I/O PORTS  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Data  
bus  
D
Q
Q
VDD  
P
WR  
Port  
Additional information on I/O ports may be found in the  
PICmicro™ Mid-Range MCU Reference Manual,  
DS33023.  
CK  
Data Latch  
3.1  
PORTA and the TRISA Register  
I/O pin(1)  
N
D
Q
PORTA is a 6-bit wide bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (=1) will make the corresponding PORTA pin  
an input, i.e., put the corresponding output driver in a  
hi-impedance mode. Clearing a TRISA bit (=0) will  
make the corresponding PORTA pin an output, i.e., put  
the contents of the output latch on the selected pin.  
WR  
TRIS  
VSS  
Analog  
Q
CK  
input  
TRIS Latch  
mode  
TTL  
input  
buffer  
RD TRIS  
Reading the PORTA register reads the status of the  
pins whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore a write to a port implies that the port pins are  
read, this value is modified, and then written to the port  
data latch.  
Q
D
EN  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The RA4/T0CKI  
pin is a Schmitt Trigger input and an open drain output.  
All other RA port pins have TTL input levels and full  
CMOS output drivers.  
RD PORT  
To A/D Converter  
Note 1: I/O pins have protection diodes to VDD and  
VSS.  
Other PORTA pins are multiplexed with analog inputs  
and analog VREF input. The operation of each pin is  
selected by clearing/setting the control bits in the  
ADCON1 register (A/D Control Register1).  
FIGURE 3-2: BLOCK DIAGRAM OF RA4/  
T0CKI PIN  
Note: On a Power-on Reset, these pins are con-  
Data  
bus  
figured as analog inputs and read as '0'.  
D
Q
Q
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
WR  
PORT  
CK  
I/O pin(1)  
N
Data Latch  
D
Q
VSS  
EXAMPLE 3-1: INITIALIZING PORTA  
WR  
TRIS  
BCF  
STATUS, RP0  
;
Schmitt  
Trigger  
input  
Q
CK  
CLRF  
PORTA  
; Initialize PORTA by  
; clearing output  
; data latches  
TRIS Latch  
buffer  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
RD TRIS  
Q
D
MOVWF TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; TRISA<7:6> are always  
; read as '0'.  
EN  
RD PORT  
TMR0 clock input  
Note 1: I/O pin has protection diodes to VSS only.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 19  
PIC16C72 Series  
TABLE 3-1  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input  
Input/output or analog input  
Input/output or analog input  
Input/output or analog input or VREF  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
Input/output or external clock input for Timer0  
Output is open drain type  
RA5/SS/AN4  
bit5  
TTL  
Input/output or slave select input for synchronous serial port or analog input  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 3-2  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
85h  
9Fh  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
PORTA Data Direction Register  
ADCON1  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
DS39016A-page 20  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e. any RB7:RB4 pin con-  
figured as an output is excluded from the interrupt on  
change comparison). The input pins (of RB7:RB4) are  
compared with the old value latched on the last read of  
PORTB. The “mismatch” outputs of RB7:RB4 are  
OR’ed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
3.2  
PORTB and the TRISB Register  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (=1) will make the corresponding PORTB pin  
an input, i.e., put the corresponding output driver in a  
hi-impedance mode. Clearing a TRISB bit (=0) will  
make the corresponding PORTB pin an output, i.e., put  
the contents of the output latch on the selected pin.  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
EXAMPLE 3-1: INITIALIZING PORTB  
BCF  
STATUS, RP0  
;
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
BSF  
STATUS, RP0 ; Select Bank 1  
b) Clear flag bit RBIF.  
MOVLW 0xCF  
; Value used to  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition, and  
allow flag bit RBIF to be cleared.  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
MOVWF TRISB  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups.This is per-  
formed by clearing bit RBPU (OPTION<7>). The weak  
pull-up is automatically turned off when the port pin is  
configured as an output.The pull-ups are disabled on a  
Power-on Reset.  
FIGURE 3-4: BLOCK DIAGRAM OF  
RB7:RB4 PINS  
VDD  
FIGURE 3-3: BLOCK DIAGRAM OF  
RBPU(2)  
weak  
P
RB3:RB0 PINS  
pull-up  
VDD  
Data Latch  
Data bus  
RBPU(2)  
D
Q
weak  
P
pull-up  
I/O  
pin(1)  
WR Port  
Data Latch  
Data bus  
CK  
TRIS Latch  
D
Q
I/O  
pin(1)  
D
Q
WR Port  
CK  
TRIS Latch  
WR TRIS  
TTL  
CK  
Input  
Buffer  
D
Q
ST  
Buffer  
TTL  
Input  
Buffer  
WR TRIS  
CK  
RD TRIS  
RD Port  
Latch  
Q
Q
D
RD TRIS  
RD Port  
EN  
Q1  
Set RBIF  
Q
D
EN  
D
From other  
RB7:RB4 pins  
RD Port  
Q3  
EN  
RB0/INT  
Schmitt Trigger  
Buffer  
RB7:RB6 in serial programming mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION<7>).  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION<7>).  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 21  
PIC16C72 Series  
TABLE 3-3  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
(1)  
RB0/INT  
bit0  
TTL/ST  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
RB5  
RB6  
RB7  
bit5  
bit6  
bit7  
TTL  
TTL/ST  
TTL/ST  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
(2)  
(2)  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming clock.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
TABLE 3-4  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1 Bit 0  
06h, 106h  
86h, 186h  
81h, 181h  
PORTB  
TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
PS1  
RB0  
PS0  
xxxx xxxx  
1111 1111  
1111 1111  
uuuu uuuu  
1111 1111  
1111 1111  
PORTB Data Direction Register  
RBPU INTEDG T0CS T0SE PSA  
OPTION  
PS2  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS39016A-page 22  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
3.3  
PORTC and the TRISC Register  
FIGURE 3-5: PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE)  
PORTC is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (=1) will make the corresponding PORTC pin  
an input, i.e., put the corresponding output driver in a  
hi-impedance mode. Clearing a TRISC bit (=0) will  
make the corresponding PORTC pin an output, i.e., put  
the contents of the output latch on the selected pin.  
PORT/PERIPHERAL Select(2)  
Peripheral Data Out  
VDD  
0
Data bus  
WR  
PORT  
D
Q
Q
P
1
CK  
PORTC is multiplexed with several peripheral functions  
(Table 3-5). PORTC pins have Schmitt Trigger input  
buffers.  
Data Latch  
I/O  
D
Q
Q
pin(1)  
WR  
TRIS  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-modify-  
write instructions (BSF, BCF, XORWF) with TRISC as  
destination should be avoided.The user should refer to  
the corresponding peripheral section for the correct  
TRIS bit settings.  
CK  
N
TRIS Latch  
VSS  
Schmitt  
Trigger  
RD TRIS  
Peripheral  
OE(3)  
Q
D
EN  
RD  
PORT  
Peripheral input  
EXAMPLE 3-1: INITIALIZING PORTC  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port  
data and peripheral output.  
BCF  
STATUS, RP0 ; Select Bank 0  
CLRF  
PORTC ; Initialize PORTC by  
; clearing output  
; data latches  
3: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF TRISC  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 23  
PIC16C72 Series  
TABLE 3-5  
Name  
PORTC FUNCTIONS  
Bit# Buffer Type  
Function  
bit0  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
ST  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input  
Input/output port pin or Timer1 oscillator input  
bit1  
bit2  
RC2/CCP1  
Input/output port pin or Capture1 input/Compare1 output/PWM1  
output  
2
RC3/SCK/SCL  
bit3  
ST  
RC3 can also be the synchronous serial clock for both SPI and I C  
modes.  
2
RC4/SDI/SDA  
bit4  
ST  
RC4 can also be the SPI Data In (SPI mode) or data I/O (I C mode).  
RC5/SDO  
RC6  
bit5  
bit6  
bit7  
ST  
ST  
ST  
Input/output port pin or Synchronous Serial Port data output  
Input/output port pin  
RC7  
Input/output port pin  
Legend: ST = Schmitt Trigger input  
TABLE 3-6  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
07h  
87h  
PORTC  
TRISC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
PORTC Data Direction Register  
Legend: x= unknown, u= unchanged.  
DS39016A-page 24  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
Additional information on external clock requirements  
is available in the PICmicro™ Mid-Range MCU Refer-  
ence Manual, DS33023.  
4.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following fea-  
tures:  
4.2  
Prescaler  
8-bit timer/counter  
• Readable and writable  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer, respectively (Figure 4-2). For simplicity, this  
counter is being referred to as “prescaler” throughout  
this data sheet. Note that there is only one prescaler  
available which is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. Thus, a  
prescaler assignment for the Timer0 module means  
that there is no prescaler for the Watchdog Timer, and  
vice-versa.  
• Internal or external clock select  
• Edge select for external clock  
• 8-bit software programmable prescaler  
• Interrupt on overflow from FFh to 00h  
Figure 4-1 is a simplified block diagram of the Timer0  
module.  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range MCU Reference Manual,  
DS33023.  
The prescaler is not readable or writable.  
The PSA and PS2:PS0 bits (OPTION_REG<3:0>)  
determine the prescaler assignment and prescale ratio.  
4.1  
Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In timer mode, the Timer0 mod-  
ule will increment every instruction cycle (without pres-  
caler). If the TMR0 register is written, the increment is  
inhibited for the following two instruction cycles. The  
user can work around this by writing an adjusted value  
to the TMR0 register.  
Setting bit PSA will assign the prescaler to the Watch-  
dog Timer (WDT). When the prescaler is assigned to  
the WDT, prescale values of 1:1, 1:2, ..., 1:128 are  
selectable.  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In counter mode, Timer0 will  
increment either on every rising or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed in below.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF 1, MOVWF 1,  
BSF 1,x....etc.) will clear the prescaler.When assigned  
to WDT, a CLRWDT instruction will clear the prescaler  
along with the WDT.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
FIGURE 4-1: TIMER0 BLOCK DIAGRAM  
Data bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
RA4/T0CKI  
pin  
PSout  
(2 cycle delay)  
T0SE  
3
Set interrupt  
flag bit T0IF  
on overflow  
PS2, PS1, PS0  
PSA  
T0CS  
Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION_REG<5:0>).  
2: The prescaler is shared with Watchdog Timer (refer to Figure 4-2 for detailed block diagram).  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 25  
 
PIC16C72 Series  
4.2.1  
SWITCHING PRESCALER ASSIGNMENT  
4.3  
Timer0 Interrupt  
The prescaler assignment is fully under software con-  
trol, i.e., it can be changed “on the fly” during program  
execution.  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module interrupt ser-  
vice routine before re-enabling this interrupt.The TMR0  
interrupt cannot awaken the processor from SLEEP  
since the timer is shut off during SLEEP.  
Note: To avoid an unintended device RESET, a  
specific instruction sequence (shown in the  
PICmicro™ Mid-Range MCU Reference  
Manual, DS3023) must be executed when  
changing the prescaler assignment from  
Timer0 to the WDT.This sequence must be  
followed even if the WDT is disabled.  
FIGURE 4-2: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (=Fosc/4)  
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).  
TABLE 4-1  
REGISTERS ASSOCIATED WITH TIMER0  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h,101h  
TMR0  
Timer0 module’s register  
GIE PEIE T0IE INTE  
xxxx xxxx uuuu uuuu  
RBIF 0000 000x 0000 000u  
0Bh,8Bh,  
10Bh,18Bh  
INTCON  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
81h,181h  
85h  
OPTION_REG RBPU INTEDG T0CS T0SE  
TRISA  
PS0  
1111 1111 1111 1111  
--11 1111 --11 1111  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
DS39016A-page 26  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
5.1  
Timer1 Operation  
5.0  
TIMER1 MODULE  
The Timer1 module timer/counter has the following fea-  
tures:  
Timer1 can operate in one of these modes:  
• As a timer  
• 16-bit timer/counter  
(Two 8-bit registers; TMR1H and TMR1L)  
• As a synchronous counter  
• As an asynchronous counter  
• Readable and writable (Both registers)  
• Internal or external clock select  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
• Interrupt on overflow from FFFFh to 0000h  
• Reset from CCP module trigger  
In timer mode, Timer1 increments every instruction  
cycle. In counter mode, it increments on every rising  
edge of the external clock input.  
Timer1 has a control register, shown in Figure 5-1.  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
Figure 5-2 is a simplified block diagram of the Timer1  
module.  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range MCU Reference Manual,  
DS33023.  
Timer1 also has an internal “reset input”.This reset can  
be generated by the CCP module (Section 7.0).  
FIGURE 5-1: T1CON:TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit0  
bit7  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3:  
bit 2:  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1 = Oscillator is enabled  
0 = Oscillator is shut off  
Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1  
1 = Do not synchronize external clock input  
0 = Synchronize external clock input  
TMR1CS = 0  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1:  
bit 0:  
TMR1CS: Timer1 Clock Source Select bit  
1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0 = Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1 = Enables Timer1  
0 = Stops Timer1  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 27  
 
PIC16C72 Series  
FIGURE 5-2: TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
clock input  
0
TMR1  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
2
SLEEP input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39016A-page 28  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
5.2  
Timer1 Oscillator  
5.3  
Timer1 Interrupt  
A crystal oscillator circuit is built in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>).The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 5-1 shows the capacitor  
selection for the Timer1 oscillator.  
The TMR1 Register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 Interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit TMR1IF (PIR1<0>).  
This interrupt can be enabled/disabled by setting/clear-  
ing TMR1 interrupt enable bit TMR1IE (PIE1<0>).  
5.4  
Resetting Timer1 using a CCP Trigger  
Output  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
If the CCP module is configured in compare mode to  
generate a “special event trigger" (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer1 and start an A/D  
conversion (if the A/D module is enabled).  
TABLE 5-1  
CAPACITOR SELECTION  
FOR THE TIMER1  
OSCILLATOR  
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature. If  
Timer1 is running in asynchronous counter mode, this  
reset operation may not work.  
These values are for design guidance only.  
Crystals Tested:  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1, the write will take prece-  
dence.  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P  
STD XTL 200.000 kHz  
± 20 PPM  
± 20 PPM  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair effectively becomes the period register for  
Timer1.  
Note 1: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
TABLE 5-2  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
0Bh,8Bh INTCON GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
(1)  
(1)  
(1)  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
PIE1  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
(1)  
(1)  
(1)  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer1 module.  
Note 1: These bits are unimplemented, read as '0'.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 29  
PIC16C72 Series  
NOTES:  
DS39016A-page 30  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
6.2  
Timer2 Interrupt  
6.0  
TIMER2 MODULE  
The Timer2 module timer has the following features:  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register.The PR2 register is ini-  
tialized to FFh upon reset.  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
• Readable and writable (Both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match of PR2  
6.3  
Output of TMR2  
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module which optionally uses  
it to generate shift clock.  
• SSP module optional use of TMR2 output to gen-  
erate clock shift  
Timer2 has a control register, shown in Figure 6-2.  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
FIGURE 6-1: TIMER2 BLOCK DIAGRAM  
Sets flag  
TMR2  
Figure 6-1 is a simplified block diagram of the Timer2  
module.  
output (1)  
bit TMR2IF  
Reset  
Prescaler  
1:1, 1:4, 1:16  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range MCU Reference Manual,  
DS33023.  
TMR2 reg  
FOSC/4  
Postscaler  
2
Comparator  
1:1 to 1:16  
EQ  
6.1  
Timer2 Operation  
4
PR2 reg  
Timer2 can be used as the PWM time-base for PWM  
mode of the CCP module.  
Note 1: TMR2 register output can be software selected  
by the SSP Module as a baud clock.  
The TMR2 register is readable and writable, and is  
cleared on any device reset.  
The input clock (FOSC/4) has a prescale option of 1:1,  
1:4  
or  
1:16,  
selected  
by  
control  
bits  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device reset (Power-on Reset, MCLR reset,  
Watchdog Timer reset, or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 31  
 
