PIC16C770-04/SS [MICROCHIP]

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D; 二十零分之一十八引脚, 8位CMOS微控制器10位/ 12位A / D
PIC16C770-04/SS
型号: PIC16C770-04/SS
厂家: MICROCHIP    MICROCHIP
描述:

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D
二十零分之一十八引脚, 8位CMOS微控制器10位/ 12位A / D

微控制器
文件: 总200页 (文件大小:2885K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C717/770/771  
18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D  
Microcontroller Core Features:  
Pin Diagram  
• High-performance RISC CPU  
20-Pin PDIP, SOIC, SSOP  
• Only 35 single word instructions to learn  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
7
8
RB3/CCP1/P1A  
RB2/SCK/SCL  
RA0/AN0  
• All single cycle instructions except for program  
branches which are two cycle  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
RA1/AN1/LVDIN  
RA7/OSC1/CLKIN  
RA6/OSC2/CLKOUT  
VDD  
RA4/T0CKI  
RA5/MCLR/VPP  
VSS  
AVSS  
AVDD  
Memory  
A/D  
A/D  
RB7/T1OSI/P1D  
RA2/AN2/VREF-/VRL  
Device  
Pins  
Program Data  
Resolution Channels  
RB6/T1OSO/T1CKI/P1C  
RB5/SDO/P1B  
RA3/AN3/VREF+/VRH  
RB0/AN4/INT  
x14  
2K  
2K  
4K  
x8  
12  
11  
9
PIC16C717  
PIC16C770  
PIC16C771  
256 18, 20  
10 bits  
12 bits  
12 bits  
6
6
6
10  
RB4/SDI/SDA  
RB1/AN5/SS  
256  
256  
20  
20  
Peripheral Features:  
• Interrupt capability (up to 10 internal/external  
interrupt sources)  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• Timer1: 16-bit timer/counter with prescaler,  
can be incremented during sleep via external  
crystal/clock  
• Eight level deep hardware stack  
• Direct, indirect and relative addressing modes  
• Power-on Reset (POR)  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Power-up Timer (PWRT) and  
Oscillator Start-up Timer (OST)  
• Enhanced Capture, Compare, PWM (ECCP)  
module  
- Capture is 16 bit, max. resolution is 12.5 ns  
- Compare is 16 bit, max. resolution is 200 ns  
- PWM max. resolution is 10 bit  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
• Selectable oscillator options:  
- INTRC - Internal RC, dual speed (4MHz and  
37KHz) dynamically switchable for power sav-  
ings  
- Enhanced PWM:  
- Single, Half-Bridge and Full-Bridge output  
modes  
- ER - External resistor, dual speed (user  
selectable frequency and 37KHz) dynami-  
cally switchable for power savings  
- Digitally programmable deadband delay  
• Analog-to-Digital converter:  
- PIC16C770/771 12-bit resolution  
- PIC16C717 10-bit resolution  
- EC - External clock  
- HS - High speed crystal/resonator  
- XT - Crystal/resonator  
- LP - Low power crystal  
• On-chip absolute bandgap voltage reference  
generator  
• Low-power, high-speed CMOS EPROM  
technology  
• Programmable Brown-out Reset (PBOR)  
circuitry  
• In-Circuit Serial Programming™ (ISCP)  
• Programmable Low-Voltage Detection (PLVD)  
circuitry  
• Wide operating voltage range: 2.5V to 5.5V  
• 15 I/O pins with individual control for:  
- Direction (15 pins)  
• Master Synchronous Serial Port (MSSP) with two  
modes of operation:  
- Digital/Analog input (6 pins)  
- PORTB interrupt on change (8 pins)  
- PORTB weak pull-up (8 pins)  
- High voltage open drain (1 pin)  
- 3-wire SPI™ (supports all 4 SPI modes)  
- I2C™ compatible including master mode  
support  
• Program Memory Read (PMR) capability for look-  
up table, character string storage and checksum  
calculation purposes  
• Commercial and Industrial temperature ranges  
• Low-power consumption:  
- < 2 mA @ 5V, 4 MHz  
- 22.5 µA typical @ 3V, 32 kHz  
- < 1 µA typical standby current  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 1  
PIC16C717/770/771  
Pin Diagrams  
18-Pin PDIP, SOIC  
20-Pin SSOP  
RA0/AN0  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
RB3/CCP1/P1A  
RB2/SCK/SCL  
18  
17  
16  
15  
14  
13  
12  
11  
10  
RA0/AN0  
1
2
3
4
5
6
7
8
9
RB3/CCP1/P1A  
RB2/SCK/SCL  
RA1/AN1/LVDIN  
RA1/AN1/LVDIN  
RA4/T0CKI  
3
RA7/OSC1/CLKIN  
RA4/T0CKI  
RA7/OSC1/CLKIN  
RA6/OSC2/CLKOUT  
VDD  
RA5/MCLR/VPP  
4
RA6/OSC2/CLKOUT  
RA5/MCLR/VPP  
(1)  
(2)  
VSS  
VDD  
5
VSS  
(1)  
(2)  
VSS  
VDD  
6
RA2/AN2/VREF-/VRL  
RB7/T1OSI/P1D  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
RB0/AN4/INT  
RB7/T1OSI/P1D  
7
RA3/AN3/VREF+/VRH  
RB0/AN4/INT  
RB6/T1OSO/T1CKI/P1C  
RB5/SDO/P1B  
8
RB6/T1OSO/T1CKI/P1C  
RB5/SDO/P1B  
9
12  
11  
RB1/AN5/SS  
RB4/SDI/SDA  
RB1/AN5/SS  
10  
RB4/SDI/SDA  
Note 1: VSS pins 5 and 6 must be tied together.  
2: VDD pins 15 and 16 must be tied together.  
Key Features  
PICmicroTM Mid-Range Reference Manual  
(DS33023)  
PIC16C717  
PIC16C770  
PIC16C771  
Operating Frequency  
Resets (and Delays)  
DC - 20 MHz  
DC - 20 MHz  
DC - 20 MHz  
POR, BOR, MCLR,  
WDT (PWRT, OST)  
POR, BOR, MCLR,  
WDT (PWRT, OST)  
POR, BOR, MCLR,  
