PIC16C745/SO [MICROCHIP]

8-Bit CMOS Microcontrollers with USB; 8位CMOS微控制器与USB
PIC16C745/SO
型号: PIC16C745/SO
厂家: MICROCHIP    MICROCHIP
描述:

8-Bit CMOS Microcontrollers with USB
8位CMOS微控制器与USB

微控制器和处理器 外围集成电路 光电二极管 可编程只读存储器 时钟
文件: 总158页 (文件大小:2499K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C745/765  
8-Bit CMOS Microcontrollers with USB  
Devices included in this data sheet:  
• PIC16C745 • PIC16C765  
Pin Diagrams  
28-Pin DIP, SOIC  
Microcontroller Core Features:  
• High-performance RISC CPU  
• Only 35 single word instructions  
• 1  
2
28  
27  
26  
25  
24  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0/INT  
VDD  
MCLR/VPP  
RA0/AN0  
RA1/AN1  
3
4
5
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4  
Memory  
6
7
8
23  
22  
21  
A/D  
A/D  
Device  
Pins  
Vss  
Program Data  
Resolution Channels  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
VUSB  
9
20  
19  
18  
17  
16  
15  
x14  
x8  
Vss  
10  
11  
12  
13  
14  
RC7/RX/DT  
RC6/TX/CK  
D+  
PIC16C745  
PIC16C765  
8K  
8K  
256  
256  
28  
40  
8
8
5
8
D-  
• All single cycle instructions except for program  
branches which are two cycle  
• Interrupt capability (up to 12 internal/external  
interrupt sources)  
Peripheral Features:  
• Universal Serial Bus (USB 1.1)  
• 64 bytes of USB dual port RAM  
• Eight level deep hardware stack  
• Direct, indirect and relative addressing modes  
• Power-on Reset (POR)  
• 22 (PIC16C745) or 33 (PIC16C765) I/O pins  
- Individual direction control  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
- 1 high voltage open drain (RA4)  
- 8 PORTB pins with:  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
- Interrupt on change control (RB<7:4> only)  
- Weak pull up control  
• Brown-out detection circuitry for  
Brown-out Reset (BOR)  
- 3 pins dedicated to USB  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• Programmable code-protection  
• Power saving SLEEP mode  
• Timer1: 16-bit timer/counter with prescaler  
can be incremented during sleep via external  
crystal/clock  
• Selectable oscillator options  
- EC - External clock (24 MHz)  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
- E4 - External clock with PLL (6 MHz)  
- HS - Crystal/Resonator (24 MHz)  
- H4 - Crystal/Resonator with PLL (6 MHz)  
• 2 Capture, Compare and PWM modules  
- Capture is 16 bit, max. resolution is 10.4 ns  
- Compare is 16 bit, max. resolution is 167 ns  
- PWM maximum resolution is 10 bit  
• Processor clock of 24MHz derived from 6 MHz  
crystal or resonator  
• Fully static low-power, high-speed CMOS  
• In-Circuit Serial Programming (ICSP)  
• Operating voltage range  
• 8-bit multi-channel Analog-to-Digital converter  
• Universal Synchronous Asynchronous Receiver  
Transmitter (USART/SCI)  
- 4.35 to 5.25V  
• Parallel Slave Port (PSP) 8-bits wide, with exter-  
nal RD, WR and CS controls (PIC16C765 only)  
• High Sink/Source Current 25/25 mA  
• Wide temperature range  
- Industrial (-40°C - 85°C)  
• Low-power consumption:  
- < TBD @ 5V, 6 MHz  
- < TBD typical standby current  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 1  
PIC16C745/765  
44-Pin PLCC  
44-Pin TQFP  
RA4/T0CKI  
RA5/AN4  
RB3  
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
RB2  
8
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
NC  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
9
RB1  
2
10  
11  
12  
13  
14  
15  
16  
17  
RB0/INT  
VDD  
RC0/T1OSO/T1CKI  
OSC2/CLKOUT  
OSC1/CLKIN  
VSS  
3
4
VSS  
PIC16C765  
5
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
VSS  
6
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
NC  
PIC16C765  
VDD  
7
VDD  
RE2/CS/AN7  
RE1/WR/AN6  
RE0/RD/AN5  
RA5/AN4  
8
RB0/INT  
RB1  
9
10  
11  
RB2  
RB3  
RA4/T0CKI  
40-Pin PDIP  
MCLR/VPP  
RA0/AN0  
1
40  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
2
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RA1/AN1  
3
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
4
5
6
RA5/AN4  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
7
RB1  
8
RB0/INT  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
D+  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
VUSB  
RD0/PSP0  
RD1/PSP1  
D-  
RD3/PSP3  
RD2/PSP2  
Key Features  
PICmicroTM Mid-Range Reference Manual  
(DS33023)  
PIC16C745  
PIC16C765  
Operating Frequency  
Resets (and Delays)  
Program Memory (14-bit words)  
Data Memory (bytes)  
Dual Port Ram  
6 MHz or 24 MHz  
6 MHz or 24 MHz  
POR, BOR (PWRT, OST)  
POR, BOR (PWRT, OST)  
8K  
8K  
256  
256  
64  
64  
Interrupt Sources  
11  
12  
I/O Ports  
22 (Ports A, B, C)  
33 (Ports A, B, C, D, E)  
Timers  
3
3
Capture/Compare/PWM modules  
Analog-to-Digital Converter Module  
Parallel Slave Port  
2
2
5 channel x 8 bit  
8 channel x 8 bit  
Yes  
Serial Communication  
Brown Out Detect Reset  
USB, USART/SCI  
Yes  
USB, USART/SCI  
Yes  
DS41124A-page 2  
AdvancedInformation  
1999 Microchip Technology Inc.  
PIC16C745/765  
Table of Contents  
1.0 General Description .............................................................................................................................................. 5  
2.0 PIC16C745/765 Device Varieties ......................................................................................................................... 7  
3.0 Architectural Overview.......................................................................................................................................... 9  
4.0 Memory Organization.......................................................................................................................................... 15  
5.0 I/O Ports.............................................................................................................................................................. 31  
6.0 Timer0 Module.................................................................................................................................................... 43  
7.0 Timer1 Module.................................................................................................................................................... 45  
8.0 Timer2 Module.................................................................................................................................................... 49  
9.0 Capture/Compare/PWM Modules....................................................................................................................... 51  
10.0 Universal Serial Bus............................................................................................................................................ 57  
11.0 Universal Synchronous Asynchronous Receiver Transmitter (USART) ............................................................. 75  
12.0 Analog-to-Digital Converter (A/D) Module .......................................................................................................... 89  
13.0 Special Features of the CPU .............................................................................................................................. 95  
14.0 Instruction Set Summary................................................................................................................................... 109  
15.0 Development Support ....................................................................................................................................... 117  
16.0 Electrical Characteristics................................................................................................................................... 123  
17.0 DC and AC Characteristics Graphs and Tables ............................................................................................... 141  
18.0 Packaging Information ...................................................................................................................................... 143  
Index .......................................................................................................................................................................... 151  
On-Line Support.......................................................................................................................................................... 155  
Reader Response....................................................................................................................................................... 156  
Product Identification System ..................................................................................................................................... 157  
To Our Valued Customers  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended  
workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revi-  
sion of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure  
that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing  
or appears in error, please:  
Fill out and mail in the reader response form in the back of this data sheet.  
E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 3  
PIC16C745/765  
NOTES:  
DS41124A-page 4  
AdvancedInformation  
1999 Microchip Technology Inc.  
PIC16C745/765  
A highly reliable Watchdog Timer (WDT), with a dedi-  
cated on-chip RC oscillator, provides protection against  
software lock-up, and also provides one way of waking  
the device from SLEEP.  
1.0  
GENERAL DESCRIPTION  
The PIC16C745/765 devices are low-cost, high-perfor-  
mance, CMOS, fully-static, 8-bit microcontrollers in the  
PIC16CXX mid-range family.  
A UV erasable CERDIP packaged version is ideal for  
code development, while the cost-effective One-Time-  
Programmable (OTP) version is suitable for production  
in any volume.  
All PICmicro® microcontrollers employ an advanced  
RISC architecture. The PIC16CXX microcontroller fam-  
ily has enhanced core features, eight-level deep stack  
and multiple internal and external interrupt sources.  
The separate instruction and data buses of the Harvard  
architecture allow a 14-bit wide instruction word with  
the separate 8-bit wide data. The two stage instruction  
pipeline allows all instructions to execute in a single  
cycle, except for program branches, which require two  
cycles. A total of 35 instructions (reduced instruction  
set) are available. Additionally, a large register set gives  
some of the architectural innovations used to achieve a  
very high performance.  
The PIC16C745/765 devices fit nicely in many applica-  
tions ranging from security and remote sensors to appli-  
ance controls and automotives. The EPROM  
technology makes customization of application pro-  
grams (data loggers, industrial controls, UPS) extremely  
fast and convenient. The small footprint packages make  
this microcontroller series perfect for all applications  
with space limitations. Low cost, low power, high perfor-  
mance, ease of use and I/O flexibility make the  
PIC16C745/765 devices very versatile, even in areas  
where no microcontroller use has been considered  
before (e.g., timer functions, serial communication, cap-  
ture and compare, PWM functions and coprocessor  
applications).  
The PIC16C745 device has 22 I/O pins. The  
PIC16C765 device has 33 I/O pins. Each device has  
256 bytes of RAM. In addition, several peripheral fea-  
tures are available including: three timer/counters, two  
Capture/Compare/PWM modules and two serial ports.  
The Universal Serial Bus (USB 1.1) peripheral pro-  
vides bus communications. The Universal Synchro-  
nous Asynchronous Receiver Transmitter (USART) is  
also known as the Serial Communications Interface or  
SCI. Also, a 5-channel high-speed 8-bit A/D is pro-  
vided on the PIC16C745, while the PIC16C765 offers  
8 channels. The 8-bit resolution is ideally suited for  
applications requiring a low-cost analog interface,  
(e.g., thermostat control, pressure sensing, etc).  
1.1  
Family and Upward Compatibility  
Users familiar with the PIC16C5X microcontroller fam-  
ily will realize that this is an enhanced version of the  
PIC16C5X architecture. Code written for the  
PIC16C5X can be easily ported to the PIC16CXX fam-  
ily of devices.  
1.2  
Development Support  
PICmicro® devices are supported by the complete line  
of Microchip Development tools.  
The PIC16C745/765 devices have special features to  
reduce external components, thus reducing cost,  
enhancing system reliability and reducing power con-  
sumption. There are 4 oscillator options, of which EC is  
for the external regulated clock source, E4 is for the  
external regulated clock source with PLL, HS is for the  
high speed crystals/resonators and H4 is for high  
speed crystals/resontators with PLL. The SLEEP  
(power-down) feature provides a power-saving mode.  
The user can wake up the chip from SLEEP through  
several external and internal interrupts and resets.  
Please refer to Section 15.0 for more details about  
Microchip’s development tools.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 5  
PIC16C745/765  
NOTES:  
DS41124A-page 6  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
2.3  
Quick-Turnaround-Production (QTP)  
Devices  
2.0  
PIC16C745/765 DEVICE  
VARIETIES  
A variety of frequency ranges and packaging options  
are available. Depending on application and production  
requirements, the proper device option can be selected  
using the information in the PIC16C745/765 Product  
Identification System section at the end of this data  
sheet. When placing orders, please use that page of  
the data sheet to specify the correct part number.  
Microchip offers a QTP Programming Service for fac-  
tory production orders. This service is made available  
for users who choose not to program a medium to high  
quantity of units and whose code patterns have stabi-  
lized. The devices are identical to the OTP devices but  
with all EPROM locations and configuration options  
already programmed by the factory. Certain code and  
prototype verification procedures apply before produc-  
tion shipments are available. Please contact your local  
Microchip Technology sales office for more details.  
2.1  
UV Erasable Devices  
The UV erasable version, offered in windowed CERDIP  
packages (600 mil), is optimal for prototype develop-  
ment and pilot programs. This version can be erased  
and reprogrammed to any of the supported oscillator  
modes.  
2.4  
Serialized Quick-Turnaround  
Production (SQTPSM) Devices  
Microchip offers a unique programming service where  
a few user-defined locations in each device are pro-  
grammed with different serial numbers. The serial num-  
bers may be random, pseudo-random or sequential.  
Microchip’s PICSTART  
Plus and PRO MATE II  
programmers both support programming of the  
PIC16C745/765.  
Serial programming allows each device to have a  
unique number, which can serve as an entry-code,  
password or ID number.  
2.2  
One-Time-Programmable (OTP)  
Devices  
The availability of OTP devices is especially useful for  
customers who need the flexibility for frequent code  
updates and small volume applications.  
The OTP devices, packaged in plastic packages, per-  
mit the user to program them once. In addition to the  
program memory, the configuration bits must also be  
programmed.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 7  
PIC16C745/765  
NOTES:  
DS41124A-page 8  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
PIC16CXX devices contain an 8-bit ALU and working  
register. The ALU is a general purpose arithmetic unit.  
It performs arithmetic and Boolean functions between  
the data in the working register and any register file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16CXX family can be  
attributed to a number of architectural features com-  
monly found in RISC microprocessors. To begin with,  
the PIC16CXX uses a Harvard architecture, in which  
program and data are accessed from separate memo-  
ries using separate buses. This improves bandwidth  
over traditional von Neumann architecture in which pro-  
gram and data are fetched from the same memory  
using the same bus. Separating program and data  
buses further allows instructions to be sized differently  
than the 8-bit wide data word. Instruction opcodes are  
14-bits wide making it possible to have all single word  
instructions. A 14-bit wide program memory access  
bus fetches a 14-bit instruction in a single cycle. A two-  
stage pipeline overlaps fetch and execution of instruc-  
tions (Example 3-1). Consequently, most instructions  
execute in a single cycle (166.6667 ns @ 24 MHz)  
except for program branches.  
The ALU is 8-bits wide and capable of addition, sub-  
traction, shift and logical operations. Unless otherwise  
mentioned, arithmetic operations are two's comple-  
ment in nature. In two-operand instructions, typically  
one operand is the working register (W register). The  
other operand is a file register or an immediate con-  
stant. In single operand instructions, the operand is  
either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register. The C and DC bits  
operate as a borrow bit and a digit borrow out bit,  
respectively, in subtraction. See the SUBLWand SUBWF  
instructions for examples.  
Memory  
A/D  
A/D  
Device  
Pins  
Program Data  
Resolution Channels  
x14  
x8  
PIC16C745  
PIC16C765  
8K  
8K  
256  
256  
28  
40  
8
8
5
8
The PIC16CXX can directly or indirectly address its  
register files or data memory. All special function regis-  
ters, including the program counter, are mapped in the  
data memory. The PIC16CXX has an orthogonal (sym-  
metrical) instruction set that makes it possible to carry  
out any operation on any register using any addressing  
mode. This symmetrical nature and lack of ‘special  
optimal situations’ make programming with the  
PIC16CXX simple yet efficient. In addition, the learning  
curve is reduced significantly.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 9  
PIC16C745/765  
FIGURE 3-1: PIC16C745/765 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
EPROM  
RA0/AN0  
Program  
Memory  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4  
RAM  
File  
8 Level Stack  
(13 bit)  
8K x 14  
Registers  
256 x 8  
Program  
Bus  
14  
RAM Addr(1)  
PORTB  
9
Addr MUX  
Instruction reg  
RB0/INT  
RB<7:1>  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
8
PORTC  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC6/TX/CK  
RC7/RX/DT  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
ALU  
Power-on  
Reset  
8
PORTD  
OSC1/  
CLKIN  
Timing  
Generation  
x4 PLL  
Watchdog  
Timer  
W reg  
RD3:0/PSP3:0(2)  
OSC2/  
CLKOUT  
Brown-out  
Reset  
RD4/PSP4(2)  
RD5/PSP5(2)  
RD6/PSP6(2)  
RD7/PSP7(2)  
Parallel Slave Port(2)  
MCLR VDD, VSS  
PORTE  
RE0/AN5/RD(2)  
RE1/AN6/WR(2)  
RE2/AN7/CS(2)  
Timer0  
CCP2  
Timer1  
CCP1  
Timer2  
8-bit A/D  
Dual Port  
RAM  
64 x 8  
VUSB  
D-  
D+  
USB  
USART  
XCVR  
Note 1: Higher order bits are from the STATUS register.  
2: Not available on PIC16C745.  
DS41124A-page 10  
AdvancedInformation  
1999 Microchip Technology Inc.  
PIC16C745/765  
TABLE 3-1:  
PIC16C745/765 PINOUT DESCRIPTION  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
MCLR  
VPP  
ST  
Power  
Xtal  
ST  
Master Clear  
MCLR/VPP  
OSC1/CLKIN  
OSC2/CLKOUT  
Programming Voltage  
OSC1  
CLKIN  
OSC2  
CLKOUT  
Crystal/Resonator  
External Clock Input/ER resistor connection.  
Crystal/Resonator  
Xtal  
CMOS Internal Clock (FINT/4) Output  
RA0  
AN0  
RA1  
AN1  
RA2  
AN2  
RA3  
AN3  
VREF  
RA4  
T0CKI  
RA5  
AN4  
ST  
AN  
ST  
AN  
ST  
AN  
ST  
AN  
AN  
ST  
ST  
ST  
AN  
CMOS Bi-directional I/O  
RA0/AN0  
RA1/AN1  
RA2/AN2  
A/D Input  
CMOS Bi-directional I/O  
A/D Input  
CMOS Bi-directional I/O  
A/D Input  
CMOS Bi-directional I/O  
RA3/AN3/VREF  
A/D Input  
A/D Positive Reference  
Bi-directional I/O  
Timer 0 Clock Input  
Bi-directional I/O  
A/D Input  
OD  
RA4/T0CKI  
RA5/AN4  
RB0  
INT  
TTL  
ST  
CMOS Bi-directional I/O  
Interrupt  
RB0/INT  
RB1  
RB2  
RB3  
RB4  
RB5  
RB1  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
ST  
CMOS Bi-directional I/O  
RB2  
CMOS Bi-directional I/O  
RB3  
CMOS Bi-directional I/O  
RB4  
CMOS Bi-directional I/O with Interrupt on Change  
CMOS Bi-directional I/O with Interrupt on Change  
CMOS Bi-directional I/O with Interrupt on Change  
In-Circuit Serial Programming Clock input  
CMOS Bi-directional I/O with Interrupt on Change  
CMOS In-Circuit Serial Programming Data I/O  
RB5  
RB6  
RB6/ICSPC  
RB7/ICSPD  
ICSPC  
RB7  
TTL  
ST  
ICSPD  
RC0  
T1OSO  
T1CKI  
RC1  
ST  
CMOS Bi-directional I/O  
RC0/T1OSO/T1CKI  
Xtal  
T1 Oscillator Output  
T1 Clock Input  
ST  
ST  
Xtal  
CMOS Bi-directional I/O  
RC!/T1OSI/CCP2  
T1OSI  
CCP2  
RC2  
T1 Oscillator Input  
Capture In/Compare Out/PWM Out 2  
ST  
CMOS Bi-directional I/O  
Capture In/Compare Out/PWM Out 1  
RC2/CCP1/VUSB  
CCP1  
VUSB  
D-  
VUSB  
D-  
Power  
USB  
3.3V for pull up resistor  
USB Differential Bus  
USB Differential Bus  
USB  
USB  
D+  
D+  
USB  
Legend:  
OD = open drain, ST = Schmitt Trigger  
Note 1: Weak pull-ups. PORT B pull-ups are byte wide programmable.  
2: PIC16C765 only.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 11  
PIC16C745/765  
TABLE 3-1:  
PIC16C745/765 PINOUT DESCRIPTION (CONTINUED)  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
RC6  
TX  
ST  
CMOS Bi-directional I/O  
RC6/TX/CK  
CMOS USART Async Transmit  
CK  
ST  
ST  
ST  
ST  
CMOS USART Master Out/Slave In Clock  
CMOS Bi-directional I/O  
RC7  
RX  
RC7/RX/DT  
USART Async Receive  
DT  
CMOS USART Data I/O  
(2)  
RD0  
PSP0  
RD1  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
CMOS Bi-directional I/O  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
Parallel Slave Port data input  
(2)  
CMOS Bi-directional I/O  
PSP1  
RD2  
Parallel Slave Port data input  
(2)  
CMOS Bi-directional I/O  
PSP2  
RD3  
Parallel Slave Port data input  
(2)  
CMOS Bi-directional I/O  
PSP3  
RD4  
Parallel Slave Port data input  
(2)  
CMOS Bi-directional I/O  
PSP4  
RD5  
Parallel Slave Port data input  
(2)  
CMOS Bi-directional I/O  
PSP5  
RD6  
Parallel Slave Port data input  
(2)  
CMOS Bi-directional I/O  
PSP6  
RD7  
Parallel Slave Port data input  
(2)  
CMOS Bi-directional I/O  
PSP7  
Parallel Slave Port data input  
(2)  
RE0  
RD  
ST  
TTL  
AN  
ST  
CMOS Bi-directional I/O  
(2)  
(2)  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
Parallel Slave Port control input  
(2)  
AN5  
RE1  
WR  
AN6  
RE2  
CS  
A/D Input  
(2)  
CMOS Bi-directional I/O  
TTL  
AN  
ST  
Parallel Slave Port control input  
(2)  
A/D Input  
(2)  
CMOS Bi-directional I/O  
(2)  
TTL  
AN  
Parallel Slave Port data input  
(2)  
AN7  
A/D Input  
VDD  
VSS  
VDD  
VSS  
Power  
Power  
Power  
Power  
Power  
Ground  
AVDD  
AVSS  
AVDD  
AVSS  
Analog Power  
Analog Ground  
Legend:  
OD = open drain, ST = Schmitt Trigger  
Note 1: Weak pull-ups. PORT B pull-ups are byte wide programmable.  
2: PIC16C765 only.  
DS41124A-page 12  
AdvancedInformation  
1999 Microchip Technology Inc.  
PIC16C745/765  
3.1  
Clocking Scheme/Instruction Cycle  
3.2  
Instruction Flow/Pipelining  
The clock input feeds an on-chip PLL. The clock output  
from the PLL (FINT) is internally divided by four to gen-  
erate four non-overlapping quadrature clocks namely,  
Q1, Q2, Q3 and Q4. Internally, the program counter  
(PC) is incremented every Q1, the instruction is fetched  
from the program memory and latched into the instruc-  
tion register in Q4. The instruction is decoded and exe-  
cuted during the following Q1 through Q4. The clocks  
and instruction execution flow is shown in Figure 3-2.  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
then two cycles are required to complete the instruction  
(Example 3-1).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register" (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 3-2: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
FINT  
Q1  
Internal  
phase  
clock  
Q2  
Q3  
Q4  
PC  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(EC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
Note: All instructions are single cycle, except for any program branches. These take two cycles, since the fetch  
instruction is “flushed” from the pipeline, while the new instruction is being fetched and then executed.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 13  
PIC16C745/765  
NOTES:  
DS41124A-page 14  
AdvancedInformation  
1999 Microchip Technology Inc.  
PIC16C745/765  
4.2  
Data Memory Organization  
4.0  
MEMORY ORGANIZATION  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers (GPR)  
and the Special Function Registers (SFR). Bits RP1  
and RP0 are the bank select bits.  
4.1  
Program Memory Organization  
The PIC16C745/765 has a 13-bit program counter  
capable of addressing an 8K x 14 program memory  
space. All devices covered by this datasheet have 8K x  
14 bits of program memory. The address range is  
0000h - 1FFFh for all devices.  
RP<1:0> (STATUS<6:5>)  
= 00Bank0  
= 01Bank1  
The reset vector is at 0000h and the interrupt vector is  
at 0004h.  
= 10Bank2  
= 11Bank3  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the SFRs.  
Above the SFRs are GPRs, implemented as static  
RAM.  
FIGURE 4-1: PIC16C745/765 PROGRAM  
MEMORY MAP AND STACK  
PC<12:0>  
All implemented banks contain SFRs. Some “high use”  
SFRs from one bank may be mirrored in another bank  
for code reduction and quicker access.  
CALL, RETURN  
RETFIE, RETLW  
13  
4.2.1  
GENERAL PURPOSE REGISTER FILE  
Stack Level 1  
Stack Level 2  
The register file can be accessed either directly or indi-  
rectly through the File Select Register (FSR)  
(Section 4.5).  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
07FFh  
0800h  
Page 1  
Page 2  
On-chip  
Program  
Memory  
0FFFh  
1000h  
17FFh  
1800h  
Page 3  
1FFFh  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 15  
PIC16C745/765  
FIGURE 4-2: DATA MEMORY MAP FOR PIC16C745/765  
Bank 0  
File  
Bank 1  
File  
Bank 2  
File  
Bank 3  
File  
Address  
Address  
Address  
Address  
Indirect addr.(*)  
TMR0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
Indirect addr.(*)  
OPTION_REG  
PCL  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
Indirect addr.(*)  
TMR0  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
Indirect addr.(*)  
OPTION_REG  
PCL  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
PORTB  
TRISB  
TRISC  
(2)  
(2)  
PORTD  
TRISD  
(2)  
(2)  
09h  
89h  
109h  
189h  
PORTE  
TRISE  
PCLATH  
INTCON  
PIR1  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
PCLATH  
INTCON  
PIE1  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
PCLATH  
INTCON  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
PCLATH  
INTCON  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
UIR  
UIE  
T2CON  
PR2  
UEIR  
UEIE  
USTAT  
UCTRL  
UADDR  
CCPR1L  
CCPR1H  
CCP1CON  
(1)  
USWSTAT  
RCSTA  
TXREG  
RCREG  
CCPR2L  
18h  
19h  
1Ah  
1Bh  
TXSTA  
98h  
99h  
9Ah  
9Bh  
118h  
119h  
11Ah  
11Bh  
UEP0  
UEP1  
UEP2  
198h  
199h  
19Ah  
SPBRG  
(1)  
19Bh  
(1)  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
19Ch  
(1)  
19Dh  
(1)  
19Eh  
(1)  
ADCON1  
19Fh  
General  
Purpose  
Register  
96 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
USB Dual Port  
Memory  
64 Bytes  
1A0h  
1DFh  
1E0h  
1EFh  
1F0h  
1FFh  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
7Fh  
Unimplemented data memory locations, read as ‘0’.  
*Not a physical register.  
Note 1: Reserved registers may contain USB state information.  
2: Parallel slave ports (PORTD and PORTE) not implemented on PIC16C745; always maintain these bits clear.  
DS41124A-page 16  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers can be classified into  
two sets (core and peripheral). Those registers associ-  
ated with the “core” functions are described in this sec-  
tion, and those related to the operation of the peripheral  
features are described in the section of that peripheral  
feature.  
The Special Function Registers are registers used by  
the CPU and Peripheral Modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM.  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
Bank 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
INDF(3)  
TMR0  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--0x 0000 --0u 0000  
xxxx xxxx uuuu uuuu  
xx-- -xxx uu-- -uuu  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
---0 0000 ---0 0000  
0000 000x 0000 000u  
PCL(3)  
Program Counter's (PC) Least Significant Byte  
STATUS(3)  
FSR(3)  
IRP(2)  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
PORTB Data Latch when written: PORTB pins when read  
RC7 RC6  
RP1(2)  
RP0  
TO  
PD  
Z
DC  
C
PORTA  
PORTB  
PORTC  
RC2  
RC1  
RE1  
RC0  
PORTD(4) PORTD Data Latch when written: PORTD pins when read  
PORTE(4)  
PCLATH(1,3)  
INTCON(3)  
PIR1  
RE2  
RE0  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PEIE  
ADIF  
T0IE  
RCIF  
INTE  
TXIF  
RBIE  
USBIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
PSPIF(4)  
TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
xxxx xxxx uuuu uuuu  
PIR2  
TMR1L  
TMR1H  
T1CON  
TMR2  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx uuuu uuuu  
T1CKPS1 T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS TMR1ON --00 0000 --uu uuuu  
0000 0000 0000 0000  
Timer2 module’s register  
TOUTPS3 TOUTPS2 TOUTPS1  
T2CON  
TOUTPS0  
TMR2ON  
T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Unimplemented  
Unimplemented  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
DC1B1  
SREN  
DC1B0  
CREN  
CCP1M3  
CCP1M2  
FERR  
CCP1M1  
OERR  
CCP1M0 --00 0000 --00 0000  
SPEN  
RX9  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
USART Transmit Data Register  
USART Receive Data Register  
Capture/Compare/PWM Register2 (LSB)  
Capture/Compare/PWM Register2 (MSB)  
DC2B1  
CHS2  
DC2B1  
CHS1  
CCP2M3  
CHS0  
CCP2M2  
CCP2M1  
CCP2M0 --00 0000 --00 0000  
A/D Result Register  
ADCS1 ADCS0  
xxxx xxxx uuuu uuuu  
GO/DONE  
ADON  
0000 00-0 0000 00-0  
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as ’0’.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents  
are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: These registers can be addressed from either bank.  
4: The Parallel Slave Port (PORTD and PORTE) is not implemented on the PIC16C745, always maintain these bits clear.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 17  
PIC16C745/765  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on: Value on all  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
Bank 1  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INDF(3)  
OPTION  
PCL(3)  
STATUS(3)  
FSR(3)  
TRISA  
TRISB  
TRISC  
TRISD(4)  
TRISE(4)  
PCLATH(1,3)  
INTCON(3)  
PIE1  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
1111 1111 1111 1111  
11-- -111 11-- -111  
1111 1111 1111 1111  
0000 -111 0000 -111  
---0 0000 ---0 0000  
0000 000x 0000 000u  
RBPU  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
PORTB Data Direction Register  
TRISC7 TRISC8  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
C
PD  
Z
DC  
TRISC2  
TRISC1  
TRISC0  
PORTD Data Direction Register  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction Bits  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PEIE  
ADIE  
T0IE  
RCIE  
INTE  
TXIE  
RBIE  
USBIE  
T0IF  
CCP1IE  
INTF  
TMR2IE  
RBIF  
PSPIE(4)  
TMR1IE 0000 0000 0000 0000  
CCP2IE ---- ---0 ---- ---0  
PIE2  
PCON  
POR  
BOR  
---- --qq ---- --uu  
Unimplemented  
Unimplemented  
Unimplemented  
Timer2 Period Register  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
1111 1111 1111 1111  
TXSTA  
SPBRG  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
Baud Rate Generator Register  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADCON1  
PCFG2  
PCFG1  
PCFG0 ---- -000 ---- -000  
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as ’0’.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents  
are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: These registers can be addressed from either bank.  
4: The Parallel Slave Port (PORTD and PORTE) is not implemented on the PIC16C745, always maintain these bits clear.  
DS41124A-page 18  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on: Value on all  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
Bank 2  
100h  
INDF(3)  
TMR0  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
101h  
PCL(3)  
102h  
Program Counter's (PC) Least Significant Byte  
STATUS(3)  
103h  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
FSR(3)  
104h  
Indirect data memory address pointer  
Unimplemented  
105h  
106h  
107h  
108h  
109h  
PORTB  
PORTB Data Latch when written: PORTB pins when read  
xxxx xxxx uuuu uuuu  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH(1,3)  
INTCON(3)  
10Ah  
10Bh  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF  
---0 0000 ---0 0000  
0000 000x 0000 000u  
GIE  
PEIE  
T0IE  
RBIF  
10Ch-  
11Fh  
Unimplemented  
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as ’0’.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents  
are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: These registers can be addressed from either bank.  
4: The Parallel Slave Port (PORTD and PORTE) is not implemented on the PIC16C745, always maintain these bits clear.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 19  
PIC16C745/765  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on: Value on all  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
Bank 3  
180h  
INDF(3)  
OPTION_REG RBPU  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
181h  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
C
PCL(3)  
182h  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO  
STATUS(3)  
183h  
PD  
Z
DC  
FSR(3)  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
Indirect data memory address pointer  
Unimplemented  
xxxx xxxx uuuu uuuu  
TRISB  
PORTB Data Direction Register  
Unimplemented  
1111 1111 1111 1111  
Unimplemented  
Unimplemented  
Write Buffer for the upper 5 bits of the Program Counter  
PCLATH(1,3)  
INTCON(3)  
---0 0000 ---0 0000  
0000 000x 0000 000u  
18Bh  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
18Ch-  
18Fh  
Unimplemented  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
UIR  
STALL  
STALL  
UIDLE  
UIDLE  
TOK_DNE  
TOK_DNE  
DFN8  
ACTIVITY  
ACTIVITY  
CRC16  
CRC16  
IN  
UERR  
UERR  
CRC5  
CRC5  
USB_RST --00 0000 --00 0000  
USB_RST --00 0000 --00 0000  
PID_ERR 0000 0000 0000 0000  
PID_ERR 0000 0000 0000 0000  
UIE  
UEIR  
BTS_ERR OWN_ERR WRT_ERR BTO_ERR  
BTS_ERR OWN_ERR WRT_ERR BTO_ERR  
UEIE  
DFN8  
USTAT  
UCTRL  
UADDR  
USWSTAT  
UEP0  
UEP1  
UEP2  
ENDP1  
PKT_DIS  
ADDR4  
ENDP0  
---x xx-- ---u uu--  
--x0 000- --xq qqq-  
SEO  
DEV_ATT  
ADDR3  
RESUME  
ADDR2  
SWSTAT2  
SUSPND  
ADDR1  
ADDR6  
ADDR5  
ADDR0 -000 0000 -000 0000  
SWSTAT7 SWSTAT6 SWSTAT5 SWSTAT4  
SWSTAT3  
SWSTAT1 SWSTAT0 0000 0000 0000 0000  
EP_CTL_DIS EP_OUT_EN EP_IN_EN EP_STALL ---- 0000 ---- 0000  
EP_CTL_DIS EP_OUT_EN EP_IN_EN EP_STALL ---- 0000 ---- 0000  
EP_CTL_DIS EP_OUT_EN EP_IN_EN EP_STALL ---- 0000 ---- 0000  
19Bh-  
19Fh  
Reserved  
Reserved, do not use.  
0000 0000 0000 0000  
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as ’0’.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents  
are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: These registers can be addressed from either bank.  
4: The Parallel Slave Port (PORTD and PORTE) is not implemented on the PIC16C745, always maintain these bits clear.  
DS41124A-page 20  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
TABLE 4-2:  
USB DUAL PORT RAM  
Value on: Value on all  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
UOWN  
UOWN  
DATA0/1  
DATA0/1  
PID3  
PID2  
PID1  
DTS  
PID0  
BSTALL  
1A0h  
BD0OST  
xxxx xxxx uuuu uuuu  
1A1h  
1A2h  
1A3h  
BD0OBC  
BD0OAL  
Byte Count  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Buffer Address Low  
Reserved  
UOWN  
UOWN  
DATA0/1  
DATA0/1  
PID3  
PID2  
PID1  
DTS  
PID0  
BSTALL  
1A4h  
BD0IST  
xxxx xxxx uuuu uuuu  
1A5h  
1A6h  
1A7h  
BD0IBC  
BD0IAL  
Byte Count  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Buffer Address Low  
Reserved  
UOWN  
UOWN  
DATA0/1  
DATA0/1  
PID3  
PID2  
PID1  
DTS  
PID0  
BSTALL  
1A8h  
BD1OST  
xxxx xxxx uuuu uuuu  
1A9h  
1AAh  
1ABh  
BD1OBC  
BD1OAL  
Byte Count  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Buffer Address Low  
Reserved  
UOWN  
UOWN  
DATA0/1  
DATA0/1  
PID3  
PID2  
PID1  
DTS  
PID0  
BSTALL  
1ACh  
BD1IST  
xxxx xxxx uuuu uuuu  
1ADh  
1AEh  
1AFh  
BD1IBC  
BD1IAL  
Byte Count  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Buffer Address Low  
Reserved  
UOWN  
UOWN  
DATA0/1  
DATA0/1  
PID3  
PID2  
PID1  
DTS  
PID0  
BSTALL  
1B0h  
BD2OST  
xxxx xxxx uuuu uuuu  
1B1h  
1B2h  
1B3h  
BD2OBC  
BD2OAL  
Byte Count  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Buffer Address Low  
Reserved  
UOWN  
UOWN  
DATA0/1  
DATA0/1  
PID3  
PID2  
PID1  
DTS  
PID0  
BSTALL  
1B4h  
BD2IST  
xxxx xxxx uuuu uuuu  
1B5h  
1B6h  
1B7h  
BD2IBC  
BD2IAL  
Byte Count  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Buffer Address Low  
Reserved  
1B8h-  
1DFh  
40 byte USB Buffer  
xxxx xxxx uuuu uuuu  
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as ’0’.  
Shaded locations are unimplemented, read as ‘0’.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 21  
PIC16C745/765  
4.2.2.1  
STATUS REGISTER  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
The STATUS register, shown in Register 4-1, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
It is recommended that only BCF, BSF, SWAPFand  
MOVWFinstructions be used to alter the STATUS regis-  
ter. These instructions do not affect the Z, C or DC bits  
in the STATUS register. For other instructions which do  
not affect status bits, see the "Instruction Set Sum-  
mary."  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as borrow and  
digit borrow bits, respectively, in subtrac-  
tion. See the SUBLW and SUBWF instruc-  
tions for examples.  
REGISTER 4-1: STATUS REGISTER (STATUS: 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
(1)  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
C
bit7  
bit0  
- n = Value at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h - 1FFh)  
0= Bank 0, 1 (00h - FFh)  
bit 6-5: RP<1:0>: Register Bank Select bits (used for direct addressing)  
00= Bank 0 (00h - 7Fh)  
01= Bank 1 (80h - FFh)  
10= Bank 2 (100h - 17Fh)  
11= Bank 3 (180h - 1FFh)  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(1)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)(1)  
1= A carry-out from the most significant bit of the result occurred  
0= No carry-out from the most significant bit of the result occurred  
Note 1: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the sec-  
ond operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the  
source register.  
DS41124A-page 22  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
4.2.2.2  
OPTION REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the watchdog timer.  
The OPTION_REG register is a readable and writable  
register, which contains various control bits to configure  
the TMR0/WDT prescaler, the external INT Interrupt,  
TMR0 and the weak pull-ups on PORTB.  
REGISTER 4-2: OPTION REGISTER (OPTION_REG: 81h, 181h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R
W
U
=
=
=
Readable bit  
Writable bit  
Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
-n  
=
Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
bit 2-0: PS<2:0>: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 23  
PIC16C745/765  
4.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON register is a readable and writable regis-  
ter, which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and external  
RB0/INT pin interrupts.  
REGISTER 4-3: INTERRUPT CONTROL REGISTER (INTCON: 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
W
U
=
=
=
Readable bit  
Writable bit  
Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
-n  
=
Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
GIE: Global Interrupt Enable bit  
1= Enables all un-masked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all un-masked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB<7:4> pins changed state (must be cleared in software)  
0= None of the RB<7:4> pins have changed state  
DS41124A-page 24  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
4.2.2.4  
PIE1 REGISTER  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
This register contains the individual enable bits for the  
peripheral interrupts.  
REGISTER 4-4: PERIPHERAL INTERRUPT ENABLE1 REGISTER (PIE1: 8Ch)  
R/W-0  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
USBIE  
R/W-0  
R/W-0  
R/W-0  
(1)  
R
W
U
=
=
=
Readable bit  
Writable bit  
Unimplemented bit,  
read as ‘0’  
PSPIE  
CCP1IE  
TMR2IE TMR1IE  
bit7  
bit0  
-n  
=
Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
PSPIE(1): Parallel Slave Port Read/Write Interrupt Enable bit  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
USBIE: Universal Serial Bus Interrupt Enable bit  
1= Enables the USB interrupt  