PIC16C72 Series  
FIGURE 6-2: T2CON:TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6-3: TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2:  
TMR2ON: Timer2 On bit  
1 = Timer2 is on  
0 = Timer2 is off  
bit 1-0: T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
TABLE 6-1  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
(1)  
(1)  
(1)  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
(1)  
(1)  
(1)  
8Ch  
PIE1  
11h  
TMR2  
T2CON  
PR2  
Timer2 module’s register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
12h  
92h  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer2 module.  
2: These bits are unimplemented, read as '0'.  
DS39016A-page 32  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
Additional information on the CCP module is available  
in the PICmicro™ Mid-Range MCU Reference Manual,  
DS33023.  
7.0  
CAPTURE/COMPARE/PWM  
(CCP) MODULE  
The CCP (Capture/Compare/PWM) module contains a  
16-bit register which can operate as a 16-bit capture  
register, as a 16-bit compare register or as a PWM  
master/slave Duty Cycle register. Table 7-1 shows the  
timer resources of the CCP module modes.  
TABLE 7-1  
CCP MODE - TIMER  
RESOURCE  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
FIGURE 7-1: CCP1CON REGISTER (ADDRESS 17h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit0  
R = Readable bit  
W = Writable bit  
bit7  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: CCP1X:CCP1Y: PWM Least Significant bits  
Capture Mode: Unused  
Compare Mode: Unused  
PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0: CCP1M3:CCP1M0: CCP1 Mode Select bits  
0000= Capture/Compare/PWM off (resets CCP1 module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCP1IF bit is set)  
1001= Compare mode, clear output on match (CCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1 and starts an A/D  
conversion (if A/D module is enabled))  
11xx= PWM mode  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 33  
PIC16C72 Series  
7.1.4  
CCP PRESCALER  
7.1  
Capture Mode  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in capture mode,  
the prescaler counter is cleared. This means that any  
reset will clear the prescaler counter.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1. An event is defined as:  
• every falling edge  
• every rising edge  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore the first capture may be from  
a non-zero prescaler. Example 7-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
• every 4th rising edge  
• every 16th rising edge  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value will be lost.  
EXAMPLE 7-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
7.1.1  
CCP PIN CONFIGURATION  
CLRF  
CCP1CON  
;Turn CCP module off  
MOVLW NEW_CAPT_PS ;Load the W reg with  
; the new prescaler  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
; mode value and CCP ON  
MOVWF CCP1CON  
;Load CCP1CON with this  
; value  
Note: If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
FIGURE 7-2: CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
Set flag bit CCP1IF  
(PIR1<2>)  
Prescaler  
÷ 1, 4, 16  
RC2/CCP1  
Pin  
CCPR1H  
CCPR1L  
TMR1L  
Capture  
Enable  
and  
edge detect  
TMR1H  
CCP1CON<3:0>  
Q’s  
7.1.2  
TIMER1 MODE SELECTION  
Timer1 must be running in timer mode or synchronized  
counter mode for the CCP module to use the capture  
feature. In asynchronous counter mode, the capture  
operation may not work.  
7.1.3  
SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in operating mode.  
DS39016A-page 34  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C72 Series  
7.2.1  
CCP PIN CONFIGURATION  
7.2  
Compare Mode  
The user must configure the RC2/CCP1 pin as an out-  
put by clearing the TRISC<2> bit.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
• driven High  
• driven Low  
• remains Unchanged  
7.2.2  
TIMER1 MODE SELECTION  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, interrupt flag bit CCP1IF is set.  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
FIGURE 7-3: COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
7.2.3  
SOFTWARE INTERRUPT MODE  
When generate software interrupt is chosen the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
Special event trigger will:  
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>),  
and set bit GO/DONE (ADCON0<2>)  
which starts an A/D conversion  
7.2.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
Special Event Trigger  
Set flag bit CCP1IF  
(PIR1<2>)  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
Comparator  
match  
RC2/CCP1  
Pin  
The special trigger output of CCP1 resets the TMR1  
register pair, and starts an A/D conversion (if the A/D  
module is enabled).  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
Note: The special event trigger from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
TABLE 7-2  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
8Ch  
87h  
INTCON  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
(1)  
(1)  
PIR1  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
1111 1111 1111 1111  
(1)  
(1)  
(1)  
PIE1  
TRISC  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
PORTC Data Direction Register  
0Eh  
0Fh  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
10h  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
15h  
Capture/Compare/PWM register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
CCPR1H Capture/Compare/PWM register1 (MSB)  
CCP1CON CCP1X CCP1Y  
17h  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.  
Note 1: These bits/registers are unimplemented, read as '0'.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 35  
PIC16C72 Series  
7.3.1  
PWM PERIOD  
7.3  
PWM Mode  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
PWM period = [(PR2) + 1] ¥ 4 ¥ TOSC ¥  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
• TMR2 is cleared  
Figure 7-4 shows a simplified block diagram of the CCP  
module in PWM mode.  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 7.3.3.  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
FIGURE 7-4: SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note: The Timer2 postscaler (see Section 6.0) is  
not used in the determination of the PWM  
frequency.The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
CCP1CON<5:4>  
Duty cycle registers  
CCPR1L  
7.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available: the CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Q
R
S
Comparator  
TMR2  
RC2/CCP1  
(Note 1)  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) ¥  
Tosc ¥ (TMR2 prescale value)  
TRISC<2>  
Comparator  
Clear Timer,  
CCP1 pin and  
latch D.C.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
PR2  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock  
or 2 bits of the prescaler to create 10-bit time-base.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
A PWM output (Figure 7-5) has a time base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
FIGURE 7-5: PWM OUTPUT  
Maximum PWM resolution (bits) for a given PWM  
frequency:  
Period  
FOSC  
FPWM  
log(  
)
=
bits  
Duty Cycle  
TMR2 = PR2  
log(2)  
Note: If the PWM duty cycle value is longer than  
the PWM period the CCP1 pin will not be  
cleared.  
TMR2 = Duty Cycle  
TMR2 = PR2  
DS39016A-page 36  
Preliminary  
1998 Microchip Technology Inc.  
 