WDT (PWRT, OST)  
Program Memory (14-bit words)  
Data Memory (bytes)  
Interrupts  
2K  
2K  
4K  
256  
256  
256  
10  
10  
10  
I/O Ports  
Ports A,B  
Ports A,B  
Ports A,B  
Timers  
3
1
3
1
3
1
Enhanced Capture/Compare/PWM (ECCP)  
modules  
Serial Communications  
12-bit Analog-to-Digital Module  
10-bit Analog-to-Digital Module  
Instruction Set  
MSSP  
MSSP  
MSSP  
6 input channels  
6 input channels  
6 input channels  
35 Instructions  
35 Instructions  
35 Instructions  
DS41120A-page 2  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
Table of Contents  
1.0 Device Overview................................................................................................................................................... 5  
2.0 Memory Organization.......................................................................................................................................... 11  
3.0 I/O Ports.............................................................................................................................................................. 27  
4.0 Program Memory Read (PMR) ........................................................................................................................... 43  
5.0 Timer0 Module.................................................................................................................................................... 47  
6.0 Timer1 Module.................................................................................................................................................... 49  
7.0 Timer2 Module.................................................................................................................................................... 53  
8.0 Enhanced Capture/Compare/PWM(ECCP) Modules ......................................................................................... 55  
9.0 Master Synchronous Serial Port (MSSP) Module............................................................................................... 67  
10.0 Voltage Reference Module and Low-voltage Detect......................................................................................... 109  
11.0 Analog-to-Digital Converter (A/D) Module ........................................................................................................ 113  
12.0 Special Features of the CPU ............................................................................................................................ 125  
13.0 Instruction Set Summary................................................................................................................................... 141  
14.0 Development Support ....................................................................................................................................... 149  
15.0 Electrical Characteristics................................................................................................................................... 155  
16.0 DC and AC Characteristics Graphs and Tables ............................................................................................... 177  
17.0 Packaging Information ...................................................................................................................................... 179  
Revision History ........................................................................................................................................................ 189  
Device Differences ..................................................................................................................................................... 189  
Index .......................................................................................................................................................................... 191  
On-Line Support.......................................................................................................................................................... 197  
Reader Response....................................................................................................................................................... 198  
PIC16C717/770/771 Product Identification System.................................................................................................... 199  
To Our Valued Customers  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended  
workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revi-  
sion of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure  
that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing  
or appears in error, please:  
Fill out and mail in the reader response form in the back of this data sheet.  