0= Disables the USB interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Note 1: PIC16C745 device does not have a parallel slave port implemented; always maintain this bit clear.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 25  
PIC16C745/765  
4.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the individual flag bits for the  
peripheral interrupts.  
REGISTER 4-5: PERIPHERAL INTERRUPT REGISTER1 (PIR1: 0Ch)  
R/W-0  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
USBIF  
R/W-0  
R/W-0  
R/W-0  
(1)  
R
W
U
=
=
=
Readable bit  
Writable bit  
Unimplemented bit,  
read as ‘0’  
RCIF  
TXIF  
CCP1IF  
TMR2IF TMR1IF  
PSPIF  
bit7  
bit0  
-n  
=
Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
PSPIF(1): Parallel Slave Port Read/Write Interrupt Flag bit  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer is full (clear by reading RCREG)  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer is empty (clear by writing to TXREG)  
0= The USART transmit buffer is full  
USBIF: Universal Serial Bus (USB) Interrupt Flag  
1= A USB interrupt condition has occurred. The specific cause can be found by examining the contents  
of the UIR and UIE registers.  
0= No USB interrupt conditions that are enabled have occurred.  
bit 2:  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Note 1: PIC16C745 device does not have a parallel slave port implemented. This bit location is reserved on this  
device. Always maintain this bit clear.  
DS41124A-page 26  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
4.2.2.6  
PIE2 REGISTER  
This register contains the individual enable bit for the  
CCP2 peripheral interrupt.  
REGISTER 4-6: PERIPHERAL INTERRUPT ENABLE 2 REGISTER (PIE2: 8Dh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IE  
bit0  
R
W
U
=
=
=
Readable bit  
Writable bit  
Unimplemented bit,  
read as ‘0’  
bit7  
-n  
=
Value at POR reset  
bit 7-1: Unimplemented: Read as ’0’  
bit 0:  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
4.2.2.7  
PIR2 REGISTER  
This register contains the CCP2 interrupt flag bit. .  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
REGISTER 4-7: PERIPHERAL INTERRUPT REGISTER 2 (PIR2: 0Dh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IF  
bit0  
R
W
U
=
=
=
Readable bit  
Writable bit  
Unimplemented bit,  
read as ‘0’  
bit7  
-n  
=
Value at POR reset  
bit 7-1: Unimplemented: Read as ’0’  
bit 0:  
CCP2IF: CCP2 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 27  
PIC16C745/765  
4.2.2.8  
PCON REGISTER  
Note: BOR is unknown on POR. It must be set by  
the user and checked on subsequent  
resets to see if BOR is clear, indicating a  
brown-out has occurred. The BOR status  
bit is a “don't care” and is not predictable if  
the brown-out circuit is disabled (by clear-  
ing the BODEN bit in the configuration  
word).  
The Power Control (PCON) register contains flag bits to  
allow differentiation between a Power-on Reset (POR),  
a Brown-out Reset (BOR), a Watch-dog Reset (WDT)  
and an external MCLR Reset.  
REGISTER 4-8: POWER CONTROL REGISTER REGSTER (PCON: 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-q  
BOR  
R
W
U
=
=
=
Readable bit  
Writable bit  
Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
-n  
=
Value at POR reset  
bit 7-2: Unimplemented: Read as ’0’  
bit 1:  
POR: Power-on Reset Status bit  
1= No power-on reset occurred  
0= A power-on reset occurred (must be set in software after a power-on reset occurs)  
bit 0:  
BOR: Brown-out Reset Status bit  
1= No brown-out reset occurred  
0= A brown-out reset occurred (must be set in software after a brown-out reset occurs)  
DS41124A-page 28  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
4.3  
PCL and PCLATH  
Note 1: There are no status bits to indicate stack  
overflow or stack underflow conditions.  
The program counter (PC) is 13-bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The upper bits (PC<12:8>) are not  
readable, but are indirectly writable through the  
PCLATH register. On any reset, the upper bits of the PC  
will be cleared. Figure 4-3 shows the two situations for  
the loading of the PC. The upper example in the figure  
shows how the PC is loaded on a write to PCL  
(PCLATH<4:0> PCH). The lower example in the fig-  
ure shows how the PC is loaded during a CALLor GOTO  
instruction (PCLATH<4:3> PCH).  
2: There are no instructions/mnemonics  
called PUSHor POP. These are actions that  
occur from the execution of the CALL,  
RETURN, RETLW, and RETFIE instruc-  
tions, or the vectoring to an interrupt  
address.  
4.4  
Program Memory Paging  
PIC16CXX devices are capable of addressing a contin-  
uous 8K word block of program memory. The CALLand  
GOTO instructions provide only 11 bits of address to  
allow branching within any 2K program memory page.  
When doing a CALL or GOTO instruction, the upper 2  
bits of the address are provided by PCLATH<4:3>.  
When doing a CALLor GOTOinstruction, the user must  
ensure that the page select bits are programmed so  
that the desired program memory page is addressed. If  
a return from a CALL instruction (or interrupt) is exe-  
cuted, the entire 13-bit PC is pushed onto the stack.  
Therefore, manipulation of the PCLATH<4:3> bits is not  
required for the return instructions (which POPs the  
address from the stack).  
FIGURE 4-3: LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
12  
8
7
0
Instruction with  
PCL as  
PC  
Destination  
8
PCLATH<4:0>  
PCLATH  
5
ALU  
PCH  
12 11 10  
PCL  
Example 4-1 shows the calling of a subroutine in  
page 1 of the program memory. This example assumes  
that PCLATH is saved and restored by the interrupt ser-  
vice routine (if interrupts are used).  
8
7
0
GOTO,CALL  
PC  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
EXAMPLE 4-1: CALL OF A SUBROUTINE IN  
PAGE 1 FROM PAGE 0  
ORG 0x500  
BSF PCLATH,3  
CALLSUB1_P1  
;Select page 1 (800h-FFFh)  
;Call subroutine in  
4.3.1  
COMPUTED GOTO  
:
;page 1 (800h-FFFh)  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 byte block). Refer to the  
application note “Implementing a Table Read" (AN556).  
:
ORG 0x900  
;page 1 (800h-FFFh)  
SUB1_P1  
:
:
:
;called subroutine  
;page 1 (800h-FFFh)  
RETURN  
;return to Call subroutine  
;in page 0 (000h-7FFh)  
4.3.2  
STACK  
The PIC16CXX family has an 8-level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable. The PC is PUSHed onto the stack  
when a CALL instruction is executed or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN,RETLW or a RETFIE instruction execution.  
PCLATH is not affected by a PUSHor POPoperation.  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 29  
PIC16C745/765  
4.5  
Indirect Addressing, INDF and FSR  
Registers  
EXAMPLE 4-2: INDIRECT ADDRESSING  
movlw  
movwf  
clrf  
incf  
btfss  
goto  
0x20  
FSR  
INDF  
FSR,F  
FSR,4  
NEXT  
;initialize pointer  
;to RAM  
;clear INDF register  
;inc pointer  
;all done?  
;no clear next  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
NEXT  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses the register pointed to by the File Select Reg-  
ister, FSR. Reading the INDF register itself indirectly  
(FSR = ’0’) will read 00h. Writing to the INDF register  
indirectly results in a no-operation (although status bits  
may be affected). An effective 9-bit address is obtained  
by concatenating the 8-bit FSR register and the IRP bit  
(STATUS<7>), as shown in Figure 4-4.  
CONTINUE  
:
;yes continue  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 4-2.  
FIGURE 4-4: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
from opcode  
7
RP<1:0>  
6
0
0
IRP  
FSR register  
bank select  
location select  
bank select  
location select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
Data  
Memory  
7Fh  
FFh  
17Fh  
1FFh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
Note: For register file map detail see Figure 4-2.  
DS41124A-page 30  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
FIGURE 5-1: BLOCK DIAGRAM OF RA<3:0>  
AND RA5 PINS  
5.0  
I/O PORTS  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Data  
Bus  
D
Q
Q
VDD  
P
VDD  
WR  
Port  
5.1  
PORTA and TRISA Registers  
CK  
PORTA is a 6-bit latch.  
Data Latch  
D
The RA4/T0CKI pin is a Schmitt Trigger input and an  
open drain output. All other RA port pins have TTL input  
levels and full CMOS output drivers. All pins have data  
direction bits (TRIS registers), which can configure  
these pins as output or input.  
N
I/O Pin  
Q
Q
WR  
TRIS  
VSS  
CK  
Analog  
Input  
Mode  
Setting a TRISA register bit puts the corresponding out-  
put driver in a hi-impedance mode. Clearing a bit in the  
TRISA register puts the contents of the output latch on  
the selected pin(s).  
TRIS Latch  
Schmitt  
Trigger  
Input  
RD TRIS  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, the value is modified, and then written to the port  
data latch.  
Buffer  
Q
D
EN  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin.  
RD PORT  
On the PIC16C745/765, PORTA pins are multiplexed  
with analog inputs and analog VREF input. The opera-  
tion of each pin is selected by clearing/setting the con-  
trol bits in the ADCON1 register (A/D Control  
Register1).  
To A/D Converter  
FIGURE 5-2: BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
Note: On all resets, pins with analog and digital  
VDD  
functions are configured as analog inputs.  
Data  
Bus  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
D
Q
Q
WR  
PORT  
CK  
I/O pin  
N
Data Latch  
D
Q
EXAMPLE 5-1: INITIALIZING PORTA  
(PIC16C745/765)  
VSS  
WR  
TRIS  
Schmitt  
Trigger  
Input  
BCF  
BCF  
CLRF  
STATUS, RP1  
STATUS, RP0  
PORTA  
;
;
Q
CK  
TRIS Latch  
; Initialize PORTA by  
; clearing output  
; data latches  
; Select Bank 1  
; Configure all pins  
; as digital inputs  
; Value used to  
; initialize data  
; direction  
Buffer  
BSF  
STATUS, RP0  
0x06  
ADCON1  
0xCF  
RD TRIS  
MOVLW  
MOVWF  
MOVLW  
Q
D
EN  
RD PORT  
MOVWF  
TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; TRISA<7:6> are always  
; read as ’0’.  
TMR0 Clock Input  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 31  
PIC16C745/765  
TABLE 5-1:  
PORTA FUNCTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
RA0  
ST  
AN  
ST  
AN  
ST  
AN  
ST  
AN  
AN  
ST  
ST  
ST  
AN  
CMOS Bi-directional I/O  
RA0/AN0  
RA1/AN1  
RA2/AN2  
AN0  
RA1  
AN1  
RA2  
AN2  
RA3  
AN3  
VREF  
RA4  
T0CKI  
RA5  
AN4  
A/D Input  
CMOS Bi-directional I/O  
A/D Input  
CMOS Bi-directional I/O  
A/D Input  
CMOS Bi-directional I/O  
RA3/AN3/VREF  
A/D Input  
A/D Positive Reference  
Bi-directional I/O  
Timer 0 Clock Input  
Bi-directional I/O  
A/D Input  
OD  
RA4/T0CKI  
RA5/AN4  
Legend:  
OD = open drain, ST = Schmitt Trigger  
TABLE 5-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
85h  
PORTA  
TRISA  
ADCON1  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
PORTA Data Direction Register  
9Fh  
PCFG2  
PCFG1 PCFG0 ---- -000 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
DS41124A-page 32  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition, and  
allow flag bit RBIF to be cleared.  
5.2  
PORTB and TRISB Registers  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a bit  
in the TRISB register puts the corresponding output  
driver in a hi-impedance input mode. Clearing a bit in  
the TRISB register puts the contents of the output latch  
on the selected pin(s).  
This interrupt-on-mismatch feature, together with soft-  
ware configureable pull-ups on these four pins, allow  
easy interface to a keypad and make it possible for  
wake-up on key-depression. Refer to the Embedded  
Control Handbook, “Implementing Wake-Up on Key  
Stroke” (AN552).  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (OPTION_REG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a power-on reset.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
RB0/INT is an external interrupt input pin and is config-  
ured using the INTEDG bit (OPTION_REG<6>).  
FIGURE 5-3: BLOCK DIAGRAM OF RB<3:0>  
PINS  
VDD  
VDD  
RB0/INT is discussed in detail in Section 13.5.1.  
RBPU(1)  
weak  
pull-up  
P
FIGURE 5-4: BLOCK DIAGRAM OF  
RB<7:4> PINS  
Data Latch  
Data Bus  
WR Port  
D
Q
VDD  
VDD  
I/O  
pin  
RBPU(1)  
weak  
P
CK  
TRIS Latch  
pull-up  
Data Latch  
Data Bus  
D
Q
D
Q
TTL  
Input  
I/O  
pin  
WR TRIS  
WR Port  
CK  
Buffer  
CK  
TRIS Latch  
D
Q
RD TRIS  
RD Port  
WR TRIS  
TTL  
Input  
Buffer  
CK  
Q
D
ST  
Buffer  
EN  
RD TRIS  
RD Port  
Latch  
RB0/INT  
Q
Q
D
Schmitt Trigger  
Buffer  
RD Port  
EN  
Q1  
Set RBIF  
Note 1: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
D
From other  
RB<7:4> pins  
RD Port  
Q3  
Four of PORTB’s pins, RB<7:4>, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e. any RB<7:4> pin con-  
figured as an output is excluded from the interrupt-on-  
change comparison). The input pins (of RB<7:4>) are  
compared with the value latched on the last read of  
PORTB. The “mismatch” outputs of RB<7:4> are  
OR’ed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
EN  
RB<7:6> in serial programming mode  
Note 1: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 33  
PIC16C745/765  
TABLE 5-3:  
PORTB FUNCTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
RB0  
INT  
TTL  
ST  
CMOS Bi-directional I/O  
RB0/INT  
Interrupt  
RB1  
RB2  
RB3  
RB4  
RB5  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
ICSPC  
RB7  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
ST  
CMOS Bi-directional I/O  
CMOS Bi-directional I/O  
CMOS Bi-directional I/O  
CMOS Bi-directional I/O with Interrupt on Change  
CMOS Bi-directional I/O with Interrupt on Change  
CMOS Bi-directional I/O with Interrupt on Change  
In-Circuit Serial Programming Clock input  
RB6/ICSPC  
TTL  
ST  
CMOS Bi-directional I/O with Interrupt on Change  
CMOS In-Circuit Serial Programming Data I/O  
RB7/ICSPD  
Legend:  
ICSPD  
OD = open drain, ST = Schmitt Trigger  
TABLE 5-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
uuuu uuuu  
1111 1111  
1111 1111  
06h, 106h  
86h, 186h  
81h, 181h  
PORTB  
TRISB  
OPTION_REG RBPU INTEDG T0CS T0SE PSA PS2  
RB7  
RB6  
RB5  
RB4  
RB3 RB2 RB1 RB0  
xxxx xxxx  
1111 1111  
1111 1111  
PORTB Data Direction Register  
PS1  
PS0  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS41124A-page 34  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
5.3  
PORTC and TRISC Registers  
FIGURE 5-5: PORTC BLOCK DIAGRAM  
PORT/PERIPHERAL Select(1)  
PORTC is a 5-bit bi-directional port. Each pin is individ-  
ually configureable as an input or output through the  
TRISC register. PORTC is multiplexed with several  
peripheral functions (Table 5-5). PORTC pins have  
Schmitt Trigger input buffers.  
Peripheral Data Out  
VDD  
VDD  
0
Data Bus  
WR  
PORT  
D
Q
Q
P
1
CK  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-modify-  
write instructions (BSF, BCF, XORWF) with TRISC as  
destination should be avoided. The user should refer to  
the corresponding peripheral section for the correct  
TRIS bit settings.  
Data Latch  
I/O  
pin  
D
Q
Q
WR  
TRIS  
CK  
N
TRIS Latch  
VSS  
Schmitt  
Trigger  
RD TRIS  
Peripheral  
OE(2)  
Q
D
EN  
RD  
PORT  
Peripheral Input  
Note 1: Port/Peripheral select signal selects between port  
data and peripheral output.  
2: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 35  
PIC16C745/765  
TABLE 5-5:  
PORTC FUNCTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
RC0  
T1OSO  
T1CKI  
RC1  
T1OSI  
CCP2  
RC2  
CCP1  
RC6  
TX  
ST  
CMOS Bi-directional I/O  
RC0/T1OSO/T1CKI  
Xtal  
T1 Oscillator Output  
T1 Clock Input  
ST  
ST  
Xtal  
CMOS Bi-directional I/O  
RC!/T1OSI/CCP2  
RC2/CCP1/VUSB  
RC6/TX/CK  
T1 Oscillator Input  
Capture In/Compare Out/PWM Out 2  
ST  
CMOS Bi-directional I/O  
Capture In/Compare Out/PWM Out 1  
ST  
CMOS Bi-directional I/O  
CMOS USART Async Transmit  
CMOS USART Master Out/Slave In Clock  
CMOS Bi-directional I/O  
CK  
ST  
ST  
ST  
ST  
RC7  
RX  
RC7/RX/DT  
USART Async Receive  
DT  
CMOS USART Data I/O  
Legend:  
OD = open drain, ST = Schmitt Trigger  
TABLE 5-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
07h  
87h  
PORTC  
TRISC  
RC7  
RC6  
RC2  
RC1  
RC0  
xx-- -xxx  
uu-- -uuu  
11-- -111  
TRISC7 TRISC6  
TRISC2 TRISC1 TRISC0 11-- -111  
Legend: x= unknown, u= unchanged.  
DS41124A-page 36  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
5.4  
PORTD and TRISD Registers  
FIGURE 5-6: PORTD BLOCK DIAGRAM  
VDD  
Note: The PIC16C745 does not provide PORTD.  
The PORTD and TRISD registers are  
reserved. Always maintain these bits clear.  
Data  
Bus  
D
Q
WR  
PORT  
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configured as an input or  
output.  
I/O pin  
CK  
Data Latch  
D
Q
PORTD can be configured as an 8-bit wide micropro-  
cessor port (parallel slave port) by setting control bit  
PSPMODE (TRISE<4>). In this mode, the input buffers  
are TTL.  
WR  
TRIS  
Schmitt  
Trigger  
Input  
CK  
TRIS Latch  
Buffer  
RD TRIS  
Q
D
EN  
RD PORT  
TABLE 5-7:  
PORTD FUNCTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
(1)  
RD0  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
CMOS Bi-directional I/O  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
(1)  
PSP0  
RD1  
Parallel Slave Port data input  
(1)  
CMOS Bi-directional I/O  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
PSP1  
RD2  
Parallel Slave Port data input  
(1)  
CMOS Bi-directional I/O  
PSP2  
RD3  
Parallel Slave Port data input  
(1)  
CMOS Bi-directional I/O  
PSP3  
RD4  
Parallel Slave Port data input  
(1)  
CMOS Bi-directional I/O  
PSP4  
RD5  
Parallel Slave Port data input  
(1)  
CMOS Bi-directional I/O  
PSP5  
RD6  
Parallel Slave Port data input  
(1)  
CMOS Bi-directional I/O  
PSP6  
RD7  
Parallel Slave Port data input  
(1)  
CMOS Bi-directional I/O  
PSP7  
Parallel Slave Port data input  
Legend:  
OD = open drain, ST = Schmitt Trigger  
Note 1: PIC16C765 only.  
TABLE 5-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
08h  
88h  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
PORTD  
(1)  
PORTD Data Direction Register  
TRISD  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PORTD.  
Note 1: PIC16C765 only.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 37  
PIC16C745/765  
5.5  
PORTE and TRISE Registers  
FIGURE 5-7: PORTE BLOCK DIAGRAM  
VDD  
Note 1: The PIC16C745 does not provide  
PORTE. The PORTE and TRISE registers  
are reserved. Always maintain these bits  
clear.  
Data  
Bus  
D
Q
WR  
I/O pin  
PORT  
PORTE has three pins, RE0/RD/AN5, RE1/WR/AN6  
and RE2/CS/AN7, which are individually configured as  
inputs or outputs. These pins have Schmitt Trigger  
input buffers.  
CK  
Data Latch  
D
Q
WR  
I/O PORTE becomes control inputs for the micropro-  
cessor port when bit PSPMODE (TRISE<4>) is set. In  
this mode, the user must make sure that the  
TRISE<2:0> bits are set (pins are configured as digital  
inputs) and that register ADCON1 is configured for dig-  
ital I/O. In this mode, the input buffers are TTL.  
TRIS  
Schmitt  
Trigger  
Input  
CK  
TRIS Latch  
Buffer  
RD TRIS  
Q
D
Register 5-1 shows the TRISE register, which also con-  
trols the parallel slave port operation.  
EN  
PORTE pins may be multiplexed with analog inputs  
(PIC16C765 only). The operation of these pins is  
selected by control bits in the ADCON1 register. When  
selected as an analog input, these pins will read as ’0’s.  
RD PORT  
To A/D Converter  
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
TRISE bits are used to control the parallel slave port.  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs.  
TABLE 5-9:  
PORTE(1) FUNCTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
(1)  
RE0  
ST  
TTL  
AN  
ST  
CMOS Bi-directional I/O  
(1)  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
RD  
AN5  
RE1  
WR  
AN6  
RE2  
CS  
Parallel Slave Port control input  
(1)  
A/D Input  
(1)  
CMOS Bi-directional I/O  
(1)  
TTL  
AN  
ST  
Parallel Slave Port control input  
(1)  
A/D Input  
(1)  
CMOS Bi-directional I/O  
(1)  
TTL  
AN  
Parallel Slave Port data input  
(1)  
AN7  
A/D Input  
Legend:  
OD = open drain, ST = Schmitt Trigger  
Note 1: PIC16C765 only.  
DS41124A-page 38  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
REGISTER 5-1: PORTE DATA DIRECTION CONTROL REGISTER(1) (TRISE: 89h)  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
OBF  
PSPMODE  
TRISE2  
TRISE1  
TRISE0  
bit0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7 :  
bit 6:  
bit 5:  
bit 4:  
IBF: Input Buffer Full Status bit  
1= A word has been received and is waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in microprocessor mode)  
1= A write occurred when a previously input word has not been read (must be cleared in software)  
0= No overflow occurred  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel slave port mode  
0= General purpose I/O mode  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
PORTE Data Direction Bits  
TRISE2: Direction Control bit for pin RE2/CS/AN7  
1= Input  
0= Output  
bit 1:  
bit 0:  
TRISE1: Direction Control bit for pin RE1/WR/AN6  
1= Input  
0= Output  
TRISE0: Direction Control bit for pin RE0/RD/AN5  
1= Input  
0= Output  
Note 1: PIC16C765 only.  
TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
09h  
89h  
9Fh  
RE2  
RE1  
RE0  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
---- -000 ---- -000  
PORTE  
(1)  
IBF OBF IBOV PSPMODE  
PORTE Data Direction Bits  
PCFG2 PCFG1 PCFG0  
TRISE  
ADCON1  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PORTE.  
Note 1: PIC16C765 only.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 39  
PIC16C745/765  
An interrupt is generated and latched into flag bit  
PSPIF when a read or write operation is completed.  
PSPIF must be cleared by the user in firmware and the  
interrupt can be disabled by clearing the interrupt  
enable bit PSPIE (PIE1<7>).  
5.6  
Parallel Slave Port (PSP)  
Note: The PIC16C745 does not provide a paral-  
lel slave port. The PORTD, PORTE, TRISD  
and TRISE registers are reserved. Always  
maintain these bits clear.  
FIGURE 5-8: PORTD AND PORTE BLOCK  
DIAGRAM (PARALLEL SLAVE  
PORT)  
PORTD operates as an 8-bit wide Parallel Slave Port  
(PSP), or microprocessor port when control bit PSP-  
MODE (TRISE<4>) is set. In slave mode, it is asyn-  
chronously readable and writable by the external world  
through RD control input pin RE0/RD/AN5 and WR  
control input pin RE1/WR/AN6.  
VDD  
Data Bus  
It can directly interface to an 8-bit microprocessor data  
bus. The external microprocessor can read or write the  
PORTD latch as an 8-bit latch. Setting bit PSPMODE  
enables port pin RE0/RD/AN5 to be the RD input,  
RE1/WR/AN6 to be the WR input and RE2/CS/AN7 to  
be the CS (chip select) input. For this functionality, the  
corresponding data direction bits of the TRISE register  
(TRISE<2:0>) must be configured as inputs (set) and  
the A/D port configuration bits PCFG<2:0>  
(ADCON1<2:0>) must be set, which will configure pins  
RE<2:0> as digital I/O.  
D
Q
WR  
PORT  
RDx  
pin  
CK  
TTL  
Q
D
RD  
PORT  
EN  
One bit of PORTD  
Set interrupt flag  
PSPIF (PIR1<7>)  
There are actually two 8-bit latches; one for data-out  
(from the PICmicro® microcontroller) and one for data  
input. The user writes 8-bit data to PORTD data latch  
and reads data from the port pin latch (note that they  
have the same address). In this mode, the TRISD reg-  
ister is ignored, since the microprocessor is controlling  
the direction of data flow.  
Read  
TTL  
RD  
Chip Select  
TTL  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. When either the CS or WR  
lines become high (level triggered), then the Input  
Buffer Full (IBF) status flag bit (TRISE<7>) is set on the  
Q4 clock cycle, following the next Q2 cycle, to signal the  
write is complete (Figure 5-9). The interrupt flag bit  
PSPIF (PIR1<7>) is also set on the same Q4 clock  
cycle. IBF can only be cleared by reading the PORTD  
input latch. The Input Buffer Overflow (IBOV) status flag  
bit (TRISE<5>) is set if a second write to the PSP is  
attempted when the previous byte has not been read  
out of the buffer.  
CS  
Write  
TTL  
WR  
A read from the PSP occurs when both the CS and RD  
lines are first detected low. The Output Buffer Full  
(OBF) status flag bit (TRISE<6>) is cleared immedi-  
ately (Figure 5-10) indicating that the PORTD latch is  
waiting to be read by the external bus. When either the  
CS or RD pin becomes high (level triggered), the inter-  
rupt flag bit PSPIF is set on the Q4 clock cycle, follow-  
ing the next Q2 cycle, indicating that the read is  
complete. OBF remains low until data is written to  
PORTD by the user firmware.  
When not in PSP mode, the IBF and OBF bits are held  
clear. However, if flag bit IBOV was previously set, it  
must be cleared in firmware.  
DS41124A-page 40  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
FIGURE 5-9: PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
FIGURE 5-10: PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 5-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(2)  
08h  
09h  
89h  
0Ch  
8Ch  
9Fh  
0Bh  
PORTD  
PORTE  
Port data latch when written: Port pins when read  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
(2)  
IBF  
RE2  
RE1  
RE0  
(2)  
TRISE  
PIR1  
PIE1  
OBF IBOV PSPMODE  
PORTE Data Direction Bits  
(1)  
(1)  
PSPIF  
PSPIE  
ADIF RCIF  
ADIE RCIE  
TXIF  
TXIE  
USBIF CCP1IF TMR2IF  
TMR1IF 0000 0000 0000 0000  
USBIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
ADCON1  
INTCON  
PCFG2  
T0IF  
PCFG1  
INTF  
PCFG0 ---- -000 ---- -000  
RBIF 0000 000x 0000 000u  
GIE  
PEIE T0IE  
INTE  
RBIE  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C745. Always maintain these bits clear.  
2: PIC16C765 only.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 41  
PIC16C745/765  
NOTES:  
DS41124A-page 42  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In counter mode, Timer0 will  
increment either on every rising or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed in detail in Section 6.2.  
6.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following fea-  
tures:  
• 8-bit timer/counter  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
The prescaler is mutually exclusively shared between  
the Timer0 module and the watchdog timer. The pres-  
caler is not readable or writable. Section 6.3 details the  
operation of the prescaler.  
Figure 6-1 is a block diagram of the Timer0 module and  
the prescaler shared with the WDT.  
6.1  
Timer0 Interrupt  
Additional information on the Timer0 module is available  
in the PICmicro™ Mid-Range MCU Family Reference  
Manual (DS33023).  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module interrupt ser-  
vice routine before re-enabling this interrupt. The  
TMR0 interrupt cannot awaken the processor from  
SLEEP, since the timer is shut off during SLEEP.  
Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In timer mode, the Timer0 mod-  
ule will increment every instruction cycle (without pres-  
caler). If the TMR0 register is written, the increment is  
inhibited for the following two instruction cycles. The  
user can work around this by writing an adjusted value  
to the TMR0 register.  
FIGURE 6-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
FINT  
Data Bus  
8
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
Pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
TOCS  
Set flag bit T0IF  
on Overflow  
PSA  
PRESCALER  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS<2:0>  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS<2:0> are (OPTION_REG<5:0>).  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 43  
PIC16C745/765  
The PSA and PS<2:0> bits (OPTION_REG<3:0>) deter-  
mine the prescaler assignment and prescale ratio.  
6.2  
Using Timer0 with an External Clock  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T0CKI to be high for at least 2Tosc (and  
a small RC delay of 20 ns) and low for at least 2Tosc  
(and a small RC delay of 20 ns). Refer to the electrical  
specification of the desired device.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF1, MOVWF1,  
BSF1,x....etc.) will clear the prescaler. When assigned  
to WDT, a CLRWDT instruction will clear the prescaler  
along with the watchdog timer. The prescaler is not  
readable or writable.  
Note: Writing to TMR0, when the prescaler is  
assigned to Timer0, will clear the prescaler  
count, but will not change the prescaler  
assignment.  
6.3  
Prescaler  
To avoid an unintended device RESET, the following  
instruction sequence (shown in Example 6-1) must be  
executed when changing the prescaler assignment  
from Timer0 to the WDT. This sequence must be fol-  
lowed even if the WDT is disabled.  
There is only one prescaler available which is mutually  
exclusively shared between the Timer0 module and the  
watchdog timer. A prescaler assignment for the Timer0  
module means that there is no prescaler for the watch-  
dog timer, and vice-versa. This prescaler is not readable  
or writable (see Figure 6-1).  
EXAMPLE 6-1: CHANGING PRESCALER (TIMER0WDT)  
1) BSF  
STATUS, RP0  
;Bank1  
2) MOVLW b’xx0x0xxx’  
3) MOVWF OPTION_REG  
;Select clock source and prescale value of  
Lines 2 and 3 do  
NOT have to be  
;other than 1:1  
included if the final  
desired prescale  
value is other than  
1:1. If 1:1 is the final  
desired value, then a  
temporary prescale  
value is set in lines 2  
and 3 and the final  
prescale value will  
be set in lines 10  
and 11.  
4) BCF  
5) CLRF  
6) BSF  
STATUS, RP0  
TMR0  
;Bank0  
;Clear TMR0 and prescaler  
STATUS, RP1  
;Bank1  
7) MOVLW b’xxxx1xxx’  
8) MOVWF OPTION_REG  
9) CLRWDT  
;Select WDT, do not change prescale value  
;
;Clears WDT and prescaler  
10) MOVLW b’xxxx1xxx’  
11) MOVWF OPTION_REG  
;Select new prescale value and WDT  
;
12) BCF  
STATUS, RP0  
;Bank0  
TABLE 6-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h,101h  
TMR0  
INTCON  
OPTION_REG RBPU INTEDG T0CS  
Timer0 module’s register  
xxxx xxxx uuuu uuuu  
0Bh,8Bh,  
10Bh,18Bh  
GIE PEIE T0IE  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RBIF 0000 000x 0000 000u  
PS0 1111 1111 1111 1111  
81h,181h  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
DS41124A-page 44  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
In timer mode, Timer1 increments every instruction  
cycle. In counter mode, it increments on every rising  
edge of the external clock input.  
7.0  
TIMER1 MODULE  
The Timer1 module is a 16-bit timer/counter consisting  
of two 8-bit registers (TMR1H and TMR1L), which are  
readable and writable. The TMR1 Register pair  
(TMR1H:TMR1L) increments from 0000h to FFFFh  
and rolls over to 0000h. The TMR1 interrupt, if enabled,  
is generated on overflow, which is latched in interrupt  
flag bit TMR1IF (PIR1<0>). This interrupt can be  
enabled/disabled by setting/clearing TMR1 interrupt  
enable bit TMR1IE (PIE1<0>).  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
Timer1 also has an internal “reset input”. This reset can  
be generated by either of the two CCP modules  
(Section 9.0). Register 7-1 shows the Timer1 control  
register.  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI  
pins become inputs. That is, the TRISC<1:0> value is  
ignored.  
Timer1 can operate in one of two modes:  
• As a timer  
• As a counter  
Additional information on timer modules is available in  
the PICmicro™ Mid-range MCU Family Reference  
Manual (DS33023).  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
REGISTER 7-1: TIMER1 CONTROL REGISTER (T1CON: 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit0  
bit7  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as ’0’  
bit 5-4: T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3:  
bit 2:  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1= Oscillator is enabled  
0= Oscillator is shut off (The oscillator inverter is turned off to eliminate power drain)  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1:  
bit 0:  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T1CKI (1) or RC1/T1OSI/CCP2  
0= Internal clock (FINT)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Note 1: On the rising edge after the first falling edge.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 45  
PIC16C745/765  
7.1  
Timer1 Operation in Timer Mode  
7.2  
Timer1 Operation in Synchronized  
Counter Mode  
Timer mode is selected by clearing the TMR1CS  
(T1CON<1>) bit. In this mode, the input clock to the  
timer is FINT. The synchronize control bit T1SYNC  
(T1CON<2>) has no effect since the internal clock is  
always in sync.  
Counter mode is selected by setting bit TMR1CS. In  
this mode, the timer increments on every rising edge of  
clock input on pin RC1/T1OSI/CCP2, when bit  
T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when  
bit T1OSCEN is cleared.  
If T1SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The pres-  
caler stage is an asynchronous ripple-counter.  
In this configuration, during SLEEP mode, Timer1 will  
not increment even if the external clock is present,  
since the synchronization circuit is shut off. The pres-  
caler however will continue to increment.  
FIGURE 7-1: TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
clock input  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FINT  
Internal  
0
(1)  
Clock  
2
SLEEP input  
T1CKPS<1:0>  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter is turned off. This eliminates power drain.  
DS41124A-page 46  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
7.3  
Timer1 Operation in Asynchronous  
Counter Mode  
TABLE 7-1:  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during SLEEP and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in soft-  
ware are needed to read/write the timer (Section 7.3.1).  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
These values are for design guidance only.  
Crystals Tested:  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
In asynchronous counter mode, Timer1 can not be used  
as a time-base for capture or compare operations.  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P  
STD XTL 200.000 kHz  
± 20 PPM  
± 20 PPM  
7.3.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER MODE  
Note 1: Higher capacitance increases the stability of  
oscillator but also increases the start-up time.  
2: Since each resonator/crystal has its own charac-  
teristics, the user should consult the resonator/  
crystal manufacturer for appropriate values of  
external components.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will guarantee a  
valid read (taken care of in hardware). However, the  
user should keep in mind that reading the 16-bit timer  
in two 8-bit values itself poses certain problems, since  
the timer may overflow between the reads.  
7.5  
Resetting Timer1 using a CCP Trigger  
Output  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers, while  
the register is incrementing. This may produce an  
unpredictable value in the timer register.  
If the CCP1 or CCP2 module is configured in compare  
mode to generate “special event trigger”  
(CCP1M<3:0> = 1011), this signal will reset Timer1.  
a
Note: The special event triggers from the CCP1  
and CCP2 modules will not set interrupt  
flag bit TMR1IF (PIR1<0>).  
Reading the 16-bit value requires some care. Examples  
12-2 and 12-3 in the PICmicro™ Mid-Range MCU Fam-  
ily Reference Manual (DS33023) show how to read and  
write Timer1 when it is running in asynchronous mode.  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature. If  
Timer1 is running in asynchronous counter mode, this  
reset operation may not work.  
7.4  
Timer1 Oscillator  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for use with a 32 kHz crystal. Table 7-1 shows the  
capacitor selection for the Timer1 oscillator.  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1 or CCP2, the write will  
take precedence.  
In this mode of operation, the CCPRxH:CCPRxL regis-  
ter pair effectively becomes the period register for  
Timer1.  
7.6  
Resetting of Timer1 Register Pair  
(TMR1H, TMR1L)  
TMR1H and TMR1L registers are not reset to 00h on a  
POR or any other reset except by the CCP1 and CCP2  
special event triggers.  
T1CON register is reset to 00h on a Power-on Reset or  
a Brown-out Reset, which shuts off the timer and  
leaves a 1:1 prescale. In all other resets, the register is  
unaffected.  
7.7  
Timer1 Prescaler  
The prescaler counter is cleared on writes to the  
TMR1H or TMR1L registers.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 47  
PIC16C745/765  
TABLE 7-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh, INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh,  
18Bh  
(1)  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
USBIF  
USBIE  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(1)  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer1 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C745; always maintain these bits clear.  
DS41124A-page 48  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
8.1  
Timer2 Prescaler and Postscaler  
8.0  
TIMER2 MODULE  
Timer2 is an 8-bit timer with a prescaler and a  
postscaler. It can be used as the PWM time-base for  
the PWM mode of the CCP module(s). The TMR2 reg-  
ister is readable and writable, and is cleared on any  
device reset.  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device reset (POR, MCLR reset, WDT reset  
or BOR)  
The input clock (FINT/4) has a prescale option of 1:1,  
1:4 or 1:16, selected by control bits T2CKPS<1:0>  
(T2CON<1:0>).  
TMR2 is not cleared when T2CON is written.  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is ini-  
tialized to FFh upon reset.  
8.2  
Output of TMR2  
The output of TMR2 (before the postscaler) is fed to the  
SSPort module, which optionally uses it to generate  
shift clock.  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
FIGURE 8-1: TIMER2 BLOCK DIAGRAM  
Sets flag  
TMR2  
bit TMR2IF  
output (1)  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
Reset  
Prescaler  
1:1, 1:4, 1:16  
TMR2 reg  
FINT  
Register 8-1 shows the Timer2 control register.  
Postscaler  
2
Comparator  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range MCU Family Reference  
Manual (DS33023).  
1:1 to 1:16  
EQ  
T2CKPS<1:0>  
4
PR2 reg  
T2OUTPS<3:0>  
Note 1: TMR2 register output can be software selected by the  
SSP module as a baud clock.  
REGISTER 8-1: TIMER2 CONTROL REGISTER (T2CON: 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6-3: TOUTPS<3:0>: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
0010= 1:3 Postscale  
1111= 1:16 Postscale  
bit 2:  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0: T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 49  
PIC16C745/765  
TABLE 8-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh,18Bh  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Ch  
PIR1  
PSPIF(1)  
PSPIE(1)  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
USBIF  
USBIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
8Ch  
PIE1  
11h  
TMR2  
T2CON  
PR2  
Timer2 module’s register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
12h  
92h  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer2 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C745; always maintain these bits clear.  
DS41124A-page 50  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
CCP2 Module:  
9.0  
CAPTURE/COMPARE/PWM  
MODULES  
Capture/Compare/PWM Register1 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. The special event trigger is gen-  
erated by a compare match and will reset Timer1 and  
start an A/D conversion (if the A/D module is enabled).  
Each Capture/Compare/PWM (CCP) module contains  
a 16-bit register which can operate as a:  
• 16-bit capture register  
• 16-bit compare register  
• PWM master/slave Duty Cycle register  
Additional information on CCP modules is available in  
the PICmicro™ Mid-Range MCU Family Reference  
Manual (DS33023) and in “Using the CCP Modules”  
(AN594).  
Both the CCP1 and CCP2 modules are identical in  
operation, with the exception being the operation of the  
special event trigger. Table 9-1 and Table 9-2 show the  
resources and interactions of the CCP module(s). In  
the following sections, the operation of a CCP module  
is described with respect to CCP1. CCP2 operates the  
same as CCP1, except where noted.  
TABLE 9-1:  
CCP MODE - TIMER  
RESOURCES REQUIRED  
CCP Mode  
Timer Resource  
CCP1 Module:  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. The special event trigger is gen-  
erated by a compare match and will reset Timer1.  
TABLE 9-2:  
INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Compare  
PWM  
Capture  
Compare  
Compare  
PWM  
Same TMR1 time-base.  
The compare should be configured for the special event trigger, which clears TMR1.  
The compare(s) should be configured for the special event trigger, which clears TMR1.  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
PWM  
Capture  
Compare  
None.  
None.  
PWM  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 51  
PIC16C745/765  
REGISTER 9-1: CAPTURE/COMPARE/PWMN CONTROL REGISTER  