 
PIC16C72 Series  
For an example PWM period and duty cycle calcula-  
tion, see the PICmicro™ Mid-Range MCU Reference  
Manual (DS33023).  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
7.3.3  
SET-UP FOR PWM OPERATION  
5. Configure the CCP1 module for PWM operation.  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2 regis-  
ter.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
TABLE 7-3  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
5.5  
Maximum Resolution (bits)  
TABLE 7-4  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh INTCON  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
(1)  
(1)  
0Ch  
8Ch  
87h  
11h  
92h  
12h  
PIR1  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
(1)  
(1)  
(1)  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
1111 1111 1111 1111  
TRISC  
TMR2  
PR2  
PORTC Data Direction Register  
Timer2 module’s register  
0000 0000 0000 0000  
Timer2 module’s period register  
1111 1111 1111 1111  
T2CON  
TOUTPS TOUTPS TOUTPS TOUTPS TMR2O T2CKPS T2CKPS -000 0000 -000 0000  
3
2
1
0
N
1
0
15h  
16h  
17h  
CCPR1L  
CCPR1H  
CCP1CON  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.  
Note 1: These bits/registers are unimplemented, read as '0'.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 37  
PIC16C72 Series  
NOTES:  
DS39016A-page 38  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
8.0  
SYNCHRONOUS SERIAL  
PORT (SSP) MODULE  
8.1  
SSP Module Overview  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
2
The SSP module in I C mode works the same in all  
PIC16C72 series devices that have an SSP module.  
However the SSP Module in SPI mode has differences  
between the PIC16C72 and the PIC16CR72 device.  
The register definitions and operational description of  
SPI mode has been split into two sections because of  
the differences between the PIC16C72 and the  
PIC16CR72 device. The default reset values of both  
the SPI modules is the same regardless of the device:  
8.2 SPI Mode for PIC16C72.................................. 40  
8.3 SPI Mode for PIC16CR72 ............................... 43  
2
8.4 SSP I C Operation .......................................... 47  
2
For an I C Overview, refer to the PICmicro™ Mid-  
Range MCU Reference Manual (DS33023). Also, refer  
to Application Note AN578, “Use of the SSP Module in  
2
the I C Multi-Master Environment.”  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 39  
PIC16C72 Series  
Additional information on SPI operation may be found  
in the PICmicro™ Mid-Range MCU Reference Manual,  
DS33023.  
8.2  
SPI Mode for PIC16C72  
This section contains register definitions and opera-  
tional characteristics of the SPI module on the  
PIC16C72 device only.  
FIGURE 8-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h) (PIC16C72)  
U-0  
U-0  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
2
bit 5:  
bit 4:  
bit 3:  
bit 2:  
D/A: Data/Address bit (I C mode only)  
1 = Indicates that the last byte received or transmitted was data  
0 = Indicates that the last byte received or transmitted was address  
2
P: Stop bit (I C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared)  
1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET)  
0 = Stop bit was not detected last  
2
S: Start bit (I C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared)  
1 = Indicates that a start bit has been detected last (this bit is '0' on RESET)  
0 = Start bit was not detected last  
2
R/W: Read/Write bit information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is valid from the address  
match to the next start bit, stop bit, or ACK bit.  
1 = Read  
0 = Write  
2
bit 1:  
bit 0:  
UA: Update Address (10-bit I C mode only)  
1 = Indicates that the user needs to update the address in the SSPADD register  
0 = Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes)  
1 = Receive complete, SSPBUF is full  
0 = Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only)  
1 = Transmit in progress, SSPBUF is full  
0 = Transmit complete, SSPBUF is empty  
DS39016A-page 40  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
FIGURE 8-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h) (PIC16C72)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WCOL SSPOV SSPEN  
bit7  
SSPM3 SSPM2 SSPM1 SSPM0  
bit0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7:  
WCOL: Write Collision Detect bit  
1 = The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0 = No collision  
bit 6:  
SSPOV: Receive Overflow Detect bit  
In SPI mode  
1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of over-  
flow, the data in SSPSR register is lost. Overflow can only occur in slave mode. The user must read the  
SSPBUF, even if only transmitting data, to avoid setting overflow. In master operation, the overflow bit is  
not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.  
0 = No overflow  
2
In I C mode  
1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don’t  
care" in transmit mode. SSPOV must be cleared in software in either mode.  
0 = No overflow  
bit 5:  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode  
1 = Enables serial port and configures SCK, SDO, and SDI as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
2
In I C mode  
1 = Enables the serial port and configures the SDA and SCL pins as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
In both modes, when enabled, these pins must be properly configured as input or output.  
bit 4:  
CKP: Clock Polarity Select bit  
In SPI mode  
1 = Idle state for clock is a high level. Transmit happens on falling edge, receive on rising edge.  
0 = Idle state for clock is a low level. Transmit happens on rising edge, receive on falling edge.  
2
In I C mode  
SCK release control  
1 = Enable clock  
0 = Holds clock low (clock stretch) (Used to ensure data setup time)  
bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI master operation, clock = Fosc/4  
0001= SPI master operation, clock = Fosc/16  
0010= SPI master operation, clock = Fosc/64  
0011= SPI master operation, clock = TMR2 output/2  
0100= SPI slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
2
0110= I C slave mode, 7-bit address  
2
0111= I C slave mode, 10-bit address  
2
1011= I C firmware controlled master operation (slave idle)  
2
1110= I C slave mode, 7-bit address with start and stop bit interrupts enabled  
2
1111= I C slave mode, 10-bit address with start and stop bit interrupts enabled  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 41  
PIC16C72 Series  
8.2.1  
OPERATION OF SSP MODULE IN SPI  
MODE - PIC16C72  
• SCK (Slave mode) must have TRISC<3> set  
• SS must have TRISA<5> set (if implemented)  
A block diagram of the SSP Module in SPI Mode is  
shown in Figure 8-3.  
FIGURE 8-3: SSP BLOCK DIAGRAM  
(SPI MODE)  
The SPI mode allows 8-bits of data to be synchro-  
nously transmitted and received simultaneously. To  
accomplish communication, typically three pins are  
used:  
Internal  
data bus  
Read  
Write  
• Serial Data Out (SDO) RC5/SDO  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
RC4/SDI/SDA  
RC3/SCK/SCL  
SSPBUF reg  
SSPSR reg  
Additionally a fourth pin may be used when in a slave  
mode of operation:  
• Slave Select (SS)  
RA5/SS/AN4  
shift  
clock  
RC4/SDI/SDA  
RC5/SDO  
bit0  
When initializing the SPI, several options need to be  
specified.This is done by programming the appropriate  
control bits in the SSPCON register (SSPCON<5:0>).  
These control bits allow the following to be specified:  
• Master Operation (SCK is the clock output)  
• Slave Mode (SCK is the clock input)  
Control  
Enable  
SS  
• Clock Polarity (Output/Input data on the Rising/  
Falling edge of SCK)  
RA5/SS/AN4  
Edge  
Select  
• Clock Rate (master operation only)  
• Slave Select Mode (Slave mode only)  
2
Clock Select  
To enable the serial port, SSP enable bit SSPEN  
(SSPCON<5>) must be set.To reset or reconfigure SPI  
mode, clear enable bit SSPEN, re-initialize SSPCON  
register, and then set enable bit SSPEN. This config-  
ures the SDI, SDO, SCK, and SS pins as serial port  
pins. For the pins to behave as the serial port function,  
they must have their data direction bits (in theTRIS reg-  
ister) appropriately programmed. That is:  
SSPM3:SSPM0  
4
TMR2 output  
2
Edge  
Select  
TCY  
Prescaler  
4, 16, 64  
RC3/SCK/  
SCL  
TRISC<3>  
• SDI must have TRISC<4> set  
• SDO must have TRISC<5> cleared  
• SCK (master operation) must have TRISC<3>  
cleared  
TABLE 8-1  
REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
(1)  
(1)  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
(1)  
(1)  
(1)  
8Ch  
87h  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TRISC  
PORTC Data Direction Register  
1111 1111 1111 1111  
13h  
14h  
85h  
94h  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx uuuu uuuu  
SSPCON  
TRISA  
WCOL  
SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
PORTA Data Direction Register  
D/A R/W  
--11 1111 --11 1111  
--00 0000 --00 0000  
SSP-  
STAT  
P
S
UA  
BF  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.  
Note 1: These bits are unimplemented, read as '0'.  
DS39016A-page 42  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C72 Series  
Additional information on SPI operation may be found  
in the PICmicro™ Mid-Range MCU Reference Manual,  
DS33023.  
8.3  
SPI Mode for PIC16CR72  
This section contains register definitions and opera-  
tional characteristics of the SPI module on the  
PIC16CR72 device only.  
FIGURE 8-4: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h) (PIC16CR72)  
R/W-0 R/W-0  
SMP CKE  
bit7  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit0  
- n =Value at POR reset  
bit 7:  
bit 6:  
SMP: SPI data input sample phase  
SPI Master Operation  
1 = Input data sampled at end of data output time  
0 = Input data sampled at middle of data output time  
SPI Slave Mode  
SMP must be cleared when SPI is used in slave mode  
CKE: SPI Clock Edge Select  
CKP = 0  
1 = Data transmitted on rising edge of SCK  
0 = Data transmitted on falling edge of SCK  
CKP = 1  
1 = Data transmitted on falling edge of SCK  
0 = Data transmitted on rising edge of SCK  
2
bit 5:  
bit 4:  
D/A: Data/Address bit (I C mode only)  
1 = Indicates that the last byte received or transmitted was data  
0 = Indicates that the last byte received or transmitted was address  
2
P: Stop bit (I C mode only. This bit is cleared when the SSP module is disabled, or when the Start bit is  
detected last, SSPEN is cleared)  
1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET)  
0 = Stop bit was not detected last  
2
bit 3:  
bit 2:  
S: Start bit (I C mode only. This bit is cleared when the SSP module is disabled, or when the Stop bit is  
detected last, SSPEN is cleared)  
1 = Indicates that a start bit has been detected last (this bit is '0' on RESET)  
0 = Start bit was not detected last  
2
R/W: Read/Write bit information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next start bit, stop bit, or ACK bit.  
1 = Read  
0 = Write  
2
bit 1:  
bit 0:  
UA: Update Address (10-bit I C mode only)  
1 = Indicates that the user needs to update the address in the SSPADD register  
0 = Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes)  
1 = Receive complete, SSPBUF is full  
0 = Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only)  
1 = Transmit in progress, SSPBUF is full  
0 = Transmit complete, SSPBUF is empty  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 43  
PIC16C72 Series  
FIGURE 8-5: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h) (PIC16CR72)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WCOL SSPOV SSPEN  
bit7  
SSPM3 SSPM2 SSPM1 SSPM0  
bit0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7:  
WCOL: Write Collision Detect bit  
1 = The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0 = No collision  
bit 6:  
SSPOV: Receive Overflow Indicator bit  
In SPI mode  
1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of over-  
flow, the data in SSPSR is lost. Overflow can only occur in slave mode.The user must read the SSPBUF,  
even if only transmitting data, to avoid setting overflow. In master operation, the overflow bit is not set  
since each new reception (and transmission) is initiated by writing to the SSPBUF register.  
0 = No overflow  
2
In I C mode  
1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don’t  
care" in transmit mode. SSPOV must be cleared in software in either mode.  
0 = No overflow  
bit 5:  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode  
1 = Enables serial port and configures SCK, SDO, and SDI as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
2
In I C mode  
1 = Enables the serial port and configures the SDA and SCL pins as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
In both modes, when enabled, these pins must be properly configured as input or output.  
bit 4:  
CKP: Clock Polarity Select bit  
In SPI mode  
1 = Idle state for clock is a high level  
0 = Idle state for clock is a low level  
2
In I C mode  
SCK release control  
1 = Enable clock  
0 = Holds clock low (clock stretch) (Used to ensure data setup time)  
bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI master operation, clock = FOSC/4  
0001= SPI master operation, clock = FOSC/16  
0010= SPI master operation, clock = FOSC/64  
0011= SPI master operation, clock = TMR2 output/2  
0100= SPI slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin  
2
0110= I C slave mode, 7-bit address  
2
0111= I C slave mode, 10-bit address  
2
1011= I C firmware controlled master operation (slave idle)  
2
1110= I C slave mode, 7-bit address with start and stop bit interrupts enabled  
2
1111= I C slave mode, 10-bit address with start and stop bit interrupts enabled  
DS39016A-page 44  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
8.3.1  
OPERATION OF SSP MODULE IN SPI  
MODE - PIC16CR72  
FIGURE 8-6: SSP BLOCK DIAGRAM  
(SPI MODE)(PIC16CR72)  
Internal  
A block diagram of the SSP Module in SPI Mode is  
shown in Figure 8-6.  
data bus  
Read  
Write  
The SPI mode allows 8-bits of data to be synchro-  
nously transmitted and received simultaneously. To  
accomplish communication, typically three pins are  
used:  
SSPBUF reg  
SSPSR reg  
• Serial Data Out (SDO) RC5/SDO  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
RC4/SDI/SDA  
RC3/SCK/SCL  
shift  
clock  
RC4/SDI/SDA  
RC5/SDO  
bit0  
Additionally a fourth pin may be used when in a slave  
mode of operation:  
• Slave Select (SS)  
RA5/SS/AN4  
When initializing the SPI, several options need to be  
specified.This is done by programming the appropriate  
control bits in the SSPCON register (SSPCON<5:0>)  
and SSPSTAT<7:6>. These control bits allow the fol-  
lowing to be specified:  
Control  
Enable  
SS  
RA5/SS/AN4  
Edge  
Select  
• Master Operation (SCK is the clock output)  
• Slave Mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
2
Clock Select  
SSPM3:SSPM0  
4
TMR2 output  
2
• Clock Edge (Output data on rising/falling edge of  
SCK)  
Edge  
• Clock Rate (master operation only)  
• Slave Select Mode (Slave mode only)  
Select  
TCY  
Prescaler  
4, 16, 64  
RC3/SCK/  
SCL  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON<5>) must be set.To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
ister, and then set bit SSPEN. This configures the SDI,  
SDO, SCK, and SS pins as serial port pins. For the pins  
to behave as the serial port function, they must have  
their data direction bits (in the TRISC register) appro-  
priately programmed. That is:  
TRISC<3>  
• SDI must have TRISC<4> set  
• SDO must have TRISC<5> cleared  
• SCK (master operation) must have TRISC<3>  
cleared  
• SCK (Slave mode) must have TRISC<3> set  
• SS must have TRISA<5> set  
Note: When the SPI is in Slave Mode with SS pin  
control enabled, (SSPCON<3:0> = 0100)  
the SPI module will reset if the SS pin is set  
to VDD.  
Note: If the SPI is used in Slave Mode with  
CKE = '1', then the SS pin control must be  
enabled.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 45  
PIC16C72 Series  
TABLE 8-2  
REGISTERS ASSOCIATED WITH SPI OPERATION (PIC16CR72)  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
(1)  
(1)  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
(1)  
(1)  
(1)  
8Ch  
87h  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TRISC  
PORTC Data Direction Register  
1111 1111 1111 1111  
13h  
14h  
85h  
94h  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
SSPCON WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
TRISA  
PORTA Data Direction Register  
D/A R/W  
--11 1111 --11 1111  
0000 0000 0000 0000  
SSPSTAT  
SMP  
CKE  
P
S
UA  
BF  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.  
Note 1: Always maintain these bits clear.  
DS39016A-page 46  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
2
2
The SSPCON register allows control of the I C opera-  
8.4  
SSP I C Operation  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I C modes to be selected:  
2
2
The SSP module in I C mode fully implements all slave  
functions, except general call support, and provides  
interrupts on start and stop bits in hardware to facilitate  
firmware implementations of the master functions. The  
SSP module implements the standard mode specifica-  
tions as well as 7-bit and 10-bit addressing.  
2
• I C Slave mode (7-bit address)  
2
• I C Slave mode (10-bit address)  
2
• I C Slave mode (7-bit address), with start and  
stop bit interrupts enabled  
2
• I C Slave mode (10-bit address), with start and  
Two pins are used for data transfer.These are the RC3/  
SCK/SCL pin, which is the clock (SCL), and the RC4/  
SDI/SDA pin, which is the data (SDA). The user must  
configure these pins as inputs or outputs through the  
TRISC<4:3> bits.  
stop bit interrupts enabled  
2
• I C Firmware controlled master operation, slave  
is idle  
2
Selection of any I C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits.  
The SSP module functions are enabled by setting SSP  
Enable bit SSPEN (SSPCON<5>).  
2
FIGURE 8-7: SSP BLOCK DIAGRAM  
Additional information on SSP I C operation may be  
2
(I C MODE)  
found in the PICmicro™ Mid-Range MCU Reference  
Manual, DS33023.  
8.4.1  
SLAVE MODE  
Internal  
data bus  
In slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The SSP module will  
override the input state with the output data when  
required (slave-transmitter).  
Read  
Write  
SSPBUF reg  
SSPSR reg  
RC3/SCK/SCL  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the acknowledge (ACK) pulse, and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
shift  
clock  
RC4/  
SDI/  
MSb  
LSb  
SDA  
There are certain conditions that will cause the SSP  
module not to give this ACK pulse. These are if either  
(or both):  
Addr Match  
Match detect  
SSPADD reg  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit detect  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set.  
Table 8-3 shows what happens when a data transfer  
byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow condi-  
tion. Flag bit BF is cleared by reading the SSPBUF reg-  
ister while bit SSPOV is cleared through software.  
2
The SSP module has five registers for I C operation.  
These are the:  
• SSP Control Register (SSPCON)  
• SSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• SSP Shift Register (SSPSR) - Not directly acces-  
sible  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
• SSP Address Register (SSPADD)  
2
I C specification as well as the requirement of the SSP  
module is shown in timing parameter #100 and param-  
eter #101.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 47  
PIC16C72 Series  
8.4.1.1  
ADDRESSING  
1111 0 A9 A8 0’, where A9 and A8 are the two MSbs  
of the address. The sequence of events for 10-bit  
address is as follows, with steps 7- 9 for slave-transmit-  
ter:  
Once the SSP module has been enabled, it waits for a  
START condition to occur. Following the START condi-  
tion, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
1. Receive first (high) byte of Address (bits SSPIF,  
BF, and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
4. Receive second (low) byte of Address (bits  
SSPIF, BF, and UA are set).  
b) The buffer full bit, BF is set.  
c) An ACK pulse is generated.  
5. Update the SSPADD register with the first (high)  
byte of Address, if match releases SCL line, this  
will clear bit UA.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) - on the falling  
edge of the ninth SCL pulse.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
In 10-bit address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write  
so the slave device will receive the second address  
byte. For a 10-bit address the first byte would equal  
7. Receive repeated START condition.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
TABLE 8-3  
DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
Generate ACK  
Pulse  
(SSP Interrupt occurs  
if enabled)  
BF  
SSPOV  
SSPSR SSPBUF  
0
1
1
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
DS39016A-page 48  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
8.4.1.2  
RECEPTION  
When the address byte overflow condition exists, then  
no acknowledge (ACK) pulse is given. An overflow con-  
dition is defined as either bit BF (SSPSTAT<0>) is set  
or bit SSPOV (SSPCON<6>) is set.  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
2
FIGURE 8-8:  
I C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4  
R/W=0  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
ACK  
9
SDA  
SCL  
A3 A2 A1  
D5  
D2  
D0  
8
D5  
D2  
D0  
8
D7 D6  
D4 D3  
D7 D6  
D4 D3  
D1  
7
D1  
7
3
7
1
2
4
5
4
3
6
5
6
1
2
3
6
1
2
4
8
5
P
S
SSPIF (PIR1<3>)  
Cleared in software  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 49  
PIC16C72 Series  
8.4.1.3  
TRANSMISSION  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF must be cleared in software, and  
the SSPSTAT register is used to determine the status  
of the byte. Flag bit SSPIF is set on the falling edge of  
the ninth clock pulse.  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit, and pin RC3/SCK/SCL is held  
low. The transmit data must be loaded into the SSP-  
BUF register, which also loads the SSPSR register.  
Then pin RC3/SCK/SCL should be enabled by setting  
bit CKP (SSPCON<4>). The master must monitor the  
SCL pin prior to asserting another clock pulse. The  
slave devices may be holding off the master by stretch-  
ing the clock. The eight data bits are shifted out on the  
falling edge of the SCL input.This ensures that the SDA  
signal is valid during the SCL high time (Figure 8-9).  
As a slave-transmitter, the ACK pulse from the master-  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line was high (not ACK), then the  
data transfer is complete. When the ACK is latched by  
the slave, the slave logic is reset (resets SSPSTAT reg-  
ister) and the slave then monitors for another occur-  
rence of the START bit. If the SDA line was low (ACK),  
the transmit data must be loaded into the SSPBUF reg-  
ister, which also loads the SSPSR register. Then pin  
RC3/SCK/SCL should be enabled by setting bit CKP.  
2
FIGURE 8-9: I C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
ACK  
9
SDA  
SCL  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
cleared in software  
SSPIF (PIR1<3>)  
BF (SSPSTAT<0>)  
From SSP interrupt  
service routine  
SSPBUF is written in software  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written-to  
before the CKP bit can be set)  
DS39016A-page 50  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C72 Series  
8.4.2  
MASTER OPERATION  
8.4.3  
MULTI-MASTER OPERATION  
Master operation is supported in firmware using inter-  
rupt generation on the detection of the START and  
STOP conditions. The STOP (P) and START (S) bits  
are cleared from a reset or when the SSP module is  
disabled. The STOP (P) and START (S) bits will toggle  
based on the START and STOP conditions. Control of  
In multi-master operation, the interrupt generation on  
the detection of the START and STOP conditions  
allows the determination of when the bus is free. The  
STOP (P) and START (S) bits are cleared from a reset  
or when the SSP module is disabled. The STOP (P)  
and START (S) bits will toggle based on the START and  
2
2
the I C bus may be taken when the P bit is set, or the  
STOP conditions. Control of the I C bus may be taken  
bus is idle and both the S and P bits are clear.  
when bit P (SSPSTAT<4>) is set, or the bus is idle and  
both the S and P bits clear. When the bus is busy,  
enabling the SSP Interrupt will generate the interrupt  
when the STOP condition occurs.  
In master operation, the SCL and SDA lines are manip-  
ulated in firmware by clearing the corresponding  
TRISC<4:3> bit(s). The output level is always low, irre-  
spective of the value(s) in PORTC<4:3>. So when  
In multi-master operation, the SDA line must be moni-  
tored to see if the signal level is the expected output  
level. This check only needs to be done when a high  
level is output. If a high level is expected and a low level  
is present, the device needs to release the SDA and  
SCL lines (set TRISC<4:3>). There are two stages  
where this arbitration can be lost, these are:  
transmitting data,  
a '1' data bit must have the  
TRISC<4> bit set (input) and a '0' data bit must have  
the TRISC<4> bit cleared (output). The same scenario  
is true for the SCL line with the TRISC<3> bit.  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP Interrupt if enabled):  
• Address Transfer  
• Data Transfer  
• START condition  
• STOP condition  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address trans-  
fer stage, communication to the device may be in  
progress. If addressed an ACK pulse will be generated.  
If arbitration was lost during the data transfer stage, the  
device will need to re-transfer the data at a later time.  
• Data transfer byte transmitted/received  
Master operation can be done with either the slave  
mode idle (SSPM3:SSPM0 = 1011) or with the slave  
active. When both master operation and slave modes  
are used, the software needs to differentiate the  
source(s) of the interrupt.  
For more information on master operation, see AN578  
For more information on master operation, see AN554  
2
- Use of the SSP Module in the of I C Multi-Master  
2
- Software Implementation of I C Bus Master.  
Environment.  
2
TABLE 8-4  
REGISTERS ASSOCIATED WITH I C OPERATION  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh,18Bh  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
PIR1  
PIE1  
ADIF  
ADIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
0Ch  
8Ch  
13h  
93h  
14h  
94h  
87h  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
2
SSPADD Synchronous Serial Port (I C mode) Address Register  
SSPCON  
SSPSTAT  
TRISC  
WCOL  
SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0  
(2)  
(2)  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
PORTC Data Direction register  
1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'.  
Shaded cells are not used by SSP module in SPI mode.  
Note 1: These bits are unimplemented, read as '0'.  
2: The SMP and CKE bits are implemented on the PIC16CR72 only. On the PIC16C72, these two bits are unimplemented,  
read as '0'.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 51  
PIC16C72 Series  
NOTES:  
DS39016A-page 52  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
Additional information on the A/D module is available in  
the PICmicro™ Mid-Range MCU Reference Manual,  
DS33023.  
9.0  
ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The analog-to-digital (A/D) converter module has five  
inputs for the PIC16C72/R72.  
The A/D module has three registers. These registers  
are:  
The A/D allows conversion of an analog input signal to  
a corresponding 8-bit digital number (refer to Applica-  
tion Note AN546 for use of A/D Converter). The output  
of the sample and hold is the input into the converter,  
which generates the result via successive approxima-  
tion. The analog reference voltage is software select-  
able to either the device’s positive supply voltage (VDD)  
or the voltage level on the RA3/AN3/VREF pin.  
• A/D Result Register (ADRES)  
A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off, and any  
conversion is aborted.  
The ADCON0 register, shown in Figure 9-1, controls  
the operation of the A/D module. The ADCON1 regis-  
ter, shown in Figure 9-2, configures the functions of the  
port pins. The port pins can be configured as analog  
inputs (RA3 can also be a voltage reference) or as dig-  
ital I/O.  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode.To oper-  
ate in sleep, the A/D conversion clock must be derived  
from the A/D’s internal RC oscillator.  
FIGURE 9-1: ADCON0 REGISTER (ADDRESS 1Fh)  
R/W-0 R/W-0 R/W-0  
ADCS1 ADCS0 CHS2  
bit7  
R/W-0  
CHS1  
R/W-0  
R/W-0  
U-0  
R/W-0  
ADON  
CHS0 GO/DONE  
R =Readable bit  
W = Writable bit  
U =Unimplemented bit,  
read as ‘0’  
bit0  
- n = Value at POR reset  
bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from an internal RC oscillator)  
bit 5-3: CHS2:CHS0: Analog Channel Select bits  
000= channel 0, (RA0/AN0)  
001= channel 1, (RA1/AN1)  
010= channel 2, (RA2/AN2)  
011= channel 3, (RA3/AN3)  
100= channel 4, (RA5/AN4)  
bit 2:  
GO/DONE: A/D Conversion Status bit  
If ADON = 1  
1 = A/D conversion in progress (setting this bit starts the A/D conversion)  
0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conver-  
sion is complete)  
bit 1:  
bit 0:  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1 = A/D converter module is operating  
0 = A/D converter module is shutoff and consumes no operating current  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 53  
PIC16C72 Series  
FIGURE 9-2: ADCON1 REGISTER (ADDRESS 9Fh)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PCFG2  
PCFG1  
PCFG0  
R =Readable bit  
W = Writable bit  
bit7  
bit0  
U =Unimplemented  
bit, read as ‘0’  
- n = Value at POR reset  
bit 7-3: Unimplemented: Read as '0'  
bit 2-0: PCFG2:PCFG0: A/D Port Configuration Control bits  
PCFG2:PCFG0  
RA0  
RA1  
RA2  
RA5  
RA3  
VREF  
VDD  
000  
001  
010  
011  
100  
101  
11x  
A
A
A
A
A
A
A
A
A
A
D
A
A
A
A
A
D
A
A
A
D
D
D
A
A
A
D
D
D
VREF  
A
RA3  
VDD  
RA3  
VDD  
RA3  
GND  
VREF  
A
VREF  
D
A = Analog input  
D = Digital I/O  
DS39016A-page 54  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
The ADRES register contains the result of the A/D con-  
version. When the A/D conversion is complete, the  
result is loaded into the ADRES register, the GO/DONE  
bit (ADCON0<2>) is cleared, and A/D interrupt flag bit  
ADIF is set. The block diagram of the A/D module is  
shown in Figure 9-3.  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
3. Wait the required acquisition time.  
4. Start conversion:  
The value that is in the ADRES register is not modified  
for a Power-on Reset. The ADRES register will contain  
unknown data after a Power-on Reset.  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 9.1.  
After this acquisition time has elapsed the A/D conver-  
sion can be started. The following steps should be fol-  
lowed for doing an A/D conversion:  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result register (ADRES), clear bit  
ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
1. Configure the A/D module:  
• Configure analog pins / voltage reference /  
and digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
FIGURE 9-3: A/D BLOCK DIAGRAM  
CHS2:CHS0  
100  
RA5/AN4  
VAIN  
011  
(Input voltage)  
RA3/AN3/VREF  
010  
RA2/AN2  
A/D  
Converter  
001  
RA1/AN1  
000  
VDD  
RA0/AN0  
000or  
010or  
100  
VREF  
(Reference  
voltage)  
001or  
011or  
101  
PCFG2:PCFG0  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 55  
PIC16C72 Series  
To calculate the minimum acquisition time, TACQ, see  
the PICmicro™ Mid-Range MCU Reference Manual,  
DS33023.This equation calculates the acquisition time  
to within 1/2 LSb error (512 steps for the A/D). The 1/2  
LSb error is the maximum error allowed for the A/D to  
meet its specified accuracy.  
9.1  
A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 9-4. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD). The  
source impedance affects the offset voltage at the ana-  
log input (due to pin leakage current). The maximum  
recommended impedance for analog sources is 10  
k. After the analog input channel is selected  
(changed) this acquisition must be done before the  
conversion can be started.  
FIGURE 9-4: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CHOLD  
= DAC capacitance  
= 51.2 pF  
CPIN  
5 pF  
VA  
I leakage  
± 500 nA  
VT = 0.6V  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
I leakage = leakage current at the pin due to  
various junctions  
VDD 4V  
3V  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 10 11  
Sampling Switch  
( k)  
DS39016A-page 56  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
9.2  
Selecting the A/D Conversion Clock  
9.3  
Configuring Analog Port Pins  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 9.5TAD per 8-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The four possible options for TAD are:  
The ADCON1, TRISA, and TRISE registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bits set (input). If the TRIS bit is cleared (out-  
put), the digital output level (VOH or VOL) will be  
converted.  
• 2TOSC  
• 8TOSC  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
• 32TOSC  
• Internal RC oscillator  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs, will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
Table 9-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
Note 2: Analog levels on any pin that is defined as  
a digital input (including the AN4:AN0  
pins), may cause the input buffer to con-  
sume current that is out of the devices  
specification.  
TABLE 9-1  
TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Device Frequency  
Operation  
2TOSC  
ADCS1:ADCS0  
20 MHz  
5 MHz  
1.25 MHz  
1.6 µs  
333.33 kHz  
(2)  
(2)  
00  
01  
10  
11  
6 µs  
100 ns  
400 ns  
(2)  
(3)  
8TOSC  
1.6 µs  
6.4 µs  
400 ns  
24 µs  
(3)  
(3)  
32TOSC  
1.6 µs  
6.4 µs  
25.6 µs  
96 µs  
(5)  
(1,4)  
(1,4)  
(1,4)  
(1)  
RC  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for  
sleep operation only.  
5: For extended voltage devices (LC), please refer to Electrical Specifications section.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 57  
PIC16C72 Series  
GO/DONE bit will be set, starting the A/D conversion,  
and the Timer1 counter will be reset to zero. Timer1 is  
reset to automatically repeat the A/D acquisition period  
with minimal software overhead (moving the ADRES to  
the desired location). The appropriate analog input  
channel must be selected and the minimum acquisition  
done before the “special event trigger” sets the  
GO/DONE bit (starts a conversion).  
9.4  
A/D Conversions  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
9.5  
Use of the CCP Trigger  
An A/D conversion can be started by the “special event  
trigger” of the CCP1 module. This requires that the  
CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be pro-  
grammed as 1011and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the  
If the A/D module is not enabled (ADON is cleared),  
then the “special event trigger” will be ignored by the  
A/D module, but will still reset the Timer1 counter.  
TABLE 9-2  
REGISTERS/BITS ASSOCIATED WITH A/D  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE INTE RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Bh,8Bh  
0Ch  
8Ch  
1Eh  
SSPIF CCP1IF  
TMR2IF TMR1IF -0-- 0000 -0-- 0000  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE -0-- 0000 -0-- 0000  
ADRES  
A/D Result Register  
xxxx xxxx uuuu uuuu  
ADCON0 ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE  
ADON 0000 00-0 0000 00-0  
1Fh  
ADCON1  
PCFG2  
RA2  
PCFG1 PCFG0 ---- -000 ---- -000  
9Fh  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
05h  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA1  
RA0  
85h  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
DS39016A-page 58  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
ble. The other is the Power-up Timer (PWRT), which  
provides a fixed delay of 72 ms (nominal) on power-up  
only, designed to keep the part in reset while the power  
supply stabilizes. With these two timers on-chip, most  
applications need no external reset circuitry.  
10.0 SPECIAL FEATURES OF THE  
CPU  
The PIC16C72 series has a host of such features  
intended to maximize system reliability, minimize cost  
through elimination of external components, provide  
power saving operating modes and offer code protec-  
tion. These are:  
SLEEP mode is designed to offer a very low current  
power-down mode.The user can wake-up from SLEEP  
through external reset, Watchdog Timer Wake-up, or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
• Oscillator selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
Additional information on special features is available in  
the PICmicro™ Mid-Range MCU Family Reference  
Manual, DS33023.  
• Watchdog Timer (WDT)  
• SLEEP  
10.1  
Configuration Bits  
• Code protection  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
• ID locations  
• In-Circuit Serial Programming™  
The PIC16CXXX family has a Watchdog Timer which  
can be shut off only through configuration bits. It runs  
off its own RC oscillator for added reliability. There are  
two timers that offer necessary delays on power-up.  
One is the Oscillator Start-up Timer (OST), intended to  
keep the chip in reset until the crystal oscillator is sta-  
The user will note that address 2007h is beyond the  
user program memory space. In fact, it belongs to the  
special test/configuration memory space (2000h -  
3FFFh), which can be accessed only during program-  
ming.  
FIGURE 10-1: CONFIGURATION WORD FOR PIC16C72/R72  
CP1 CP0 CP1 CP0 CP1 CP0  
bit13  
BODEN CP1 CP0 PWRTE WDTE FOSC1 FOSC0  
bit0  
Register:CONFIG  
Address2007h  
(2)  
bit 13-8 CP1:CP0: Code Protection bits  
5-4: 11= Code protection off  
10= Upper half of program memory code protected  
01= Upper 3/4th of program memory code protected  
00= All memory is code protected  
bit 7:  
bit 6:  
Unimplemented: Read as '1'  
(1)  
BODEN: Brown-out Reset Enable bit  
1 = BOR enabled  
0 = BOR disabled  
(1)  
bit 3:  
bit 2:  
PWRTE: Power-up Timer Enable bit  
1 = PWRT disabled  
0 = PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.  
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 59  
 