E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 3  
PIC16C717/770/771  
NOTES:  
DS41120A-page 4  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
There are three devices (PIC16C717, PIC16C770 and  
PIC16C771) covered by this datasheet. The  
PIC16C717 device comes in 18/20-pin packages and  
the PIC16C770/771 devices come in 20-pin packages.  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information.  
Additional information may be found in the PICmicroTM  
Mid-Range Reference Manual, (DS33023), which may  
be obtained from your local Microchip Sales Represen-  
tative or downloaded from the Microchip website. The  
Reference Manual should be considered a comple-  
mentary document to this data sheet, and is highly rec-  
ommended reading for a better understanding of the  
device architecture and operation of the peripheral  
modules.  
The following two figures are device block diagrams of  
the PIC16C717 and the PIC16C770/771.  
FIGURE 1-1: PIC16C717 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
RAM  
Program Counter  
EPROM  
RA0/AN0  
RA1/AN1/LVDIN  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
RA4/T0CKI  
Program  
Memory  
8 Level Stack  
File  
Registers  
2K x 14  
(13-bit)  
RA5/MCLR/VPP  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
256 x 8  
Program  
Bus  
14  
Program Memory  
Read (PMR)  
RAM  
Addr(1)  
9
Addr MUX  
Instruction reg  
PORTB  
7
Indirect  
Addr  
RB0/AN4/INT  
RB1/AN5/SS  
Direct Addr  
8
RB2/SCK/SCL  
RB3/CCP1/P1A  
RB4/SDI/SDA  
RB5/SDO/P1B  
RB6/T1OSO/T1CKI/P1C  
RB7/T1OSI/P1O  
FSR reg  
STATUS reg  
8
Internal  
4MHz, 37KHz  
and ER mode  
3
MUX  
Instruction  
Decode &  
Control  
Power-up  
Timer  
ALU  
Timing  
Generation  
Oscillator  
Start-up Timer  
8
OSC1/CLKIN  
OSC2/CLKOUT  
Power-on  
Reset  
W reg  
VDD, VSS  
Watchdog  
Timer  
Brown-out  
Reset  
10-bit  
Bandgap  
Low-voltage  
ADC  
Reference  
Detect  
Timer0  
Timer1  
Timer2  
Master  
Synchronous  
Serial Port (MSSP)  
Enhanced CCP  
(ECCP1)  
Note 1: Higher order bits are from the STATUS register.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 5  
PIC16C717/770/771  
FIGURE 1-2: PIC16C770/771 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0/AN0  
EPROM  
RA1/AN1/LVDIN  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
RA4/T0CKI  
RA5/MCLR/VPP  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
Program  
RAM  
File  
Registers  
Memory(2)  
8 Level Stack  
(13-bit)  
256 x 8  
Program  
Bus  
14  
Program Memory  
Read (PMR)  
RAM  
Addr(1)  
9
Addr MUX  
Instruction reg  
PORTB  
7
Indirect  
Addr  
Direct Addr  
RB0/AN4/INT  
RB1/AN5/SS  
8
RB2/SCK/SCL  
RB3/CCP1/P1A  
RB4/SDI/SDA  
RB5/SDO/P1B  
RB6/T1OSO/T1CKI/P1C  
RB7/T1OSI/P1O  
FSR reg  
STATUS reg  
8
Internal  
4MHz, 37KHz  
and ER mode  
3
MUX  
Instruction  
Decode &  
Control  
Power-up  
Timer  
ALU  
Timing  
Generation  
Oscillator  
Start-up Timer  
8
OSC1/CLKIN  
OSC2/CLKOUT  
Power-on  
Reset  
W reg  
VDD, VSS  
Watchdog  
Timer  
Brown-out  
Reset  
AVDD  
AVSS  
12-bit  
ADC  
Bandgap  
Reference  
Low-voltage  
Detect  
Timer0  
Timer1  
Timer2  
Master  
Synchronous  
Serial Port (MSSP)  
Enhanced CCP  
(ECCP1)  
Note 1: Higher order bits are from the STATUS register.  
2: Program memory for PIC16C770 is 2K x 14. Program memory for PIC16C771 is 4K x 14.  