(CCP1CON: 17H, CCP2CON: 1Dh)  
U
U
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
DCnB1 DCnB0 CCPnM3 CCPnM2 CCPnM1 CCPnM0  
bit7  
bit0  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as ’0’  
bit 5-4: DCnB<1:0>: PWM Least Significant bits  
Capture Mode: Unused  
Compare Mode: Unused  
PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRnL.  
bit 3-0: CCPnM<3:0>: CCPx Mode Select bits  
0000= Capture/Compare/PWM off (resets CCPn module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCPnIF bit is set)  
1001= Compare mode, clear output on match (CCPnIF bit is set)  
1010= Compare mode, generate software interrupt on match (CCPnIF bit is set, CCPn pin is unaffected)  
1011= Compare mode, trigger special event (CCPnIF bit is set; CCPn resets TMR1or TMR3)  
11xx= PWM mode  
DS41124A-page 52  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
9.1.2  
TIMER1 MODE SELECTION  
9.1  
Capture Mode  
Timer1 must be running in timer mode or synchronized  
counter mode for the CCP module to use the capture  
feature. In asynchronous counter mode, the capture  
operation may not work.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1. An event is defined as:  
• Every falling edge  
• Every rising edge  
9.1.3  
SOFTWARE INTERRUPT  
• Every 4th rising edge  
• Every 16th rising edge  
When the capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in operating mode.  
An event is selected by control bits CCP1M<3:0>  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. The  
interrupt flag must be cleared in software. If another  
capture occurs before the value in register CCPR1 is  
read, the old captured value will be lost.  
9.1.4  
CCP PRESCALER  
There are four prescaler settings, specified by bits  
CCP1M<3:0>. Whenever the CCP module is turned off,  
or the CCP module is not in capture mode, the pres-  
caler counter is cleared. Any reset will clear the pres-  
caler counter.  
9.1.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
a non-zero prescaler. Example 9-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
Note: If the RC2/CCP1 pin is configured as an  
output, a write to the port can cause a cap-  
ture condition.  
FIGURE 9-1: CAPTURE MODE OPERATION  
BLOCK DIAGRAM  
Set flag bit CCP1IF  
(PIR1<2>)  
Prescaler  
÷ 1, 4, 16  
EXAMPLE 9-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
RC2/CCP1  
Pin  
CCPR1H  
CCPR1L  
TMR1L  
CLRF  
CCP1CON  
;Turn CCP module off  
MOVLW  
NEW_CAPT_PS ;Load the W reg with  
; the new precscaler  
Capture  
Enable  
and  
edge detect  
; move value and CCP ON  
TMR1H  
MOVWF  
CCP1CON  
;Load CCP1CON with this  
; value  
CCP1CON<3:0>  
Q’s  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 53  
PIC16C745/765  
9.2  
Compare Mode  
9.3  
PWM Mode (PWM)  
In pulse width modulation mode, the CCPx pin pro-  
duces up to a 10-bit resolution PWM output. Since the  
CCP1 pin is multiplexed with the PORTC data latch, the  
TRISC<2> bit must be cleared to make the CCP1 pin  
an output.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
• Driven high  
• Driven low  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
• Remains unchanged  
The action on the pin is based on the value of control  
bits CCP1M<3:0> (CCP1CON<3:0>). At the same  
time, interrupt flag bit CCP1IF is set.  
Figure 9-3 shows a simplified block diagram of the CCP  
module in PWM mode.  
FIGURE 9-2: COMPARE MODE OPERATION  
BLOCK DIAGRAM  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 9.3.3.  
Special event trigger will:  
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>),  
and set bit GO/DONE (ADCON0<2>).  
FIGURE 9-3: SIMPLIFIED PWM BLOCK  
DIAGRAM  
Special Event Trigger  
CCP1CON<5:4>  
Set flag bit CCP1IF  
(PIR1<2>)  
Duty Cycle Registers  
CCPR1L  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
Comparator  
match  
RC2/CCP1  
Pin  
TRISC<2>  
Output Enable  
CCPR1H (Slave)  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
Q
R
S
Comparator  
9.2.1  
CCP PIN CONFIGURATION  
RC2/CCP1  
(Note 1)  
The user must configure the RC2/CCP1 pin as an out-  
put by clearing the TRISC<2> bit.  
TMR2  
TRISC<2>  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
9.2.2  
TIMER1 MODE SELECTION  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
or 2 bits of the prescaler to create 10-bit time-base.  
A PWM output (Figure 9-4) has a time base (period) and  
a time that the output stays high (duty cycle). The fre-  
quency of the PWM is the inverse of the period (1/period).  
9.2.3  
SOFTWARE INTERRUPT MODE  
When Generate Software Interrupt mode is chosen, the  
CCP1 pin is not affected. The CCPIF bit is set causing  
a CCP interrupt (if enabled).  
FIGURE 9-4: PWM OUTPUT  
Period  
9.2.4  
SPECIAL EVENT TRIGGER  
CCP1(2)  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
Duty Cycle  
(1)  
The special event trigger output of CCP1 resets the TMR1  
register pair. This allows the CCPR1 register to effectively  
be a 16-bit programmable period register for Timer1.  
(1)  
The special event trigger output of CCP2 resets the  
TMR1 register pair and starts an A/D conversion (if the  
A/D module is enabled).  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
2: Output signal is shown as asserted high.  
Note: The special event trigger from the  
CCP1and CCP2 modules will not set inter-  
rupt flag bit TMR1IF (PIR1<0>).  
DS41124A-page 54  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
9.3.1  
PWM PERIOD  
9.3.3  
SET-UP FOR PWM OPERATION  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2 register.  
PWM period = [(PR2) + 1] • 4 • TOSC •  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
(TMR2 prescale value)  
PWM frequency is defined as 1 / [PWM period].  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
• TMR2 is cleared  
5. Configure the CCP1 module for PWM operation.  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
Note: The Timer2 postscaler (see Section 8.1) is  
not used in the determination of the PWM  
frequency. The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
9.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
Tosc • (TMR2 prescale value)  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
Maximum PWM resolution (bits) for a given PWM  
frequency:  
FINT  
log( )  
FPWM  
Resolution  
bits  
=
log(2)  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 55  
PIC16C745/765  
TABLE 9-3:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF 0000 000x 0000 000u  
0Ch  
0Dh  
8Ch  
8Dh  
87h  
0Eh  
0Fh  
10h  
15h  
16h  
17h  
1Bh  
1Ch  
1Dh  
PIR1  
PSPIF(1) ADIF  
RCIF  
TXIF  
USBIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PIR2  
PIE1  
PSPIE(1) ADIE  
RCIE  
TXIE  
USBIE  
PIE2  
CCP2IE ---- ---0 ---- ---0  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TRISC  
TMR1L  
TMR1H  
T1CON  
PORTC Data Direction Register  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
CCPR1L Capture/Compare/PWM register1 (LSB)  
CCPR1H Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON  
DCnB1  
DCnB0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
CCPR2L Capture/Compare/PWM register2 (LSB)  
CCPR2H Capture/Compare/PWM register2 (MSB)  
xxxx xxxx uuuu uuuu  
CCP2CON  
DCnB1  
DCnB0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as ’0’. Shaded cells are not used by Capture and Timer1.  
Note 1: The PSP is not implemented on the PIC16C745; always maintain these bits clear.  
TABLE 9-4:  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
0Dh  
8Ch  
8Dh  
87h  
11h  
92h  
12h  
15h  
16h  
17h  
PIR1  
PSPIF(1)  
ADIF  
RCIF  
TXIF  
USBIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
USBIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PIR2  
PIE1  
PSPIE(1)  
ADIE  
RCIE  
TXIE  
PIE2  
CCP2IE ---- ---0 ---- ---0  
1111 1111 1111 1111  
0000 0000 0000 0000  
1111 1111 1111 1111  
TRISC  
TMR2  
PR2  
PORTC Data Direction Register  
Timer2 module’s register  
Timer2 module’s period register  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
CCPR1L Capture/Compare/PWM register1 (LSB)  
CCPR1H Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --00 0000  
CCP1CON  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
DCnB1  
DCnB0  
1Bh  
1Ch  
1Dh  
CCPR2L Capture/Compare/PWM register2 (LSB)  
CCPR2H Capture/Compare/PWM register2 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --00 0000  
CCP2CON  
CCP2M3 CCP2M2 CCP2M1 CCP2M0  
DCnB1  
DCnB0  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C745; always maintain these bits clear.  
DS41124A-page 56  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
10.1.2 FRAMES  
10.0 UNIVERSAL SERIAL BUS  
Information communicated on the bus is grouped in a  
format called Frames. Each Frame is 1 ms in duration  
and is composed of multiple transfers. Each transfer  
type can be repeated more than once within a frame.  
10.1  
Overview  
This section introduces a minimum amount of informa-  
tion on USB. If you already have basic knowledge of  
USB, you can safely skip this section. If terms like  
Enumeration, Endpoint, IN/OUT Transactions, Trans-  
fers and Low Speed/Full Speed are foreign to you,  
read on.  
10.1.3 POWER  
Power has always been a concern with any device.  
With USB, 5 volt power is now available directly from  
the bus. Devices may be self-powered or bus-pow-  
ered. Self-powered devices will draw power from a  
wall adapter or power brick. On the other hand, bus-  
powered devices will draw power directly from the  
USB bus itself. There are limits to how much power  
can be drawn from the USB bus. Power is expressed  
in terms of “unit loads” (100 mA). All devices, includ-  
ing Hubs, are guaranteed at least 1 unit load (low  
power), but must negotiate with the host for up to 5  
unit loads (high power). If the host determines that the  
bus as currently configured cannot support a device’s  
request for more unit loads, the device will be denied  
the extra unit loads and must remain in a low power  
configuration.  
USB was developed to address the increased connec-  
tivity needs of PC’s in the PC 2000 specification.  
There was a base requirement to increase the band-  
width and number of devices, which could be attached.  
Also desired were the ability for hot swapping, user  
friendly operation, robust communications and low  
cost. The primary promoters of USB are Intel, Com-  
paq, Microsoft and NEC.  
USB is implemented as a Tiered Star topology, with  
the host at the top, hubs in the middle, spreading out  
to the individual devices at the end. USB is limited to  
127 devices on the bus, and the tree cannot be more  
than 6 levels deep.  
USB is a host centric architecture. The host is always  
the master. Devices are not allowed to “speak” unless  
“spoken to” by the host.  
10.1.4 END POINTS  
At the lowest level, each device controls one or more  
endpoints. An endpoint can be thought of as a virtual  
port. Endpoints are used to communicate with a  
device’s functions. Each endpoint is a source or sink of  
data. Endpoints have both an In and Out direction  
associated with it. Each device must implement end-  
point 0 to support Control Transfers for configuration.  
There are a maximum of 15 endpoints available for  
use by each full speed device and 6 endpoints for  
each slow speed device. Remember that the bus is  
host centric, so In/Out is with respect to the host and  
not the device.  
Transfers take place at one of two speeds. Full Speed  
is 12 Mb/s and Low Speed is 1.5 Mb/s. Full Speed  
covers the middle ground of data intensive audio and  
compressed video applications, while low speed sup-  
ports less data intensive applications.  
10.1.1 TRANSFER PROTOCOLS  
Four transfer protocols are defined, each with  
attributes:  
- Isochronous Transfers, meaning equal time,  
guarantee a fixed amount of data at a fixed  
rate. This mode trades off guaranteed data  
accuracy for guaranteed timeliness. Data  
validity is not checked because there isn’t  
time to re-send bad packets anyway and the  
consequences of bad data are not cata-  
strophic.  
10.1.5 ENUMERATION  
Prior to communicating on the bus, the host must see  
that a new device has been connected and then go  
through an “enumeration process”. This process  
allows the host to ask the device to introduce itself,  
and negotiate performance parameters, such as  
power consumption, transfer protocol and polling rate.  
The enumeration process is initiated by the host when  
it detects that a new device has attached itself to the  
bus. This takes place completely in the background  
from the application process.  
- Bulk Transfers are the converse of Isocho-  
nous. Data accuracy is guaranteed, but time-  
liness is not.  
- Interrupt Transfers are designed to communi-  
cate with devices which have a moderate  
data rate requirement. Human Interface  
Devices like keyboards are but one example.  
For Interrupt Transfers, the key is the desire  
to transfer data at regular intervals. USB peri-  
odically polls these devices at a fixed rate to  
see if there is data to transfer.  
10.1.6 DESCRIPTORS  
The USB specification requires a number of different  
descriptors to provide information necessary to iden-  
tify a device, specify its endpoints, and each endpoint’s  
function. The five general categories of descriptors are  
Device, Configuration, Interface, End Point and String.  
- Control Transfers are used for configuration  
purposes.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 57  
PIC16C745/765  
The Device descriptor provides general information  
such as manufacturer, product number, serial number,  
USB device class the product falls under, and the num-  
ber of different configurations supported. There can  
only be one Device descriptor for any given applica-  
tion.  
10.2  
Application Isolation  
Microchip provides a comprehensive support library of  
standard chapter 9 USB commands. These libraries  
provide a software layer to insulate the application  
software from having to handle the complexities of the  
USB protocol. A simple Put/Get interface is imple-  
mented to allow most of the USB processing to take  
place in the background within the USB interrupt ser-  
vice routine. Applications are encouraged to use the  
provided libraries during both enumeration and config-  
ured operation.  
The Configuration descriptor provides information on  
the power requirements of the device and how many  
different interfaces are supported when in this configu-  
ration. There may be more than one configuration for  
each device, (i.e., a high power device may also sup-  
port a low power configuration).  
10.3  
Introduction  
The Interface descriptor details the number of end-  
points used in this interface, as well as the class driver  
to use should the device support functions in more  
than just one device class. There can only be one  
Interface descriptor for each configuration.  
The USB peripheral module supports Low Speed con-  
trol and interrupt (IN and OUT) transfers. The imple-  
mentation supports 3 endpoint numbers (0, 1, 2) for a  
total of 6 endpoints.  
The Endpoint descriptor details the actual registers for  
a given function. Information is stored about the trans-  
fer types supported, direction (In/Out), bandwidth  
requirements and polling interval. There may be more  
than one endpoint in a device, and endpoints may be  
shared between different interfaces.  
The following terms are used in the description of the  
USB module:  
• MCU - The core processor and corresponding  
firmware  
• SIE - Serial Interface Engine: That part of the  
USB that performs functions such as CRC gener-  
ation and clocking of the D+ and D- signals.  
Many of the four descriptors listed above will reference  
or index different String descriptors. String descriptors  
are used to provide vendor specific or application spe-  
cific information. They may be optional and are  
encoded in “Unicode” format.  
• USB - The USB module including SIE and regis-  
ters  
• Bit Stuffing - forces insertion of a transition on D+  
and D- to maintain clock synchronization  
10.1.7 DEVICE CLASSES/CLASS DRIVERS  
• BD - Buffer Descriptor  
Operating systems provide drivers which group func-  
tions together by common device types called classes.  
Examples of device classes include, but are not limited  
to, storage, audio, communications and HID (Human  
Interface). Class drivers for a given application are ref-  
erenced in both the Device descriptor and Interface  
descriptor. Most applications can find a Class Driver  
which supports the majority of their function/command  
needs. Vendors who have a requirement for specific  
commands which are not supported by any of the  
standard class drivers may provide a vendor specific  
“.inf” file or driver for extra support.  
• BDT - Buffer Descriptor Table  
• EP - Endpoint (combination of endpoint number  
and direction)  
• IN - Packet transfer into the host  
• OUT - Packet transfer out of the host  
10.4  
USB Transaction  
When the USB transmits or receives data the SIE will  
first check that the corresponding endpoint and direc-  
tion Buffer Description UOWN bit equals 1. The USB  
will move the data to or from the corresponding buffer.  
When the TOKEN is complete, the USB will update the  
BD status and change the UOWN bit to 0. The USTAT  
register is updated and the TOK_DNE interrupt is set.  
When the MCU processes the TOK_DNE interrupt it  
reads the USTAT register, which gives the MCU the  
information it needs to process the endpoint. At this  
point the MCU will process the data and set the corre-  
sponding UOWN bit. Figure 10-1 shows a time line of  
how a typical USB token would be processed.  
10.1.8 SUMMARY  
While a complete USB overview is beyond the scope  
of this document, a few key concepts must be noted.  
Low speed communication is designed for devices,  
which in the past, used an interrupt to communicate  
with the host. In the USB scheme, devices do not  
directly interrupt the processor when they have data.  
Instead the host periodically polls each device to see if  
they have any data. This polling rate is negotiated  
between the device and host, giving the system a  
guaranteed latency.  
For more details on USB, see the USB V1.1 spec,  
available from the USB website at www.usb.org.  
DS41124A-page 58  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
FIGURE 10-1: USB TOKENS  
USB RESET  
USB_RST  
Interrupt Generated  
SETUP TOKEN  
DATA  
DATA  
ACK  
TOK_DNE  
Interrupt Generated  
IN TOKEN  
ACK  
TOK_DNE  
Interrupt Generated  
OUT TOKEN  
DATA  
ACK  
TOK_DNE  
Interrupt Generated  
= Host  
= Device  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 59  
PIC16C745/765  
10.5.1.1 USB Interrupt Register (UIR)  
10.5  
USB Register Map  
The USB Interrupt Status Register (UIR) contains flag  
bits for each of the interrupt sources within the USB.  
Each of these bits are qualified with their respective  
interrupt enable bits (see the Interrupt Enable Register  
UIE). All bits of the register are logically OR’ed  
together to form a single interrupt source for the micro-  
processor interrupt found in PIR1 (USBIF). Once an  
interrupt bit has been set, it must be cleared by writing  
a 0.  
The USB Control Registers, Buffer Descriptors and  
Buffers are located in Bank 3.  
10.5.1 CONTROL AND STATUS REGISTERS  
The USB module is controlled by 7 registers, plus  
those that control each endpoint and endpoint/direc-  
tion buffer.  
REGISTER 10-1: USB INTERRUPT FLAGS REGISTER (UIR: 190h)  
U-0  
U-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
STALL UIDLE TOK_DNE ACTIVITY UERR USB_RST  
bit0  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
-n = Value at POR reset  
bit 7-6: Unimplemented: Read as '0'.  
bit 5:  
bit 4:  
STALL: A STALL handshake was sent by the SIE.  
UIDLE: This bit is set if the USB has detected a constant idle on the USB bus signals for 3 ms. The idle  
timer is reset by activity on the USB bus. Once a IDLE condition has been detected, the user may wish  
to place the USB module in SUSPEND by setting the SUSPEND bit in the UCTRL register.  
bit 3:  
bit 2:  
TOK_DNE: This bit is set when the current token being processed is complete. The microprocessor  
should immediately read the USTAT register to determine the Endpoint number and direction used for  
this token. Clearing this bit causes the USTAT register to be cleared or the USTAT holding register to be  
loaded into the STAT register if another token has been processed.  
ACTIVITY: Activity on the D+/D- lines will cause the SIE to set this bit. Typically this bit is unmasked  
following detection of SLEEP. Users must enable the activity interrupt in the USB Interrupt Register  
(UIE: 191h) prior to entering suspend.  
bit 1:  
bit 0:  
UERR: This bit is set when any of the error conditions within the ERR_STAT register has occurred. The  
MCU must then read the ERR_STAT register to determine the source of the error.  
USB_RST: This bit is set when the USB has decoded a valid USB reset. This will inform the MCU to write  
00h into the address register and enable endpoint 0. USB_RST is set once a USB reset has been  
detected for 2.5 microseconds. It will not be asserted again until the USB reset condition has been  
removed, and then reasserted.  
Note 1: Bits can only be modified when UCTRL.SUSPND = 0.  
DS41124A-page 60  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
10.5.1.2 USB Interrupt Enable Register (UIE)  
The USB Interrupt Enable Register (UIE) contains  
enable bits for each of the interrupt sources within the  
USB. Setting any of these bits will enable the respec-  
tive interrupt source in the UIR register. The values in  
the UIE register only affect the propagation of an inter-  
rupt condition to the PIE1 register. Interrupt conditions  
can still be polled and serviced.  
REGISTER 10-2: USB INTERRUPT ENABLE REGISTER (UIE: 191h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
STALL  
UIDLE TOK_DNE ACTIVITY UERR USB_RST  
bit0  
R = Readable bit  
W = Writable bit  
bit7  
U = Unimplemented bit,  
read as ‘0’  
-n = Value at POR reset  
bit 7-6: Unimplemented: Read as '0'.  
bit 5:  
bit 4:  
bit 3:  
STALL: Set to enable STALL interrupts.  
1= STALL interrupt enabled  
0= STALL interrupt disabled  
UIDLE: Set to enable IDLE interrupts.  
1= IDLE interrupt enabled  
0= IDLE interrupt disabled  
TOK_DNE: Set to enable TOK_DNE interrupts.  
1= TOK_DNE interrupt enabled  
0= TOK_DNE interrupt disabled  
bit 2(1): ACTIVITY: Set to enable ACTIVITY interrupts.  
1= ACTIVITY interrupt enabled  
0= ACTIVITY interrupt disabled  
bit 1:  
bit 0:  
UERR: Set to enable ERROR interrupts.  
1= ERROR interrupt enabled  
0= ERROR interrupt disabled  
USB_RST: Set to enable USB_RST interrupts.  
1= USB_RST interrupt enabled  
0= USB_RST interrupt disabled  
Note 1: This interrupt is the only interrupt active during UCTRL suspend = 1.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 61  
PIC16C745/765  
10.5.1.3 USB Error Interrupt Status Register (UEIR)  
interrupt bit has been set it must be cleared by writing  
a zero to the respective interrupt bit. Each bit is set as  
soon as the error condition is detected. Thus, the inter-  
rupt will typically not correspond with the end of a  
token being processed.  
The USB Error Interrupt Status Register (UEIR) con-  
tains bits for each of the error sources within the USB.  
Each of these bits are enabled by their respective error  
enable bits (UEIE). The result is OR’ed together and  
sent to the ERROR bit of the UIR register. Once an  
REGISTER 10-3: USB ERROR INTERRUPT FLAGS STATUS REGISTER (UEIR: 192h)  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
BTS_ERR OWN_ERR WRT_ERR BTO_ERR DFN8 CRC16 CRC5 PID_ERR  
R = Readable bit  
C = Clearable bit  
U = Unimplemented  
bit, read as ‘0’  
-n = Value at POR  
reset  
bit7  
bit0  
bit 7:  
bit 6:  
BTS_ERR: A bit stuff error has been detected.  
OWN_ERR: This bit is set if the USB is processing a token and the OWN bit within the BDT is equal to 0  
(signifying that the microprocessor owns the BDT and the SIE does not have access to the BDT). If process-  
ing an IN TOKEN this would cause a transmit data underflow condition. Processing an OUT or SETUP  
TOKEN would cause a receive data overflow condition.  
bit 5:  
bit 4:  
WRT_ERR: Write Error. A write by the MCU to the USB Buffer Descriptor Table or Buffer area was unsuc-  
cessful.  
BTO_ERR: This bit is set if a bus turnaround time-out error has occurred. This USB uses a bus turnaround  
timer to keep track of the amount of time elapsed between the token and data phases of a SETUP or OUT  
TOKEN or the data and handshake phases of a IN TOKEN. If more than 17-bit times are counted from the  
previous EOP before a transition from IDLE, a bus turnaround time-out error will occur.  
bit 3:  
DFN8: The data field received was not 8 bits. The USB Specification 1.1 specifies that data field must be an  
integral number of bytes. If the data field was not an integral number of bytes this bit will be set.  
bit 2:  
bit 1:  
CRC16: The CRC16 failed.  
CRC5: This interrupt will detect CRC5 error in the token packets generated by the host. If set the token  
packet was rejected due to a CRC5 error.  
bit 0:  
PID_ERR: The PID check field failed.  
Note 1: Bits can only be modified when UCTRL.SUSPND = 0.  
DS41124A-page 62  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
10.5.1.4 Error Interrupt Enable Register (UEIE)  
The USB Error Interrupt Enable Register (UEIE) con-  
tains enable bits for each of the error interrupt sources  
within the USB. Setting any of these bits will enable  
the respective error interrupt source in the UEIR regis-  
ter.  
REGISTER 10-4: USB ERROR INTERRUPT ENABLE REGISTER (UEIE: 193h)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0 R/W-0 R/W-0  
R/W-0  
CRC16 CRC5 PID_ERR  
bit0  
BTS_ERR OWN_ERR WRT_ERR BTO_ERR DFN8  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
-n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
BTS_ERR: Set this bit to enable BTS_ERR interrupts.  
1= BTS_ERR interrupt enabled  
0= BTS_ERR interrupt disabled  
OWN_ERR: Set this bit to enable OWN_ERR interrupts.  
1= OWN_ERR interrupt enabled  
0= OWN_ERR interrupt disabled  
WRT_ERR: Set this bit to enable WRT_ERR interrupts.  
1= WRT_ERR interrupt enabled  
0= WRT_ERR interrupt disabled  
BTO_ERR: Set this bit to enable BTO_ERR interrupts.  
1= BTO_ERR interrupt enabled  
0= BTO_ERR interrupt disabled  
DFN8: Set this bit to enable DFN8 interrupts.  
1= DFN8 interrupt enabled  
0= DFN8 interrupt disabled  
CRC16: Set this bit to enable CRC16 interrupts.  
1= CRC16 interrupt enabled  
0= CRC16 interrupt disabled  
CRC5: Set this bit to enable CRC5 interrupts.  
1= CRC5 interrupt enabled  
0= CRC5 interrupt disabled  
PID_ERR: Set this bit to enable PID_ERR interrupts.  
1= PID_ERR interrupt enabled  
0= PID_ERR interrupt disabled  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 63  
PIC16C745/765  
10.5.1.5 Status Register (USTAT)  
USB transaction is performed before the TOK_DNE  
interrupt is serviced the USB will store the status of the  
next transaction in the STAT FIFO. Thus, the STAT reg-  
ister is actually a four byte FIFO which allows the MCU  
to process one transaction while the SIE is processing  
the next. Clearing the TOK_DNE bit in the INT_STAT  
register causes the SIE to update the STAT register  
with the contents of the next STAT value. If the data in  
the STAT holding register is valid, the SIE will immedi-  
ately reassert the TOK_DNE interrupt.  
The USB Status Register reports the transaction sta-  
tus within the USB. When the MCU recognizes a  
TOK_DNE interrupt, this register should be read to  
determine the status of the previous endpoint commu-  
nication. The data in the status register is valid when  
the TOK_DNE interrupt bit is asserted.  
The USTAT register is actually a read window into a  
status FIFO maintained by the USB. When the USB  
uses a BD, it updates the status register. If another  
REGISTER 10-5: USB STATUS REGISTER (USTAT: 194h)  
U-0  
U-0  
U-0  
R-X  
R-X  
R-X  
IN  
U-0  
U-0  
ENDP1  
ENDP0  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
-n = Value at POR reset  
X = Don’t care  
bit 7-5: Unimplemented: Read as ’0’.  
bit 4-3: ENDP<1:0>: These bits encode the endpoint address that received or transmitted the previous token.  
This allows the microprocessor to determine which BDT entry was updated by the last USB transaction.  
bit 2:  
IN: This bit indicates the direction of the last BD that was updated.  
1= The last transaction was an IN TOKEN  
0= The last transaction was an OUT or SETUP TOKEN  
bit 1-0: Unimplemented: Read as ’0’.  
DS41124A-page 64  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
10.5.1.6 USB Control Register (UCTRL)  
The control register provides various control and con-  
figuration information for the USB.  
REGISTER 10-6: USB CONTROL REGISTER (UCTRL: 195h)  
U-0  
U-0  
R-X  
SE0  
R/C-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
PKT_DIS Config_Bit RESUME SUSPND  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
C = Clearable bit  
U = Unimplemented bit,  
read as ‘0’  
-n = Value at POR reset  
X = Don’t care  
bit 7-6: Unimplemented: Read as ’0’.  
bit 5:  
SE0: Live Single Ended Zero. This status bit indicates that the D+ and D- lines are both pulled to low.  
1= single ended zero being received  
0= single ended zero not being received  
bit 4  
PKT_DIS: The PKT_DIS bit informs the MCU that the SIE has disabled packet transmission and recep-  
tion. Clearing this bit allows the SIE to continue token processing. This bit is set by the SIE when a Setup  
Token is received allowing software to dequeue any pending packet transactions in the BDT before resum-  
ing token processing. The PKT_DIS bit is set under certain conditions such as back to back SETUP  
tokens. This bit is not set on every SETUP token and can be modified only when UCTRL.SUSPND = 0.  
bit 3:  
bit 2:  
Config_Bit: Configuration bit used by firmware during enumeration.  
RESUME: Setting this bit will allow the USB to execute resume signaling. This will allow the USB to per-  
form remote wake-up. Software must set RESUMEto 1 for 10 mS then clear it to 0 to enable remote wake-  
up. For more information on RESUMEsignaling, see Section 7.1.7.5, 11.9 and 11.4.4 in the USB 1.1 spec-  
ification.  
1= perform Resume signaling  
0= normal operation  
bit 1:  
bit 0:  
SUSPND: Suspends USB operation and clocks and places the module in low power mode. This bit will  
generally be set in response to a UIDLEinterrupt. It will generally be reset after an ACTIVITY interrupt.  
The VUSB pin will still be driven, however the transceiver outputs are disabled.  
1= USB module in power conserve mode  
0= USB module normal operation  
Unimplemented: Read as ’0’.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 65  
PIC16C745/765  
10.5.1.7 USB Address Register (UADDR)  
The Address Register (UADDR) contains the unique  
USB address that the USB will decode. The register is  
reset to 00h after the reset input has gone active or the  
USB has decoded a USB reset signaling. That will ini-  
tialize the address register to decode address 00h as  
required by the USB specification. The USB address  
must be written by the MCU during the USB SETUP  
phase.  
REGISTER 10-7: USB ADDRESS REGISTER (UADDR: 196h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADDR6 ADDR5  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
ADDR0  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
-n = Value at POR reset  
bit 7:  
Unimplemented: Read as ’0’.  
bit 6-0: ADDR<6:0>: This 7-bit value defines the USB address that the USB will decode.  
10.5.1.8 USB Software Status Register  
This register is used by the USB firmware libraries for  
USB status.  
REGISTER 10-8: RESERVED SOFTWARE LIBRARY REGISTER (USWSTAT: 197H):.  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R = Readable bit  
W = Writable bit  
6
5
4
3
2
1
0
7
U = Unimplemented bit,  
read as ‘0’  
-n = Value at POR reset  
Function IDs  
Configuration Status  
10.5.1.9 Endpoint Registers  
Each endpoint is controlled by an Endpoint Control  
Register. The PIC16C745/765 supports Buffer  
Descriptors (BD) for the following endpoints:  
- EP0 Out  
- EP0 In  
- EP1 Out  
- EP1 In  
- EP2 Out  
- EP2 In  
The user will be required to disable unused Endpoints  
and directions using the Endpoint Control Registers.  
DS41124A-page 66  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
10.5.1.10 USB Endpoint Control Register (EPCn)  
The Endpoint Control Registers contains the endpoint  
control bits for each of the 6 endpoints available on  
USB for a decoded address. These four bits define the  
control necessary for any one endpoint. Endpoint 0  
(ENDP0) is associated with control pipe 0 which is  
required by USB for all functions (IN, OUT, and  
SETUP). Therefore, after a USB_RST interrupt has  
been received the microprocessor should set ENDPT0  
to contain 06h.  
REGISTER 10-9: USB ENDPOINT CONTROL REGISTER (UEPn: 198H-19Ah)  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EP_CTL_DIS EP_OUT_EN EP_IN_EN EP_STALL  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplementedbit,  
read as ‘0’  
-n = Value at POR reset  
bit 7-4: Unimplemented: Read as ’0’.  
bit 3-1: EP_CTL_DIS, EP_OUT_EN, EP_IN_EN: These three bits define if an endpoint is enabled and the direc-  
tion of the endpoint. The endpoint enable/direction control is defined as follows:  
EP_CTL_DIS EP_OUT_EN EP_IN_EN Endpoint Enable/Direction Control  
X
X
X
1
0
0
1
1
1
0
1
0
1
1
Disable Endpoint  
Enable Endpoint for IN tokens only  
Enable Endpoint for OUT tokens only  
Enable Endpoint for IN and OUT tokens  
Enable Endpoint for IN, OUT, and SETUP tokens  
0
bit 0:  
EP_STALL: When this bit is set it indicates that the endpoint is stalled. This bit has priority over all other  
control bits in the Endpoint Enable register, but is only valid if EP_IN_EN=1 or EP_OUT_EN=1. Any access  
to this endpoint will cause the USB to return a STALL handshake. The EP_STALL bit can be set or cleared  
by the SIE. Refer to the USB 1.1 Specification, Sections 4.4.4 and 8.5.2 for more details on the STALL  
protocol.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 67  
PIC16C745/765  
10.6  
Buffer Descriptor Table (BDT)  
To efficiently manage USB endpoint communications  
the USB implements a Buffer Descriptor Table (BDT)  
in register space. Every endpoint requires a 4 byte  
Buffer Descriptor (BD) entry. Because the buffers are  
shared between the MCU and the USB, a simple  
semaphore mechanism is used to distinguish which is  
allowed to update the BD and buffers in system mem-  
ory. The UOWN bit is cleared when the BD entry is  
“owned” by the MCU. When the UOWN bit is set to 1,  
the BD entry and the buffer in system memory is  
owned by the USB. The MCU should not modify the  
BD or its corresponding data buffer.  
The Buffer Descriptors provide endpoint buffer control  
information for the USB and MCU. The Buffer Descrip-  
tors have different meaning based on the value of the  
UOWN bit.  
The USB Controller uses the data stored in the BDs  
when UOWN = 1 to determine:  
Data0 or Data1 PID  
Data toggle synchronization enable  
Number of bytes to be transmitted or received  
Starting location of the buffer  
The MCU uses the data stored in the BDs when  
UOWN = 0 to determine:  
Data0 or Data1 PID  
The received TOKEN PID  
Number of bytes transmitted or received  
Each endpoint has a 4 byte Buffer Descriptor and  
points to a data buffer in the USB dual port register  
space. Control of the BD and buffer would typically be  
handled in the following fashion:  
The MCU verifies UOWN = 0, sets the BDndAL to  
point to the start of a buffer, if necessary fills the  
buffer, then sets the BDndST byte to the desired  
value with UOWN = 1.  
When the host commands an in or out transac-  
tion, the Serial Interface Engine (SIE) performs  
the following:  
- Get the buffer address  
- Read or write the buffer  
- Update the USTAT register  
- Update the buffer descriptors with the packet  
ID (PID) value  
- Set the data 0/1 bit  
- Update the byte count  
- Clear the UOWN bit  
The MCU is interrupted and reads the USTAT,  
translates that value to a BD, where the UOWN,  
PID, Data 0/1, and byte count values are checked.  
DS41124A-page 68  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
REGISTER 10-10: BUFFER DESCRIPTOR STATUS REGISTER. BITS WRITTEN BY THE MCU  
(BDndST: 1A0h, 1A4h, 1A8h, 1ACh, 1B0h, 1B4h)  
W-X  
UOWN DATA0/1  
bit7  
W-X  
U-X  
U-X  
W-X  
W-X  
U-X  
U-X  
DTS  
BSTALL  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit0  
-n = Value at POR reset  
X = Don’t care  
bit 7:  
UOWN: USB Own. This UOWN bit determines who currently owns the buffer. The SIE writes a 0 to this  
bit when it has completed a token. This byte of the BD should always be the last byte the MCU updates  
when it initializes a BD. Once the BD has been assigned to the USB, the MCU should not change it in any  
way.  
1= USB has exclusive access to the BD. The MCU should not modify the BD or buffer.  
0= The MCU has exclusive access to the BD. The USB ignores all other fields in the BD.  
bit 6:  
DATA0/1: This bit defines the type of data toggle packet that was transmitted or received.  
1= Data 1 packet  
0= Data 0 packet  
bit 5-4: Reserved: Read as ’X’.  
bit 3:  
DTS: Setting this bit will enable the USB to perform Data Toggle Synchronization. If a packet arrives with  
an incorrect DTS, it will be ignored and the buffer will remain unchanged.  
1= Data Toggle Synchronization is performed  
0= No Data Toggle Synchronization is performed  
bit 2:  
BSTALL: Buffer Stall. Setting this bit will cause the USB to issue a STALL handshake if a token is received  
by the SIE that would use the BD in this location. The BD is not consumed by the SIE (the own bit remains  
and the rest of the BD are unchanged) when a BSTALL bit is set.  
bit 1-0: Reserved: Read as ’X’.  
Note: Recommend that users not use BSF, BCF due to the dual functionality of this register.  
REGISTER 10-11: BUFFER DESCRIPTOR STATUS. BITS READ BY THE MCU.  
(BDndST: 1A0h, 1A4h, 1A8h, 1ACh, 1B0h, 1B4h)  
R/W-0  
UOWN DATA0/1  
bit7  
R/W-X  
R/W-X  
PID3  
R/W-X  
PID2  
R/W-X  
PID1  
R/W-X  
PID0  
U-X  
U-X  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit0  
-n = Value at POR reset  
X = Don’t care  
bit 7:  
UOWN: USB Own. This UOWN bit determines who currently owns the buffer. The SIE writes a 0 to this  
bit when it has completed a token. This byte of the BD should always be the last byte the MCU updates  
when it initializes a BD. Once the BD has been assigned to the USB, the MCU should not change it in any  
way.  
1= USB has exclusive access to the BD. The MCU should not modify the BD or buffer.  
0= The MCU has exclusive access to the BD. The USB ignores all other fields in the BD.  
bit 6:  
DATA0/1: This bit defines the type of data toggle packet that was transmitted or received.  
1= Data 1 packet  
0= Data 0 packet  
bit 5-2: PID<3:0>: Packet Identifier. The received token PID value  
bit 1-0: Reserved: Read as 'X'.  
Note: Recommend that users not use BSF, BCF due to the dual functionality of this register.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 69  
PIC16C745/765  
REGISTER 10-12: BUFFER DESCRIPTOR BYTE COUNT (BDndBC: 1A1h, 1A5h, 1A9h, 1ADh, 1B1h,  
1B5h))  
U-X  
U-X  
U-X  
U-X  
R/W-X  
BC3  
R/W-X  
BC2  
R/W-X  
BC1  
R/W-X  
BC0  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
-n = Value at POR reset  
X = Don’t care  
bit 7-4: Reserved: Read as ’X’.  
bit 3-0: BC<3:0>: The Byte Count bits represent the number of bytes that will be transmitted for an IN TOKEN or  
received during an OUT TOKEN. Valid byte counts are 0 - 8. The SIE will change this field upon the com-  
pletion of an OUT or SETUP token with the actual byte count of the data received.  
REGISTER 10-13: BUFFER DESCRIPTOR ADDRESS LOW (BDndAL: 1A2h, 1A6h, 1AAh, 1AEh,  
1B2h, 1B6h)  
R/W-X  
BA7  
R/W-X  
BA6  
R/W-X  
BA5  
R/W-X  
BA4  
R/W-X  
BA3  
R/W-X  
BA2  
R/W-X  
BA1  
R/W-X  
BA0  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
-n = Value at POR reset  
X = Don’t care  
bit 7-0: BA<7:0>: Buffer Address. The base address of the buffer controlled by this endpoint. The upper order bit  
address (BA8) of the 9-bit address is assumed to be 1h. This value must point to a location within the dual  
port memory space (1B8h - 1DFh). The upper order bits of the address are assumed to point to Bank 3.  
Note 1: This register should always contain a value between B8h-DFh.  
10.6.1 ENDPOINT BUFFERS  
10.7.1.1 VUSB Output  
Endpoint buffers are located in the Dual Port RAM  
area. The starting location of an endpoint buffer is  
determined by the Buffer Descriptor.  
The VUSB provides a 3.3V nominal output. This drive  
current is sufficient for a pull-up only.  
10.8  
USB Software Libraries  
10.7  
TRANSCEIVER  
Microchip Technology provides a comprehensive set  
of Chapter 9 Standard requests functions to aid devel-  
opers in implementing their designs. See Microchip  
Technology’s website for the latest version of the soft-  
ware libraries.  
An on-chip integrated transceiver is included to drive  
the D+/D- physical layer of the USB.  