 
PIC16C72 Series  
10.2  
Oscillator Configurations  
TABLE 10-1  
CERAMIC RESONATORS  
10.2.1 OSCILLATOR TYPES  
Ranges Tested:  
The PIC16CXXX family can be operated in four differ-  
ent oscillator modes.The user can program two config-  
uration bits (FOSC1 and FOSC0) to select one of these  
four modes:  
Mode  
XT  
Freq  
OSC1  
OSC2  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
Crystal/Resonator  
These values are for design guidance only. See  
notes at bottom of page.  
High Speed Crystal/Resonator  
Resistor/Capacitor  
Resonators Used:  
10.2.2 CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
455 kHz Panasonic EFO-A455K04B ± 0.3%  
2.0 MHz Murata Erie CSA2.00MG  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
16.0 MHz Murata Erie CSA16.00MX  
± 0.5%  
± 0.5%  
± 0.5%  
± 0.5%  
In XT, LP or HS modes a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 10-2). The  
PIC16CXXX family oscillator design requires the use of  
a parallel cut crystal. Use of a series cut crystal may  
give a frequency out of the crystal manufacturers spec-  
ifications.When in XT, LP or HS modes, the device can  
have an external clock source to drive the OSC1/  
CLKIN pin (Figure 10-3).  
All resonators used did not have built-in capacitors.  
TABLE 10-2  
CAPACITOR SELECTION  
FOR CRYSTAL OSCILLATOR  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
Osc Type  
FIGURE 10-2: CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(HS, XT OR LP  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
OSC CONFIGURATION)  
(1)  
C1  
4 MHz  
15 pF  
15 pF  
OSC1  
4 MHz  
15 pF  
15 pF  
To  
internal  
logic  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
XTAL  
(3)  
RF  
20 MHz  
OSC2  
These values are for design guidance only. See  
notes at bottom of page.  
SLEEP  
PIC16CXXX  
(2)  
RS  
(1)  
C2  
Crystals Used  
32 kHz  
200 kHz  
1 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
± 30 PPM  
Note1: See Table 10-1 and Table 10-2 for recom-  
mended values of C1 and C2.  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
3: RF varies with the crystal chosen.  
4 MHz  
ECS ECS-40-20-1  
8 MHz  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
20 MHz  
FIGURE 10-3: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
Note 1: Recommended values of C1 and C2 are  
identical to the ranges tested (Table 10-1).  
2: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
OSC CONFIGURATION)  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16CXXX  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
Open  
4: Rs may be required in HS mode as well as  
XT mode to avoid overdriving crystals with  
low drive level specification.  
DS39016A-page 60  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C72 Series  
10.2.3 RC OSCILLATOR  
10.3  
Reset  
For timing insensitive applications the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 10-4 shows how the R/C combina-  
tion is connected to the PIC16CXXX family.  
The PIC16CXXX family differentiates between various  
kinds of reset:  
• Power-on Reset (POR)  
• MCLR reset during normal operation  
• MCLR reset during SLEEP  
• WDT Reset (normal operation)  
• Brown-out Reset (BOR)  
Some registers are not affected in any reset condition;  
their status is unknown on POR and unchanged in any  
other reset. Most other registers are reset to a “reset  
state” on Power-on Reset (POR), on the MCLR and  
WDT Reset, on MCLR reset during SLEEP, and Brown-  
out Reset (BOR). They are not affected by a WDT  
Wake-up, which is viewed as the resumption of normal  
operation.The TO and PD bits are set or cleared differ-  
ently in different reset situations as indicated in  
Table 10-4. These bits are used in software to deter-  
mine the nature of the reset. See Table 10-6 for a full  
description of reset states of all registers.  
FIGURE 10-4: RC OSCILLATOR MODE  
VDD  
Rext  
Internal  
OSC1  
clock  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 10-5.  
Cext  
VSS  
PIC16CXXX  
The PIC16C72/CR72 have a MCLR noise filter in the  
MCLR reset path.The filter will detect and ignore small  
pulses.  
OSC2/CLKOUT  
Fosc/4  
Recommended values: 3 kΩ ≤ Rext 100 kΩ  
Cext > 20pF  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 61  
 
PIC16C72 Series  
FIGURE 10-5: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
R
BODEN  
OST/PWRT  
OST  
10-bit Ripple counter  
Chip_Reset  
Q
OSC1  
(1)  
On-chip  
RC OSC  
PWRT  
10-bit Ripple counter  
Enable PWRT  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
DS39016A-page 62  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
10.4  
Power-On Reset (POR)  
10.5  
Power-up Timer (PWRT)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.5V - 2.1V). To  
take advantage of the POR, just tie the MCLR pin  
directly (or through a resistor) to VDD.This will eliminate  
external RC components usually needed to create a  
Power-on Reset. A maximum rise time for VDD is spec-  
ified. See Electrical Specifications for details. For a  
slow rise time, see Figure 10-6.  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up only, from the POR. The Power-  
up Timer operates on an internal RC oscillator. The  
chip is kept in reset as long as the PWRT is active.The  
PWRT’s time delay allows VDD to rise to an acceptable  
level. A configuration bit is provided to enable/disable  
the PWRT.  
The power-up time delay will vary from chip to chip due  
to VDD, temperature, and process variation. See DC  
parameters for details.  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature,...) must be met to ensure oper-  
ation. If these conditions are not met, the device must  
be held in reset until the operating conditions are met.  
Brown-out Reset may be used to meet the startup con-  
ditions.  
10.6  
Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over.This ensures that the crystal oscil-  
lator or resonator has started and stabilized.  
FIGURE 10-6: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
10.7  
Brown-Out Reset (BOR)  
VDD  
A configuration bit, BODEN, can disable (if clear/pro-  
grammed) or enable (if set) the Brown-out Reset cir-  
cuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for  
greater than parameter #35, the brown-out situation will  
reset the chip. A reset may not occur if VDD falls below  
4.0V for less than parameter #35. The chip will remain  
in Brown-out Reset until VDD rises above BVDD. The  
Power-up Timer will now be invoked and will keep the  
chip in RESET an additional 72 ms. If VDD drops below  
BVDD while the Power-up Timer is running, the chip will  
go back into a Brown-out Reset and the Power-up  
Timer will be initialized. Once VDD rises above BVDD,  
the Power-up Timer will execute a 72 ms time delay.  
The Power-up Timer should always be enabled when  
Brown-out Reset is enabled.  
D
R
R1  
MCLR  
PIC16CXXX  
C
Note 1: External Power-on Reset circuit is  
required only if VDD power-up slope is too  
slow. The diode D helps discharge the  
capacitor quickly when VDD powers down.  
2: R < 40 kis recommended to make sure  
that voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
(ESD) or Electrical Overstress (EOS).  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 63  
 
PIC16C72 Series  
10.8  
Time-out Sequence  
10.9  
Power Control/Status Register  
(PCON)  
On power-up the time-out sequence is as follows: First  
PWRT time-out is invoked after the POR time delay has  
expired. Then OST is activated. The total time-out will  
vary based on oscillator configuration and the status of  
the PWRT. For example, in RC mode with the PWRT  
disabled, there will be no time-out at all. Figure 10-7,  
Figure 10-8, Figure 10-9 and Figure 10-10 depict time-  
out sequences on power-up.  
The Power Control/Status Register, PCON has up to  
two bits, depending upon the device.  
Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is  
unknown on a Power-on Reset. It must then be set by  
the user and checked on subsequent resets to see if bit  
BOR cleared, indicating a BOR occurred. The BOR bit  
is a "Don’t Care" bit and is not necessarily predictable  
if the Brown-out Reset circuitry is disabled (by clearing  
bit BODEN in the Configuration Word).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(Figure 10-9). This is useful for testing purposes or to  
synchronize more than one PIC16CXXX family device  
operating in parallel.  
Bit1 is POR (Power-on Reset Status bit). It is cleared  
on a Power-on Reset and unaffected otherwise. The  
user must set this bit following a Power-on Reset.  
Table 10-5 shows the reset conditions for some special  
function registers, while Table 10-6 shows the reset  
conditions for all the registers.  
TABLE 10-3  
TIME-OUT IN VARIOUS SITUATIONS  
Oscillator Configura-  
tion  
Power-up  
PWRTE = 0 PWRTE = 1  
Wake-up from  
Brown-out  
SLEEP  
XT, HS, LP  
72 ms +  
1024TOSC  
72 ms + 1024TOSC  
1024TOSC  
1024TOSC  
RC  
72 ms  
72 ms  
TABLE 10-4  
STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
x
0
0
u
1
1
x
0
x
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 10-5  
RESET CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
000h  
000h  
PC + 1  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
WDT Wake-up  
Brown-out Reset  
(1)  
Interrupt wake-up from SLEEP  
PC + 1  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
DS39016A-page 64  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C72 Series  
TABLE 10-6  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or Inter-  
rupt  
W
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
xxxx xxxx  
0000h  
uuuu uuuu  
0000h  
uuuu uuuu  
(2)  
PCL  
PC + 1  
(3)  
(3)  
STATUS  
FSR  
0001 1xxx  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
xxxx xxxx  
---0 0000  
0000 000x  
-0-- 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
-0-- 0000  
---- --0u  
1111 1111  
0000 0000  
--00 0000  
---- -000  
000q quuu  
uuuq quuu  
uuuu uuuu  
--0u 0000  
uuuu uuuu  
uuuu uuuu  
---0 0000  
0000 000u  
-0-- 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
-0-- 0000  
---- --uu  
1111 1111  
0000 0000  
--00 0000  
---- -000  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
PORTA  
PORTB  
PORTC  
PCLATH  
INTCON  
PIR1  
(1)  
uuuu uuuu  
(1)  
-u-- uuuu  
TMR1L  
TMR1H  
T1CON  
TMR2  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
---- --uu  
1111 1111  
uuuu uuuu  
--uu uuuu  
---- -uuu  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
ADRES  
ADCON0  
OPTION  
TRISA  
TRISB  
TRISC  
PIE1  
PCON  
PR2  
SSPADD  
SSPSTAT  
ADCON1  
Legend: u = unchanged,  
x
= unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 10-5 for reset value for specific condition.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 65  
PIC16C72 Series  
FIGURE 10-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 10-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 10-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
DS39016A-page 66  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
FIGURE 10-10: SLOW RISE TIME (MCLR TIED TO VDD)  
5V  
1V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 67  
PIC16C72 Series  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs. The latency  
is the same for one or two cycle instructions. Individual  
interrupt flag bits are set regardless of the status of  
their corresponding mask bit or the GIE bit  
10.10 Interrupts  
The PIC16C72/CR72 has 8 sources of interrupt. The  
interrupt control register (INTCON) records individual  
interrupt requests in flag bits. It also has individual and  
global interrupt enable bits.  
Note: Individual interrupt flag bits are set regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
10.10.1 INT INTERRUPT  
External interrupt on RB0/INT pin is edge triggered:  
either rising if bit INTEDG (OPTION<6>) is set, or fall-  
ing, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the interrupt service rou-  
tine before re-enabling this interrupt. The INT interrupt  
can wake-up the processor from SLEEP, if bit INTE was  
set prior to going into SLEEP.The status of global inter-  
rupt enable bit GIE decides whether or not the proces-  
sor branches to the interrupt vector following wake-up.  
See Section 10.13 for details on SLEEP mode.  
A
global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupt’s flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set  
regardless of the status of the GIE bit. The GIE bit is  
cleared on reset.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine as well as sets the GIE bit, which  
re-enables interrupts.  
The RB0/INT pin interrupt, the RB port change inter-  
rupt and the TMR0 overflow interrupt flags are con-  
tained in the INTCON register.  
10.10.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>). (Section 4.0)  
The peripheral interrupt flags are contained in the spe-  
cial function registers PIR1 and PIR2.The correspond-  
ing interrupt enable bits are contained in special  
function registers PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in special function reg-  
ister INTCON.  
10.10.3 PORTB INTCON CHANGE  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>).  
(Section 3.2)  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the interrupt service routine the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
FIGURE 10-11: INTERRUPT LOGIC  
T0IF  
T0IE  
Wake-up (If in SLEEP mode)  
INTF  
INTE  
ADIF  
ADIE  
Interrupt to CPU  
Clear GIE bit  
RBIF  
RBIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
PEIE  
GIE  
TMR1IF  
TMR1IE  
TMR2IF  
TMR2IE  
DS39016A-page 68  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
The example:  
10.11 Context Saving During Interrupts  
a) Stores the W register.  
During an interrupt, only the return PC value is saved  
on the stack.Typically, users may wish to save key reg-  
isters during an interrupt, i.e., W register and STATUS  
register. This will have to be implemented in software.  
b) Stores the STATUS register in bank 0.  
c) Executes the ISR code.  
d) Restores the STATUS register (and bank select  
bit).  
Example 10-1 stores and restores the W and STATUS  
registers. The register, W_TEMP, must be defined in  
each bank and must be defined at the same offset from  
the bank base address (i.e., if W_TEMP is defined at  
0x20 in bank 0, it must also be defined at 0xA0 in bank  
1).  
e) Restores the W register.  
EXAMPLE 10-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
:
W_TEMP  
STATUS,W  
STATUS  
;Copy W to W_TEMP register, could be bank one or zero  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
STATUS_TEMP  
:Interrupt Service Routine (ISR) - user defined  
:
SWAPF  
STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 69  
PIC16C72 Series  
WDT time-out period values may be found in the Elec-  
trical Specifications section under parameter #31. Val-  
ues for the WDT prescaler (actually a postscaler, but  
shared with the Timer0 prescaler) may be assigned  
using the OPTION_REG register.  
10.12 Watchdog Timer (WDT)  
The Watchdog Timer is as a free running on-chip RC  
oscillator which does not require any external compo-  
nents.This RC oscillator is separate from the RC oscil-  
lator of the OSC1/CLKIN pin.That means that the WDT  
will run, even if the clock on the OSC1/CLKIN and  
OSC2/CLKOUT pins of the device has been stopped,  
for example, by execution of a SLEEPinstruction.  
Note: The CLRWDT and SLEEP instructions clear  
the WDT and the postscaler, if assigned to  
the WDT, and prevent it from timing out  
and generating a device RESET condition.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up).The TO bit in the STATUS register  
will be cleared upon a Watchdog Timer time-out.  
.
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
The WDT can be permanently disabled by clearing  
configuration bit WDTE (Section 10.1).  
FIGURE 10-12: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 4-2)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 4-2)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION register.  
FIGURE 10-13: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
2007h  
Name  
Bit 7  
(1)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
WDTE  
PS2  
Bit 1  
FOSC1  
PS1  
Bit 0  
FOSC0  
PS0  
(1)  
(1)  
Config. bits  
OPTION  
CP1  
CP0  
BODEN  
PWRTE  
PSA  
81h,181h  
RBPU  
INTEDG  
T0CS T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Figure 10-1 for operation of these bits.  
DS39016A-page 70  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
Other peripherals cannot generate interrupts since dur-  
ing SLEEP, no on-chip clocks are present.  
10.13 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD, or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D, disable external clocks. Pull all I/O pins, that  
are hi-impedance inputs, high or low externally to avoid  
switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
10.13.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The MCLR pin must be at a logic high level (VIHMC).  
10.13.1 WAKE-UP FROM SLEEP  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
The device can wake up from SLEEP through one of  
the following events:  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will immedi-  
ately wake up from sleep. The SLEEPinstruction  
will be completely executed before the wake-up.  
Therefore, the WDT and WDT postscaler will be  
cleared, the TO bit will be set and the PD bit will  
be cleared.  
1. External reset input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change, or some  
Peripheral Interrupts.  
External MCLR Reset will cause a device reset. All  
other events are considered a continuation of program  
execution and cause a "wake-up". The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device reset. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked.The TO bit  
is cleared if a WDT time-out occurred (and caused  
wake-up).  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes.To  
determine whether a SLEEP instruction executed, test  
the PD bit. If the PD bit is set, the SLEEPinstruction was  
executed as a NOP.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
2. SSP (Start/Stop) bit detect interrupt.  
2
3. SSP transmit or receive in slave mode (SPI/I C).  
4. CCP capture mode interrupt.  
5. A/D conversion (when A/D clock source is RC).  
6. Special event trigger (Timer1 in asynchronous  
mode using an external clock).  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 71  
PIC16C72 Series  
FIGURE 10-14: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
TOST(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
10.14 Program Verification/Code Protection  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
Note: Microchip does not recommend code pro-  
tecting windowed devices.  
10.15 ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 least significant bits of the ID  
location are used.  
For ROM devices, these values are submitted along  
with the ROM code.  
10.16 In-Circuit Serial Programming™  
PIC16CXXX family microcontrollers can be serially  
programmed while in the end application circuit.This is  
simply done with two lines for clock and data, and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
For complete details of serial programming, please  
refer to the In-Circuit Serial Programming (ICSP™)  
Guide, DS30277.  
DS39016A-page 72  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
Table 11-2 lists the instructions recognized by the  
MPASM assembler.  
11.0 INSTRUCTION SET SUMMARY  
Each PIC16CXXX family instruction is a 14-bit word  
divided into an OPCODE which specifies the instruc-  
tion type and one or more operands which further spec-  
ify the operation of the instruction. The PIC16CXXX  
family instruction set summary in Table 11-2 lists byte-  
oriented, bit-oriented, and literal and control opera-  
tions. Table 11-1 shows the opcode field descriptions.  
Figure 11-1 shows the general formats that the instruc-  
tions can have.  
Note: To maintain upward compatibility with  
future PIC16CXXX products, do not use  
the OPTIONand TRISinstructions.  
All examples use the following format to represent a  
hexadecimal number:  
For byte-oriented instructions, 'f' represents a file reg-  
ister designator and 'd' represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
0xhh  
where h signifies a hexadecimal digit.  
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the W register. If 'd' is one, the result is placed  
in the file register specified in the instruction.  
FIGURE 11-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
8
7
6
0
0
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the number of the  
file in which the bit is located.  
OPCODE  
d
f (FILE #)  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
For literal and control operations, 'k' represents an  
eight or eleven bit constant or literal value.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
TABLE 11-1  
OPCODE FIELD  
DESCRIPTIONS  
7
6
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Field  
Description  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Don't care location (= 0 or 1)  
Literal and control operations  
General  
13  
8
7
0
0
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
OPCODE  
k (literal)  
k = 8-bit immediate value  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
PC  
TO  
PD  
Program Counter  
Time-out bit  
k (literal)  
Power-down bit  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
A description of each instruction is available in the PIC-  
micro™ Mid-Range MCU Family Reference Manual,  
DS33023.  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 73  
 