DS41120A-page 6  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 1-1:  
PIC16C770/771 PINOUT DESCRIPTION  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
RA0  
AN0  
ST  
AN  
ST  
AN  
AN  
ST  
AN  
AN  
CMOS  
Bi-directional I/O  
RA0/AN0  
A/D input  
RA1  
CMOS  
Bi-directional I/O  
RA1/AN1/LVDIN  
AN1  
A/D input  
LVDIN  
RA2  
LVD input reference  
Bi-directional I/O  
CMOS  
AN2  
A/D input  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
VREF-  
VRL  
Negative analog reference input  
Internal voltage reference low output  
Bi-directional I/O  
AN  
RA3  
ST  
AN  
AN  
CMOS  
AN3  
A/D input  
VREF+  
VRH  
RA4  
Positive analog reference input  
Internal voltage reference high output  
Bi-directional I/O  
AN  
OD  
ST  
ST  
RA4/T0CKI  
T0CKI  
RA5  
TMR0 clock input  
ST  
Input port  
RA5/MCLR/VPP  
MCLR  
VPP  
ST  
Master clear  
Power  
ST  
Programming voltage  
Bi-directional I/O  
RA6  
CMOS  
XTAL  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
RB0/AN4/INT  
OSC2  
CLKOUT  
RA7  
Crystal/resonator  
CMOS  
CMOS  
FOSC/4 output  
ST  
XTAL  
ST  
Bi-directional I/O  
OSC1  
CLKIN  
RB0  
Crystal/resonator  
External clock input/ER resistor connection  
(1)  
TTL  
AN  
CMOS  
CMOS  
Bi-directional I/O  
AN4  
A/D input  
INT  
ST  
Interrupt input  
(1)  
RB1  
TTL  
AN  
Bi-directional I/O  
RB1/AN5/SS  
AN5  
A/D input  
SS  
ST  
SSP slave select input  
(1)  
RB2  
TTL  
ST  
CMOS  
CMOS  
OD  
Bi-directional input  
RB2/SCK/SCL  
RB3/CCP1/P1A  
RB4/SDI/SDA  
SCK  
SCL  
Serial clock I/O for SPI  
2
ST  
Serial clock I/O for I C  
(1)  
RB3  
TTL  
ST  
CMOS  
CMOS  
CMOS  
CMOS  
Bi-directional input  
CCP1  
P1A  
Capture 1 input/Compare 1 output  
PWM P1A output  
(1)  
RB4  
TTL  
ST  
Bi-directional input  
SDI  
Serial data in for SPI  
2
SDA  
RB5  
ST  
OD  
Serial data I/O for I C  
(1)  
ST  
CMOS  
CMOS  
CMOS  
Bi-directional I/O  
RB5/SDO/P1B  
SDO  
P1B  
Serial data out for SPI  
PWM P1B output  
Note 1: Bit programmable pull-ups.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 7  
PIC16C717/770/771  
TABLE 1-1:  
PIC16C770/771 PINOUT DESCRIPTION (CONTINUED)  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
(1)  
RB6  
T1OSO  
T1CKI  
P1C  
TTL  
CMOS  
XTAL  
Bi-directional I/O  
Crystal/Resonator  
TMR1 clock input  
PWM P1C output  
RB6/T1OSO/T1CKI/P1C  
RB7/T1OSI/P1D  
ST  
CMOS  
CMOS  
(1)  
RB7  
TTL  
Bi-directional I/O  
T1OSI  
P1D  
XTAL  
TMR1 crystal/resonator  
PWM P1D output  
CMOS  
VSS  
VDD  
VSS  
Power  
Power  
Power  
Power  
Ground reference for logic and I/O pins  
Positive supply for logic and I/O pins  
Ground reference for analog  
VDD  
AVSS  
AVDD  
AVSS  
AVDD  
Positive supply for analog  
Note 1: Bit programmable pull-ups.  