10.7.1 REGULATOR  
A 3.3V regulator provides the D+/D- drives with power.  
A +20% 10nF capacitor is required on VUSB for regula-  
tor stability.  
TABLE 10-1: USB PORT FUNCTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
VUSB  
VUSB  
D-  
Power  
USB  
3.3V for pull up resistor  
USB Differential Bus  
USB Differential Bus  
D-  
USB  
USB  
D+  
D+  
USB  
Legend:  
OD = open drain, ST = Schmitt Trigger  
DS41124A-page 70  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
10.9.3 INTERRUPT STRUCTURE CONCERNS  
10.9.3.1 Processor Resources  
10.9  
USB Firmware Users Guide  
10.9.1 INTRODUCING THE USB SOFTWARE  
INTERFACE  
Most of the USB processing occurs via the interrupt  
and thus is invisible to application. However it still con-  
sumes processor resources. These include ROM,  
RAM, Common RAM, Stack Levels and processor  
cycles. This section attempts to quantify the impact on  
each of these resources, and shows ways to avoid  
conflicts.  
Microchip provides a layer of software that handles the  
lowest level interface so your application won’t have to.  
This provides a simple Put/Get interface for communi-  
cation. Most of the USB processing takes place in the  
background through the Interrupt Service Routine.  
From the application viewpoint, the enumeration pro-  
cess and data communication takes place without fur-  
ther interaction.  
These are the considerations you'll need to take into  
account if you write your own Interrupt Service Rou-  
tine: Save W, Status, FSR and PCLATH which are the  
file registers that may be corrupted by servicing the  
USB interrupt.  
FIGURE 10-2: USB SOFTWARE INTERFACE  
Main Application  
We provide a skeleton ISR which will do this for you,  
and includes tests for each of the possible ISR bits.  
This provides a good place to start from if you haven't  
already written your own. See file USB_INT.ASM.  
Put  
Get  
Init  
10.9.3.2 Stack Levels  
USB Peripheral  
The hardware stack on the device is only 8 levels  
deep. So the worst case call between the application  
and ISR can only be 8 levels. The enumeration pro-  
cess requires 6 levels, so it's best if the main applica-  
tion holds off on any processing until enumeration is  
complete. ConfiguredUSB is a macro that waits until  
the enumeration process is complete for exactly this  
purpose.  
USB  
10.9.2 INTEGRATING USB INTO YOUR  
APPLICATION  
The latest version of the USB interface software is  
available on Microchip Technology’s website. See  
http://www.microchip.com/  
Communicating on USB is similar to communicating  
via a hardware USART. The main difference is that a  
USART typically works on a single byte at a time,  
where USB operates on a buffer of up to 8 bytes at a  
time.  
10.9.3.3 ROM  
The code required to support the USB interrupt,  
including the chapter 9 interface calls, but not including  
the descriptor tables is about 1kW. The descriptor and  
string descriptor tables can each take up to an addi-  
tional 256W. The location of these parts is not  
restricted, and the linker script may be edited to control  
the placement of each part. See the Strings and  
Descriptors sections in the linker script  
There is one function defined to start the enumeration  
process and two additional functions are defined for  
moving buffers between the main application and the  
USB peripheral. InitUSB initializes the USB peripheral  
allowing the host to enumerate the device. Then for  
normal data communications, function PutUSB sends  
data to the host and function GetUSB receives data  
from the host.  
10.9.3.4 RAM  
With the exception of Common RAM discussed below,  
servicing the USB interrupt costs ~40 bytes of RAM in  
Bank 2. That leaves all the General Purpose RAM in  
banks zero and one, plus half of bank two available for  
your application to use.  
There's a lot that happens behind the scenes to make  
the communication work, but these calls are all an  
application needs to communicate on the bus. The  
rest is handled on an interrupt basis.  
InitUSB initializes the Buffer Descriptor table, and  
enables the USB interrupt so enumeration can begin.  
The actual enumeration process occurs automatically,  
driven by the host and interrupt service routine. The  
macro ConfiguredUSB waits until the device is in the  
CONFIGURED mode and ready to go. The time  
required to enumerate is completely dependent on the  
host and bus loading.  
10.9.3.5 Common RAM usage  
The PIC16C745/765 has 16 bytes of common RAM.  
These are the last 16 addresses in each bank and all  
refer to the same 16 bytes of memory without regard  
to which register bank is currently addressed by the  
RP0 and RP1 bits.  
These are particularly useful when responding to inter-  
rupts. When an interrupt occurs, the ISR doesn't  
immediately know which bank is addressed. With  
devices that don't support common RAM, the W regis-  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 71  
PIC16C745/765  
ter must be provided for in each bank. The 16C745/  
765 can save the appropriate registers in Common  
RAM and not have to waste a byte in each bank for W  
register.  
GetUSB (Buffer Pointer, Endpoint) returns data sent  
from the host. If there is a buffer ready (i.e., data has  
been received from the host) it is copied to the desti-  
nation pointed to by FSR/IRP (A buffer pointer in FSF/  
IRP and the endpoint number in W must be provided.).  
If no data is available, it returns a failure code. Thus,  
the functions of polling for buffer ready and copying the  
data are combined into the one function.  
10.9.3.6 Buffer allocation  
The PIC16C745/765 has 64 bytes of Dual Port RAM.  
24 are used for the Buffer Descriptor Table (BDT) leav-  
ing 40 bytes for buffers.  
ServiceUSBInt handles all interrupts generated by the  
USB peripheral. First it copies the active buffer to  
common RAM which provides a quick turn around on  
the buffer in dual port RAM and also to avoids having  
to switch banks during processing of the buffer.  
Endpoint 0 IN and OUT need dedicated buffers since a  
setup transaction can never be NAKed. That leaves  
three buffers for four possible Endpoints. But the USB  
spec requires that low speed devices are only allowed  
2 endpoints (USB 1.1 paragraph 5.3.1.2), where an  
endpoint is a simplex connection that defined by the  
combination of Endpoint number and direction.  
StallUSBEP/UnstallUSBEP sets or clears the stall bit  
in the endpoint control register. The stall bit indicates  
to the host that user intervention is required and until  
such intervention is made, further attempts to commu-  
nicate with the endpoint will not be successful. Once  
the user intervention has been made, UnstallUSBEP  
will clear the bit allowing communications to take  
place. These calls are useful to signal to the host that  
user intervention is required. An example of this might  
be a printer out of paper.  
The default configuration allocates individual buffers to  
EP0 OUT, EP0 In, EP1 Out, and EP1 In. The last  
buffer is shared between EP2 In and EP2 Out. Again,  
the spec says low speed devices can only use 2 end-  
points beyond EP0. This configuration supports most  
of the possible combinations of endpoints (EP1 OUT  
and EP1 IN, EP1OUT and EP2IN, EP1 OUT and EP2  
OUT, EP1 IN and EP2 OUT, EP1 IN and EP2 IN). The  
only combination that is not supported by this configu-  
ration is Endpoint 2 IN and Endpoint 2 OUT. If your  
application needs both EP2 IN and EP2 OUT, the func-  
tion USBReset will need to be edited to give each of  
these dedicated buffers at the expense of EP1.  
CheckSleep Tests the UCTRL.UIDLE bit if set, indi-  
cating that there has been no activity on the bus for 3  
mS, puts the device to sleep. This puts the part into a  
low power standby mode until awakened by bus activ-  
ity. This has to be handled outside the ISR because we  
need the interrupt to wake us from sleep, and also  
because the application may not be ready to sleep  
when the interrupt occurs. Instead, the application  
should periodically call this function to poll the bit when  
the device is in a good place to sleep.  
10.9.4 FUNCTION CALL REFERENCE  
Interface between the Application and Protocol layer  
takes place in three main functions: InitUSB, PutUSB  
and GetUSB.  
Prior to putting the device to sleep, it enables the activ-  
ity interrupt so the device will be awakened by the first  
transition on the bus. The device will immediately  
jump to the ISR, recognizing the activity interrupt,  
which then disables the interrupt and resumes pro-  
cessing with the instruction following the CheckSleep  
call.  
InitUSB should be called by the main program imme-  
diately upon power-up. It sets up the Buffer Descriptor  
Table, transitions the part to the Powered state, and  
prepares the device for enumeration. At this point the  
USB Reset is the only USB interrupt allowed, prevent-  
ing the part from responding to anything on the bus  
until it’s been reset. The USB Reset interrupt transi-  
tions the part to the default state where it responds to  
commands on address zero. When it receives a SET  
ADDRESS command, the device transitions to the  
addressed state and now responds to commands on  
the new address.  
ConfiguredUSB (Macro) Continuously polls the enu-  
meration status bits and waits until the device has  
been configured by the host.  
10.9.5 BEHIND THE SCENES  
The ISR calls ServiceUSBInt, which then further has  
to mask the USB Interrupt register with the USB Inter-  
rupt Enable bits, then see what caused the interrupt.  
InitUSB only enables the Reset interrupt (USB_RST).  
This prevents the device from responding to anything  
on the bus until it’s been reset by the host. When the  
reset is received, the Buffer Descriptors are initialized,  
most of the rest of the interrupts are unmasked and  
the device transitions from the POWERED to  
DEFAULT state. Now it can respond to commands on  
address zero. From there the rest of the enumeration  
process takes place, including assigning an address to  
the device through the SET_ADDRESS command and  
PutUSB (Buffer pointer, Buffer size, Endpoint) sends  
data up to the host. The pointer to the block of data to  
transmit, is in the FSR/IRP, and the block size and  
endpoint is passed in W register. If the IN buffer is  
available for that endpoint, the block of data is copied  
to the buffer, then the Data 0/1 bit is flipped and the  
owns bit is set. A buffer not available would occur  
when it has been previously loaded and the host has  
not requested that the USB peripheral transmit it. In  
this case, a failure code would be returned so the  
application can try again later.  
selecting  
a
configuration  
through  
the  
DS41124A-page 72  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
SET_CONFIGURATION command. Once the device  
is configured, the application can communicate with  
the host using the GetUSB and PutUSB calls.  
CheckSleep is a separate call that takes the bus idle  
one step further and puts the device to sleep if the  
USB peripheral has detected no activity on the bus.  
This powers down most of the device to minimal cur-  
rent draw. This call should be made at a point in the  
main loop where all other processing is complete.  
The USB peripheral detects several different errors  
and handles most internally. The USB_ERR interrupt  
notifies the microcontroller that an error has occurred.  
No action is required by the device when an error  
occurs. Instead the errors are simply acknowledged  
and counted. There is no mechanism to pull the  
device off the bus if there are too many errors. If this  
behavior is desired it must be implemented in the  
application.  
10.9.6 EXAMPLES  
This example shows how the USB functions are used.  
This example first initializes the USB peripheral which  
allows the host to enumerate the device. The enumer-  
ation process occurs in the background, via an Inter-  
rupt service routine.  
This function waits until  
The Activity interrupt is left disabled until the USB  
peripheral detects no bus activity for 3 mS. Then it  
suspends the USB peripheral and enables the activity  
interrupt. The activity interrupt then reactivates the  
USB peripheral when bus activity resumes so process-  
ing may continue.  
enumeration is complete, and then polls EP1 OUT to  
see if there is any data available. When a buffer is  
available, it is copied to the IN buffer. Presumably your  
application would do something more interesting with  
the data than this example.  
; ******************************************************************  
; Demo program that initializes the USB peripheral, allows the Host  
;
to Enumerate, then copies buffers from EP1OUT to EP1IN.  
; ******************************************************************  
main  
call  
InitUSB  
; Set up everything so we can enumerate  
ConfiguredUSB  
; wait here until we have enumerated.  
idleloop  
CheckEP1  
call  
CheckSleep  
; Ok, here’s a good point to put part to sleep if no activity on the bus.  
; Check Endpoint 1 for an OUT transaction  
; point to lower banks  
bcf  
STATUS,IRP  
buffer  
FSR  
movlw  
movwf  
movlw  
call  
btfss  
goto  
; point FSR to our buffer  
; check end point 1  
; If data is ready, it will be copied.  
; was there any data for us?  
; Nope, check again.  
1
GetUSB  
STATUS,C  
idleloop  
PutBuffer  
bcf  
STATUS,IRP  
bufferlen  
buffer  
FSR  
bufferlen,w  
1
; point to lower banks  
; save buffer length  
movwf  
movlw  
movwf  
swapf  
iorlw  
call  
; point FSR to our buffer  
; upper nybble of W is buffer length  
; lower nybble of W is EndPoint number  
PutUSB  
btfss  
goto  
goto  
STATUS,C  
PutBuffer  
idleloop  
; was it successful?  
; No: try again until successful  
; Yes: restart loop  
end  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 73  
PIC16C745/765  
10.9.7 ASSEMBLING THE CODE  
The code is designed to be used with the linker. There  
is no provision for include-able files. The code comes  
packaged as several different files:  
• USB_CH9.ASM - handles all the Chapter 9 com-  
mand processing.  
• USB_INTF.ASM - Provides the interface functions  
PutUSB, GetUSB  
• USBMACRO.INC - Macros used by  
• USB_DEFS.INC - #Defines used throughout the  
code.  
• USB_INT.ASM - Sample interrupt service routine.  
• 16C765.LKR - Linker script (provided with  
MPLAB)  
10.9.7.1 Assembly Options:  
There are two #defines at the top of the code that con-  
trol assembly options.  
10.9.7.2 #define ERRORCOUNTERS  
This define includes code to count the number of  
errors that occur, by type of error. This requires extra  
code and RAM locations to implement the counters.  
10.9.7.3 #define FUNCTIONIDS  
This is useful for debug. It encodes the upper 6 bits of  
USWSTAT (0x197) to indicate which function is exe-  
cuting.  
DS41124A-page 74  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
as a half duplex synchronous system that can commu-  
nicate with peripheral devices, such as A/D or D/A inte-  
grated circuits, Serial EEPROMs etc.  
11.0 UNIVERSAL SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
The USART can be configured in the following modes:  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial I/  
O modules. (USART is also known as a Serial Commu-  
nications Interface or SCI). The USART can be config-  
ured as a full duplex asynchronous system that can  
communicate with peripheral devices, such as CRT ter-  
minals and personal computers, or it can be configured  
• Asynchronous (full duplex)  
• Synchronous - Master (half duplex)  
• Synchronous - Slave (half duplex)  
Bits SPEN (RCSTA<7>) and TRISC<7:6> have to be  
set in order to configure pins RC6/TX/CK and RC7/RX/  
DT as the universal synchronous asynchronous  
receiver transmitter.  
REGISTER 11-1: TRANSMIT STATUS AND CONTROL REGISTER (TXSTA: 98h)  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
R
= Readable bit  
TRMT  
W = Writable bit  
U
bit7  
bit0  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
CSRC: Clock Source Select bit  
Asynchronous mode  
Don’t care  
Synchronous mode  
1= Master mode (Clock generated internally from BRG)  
0= Slave mode (Clock from external source)  
bit 6:  
bit 5:  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note: SREN/CREN overrides TXEN in SYNC mode.  
bit 4:  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode  
1= High speed  
0= Low speed  
Synchronous mode  
Unused in this mode  
bit 1:  
bit 0:  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of transmit data. (Can be used for parity.)  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 75  
PIC16C745/765  
REGISTER 11-2: RECEIVE STATUS AND CONTROL REGISTER (RCSTA: 18h)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
U-0  
R-0  
R-0  
R-x  
R
= Readable bit  
FERR  
OERR  
RX9D  
W = Writable bit  
U
bit7  
bit0  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
SPEN: Serial Port Enable bit  
1= Serial port enabled (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)  
0= Serial port disabled  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode  
Don’t care  
Synchronous mode - master  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - slave  
Unused in this mode  
bit 4:  
CREN: Continuous Receive Enable bit  
Asynchronous mode  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
FERR: Framing Error bit  
1= Framing error (Can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
bit 1:  
bit 0:  
OERR: Overrun Error bit  
1= Overrun error (Can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of received data. (Can be used for parity.)  
DS41124A-page 76  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
11.1  
USART Baud Rate Generator (BRG)  
The BRG supports both the asynchronous and syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In asynchronous  
mode, bit BRGH (TXSTA<2>) also controls the baud  
rate. In synchronous mode, bit BRGH is ignored.  
Table 11-1 shows the formula for computation of the  
baud rate for different USART modes which only apply  
in master mode (internal clock).  
11.1.1 SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
near the center of each bit time by a majority detect cir-  
cuit to determine if a high or a low level is present at the  
RX pin.  
Given the desired baud rate and FINT, the nearest inte-  
ger value for the SPBRG register can be calculated  
using the formula in Table 11-1. From this, the error in  
baud rate can be determined.  
It may be advantageous to use the high baud rate  
(BRGH = 1) even for slower baud clocks. This is  
because the FINT/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
TABLE 11-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FINT/(64(SPBRG+1))  
(Synchronous) Baud Rate = FINT/(4(SPBRG+1))  
Baud Rate= FINT/(16(SPBRG+1))  
NA  
TABLE 11-2: BAUD RATES FOR SYNCHRONOUS MODE  
4 MHz  
6 MHz  
24 MHz  
Desired  
Baud  
Actual  
Baud  
% of  
Error  
Actual  
Baud  
% of  
Error  
Actual  
Baud  
% of  
Error  
SPBRG  
SPBRG  
SPBRG  
300  
1200  
2400  
4800  
4807.69  
9615.38  
0.16  
207  
9600  
0.16  
0.16  
0.16  
2.12  
8.51  
8.51  
8.51  
103  
51  
25  
16  
7
9615.38  
19230.77  
38461.54  
57692.31  
115384.62  
250000.00  
500000.00  
0.16  
155  
19200  
38400  
57600  
19230.77  
38461.54  
58823.53  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
77  
38  
25  
12  
5
38461.54  
57692.31  
0.16  
155  
0.16  
0.16  
0.16  
0.16  
8.51  
103  
51  
25  
12  
5
115200 125000.00  
230400 250000.00  
460800 500000.00  
921600  
115384.62  
230769.23  
461538.46  
1000000.00  
3
1
2
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 77  
PIC16C745/765  
TABLE 11-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
4 MHz  
6 MHz  
24 MHz  
Desired  
Baud  
Actual  
Baud  
% of  
Error  
Actual  
Baud  
% of  
Error  
Actual  
Baud  
% of  
Error  
SPBRG  
SPBRG  
SPBRG  
300  
300.48  
1201.92  
2403.85  
4807.69  
10416.67  
20833.33  
0.16  
207  
1200  
2400  
0.16  
0.16  
0.16  
8.51  
8.51  
51  
25  
12  
5
1201.92  
2403.85  
0.16  
77  
0.16  
2.80  
38  
18  
8
2403.85  
4807.69  
0.16  
155  
4800  
4934.21  
0.16  
0.16  
2.80  
8.51  
8.51  
8.51  
77  
38  
18  
8
9600  
10416.67  
23437.50  
46875.00  
8.51  
9615.38  
19200  
38400  
57600  
115200  
230400  
460800  
921600  
2
22.07  
22.07  
3
19736.84  
41666.67  
62500.00  
125000.00  
1
5
2
TABLE 11-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
4 MHz  
6 MHz  
24 MHz  
Desired  
Baud  
Actual  
Baud  
% of  
Error  
Actual  
Baud  
% of  
Error  
Actual  
Baud  
% of  
Error  
SPBRG  
SPBRG  
SPBRG  
300  
1200  
2400  
1201.92  
2403.85  
4807.69  
9615.38  
19230.77  
41666.67  
62500.00  
12500.00  
0.16  
207  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
8.51  
103  
51  
25  
12  
5
2403.85  
4807.69  
0.16  
155  
4800  
0.16  
0.16  
2.80  
8.51  
8.51  
8.51  
77  
38  
18  
8
9600  
9615.38  
9615.38  
19230.77  
38461.54  
57692.31  
115384.62  
250000.00  
500000.00  
0.16  
155  
77  
38  
25  
12  
5
19200  
38400  
57600  
115200  
230400  
460800  
921600  
19736.84  
41666.67  
62500.00  
12500.00  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
3
5
1
2
2
TABLE 11-5: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4 Bit 3 Bit 2  
Bit 1  
Bit 0  
0000 -010  
0000 -00x  
0000 0000  
0000 -010  
0000 -00x  
0000 0000  
98h  
18h  
99h  
TXSTA  
CSRC TX9 TXEN SYNC  
BRGH TRMT TX9D  
FERR OERR RX9D  
RCSTA SPEN RX9 SREN CREN  
SPBRG Baud Rate Generator Register  
Legend: x = unknown, -= unimplemented read as '0'. Shaded cells are not used by the BRG.  
DS41124A-page 78  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
( PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicated the sta-  
tus of the TXREG register, another bit TRMT  
(TXSTA<1>) shows the status of the TSR register. Sta-  
tus bit TRMT is a read only bit, which is set when the  
TSR register is empty. No interrupt logic is tied to this  
bit, so the user has to poll this bit in order to determine  
if the TSR register is empty.  
11.2  
USART Asynchronous Mode  
In this mode, the USART uses standard nonreturn-to-  
zero (NRZ) format (one start bit, eight or nine data bits,  
and one stop bit). The most common data format is 8  
bits. An on-chip, dedicated, 8-bit baud rate generator  
can be used to derive standard baud rate frequencies  
from the oscillator. The USART transmits and receives  
the LSb first. The USART’s transmitter and receiver are  
functionally independent, but use the same data format  
and baud rate. The baud rate generator produces a  
clock either x16 or x64 of the bit shift rate, depending  
on bit BRGH (TXSTA<2>). Parity is not supported by  
the hardware, but can be implemented in software (and  
stored as the ninth data bit). Asynchronous mode is  
stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
memory, so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
is set. TXIF is cleared by loading TXREG.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data  
and the baud rate generator (BRG) has produced a  
shift clock (Figure 11-2). The transmission can also be  
started by first loading the TXREG register and then  
setting enable bit TXEN. Normally, when transmission  
is first started, the TSR register is empty. At that point,  
transfer to the TXREG register will result in an immedi-  
ate transfer to TSR, resulting in an empty TXREG. A  
back-to-back transfer is thus possible (Figure 11-3).  
Clearing enable bit TXEN during a transmission will  
cause the transmission to be aborted and will reset the  
transmitter. As a result, the RC6/TX/CK pin will revert  
to hi-impedance.  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
• Baud Rate Generator  
• Sampling Circuit  
• Asynchronous Transmitter  
• Asynchronous Receiver  
11.2.1 USART ASYNCHRONOUS TRANSMITTER  
The USART transmitter block diagram is shown in  
Figure 11-1. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG register is empty and  
flag bit TXIF (PIR1<4>) is set. This interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
In order to select 9-bit transmission, transmit bit TX9  
(TXSTA<6>) should be set and the ninth bit should be  
written to TX9D (TXSTA<0>). The ninth bit must be  
written before writing the 8-bit data to the TXREG reg-  
ister. This is because a data write to the TXREG regis-  
ter can result in an immediate transfer of the data to the  
TSR register (if the TSR is empty). In such a case, an  
incorrect ninth data bit may be loaded in the TSR  
register.  
FIGURE 11-1: USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXREG Register  
TXIF  
TXIE  
8
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
TSR Register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 79  
PIC16C745/765  
Steps to follow when setting up an Asynchronous  
Transmission:  
4. If 9-bit transmission is desired, then set transmit  
bit TX9.  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 11.1)  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
7. Load data to the TXREG register (starts trans-  
mission).  
3. If interrupts are desired, then set enable bit  
TXIE.  
FIGURE 11-2: ASYNCHRONOUS MASTER TRANSMISSION  
Write to TXREG  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
Start Bit  
Bit 0  
Bit 1  
WORD 1  
Bit 7/8  
Stop Bit  
TXIF bit  
(Transmit buffer  
reg. empty flag)  
WORD 1  
Transmit Shift Reg  
TRMT bit  
(Transmit shift  
reg. empty flag)  
FIGURE 11-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
Start Bit  
Start Bit  
WORD 2  
Bit 0  
Bit 1  
Bit 7/8  
Bit 0  
Stop Bit  
TXIF bit  
(interrupt reg. flag)  
WORD 1  
TRMT bit  
(Transmit shift  
reg. empty flag)  
WORD 1  
Transmit Shift Reg.  
WORD 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 11-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on:  
POR,  
BOR  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
RCSTA  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF USBIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SREN CREN  
FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
TXREG USART Transmit Register  
0000 0000 0000 0000  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE USBIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C745; always maintain these bits clear.  
DS41124A-page 80  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
11.2.2 USART ASYNCHRONOUS RECEIVER  
two bytes of data to be received and transferred to the  
RCREG FIFO and a third byte to begin shifting to the  
RSR register. On the detection of the STOP bit of the  
third byte, if the RCREG register is still full, then overrun  
error bit OERR (RCSTA<1>) will be set. The word in the  
RSR will be lost. The RCREG register can be read  
twice to retrieve the two bytes in the FIFO. Overrun bit  
OERR has to be cleared in software. This is done by  
resetting the receive logic (CREN is cleared and then  
set). If bit OERR is set, transfers from the RSR register  
to the RCREG register are inhibited, so it is essential to  
clear error bit OERR if it is set. Framing error bit FERR  
(RCSTA<2>) is set if a stop bit is detected as clear. Bit  
FERR and the 9th receive bit are buffered the same  
way as the receive data. Reading the RCREG, will load  
bits RX9D and FERR with new values, therefore it is  
essential for the user to read the RCSTA register before  
reading RCREG register in order not to lose the old  
FERR and RX9D information.  
The receiver block diagram is shown in Figure 11-4.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high speed shifter operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate or at FINT.  
Once asynchronous mode is selected, reception is  
enabled by setting bit CREN (RCSTA<4>).  
The heart of the receiver is the receive (serial) shift reg-  
ister (RSR). After sampling the STOP bit, the received  
data in the RSR is transferred to the RCREG register (if  
it is empty). If the transfer is complete, flag bit RCIF  
(PIR1<5>) is set. The actual interrupt can be enabled/  
disabled by setting/clearing enable bit RCIE (PIE1<5>).  
Flag bit RCIF is a read only bit which is cleared by the  
hardware. It is cleared when the RCREG register has  
been read and is empty. The RCREG is a double buff-  
ered register, i.e. it is a two deep FIFO. It is possible for  
FIGURE 11-4: USART RECEIVE BLOCK DIAGRAM  
FERR  
OERR  
CREN  
SPBRG  
RSR Register  
MSb  
LSb  
Baud Rate Generator  
RC7/RX/DT  
Stop (8)  
7
1
0
Start  
• • •  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D  
SPEN  
RCREG Register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
FIGURE 11-5: ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX (pin)  
bit0  
bit1  
Stop  
bit  
Stop  
bit  
bit7/8 Stop  
bit  
bit0  
bit7/8  
bit7/8  
Rcv shift  
reg  
Rcv buffer reg  
WORD 2  
RCREG  
WORD 1  
RCREG  
Read Rcv  
buffer reg  
RCREG  
RCIF  
(interrupt flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 81  
PIC16C745/765  
Steps to follow when setting up an Asynchronous  
Reception:  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 11.1).  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
2. Enable the asynchronous serial port by clearing  
bit SYNC, and setting bit SPEN.  
8. Read the 8-bit received data by reading the  
RCREG register.  
3. If interrupts are desired, then set enable bit  
RCIE.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
4. If 9-bit reception is desired, then set bit RX9.  
5. Enable the reception by setting bit CREN.  
TABLE 11-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on:  
POR,  
BOR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF USBIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE USBIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C745; always maintain these bits clear.  
DS41124A-page 82  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
pin reverts to a hi-impedance state (for a reception).  
The CK pin will remain an output if bit CSRC is set  
(internal clock). The transmitter logic, however, is not  
reset, although it is disconnected from the pins. In order  
to reset the transmitter, the user has to clear bit TXEN.  
If bit SREN is set (to interrupt an on-going transmission  
and receive a single word), then after the single word is  
received, bit SREN will be cleared and the serial port  
will revert back to transmitting, since bit TXEN is still  
set. The DT line will immediately switch from hi-imped-  
ance receive mode to transmit and start driving. To  
avoid this, bit TXEN should be cleared.  
11.3  
USART Synchronous Master Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner, i.e., transmission and reception  
do not occur at the same time. When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA<4>). In  
addition, enable bit SPEN (RCSTA<7>) is set in order  
to configure the RC6/TX/CK and RC7/RX/DT I/O pins  
to CK (clock) and DT (data) lines respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit CSRC (TXSTA<7>).  
In order to select 9-bit transmission, the TX9  
(TXSTA<6>) bit should be set and the ninth bit should  
be written to bit TX9D (TXSTA<0>). The ninth bit must  
be written before writing the 8-bit data to the TXREG  
register. This is because a data write to the TXREG can  
result in an immediate transfer of the data to the TSR  
register (if the TSR is empty). If the TSR was empty and  
the TXREG was written before writing the “new” TX9D,  
the “present” value of bit TX9D is loaded.  
11.3.1 USART SYNCHRONOUS MASTER  
TRANSMISSION  
The USART transmitter block diagram is shown in  
Figure 11-1. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer register  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one Tcycle), the TXREG is empty and inter-  
rupt bit TXIF (PIR1<4>) is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. TRMT is a read  
only bit which is set when the TSR is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
The TSR is not mapped in data memory, so it is not  
available to the user.  
Steps to follow when setting up a Synchronous Master  
Transmission:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 11.1).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data.  
The first data bit will be shifted out on the next available  
rising edge of the clock on the CK line. Data out is sta-  
ble around the falling edge of the synchronous clock  
(Figure 11-6). The transmission can also be started by  
first loading the TXREG register and then setting bit  
TXEN (Figure 11-7). This is advantageous when slow  
baud rates are selected, since the BRG is kept in reset  
when bits TXEN, CREN and SREN are clear. Setting  
enable bit TXEN will start the BRG, creating a shift  
clock immediately. Normally, when transmission is first  
started, the TSR register is empty, so a transfer to the  
TXREG register will result in an immediate transfer to  
TSR resulting in an empty TXREG. Back-to-back trans-  
fers are possible.  
Clearing enable bit TXEN, during a transmission, will  
cause the transmission to be aborted and will reset the  
transmitter. The DT and CK pins will revert to hi-imped-  
ance. If either bit CREN or bit SREN is set during a  
transmission, the transmission is aborted and the DT  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 83  
PIC16C745/765  
TABLE 11-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF USBIF CCP1IF TMR2IF TMR1IF 0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x  
0000 0000  
TXREG USART Transmit Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE USBIE CCP1IE TMR2IE TMR1IE 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010  
0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C745; always maintain these bits clear.  
FIGURE 11-6: SYNCHRONOUS TRANSMISSION  
Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2Q3Q4 Q1Q2Q3Q4Q1Q2Q3 Q4Q1Q2Q3Q4Q1 Q2Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
WORD 2  
bit 7  
WORD 1  
Write to  
TXREG reg  
Write word1  
Write word2  
TXIF bit  
(Interrupt flag)  
T  
TRMT bit  
’1’  
Note: Sync master mode; SPBRG = ’0’. Continuous transmission of two 8-bit words  
’1’  
TXEN bit  
FIGURE 11-7: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit2  
bit1  
bit6  
bit7  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
DS41124A-page 84  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
11.3.2 USART SYNCHRONOUS MASTER  
RECEPTION  
OERR if it is set. The ninth receive bit is buffered the  
same way as the receive data. Reading the RCREG  
register will load bit RX9D with a new value, therefore it  
is essential for the user to read the RCSTA register  
before reading RCREG in order not to lose the old  
RX9D information.  
Once synchronous mode is selected, reception is  
enabled by setting either enable bit SREN (RCSTA<5>)  
or enable bit CREN (RCSTA<4>). Data is sampled on  
the RC7/RX/DT pin on the falling edge of the clock. If  
enable bit SREN is set, then only a single word is  
received. If enable bit CREN is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
CREN takes precedence. After clocking the last bit, the  
received data in the Receive Shift Register (RSR) is  
transferred to the RCREG register (if it is empty). When  
the transfer is complete, interrupt flag bit RCIF  
(PIR1<5>) is set. The actual interrupt can be enabled/  
disabled by setting/clearing enable bit RCIE (PIE1<5>).  
Flag bit RCIF is a read only bit, which is reset by the  
hardware. In this case, it is reset when the RCREG reg-  
ister has been read and is empty. The RCREG is a dou-  
ble buffered register, i.e., it is a two deep FIFO. It is  
possible for two bytes of data to be received and trans-  
ferred to the RCREG FIFO and a third byte to begin  
shifting into the RSR register. On the clocking of the last  
bit of the third byte, if the RCREG register is still full,  
then overrun error bit OERR (RCSTA<1>) is set. The  
word in the RSR will be lost. The RCREG register can  
be read twice to retrieve the two bytes in the FIFO. Bit  
OERR has to be cleared in software (by clearing bit  
CREN). If bit OERR is set, transfers from the RSR to  
the RCREG are inhibited, so it is essential to clear bit  
Steps to follow when setting up a Synchronous Master  
Reception:  
1. Initialize the SPBRG register for the appropriate  
baud rate. (Section 11.1)  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, then set enable bit RCIE.  
5. If 9-bit reception is desired, then set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
TABLE 11-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
RCSTA  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF USBIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE USBIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for synchronous master reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C745; always maintain these bits clear.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 85  
PIC16C745/765  
FIGURE 11-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2Q3Q4 Q1Q2Q3Q4 Q1 Q2Q3Q4 Q1Q2Q3 Q4Q1 Q2Q3 Q4 Q1Q2 Q3Q4Q1Q2Q3 Q4 Q1Q2 Q3Q4Q1 Q2Q3 Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
bit SREN  
SREN bit  
CREN bit  
’0’  
’0’  
RCIF bit  
(interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates SYNC master mode with bit SREN = ’1’ and bit BRG = ’0’.  
DS41124A-page 86  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
11.4.2 USART SYNCHRONOUS SLAVE  
11.4  
USART Synchronous Slave Mode  
RECEPTION  
Synchronous slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the RC6/TX/CK pin (instead of being supplied internally  
in master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA<7>).  
The operation of the synchronous master and slave  
modes is identical, except in the case of the SLEEP  
mode. Also, bit SREN is a don’t care in slave mode.  
If receive is enabled by setting bit CREN prior to the  
SLEEP instruction, a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector  
(0004h).  
11.4.1 USART SYNCHRONOUS SLAVE  
TRANSMIT  
The operation of the synchronous master and slave  
modes are identical, except in the case of the SLEEP  
mode.  
Steps to follow when setting up a Synchronous Slave  
Reception:  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will now be  
set.  
5. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated, if  
enable bit RCIE was set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP and if the global interrupt  
is enabled, the program will branch to the inter-  
rupt vector (0004h).  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
Steps to follow when setting up a synchronous slave  
transmission:  
8. If any error occurred, clear the error by clearing  
bit CREN.  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, then set enable bit  
TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 87  
PIC16C745/765  
TABLE 11-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF USBIF CCP1IF TMR2IF TMR1IF 0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x  
0000 0000  
TXREG USART Transmit Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE TXIE USBIE CCP1IE TMR2IE TMR1IE 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010  
0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for synchronous slave transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C745; always maintain these bits clear.  
TABLE 11-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF USBIF CCP1IF TMR2IF TMR1IF 0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x  
0000 0000  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE USBIE CCP1IE TMR2IE TMR1IE 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010  
0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for synchronous slave reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C745; always maintain these bits clear.  
DS41124A-page 88  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
The A/D converter has a unique feature of being able to  
operate while the device is in SLEEP mode. To operate  
in sleep, the A/D conversion clock must be derived from  
the A/D’s dedicated internal RC oscillator.  
12.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The 8-bit Analog-To-Digital (A/D) converter module has  
five inputs for the PIC16C745 and eight for the  
PIC16C765.  
The A/D module has three registers. These registers  
are:  
• A/D Result Register (ADRES)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
The A/D allows conversion of an analog input signal to  
a corresponding 8-bit digital value. The output of the  
sample and hold is the input into the converter, which  
generates the result via successive approximation. The  
analog reference voltage is software selectable to  
either the device’s positive supply voltage (VDD) or the  
voltage level on the RA3/AN3/VREF pin.  
The ADCON0 register, shown in Register 12-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 12-2, configures the func-  
tions of the port pins. The port pins can be configured  
as analog inputs (RA3 can also be a voltage reference)  
or as digital I/O.  
Additional information on using the A/D module can be  
found in the PICmicro™ Mid-Range MCU Family Ref-  
erence Manual (DS33023) and in Application Note,  
AN546.  
REGISTER 12-1: A/D CONTROL REGISTER (ADCON0: 1Fh)  
R/W-0 R/W-0 R/W-0  
ADCS1 ADCS0 CHS2  
bit7  
R/W-0  
CHS1  