PIC16C72 Series  
TABLE 11-2  
PIC16CXXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
LSb  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0xxx xxxx  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
1,2  
1,2  
3
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO,PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external  
device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS39016A-page 74  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
12.0 DEVELOPMENT SUPPORT  
12.1  
Development Tools  
The PICmicrο microcontrollers are supported with a  
full range of hardware and software development tools:  
• PICMASTER /PICMASTER CE Real-Time  
In-Circuit Emulator  
• ICEPIC Low-Cost PIC16C5X and PIC16CXXX  
In-Circuit Emulator  
• PRO MATE II Universal Programmer  
• PICSTART Plus Entry-Level Prototype  
Programmer  
• PICDEM-1 Low-Cost Demonstration Board  
• PICDEM-2 Low-Cost Demonstration Board  
• PICDEM-3 Low-Cost Demonstration Board  
• MPASM Assembler  
• MPLAB SIM Software Simulator  
• MPLAB-C17 (C Compiler)  
• Fuzzy Logic Development System  
(fuzzyTECH MP)  
A description of each development tool is available in  
the Midrange Reference Manual, DS33023.  
12.2  
PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The PICMASTER emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
2
usage of the I C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 75  
PIC16C72 Series  
NOTES:  
DS39016A-page 76  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
13.0 ELECTRICAL CHARACTERISTICS - PIC16C72 SERIES  
Absolute Maximum Ratings †  
Parameter  
PIC16C72  
PIC16CR72  
Ambient temperature under bias  
Storage temperature  
-55 to +125˚C  
-55 to +125˚C  
-65˚C to +150˚C  
-65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4) -0.3V to (VDD + 0.3V) -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS  
-0.3 to +7.5V  
-0.3 to +14V  
-0.3 to +14V  
1.0W  
TBD  
TBD  
Voltage on MCLR with respect to VSS (Note 1)  
Voltage on RA4 with respect to Vss  
TBD  
Total power dissipation (Note 2)  
1.0W  
Maximum current out of VSS pin  
300 mA  
250 mA  
± 20 mA  
± 20 mA  
25 mA  
300 mA  
250 mA  
± 20 mA  
± 20 mA  
25 mA  
25 mA  
200 mA  
200 mA  
200 mA  
200 mA  
Maximum current into VDD pin  
Input clamp current, IIK (VI < 0 or VI > VDD)  
Output clamp current, IOK (VO < 0 or VO > VDD)  
Maximum output current sunk by any I/O pin  
Maximum output current sourced by any I/O pin  
Maximum current sunk by PORTA and PORTB (combined)  
Maximum current sourced by PORTA and PORTB (combined)  
Maximum current sunk by PORTC  
25 mA  
200 mA  
200 mA  
200 mA  
200 mA  
Maximum current sourced by PORTC  
1. Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLR pin rather than pulling this  
pin directly to VSS.  
2. Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation list-  
ings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 77  
PIC16C72 Series  
TABLE 13-1  
CROSS REFERENCE OF DEVICE SPECS (PIC16C72) FOR OSCILLATOR  
CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16C72-04  
PIC16C72-10  
PIC16C72-20  
PIC16LC72-04  
JW Devices  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 6.0V  
VDD: 4.0V to 6.0V  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3.0V IDD: 5 mA max. at 5.5V  
RC  
IPD: 5.0 µA max. at 3V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 6.0V  
VDD: 4.0V to 6.0V  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3.0V IDD: 5 mA max. at 5.5V  
XT  
HS  
IPD: 5.0 µA max. at 3V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 13.5 mA typ. at 5.5V IDD: 10 mA max. at 5.5V IDD: 20 mA max. at 5.5V  
IDD: 20 mA max. at 5.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 20 MHz max.  
Not recommended for use  
in HS mode  
IPD: 1.5 µA typ. at 4.5V  
IPD: 1.5 µA typ. at 4.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 4 MHz max.  
Freq: 10 MHz max.  
Freq: 20 MHz max.  
VDD: 4.0V to 6.0V  
IDD: 52.5 µA typ. at  
32 kHz, 4.0V  
IPD: 0.9 µA typ. at 4.0V  
Freq: 200 kHz max.  
VDD: 2.5V to 6.0V  
IDD: 48 µA max. at  
32 kHz, 3.0V  
IPD: 5.0 µA max. at 3.0V IPD: 5.0 µA max. at 3.0V  
Freq: 200 kHz max. Freq: 200 kHz max.  
VDD: 2.5V to 6.0V  
IDD: 48 µA max. at  
32 kHz, 3.0V  
Not recommended for use Not recommended for use  
in LP mode in LP mode  
LP  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications.  
It is recommended that the user select the device type that ensures the specifications required.  
TABLE 13-2  
CROSS REFERENCE OF DEVICE SPECS (PIC16CR72) FOR OSCILLATOR  
CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16CR72-04  
PIC16CR72-10  
PIC16CR72-20  
PIC16LCR72-04  
JW Devices  
VDD: 4.0V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 5.5V  
VDD: 4.0V to 5.5V  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3.0V IDD: 5 mA max. at 5.5V  
RC  
IPD: 5.0 µA max. at 3V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.0V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 5.5V  
VDD: 4.0V to 5.5V  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3.0V IDD: 5 mA max. at 5.5V  
XT  
HS  
IPD: 5.0 µA max. at 3V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 13.5 mA typ. at 5.5V IDD: 10 mA max. at 5.5V IDD: 20 mA max. at 5.5V  
IDD: 20 mA max. at 5.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 20 MHz max.  
Not recommended for use  
in HS mode  
IPD: 1.5 µA typ. at 4.5V  
IPD: 1.5 µA typ. at 4.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 4 MHz max.  
Freq: 10 MHz max.  
Freq: 20 MHz max.  
VDD: 4.0V to 5.5V  
IDD: 52.5 µA typ. at  
32 kHz, 4.0V  
IPD: 0.9 µA typ. at 4.0V  
Freq: 200 kHz max.  
VDD: 2.5V to 5.5V  
IDD: 48 µA max. at  
32 kHz, 3.0V  
IPD: 5.0 µA max. at 3.0V IPD: 5.0 µA max. at 3.0V  
Freq: 200 kHz max. Freq: 200 kHz max.  
VDD: 2.5V to 5.5V  
IDD: 48 µA max. at  
32 kHz, 3.0V  
Not recommended for use Not recommended for use  
in LP mode in LP mode  
LP  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications.  
It is recommended that the user select the device type that ensures the specifications required.  
DS39016A-page 78  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
13.1  
DC Characteristics:  
PIC16C72/CR72-04 (Commercial, Industrial, Extended)  
PIC16C72/CR72-10 (Commercial, Industrial, Extended)  
PIC16C72/CR72-20 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +125˚C for extended,  
-40˚C TA +85˚C for industrial and  
0˚C TA +70˚C for commercial  
DC CHARACTERISTICS  
PIC16C72  
PIC16CR72  
Units  
Param  
No.  
Characteristic  
Supply Voltage  
Sym  
Conditions  
Min  
Typ†  
Max  
Min  
Typ†  
Max  
D001  
D001A  
VDD  
4.0  
4.5  
-
-
6.0  
5.5  
4.0  
4.5  
-
-
5.5  
5.5  
V
V
XT, RC and LP osc  
HS osc  
D002*  
D003  
RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5  
-
-
-
1.5  
-
-
V
VDD start voltage to  
ensure internal Power-  
on Reset Signal  
VPOR  
-
VSS  
-
VSS  
V
See section on Power-  
on Reset for details  
D004*  
D005  
VDD rise rate to ensure  
internal Power-on  
Reset Signal  
SVDD  
Bvdd  
0.05  
3.7  
-
-
0.05  
3.7  
-
-
V/ms  
V
See section on Power-  
on Reset for details  
Brown-out Reset Volt-  
age  
4.0  
4.3  
4.0  
4.3  
BODEN bit in configura-  
tion word enabled  
3.7  
-
4.0  
2.7  
4.4  
5.0  
3.7  
-
4.0  
2.7  
4.4  
5.0  
V
Extended Only  
D010  
D013  
Supply Current  
(Note 2,5)  
IDD  
mA  
XT, RC osc  
FOSC = 4 MHz,  
VDD = 5.5V (Note 4)  
-
10  
20  
-
10  
20  
mA  
HS osc  
FOSC = 20 MHz,  
VDD = 5.5V  
D015  
D020  
D021  
D021A  
D021B  
D023  
Brown-out Reset  
Current (Note 6)  
Ibor  
-
-
-
-
-
-
350  
10.5  
1.5  
425  
42  
-
-
-
-
-
-
350  
10.5  
1.5  
425  
42  
µA  
µA  
µA  
µA  
µA  
µA  
BOR enabled,  
VDD = 5.0V  
Power-down Current  
(Note 3,5)  
IPD  
VDD = 4.0V, WDT  
enabled, -40°C to +85°C  
16  
16  
VDD = 4.0V, WDT dis-  
abled, -0°C to +70°C  
1.5  
19  
1.5  
19  
VDD = 4.0V, WDT dis-  
abled, -40°C to +85°C  
2.5  
19  
2.5  
19  
VDD = 4.0V, WDT dis-  
abled, -40°C to +125°C  
Brown-out Reset  
Current (Note 6)  
Ibor  
350  
425  
350  
425  
BOR enabled VDD =  
5.0V  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
Note 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current con-  
sumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
Note 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
Note 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the  
formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
Note 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and  
is for design guidance only. This is not tested.  
Note 6: The current is the additional current consumed when this peripheral is enabled. This current should be added to the  
base IDD or IPD measurement.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 79  
PIC16C72 Series  
13.2  
DC Characteristics: PIC16LC72/LCR72-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40˚C TA +85˚C for industrial and  
0˚C TA +70˚C for commercial  
PIC16C72  
PIC16CR72  
Param  
No.  
Characteristic  
Supply Voltage  
Sym  
Units  
Conditions  
Min  
2.5  
-
Typ†  
-
Max  
6.0  
-
Min  
2.5  
-
Typ†  
-
Max  
5.5  
-
D001  
VDD  
VDR  
V
V
LP, XT, RC (DC - 4 MHz)  
D002*  
RAM Data Retention  
Voltage (Note 1)  
1.5  
1.5  
D003  
VDD start voltage to  
ensure internal Power-  
on Reset signal  
VPOR  
SVDD  
-
VSS  
-
-
-
-
VSS  
-
-
-
V
See section on Power-  
on Reset for details  
D004*  
VDD rise rate to ensure  
internal Power-on  
Reset signal  
0.05  
0.05  
V/ms  
See section on Power-  
on Reset for details  
D005  
D010  
Brown-out Reset Volt-  
age  
Bvdd  
IDD  
3.7  
-
4.0  
2.0  
4.3  
3.8  
3.7  
-
4.0  
2.0  
4.3  
3.8  
V
BODEN bit in configura-  
tion word enabled  
Supply Current  
(Note 2,5)  
mA  
XT, RC osc configuration  
FOSC = 4 MHz, VDD =  
3.0V (Note 4)  
D010A  
-
22.5  
48  
-
22.5  
48  
µA  
LP osc configuration  
FOSC = 32 kHz, VDD =  
3.0V, WDT disabled  
D015*  
D020  
Brown-out Reset  
Current (Note 6)  
Ibor  
-
-
-
-
-
350  
7.5  
0.9  
0.9  
350  
425  
30  
5
-
-
-
-
-
350  
7.5  
0.9  
0.9  
350  
425  
30  
5
µA  
µA  
µA  
µA  
µA  
BOR enabled VDD =  
5.0V  
Power-down Current  
(Note 3,5)  
IPD  
VDD = 3.0V, WDT  
enabled, -40°C to +85°C  
D021  
VDD = 3.0V, WDT dis-  
abled, 0°C to +70°C  
D021A  
D023*  
5
5
VDD = 3.0V, WDT dis-  
abled, -40°C to +85°C  
Brown-out Reset  
Current (Note 6)  
Ibor  
425  
425  
BOR enabled VDD =  
5.0V  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated.These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
Note 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current con-  
sumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
Note 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
Note 4: For RC osc configuration, current through Rext is not included.The current through the resistor can be estimated by the  
formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
Note 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and  
is for design guidance only. This is not tested.  
Note 6: The current is the additional current consumed when this peripheral is enabled. This current should be added to the  
base IDD or IPD measurement.  
DS39016A-page 80  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C72 Series  
13.3  
DC Characteristics:  
PIC16C72/CR72-04 (Commercial, Industrial, Extended)  
PIC16C72/CR72-10 (Commercial, Industrial, Extended)  
PIC16C72/CR72-20 (Commercial, Industrial, Extended)  
PIC16LC72/LCR72-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40˚C TA +125˚C for extended,  
-40˚C TA +85˚C for industrial and  
0˚C TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 13.1 and  
Section 13.2.  
DC CHARACTERISTICS  
Param  
Characteristic  
Sym  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
Input Low Voltage  
I/O ports  
VIL  
D030  
with TTL buffer  
VSS  
Vss  
VSS  
VSS  
VSS  
-
-
-
-
-
0.15VDD  
0.8V  
V
V
V
V
V
For entire VDD range  
D030A  
D031  
D032  
D033  
4.5 VDD 5.5V  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports  
0.2VDD  
0.2VDD  
0.3VDD  
Note1  
VIH  
-
-
-
D040  
with TTL buffer  
2.0  
VDD  
VDD  
V
V
4.5 VDD 5.5V  
D040A  
0.25VDD+  
0.8V  
For entire VDD range  
D041  
D042  
D042A  
D043  
D070  
with Schmitt Trigger buffer  
MCLR  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
50  
-
VDD  
VDD  
Vdd  
VDD  
†400  
V
V
V
V
For entire VDD range  
Note1  
-
OSC1 (XT, HS and LP)  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current (Notes 2, 3)  
I/O ports  
-
-
IPURB  
IIL  
250  
µA VDD = 5V, VPIN = VSS  
D060  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-  
impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP  
osc configuration  
Output Low Voltage  
D080  
I/O ports  
VOL  
-
-
-
-
-
-
-
-
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
D080A  
D083  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKOUT (RC osc config)  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
D083A  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the PIC16C7X be  
driven with external clock in RC mode.  
Note 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels repre-  
sent normal operating conditions. Higher leakage current may be measured at different input voltages.  
Note 3: Negative current is defined as current sourced by the pin.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 81  
PIC16C72 Series  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40˚C TA +125˚C for extended,  
-40˚C TA +85˚C for industrial and  
DC CHARACTERISTICS  
0˚C TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 13.1 and  
Section 13.2.  
Param  
Characteristic  
No.  
Sym  
Min  
Typ†  
Max  
Units  
Conditions  
Output High Voltage  
D090  
I/O ports (Note 3)  
VOH VDD - 0.7  
VDD - 0.7  
-
-
-
-
-
-
-
-
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
D090A  
D092  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKOUT (RC osc config)  
VDD - 0.7  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
D092A  
D150*  
VDD - 0.7  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
Open-Drain High Voltage  
Vod  
-
-
-
-
14  
V
V
RA4 pin, PIC16C72/LC72  
TBD  
RA4 pin, PIC16CR72/LCR72  
Capacitive Loading Specs on Output  
Pins  
D100  
OSC2 pin  
COSC2  
-
-
15  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1.  
D101  
D102  
All I/O pins and OSC2 (in RC mode)  
SCL, SDA in I C mode  
CIO  
Cb  
-
-
-
-
50  
400  
pF  
pF  
2
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the PIC16C7X be  
driven with external clock in RC mode.  
Note 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels repre-  
sent normal operating conditions. Higher leakage current may be measured at different input voltages.  
Note 3: Negative current is defined as current sourced by the pin.  
DS39016A-page 82  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
13.4  
Timing Parameter Symbology  
The timing parameter symbols have been created fol-  
lowing one of the following formats:  
2
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I C specifications only)  
2
(I C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
2
I C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
2
TCC:ST (I C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 13-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 83  
 