DS41120A-page 8  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 1-2:  
PIC16C717 PINOUT DESCRIPTION  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
RA0  
AN0  
ST  
AN  
ST  
AN  
AN  
ST  
AN  
AN  
CMOS  
Bi-directional I/O  
RA0/AN0  
A/D input  
RA1  
CMOS  
Bi-directional I/O  
RA1/AN1/LVDIN  
AN1  
A/D input reference  
LVD input reference  
Bi-directional I/O  
LVDIN  
RA2  
CMOS  
AN2  
A/D input  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
VREF-  
VRL  
Negative analog reference input  
Internal voltage reference low output  
Bi-directional I/O  
AN  
RA3  
ST  
AN  
AN  
CMOS  
AN3  
A/D input  
VREF+  
VRH  
RA4  
Positive analog reference high output  
Internal voltage reference high output  
Bi-directional I/O  
AN  
OD  
ST  
ST  
RA4/T0CKI  
T0CKI  
RA5  
TMR0 clock input  
ST  
Input port  
RA5/MCLR/VPP  
MCLR  
VPP  
ST  
Master Clear  
Power  
ST  
Programming Voltage  
Bi-directional I/O  
RA6  
CMOS  
XTAL  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
RB0/AN4/INT  
OSC2  
CLKOUT  
RA7  
Crystal/Resonator  
CMOS  
CMOS  
FOSC/4 output  
ST  
XTAL  
ST  
Bi-directional I/O  
OSC1  
CLKIN  
RB0  
Crystal/Resonator  
External clock input/ER resistor connection  
(1)  
TTL  
AN  
CMOS  
CMOS  
Bi-directional I/O  
AN4  
A/D input  
INT  
ST  
Interrupt input  
(1)  
RB1  
TTL  
AN  
Bi-directional I/O  
RB1/AN5/SS  
AN5  
A/D input  
SS  
ST  
SSP slave select input  
(1)  
RB2  
TTL  
ST  
CMOS  
CMOS  
OD  
Bi-directional input  
RB2/SCK/SCL  
RB3/CCP1/P1A  
RB4/SDI/SDA  
SCK  
SCL  
Serial clock I/O for SPI  
2
ST  
Serial clock I/O for I C  
(1)  
RB3  
TTL  
ST  
CMOS  
CMOS  
CMOS  
CMOS  
Bi-directional input  
CCP1  
P1A  
Capture 1 input/Compare 1 output  
PWM P1A output  
(1)  
RB4  
TTL  
ST  
ST  
ST  
Bi-directional input  
SDI  
Serial data in for SPI  
2
SDA  
RB5  
OD  
Serial data I/O for I C  
(1)  
CMOS  
CMOS  
CMOS  
Bi-directional I/O  
RB5/SDO/P1B  
SDO  
P1B  
Serial data out for SPI  
PWM P1B output  
Note 1: Bit programmable pull-ups.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 9  
PIC16C717/770/771  
TABLE 1-2:  
PIC16C717 PINOUT DESCRIPTION (CONTINUED)  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
(1)  
RB6  
T1OSO  
T1CKI  
P1C  
TTL  
CMOS  
XTAL  
Bi-directional I/O  
TMR1 Crystal/Resonator  
TMR1 Clock input  
RB6/T1OSO/T1CKI/P1C  
RB7/T1OSI/P1D  
ST  
CMOS  
CMOS  
PWM P1C output  
(1)  
RB7  
TTL  
Bi-directional I/O  
T1OSI  
P1D  
XTAL  
TMR1 Crystal/Resonator  
PWM P1D output  
Ground  
CMOS  
VSS  
VDD  
VSS  
Power  
Power  
VDD  
Positive Supply  
Note 1: Bit programmable pull-ups.  
DS41120A-page 10  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 2-2: PROGRAM MEMORY MAP  
AND STACK OF THE  
2.0  
MEMORY ORGANIZATION  
There are two memory blocks in each of these  
PICmicro® microcontrollers. Each block (Pro-  
gram Memory and Data Memory) has its own bus,  
so that concurrent access can occur.  
PIC16C771  
PC<12:0>  
Additional information on device memory may be found  
CALL, RETURN  
RETFIE, RETLW  
13  
in the PICmicro  
(DS33023).  
Mid-Range Reference Manual,  
Stack Level 1  
Stack Level 2  
2.1  
Program Memory Organization  
The PIC16C717/770/771 devices have a 13-bit pro-  
gram counter capable of addressing an 8K x 14 pro-  
gram memory space. The PIC16C717 and the  
PIC16C770 have 2K x 14 words of program memory.  
The PIC16C771 has 4K x 14 words of program mem-  
ory. Accessing a location above the physically imple-  
mented address will cause a wraparound.  
Stack Level 8  
Reset Vector  
0000h  
The reset vector is at 0000h and the interrupt vector is  
at 0004h.  