R/W-0  
R/W-0  
U-0  
R/W-0  
ADON  
CHS0 GO/DONE  
R =Readable bit  
W = Writable bit  
U =Unimplemented bit,  
read as ‘0’  
bit0  
- n = Value at POR reset  
bit 7-6: ADCS<1:0>: A/D Conversion Clock Select bits  
00= FINT/2  
01= FINT/8  
10= FINT/32  
11= FRC (clock derived from dedicated internal oscillator)  
bit 5-3: CHS<2:0>: Analog Channel Select bits  
000= channel 0, (RA0/AN0)  
001= channel 1, (RA1/AN1)  
010= channel 2, (RA2/AN2)  
011= channel 3, (RA3/AN3)  
100= channel 4, (RA5/AN4)  
101= channel 5, (RE0/AN5)(1)  
110= channel 6, (RE1/AN6)(1)  
111= channel 7, (RE2/AN7)(1)  
bit 2:  
GO/DONE: A/D Conversion Status bit  
If ADON = 1  
1= A/D conversion in progress (setting this bit starts the A/D conversion)  
0= A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conver-  
sion is complete)  
bit 1:  
bit 0:  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter module is shutoff and consumes no operating current  
Note 1: A/D channels 5, 6 and 7 are implemented on the PIC16C765 only.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 89  
PIC16C745/765  
REGISTER 12-2: A/D CONTROL REGISTER 1 (ADCON1: 9Fh)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PCFG2  
PCFG1  
PCFG0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR  
reset  
bit 7-3: Unimplemented: Read as '0'  
bit 2-0: PCFG<2:0>: A/D Port Configuration Control bits  
PCFG<2:0> AN7  
AN6  
AN5  
AN4  
AN3  
AN2  
AN1  
AN0  
VREF  
VDD  
000  
001  
010  
011  
100  
101  
11x  
A
A
D
D
D
A
D
A
A
A
A
A
A
A
A
A
A
A
D
A
A
D
D
D
A
D
A
D
D
D
A
D
A
A
A
D
A
D
VREF  
A
A
A
A
D
A
D
A
A
A
A
A
D
RA3  
VDD  
AN3  
VDD  
AN3  
VDD  
VREF  
A
VREF  
D
A = Analog input  
D = Digital I/O  
DS41124A-page 90  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
The following steps should be followed for doing an A/D  
conversion:  
4. Start conversion:  
• Set GO/DONE bit (ADCON0)  
1. Configure the A/D module:  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
• Configure analog pins / voltage reference /  
and digital I/O (ADCON1)  
OR  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Waiting for the A/D interrupt  
6. Read A/D result register (ADRES), clear bit  
ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
• Set ADIE bit  
• Set GIE bit  
3. Wait the required acquisition time.  
FIGURE 12-1: A/D BLOCK DIAGRAM  
CHS<2:0>  
111  
RE2/AN7(1)  
110  
RE1/AN6(1)  
101  
RE0/AN5(1)  
100  
RA5/AN4  
VIN  
011  
(Input voltage)  
RA3/AN3/VREF  
010  
RA2/AN2  
A/D  
Converter  
001  
RA1/AN1  
000  
VDD  
RA0/AN0  
000or  
010or  
100or  
11x  
VREF  
(Reference  
voltage)  
001or  
011or  
101  
PCFG<2:0>  
Note 1: Not available on PIC16C745.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 91  
PIC16C745/765  
The maximum recommended impedance for ana-  
log sources is 10 k. After the analog input channel is  
selected (changed), the acquisition must pass before  
the conversion can be started.  
12.1  
A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 12-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD), Figure 12-2. The source impedance affects the  
offset voltage at the analog input (due to pin leakage  
current).  
To calculate the minimum acquisition time,  
Equation 12-1 may be used. This equation assumes  
that 1/2 LSb error is used (512 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
To calculate the minimum acquisition time, TACQ, see  
the PICmicro™ Mid-Range MCU Family Reference  
Manual (DS33023). In general, however, given a max  
of 10kand a worst case temperature of 100°C, TACQ  
will be no more than 16µsec.  
FIGURE 12-2: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CHOLD  
CPIN  
5 pF  
= DAC capacitance  
= 51.2 pF  
VA  
I leakage  
± 500 nA  
VT = 0.6V  
VSS  
6V  
5V  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
VDD 4V  
3V  
= leakage current at the pin due to  
various junctions  
I leakage  
2V  
= interconnect resistance  
= sampling switch  
RIC  
5 6 7 8 9 1011  
Sampling Switch  
SS  
CHOLD  
= sample/hold capacitance (from DAC)  
(k)  
EQUATION 12-1: ACQUISITION TIME  
TACQ  
=
Amplifier Settling Time +  
Hold Capacitor Charging Time +  
Temperature Coefficient  
=
TAMP + TC + TCOFF  
TAMP = 5µS  
TC = - (51.2pF)(1k+ RSS + RS) In(1/511)  
TCOFF = (Temp -25°C)(0.05µS/°C)  
DS41124A-page 92  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
12.2  
Selecting the A/D Conversion Clock  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 9.5TAD per 8-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The four possible options for TAD are:  
• 2TOSC  
• 8TOSC  
• 32TOSC  
• Dedicated Internal RC oscillator  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
TABLE 12-1: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Operation ADCS1:ADCS0  
Device Frequency  
5 MHz 1.25 MHz  
400 ns(2)  
1.6 µs  
20 MHz  
100 ns(2)  
333.33 kHz  
6 µs  
24 µs(3)  
96 µs(3)  
2 - 6 µs(1)  
2TOSC  
8TOSC  
32TOSC  
RC  
00  
01  
10  
11  
400 ns(2)  
1.6 µs  
6.4 µs  
1.6 µs  
2 - 6 µs(1,4)  
6.4 µs  
25.6 µs(3)  
2 - 6 µs(1,4)  
2 - 6 µs(1,4)  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: For device frequencies above 1 MHz, the device must be in SLEEP for the entire conversion, or the A/D  
accuracy may be out of specification.  
12.3  
Configuring Analog Port Pins  
12.4  
A/D Conversions  
The ADCON1, TRISA and TRISE registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their corresponding  
TRIS bits set (input). If the TRIS bit is cleared (output),  
the digital output level (VOH or VOL) will be converted.  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The ADRES register will  
NOT be updated with the partially completed A/D con-  
version sample. That is, the ADRES register will con-  
tinue to contain the value of the last completed  
conversion (or the last value written to the ADRES reg-  
ister). After the A/D conversion is aborted, a 2TAD wait  
is required before the next acquisition is started. After  
this 2TAD wait, an acquisition is automatically started on  
the selected channel.  
The A/D operation is independent of the state of the  
CHS<2:0> bits and the TRIS bits.  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
2: Analog levels on any pin that is defined as  
a digital input, but not as an analog input,  
may cause the input buffer to consume  
current that is out of specification.  
3: The TRISE register is not provided on the  
PIC16C745.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 93  
PIC16C745/765  
12.5  
A/D Operation During Sleep  
12.6  
Effects of a RESET  
The A/D module can operate during SLEEP mode.  
This requires that the A/D clock source be set to RC  
(ADCS<1:0> = 11). When the RC clock source is  
selected, the A/D module waits one instruction cycle  
before starting the conversion. This allows the SLEEP  
instruction to be executed, which eliminates all digital  
switching noise from the conversion. When the con-  
version is completed, the GO/DONE bit will be  
cleared, and the result loaded into the ADRES regis-  
ter. If the A/D interrupt is enabled, the device will  
wake-up from SLEEP. If the A/D interrupt is not  
enabled, the A/D module will then be turned off,  
although the ADON bit will remain set.  
A device reset forces all registers to their reset state.  
The A/D module is disabled and any conversion in  
progress is aborted. All pins with analog functions are  
configured as available inputs.  
The ADRES register will contain unknown data after a  
power-on reset.  
12.7  
Use of the CCP Trigger  
An A/D conversion can be started by the “special event  
trigger” of the CCP2 module. This requires that the  
CCP2M<3:0> bits (CCP2CON<3:0>) be programmed as  
1011 and that the A/D module is enabled (ADON bit is  
set). When the trigger occurs, the GO/DONE bit will be  
set, starting the A/D conversion, and the Timer1 counter  
will be reset to zero. Timer1 is reset to automatically  
repeat the A/D acquisition period with minimal software  
overhead (moving the ADRES to the desired location).  
The appropriate analog input channel must be selected  
and the minimum acquisition done before the “special  
event trigger” sets the GO/DONE bit (starts a conversion).  
When the A/D clock source is another clock option (not  
RC), a SLEEPinstruction will cause the present conver-  
sion to be aborted and the A/D module to be turned off,  
though the ADON bit will remain set.  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be set to RC  
(ADCS<1:0> = 11). To perform an A/D  
conversion in SLEEP, ensure the SLEEP  
instruction immediately follows the instruc-  
tion that sets the GO/DONE bit.  
If the A/D module is not enabled (ADON is cleared),  
then the “special event trigger” will be ignored by the  
A/D module, but will still reset the Timer1 counter.  
TABLE 12-2: SUMMARY OF A/D REGISTERS  
Value on: Value on all  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other  
Resets  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF 0000 000x 0000 000u  
0Bh,8Bh,  
10Bh,18Bh  
(1)  
PIR1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
USBIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
USBIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0Ch  
8Ch  
1Eh  
1Fh  
(1)  
PIE1  
ADRES  
A/D Result Register  
ADCON0 ADCS1 ADCS0 CHS2  
CHS1  
CHS0  
GO/  
ADON 0000 00-0 0000 00-0  
DONE  
ADCON1  
PCFG2  
PCFG1 PCFG0 ---- -000 ---- -000  
9Fh  
05h  
85h  
09h  
89h  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
PORTA  
TRISA  
PORTE  
TRISE  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
PORTA Data Direction Register  
(1)  
(1)  
(1)  
RE2  
RE1  
RE0  
(1)  
(1)  
(1)  
(1)  
(1)  
IBF  
OBF  
IBOV  
PSP-MODE  
PORTE Data Direction Bits  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: These bits are reserved on the PIC6C745; always maintain these bits clear.  
DS41124A-page 94  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
keep the chip in reset until the crystal oscillator is stable.  
The other is the Power-up Timer (PWRT), which pro-  
vides a fixed delay of 72 ms (nominal) on power-up only  
and is designed to keep the part in reset, while the  
power supply stabilizes. With these two timers on-chip,  
most applications need no external reset circuitry.  
13.0 SPECIAL FEATURES OF THE  
CPU  
What sets a microcontroller apart from other proces-  
sors are special circuits to deal with the needs of real-  
time applications. The PIC16C745/765 family has a  
host of such features intended to maximize system reli-  
ability, minimize cost through elimination of external  
components, provide power saving operating modes  
and offer code protection. These are:  
SLEEP mode is designed to offer a very low current  
power-down mode. The user can wake-up from SLEEP  
through external reset, WDT wake-up or through an  
interrupt. Several oscillator options are also made  
available to allow the part to fit the application. The EC  
oscillator allows the user to directly drive the microcon-  
troller, while the HS oscillator allows the use of a high  
speed crystal/resonator. A set of configuration bits are  
used to select various options.  
• Oscillator selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
13.1  
Configuration Bits  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
• Watchdog Timer (WDT)  
• SLEEP  
• Code protection  
• ID locations  
The user will note that address 2007h is beyond the user  
program memory space. In fact, it belongs to the special  
test/configuration memory space (2000h - 3FFFh),  
which can be accessed only during programming.  
• In-Circuit Serial Programming™ (ICSP)  
The PIC16C745/765 has a Watchdog Timer, which can  
be shut off only through configuration bits. It runs off its  
own dedicated RC oscillator for added reliability. There  
are two timers that offer necessary delays on power-up.  
One is the Oscillator Start-up Timer (OST), intended to  
REGISTER 13-1: CONFIGURATION WORD  
CP1  
CP0  
CP1  
CP0  
CP1  
CP0  
CP1  
CP0 PWRTE WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
Address 2007h  
bit13  
bit 13-12: CP<1:0>: Code Protection bits(1)  
11-10: 00= All memory is code protected  
9-8: 01= Upper 3/4th of program memory code protected  
5-4: 10= Upper half of program memory code protected  
11= Code protection off  
bit 7-6: Unimplemented: Read as ’1’  
bit 3:  
PWRTE: Power-up Timer Enable bit  
1 = PWRT disabled • No delay after Power-up reset or Brown-out reset  
0 = PWRT enabled • A delay of 4x WDT (72 ms) is present after Power-up and Brown-out  
bit 2:  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC<1:0>: Oscillator Selection  
00- HS- HS osc  
01- EC- External clock. CLKOUT on OSC2 pin  
10- H4- HS osc with 4x PLL enabled  
11- E4- External clock with 4x PLL enabled. CLKOUT on OSC2 pin  
Note 1: All of the CP<1:0> pairs have to be given the same value to enable the code protection scheme listed.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 95  
PIC16C745/765  
13.2  
Oscillator Configurations  
TABLE 13-1: CERAMIC RESONATORS  
Ranges Tested:  
13.2.1  
OSCILLATOR TYPES  
Mode  
Freq  
OSC1  
OSC2  
The PIC16C745/765 can be operated in four different  
oscillator modes. The user can program a configuration  
bit (FOSC0) to select one of these four modes:  
HS  
6.0 MHz  
TBD  
TBD  
These values are for design guidance only. See notes at  
bottom of page.  
•EC  
•E4  
•HS  
•H4  
External Clock  
TABLE 13-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
External Clock with PLL  
High Speed Crystal/Resonator  
High Speed Crystal/Resonator with PLL  
Osc Type  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
13.2.2 CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
TBD  
TBD  
HS  
6.0 MHz  
These values are for design guidance only. See notes at  
bottom of page.  
In HS mode, a crystal or ceramic resonator is con-  
nected to the OSC1/CLKIN and OSC2/CLKOUT pins to  
establish oscillation (Figure 13-1). The PIC16C745/  
765 oscillator design requires the use of a parallel cut  
crystal. Use of a series cut crystal may give a frequency  
out of the crystal manufacturers specifications. When in  
HS mode, the device can have an external clock source  
to drive the OSC1/CLKIN pin (Figure 13-2). In this  
mode, the oscillator start-up timer is active for a period  
of 1024*TOSC. See the PICmicro™ Mid-Range MCU  
Reference Manual (DS33023) for details on building an  
external oscillator.  
Note 1: Higher capacitance increases the stability  
of the oscillator, but also increases the start-  
up time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
3: Rs may be required in HS mode to avoid  
overdriving crystals with low drive level  
specification.  
4: When migrating from other PICmicro  
devices, oscillator performance should be  
verified.  
FIGURE 13-1: CRYSTAL/CERAMIC  
RESONATOR OPERATION  
5: Users should consult the USB Specification  
1.0 to ensure their resonator/crystal oscilla-  
tor meets the required jitter limits for USB  
operation.  
(HS OSC CONFIGURATION)  
OSC1  
To internal  
logic  
C1  
13.2.3 H4 MODE  
XTAL  
OSC2  
SLEEP  
Rf  
In H4 mode, a PLL module is switched on in-line with  
the clock provided across OSC1 and OCS2. The output  
of the PLL drives FINT.  
PIC16C745/765  
Rs  
C2  
Note1  
Note 1:  
A series resistor may be required for AT strip cut  
crystals.  
DS41124A-page 96  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
13.2.4 EXTERNAL CLOCK IN  
13.2.5 E4 MODE  
In EC mode, users may directly drive the PIC16C745/  
765 provided that this external clock source meets the  
AC/DC timing requirements listed in Section 17.4.  
Figure 13-2 below shows how an external clock circuit  
should be configured.  
In E4 mode, a PLL module is switched on in-line with  
the clock provided to OSC1. The output of the PLL  
drives FINT.  
Note: CLKOUT is the same frequency as OSC1 if  
in E4 mode, otherwise CLKOUT = OSC1/4.  
FIGURE 13-2: EXTERNAL CLOCK INPUT  
OPERATION (EC OSC  
CONFIGURATION)  
Clock from  
ext. system  
OSC1  
PIC16C745/765  
CLKOUT  
OSC2/CLKOUT  
FIGURE 13-3: OSCILLATOR/PLL CLOCK CONTROL  
6 MHz  
EC  
E4  
OSC2  
HS  
H4  
EC  
E4  
HS  
H4  
Q Clock  
24 MHz  
To Circuits  
Generator  
FINT  
OSC1  
4x PLL  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 13-4.  
The PICmicro® devices have a MCLR noise filter in the  
MCLR reset path. The filter will detect and ignore small  
pulses.  
13.3  
Reset  
The PIC16CXX differentiates between various kinds of  
reset:  
• Power-on Reset (POR)  
• MCLR reset during normal operation  
• MCLR reset during SLEEP  
• WDT Reset (normal operation)  
• Brown-out Reset (BOR)  
It should be noted that a WDT reset does not drive  
MCLR pin low.  
Some registers are not affected in any reset condition;  
their status is unknown on POR and unchanged in any  
other reset. Most other registers are reset to a “reset  
state” on POR, on the MCLR and WDT Reset, on  
MCLR reset during SLEEP, and on BOR. The TO and  
PD bits are set or cleared differently in different reset  
situations as indicated in Table 13-4. These bits are  
used in software to determine the nature of the reset.  
See Table 13-7 for a full description of reset states of all  
registers.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 97  
PIC16C745/765  
FIGURE 13-4: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
Time-out  
Reset  
WDT  
Module  
Power-on Reset  
VDD rise  
detect  
VDD  
Brown-out  
Reset  
S
R
OST/PWRT  
OST  
10-bit Ripple counter  
Chip Reset  
Q
OSC1  
PWRT  
10-bit Ripple counter  
Dedicated  
On-chip  
RC OSC  
Enable PWRT  
Enable OST  
DS41124A-page 98  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
13.4.4 BROWN-OUT RESET (BOR)  
13.4  
Resets  
If VDD falls below VBOR (parameter D005) for longer  
than TBOR (parameter #35), the brown-out situation  
will reset the device. If VDD falls below VBOR for less  
than TBOR, a reset may not occur.  
13.4.1 POWER-ON RESET (POR)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.5V - 2.1V). To  
take advantage of the POR, just tie the MCLR pin  
directly (or through a resistor) to VDD. This will elimi-  
nate external RC components usually needed to create  
a POR. A maximum rise time for VDD is specified. See  
Electrical Specifications for details.  
Once the brown-out occurs, the device will remain in  
brown-out reset until VDD rises above VBOR. The  
power-up timer then keeps the device in reset for  
TPWRT (parameter #33). If VDD should fall below VBOR  
during TPWRT, the brown-out reset process will restart  
when VDD rises above VBOR with the power-up timer  
reset. Since the device is intended to operate at 5V  
nominal only, the brown-out detect is always enabled  
and the device will reset when Vdd falls below the  
brown-out threshold. This device is unique in that the  
4WDT timer will not activate after a brown-out if  
PWRTE = 1 (inactive).  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature) must be met to ensure opera-  
tion. If these conditions are not met, the device must be  
held in reset until the operating conditions are met.  
Brown-out reset may be used to meet the startup con-  
ditions.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting.”  
13.4.5 TIME-OUT SEQUENCE  
On power-up, the time-out sequence is as follows: The  
PWRT delay starts (if enabled) when a POR reset  
occurs. Then OST starts counting 1024 oscillator  
cycles when PWRT ends (HS). When the OST ends,  
the device comes out of RESET.  
13.4.2 POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up from the POR. The PWRT oper-  
ates on an internal RC oscillator. The device is kept in  
reset as long as the PWRT is active. The PWRT’s time  
delay allows VDD to rise to an acceptable level. A con-  
figuration bit is provided to enable/disable the PWRT.  
If MCLR is kept low long enough, the time-outs will  
expire. Bringing MCLR high will begin execution imme-  
diately. This is useful for testing purposes or to synchro-  
nize more than one PIC16CXX device operating in  
parallel.  
The power-up time delay will vary from chip to chip due  
to VDD, temperature and process variation. See DC  
parameters for details (TPWRT, parameter #33).  
Table 13-5 shows the reset conditions for the STATUS,  
PCON and PC registers, while Table 13-7 shows the  
reset conditions for all the registers.  
13.4.3 OSCILLATOR START-UP TIMER (OST)  
The Oscillator Start-up Timer provides a delay of 1024  
oscillator cycles (from OSC1 input) after the PWRT  
delay. This ensures that the crystal oscillator or resona-  
tor has started and stabilized.  
13.4.6 POWER CONTROL/STATUS REGISTER  
(PCON)  
The Brown-out Reset Status bit, BOR, is unknown on a  
POR. It must be set by the user and checked on subse-  
quent resets to see if bit BOR was cleared, indicating a  
BOR occurred. The BOR bit is not predictable if the  
brown-out reset circuitry is disabled.  
The OST time-out is invoked only for HS mode and only  
on power-on reset or wake-up from SLEEP.  
The Power-on Reset Status bit, POR, is cleared on a  
POR and unaffected otherwise. The user must set this  
bit following a POR and check it on subsequent resets  
to see if it has been cleared.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 99  
PIC16C745/765  
13.5  
Time-out in Various Situations  
TABLE 13-3: RESET TIME-OUTS  
POR  
BORt  
Oscillator  
Wake-up  
Configuration  
from SLEEP  
PWRTE = 0  
PWRTE = 1  
1024TOSC  
PWRTE = 0  
PWRTE = 1  
1024TOSC  
HS  
H4  
TPWRT + 1024TOSC  
TPWRT + 1024TOSC  
1024TOSC  
TPWRT + TPLLRT +  
TPLLRT + 1024TOSC  
TPWRT + TPLLRT +  
TPLLRT + 1024TOSC  
TPLLRT +  
1024TOSC  
1024TOSC  
1024TOSC  
EC  
E4  
TPWRT  
0
TPWRT  
0
0
TPWRT + TPLLRT  
TPLLRT  
TPWRT + TPLLRT  
TPLLRT  
TPLLRT  
TABLE 13-4: STATUS BITS AND THEIR SIGNIFICANCE  
POR  
0
BOR  
TO  
1
PD  
1
x
x
x
0
1
1
1
1
Power-on Reset  
0
0
x
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
0
x
0
1
1
1
1
0
1
WDT Reset  
1
0
0
WDT Wake-up  
1
u
u
MCLR Reset during normal operation  
1
1
0
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 13-5: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
Condition  
STATUS  
Register  
PCON  
Register  
Counter  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
000x xuuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
Brown-out Reset  
000h  
Interrupt wake-up from SLEEP  
PC + 1(1)  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as ’0’.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
TABLE 13-6: REGISTERS ASSOCIATED WITH RESETS  
Value on:  
POR, BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
03h, 83h,  
103h, 183h  
Status  
PCON  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
0001 1xxx  
000q quuu  
POR  
BOR  
8Eh  
---- --qq ---- --uu  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'.  
DS41124A-page 100  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
TABLE 13-7: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Power-on Reset  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
Register  
W
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
PCL  
xxxx xxxx  
0000h  
uuuu uuuu  
0000h  
uuuu uuuu  
PC + 1(2)  
000q quuu(3)  
uuuu uuuu  
--0u 0000  
uuuu uuuu  
uu-- -uuu  
uuuu uuuu  
uuuq quuu(3)  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uu-- -uuu  
uuuu uuuu  
STATUS  
0001 1xxx  
FSR  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
xx-- -xxx  
xxxx xxxx  
PORTA  
PORTB  
PORTC  
PORTD(4)  
PORTE(4)  
PCLATH  
INTCON  
---- -xxx  
---- -uuu  
---- -uuu  
---u uuuu  
---0 0000  
0000 000x  
---0 0000  
0000 000u  
uuuu uuuu(1)  
uuuu uuuu(1)  
0000 0000  
---- ---0  
0000 0000  
---- ---0  
PIR1  
PIR2  
---- ---u(1)  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uu-- -uuu  
uuuu uuuu  
TMR1L  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 -00x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
11-- -111  
1111 1111  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 -00x  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
11-- -111  
1111 1111  
TMR1H  
T1CON  
TMR2  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
OPTION_REG  
TRISA  
TRISB  
TRISC  
TRISD(4)  
Legend:  
u
= unchanged,  
x = unknown, -= unimplemented bit, read as ’0’, q= value depends on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
3: See Table 13-5 for reset value for specific condition.  
4: PIC16C765 only.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 101  
PIC16C745/765  
TABLE 13-7: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
Power-on Reset  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
Register  
TRISE(4)  
0000 -111  
0000 -111  
uuuu -uuu  
PIE1  
0000 0000  
---- ---0  
0000 0000  
---- ---0  
---- --uu  
uuuu uuuu  
---- ---u  
---- --uu  
PIE2  
---- --0q(3)  
1111 1111  
0000 -010  
0000 0000  
---- -000  
PCON  
PR2  
1111 1111  
0000 -010  
0000 0000  
---- -000  
1111 1111  
uuuu -uuu  
uuuu uuuu  
---- -uuu  
TXSTA  
SPBRG  
ADCON1  
UIR  
--00 0000  
--00 0000  
0000 0000  
0000 0000  
---x xx--  
--x0 000-  
-000 0000  
0000 0000  
---- 0000  
---- 0000  
---- 0000  
--00 0000  
--00 0000  
0000 0000  
0000 0000  
---u uu--  
--xq qqq-  
-000 0000  
0000 0000  
---- 0000  
---- 0000  
---- 0000  
--00 0000  
--00 0000  
0000 0000  
0000 0000  
---u uu--  
--xq qqq-  
-000 0000  
0000 0000  
---- 0000  
---- 0000  
---- 0000  
UIE  
UEIR  
UEIE  
USTAT  
UCTRL  
UADDR  
USWSTAT  
UEP0  
UEP1  
UEP2  
Legend:  
u
= unchanged,  
x = unknown, -= unimplemented bit, read as ’0’, q= value depends on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
3: See Table 13-5 for reset value for specific condition.  
4: PIC16C765 only.  
DS41124A-page 102  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
13.6  
Interrupts  
Note: If an interrupt occurs while the Global  
Interrupt Enable (GIE) bit is being cleared,  
the GIE bit may unintentionally be re-  
enabled by the user’s Interrupt Service  
Routine (the RETFIE instruction). The  
events that would cause this to occur are:  
The interrupt control register (INTCON) records individ-  
ual interrupt requests in flag bits. It also has individual  
and global interrupt enable bits.  
Note: Individual interrupt flag bits are set, regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
1. An instruction clears the GIE bit while  
an interrupt is acknowledged.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupt’s flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set,  
regardless of the status of the GIE bit. The GIE bit is  
cleared on reset.  
2. The program branches to the inter-  
rupt vector and executes the interrupt  
service routine.  
3. The interrupt service routine com-  
pletes the execution of the RETFIE  
instruction. This causes the GIE bit to  
be set (enables interrupts), and the  
program returns to the instruction  
after the one which was meant to dis-  
able interrupts.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables interrupts.  
Perform the following to ensure that inter-  
rupts are globally disabled:  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
LOOP BCF  
INTCON, GIE ; Disable global  
interrupt bit  
BTFSC INTCON, GIE ; Global interrupt  
disabled?  
; NO, try again  
;
The peripheral interrupt flags are contained in the spe-  
cial function registers PIR1 and PIR2. The correspond-  
ing interrupt enable bits are contained in special  
function registers PIE1 and PIE2 and the peripheral  
interrupt enable bit is contained in special function reg-  
ister INTCON.  
;
GOTO LOOP  
:
;
;
;
Yes, continue  
with program  
flow  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack, and the PC is loaded  
with 0004h. Once in the interrupt service routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs. The latency  
is the same for one or two cycle instructions. Individual  
interrupt flag bits are set, regardless of the status of  
their corresponding mask bit or the GIE bit.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 103  
PIC16C745/765  
FIGURE 13-5: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
Tost(2)  
INTF flag  
Interrupt Latency(2)  
(INTCON<1>)  
GIE bit  
Processor in  
SLEEP  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
fetched  
Inst(0004h)  
Inst(PC + 2)  
Inst(0005h)  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
Inst(PC + 1)  
Inst(0004h)  
Note 1: HS oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale). This delay is not present in EC osc mode.  
3: GIE = ’1’ assumed. After wake- up, the processor jumps to the interrupt routine. If GIE = ’0’, execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
FIGURE 13-6: INTERRUPT LOGIC  
PSPIF(1)  
PSPIE(1)  
Wake-up (If in SLEEP mode)  
ADIF  
ADIE  
T0IF  
T0IE  
RCIF  
RCIE  
INTF  
INTE  
Interrupt to CPU  
TXIF  
TXIE  
RBIF  
RBIE  
USBIF  
USBIE  
PEIE  
GIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
CCP2IF  
CCP2IE  
The following table shows the interrupts for each device.  
Device  
T0IF INTF RBIF PSPIF ADIF RCIF TXIF USBIF CCP1IF TMR2IF TMR1IF CCP2IF  
PIC16C745  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PIC16C765  
Yes  
Yes  
Yes  
Yes  
Note 1: PIC16C765 only.  
DS41124A-page 104  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
13.6.1 INT INTERRUPT  
13.7  
Context Saving During Interrupts  
The external interrupt on RB0/INT pin is edge trig-  
gered: either rising, if bit INTEDG (OPTION_REG<6>)  
is set or falling, if the INTEDG bit is clear. When a valid  
edge appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the interrupt service rou-  
tine before re-enabling this interrupt. The INT interrupt  
can wake-up the processor from SLEEP, if bit INTE was  
set prior to going into SLEEP. The status of global inter-  
rupt enable bit GIE decides whether or not the proces-  
sor branches to the interrupt vector following wake-up.  
See Section 13.9 for details on SLEEP mode.  
During an interrupt, only the PC is saved on the stack.  
At the very least, W and STATUS should be saved to  
preserve the context for the interrupted program. All  
registers that may be corrupted by the ISR, such as  
PCLATH or FSR, should be saved.  
Example 13-1 stores and restores the STATUS, W and  
PCLATH registers. The register, W_TEMP, is defined in  
Common RAM, the last 16 bytes of each bank that may  
be accessed from any bank. The STATUS_TEMP and  
PCLATH_TEMP are defined in bank 0.  
The example:  
a) Stores the W register.  
b) Stores the STATUS register in bank 0.  
c) Stores the PCLATH register in bank 0.  
d) Executes the ISR code.  
13.6.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>). (Section 6.0)  
e) Restores the PCLATH register.  
f) Restores the STATUS register  
g) Restores W.  
13.6.3 PORTB INTERRUPT ON CHANGE  
Note  
that  
W_TEMP,  
STATUS_TEMP  
and  
PCLATH_TEMP are defined in the common RAM area  
(70h - 7Fh) to avoid register bank switching during con-  
text save and restore.  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>).  
(Section 5.2)  
Note: If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF inter-  
rupt flag may not get set.  
EXAMPLE 13-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
#define  
#define  
#define  
org  
W_TEMP  
0x70  
0x71  
0x72  
STATUS_TEMP  
PCLATH_TEMP  
0x04  
; start at Interrupt Vector  
; Save W register  
MOVWF  
W_TEMP  
MOVF  
MOVWF  
MOVF  
MOVWF  
:
STATUS,W  
STATUS_TEMP  
PCLATH,W  
PCLATH_TEMP  
; save STATUS  
; save PCLATH  
(Interrupt Service Routine)  
:
MOVF  
MOVWF  
MOVF  
MOVWF  
SWAPF  
SWAPF  
RETFIE  
PCLATH_TEMP,W  
PCLATH  
STATUS_TEMP,W  
STATUS  
W_TEMP,F  
W_TEMP,W  
;
; swapf loads W without affecting STATUS flags  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 105  
PIC16C745/765  
ratio of up to 1:128 can be assigned to the WDT under  
software control by writing to the OPTION register.  
Time-out periods up to 128 TWDT can be realized.  
13.8  
Watchdog Timer (WDT)  
The watchdog timer is a free running on-chip dedicated  
oscillator, which does not require any external compo-  
nents. The WDT will run, even if the clock on the OSC1/  
CLKIN and OSC2/CLKOUT pins of the device has  
been stopped, for example, by execution of a SLEEP  
instruction.  
The CLRWDT and SLEEP instructions clear the WDT  
and the postscaler, if assigned to the WDT. In addition,  
the SLEEPinstruction prevents the WDT from generat-  
ing a reset, but will allow the WDT to wake the device  
from sleep mode.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and resume normal operation (Watchdog  
Timer Wake-up).  
The TO bit in the STATUS register will be cleared upon  
a WDT time-out.  
13.8.2 WDT PROGRAMMING CONSIDERATIONS  
It should also be taken into account that under worst  
case conditions (VDD = Min., Temperature = Max., and  
max. WDT prescaler) it may take several seconds  
before a WDT time-out occurs.  
The WDT can be permanently disabled by clearing  
configuration bit WDTE (Section 13.1).  
13.8.1 WDT PERIOD  
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
The WDT has a nominal time-out period of 18 ms  
(parameter #31, TWDT). The time-out periods vary with  
temperature, VDD and process variations. If longer  
time-out periods are desired, a prescaler with a division  
FIGURE 13-7: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 6-1)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS<2:0>  
PSA  
WDT  
Enable Bit  
To TMR0 MUX  
(Figure 6-1)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS<2:0> are bits in the OPTION register.  
TABLE 13-8: SUMMARY OF WATCHDOG TIMER REGISTERS  
Value on  
All Other  
Resets  
Value on  
POR, BOR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(1)  
2007h  
Config. bits  
BODEN  
CP1  
CP0 PWRTE  
PSA  
WDTE PLL FOSC0  
PS2 PS1 PS0  
81h,181h OPTION_REG  
RBPU  
INTEDG  
T0CS T0SE  
1111 1111 1111 1111  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 13-1 for operation of these bits.  
DS41124A-page 106  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
Other peripherals cannot generate interrupts since dur-  
ing SLEEP, no on-chip Q clocks are present.  
13.9  
Power-Down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
instruction.  
If enabled, the WDT will be cleared but keeps running,  
the PD bit (STATUS<3>) is cleared, the TO (STA-  
TUS<4>) bit is set, and the oscillator driver is turned off.  
The I/O ports maintain the status they had, before the  
SLEEP instruction was executed (driving high, low, or  
hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D, and disable external clocks. Pull all I/O pins  
that are hi-impedance inputs, high or low externally, to  
avoid switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
13.9.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The MCLR pin must be at a logic high level (VIHMC).  
13.9.1 WAKE-UP FROM SLEEP  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bit will not be cleared.  
The device can wake up from SLEEP through one of  
the following events:  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake up from sleep. The SLEEPinstruction  
will be completely executed before the wake-up.  
Therefore, the WDT and WDT postscaler will be  
cleared, the TO bit will be set and the PD bit will  
be cleared.  
1. External reset input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was enabled).  
3. Interrupt from INT pin, RB port change or some  
Peripheral Interrupts.  
External MCLR reset will cause a device reset. All other  
events are considered a continuation of program exe-  
cution and cause a “wake-up”. The TO and PD bits in  
the STATUS register can be used to determine the  
cause of device reset. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked. The TO  
bit is cleared if a WDT time-out occurred (and caused  
wake-up).  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
The following peripheral interrupts can wake the device  
from SLEEP:  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
1. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
2. USB Interrupt  
3. CCP capture mode interrupt.  
4. Parallel slave port read or write. (PIC16C765  
only)  
5. A/D conversion (when A/D clock source is dedi-  
cated internal oscillator).  
6. USART TX or RX (synchronous slave mode).  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 107  
PIC16C745/765  
FIGURE 13-8: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
Tost(2)  
INTF flag  
Interrupt Latency(2)  
(INTCON<1>)  
GIE bit  
Processor in  
SLEEP  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1: HS oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale). This delay is not present in EC osc mode.  
3: GIE = ’1’ assumed. After wake- up, the processor jumps to the interrupt routine. If GIE = ’0’, execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
The device is placed into a program/verify mode by  
holding the RB6 and RB7 pins low, while raising the  
MCLR (VPP) pin from VIL to VIHH (see programming  
specification). RB6 becomes the programming clock  
and RB7 becomes the programming data. Both RB6  
and RB7 are Schmitt Trigger inputs in this mode.  
13.10 Program Verification/Code Protection  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
Note: Microchip does not recommend code pro-  
tecting windowed devices. Devices that are  
code protected may be erased, but not pro-  
grammed again.  
After reset, to place the device into programming/verify  
mode, the program counter (PC) is at location 00h. A  
6-bit command is then supplied to the device. Depend-  
ing on the command, 14 bits of program data are then  
supplied to or from the device, depending if the com-  
mand was a load or a read. For complete details of  
serial programming, please refer to the PIC16C6X/7X  
Programming Specifications (Literature #DS30228).  
13.11 ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are read-  
able and writable during program/verify. It is recom-  
mended that only the four least significant bits of the ID  
location are used.  
FIGURE 13-9: TYPICAL IN-CIRCUIT SERIAL  
PROGRAMMING  
CONNECTION  
13.12 In-Circuit Serial Programming  
To Normal  
Connections  
External  
Connector  
Signals  
PIC16CXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground and the programming volt-  
age. This allows customers to manufacture boards with  
unprogrammed devices, and then program the micro-  
controller just before shipping the product. This also  
allows the most recent firmware or a custom firmware  
to be programmed.  
PIC16CXX  
+5V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP  
RB6  
RB7  
CLK  
Data I/O  
VDD  
To Normal  
Connections  
DS41124A-page 108  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
14.0 INSTRUCTION SET SUMMARY  
Each PIC16CXX instruction is a 14-bit word divided  
into an OPCODE, which specifies the instruction type  
and one or more operands, which further specify the  
operation of the instruction. The PIC16CXX instruction  
set summary in Table 14-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 14-1  
shows the opcode field descriptions.  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
For byte-oriented instructions, ’f’ represents a file reg-  
ister designator and ’d’ represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
The destination designator specifies where the result of  
the operation is to be placed. If ’d’ is zero, the result is  
placed in the W register. If ’d’ is one, the result is placed  
in the file register specified in the instruction.  
Table 14-2 lists the instructions recognized by the  
MPASM assembler.  
For bit-oriented instructions, ’b’ represents a bit field  
designator which selects the number of the bit affected  
by the operation, while ’f’ represents the number of the  
file in which the bit is located.  
Figure 14-1 shows the general formats that the instruc-  
tions can have.  
Note: To maintain upward compatibility with  
future PIC16CXX products, do not use the  
OPTIONand TRISinstructions.  
For literal and control operations, ’k’ represents an  
eight or eleven bit constant or literal value.  
TABLE 14-1: OPCODE FIELD  
DESCRIPTIONS  
All examples use the following format to represent a  
hexadecimal number:  
0xhh  
Field  
Description  
where h signifies a hexadecimal digit.  
f
W
b
k
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
FIGURE 14-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Byte-oriented file register operations  
13  
8
7
6
0
0
Don’t care location (= 0 or 1)  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
OPCODE  
d
f (FILE #)  
x
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
Destination select; d = 0: store result in W,  
d = 1: store result in file register f. Default is d = 1  
d
label Label name  
TOS Top of Stack  
PC Program Counter  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
OPCODE  
f (FILE #)  
PCLATH  
Program Counter High Latch  
b = 3-bit bit address  
f = 7-bit file register address  
GIE Global Interrupt Enable bit  
WDT Watchdog Timer/Counter  
TO Time-out bit  
Literal and control operations  
General  
PD Power-down bit  
13  
8
7
0
0
Destination either the W register or the specified  
register file location  
dest  
OPCODE  
k (literal)  
[ ] Options  
k = 8-bit immediate value  
( ) Contents  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
Assigned to  
< > Register bit field  
In the set of  
k (literal)  