PIC16C72 Series  
13.5  
Timing Diagrams and Specifications  
FIGURE 13-2: EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
3
4
3
2
CLKOUT  
TABLE 13-3  
EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Fosc External CLKIN Frequency  
(Note 1)  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
MHz XT and RC osc mode  
MHz HS osc mode (-04)  
MHz HS osc mode (-10)  
MHz HS osc mode (-20)  
kHz LP osc mode  
10  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
4
5
20  
200  
MHz HS osc mode  
kHz LP osc mode  
1
Tosc External CLKIN Period  
(Note 1)  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
XT and RC osc mode  
HS osc mode (-04)  
HS osc mode (-10)  
HS osc mode (-20)  
LP osc mode  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
RC osc mode  
10,000  
250  
XT osc mode  
HS osc mode (-04)  
100  
50  
250  
250  
ns  
ns  
HS osc mode (-10)  
HS osc mode (-20)  
5
DC  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
LP osc mode  
TCY = 4/FOSC  
XT oscillator  
LP oscillator  
HS oscillator  
XT oscillator  
LP oscillator  
HS oscillator  
2
3
TCY  
Instruction Cycle Time (Note 1)  
200  
100  
2.5  
15  
TosL, External Clock in (OSC1) High or  
TosH Low Time  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
25  
50  
15  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing  
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current  
consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
DS39016A-page 84  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
FIGURE 13-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: Refer to Figure 13-1 for load conditions.  
TABLE 13-4  
CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
200  
ns  
Note 1  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
18*  
75  
35  
35  
50  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
100  
100  
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
TOSC + 200  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to Port out valid  
150  
TosH2ioI  
OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
PIC16C72/CR72  
100  
200  
PIC16LC72/LCR72  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
40  
80  
40  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C72/CR72  
PIC16LC72/LCR72  
PIC16C72/CR72  
PIC16LC72/LCR72  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
TCY  
TCY  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
††  
These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 85  
PIC16C72 Series  
FIGURE 13-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 13-1 for load conditions.  
FIGURE 13-5: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 13-5  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
TmcL  
Twdt  
MCLR Pulse Width (low)  
2
7
µs  
VDD = 5V, -40˚C to +125˚C  
VDD = 5V, -40˚C to +125˚C  
30  
31*  
Watchdog Timer Time-out Period  
(No Prescaler)  
18  
33  
ms  
32  
33*  
34  
Tost  
Oscillation Start-up Timer Period  
Power-up Timer Period  
28  
1024TOSC  
132  
2.1  
ms  
µs  
TOSC = OSC1 period  
Tpwrt  
TIOZ  
72  
VDD = 5V, -40˚C to +125˚C  
I/O Hi-impedance from MCLR Low  
or Watchdog Timer Reset  
35  
TBOR  
Brown-out Reset pulse width  
100  
µs  
VDD BVDD (D005)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS39016A-page 86  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
FIGURE 13-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 13-1 for load conditions.  
TABLE 13-6  
TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
No Prescaler  
Min  
Typ† Max Units  
Conditions  
Tt0H  
Tt0L  
Tt0P  
T0CKI High Pulse Width  
T0CKI Low Pulse Width  
T0CKI Period  
0.5TCY + 20  
ns Must also meet  
parameter 42  
ns Must also meet  
40*  
With Prescaler  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
10  
0.5TCY + 20  
10  
ns  
41*  
42*  
parameter 42  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
0.5TCY + 20  
15  
ns Must also meet  
parameter 47  
Synchronous, PIC16C7X/CR72  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC7X/LCR72  
25  
Asynchronous PIC16C7X/CR72  
PIC16LC7X/LCR72  
30  
ns  
ns  
50  
T1CKI Low Time Synchronous, Prescaler = 1  
Synchronous, PIC16C7X/CR72  
0.5TCY + 20  
ns Must also meet  
parameter 47  
15  
25  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC7X/LCR72  
Asynchronous PIC16C7X/CR72  
PIC16LC7X/LCR72  
30  
ns  
ns  
50  
T1CKI input  
period  
Synchronous PIC16C7X/CR72  
Greater of:  
30 OR TCY + 40  
ns N = prescale value  
(1, 2, 4, 8)  
N
PIC16LC7X/LCR72  
Greater of:  
50 OR TCY + 40  
N = prescale value  
(1, 2, 4, 8)  
N
60  
Asynchronous PIC16C7X/CR72  
PIC16LC7X/LCR72  
ns  
ns  
100  
DC  
Ft1  
Timer1 oscillator input frequency range  
200 kHz  
(oscillator enabled by setting bit T1OSCEN)  
48 TCKEZtmr1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 87  
PIC16C72 Series  
FIGURE 13-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1)  
RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC2/CCP1  
(Compare or PWM Mode)  
53  
54  
Note: Refer to Figure 13-1 for load conditions.  
TABLE 13-7  
CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)  
Param  
Sym  
No.  
Characteristic  
Min  
Typ† Max Units  
Conditions  
50* TccL CCP1 input low time No Prescaler  
With Prescaler PIC16C72/CR72  
PIC16LC72/LCR72  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
10  
20  
51* TccH CCP1 input high time No Prescaler  
0.5TCY + 20  
With Prescaler PIC16C72/CR72  
PIC16LC72/LCR72  
10  
20  
52* TccP CCP1 input period  
3TCY + 40  
N
ns N = prescale  
value (1,4 or 16)  
53* TccR CCP1 output rise time  
PIC16C72/CR72  
PIC16LC72/LCR72  
PIC16C72/CR72  
PIC16LC72/LCR72  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54* TccF CCP1 output fall time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS39016A-page 88  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
FIGURE 13-8: SPI MASTER OPERATION TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
BIT6 - - - - - -1  
MSB  
LSB  
SDO  
SDI  
75, 76  
MSB IN  
74  
BIT6 - - - -1  
LSB IN  
73  
Refer to Figure 13-1 for load conditions.  
FIGURE 13-9: SPI MASTER OPERATION TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSB  
MSB  
BIT6 - - - - - -1  
BIT6 - - - -1  
SDO  
SDI  
75, 76  
MSB IN  
74  
LSB IN  
Refer to Figure 13-1 for load conditions.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 89  
PIC16C72 Series  
FIGURE 13-10: SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSB  
LSB  
SDO  
SDI  
BIT6 - - - - - -1  
77  
75, 76  
MSB IN  
74  
BIT6 - - - -1  
LSB IN  
73  
Refer to Figure 13-1 for load conditions.  
FIGURE 13-11: SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSB  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSB  
SDO  
SDI  
75, 76  
77  
MSB IN  
74  
LSB IN  
Refer to Figure 13-1 for load conditions.  
DS39016A-page 90  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
TABLE 13-8  
SPI SLAVE MODE REQUIREMENTS (CKE=0) - PIC16C72  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max  
Units  
Conditions  
TssL2scH,  
TssL2scL  
SSto SCKor SCKinput  
TCY  
ns  
70  
TscH  
TscL  
SCK input high time (slave mode)  
SCK input low time (slave mode)  
TCY + 20  
TCY + 20  
50  
ns  
ns  
ns  
71  
72  
73  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK edge  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK edge  
50  
ns  
74  
TdoR  
SDO data output rise time  
10  
10  
10  
10  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
75  
76  
77  
78  
79  
80  
TdoF  
SDO data output fall time  
TssH2doZ  
TscR  
SSto SDO output hi-impedance  
SCK output rise time (master mode)  
SCK output fall time (master mode)  
TscF  
TscH2doV, SDO data output valid after SCK edge  
TscL2doV  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
TABLE 13-9  
SPI MODE REQUIREMENTS - PIC16CR72  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
70*  
TssL2scH,  
TssL2scL  
SSto SCKor SCKinput  
TCY  
ns  
71*  
72*  
73*  
TscH  
TscL  
SCK input high time (slave mode)  
SCK input low time (slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK  
edge  
74*  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK  
edge  
100  
ns  
75*  
76*  
77*  
78*  
79*  
80*  
TdoR  
SDO data output rise time  
10  
10  
10  
10  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TdoF  
SDO data output fall time  
TssH2doZ  
TscR  
SSto SDO output hi-impedance  
SCK output rise time (master mode)  
SCK output fall time (master mode)  
TscF  
TscH2doV,  
TscL2doV  
SDO data output valid after SCK  
edge  
81*  
82*  
83*  
TdoV2scH,  
TdoV2scL  
SDO data output setup to SCK  
edge  
TCY  
50  
ns  
ns  
ns  
TssL2doV  
SDO data output valid after SS↓  
edge  
TscH2ssH,  
TscL2ssH  
SS after SCK edge  
1.5TCY + 40  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 91  
PIC16C72 Series  
2
FIGURE 13-12: I C BUS START/STOP BITS TIMING  
SCL  
93  
91  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 13-1 for load conditions  
2
TABLE 13-10 I C BUS START/STOP BITS REQUIREMENTS  
Parameter  
Sym  
Characteristic  
START condition  
Min Typ Max Units  
Conditions  
No.  
TSU:STA  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns Only relevant for repeated START  
condition  
90  
Setup time  
91  
92  
93  
THD:STA  
TSU:STO  
THD:STO  
START condition  
Hold time  
4000  
600  
ns After this period the first clock  
pulse is generated  
STOP condition  
Setup time  
4700  
600  
ns  
STOP condition  
Hold time  
4000  
600  
ns  
DS39016A-page 92  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
2
FIGURE 13-13: I C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 13-1 for load conditions  
2
TABLE 13-11 I C BUS DATA REQUIREMENTS  
Parameter  
Sym  
Characteristic  
100 kHz mode  
Min  
Max  
Units  
Conditions  
No.  
THIGH  
Clock high time  
4.0  
0.6  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
100  
400 kHz mode  
µs  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
400 kHz mode  
1.3  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
102  
103  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
SDA and SCL fall time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
90  
91  
TSU:STA  
THD:STA  
THD:DAT  
TSU:DAT  
TSU:STO  
TAA  
START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for repeated  
START condition  
START condition hold 100 kHz mode  
time  
After this period the first clock  
pulse is generated  
400 kHz mode  
106  
107  
92  
Data input hold time  
100 kHz mode  
400 kHz mode  
0
0.9  
Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
Note 2  
STOP condition setup 100 kHz mode  
time  
400 kHz mode  
109  
110  
Output valid from  
clock  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
3500  
Note 1  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
Cb  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
Note 2: A fast-mode (400 kHz) I C-bus device can be used in a standard-mode (100 kHz)S I C-bus system, but the requirement  
tsu;DAT 250 ns must then be met.This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
2
TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I C bus specification) before the SCL line is  
released.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 93  
PIC16C72 Series  
TABLE 13-12 A/D CONVERTER CHARACTERISTICS:  
PIC16C72/CR72-04 (Commercial, Industrial, Extended)  
PIC16C72/CR72-10 (Commercial, Industrial, Extended)  
PIC16C72/CR72-20 (Commercial, Industrial, Extended)  
PIC16LC72/LCR72-04 (Commercial, Industrial)  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
A02  
A03  
A04  
A05  
A06  
NR  
Resolution  
8 bits  
bit  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
EABS Total Absolute error  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
EIL  
Integral linearity error  
Differential linearity error  
Full scale error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
EDL  
EFS  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
EOFF Offset error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
A10  
A20  
A25  
A30  
Monotonicity  
2.5V  
guaranteed  
V
VSS VAIN VREF  
VREF Reference voltage  
VDD + 0.3  
VREF + 0.3  
10.0  
VAIN  
ZAIN  
Analog input voltage  
VSS - 0.3  
V
Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD  
A/D conversion PIC16C72/CR72  
180  
90  
µA  
µA  
Average current con-  
sumption when A/D is  
on. (Note 1)  
current (VDD)  
PIC16LC72/LCR72  
IREF  
VREF input current (Note 2)  
10  
1000  
µA  
During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN to charge  
CHOLD, see Section 9.1.  
10  
µA  
During A/D Conversion  
cycle  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
Note 2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
DS39016A-page 94  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
FIGURE 13-14: A/D CONVERSION TIMING  
BSF ADCON0, GO  
1 TCY  
(TOSC/2) (1)  
134  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 13-13 A/D CONVERSION REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
TAD  
A/D clock period PIC16C72/LCR72  
PIC16LC72/LCR72  
1.6  
2.0  
2.0  
2.5  
µs  
µs  
TOSC based, VREF 2.5V  
TOSC based, VREF full range  
A/D RC Mode  
130  
PIC16C72/LCR72  
4.0  
6.0  
9.5  
6.0  
9.0  
µs  
PIC16LC72/LCR72  
µs  
A/D RC Mode  
131  
132  
TCNV Conversion time  
(not including S/H time) (Note 1)  
TACQ Acquisition time  
TAD  
Note 2  
5*  
20  
µs  
µs  
The minimum time is the amplifier  
settling time. This may be used if  
the "new" input voltage has not  
changed by more than 1 LSb (i.e.,  
20.0 mV @ 5.12V) from the last  
sampled voltage (as stated on  
CHOLD).  
134  
135  
Tgo  
Q4 to A/D clock start  
TOSC/2 §  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
Tswc Switching from convert sample time  
1.5 §  
TAD  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
§
This specification ensured by design.  
Note 1: ADRES register may be read on the following TCY cycle.  
Note 2: See Section 9.1 for min conditions.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 95  
PIC16C72 Series  
NOTES:  
DS39016A-page 96  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 PIC16C72 Series  
14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES - PIC16C72  
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.  
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are guaranteed to operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period  
of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C, while 'max' or 'min' represents  
(mean + 3σ) and (mean - 3σ) respectively, where σ is standard deviation.  
FIGURE 14-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)  
35  
30  
25  
20  
15  
10  
5
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 14-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)  
10.000  
85°C  
70°C  
1.000  
0.100  
25°C  
0°C  
-40°C  
0.010  
0.001  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 97  
PIC16C72 Series  
PIC16C72  
FIGURE 14-3: TYPICAL IPD vs. VDD @ 25°C  
FIGURE 14-5: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
(WDT ENABLED, RC MODE)  
Cext = 22 pF,T = 25°C  
6.0  
25  
20  
15  
10  
5
5.5  
5.0  
4.5  
R = 5k  
4.0  
3.5  
3.0  
R = 10k  
2.5  
2.0  
1.5  
1.0  
R = 100k  
0
2.5  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
Shaded area is beyond recommended range.  
FIGURE 14-4: MAXIMUM IPD vs. VDD (WDT  
ENABLED, RC MODE)  
FIGURE 14-6: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
35  
-40°C  
Cext = 100 pF,T = 25°C  
30  
0°C  
2.4  
2.2  
25  
20  
R = 3.3k  
2.0  
1.8  
1.6  
70°C  
15  
R = 5k  
1.4  
85°C  
1.2  
10  
1.0  
R = 10k  
5
0
0.8  
0.6  
0.4  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
R = 100k  
0.2  
VDD (Volts)  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 14-7: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
Cext = 300 pF,T = 25°C  
1000  
900  
800  
R = 3.3k  
700  
600  
R = 5k  
500  
400  
R = 10k  
300  
200  
R = 100k  
5.5 6.0  
100  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
VDD (Volts)  
DS39016A-page 98  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 PIC16C72 Series  
FIGURE 14-8: TYPICAL IPD vs. VDD BROWN-  
FIGURE 14-10: TYPICAL IPD vs.TIMER1  
ENABLED (32 kHz, RC0/RC1 =  
33 pF/33 pF, RC MODE)  
OUT DETECT ENABLED (RC  
MODE)  
1400  
1200  
1000  
800  
600  
400  
200  
0
30  
25  
20  
15  
10  
5
Device NOT in  
Brown-out Reset  
Device in  
Brown-out  
Reset  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
The shaded region represents the built-in hysteresis of the  
brown-out reset circuitry.  
VDD (Volts)  
FIGURE 14-9: MAXIMUM IPD vs. VDD  
BROWN-OUT DETECT  
ENABLED  
FIGURE 14-11: MAXIMUM IPD vs.TIMER1  
ENABLED  
(32 kHz, RC0/RC1 = 33 pF/33  
(85°C TO -40°C, RC MODE)  
pF, 85°C TO -40°C, RC MODE)  
1600  
1400  
1200  
45  
40  
35  
30  
1000  
Device NOT in  
Brown-out Reset  
800  
600  
400  
200  
0
Device in  
Brown-out  
Reset  
25  
20  
15  
10  
5
4.3  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
0
The shaded region represents the built-in hysteresis of the  
brown-out reset circuitry.  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 99  
PIC16C72 Series  
PIC16C72  
FIGURE 14-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)  
2000  
1800  
1600  
1400  
1200  
1000  
800  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
600  
400  
200  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Frequency (MHz)  
Shaded area is  
beyond recommended range  
FIGURE 14-13: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 22 pF, -40°C TO 85°C)  
2000  
6.0V  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Frequency (MHz)  
Shaded area is  
beyond recommended range  
DS39016A-page 100  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 PIC16C72 Series  
FIGURE 14-14: TYPICAL IDD vs. FREQUENCY (RC MODE @ 100 pF, 25°C)  
1600  
1400  
1200  
1000  
800  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
600  
400  
200  
0
0
200  
Shaded area is  
beyond recommended range  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
Frequency (kHz)  
FIGURE 14-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)  
1600  
6.0V  
5.5V  
1400  
1200  
1000  
800  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
600  
400  
200  
0
0
200  
Shaded area is  
beyond recommended range  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
Frequency (kHz)  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 101  
PIC16C72 Series  
PIC16C72  
FIGURE 14-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)  
1200  
6.0V  
5.5V  
1000  
800  
600  
400  
200  
0
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0
100  
200  
300  
400  
500  
600  
700  
Frequency (kHz)  
FIGURE 14-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)  
1200  
6.0V  
5.5V  
1000  
800  
600  
400  
200  
0
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0
100  
200  
300  
400  
500  
600  
700  
Frequency (kHz)  
DS39016A-page 102  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 PIC16C72 Series  
FIGURE 14-18: TYPICAL IDD vs.  
CAPACITANCE @ 500 kHz  
FIGURE 14-19: TRANSCONDUCTANCE(gm)  
OF HS OSCILLATOR vs. VDD  
(RC MODE)  
4.0  
Max -40°C  
600  
500  
400  
300  
200  
100  
3.5  
5.0V  
3.0  
4.0V  
3.0V  
2.5  
Typ 25°C  
2.0  
Min 85°C  
1.5  
1.0  
0.5  
0.0  
3.0  
3.5  
4.0  
4.5  
5.0  
VDD (Volts)  
5.5  
6.0  
6.5  
7.0  
0
20 pF  
100 pF  
300 pF  
Shaded area is  
beyond recommended range  
Capacitance (pF)  
TABLE 14-1  
RC OSCILLATOR  
FREQUENCIES  
FIGURE 14-20: TRANSCONDUCTANCE(gm)  
OF LP OSCILLATOR vs. VDD  
110  
Average  
Rext  
Cext  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Max -40°C  
Fosc @ 5V, 25°C  
22 pF  
5k  
10k  
100k  
3.3k  
5k  
4.12 MHz  
2.35 MHz  
268 kHz  
1.80 MHz  
1.27 MHz  
688 kHz  
77.2 kHz  
707 kHz  
501 kHz  
269 kHz  
28.3 kHz  
± 1.4%  
± 1.4%  
Typ 25°C  
± 1.1%  
± 1.0%  
± 1.0%  
± 1.2%  
± 1.0%  
± 1.4%  
± 1.2%  
± 1.6%  
± 1.1%  
100 pF  
300 pF  
Min 85°C  
10k  
100k  
3.3k  
5k  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
VDD (Volts)  
Shaded areas are  
beyond recommended range  
10k  
100k  
FIGURE 14-21: TRANSCONDUCTANCE(gm)  
OF XT OSCILLATOR vs. VDD  
The percentage variation indicated here is part to  
part variation due to normal process distribution.The  
variation indicated is ±3 standard deviation from  
average value for VDD = 5V.  
1000  
900  
Max -40°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
Typ 25°C  
Min 85°C  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
VDD (Volts)  
Shaded areas are  
beyond recommended range  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 103  
PIC16C72 Series  
PIC16C72  
FIGURE 14-22: TYPICAL XTAL STARTUP  
FIGURE 14-24: TYPICAL XTAL STARTUP  
TIME vs. VDD (LP MODE, 25°C)  
TIME vs. VDD (XT MODE, 25°C)  
3.5  
3.0  
2.5  
70  
60  
50  
2.0  
1.5  
1.0  
40  
200 kHz, 68 pF/68 pF  
32 kHz, 33 pF/33 pF  
30  
200 kHz, 47 pF/47 pF  
20  
1 MHz, 15 pF/15 pF  
10  
0
4 MHz, 15 pF/15 pF  
0.5  
0.0  
200 kHz, 15 pF/15 pF  
2.5  
3.0  
3.5  
4.0  
VDD (Volts)  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
TABLE 14-2  
CAPACITOR SELECTION  
FOR CRYSTAL  
OSCILLATORS  
FIGURE 14-23: TYPICAL XTAL STARTUP  
TIME vs. VDD (HS MODE,  
25°C)  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
Osc Type  
7
6
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
20 MHz, 33 pF/33 pF  
5
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
4
8 MHz, 33 pF/33 pF  
4 MHz  
15 pF  
15 pF  
3
4 MHz  
15 pF  
15 pF  
20 MHz, 15 pF/15 pF  
8 MHz, 15 pF/15 pF  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
2
20 MHz  
1
4.0  
4.5  
5.0  
5.5  
6.0  
Crystals  
Used  
VDD(Volts)  
32 kHz  
200 kHz  
1 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
± 30 PPM  
4 MHz  
ECS ECS-40-20-1  
8 MHz  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
20 MHz  
DS39016A-page 104  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 PIC16C72 Series  
FIGURE 14-25: TYPICAL IDD vs. FREQUENCY  
(LP MODE, 25°C)  
FIGURE 14-27: TYPICAL IDD vs. FREQUENCY  
(XT MODE, 25°C)  
1800  
1600  
6.0V  
120  
100  
80  
60  
40  
20  
0
5.5V  
1400  
5.0V  
1200  
4.5V  
1000  
800  
600  
4.0V  
3.5V  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
3.0V  
2.5V  
400  
200  
0
50  
100  
150  
200  
Frequency (kHz)  
0
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
Frequency (MHz)  
FIGURE 14-26: MAXIMUM IDD vs.  
FREQUENCY  
FIGURE 14-28: MAXIMUM IDD vs.  
FREQUENCY  
(LP MODE, 85°C TO -40°C)  
(XT MODE, -40°C TO 85°C)  
1800  
1600  
1400  
1200  
6.0V  
5.5V  
5.0V  
4.5V  
140  
120  
100  
80  
4.0V  
1000  
3.5V  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
60  
800  
600  
3.0V  
40  
2.5V  
20  
400  
200  
3.0V  
2.5V  
0
0
50  
100  
150  
200  
0
Frequency (kHz)  
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
Frequency (MHz)  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 105  
PIC16C72 Series  
PIC16C72  
FIGURE 14-29: TYPICAL IDD vs. FREQUENCY  
FIGURE 14-30: MAXIMUM IDD vs.  
FREQUENCY  
(HS MODE, 25°C)  
(HS MODE, -40°C TO 85°C)  
7.0  
6.0  
5.0  
4.0  
3.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
6.0V  
2.0  
5.5V  
5.0V  
4.5V  
4.0V  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
1.0  
0.0  
1
2
4
6
8
10  
12  
14  
16  
18  
20  
1
2
4
6
8
10  
12  
14  
16  
18  
20  
Frequency (MHz)  
Frequency (MHz)  
TABLE 14-3  
TYPICAL EPROM ERASE TIME RECOMMENDATIONS  
(1)  
Process  
Technology  
Wavelength  
(Angstroms)  
Intensity (µW/  
Distance from UV lamp  
(inches)  
Typical Time  
(minutes)  
cm2)  
57K  
77K  
90K  
120K  
2537  
2537  
2537  
2537  
12,000  
12,000  
12,000  
12,000  
1
1
1
1
15 - 20  
20  
40  
60  
Note 1: If these criteria are not met, the erase times will be different.  
Note: Fluorescent lights and sunlight both emit ultraviolet light at the erasure wavelength. Leaving a UV erasable  
device’s window uncovered could cause, over time, the devices memory cells to become erased. The era-  
sure time for a fluorescent light is about three years. While sunlight requires only about one week. To pre-  
vent the memory cells from losing data an opaque label should be placed over the erasure window.  
DS39016A-page 106  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR72 PIC16C72 Series  
15.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES - PIC16CR72  
NO GRAPHS OR TABLES AVAILABLE AT THIS TIME  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 107  
PIC16C72 Series PIC16CR72  
NOTES:  
DS39016A-page 108  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
16.0 PACKAGING INFORMATION  
16.1  
Package Marking Information  
28-Lead Side Brazed Skinny Windowed  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
AABBCDE  
PIC16C72/JW  
9517CAT  
28-Lead PDIP (Skinny DIP)  
Example  
PIC16C72-04/SP  
MMMMMMMMMMMM  
XXXXXXXXXXXXXXX  
AABBCDE  
AABBCDE  
28-Lead SOIC  
Example  
MMMMMMMMMMMMMMMM  
XXXXXXXXXXXXXXXXXXXX  
PIC16C72-04/SO  
945/CAA  
AABBCDE  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C72  
20I/SS025  
AABBCAE  
9517SBP  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
AA  
BB  
C
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
O = Outside Vendor  
C = 5” Line  
S = 6” Line  
H = 8” Line  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
In the event the full Microchip part number cannot be marked on one  
line, it will be carried over to the next line thus limiting the number of  
available characters for customer specific information.  
Note:  
*
Standard OTP marking consists of Microchip part number, year code, week code,  
facility code, mask revision number, and assembly code. For OTP marking beyond  
this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 109  
PIC16C72 Series  
16.2  
28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)(JW)  
E
D
W2  
2
1
n
W1  
E1  
A
A1  
R
L
c
B1  
B
A2  
eB  
p
Units  
INCHES*  
NOM  
0.300  
28  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
MIN  
MAX  
MIN  
NOM  
7.62  
28  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
W1  
W2  
0.098  
0.100  
0.019  
0.058  
0.013  
0.010  
0.183  
0.125  
0.023  
0.140  
1.458  
0.290  
0.270  
0.385  
0.140  
0.300  
0.102  
2.49  
0.41  
2.54  
0.47  
1.46  
0.32  
0.25  
4.64  
3.18  
0.57  
3.56  
37.02  
7.37  
6.86  
9.78  
0.14  
0.3  
2.59  
0.016  
0.050  
0.010  
0.008  
0.170  
0.107  
0.015  
0.135  
1.430  
0.285  
0.255  
0.345  
0.130  
0.290  
0.021  
0.065  
0.015  
0.012  
0.195  
0.143  
0.030  
0.145  
1.485  
0.295  
0.285  
0.425  
0.150  
0.310  
0.53  
1.65  
0.38  
0.30  
4.95  
3.63  
0.76  
3.68  
37.72  
7.49  
7.24  
10.80  
0.15  
0.31  
1.27  
0.25  
0.20  
4.32  
2.72  
0.00  
3.43  
36.32  
7.24  
6.48  
8.76  
0.13  
0.29  
Package Width  
Radius to Radius Width  
Overall Row Spacing  
Window Width  
Window Length  
*
Controlling Parameter.  
DS39016A-page 110  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
16.3  
28-Lead Plastic Dual In-line (300 mil) (SP)  
E
D
2
α
n
1
E1  
A1  
A
R
L
c
B1  
β
A2  
p
eB  
B
Units  
INCHES*  
NOM  
0.300  
28  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
7.62  
MAX  
n
p
B
B1  
R
c
28  
2.54  
0.48  
1.33  
0.13  
0.25  
3.81  
2.29  
0.51  
3.30  
34.67  
7.30  
7.18  
8.89  
10  
0.100  
0.019  
0.053  
0.005  
0.010  
0.150  
0.090  
0.020  
0.130  
1.365  
0.288  
0.283  
0.350  
10  
0.016  
0.022  
0.41  
0.56  
0.040  
0.000  
0.008  
0.140  
0.070  
0.015  
0.125  
1.345  
0.280  
0.270  
0.320  
5
0.065  
0.010  
0.012  
0.160  
0.110  
0.025  
0.135  
1.385  
0.295  
0.295  
0.380  
15  
1.02  
0.00  
0.20  
3.56  
1.78  
0.38  
3.18  
34.16  
7.11  
6.86  
8.13  
5
1.65  
0.25  
0.30  
4.06  
2.79  
0.64  
3.43  
35.18  
7.49  
7.49  
9.65  
15  
A
A1  
A2  
L
D
E
E1  
eB  
α
β
5
10  
15  
5
10  
15  
*
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 111  
PIC16C72 Series  
16.4  
28-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body) (SO)  
E1  
E
p
D
B
2
1
n
X
α
45°  
L
R2  
c
A
A1  
φ
R1  
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES*  
NOM  
0.050  
28  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
1.27  
28  
MAX  
p
n
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Chamfer Distance  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
A
A1  
A2  
0.093  
0.099  
0.058  
0.008  
0.706  
0.296  
0.407  
0.020  
0.005  
0.005  
0.016  
4
0.104  
2.36  
1.22  
2.50  
1.47  
0.19  
17.93  
7.51  
10.33  
0.50  
0.13  
0.13  
0.41  
4
2.64  
0.048  
0.004  
0.700  
0.292  
0.394  
0.010  
0.005  
0.005  
0.011  
0
0.068  
0.011  
0.712  
0.299  
0.419  
0.029  
0.010  
0.010  
0.021  
8
1.73  
0.28  
18.08  
7.59  
10.64  
0.74  
0.25  
0.25  
0.53  
8
0.10  
17.78  
7.42  
10.01  
0.25  
0.13  
0.13  
0.28  
0
D
E
E1  
X
R1  
R2  
L
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.010  
0.009  
0.014  
0
0.015  
0.011  
0.017  
12  
0.020  
0.012  
0.019  
15  
0.25  
0.23  
0.36  
0
0.38  
0.27  
0.42  
12  
0.51  
0.30  
0.48  
15  
0
12  
15  
0
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS39016A-page 112  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
16.5  
28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)  
E1  
E
p
D
B
2
1
n
α
L
A
R2  
c
A1  
R1  
A2  
φ
L1  
β
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.026  
28  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.65  
28  
MAX  
p
n
A
A1  
A2  
D
E
E1  
R1  
R2  
L
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
0.068  
0.073  
0.036  
0.005  
0.402  
0.208  
0.306  
0.005  
0.005  
0.020  
4
0.078  
1.73  
0.66  
1.86  
0.91  
0.13  
10.20  
5.29  
7.78  
0.13  
0.13  
0.51  
4
1.99  
0.026  
0.002  
0.396  
0.205  
0.301  
0.005  
0.005  
0.015  
0
0.046  
0.008  
0.407  
0.212  
0.311  
0.010  
0.010  
0.025  
8
1.17  
0.21  
10.33  
5.38  
7.90  
0.25  
0.25  
0.64  
8
0.05  
10.07  
5.20  
7.65  
0.13  
0.13  
0.38  
0
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.000  
0.005  
0.010  
0
0.005  
0.007  
0.012  
5
0.010  
0.009  
0.015  
10  
0.00  
0.13  
0.25  
0
0.13  
0.18  
0.32  
5
0.25  
0.22  
0.38  
10  
0
5
10  
0
5
10  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 113  
PIC16C72 Series  
NOTES:  
DS39016A-page 114  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
APPENDIX A: WHAT’S NEW IN THIS  
DATA SHEET  
This is a new data sheet. However, information on the  
PIC16C72 device was previously found in the  
PIC16C7X Data Sheet, DS30390. Information on the  
PIC16CR72 device is new.  
APPENDIX C: DEVICE DIFFERENCES  
A
table of the differences between the devices  
described in this document is found below.  
Difference  
PIC16C72  
PIC16CR72  
SSP module in  
SPI mode  
Basic SSP  
SSP  
APPENDIX B: WHAT’S CHANGED IN  
THIS DATA SHEET  
New data sheet.  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 115  
PIC16C72 Series  
NOTES:  
DS39016A-page 116  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
Mode ................................................................. 34  
Prescaler ........................................................... 34  
CCP Timer Resources ............................................... 33  
Compare  
INDEX  
A
A/D  
Block Diagram ................................................... 35  
Mode ................................................................. 35  
Software Interrupt Mode .................................... 35  
Special Event Trigger ........................................ 35  
Special Trigger Output of CCP1 ........................ 35  
Special Trigger Output of CCP2 ........................ 35  
Section ....................................................................... 33  
Special Event Trigger and A/D Conversions ............. 35  
Capture/Compare/PWM (CCP)  
PWM Block Diagram ................................................. 36  
PWM Mode ................................................................ 36  
PWM, Example Frequencies/Resolutions ................. 37  
CCP1IE bit ......................................................................... 12  
CCP1IF bit ......................................................................... 13  
CCPR1H Register ............................................................. 33  
CCPR1L Register .............................................................. 33  
CCPxM0 bit ....................................................................... 33  
CCPxM1 bit ....................................................................... 33  
CCPxM2 bit ....................................................................... 33  
CCPxM3 bit ....................................................................... 33  
CCPxX bit .......................................................................... 33  
CCPxY bit .......................................................................... 33  
CKE ................................................................................... 43  
CKP ............................................................................. 41, 44  
Clock Polarity Select bit, CKP ..................................... 41, 44  
Code Examples  
ADCON0 Register ...................................................... 53  
ADCON1 Register ...................................................... 54  
ADIF bit ...................................................................... 55  
Analog Input Model Block Diagram ............................ 56  
Analog-to-Digital Converter ........................................ 53  
Block Diagram ............................................................ 55  
Configuring Analog Port Pins ..................................... 57  
Configuring the Interrupt ............................................ 55  