Interrupt Vector  
Page 0  
0004h  
0005h  
FIGURE 2-1: PROGRAM MEMORY MAP  
AND STACK OF THE  
On-chip  
Program  
Memory  
07FFh  
0800h  
PIC16C717 AND PIC16C770  
Page 1  
0FFFh  
1000h  
PC<12:0>  
CALL, RETURN  
13  
RETFIE, RETLW  
Stack Level 1  
Stack Level 2  
3FFFh  
2.2  
Data Memory Organization  
Stack Level 8  
The data memory is partitioned into multiple banks,  
which contain the General Purpose Registers and the  
Special Function Registers. Bits RP1 and RP0 are the  
bank select bits.  
Reset Vector  
0000h  
RP1 RP0  
(STATUS<6:5>)  
Interrupt Vector  
Page 0  
0004h  
0005h  
= 00 Bank0  
= 01 Bank1  
= 10 Bank2  
= 11 Bank3  
On-chip  
Program  
Memory  
07FFh  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM. All implemented banks contain special  
function registers. Some frequently used special func-  
tion registers from one bank are mirrored in another  
bank for code reduction and quicker access.  
3FFFh  
2.2.1  
GENERAL PURPOSE REGISTER FILE  
The register file can be accessed either directly, or indi-  
rectly, through the File Select Register FSR.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 11  
PIC16C717/770/771  
FIGURE 2-3: REGISTER FILE MAP  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(*)  
TMR0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
Indirect addr.(*)  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
Indirect addr.(*)  
TMR0  
Indirect addr.(*)  
OPTION_REG  
PCL  
80h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
OPTION_REG  
PCL  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
TRISA  
TRISB  
PORTB  
TRISB  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
PCLATH  
INTCON  
PMCON1  
INTCON  
PMDATL  
PIR2  
PMADRL  
PMDATH  
PMADRH  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
SSPCON2  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
SSPADD  
SSPSTAT  
WPUB  
IOCB  
P1DEL  
REFCON  
LVDCON  
ANSEL  
ADRESL  
ADCON1  
ADRESH  
ADCON0  
A0h  
1A0h  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
96 Bytes  
1EFh  
1F0h  
EFh  
F0h  
6Fh  
70h  
accesses  
70h - 7Fh  
accesses  
70h - 7Fh  
accesses  
70h-7Fh  
7Fh  
FFh  
17Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ’0’.  
Not a physical register.  
*
DS41120A-page 12  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The special function registers can be classified into two  
sets; core (CPU) and peripheral. Those registers asso-  
ciated with the core functions are described in detail in  
this section. Those related to the operation of the  
peripheral features are described in detail in that  
peripheral feature section.  
The Special Function Registers are registers used by  
the CPU and Peripheral Modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 2-1.  
TABLE 2-1:  
PIC16C717/770/771 SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
Bank 0  
00h(3)  
01h  
INDF  
TMR0  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
xxxx 0000 uuuu 0000  
xxxx xx00 uuuu uu00  
02h(3)  
03h(3)  
04h(3)  
05h  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect data memory address pointer  
PORTA  
PORTB  
RA7  
RA6  
RB6  
RA5  
RB5  
RA4  
RB4  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
06h  
RB7  
07h  
Unimplemented  
Unimplemented  
Unimplemented  
08h  
09h  
0Ah(1,3) PCLATH  
T0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000 ---0 0000  
0000 000x 0000 000u  
0Bh(3)  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
INTE  
RBIE  
SSPIF  
BCLIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
TMR1IF -0-- 0000 -0-- 0000  
PIR2  
LVDIF  
0--- 0--- 0--- 0---  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CKPS1  
T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
0000 0000 0000 0000  
Timer2 module’s register  
TOUTPS3 TOUTPS2  
TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
PWM1M1 PWM1M0  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
ADRESH  
ADCON0  
A/D High Byte Result Register  
ADCS1 ADCS0 CHS2  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
CHS1  
CHS0  
GO/DONE  
CHS3  
ADON  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as ’0’.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose con-  
tents are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: These registers can be addressed from any bank.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 13  
PIC16C717/770/771  
TABLE 2-1:  
Address Name  
Bank 1  
PIC16C717/770/771 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on: Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