italics User defined term (font is courier)  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 109  
PIC16C745/765  
TABLE 14-2: PIC16CXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d Add W and f  
f, d AND W with f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0000 0011  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
f
-
Clear f  
Clear W  
f, d Complement f  
f, d Decrement f  
f, d Decrement f, Skip if 0  
f, d Increment f  
f, d Increment f, Skip if 0  
f, d Inclusive OR W with f  
f, d Move f  
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
f
-
Move W to f  
No Operation  
f, d Rotate Left f through Carry  
f, d Rotate Right f through Carry  
f, d Subtract W from f  
f, d Swap nibbles in f  
f, d Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b Bit Clear f  
f, b Bit Set f  
f, b Bit Test f, Skip if Clear  
f, b Bit Test f, Skip if Set  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
10bb bfff ffff  
11bb bfff ffff  
1,2  
1,2  
3
1 (2) 01  
1 (2) 01  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11  
11  
10  
00  
10  
11  
11  
00  
11  
00  
00  
11  
11  
111x kkkk kkkk C,DC,Z  
1001 kkkk kkkk  
0kkk kkkk kkkk  
Z
0000 0110 0100 TO,PD  
1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
1000 kkkk kkkk  
00xx kkkk kkkk  
0000 0000 1001  
01xx kkkk kkkk  
0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
0000 0110 0011 TO,PD  
110x kkkk kkkk C,DC,Z  
1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
Note: Additional information on the mid-range instruction set is available in the PICmicroMid-Range MCU Family  
Reference Manual (DS33023).  
DS41124A-page 110  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
14.1  
Instruction Descriptions  
Add Literal and W  
ADDLW  
ANDWF  
Syntax:  
AND W with f  
[label] ANDWF f,d  
0 f 127  
Syntax:  
[label] ADDLW  
0 k 255  
k
Operands:  
Operation:  
Operands:  
d
[0,1]  
(W) + k (W)  
Operation:  
(W) .AND. (f) (destination)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Z
The contents of the W register are  
added to the eight bit literal ’k’ and the  
result is placed in the W register.  
Description:  
AND the W register with register 'f'. If  
'd' is 0, the result is stored in the W  
register. If 'd' is 1, the result is stored  
back in register 'f'.  
ADDWF  
Syntax:  
Add W and f  
BCF  
Bit Clear f  
[label] ADDWF f,d  
0 f 127  
Syntax:  
Operands:  
[label] BCF f,b  
Operands:  
0 f 127  
0 b 7  
d
[0,1]  
Operation:  
(W) + (f) (destination)  
Operation:  
0 (f<b>)  
Status Affected: C, DC, Z  
Status Affected: None  
Add the contents of the W register  
Description:  
Description:  
Bit 'b' in register 'f' is cleared.  
with register ’f’. If ’d’ is 0, the result is  
stored in the W register. If ’d’ is 1, the  
result is stored back in register ’f’.  
ANDLW  
AND Literal with W  
BSF  
Bit Set f  
Syntax:  
[label] ANDLW  
k
Syntax:  
Operands:  
[label] BSF f,b  
Operands:  
Operation:  
Status Affected:  
Description:  
0 k 255  
0 f 127  
0 b 7  
(W) .AND. (k) (W)  
Operation:  
1 (f<b>)  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight bit literal 'k'.  
The result is placed in the W register.  
Description:  
Bit ’b’ in register ’f’ is set.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 111  
PIC16C745/765  
BTFSS  
Bit Test f, Skip if Set  
CLRF  
Clear f  
Syntax:  
[label] BTFSS f,b  
Syntax:  
[label] CLRF  
0 f 127  
f
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
00h (f)  
1 Z  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
If bit ’b’ in register ’f’ is ’0’, the next  
The contents of register ’f’ are  
cleared and the Z bit is set.  
instruction is executed.  
If bit ’b’ is ’1’, then the next instruc-  
tion is discarded and a NOPis exe-  
cuted instead making this a 2TCY  
instruction.  
CLRW  
Clear W  
BTFSC  
Bit Test, Skip if Clear  
Syntax:  
[ label ] CLRW  
None  
Syntax:  
[label] BTFSC f,b  
Operands:  
Operation:  
Operands:  
0 f 127  
0 b 7  
00h (W)  
1 Z  
Operation:  
skip if (f<b>) = 0  
Status Affected:  
Description:  
Z
Status Affected: None  
W register is cleared. Zero bit (Z)  
is set.  
Description:  
If bit ’b’ in register ’f’ is ’1’, the next  
instruction is executed.  
If bit ’b’, in register ’f’, is ’0’, the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a 2TCY instruction.  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
CALL  
Call Subroutine  
Operands:  
Operation:  
Syntax:  
[ label ] CALL k  
00h WDT  
0 WDT prescaler,  
1 TO  
Operands:  
Operation:  
0 k 2047  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
1 PD  
Status Affected: TO, PD  
Status Affected: None  
Description: CLRWDTinstruction resets the  
Description:  
Call Subroutine. First, return  
Watchdog Timer. It also resets  
the prescaler of the WDT. Status  
bits TO and PD are set.  
address (PC+1) is pushed onto  
the stack. The eleven bit immedi-  
ate address is loaded into PC bits  
<10:0>. The upper bits of the PC  
are loaded from PCLATH. CALLis  
a two cycle instruction.  
DS41124A-page 112  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
COMF  
Complement f  
[ label ] COMF f,d  
0 f 127  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 2047  
Syntax:  
Operands:  
Syntax:  
Operands:  
Operation:  
d
[0,1]  
k PC<10:0>  
Operation:  
(f) (destination)  
PCLATH<4:3> PC<12:11>  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ’f’ are  
complemented. If ’d’ is 0, the  
result is stored in W. If ’d’ is 1, the  
result is stored back in register ’f’.  
Description:  
GOTOis an unconditional branch.  
The eleven bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a two  
cycle instruction.  
DECF  
Decrement f  
[label] DECF f,d  
0 f 127  
INCF  
Increment f  
Syntax:  
Operands:  
Syntax:  
Operands:  
[ label ] INCF f,d  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(f) - 1 (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register ’f’. If ’d’ is 0,  
the result is stored in the W regis-  
ter. If ’d’ is 1, the result is stored  
back in register ’f’.  
The contents of register ’f’ are  
incremented. If ’d’ is 0, the result  
is placed in the W register. If ’d’ is  
1, the result is placed back in reg-  
ister ’f’.  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 127  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
[ label ] INCFSZ f,d  
0 f 127  
Operands:  
d
[0,1]  
Operands:  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
d
[0,1]  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Description: The contents of register ’f’ are  
Status Affected: None  
decremented. If ’d’ is 0, the result  
is placed in the W register. If ’d’ is  
1, the result is placed back in reg-  
ister ’f’.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
then a NOPis executed instead  
making it a 2TCY instruction.  
Description:  
The contents of register ’f’ are  
incremented. If ’d’ is 0, the result is  
placed in the W register. If ’d’ is 1,  
the result is placed back in regis-  
ter ’f’.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0, a  
NOPis executed instead making it  
a 2TCY instruction.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 113  
PIC16C745/765  
IORLW  
Inclusive OR Literal with W  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
(W) .OR. k (W)  
Z
k (W)  
Status Affected: None  
The contents of the W register are  
OR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
The eight bit literal 'k' is loaded into W  
register. The don’t cares will assem-  
ble as 0’s.  
Description:  
IORWF  
Inclusive OR W with f  
[ label ] IORWF f,d  
0 f 127  
MOVWF  
Syntax:  
Move W to f  
Syntax:  
[ label ] MOVWF  
0 f 127  
f
Operands:  
Operands:  
Operation:  
d
[0,1]  
(W) (f)  
Operation:  
(W) .OR. (f) (destination)  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
Move data from W register to reg-  
ister ’f’.  
Inclusive OR the W register with  
register ’f’. If ’d’ is 0 the result is  
placed in the W register. If ’d’ is 1  
the result is placed back in regis-  
ter ’f’.  
NOP  
No Operation  
[ label ] NOP  
None  
Syntax:  
MOVF  
Move f  
Operands:  
Operation:  
Syntax:  
Operands:  
[ label ] MOVF f,d  
0 f 127  
No operation  
d
[0,1]  
Status Affected: None  
Description: No operation.  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
The contents of register f are  
moved to a destination dependant  
upon the status of d. If d = 0, des-  
tination is W register. If d = 1, the  
destination is file register f itself. d  
= 1 is useful to test a file register  
since status flag Z is affected.  
DS41124A-page 114  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RLF  
Rotate Left f through Carry  
[ label ] RLF f,d  
0 f 127  
Syntax:  
Syntax:  
Operands:  
Operands:  
Operation:  
d
[0,1]  
TOS PC,  
1 GIE  
Operation:  
See description below  
C
Status Affected: None  
Status Affected:  
Description:  
The contents of register ’f’ are  
rotated one bit to the left through  
the Carry Flag. If ’d’ is 0, the  
result is placed in the W register.  
If ’d’ is 1, the result is stored back  
in register ’f’.  
C
Register f  
RETLW  
Return with Literal in W  
Syntax:  
[ label ] RETLW k  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 127  
Operands:  
Operation:  
0 k 255  
Syntax:  
Operands:  
k (W);  
TOS PC  
d
[0,1]  
Status Affected: None  
Operation:  
See description below  
C
Description:  
The W register is loaded with the  
Status Affected:  
Description:  
eight bit literal ’k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two cycle instruction.  
The contents of register ’f’ are  
rotated one bit to the right through  
the Carry Flag. If ’d’ is 0, the result  
is placed in the W register. If ’d’ is  
1, the result is placed back in reg-  
ister ’f’.  
C
Register f  
RETURN  
Syntax:  
Return from Subroutine  
[ label ] RETURN  
None  
SLEEP  
Operands:  
Operation:  
Syntax:  
[ label  
]
TOS PC  
SLEEP  
Status Affected: None  
Operands:  
Operation:  
None  
Description: Return from subroutine. The stack  
00h WDT,  
0 WDT prescaler,  
1 TO,  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two cycle  
instruction.  
0 PD  
Status Affected:  
Description:  
TO, PD  
The power-down status bit, PD is  
cleared. Time-out status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
See Section 13.9 for more  
details.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 115  
PIC16C745/765  
SUBLW  
Subtract W from Literal  
XORLW  
Exclusive OR Literal with W  
Syntax:  
[ label ]  
Syntax:  
[label]  
SUBLW k  
XORLW k  
Operands:  
Operation:  
0 k 255  
Operands:  
0 k 255  
k - (W) → (W)  
Operation:  
(W) .XOR. k → (W)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Z
Description:  
The W register is subtracted (2’s  
The contents of the W register  
are XOR’ed with the eight bit lit-  
eral 'k'. The result is placed in  
the W register.  
complement method) from the  
eight bit literal 'k'. The result is  
placed in the W register.  
XORWF  
Syntax:  
Exclusive OR W with f  
[label] XORWF f,d  
0 f 127  
SUBWF  
Subtract W from f  
Syntax:  
[ label ]  
SUBWF f,d  
Operands:  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) .XOR. (f) → (destination)  
Operation:  
(f) - (W) → (destination)  
Status Affected:  
Description:  
Z
Status Affected: C, DC, Z  
Exclusive OR the contents of the  
W register with register 'f'. If 'd' is  
0, the result is stored in the W  
register. If 'd' is 1, the result is  
stored back in register 'f'.  
Description:  
Subtract (2’s complement method)  
W register from register 'f'. If 'd' is 0,  
the result is stored in the W regis-  
ter. If 'd' is 1, the result is stored  
back in register 'f'.  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ] SWAPF f,d  
0 f 127  
Operands:  
d
[0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Status Affected: None  
Description:  
The upper and lower nibbles of  
register 'f' are exchanged. If 'd' is  
0, the result is placed in W regis-  
ter. If 'd' is 1, the result is placed in  
register 'f'.  
DS41124A-page 116  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
MPLAB allows you to:  
15.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Integrated Development Environment  
- MPLAB™ IDE Software  
• Debug using:  
- source files  
• Assemblers/Compilers/Linkers  
- MPASM Assembler  
- absolute listing file  
- object code  
- MPLAB-C17 and MPLAB-C18 C Compilers  
- MPLINK/MPLIB Linker/Librarian  
• Simulators  
The ability to use MPLAB with Microchip’s simulator,  
MPLAB-SIM, allows a consistent platform and the abil-  
ity to easily switch from the cost-effective simulator to  
the full featured emulator with minimal retraining.  
- MPLAB-SIM Software Simulator  
• Emulators  
- MPLAB-ICE Real-Time In-Circuit Emulator  
- PICMASTER®/PICMASTER-CE In-Circuit  
15.2  
MPASM Assembler  
Emulator  
MPASM is a full featured universal macro assembler for  
all PICmicro MCU’s. It can produce absolute code  
directly in the form of HEX files for device program-  
mers, or it can generate relocatable objects for  
MPLINK.  
- ICEPIC™  
• In-Circuit Debugger  
- MPLAB-ICD for PIC16F877  
• Device Programmers  
MPASM has a command line interface and a Windows  
shell and can be used as a standalone application on a  
Windows 3.x or greater system. MPASM generates  
relocatable object files, Intel standard HEX files, MAP  
files to detail memory usage and symbol reference, an  
absolute LST file which contains source lines and gen-  
erated machine code, and a COD file for MPLAB  
debugging.  
- PRO MATE II Universal Programmer  
- PICSTART Plus Entry-Level Prototype  
Programmer  
• Low-Cost Demonstration Boards  
- SIMICE  
- PICDEM-1  
- PICDEM-2  
- PICDEM-3  
MPASM features include:  
- PICDEM-17  
- SEEVAL  
• MPASM and MPLINK are integrated into MPLAB  
projects.  
- KEELOQ  
• MPASM allows user defined macros to be created  
for streamlined assembly.  
15.1  
MPLAB Integrated Development  
Environment Software  
• MPASM allows conditional assembly for multi pur-  
pose source files.  
• MPASM directives allow complete control over the  
assembly process.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. MPLAB is a Windows -based applica-  
tion which contains:  
15.3  
MPLAB-C17 and MPLAB-C18  
C Compilers  
• Multiple functionality  
- editor  
The MPLAB-C17 and MPLAB-C18 Code Development  
Systems are complete ANSI ‘C’ compilers and inte-  
grated development environments for Microchip’s  
PIC17CXXX and PIC18CXXX family of microcontrol-  
lers, respectively. These compilers provide powerful  
integration capabilities and ease of use not found with  
other compilers.  
- simulator  
- programmer (sold separately)  
- emulator (sold separately)  
• A full featured editor  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
• On-line help  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 117  
PIC16C745/765  
Interchangeable processor modules allow the system  
to be easily reconfigured for emulation of different pro-  
cessors. The universal architecture of the MPLAB-ICE  
allows expansion to support new PICmicro microcon-  
trollers.  
15.4  
MPLINK/MPLIB Linker/Librarian  
MPLINK is a relocatable linker for MPASM and  
MPLAB-C17 and MPLAB-C18. It can link relocatable  
objects from assembly or C source files along with pre-  
compiled libraries using directives from a linker script.  
The MPLAB-ICE Emulator System has been designed  
as a real-time emulation system with advanced fea-  
tures that are generally found on more expensive devel-  
opment tools. The PC platform and Microsoft® Windows  
3.x/95/98 environment were chosen to best make these  
features available to you, the end user.  
MPLIB is a librarian for pre-compiled code to be used  
with MPLINK. When a routine from a library is called  
from another source file, only the modules that contains  
that routine will be linked in with the application. This  
allows large libraries to be used efficiently in many dif-  
ferent applications. MPLIB manages the creation and  
modification of library files.  
MPLAB-ICE 2000 is a full-featured emulator system  
with enhanced trace, trigger, and data monitoring fea-  
tures. Both systems use the same processor modules  
and will operate across the full operating speed range  
of the PICmicro MCU.  
MPLINK features include:  
• MPLINK works with MPASM and MPLAB-C17  
and MPLAB-C18.  
• MPLINK allows all memory areas to be defined as  
sections to provide link-time flexibility.  
15.7  
PICMASTER/PICMASTER CE  
The PICMASTER system from Microchip Technology is  
a full-featured, professional quality emulator system.  
This flexible in-circuit emulator provides a high-quality,  
universal platform for emulating Microchip 8-bit  
PICmicro microcontrollers (MCUs). PICMASTER sys-  
tems are sold worldwide, with a CE compliant model  
available for European Union (EU) countries.  
MPLIB features include:  
• MPLIB makes linking easier because single librar-  
ies can be included instead of many smaller files.  
• MPLIB helps keep code maintainable by grouping  
related modules together.  
• MPLIB commands allow libraries to be created  
and modules to be added, listed, replaced,  
deleted, or extracted.  
15.8  
ICEPIC  
ICEPIC is a low-cost in-circuit emulation solution for the  
Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X, and PIC16CXX families of 8-bit one-time-  
programmable (OTP) microcontrollers. The modular  
system can support different subsets of PIC16C5X or  
PIC16CXX products through the use of interchangeable  
personality modules or daughter boards. The emulator is  
capable of emulating without target application circuitry  
being present.  
15.5  
MPLAB-SIM Software Simulator  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment by simulating  
the PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file or user-defined key press to any of the pins. The  
execution can be performed in single step, execute until  
break, or trace mode.  
15.9  
MPLAB-ICD In-Circuit Debugger  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C17 and MPLAB-C18 and MPASM. The Soft-  
ware Simulator offers the flexibility to develop and  
debug code outside of the laboratory environment mak-  
ing it an excellent multi-project software development  
tool.  
Microchip’s In-Circuit Debugger, MPLAB-ICD, is a pow-  
erful, low-cost run-time development tool. This tool is  
based on the flash PIC16F877 and can be used to  
develop for this and other PICmicro microcontrollers  
from the PIC16CXX family. MPLAB-ICD utilizes the In-  
Circuit Debugging capability built into the PIC16F87X.  
This feature, along with Microchip’s In-Circuit Serial  
Programming protocol, offers cost-effective in-circuit  
flash programming and debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by watching variables, single-step-  
ping and setting break points. Running at full speed  
enables testing hardware in real-time. The MPLAB-ICD  
is also a programmer for the flash PIC16F87X family.  
15.6  
MPLAB-ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLAB-ICE Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers (MCUs). Software control of  
MPLAB-ICE is provided by the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
“make” and download, and source debugging from a  
single environment.  
DS41124A-page 118  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
the PICDEM-1 board, on a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the MPLAB-ICE emulator and download the  
firmware to the emulator for testing. Additional proto-  
type area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
15.10 PRO MATE II Universal Programmer  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode. PRO MATE II is CE  
compliant.  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for instructions and error messages,  
keys to enter commands and a modular detachable  
socket assembly to support various package types. In  
stand-alone mode the PRO MATE II can read, verify or  
program PICmicro devices. It can also set code-protect  
bits in this mode.  
15.14 PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The MPLAB-ICE emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
usage of the I2C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
15.11 PICSTART Plus Entry Level  
Development System  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient.  
PICSTART Plus supports all PICmicro devices with up  
to 40 pins. Larger pin count devices such as the  
PIC16C92X, and PIC17C76X may be supported with  
an adapter socket. PICSTART Plus is CE compliant.  
15.12 SIMICE Entry-Level  
Hardware Simulator  
SIMICE is an entry-level hardware development sys-  
tem designed to operate in a PC-based environment  
with Microchip’s simulator MPLAB-SIM. Both SIMICE  
and MPLAB-SIM run under Microchip Technology’s  
MPLAB Integrated Development Environment (IDE)  
software. Specifically, SIMICE provides hardware sim-  
ulation for Microchip’s PIC12C5XX, PIC12CE5XX, and  
PIC16C5X families of PICmicro 8-bit microcontrollers.  
SIMICE works in conjunction with MPLAB-SIM to pro-  
vide non-real-time I/O port emulation. SIMICE enables  
a developer to run simulator code for driving the target  
system. In addition, the target system can provide input  
to the simulator code. This capability allows for simple  
and interactive debugging without having to manually  
generate MPLAB-SIM stimulus files. SIMICE is a valu-  
able debugging tool for entry-level system develop-  
ment.  
15.15 PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The MPLAB-ICE emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
15.13 PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 119  
PIC16C745/765  
15.16 PICDEM-17  
The PICDEM-17 is an evaluation board that demon-  
strates the capabilities of several Microchip microcon-  
trollers,  
including  
PIC17C752,  
PIC17C756,  
PIC17C762, and PIC17C766. All necessary hardware  
is included to run basic demo programs, which are sup-  
plied on a 3.5-inch disk. A programmed sample is  
included, and the user may erase it and program it with  
the other sample programs using the PRO MATE II or  
PICSTART Plus device programmers and easily debug  
and test the sample code. In addition, PICDEM-17 sup-  
ports down-loading of programs to and executing out of  
external FLASH memory on board. The PICDEM-17 is  
also usable with the MPLAB-ICE or PICMASTER emu-  
lator, and all of the sample programs can be run and  
modified using either emulator. Additionally, a gener-  
ous prototype area is available for user hardware.  
15.17 SEEVAL Evaluation and Programming  
System  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance Disk is included to aid in trade-  
off analysis and reliability calculations. The total kit can  
significantly reduce time-to-market and result in an  
optimized system.  
15.18 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
DS41124A-page 120  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
TABLE 15-1: DEVELOPMENT TOOLS FROM MICROCHIP  
5 1 2 0 P M C  
X X R X F C M  
X X  
H C S X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X C 8 2 C 1 P I  
X X 7 C 7 C 1 P I  
X 4 C 7 C 1 P I  
X X 9 C 6 C 1 P I  
X 8 X 1 6 C I F P  
X 8 C 6 C 1 P I  
X X 7 C 6 C 1 P I  
X 7 C 6 C 1 P I  
X 6 2 6 1 F C I P  
X X C 6 X C 1 P I  
X 6 C 6 C 1 P I  
X 5 C 6 C 1 P I  
0 0 4 0 1 C I P  
X X C 2 X C 1 P I  
s l o o e T a r f t o w S s r o t a u l E m e r g g b e u D s m e a r m o g P r r  
t i s K v a E l d a n d s a r o B o m e D  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 121  
PIC16C745/765  
NOTES:  
DS41124A-page 122  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
16.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings (†)  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR and RA4)........................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS ................................................................................................... -0.3V to +13.25V  
Voltage on RA4 with respect to Vss......................................................................................................... -0.3V to +10.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... ±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. ±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB, and PORTE (Note 2) (combined) ...................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (Note 2) (combined)..............................................200 mA  
Maximum current sunk by PORTC and PORTD (Note 2) (combined)..................................................................200 mA  
Maximum current sourced by PORTC and PORTD (Note 2) (combined).............................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
2: PORTD and PORTE not available on the PIC16C745.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation list-  
ings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 123  
PIC16C745/765  
FIGURE 16-1: VALID OPERATING REGIONS. FREQUENCY ON FINT.  
-40°C TA +85°C  
5.5 V  
5.25 V  
4.35 V  
4.0 V  
24 MHz  
Frequency  
DS41124A-page 124  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
16.1  
DC Characteristics:  
PIC16C745/765 (Commercial, Industrial)  
DC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
0°C TA ≤  
-40°C TA ≤  
+70°C for commercial  
+85°C for industrial  
Param  
Sym  
No.  
Characteristic  
Min Typ† Max Units  
Conditions  
D001  
VDD  
VDR  
Supply Voltage  
4.35  
5.25  
V
V
See Figure 16-1  
D002*  
RAM Data Retention  
Voltage (Note 1)  
1.5  
D003  
VPOR  
SVDD  
VDD Start Voltage to ensure  
internal  
Power-on Reset signal  
VSS  
V
See section on Power-on Reset for details  
D004*  
D004A*  
VDD Rise Rate to ensure inter-  
nal Power-on Reset signal  
0.05  
TBD  
V/mS PWRT enabled (PWRTE bit clear)  
V/mS PWRT disabled (PWRTE bit set)  
See section on Power-on Reset for details  
D005  
VBOR  
IDD  
Brown-out Reset  
voltage trip point  
3.65  
4.35  
V
Brown-out Reset is always active  
D010  
D013  
Supply Current  
(Note 2, 4)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA FINT = 24 MHz, VDD = 4.35V  
FINT = 24 MHz, VDD = 5.25V  
D020  
D021  
D021B  
IPD  
Power-down Current  
(Note 3, 4)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
µA  
µA  
VDD = 4.35V  
VDD = 5.25V  
Module Differential  
Current (Note 5, 6)  
Watchdog Timer  
Brown-out Reset  
Capture Compare PWM  
Analog  
Not suspend mode  
Suspend mode  
Phase Lock Loop  
D022*  
D022A*  
IWDT  
IBOR  
ICCP  
IA/D  
IUSB  
IUSB  
PLL  
6.0  
100  
20  
150  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
WDTE bit set, VDD = 4.35V  
BODEN bit set, VDD = 5.0V  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1A  
FOSC  
HS oscillator operating freq.  
H4 oscillator operating freg.  
EC oscillator operating freq.  
E4 oscillator operating freq.  
24  
6
24  
6
24  
6
24  
6
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
* These parameters are characterized but not tested.  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consump-  
tion.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the  
part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for  
design guidance only. This is not tested.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD  
or IPD measurement.  
6: Module differential currents measured at FINT = 24 MHz.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 125  
PIC16C745/765  
16.2  
DC Characteristics:  
PIC16C745/765 (Commercial, Industrial)  
DC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
0°C TA ≤  
-40°C TA ≤  
+70°C for commercial  
+85°C for industrial  
Operating voltage VDD range as described in DC spec Section 16.1  
and Section 16.2  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
with TTL buffer  
VSS  
0.8  
V
D030A  
D031  
D032  
D033  
with Schmitt Trigger buffer  
MCLR, OSC1 (in EC, E4 mode)  
OSC1 (in HS, H4 mode)  
Input High Voltage  
I/O ports  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.3 VDD  
V
V
V
For entire VDD range  
Note 1  
VIH  
D040  
D041  
D042  
D042A  
D043  
with TTL buffer  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
with Schmitt Trigger buffer  
MCLR  
0.8 VDD  
0.8 VDD  
0.7 VDD  
0.9 VDD  
For entire VDD range  
OSC1 (HS, H4 mode)  
OSC1 (in EC, E4 mode)  
Note 1  
Input Leakage Current  
(Notes 2, 3)  
D060  
IIL  
I/O ports  
±1  
µA VSS VPIN VDD,  
Pin at hi-impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
±5  
±5  
µA VSS VPIN VDD  
µA VSS VPIN VDD,  
HS osc mode  
D070  
IPURB  
AVIH  
PORTB weak pull-up current  
50  
250  
400  
µA VDD = 5V, VPIN = VSS  
D+ In  
D- In  
D+ Out  
D- Out  
D+ In  
D- In  
D+ Out  
D- Out  
V
V
V
V
V
V
V
V
AVOH  
AVIL  
AVOL  
*These parameters are characterized but not tested.  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: In EC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels repre-  
sent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
DS41124A-page 126  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
DC Characteristics:  
DC CHARACTERISTICS  
PIC16C745/765 (Commercial, Industrial) (CONTINUED)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
Operating voltage VDD range as described in DC spec  
Section 16.1 and Section 16.2  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Output Low Voltage  
I/O ports  
D080  
D083  
VOL  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.35V,  
-40°C to +85°C  
OSC2/CLKOUT (EC, E4 osc mode)  
IOL = 1.6 mA, VDD = 4.35V,  
-40°C to +85°C  
Output High Voltage  
D090  
D092  
D150*  
VOH  
VOD  
I/O ports (Note 3)  
VDD-0.7  
VDD-0.7  
V
V
V
IOH = -3.0 mA, VDD = 4.35V,  
-40°C to +85°C  
OSC2/CLKOUT (EC osc mode)  
IOH = -1.3 mA, VDD = 4.35V,  
-40°C to +85°C  
Open-Drain High Voltage  
10.5  
RA4 pin  
Capacitive Loading Specs on Out-  
put Pins  
D100  
D101  
COSC2 OSC2 pin  
15  
50  
pF In HS mode when external clock  
is used to drive OSC1.  
CIO  
All I/O pins and OSC2 (in EC mode)  
pF  
CVUSB Vusb regulation capacitor  
*These parameters are characterized but not tested.  
.01  
µF + 20%  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: In EC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels repre-  
sent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 127  
PIC16C745/765  
16.3  
AC (Timing) Characteristics  
16.3.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
DS41124A-page 128  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
16.3.2 TIMING CONDITIONS  
The temperature and voltages specified in Table 16-1  
apply to all timing specifications unless otherwise  
noted. Figure 16-2 specifies the load conditions for the  
timing specifications.  
TABLE 16-1: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
AC CHARACTERISTICS  
-40°C TA +85°C for industrial  
Operating voltage VDD range as described in DC spec Section 16.1 and  
Section 16.2. LC parts operate for commercial/industrial temperatures only.  
FIGURE 16-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load condition 1  
Load condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKOUT  
and USB pins, but including D and E(1)  
outputs as ports  
VSS  
CL = 15 pF for OSC2 output  
Note 1: PIC16C765 only.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 129  
PIC16C745/765  
16.3.3 TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 16-3: EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
4
Q4  
Q1  
OSC1  
3
3
1
4
2
CLKOUT  
FIGURE 16-4: CLOCK MULTIPLIER (PLL) PHASE RELATIONSHIP  
OSC1/  
CLKIN  
FINT  
Note 1: FINT represents the internal clock signal. FINT equals FOSC or CLKIN if the PLL is disabled. FINT  
equals 4x FOSC or 4x CLKIN if the PLL is enabled. TCY is always 4/FINT. FINT is OSC1 pin in EC  
mode, PLL disabled.  
2: FINT = OSC1 in EC mode with PLL disabled.  
DS41124A-page 130  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
TABLE 16-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
24  
Units Conditions  
1A  
FOSC  
External CLKIN Frequency  
(Note 1)  
24  
6
MHz EC osc mode  
MHz E4 osc mode  
MHz HS osc mode  
MHz H4 osc mode  
6
24  
6
Oscillator Frequency  
(Note 1)  
24  
6
1
TOSC  
TCY  
External CLKIN Period  
(Note 1)  
41  
167  
41  
167  
167  
41  
167  
41  
167  
DC  
ns  
ns  
ns  
ns  
ns  
ns  
EC osc modes  
E4 osc mode  
HS osc modes  
H4 osc mode  
TCY = 4/FINT  
EC oscillator  
Oscillator Period  
(Note 1)  
2
Instruction Cycle Time (Note 1)  
3*  
TOSL,  
TOSH  
External Clock in (OSC1) High or Low TBD  
Time  
4*  
TOSR, External Clock in (OSC1) Rise or Fall TBD  
TOSF Time  
25  
ns  
EC oscillator  
* These parameters are characterized but not tested.  
†Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period when the PLL is enabled, or the input  
oscillator time-base period divided by 4 when the PLL is disabled. All specified values are based on characterization data  
for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these  
specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices  
are tested to operate at “min.” values with an external clock applied to the OSC1/CLKIN pin. When an external clock input  
is used, the “Max.” cycle time limit is “DC” (no clock) for all devices.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 131  
PIC16C745/765  
FIGURE 16-5: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
FINT  
11  
10  
CLKOUT  
13  
12  
19  
18  
14  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: Refer to Figure 16-2 for load conditions.  
TABLE 16-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max  
Units Conditions  
10*  
TOSH2CKL OSC1to CLKOUT↓  
TOSH2CKH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
10  
10  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
11*  
12*  
200  
100  
100  
TCKR  
CLKOUT rise time  
13*  
TCKF  
CLKOUT fall time  
14*  
TCKL2IOV  
TIOV2CKH  
TCKH2IOI  
TOSH2IOV  
TOSH2IOI  
CLKOUT to Port out valid  
Port in valid before CLKOUT ↑  
Port in hold after CLKOUT ↑  
OSC1(Q1 cycle) to Port out valid  
0.5 TCY + 20  
15*  
TOSC + 200  
16*  
0
17*  
150  
18*  
OSC1(Q2 cycle) to Port input invalid (I/O in hold  
100  
200  
0
time)  
18A*  
19*  
TIOV2OSH Port input valid to OSC1(I/O in setup time)  
20*  
TIOR  
Port output rise time  
40  
80  
40  
80  
20A*  
21*  
TIOF  
Port output fall time  
21A*  
22††* TINP  
23††* TRBP  
INT pin high or low time  
TCY  
TCY  
ns  
ns  
RB<7:4> change INT high or low time  
* These parameters are characterized but not tested.  
†Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
††These parameters are asynchronous events not related to any internal clock edge.  
Note 1: Measurements are taken in EC Mode where CLKOUT output is 4 x TOSC.  
2: FINT = OSC1 when PLL  
DS41124A-page 132  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
FIGURE 16-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 16-2 for load conditions.  
FIGURE 16-7: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 16-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Param No. Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
30  
TMCL  
MCLR Pulse Width (low)  
2
µs  
VDD = 5V, -40°C to +85°C  
31*  
TWDT  
Watchdog Timer Time-out  
Period (No Prescaler)  
7
18  
33  
ms  
VDD = 5V, -40°C to +85°C  
32  
33*  
34  
TOST  
Oscillation Start-up Timer Period  
Power-up Timer Period  
28  
1024 TOSC  
ms  
µs  
TOSC = OSC1 period  
TPWRT  
TIOZ  
72  
132  
2.1  
VDD = 5V, -40°C to +85°C  
I/O Hi-impedance from MCLR  
Low or WDT reset  
35  
TBOR  
Brown-out Reset Pulse Width  
100  
µs  
VDD BVDD (D005)  
* These parameters are characterized but not tested.  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 133  
PIC16C745/765  
FIGURE 16-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 16-2 for load conditions.  
TABLE 16-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40*  
TT0H  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
No Prescaler  
0.5 TCY + 20  
ns Must also meet  
parameter 42  
10  
0.5 TCY + 20  
10  
ns  
41*  
42*  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
ns Must also meet  
parameter 42  
ns  
TCY + 40  
ns  
With Prescaler Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4,..., 256)  
N
45*  
46*  
47*  
TT1H  
TT1L  
TT1P  
T1CKI High Time Synchronous, Prescaler = 1  
0.5 TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler = 2,4,8  
15  
ns  
25  
ns  
Asynchronous  
30  
ns  
50  
ns  
T1CKI Low Time Synchronous, Prescaler = 1  
0.5 TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler = 2,4,8  
15  
25  
30  
50  
ns  
ns  
ns  
ns  
Asynchronous  
T1CKI input  
period  
Synchronous  
Asynchronous  
Greater of:  
30 OR TCY + 40  
ns N = prescale value  
(1, 2, 4, 8)  
N
Greater of:  
50 OR TCY + 40  
N
N = prescale value  
(1, 2, 4, 8)  
60  
100  
DC  
ns  
ns  
FT1  
Timer1 oscillator input frequency range  
200 kHz  
(oscillator enabled by setting bit T1OSCEN)  
48  
TCKEZTMR1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
* These parameters are characterized but not tested.  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
DS41124A-page 134  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
FIGURE 16-9: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 16-2 for load conditions.  
TABLE 16-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param  
No.  
Sym Characteristic  
Min  
0.5 TCY + 20  
Typ† Max Units Conditions  
50*  
TCCL CCP1 and CCP2 No Prescaler  
ns  
input low time  
With Prescaler  
10  
ns  
20  
ns  
51*  
TCCH CCP1 and CCP2 No Prescaler  
0.5 TCY + 20  
ns  
input high time  
With Prescaler  
10  
20  
ns  
ns  
52*  
53*  
TCCP CCP1 and CCP2 input period  
TCCR CCP1 and CCP2 output rise time  
3 TCY + 40  
ns N = prescale  
N
value (1,4, or 16)  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54*  
TCCF CCP1 and CCP2 output fall time  
* These parameters are characterized but not tested.  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 135  
PIC16C745/765  
FIGURE 16-10: PARALLEL SLAVE PORT TIMING (PIC16C745/765)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD<7:0>  
62  
64  
63  
Note: Refer to Figure 16-2 for load conditions.  
TABLE 16-7: PARALLEL SLAVE PORT REQUIREMENTS  
Param No. Sym  
Characteristic  
Min Typ†  
Max  
Units  
ns  
Conditions  
62*  
TDTV2WRH Data in valid before WRor CS(setup time)  
TWRH2DTI WRor CSto data–in invalid (hold time)  
20  
20  
35  
10  
63*  
ns  
ns  
64  
TRDL2DTV RDand CSto data–out valid  
TRDH2DTI RDor CSto data–out invalid  
80  
30  
ns  
65*  
ns  
*These parameters are characterized but not tested.  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
DS41124A-page 136  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
FIGURE 16-11: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
Note: Refer to Figure 16-2 for load conditions.  
122  
TABLE 16-8: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max  
Units Conditions  
120*  
TCKH2DTV  
SYNC XMIT (MASTER & SLAVE)  
Clock high to data out valid  
80  
ns  
ns  
ns  
ns  
ns  
ns  
100  
45  
121*  
122*  
TCKRF  
TDTRF  
Clock out rise time and fall time (Master Mode)  
Data out rise time and fall time  
50  
45  
50  
*These parameters are characterized but not tested.  
†Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
FIGURE 16-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK pin  
125  
RC7/RX/DT pin  
126  
Note: Refer to Figure 16-2 for load conditions.  
TABLE 16-9: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max  
Units Conditions  
125*  
TDTV2CKL  
SYNC RCV (MASTER & SLAVE)  
Data setup before CK (DT setup time)  
15  
ns  
ns  
126*  
TCKL2DTL  
Data hold after CK (DT hold time)  
15  
*These parameters are characterized but not tested.  
†Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 137  
PIC16C745/765  
TABLE 16-10: A/D CONVERTER CHARACTERISTICS:  
PIC16C745/765 (COMMERCIAL, INDUSTRIAL)  
Param  
Sym Characteristic  
NR Resolution  
EABS Total Absolute error  
Min  
Typ†  
Max  
8 bits  
Units Conditions  
No.  
A01  
A02  
bit  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
A03  
A04  
A05  
A06  
EIL  
Integral linearity error  
Differential linearity error  
Full scale error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
EDL  
EFS  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
EOFF Offset error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
A10  
A20  
A25  
A30  
Monotonicity (Note 3)  
guaranteed  
V
VSS VAIN VREF  
VREF Reference voltage  
2.5V  
VSS - 0.3  
VDD + 0.3  
VREF + 0.3  
10.0  
VAIN  
ZAIN  
Analog input voltage  
V
Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD  
A/D conversion current (VDD)  
10  
180  
90  
µA Average current consump-  
tion when A/D is on. (Note 1)  
µA  
IREF  
VREF input current (Note 2)  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN to charge  
CHOLD, see Section 12.1.  
During A/D Conversion cycle  
µA  
10  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
2: VREF current is from the RA3 pin or the VDD pin, whichever is selected as a reference input.  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
DS41124A-page 138  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
FIGURE 16-13: A/D CONVERSION TIMING  
BSF ADCON0, GO  
1 TCY  
134  
(TOSC/2) (1)  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note:  
If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 16-11: A/D CONVERSION REQUIREMENTS  