Configuring the Module .............................................. 55  
Conversion Clock ....................................................... 57  
Conversions ............................................................... 58  
Converter Characteristics .......................................... 94  
GO/DONE bit ............................................................. 55  
Internal Sampling Switch (Rss) Impedance ............... 56  
Sampling Requirements ............................................. 56  
Source Impedance ..................................................... 56  
Using the CCP Trigger ............................................... 58  
Absolute Maximum Ratings ............................................... 77  
ACK .............................................................................. 47, 49  
ADIE bit .............................................................................. 12  
ADIF bit .............................................................................. 13  
ADRES Register ...................................................... 7, 53, 55  
Application Notes  
AN546 (Using the Analog-to-Digital Converter) ......... 53  
2
AN578 (Use of the SSP Module in the I C  
Multi-Master Environment) ......................................... 39  
Changing Between Capture Prescalers .................... 34  
Initializing PORTA ..................................................... 19  
Initializing PORTB ..................................................... 21  
Initializing PORTC ..................................................... 23  
Code Protection ........................................................... 59, 72  
Configuration Bits .............................................................. 59  
B
BF .......................................................................... 40, 43, 47  
Block Diagrams  
A/D ............................................................................. 55  
Analog Input Model .................................................... 56  
Capture ...................................................................... 34  
Compare .................................................................... 35  
D
D/A ............................................................................... 40, 43  
Data/Address bit, D/A .................................................. 40, 43  
DC bit ....................................................................................9  
DC Characteristics  
PIC16C72 .................................................................. 79  
Development Support ........................................................ 75  
Development Tools ............................................................ 75  
Direct Addressing .............................................................. 17  
2
I C Mode .................................................................... 47  
On-Chip Reset Circuit ................................................ 62  
PIC16C72 .................................................................... 3  
PIC16CR72 .................................................................. 3  
PORTC ...................................................................... 23  
PWM .......................................................................... 36  
RA3:RA0 and RA5 Port Pins ..................................... 19  
RA4/T0CKI Pin ........................................................... 19  
RB3:RB0 Port Pins .................................................... 21  
RB7:RB4 Port Pins .................................................... 21  
E
Electrical Characteristics  
PIC16C72 .................................................................. 77  
External Power-on Reset Circuit ....................................... 63  
2
SSP in I C Mode ........................................................ 47  
SSP in SPI Mode ................................................. 42, 45  
Timer0 ........................................................................ 25  
Timer0/WDT Prescaler .............................................. 26  
Timer2 ........................................................................ 31  
Watchdog Timer ......................................................... 70  
BOR bit ........................................................................ 14, 64  
Buffer Full Status bit, BF .............................................. 40, 43  
F
FSR Register ............................................................. 7, 8, 17  
Fuzzy Logic Dev. System (fuzzyTECH -MP) ................... 75  
G
GIE bit ................................................................................ 68  
C
I
C bit ...................................................................................... 9  
Capture/Compare/PWM  
I/O Ports  
Capture  
PORTA ...................................................................... 19  
PORTB ...................................................................... 21  
PORTC ...................................................................... 23  
Section ....................................................................... 19  
Block Diagram ................................................... 34  
CCP1CON Register ........................................... 33  
CCP1IF .............................................................. 34  
CCPR1 ............................................................... 34  
CCPR1H:CCPR1L ............................................. 34  
2
I C  
Addressing ................................................................. 48  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 117  
PIC16C72 Series  
Block Diagram ............................................................47  
I C Operation .............................................................47  
PCFG0 bit .......................................................................... 54  
PCFG1 bit .......................................................................... 54  
PCFG2 bit .......................................................................... 54  
PCL Register ............................................................. 7, 8, 15  
PCLATH ............................................................................. 65  
PCLATH Register ...................................................... 7, 8, 15  
PCON Register ............................................................ 14, 64  
PD bit ............................................................................. 9, 61  
PICDEM-1 Low-Cost PIC16/17 Demo Board .................... 75  
PICDEM-2 Low-Cost PIC16CXX Demo Board .................. 75  
PICMASTER RT In-Circuit Emulator .............................. 75  
PICSTART Low-Cost Development System ................... 75  
PIE1 Register ..................................................................... 12  
Pin Functions  
MCLR/Vpp ................................................................... 4  
OSC1/CLKIN ............................................................... 4  
OSC2/CLKOUT ........................................................... 4  
RA0/AN0 ...................................................................... 4  
RA1/AN1 ...................................................................... 4  
RA2/AN2 ...................................................................... 4  
RA3/AN3/Vref .............................................................. 4  
RA4/T0CKI .................................................................. 4  
RA5/AN4/SS ................................................................ 4  
RB0/INT ....................................................................... 4  
RB1 .............................................................................. 4  
RB2 .............................................................................. 4  
RB3 .............................................................................. 4  
RB4 .............................................................................. 4  
RB5 .............................................................................. 4  
RB6 .............................................................................. 4  
RB7 .............................................................................. 4  
RC0/T1OSO/T1CKI ..................................................... 4  
RC1/T1OSI .................................................................. 4  
RC2/CCP1 ................................................................... 4  
RC3/SCK/SCL ............................................................. 4  
RC4/SDI/SDA .............................................................. 4  
RC5/SDO ..................................................................... 4  
RC6 ............................................................................. 4  
RC7 ............................................................................. 4  
SCK ..................................................................... 42–??  
SDI ....................................................................... 42–??  
SDO ..................................................................... 42–??  
SS ........................................................................ 42–??  
Vdd .............................................................................. 4  
Vss ............................................................................... 4  
Pinout Descriptions  
2
Master Mode ..............................................................51  
Mode ..........................................................................47  
Mode Selection ..........................................................47  
Multi-Master Mode .....................................................51  
Reception ...................................................................49  
Reception Timing Diagram ........................................49  
SCL and SDA pins .....................................................47  
Slave Mode ................................................................47  
Transmission ..............................................................50  
In-Circuit Serial Programming ......................................59, 72  
INDF Register ................................................................8, 17  
Indirect Addressing ............................................................17  
Initialization Condition for all Register ................................65  
Instruction Format ..............................................................73  
Instruction Set  
Section .......................................................................73  
Summary Table ..........................................................74  
INT Interrupt .......................................................................68  
INTCON Register ...............................................................11  
INTEDG bit ...................................................................10, 68  
Internal Sampling Switch (Rss) Impedance .......................56  
Interrupts ............................................................................59  
PortB Change ............................................................68  
RB7:RB4 Port Change ...............................................21  
Section .......................................................................68  
TMR0 .........................................................................68  
IRP bit ..................................................................................9  
L
Loading of PC ....................................................................15  
M
MCLR ...........................................................................61, 64  
Memory  
Data Memory ...............................................................6  
Program Memory .........................................................5  
Program Memory Maps  
PIC16C72 ............................................................5  
PIC16CR72 ..........................................................5  
Register File Maps  
PIC16C72 ............................................................6  
PIC16CR72 ..........................................................6  
MPASM Assembler ............................................................75  
MPSIM Software Simulator ................................................75  
PIC16C72 .................................................................... 4  
PIC16CR72 ................................................................. 4  
PIR1 Register .................................................................... 13  
POR ............................................................................. 63, 64  
Oscillator Start-up Timer (OST) ........................... 59, 63  
Power Control Register (PCON) ................................ 64  
Power-on Reset (POR) ........................................ 59, 65  
Power-up Timer (PWRT) ........................................... 59  
Power-Up-Timer (PWRT) .......................................... 63  
Time-out Sequence ................................................... 64  
TO .............................................................................. 61  
POR bit ........................................................................ 14, 64  
Port RB Interrupt ................................................................ 68  
PORTA .............................................................................. 65  
PORTA Register ............................................................ 7, 19  
PORTB .............................................................................. 65  
PORTB Register ............................................................ 7, 21  
PORTC .............................................................................. 65  
PORTC Register ............................................................ 7, 23  
Power-down Mode (SLEEP) .............................................. 71  
O
OPCODE ............................................................................73  
OPTION Register ...............................................................10  
OSC selection ....................................................................59  
Oscillator  
HS ........................................................................60, 64  
LP .........................................................................60, 64  
RC ..............................................................................60  
XT ........................................................................60, 64  
Oscillator Configurations ....................................................60  
Output of TMR2 ..................................................................31  
P
P ...................................................................................40, 43  
Packaging  
28-Lead Ceramic w/Window ....................................110  
28-Lead PDIP ..........................................................111  
28-Lead SOIC ..........................................................112  
28-Lead SSOP .........................................................113  
Paging, Program Memory ..................................................16  
DS39016A-page 118  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
PR2 Register ...................................................................... 31  
Prescaler, Switching Between Timer0 and WDT ............... 26  
PRO MATE Universal Programmer ................................ 75  
Program Memory  
Paging ........................................................................ 16  
Program Memory Maps  
SPI Clock Edge Select bit, CKE ........................................ 43  
SPI Data Input Sample Phase Select bit, SMP ................. 43  
SPI Mode ........................................................................... 42  
SS ...................................................................................... 42  
SSP  
Module Overview ....................................................... 39  
Section ....................................................................... 39  
SSPCON ................................................................... 44  
SSPSTAT .................................................................. 43  
SSPADD Register ................................................................8  
SSPCON ..................................................................... 41, 44  
SSPEN ........................................................................ 41, 44  
SSPIE bit ........................................................................... 12  
SSPIF bit ........................................................................... 13  
SSPM3:SSPM0 ........................................................... 41, 44  
SSPOV .................................................................. 41, 44, 47  
SSPSTAT .......................................................................... 40  
SSPSTAT Register ........................................................ 8, 43  
Stack .................................................................................. 16  
Start bit, S .................................................................... 40, 43  
STATUS Register .................................................................9  
Stop bit, P .................................................................... 40, 43  
Synchronous Serial Port (SSP)  
PIC16C72 .................................................................... 5  
PIC16CR72 .................................................................. 5  
Program Verification .......................................................... 72  
PS0 bit ............................................................................... 10  
PS1 bit ............................................................................... 10  
PS2 bit ............................................................................... 10  
PSA bit ............................................................................... 10  
R
R/W .............................................................................. 40, 43  
R/W bit ................................................................... 48, 49, 50  
RBIF bit ........................................................................ 21, 68  
RBPU bit ............................................................................ 10  
RC Oscillator ................................................................ 61, 64  
Read/Write bit Information, R/W .................................. 40, 43  
Receive Overflow Detect bit, SSPOV ................................ 41  
Receive Overflow Indicator bit, SSPOV ............................. 44  
Register File ......................................................................... 6  
Registers  
Block Diagram, SPI Mode ......................................... 42  
SPI Mode ................................................................... 42  
Synchronous Serial Port Enable bit, SSPEN ............... 41, 44  
Synchronous Serial Port Mode Select bits,  
Initialization Conditions .............................................. 65  
Maps  
PIC16C72 ............................................................ 6  
PIC16CR72 .......................................................... 6  
Reset Conditions ........................................................ 64  
SSPCON  
SSPM3:SSPM0 ........................................................... 41, 44  
Synchronous Serial Port Module ....................................... 39  
Synchronous Serial Port Status Register .......................... 43  
T
Diagram ............................................................. 41  
SSPSTAT ................................................................... 43  
Diagram ............................................................. 40  
Section ............................................................... 40  
Reset ............................................................................ 59, 61  
Reset Conditions for Special Registers ............................. 64  
RP0 bit ............................................................................. 6, 9  
RP1 bit ................................................................................. 9  
T0CS bit ............................................................................. 10  
T1CKPS0 bit ...................................................................... 27  
T1CKPS1 bit ...................................................................... 27  
T1CON Register ................................................................ 27  
T1OSCEN bit ..................................................................... 27  
T1SYNC bit ........................................................................ 27  
T2CKPS0 bit ...................................................................... 32  
T2CKPS1 bit ...................................................................... 32  
T2CON Register ................................................................ 32  
TAD .................................................................................... 57  
Timer0  
S
S ................................................................................... 40, 43  
SCK .................................................................................... 42  
SCL .................................................................................... 47  
SDI ..................................................................................... 42  
SDO ................................................................................... 42  
Slave Mode  
SCL ............................................................................ 47  
SDA ............................................................................ 47  
SLEEP ......................................................................... 59, 61  
SMP ................................................................................... 43  
Special Event Trigger ......................................................... 58  
Special Features of the CPU ............................................. 59  
Special Function Registers  
RTCC ......................................................................... 65  
Timers  
Timer0  
Block Diagram ................................................... 25  
Interrupt ............................................................. 26  
Prescaler ........................................................... 25  
Prescaler Block Diagram ................................... 26  
Section .............................................................. 25  
Switching Prescaler Assignment ....................... 26  
T0IF ................................................................... 68  
TMR0 Interrupt .................................................. 68  
Timer1  
Capacitor Selection ........................................... 29  
Oscillator ........................................................... 29  
Resetting Timer1 using a CCP Trigger Output .. 29  
T1CON .............................................................. 27  
Timer2  
PIC16C72 .................................................................... 7  
PIC16CR72 .................................................................. 7  
Special Function Registers, Section .................................... 7  
SPI  
Block Diagram ...................................................... 42, 45  
Mode .......................................................................... 42  
Serial Clock ................................................................ 45  
Serial Data In ............................................................. 45  
Serial Data Out .......................................................... 45  
Slave Select ............................................................... 45  
SPI Mode ................................................................... 45  
SSPCON .................................................................... 44  
SSPSTAT ................................................................... 43  
Block Diagram ................................................... 31  
Postscaler .......................................................... 31  
Prescaler ........................................................... 31  
T2CON .............................................................. 32  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 119  
PIC16C72 Series  
Timing Diagrams  
A/D Conversion ..........................................................95  
Brown-out Reset ........................................................86  
Capture/Compare/PWM .............................................88  
CLKOUT and I/O ........................................................85  
External Clock Timing ................................................84  
2
I C Bus Data ..............................................................93  
2
I C Bus Start/Stop bits ...............................................92  
2
I C Reception (7-bit Address) ....................................49  
Power-up Timer .........................................................86  
Reset ..........................................................................86  
Start-up Timer ............................................................86  
Timer0 ........................................................................87  
Timer1 ........................................................................87  
Wake-up from Sleep via Interrupt ..............................72  
Watchdog Timer .........................................................86  
TMR1CS bit ........................................................................27  
TMR1H Register ..................................................................7  
TMR1IE bit .........................................................................12  
TMR1IF bit .........................................................................13  
TMR1L Register ...................................................................7  
TMR1ON bit .......................................................................27  
TMR2 Register .....................................................................7  
TMR2IE bit .........................................................................12  
TMR2IF bit .........................................................................13  
TMR2ON bit .......................................................................32  
TO bit ...................................................................................9  
TOUTPS0 bit ......................................................................32  
TOUTPS1 bit ......................................................................32  
TOUTPS2 bit ......................................................................32  
TOUTPS3 bit ......................................................................32  
TRISA Register ..............................................................8, 19  
TRISB Register ..............................................................8, 21  
TRISC Register ..............................................................8, 23  
U
UA ................................................................................40, 43  
Update Address bit, UA ................................................40, 43  
W
Wake-up from SLEEP ........................................................71  
Watchdog Timer (WDT) ...................................59, 61, 64, 70  
WCOL ..........................................................................41, 44  
WDT ...................................................................................64  
Block Diagram ............................................................70  
Timeout ......................................................................65  
Write Collision Detect bit, WCOL .................................41, 44  
Z
Z bit ......................................................................................9  
DS39016A-page 120  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C72 Series  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-602-786-7302 for the rest of the world.  
980106  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.futureone.com/pub/microchip  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICSTART,  
PICMASTER and PRO MATE are registered trademarks  
of Microchip Technology Incorporated in the U.S.A. and  
other countries. PICmicro, FlexROM, MPLAB and fuzzy-  
LAB are trademarks and SQTP is a service mark of Micro-  
chip in the U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
1998 Microchip Technology Inc.  
DS39016A-page 121  
PIC16C72 Series  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS39016A  
Device:  
PIC16C72 Series  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS39016A-page 122  
1998 Microchip Technology Inc.  
PIC16C72 Series  
PIC16C72 SERIES PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
-XX  
Examples:  
Frequency Temperature Package  
Range Range  
Pattern  
f)  
PIC16C72 -04/P 301 = Commercial temp.,  
PDIP package, 4 MHz, normal VDD limits, QTP  
pattern #301.  
g)  
h)  
PIC16LC72 - 04I/SO = Industrial temp., SOIC  
package, 200 kHz, Extended VDD limits.  
Device  
PIC16C72(1), PIC16C72T(2)  
PIC16LC72(1), PIC16LC72T(2)  
PIC16CR72(1), PIC16CR72T(2)  
PIC16LCR72(1), PIC16LCR72T(2)  
PIC16CR72 - 10I/P = ROM program memory,  
Industrial temp., PDIP package, 10MHz, nor-  
mal VDD limits.  
Frequency Range  
02  
04  
10  
20  
= 2 MHz  
= 4 MHz  
= 10 MHz  
= 20 MHz  
Note 1:  
C= CMOS  
CR= CMOS ROM  
LC= Low Power CMOS  
LCR= ROM Version, Extended Vdd range  
2:  
3:  
T
= in tape and reel - SOIC, SSOP pack-  
ages only.  
= blank  
Temperature Range  
Package  
b(3)  
I
E
=
=
=
0°C to  
70°C (Commercial)  
b
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
JW  
SO  
SP  
SS  
= Ceramic Dual In-Line Package with Window  
= Small Outline - 300 mil  
= Skinny PDIP  
= Shrink Samll Outline Package - 209 mil  
Pattern  
3-digit Pattern Code for QTP, ROM (blank otherwise)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type (including LC devices).  
SALES AND SUPPORT  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office (see last page)  
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277  
3. The Microchip’s Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Development Tools  
For the latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.  
The latest version of Development Tools software can be downloaded from either our Bulletin Board or Worldwide Web Site. (Infor-  
mation on how to connect to our BBS or WWW site can be found in the On-Line Support section of this data sheet.)  
1998 Microchip Technology Inc.  
Preliminary  
DS39016A-page 123  
M
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC (CONTINUED)  
Corporate Office  
Microchip Technology Inc.  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Hong Kong  
Microchip Asia Pacific  
RM 3801B, Tower Two  
Metroplaza  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Tel: 602-786-7200 Fax: 602-786-7277  
Technical Support: 602 786-7627  
Web: http://www.microchip.com  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Taipei, Taiwan, ROC  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
India  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
EUROPE  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-1189-21-5858 Fax: 44-1189-21-5835  
Boston  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Japan  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222 Japan  
France  
Arizona Microchip Technology SARL  
Zone Industrielle de la Bonde  
2 Rue du Buisson aux Fraises  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Korea  
Tel: 630-285-0071 Fax: 630-285-0075  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 Müchen, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Dallas  
Microchip Technology Inc.  
14651 Dallas Parkway, Suite 816  
Dallas, TX 75240-8809  
Tel: 972-991-7177 Fax: 972-991-8588  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Italy  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
Tel: 39-39-6899939 Fax: 39-39-6899883  
Tel: 86-21-6275-5700  
Fax: 86 21-6275-5060  
Los Angeles  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Singapore  
Microchip Technology Taiwan  
Singapore Branch  
200 Middle Road  
#07-02 Prime Centre  
1/13/98  
Tel: 714-263-1888 Fax: 714-263-1338  
NewYork  
Microchip Technology Inc.  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 516-273-5305 Fax: 516-273-5335  
Microchip received ISO 9001 Quality  
System certification for its worldwide  
headquarters, design, and wafer  
fabrication facilities in January, 1997.  
Our field-programmable PICmicro™  
8-bit MCUs, Serial EEPROMs,  
related specialty memory products  
and development systems conform  
to the stringent quality standards of  
the International Standard  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Microchip Technology Inc.  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
Organization (ISO).  
All rights reserved. © 1998, Microchip Technology Incorporated, USA. 2/98  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no  
liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use  
or otherwise. Use of Microchips products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or  
otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other  
trademarks mentioned herein are the property of their respective companies.  
DS39016A-page 124  
1998 Microchip Technology Inc.  