80h(3)  
81h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
OPTION_REG RBPU  
INTEDG  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h(3)  
83h(3)  
84h(3)  
85h  
PCL  
STATUS  
FSR  
TRISA  
TRISB  
PD  
Z
DC  
C
Indirect data memory address pointer  
PORTA Data Direction Register  
PORTB Data Direction Register  
Unimplemented  
86h  
87h  
88h  
Unimplemented  
89h  
Unimplemented  
8Ah(1,3) PCLATH  
GIE  
PEIE  
ADIE  
T0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000 ---0 0000  
0000 000x 0000 000u  
8Bh(3)  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INTCON  
PIE1  
INTE  
RBIE  
SSPIE  
BCLIE  
OSCF  
T0IF  
CCP1IE  
INTF  
TMR2IE  
RBIF  
TMR1IE -0-- 0000 -0-- 0000  
PIE2  
LVDIE  
0--- 0--- 0--- 0---  
---- 1-qq ---- 1-uu  
PCON  
POR  
BOR  
Unimplemented  
Unimplemented  
SSPCON2  
PR2  
GCEN  
ACKSTAT  
ACKDT  
ACKEN  
RCEN  
PEN  
R/W  
RSEN  
UA  
SEN  
BF  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 0000 1111 0000  
0000 0000 0000 0000  
Timer2 Period Register  
SSPADD  
SSPSTAT  
WPUB  
IOCB  
Synchronous Serial Port (I2C mode) Address Register  
SMP  
CKE  
D/A  
P
S
PORTB Weak Pull-up Control  
PORTB Interrupt on Change Control  
PWM 1 Delay value  
P1DEL  
Unimplemented  
Unimplemented  
Unimplemented  
REFCON  
LVDCON  
ANSEL  
ADRESL  
ADCON1  
VRHEN  
VRLEN  
VRHOEN  
BGST  
VRLOEN  
LVDEN  
0000 ---- 0000 ----  
--00 0101 --00 0101  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
LVV3  
LVV2  
LVV1  
LVV0  
Analog Channel Select  
A/D Low Byte Result Register  
ADFM VCFG2 VCFG1  
VCFG0  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as ’0’.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose con-  
tents are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: These registers can be addressed from any bank.  
DS41120A-page 14  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 2-1:  
Address Name  
Bank 2  
PIC16C717/770/771 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on: Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
100h(3)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
000q quuu  
uuuu uuuu  
101h  
TMR0  
PCL  
102h(3)  
103h(3)  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
104h(3)  
105h  
106h  
107h  
108h  
109h  
Indirect data memory address pointer  
Unimplemented  
PORTB  
PORTB Data Latch when written: PORTB pins when read  
xxxx xx00  
uuuu uu00  
Unimplemented  
Unimplemented  
Unimplemented  
10Ah(1,3)  
PCLATH  
INTCON  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
---0 0000  
---0 0000  
10Bh(3)  
10Ch  
10Dh  
10Eh  
10Fh  
GIE  
PEIE  
T0IE  
0000 000x  
0000 000u  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
Program memory read data low  
xxxx xxxx  
xxxx xxxx  
--xx xxxx  
---- xxxx  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---- uuuu  
Program memory read address low  
Program memory read data high  
Program memory read address high  
110h-  
11Fh  
Unimplemented  
Bank 3  
180h(3)  
181h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
0000 0000  
OPTION_REG RBPU  
INTEDG  
Program Counter's (PC) Least Significant Byte  
IRP RP1 RP0 TO  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
182h(3)  
183h(3)  
PCL  
STATUS  
PD  
Z
DC  
C
0001 1xxx  
000q quuu  
184h(3)  
185h  
186h  
187h  
188h  
189h  
FSR  
Indirect data memory address pointer  
Unimplemented  
xxxx xxxx  
uuuu uuuu  
1111 1111  
1111 1111  
TRISB  
PORTB Data Direction Register  
Unimplemented  
Unimplemented  
Unimplemented  
18Ah(1,3)  
Write Buffer for the upper 5 bits of the Program Counter  
PCLATH  
---0 0000  
---0 0000  
18Bh(3)  
18Ch  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
RD  
0000 000x  
1--- ---0  
0000 000u  
1--- ---0  
PMCON1  
Reserved  
18Dh-  
18Fh  
Unimplemented  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as ’0’.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose con-  
tents are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: These registers can be addressed from any bank.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 15  
PIC16C717/770/771  
2.2.2.1  
STATUS REGISTER  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
The STATUS register, shown in Register 2-1, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions not affecting any status bits, see the  
"Instruction Set Summary."  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 2: The C and DC bits operate as a borrow and  
digit borrow bit, respectively, in subtraction.  