Param  
No.  
Sym Characteristic  
A/D clock period  
Min  
1.6  
Typ†  
Max  
Units Conditions  
130  
TAD  
µs  
µs  
TOSC based, VREF 3.0V  
2.0  
TOSC based,  
2.5V VREF 5.5V  
2.0  
3.0  
11  
4.0  
6.0  
6.0  
9.0  
11  
µs  
µs  
A/D RC Mode  
A/D RC Mode  
131  
132  
TCNV Conversion time (not including S/H time)  
TAD  
(Note 1)  
TACQ Acquisition time  
5*  
µs  
The minimum time is the ampli-  
fier settling time. This may be  
used if the “new” input voltage  
has not changed by more than 1  
LSb (i.e., 20.0 mV @ 5.12V)  
from the last sampled voltage  
(as stated on CHOLD).  
134  
135  
TGO  
Q4 to A/D clock start  
TOSC/2  
If the A/D clock source is  
selected as RC, a time of TCY is  
added before the A/D clock  
starts. This allows the SLEEP  
instruction to be executed.  
TSWC Switching from convert sample time  
1.5 §  
TAD  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 12.1 for min conditions.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 139  
PIC16C745/765  
FIGURE 16-14: MAXIMUM INPUT WAVEFORM TIMING SPECIFICATIONS  
66.7ns  
RSRC  
6MHz  
60ns  
min  
Pin  
V
4.6V  
-1.0V  
RSRC = 39± 2%  
4ns  
min  
4ns  
min  
20ns  
max  
20ns  
max  
Note 1: The D+/D- signals can withstand a continuous short to VBUS, GND, cable shield or any other signal.  
FIGURE 16-15: USB LOW SPEED SIGNALING  
Data Differential Lines  
90%  
90%  
72  
10%  
10%  
71  
70  
TABLE 16-12: USB AC AND DC SPECIFICATIONS  
Parameter Sym  
No.  
Characteristic  
Min TYP† Max  
Units Conditions  
70  
TLR  
Transition Rise Time  
75  
75  
1.3  
80  
300  
300  
2.0  
ns  
ns  
V
71  
72  
TLF  
Transition Fall Time  
VCRS  
TLRFM  
VIL  
Crossover Voltage  
Rise and Fall Time Matching  
Voltage Input Low  
125  
0.8  
%
V
VIH  
Voltage Input High  
2.0  
2.7  
0.2  
0.8  
0.0  
2.8  
2.7  
V
VIHZ  
Voltage Input High Floating  
Differential Input Sensitivity  
Differential Common Mode Range  
Voltage Output Low  
3.6  
V
V
V
V
V
V
(D+)-(D-)  
2.5  
0.3  
3.6  
3.6  
VOL  
VOH  
VUSB  
Voltage Output High  
USB Voltage Output  
DS41124A-page 140  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
17.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
Graphs and Tables not available at this time.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 141  
PIC16C745/765  
NOTES:  
DS41124A-page 142  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
18.0 PACKAGING INFORMATION  
18.1  
Package Marking Information  
28-Lead PDIP (Skinny DIP)  
Example  
Example  
MMMMMMMMMMMM  
XXXXXXXXXXXXXXX  
YYMMNNN  
PIC16C745/SP  
9917017  
28-Lead SOIC  
MMMMMMMMMMMMMMMM  
XXXXXXXXXXXXXXXXXXXX  
PIC16C745/SO  
9917017  
YYMMNNN  
28-Lead CERDIP Windowed  
Example  
PIC16C745/JW  
9905017  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask  
rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with  
your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 143  
PIC16C745/765  
Package Marking Information (Cont’d)  
40-Lead PDIP  
Example  
PIC16C765/P  
9917017  
MMMMMMMMMMMMMM  
XXXXXXXXXXXXXXXXXX  
YYMMNNN  
44-Lead TQFP  
Example  
MMMMMMMM  
XXXXXXXXXX  
XXXXXXXXXX  
PIC16C765/PT  
9917017  
YYMMNNN  
44-Lead PLCC  
Example  
MMMMMMMM  
XXXXXXXXXX  
XXXXXXXXXX  
YYMMNNN  
PIC16C765/L  
9917017  
DS41124A-page 144  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
β
B1  
A1  
p
eB  
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.100  
.150  
.130  
2.54  
3.81  
3.30  
Top to Seating Plane  
A
.140  
.160  
3.56  
4.06  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.125  
.015  
.300  
.279  
1.345  
.125  
.008  
.040  
.016  
.320  
5
.135  
3.18  
0.38  
7.62  
7.09  
34.16  
3.18  
0.20  
1.02  
0.41  
8.13  
5
3.43  
.313  
.307  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.335  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.94  
7.80  
34.67  
3.30  
0.29  
1.33  
0.48  
8.89  
10  
8.26  
8.51  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
eB  
α
β
5
10  
15  
5
10  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 145  
PIC16C745/765  
28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
E1  
p
D
B
2
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.050  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle Top  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
β
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
DS41124A-page 146  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
28-Lead Ceramic Dual In-line with Window (JW) – 600 mil (CERDIP)  
E1  
W
D
2
n
1
E
A2  
A
L
c
B1  
eB  
A1  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.100  
.185  
.160  
.038  
.600  
.520  
1.460  
.138  
.010  
.058  
.020  
.660  
.280  
2.54  
4.70  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.170  
.200  
.165  
.060  
.625  
.526  
1.490  
.150  
.012  
.065  
.023  
.710  
.290  
4.32  
5.08  
A2  
A1  
.155  
.015  
.595  
.514  
1.430  
.125  
.008  
.050  
.016  
.610  
.270  
3.94  
0.38  
4.06  
4.19  
1.52  
0.95  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
15.11  
13.06  
36.32  
3.18  
15.24  
13.21  
37.08  
3.49  
15.88  
13.36  
37.85  
3.81  
Tip to Seating Plane  
Lead Thickness  
c
0.20  
0.25  
0.30  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Diameter  
B1  
B
1.27  
1.46  
1.65  
0.41  
0.51  
0.58  
eB  
W
15.49  
6.86  
16.76  
7.11  
18.03  
7.37  
*Controlling Parameter  
JEDEC Equivalent: MO-103  
Drawing No. C04-013  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 147  
PIC16C745/765  
40-Lead Plastic Dual In-line (P) – 600 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
A
L
c
B1  
B
β
A1  
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
40  
MAX  
n
p
Number of Pins  
Pitch  
40  
.100  
.175  
.150  
2.54  
Top to Seating Plane  
A
.160  
.190  
.160  
4.06  
3.56  
4.45  
3.81  
4.83  
4.06  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.140  
.015  
.595  
.530  
2.045  
.120  
.008  
.030  
.014  
.620  
5
0.38  
15.11  
13.46  
51.94  
3.05  
0.20  
0.76  
0.36  
15.75  
5
.600  
.545  
2.058  
.130  
.012  
.050  
.018  
.650  
10  
.625  
.560  
2.065  
.135  
.015  
.070  
.022  
.680  
15  
15.24  
13.84  
52.26  
3.30  
0.29  
1.27  
0.46  
16.51  
10  
15.88  
14.22  
52.45  
3.43  
0.38  
1.78  
0.56  
17.27  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
eB  
α
β
5
10  
15  
5
10  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-011  
Drawing No. C04-016  
DS41124A-page 148  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
°
CH x 45  
α
A
c
φ
β
A1  
A2  
L
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.031  
11  
0.80  
11  
Pins per Side  
Overall Height  
n1  
A
.039  
.037  
.002  
.018  
.043  
.039  
.004  
.024  
.039  
3.5  
.047  
1.00  
0.95  
1.10  
1.00  
0.10  
0.60  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.041  
.006  
.030  
1.05  
0.15  
0.75  
0.05  
0.45  
1.00  
0
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.004  
.012  
.025  
5
7
.482  
.482  
.398  
.398  
.008  
.017  
.045  
15  
3.5  
12.00  
12.00  
10.00  
10.00  
0.15  
0.38  
0.89  
10  
7
12.25  
12.25  
10.10  
10.10  
0.20  
0.44  
1.14  
15  
Overall Width  
E
D
.472  
.472  
.394  
.394  
.006  
.015  
.035  
10  
11.75  
11.75  
9.90  
9.90  
0.09  
0.30  
0.64  
5
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
5
10  
15  
5
10  
15  
*Controlling Parameter  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-076  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 149  
PIC16C745/765  
44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)  
E
E1  
#leads=n1  
D
D1  
n 1 2  
CH2 x 45°  
CH1 x 45°  
α
A3  
A2  
A
35°  
B1  
B
c
A1  
β
p
E2  
D2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.050  
11  
1.27  
11  
Pins per Side  
Overall Height  
n1  
A
.165  
.145  
.020  
.024  
.040  
.000  
.685  
.685  
.650  
.650  
.590  
.590  
.008  
.026  
.013  
0
.173  
.153  
.028  
.029  
.045  
.005  
.690  
.690  
.653  
.653  
.620  
.620  
.011  
.029  
.020  
5
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
17.40  
17.40  
16.51  
16.51  
14.99  
14.99  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
17.53  
17.53  
16.59  
16.59  
15.75  
15.75  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.160  
.035  
.034  
.050  
.010  
.695  
.695  
.656  
.656  
.630  
.630  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
17.65  
17.65  
16.66  
16.66  
16.00  
16.00  
0.33  
0.81  
0.53  
10  
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
B1  
B
α
β
0
5
10  
0
5
10  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-048  
DS41124A-page 150  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
INDEX  
C
C bit ................................................................................... 22  
Capture/Compare/PWM  
A
A/D  
Capture  
ADCON0 Register ..................................................... 89  
Block Diagram ................................................... 53  
CCP1CON Register .......................................... 52  
CCP1IF ............................................................. 53  
Mode ................................................................. 53  
Prescaler ........................................................... 53  
CCP Timer Resources .............................................. 51  
Compare  
Analog Input Model Block Diagram............................. 92  
Analog-to-Digital Converter......................................... 89  
Block Diagram ........................................................... 91  
Configuring Analog Port Pins .................................... 93  
Configuring the Interrupt ............................................ 91  
Configuring the Module ............................................. 91  
Conversion Clock ...................................................... 93  
Conversions .............................................................. 93  
Converter Characteristics ........................................ 138  
Effects of a Reset ...................................................... 94  
Faster Conversion - Lower Resolution Tradeoff ........ 93  
Internal Sampling Switch (Rss) Impedance .............. 92  
Operation During Sleep ............................................. 94  
Sampling Requirements ............................................ 92  
Source Impedance .................................................... 92  
Timing Diagram ....................................................... 139  
Using the CCP Trigger .............................................. 94  
Absolute Maximum Ratings ............................................. 123  
ADRES Register ......................................................... 17, 89  
Application Notes  
Block Diagram ................................................... 54  
Mode ................................................................. 54  
Software Interrupt Mode ................................... 54  
Special Event Trigger ........................................ 54  
Special Trigger Output of CCP1 ....................... 54  
Special Trigger Output of CCP2 ....................... 54  
Interaction of Two CCP Modules.................... 51  
Section ...................................................................... 51  
Special Event Trigger and A/D Conversions ............. 54  
Capture/Compare/PWM (CCP)  
PWM Block Diagram ................................................. 54  
PWM Mode ............................................................... 54  
Timing Diagram ....................................................... 135  
CCP1CON ......................................................................... 19  
CCP2CON ......................................................................... 19  
CCPR1H Register ............................................... 17, 19, 51  
CCPR1L Register ....................................................... 19, 51  
CCPR2H Register ...................................................... 17, 19  
CCPR2L Register ....................................................... 17, 19  
Clocking Scheme .............................................................. 13  
Code Examples  
AN552, Implementing Wake-up on Key Strokes Using  
PIC16CXXX ............................................................... 33  
AN556, Table Reading Using PIC16CXX ................. 29  
AN607, Power-up Trouble Shooting .......................... 99  
Architecture  
Overview ..................................................................... 9  
Assembler  
MPASM Assembler ................................................. 117  
Call of a Subroutine in Page 1 from Page 0 .............. 29  
Changing Prescaler (Timer0 to WDT) ....................... 44  
Indirect Addressing ................................................... 30  
Initializing PORTA ..................................................... 31  
Code Protection ....................................................... 95, 108  
Computed GOTO .............................................................. 29  
Configuration Bits .............................................................. 95  
Control ............................................................................... 60  
CREN bit ........................................................................... 76  
CS pin ............................................................................... 40  
B
Baud Rate Formula ........................................................... 77  
Block Diagrams  
A/D ............................................................................ 91  
Analog Input Model ................................................... 92  
Capture ...................................................................... 53  
Compare .................................................................... 54  
On-Chip Reset Circuit ............................................... 98  
PORTC ...................................................................... 35  
PORTD (In I/O Port Mode) ........................................ 37  
PORTD and PORTE as a Parallel Slave Port ........... 40  
PORTE (In I/O Port Mode) ........................................ 38  
PWM .......................................................................... 54  
RA4/T0CKI Pin .......................................................... 31  
RB Port Pins .............................................................. 33  
RB Port Pins .............................................................. 33  
Timer0/WDT Prescaler .............................................. 43  
Timer2 ....................................................................... 49  
USART Receive ........................................................ 81  
USART Transmit ....................................................... 79  
Watchdog Timer ...................................................... 106  
BOR bit .............................................................................. 99  
BRGH bit ........................................................................... 77  
Brown-out Reset (BOR)  
D
DC bit ................................................................................ 22  
DC Characteristics ........................................ 125, 126, 127  
Development Support ................................................ 5, 117  
Direct Addressing .............................................................. 30  
E
EC Oscillator ................................................................... 100  
Electrical Characteristics ................................................. 123  
Endpoint ............................................................................ 70  
Errata .................................................................................. 3  
Error .................................................................................. 63  
F
FERR bit ............................................................................ 76  
FSR Register ................................................ 17, 18, 20, 30  
G
Timing Diagram ....................................................... 133  
Buffer Descriptor Table ...................................................... 68  
General Description ............................................................ 5  
GIE bit ............................................................................. 103  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 151  
PIC16C745/765  
I
K
I/O Ports ............................................................................31  
PORTA ......................................................................31  
PORTB ......................................................................33  
PORTC ......................................................................35  
PORTD ...............................................................37, 40  
PORTE ......................................................................38  
In-Circuit Serial Programming ..................................95, 108  
INDF ...........................................................................19, 20  
INDF Register ...................................................... 17, 18, 30  
Indirect Addressing ............................................................30  
Instruction Cycle ................................................................13  
Instruction Flow/Pipelining .................................................13  
Instruction Format ............................................................109  
Instruction Set  
KeeLoq Evaluation and Programming Tools ................ 120  
L
Loading of PC ................................................................... 29  
M
MCLR ....................................................................... 97, 100  
Memory  
Data Memory ............................................................. 15  
Program Memory ...................................................... 15  
Program Memory Maps  
PIC16C745/765 ................................................ 15  
MPLAB Integrated Development Environment Software 117  
O
OERR bit ........................................................................... 76  
OPCODE ......................................................................... 109  
OPTION Register .............................................................. 23  
OSC selection ................................................................... 95  
Oscillator  
E4 .............................................................................. 96  
EC ............................................................................. 96  
H4 .............................................................................. 96  
HS .................................................................... 96, 100  
Oscillator Configurations ................................................... 96  
Output of TMR2 ................................................................. 49  
ADDLW ....................................................................111  
ADDWF ...................................................................111  
ANDLW ....................................................................111  
ANDWF ...................................................................111  
BCF .........................................................................111  
BSF ..........................................................................111  
BTFSC .....................................................................112  
BTFSS .....................................................................112  
CALL ........................................................................112  
CLRF .......................................................................112  
CLRW ......................................................................112  
CLRWDT .................................................................112  
COMF ......................................................................113  
DECF .......................................................................113  
DECFSZ ..................................................................113  
GOTO ......................................................................113  
INCF ........................................................................113  
INCFSZ ....................................................................113  
IORLW .....................................................................114  
IORWF .....................................................................114  
MOVF ......................................................................114  
MOVLW ...................................................................114  
MOVWF ...................................................................114  
NOP .........................................................................114  
RETFIE ....................................................................115  
RETLW ....................................................................115  
RETURN ..................................................................115  
RLF ..........................................................................115  
RRF .........................................................................115  
SLEEP .....................................................................115  
SUBLW ....................................................................116  
SUBWF ....................................................................116  
SWAPF ....................................................................116  
XORLW ...................................................................116  
XORWF ...................................................................116  
Summary Table .......................................................110  
Instruction Set Summary .................................................109  
INT Interrupt ....................................................................105  
INTCON .............................................................................20  
INTCON Register ..............................................................24  
INTEDG bit ......................................................................105  
Internal Sampling Switch (Rss) Impedance .......................92  
Interrupts ..................................................................95, 103  
PortB Change ..........................................................105  
RB Port Change ........................................................33  
TMR0 .......................................................................105  
IRP bit ................................................................................22  
P
Packaging ....................................................................... 143  
Paging, Program Memory ................................................. 29  
Parallel Slave Port ...................................................... 37, 40  
Parallel Slave Port (PSP)  
Timing Diagram ....................................................... 136  
PCL Register ....................................................... 17, 18, 29  
PCLATH .......................................................................... 101  
PCLATH Register ......................................... 17, 18, 20, 29  
PCON Register ........................................................... 28, 99  
PD bit ......................................................................... 22, 97  
PICDEM-1 Low-Cost PICmicro Demo Board .................. 119  
PICDEM-2 Low-Cost PIC16CXX Demo Board ............... 119  
PICDEM-3 Low-Cost PIC16CXXX Demo Board ............. 119  
PICSTART Plus Entry Level Development System ..... 119  
PIE1 Register .................................................................... 25  
PIE2 Register .................................................................... 27  
Pinout Descriptions  
PIC16C745/765 ......................................................... 11  
PIR1 Register .................................................................... 26  
PIR2 Register .................................................................... 27  
POP ................................................................................... 29  
POR .................................................................................. 99  
Oscillator Start-up Timer (OST) ......................... 95, 99  
Power Control Register (PCON) ............................... 99  
Power-on Reset (POR) ............................. 95, 99, 101  
Power-up Timer (PWRT) ........................................... 95  
Power-Up-Timer (PWRT) .......................................... 99  
TO ............................................................................. 97  
POR bit .............................................................................. 99  
Port RB Interrupt ............................................................. 105  
PORTA ..................................................................... 20, 101  
PORTA Register ......................................................... 17, 31  
PORTB ..................................................................... 20, 101  
PORTB Register ......................................................... 17, 33  
PORTC ..................................................................... 20, 101  
PORTC Register ........................................................ 17, 35  
PORTD ..................................................................... 20, 101  
PORTD Register ........................................................ 17, 37  
PORTE ..................................................................... 20, 101  
DS41124A-page 152  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
PORTE Register ......................................................... 17, 38  
Power-down Mode (SLEEP) ............................................ 107  
Power-on Reset (POR)  
Timing Diagram......................................................... 133  
PR2 Register .............................................................. 18, 49  
PRO MATE II Universal Programmer ........................... 119  
Product Identification System .......................................... 159  
Program Counter  
PCLATH Register .................................................... 105  
Program Memory  
Paging ....................................................................... 29  
Program Memory Maps  
T
T1CKPS0 bit ..................................................................... 45  
T1CKPS1 bit ..................................................................... 45  
T1CON .............................................................................. 20  
T1CON Register ......................................................... 19, 45  
T1OSCEN bit .................................................................... 45  
T1SYNC bit ....................................................................... 45  
T2CKPS0 bit ..................................................................... 49  
T2CKPS1 bit ..................................................................... 49  
T2CON Register ......................................................... 19, 49  
TAD .................................................................................... 93  
Timer0  
PIC16C745/765 ......................................................... 15  
Program Verification ........................................................ 108  
PSPMODE bit ...................................................... 37, 38, 40  
PUSH ................................................................................. 29  
RTCC ...................................................................... 101  
Timing Diagram ....................................................... 134  
Timer1  
Timing Diagram ....................................................... 134  
Timers  
R
Timer0 ....................................................................... 43  
External Clock ................................................... 44  
Interrupt ............................................................. 43  
Prescaler ........................................................... 44  
Prescaler Block Diagram .................................. 43  
T0CKI ................................................................ 44  
T0IF ................................................................. 105  
TMR0 Interrupt ................................................ 105  
Timer1  
Asynchronous Counter Mode ........................... 47  
Capacitor Selection ........................................... 47  
Operation in Timer Mode .................................. 46  
Oscillator ........................................................... 47  
Prescaler ........................................................... 47  
Resetting of Timer1 Registers .......................... 47  
Resetting Timer1 using a CCP Trigger Output . 47  
Synchronized Counter Mode ............................ 46  
T1CON .............................................................. 45  
TMR1H .............................................................. 47  
TMR1L .............................................................. 47  
Timer2  
RBIF bit ..................................................................... 33, 105  
RCREG ................................................................................ 9  
RCSTA Register ......................................................... 19, 76  
RD pin ................................................................................ 40  
Register File ...................................................................... 15  
Registers  
FSR Summary ........................................................... 19  
INDF Summary .......................................................... 19  
INTCON Summary .................................................... 19  
PCL Summary ........................................................... 19  
PCLATH Summary .................................................... 19  
PORTB Summary ...................................................... 19  
Reset Conditions ..................................................... 100  
Special Function Register Summary ......................... 17  
STATUS Summary .................................................... 19  
TMR0 Summary ........................................................ 19  
TRISB Summary ....................................................... 20  
Reset .......................................................................... 95, 97  
Timing Diagram ....................................................... 133  
Reset Conditions for Special Registers ........................... 100  
RP0 bit ........................................................................ 15, 22  
RP1 bit ............................................................................... 22  
RX9 bit ............................................................................... 76  
RX9D bit ............................................................................ 76  
Block Diagram ................................................... 49  
Module .............................................................. 49  
Postscaler ......................................................... 49  
Prescaler ........................................................... 49  
T2CON .............................................................. 49  
Timing Diagrams  
S
SEEVAL Evaluation and Programming System ........... 120  
Services  
USART Asynchronous Master Transmission ............ 80  
USART Asynchronous Reception ............................. 81  
USART Synchronous Reception ............................... 86  
USART Synchronous Transmission .......................... 84  
Wake-up from Sleep via Interrupt .................. 104, 108  
Timing Diagrams and Specifications ............................... 130  
A/D Conversion ....................................................... 139  
Brown-out Reset (BOR) .......................................... 133  
Capture/Compare/PWM (CCP) ............................... 135  
CLKOUT and I/O ..................................................... 132  
External Clock ......................................................... 130  
Oscillator Start-up Timer (OST) .............................. 133  
Parallel Slave Port (PSP) ........................................ 136  
Power-up Timer (PWRT) ......................................... 133  
Reset ....................................................................... 133  
Timer0 and Timer1 .................................................. 134  
USART Synchronous Receive ( Master/Slave) ....... 137  
USART Synchronous Transmission  
One-Time-Programmable (OTP) ................................. 7  
Quick-Turnaround-Production (QTP) .......................... 7  
Serialized Quick-Turnaround Production (SQTP) ....... 7  
SLEEP ........................................................................ 95, 97  
Software Simulator (MPLAB-SIM) ................................... 118  
SPBRG Register ................................................................ 18  
Special Features of the CPU ............................................. 95  
Special Function Registers ................................................ 17  
PIC16C745/765 ......................................................... 17  
SPEN bit ............................................................................ 76  
SREN bit ............................................................................ 76  
SSPBUF ............................................................................ 19  
Stack .................................................................................. 29  
Overflows .................................................................. 29  
Underflow .................................................................. 29  
Status ................................................................................ 64  
STATUS Register ..................................................... 22, 105  
Synchronous Serial Port Module ....................................... 57  
( Master/Slave) ........................................................ 137  
Watchdog Timer (WDT) .......................................... 133  
TMR0 ................................................................................ 20  
TMR0 Register .................................................................. 17  
TMR1CS bit ....................................................................... 45  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 153  
PIC16C745/765  
TMR1H ..............................................................................20  
TMR1H Register ................................................................17  
TMR1L ...............................................................................20  
TMR1L Register ................................................................17  
TMR1ON bit .......................................................................45  
TMR2 .................................................................................20  
TMR2 Register ..................................................................17  
TMR2ON bit .......................................................................49  
TO bit .................................................................................22  
TOUTPS0 bit .....................................................................49  
TOUTPS1 bit .....................................................................49  
TOUTPS2 bit .....................................................................49  
TOUTPS3 bit .....................................................................49  
TRISA Register ...........................................................18, 31  
TRISB Register ...........................................................18, 33  
TRISC Register ..........................................................18, 35  
TRISD Register ..........................................................18, 37  
TRISE Register .................................................... 18, 38, 39  
TXREG ..............................................................................19  
TXSTA Register .................................................................75  
U
Universal Synchronous Asynchronous  
Receiver Transmitter (USART) ..........................................75  
USART  
Asynchronous Mode ..................................................79  
Asynchronous Receiver .............................................81  
Asynchronous Reception ...........................................82  
Asynchronous Transmitter .........................................79  
Baud Rate Generator (BRG) .....................................77  
Receive Block Diagram .............................................81  
Sampling ....................................................................77  
Synchronous Master Mode ........................................83  
Timing Diagram, Synchronous Receive ..........137  
Timing Diagram, Synchronous Transmission ..137  
Synchronous Master Reception ................................85  
Synchronous Master Transmission ...........................83  
Synchronous Slave Mode ..........................................87  
Synchronous Slave Reception ..................................87  
Synchronous Slave Transmit .....................................87  
Transmit Block Diagram ............................................79  
USB .......................................................21, 58, 60, 61, 62  
USB Address Register .......................................................66  
USB Control Register ........................................................65  
USB Endpoint Control Register...........................................67  
UV Erasable Devices ...........................................................7  
W
W Register .......................................................................105  
Wake-up from SLEEP .....................................................107  
Watchdog Timer (WDT) ............................95, 97, 100, 106  
Timing Diagram .......................................................133  
WDT ................................................................................100  
Block Diagram .........................................................106  
Period ......................................................................106  
Programming Considerations ..................................106  
Timeout ....................................................................101  
WR pin ...............................................................................40  
WWW, On-Line Support ......................................................3  
Z
Z bit ....................................................................................22  
DS41124A-page 154  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip’s development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-786-7302 for the rest of the world.  
981103  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
• Latest Microchip Press Releases  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICSTART, PICMASTER and PRO MATE are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries. FlexROM, MPLAB and fuzzy-  
LAB are trademarks and SQTP is a service mark of  
Microchip in the U.S.A.  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Sys-  
tems, technical information and more  
• Listing of seminars and events  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 155  
PIC16C745/765  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS41124A  
Device:  
PIC16C745/765  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS41124A-page 156  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C745/765  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature Package  
Range  
Pattern  
a) PIC16C745/P 301 = Commercial temp., PDIP  
package, 6 MHz, QTP pattern #301.  
Device  
PIC16C745(1), PIC16C745T(2)  
PIC16C765(1), PIC16C765T(2)  
Temperature Range  
Package  
blank  
I
=
=
0°C to  
70°C (Commercial)  
Note 1:  
Note 2:  
C
T
= CMOS  
= in tape and reel - SOIC,  
PLCC, TQFP, packages only.  
-40°C to +85°C (Industrial)  
JW  
PT  
SO  
SP  
P
=
=
=
=
=
=
Windowed CERDIP - 600 mil  
TQFP (Thin Quad Flatpack)  
SOIC  
Skinny plastic dip  
PDIP  
L
PLCC  
Pattern  
QTP Code or Special Requirements  
(blank otherwise)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 786-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41124A-page 157  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Beijing  
United Kingdom  
Microchip Technology, Beijing  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing 100027 PRC  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 86-10-85282100 Fax: 86-10-85282104  
India  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75248  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Japan  
France  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Italy  
Los Angeles  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
11/15/99  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
1999 Microchip Technology Inc.  