相关型号:

PIC16C72T-20E/SP

8-Bit CMOS Microcontrollers with A/D Converter
MICROCHIP

PIC16C72T-20E/SS

8-Bit CMOS Microcontrollers with A/D Converter
MICROCHIP

PIC16C72T-20I/JW

8-Bit CMOS Microcontrollers with A/D Converter
MICROCHIP

PIC16C72T-20I/SO

8-Bit CMOS Microcontrollers with A/D Converter
MICROCHIP

PIC16C72T-20I/SP

8-Bit CMOS Microcontrollers with A/D Converter
MICROCHIP

PIC16C72T-20I/SS

8-Bit CMOS Microcontrollers with A/D Converter
MICROCHIP

PIC16C72T-4E/SO

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO28, 0.300 INCH, PLASTIC, SOIC-28
MICROCHIP

PIC16C72T-4E/SS

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO28, 0.209 INCH, PLASTIC, SSOP-28
MICROCHIP

PIC16C72TE-04/SS

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SSOP,28PIN,PLASTIC
MICROCHIP

PIC16C72TE-20/SS

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SSOP,28PIN,PLASTIC
MICROCHIP

PIC16C72TI-04/SO

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SOP,28PIN,PLASTIC
MICROCHIP

PIC16C72TI-20/SS

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SSOP,28PIN,PLASTIC
MICROCHIP