相关型号:

PIC16C745/SP

8-Bit CMOS Microcontrollers with USB
MICROCHIP

PIC16C745I/JW

8-Bit CMOS Microcontrollers with USB
MICROCHIP

PIC16C745I/L

8-Bit CMOS Microcontrollers with USB
MICROCHIP

PIC16C745I/P

8-Bit CMOS Microcontrollers with USB
MICROCHIP

PIC16C745I/PT

8-Bit CMOS Microcontrollers with USB
MICROCHIP

PIC16C745I/SO

8-Bit CMOS Microcontrollers with USB
MICROCHIP

PIC16C745I/SP

8-Bit CMOS Microcontrollers with USB
MICROCHIP

PIC16C745T

8-Bit CMOS Microcontrollers with USB
MICROCHIP

PIC16C745T-I/SO

8-BIT, OTPROM, 24 MHz, RISC MICROCONTROLLER, PDSO28, 0.300 INCH, PLASTIC, MS-013, SO-28
MICROCHIP

PIC16C745T/JW

8-Bit CMOS Microcontrollers with USB
MICROCHIP

PIC16C745T/L

8-Bit CMOS Microcontrollers with USB
MICROCHIP

PIC16C745T/P

8-Bit CMOS Microcontrollers with USB
MICROCHIP