See the SUBLWand SUBWFinstructions for  
examples.  
REGISTER 2-1: STATUS REGISTER (STATUS: 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h - 1FFh)  
0= Bank 0, 1 (00h - FFh)  
bit 6-5: RP<1:0>: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions) (for borrow the polarity is reversed)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1= A carry-out from the most significant bit of the result occurred  
0= No carry-out from the most significant bit of the result occurred  
Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the sec-  
ond operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of  
the source register.  
DS41120A-page 16  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
2.2.2.2  
OPTION_REG REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION_REG register is a readable and writable  
register, which contains various control bits to configure  
the TMR0 prescaler/WDT postscaler (single assign-  
able register known also as the prescaler), the External  
INT Interrupt, TMR0 and the weak pull-ups on PORTB.  
REGISTER 2-2: OPTION REGISTER (OPTION_REG: 81h, 181h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
RBPU: PORTB Pull-up Enable bit(1)  
1= PORTB weak pull-ups are disabled  
0= PORTB weak pull-ups are enabled by the WPUB register  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
bit 2-0: PS<2:0>: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
Note 1: Individual weak pull-up on RB pins can be enabled/disabled from the weak pull-up PORTB Register  
(WPUB).  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 17  
PIC16C717/770/771  
2.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON Register is a readable and writable regis-  
ter, which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/INT pin interrupts.  
REGISTER 2-3: INTERRUPT CONTROL REGISTER (INTCON: 0Bh, 8Bh, 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
GIE: Global Interrupt Enable bit  
1= Enables all un-masked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all un-masked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit(1)  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit(1)  
1= At least one of the RB<7:0> pins changed state (must be cleared in software)  
0= None of the RB<7:0> pins have changed state  
Note 1: Individual RB pin interrupt on change can be enabled/disabled from the Interrupt on Change PORTB register (IOCB).  
DS41120A-page 18  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
2.2.2.4  
PIE1 REGISTER  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
This register contains the individual enable bits for the  
peripheral interrupts.  
REGISTER 2-4: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (PIE1: 8Ch)  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
TMR2IE TMR1IE  
bit0  
R/W-0  
ADIE  
SSPIE  
CCP1IE  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as ’0’  
bit 6:  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
bit 5-4: Unimplemented: Read as ’0’  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 19  
PIC16C717/770/771  
2.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the individual flag bits for the  
peripheral interrupts.  
REGISTER 2-5: PERIPHERAL INTERRUPT REGISTER 1 (PIR1: 0Ch)  
U-0  
R/W-0  
ADIF  
U-0  
U-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
TMR2IF TMR1IF  
bit0  
R/W-0  
CCP1IF  
R
= Readable bit  
W = Writable bit  
bit7  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as ‘0’.  
bit 6:  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed  
0= The A/D conversion is not complete  
bit 5-4: Unimplemented: Read as ‘0’.  
bit 3: SSPIF: Synchronous Serial Port (SSP) Interrupt Flag  
1= The SSP interrupt condition has occurred, and must be cleared in software before returning from the  
interrupt service routine. The conditions that will set this bit are:  
SPI  
A transmission/reception has taken place.  
I2C Slave / Master  
A transmission/reception has taken place.  
I2C Master  
The initiated start condition was completed by the SSP module.  
The initiated stop condition was completed by the SSP module.  
The initiated restart condition was completed by the SSP module.  
The initiated acknowledge condition was completed by the SSP module.  
A start condition occurred while the SSP module was idle (Multimaster system).  
A stop condition occurred while the SSP module was idle (Multimaster system).  
0= No SSP interrupt condition has occurred.  
bit 2:  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
DS41120A-page 20  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
2.2.2.6  
PIE2 REGISTER  
This register contains the individual enable bits for the  
SSP bus collision and low voltage detect interrupts.  
REGISTER 2-6: PERIPHERAL INTERRUPT REGISTER 2 (PIE2: 8Dh)  
R/W-0  
LVDIE  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
BCLIE  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7:  
LVDIE: Low-voltage Detect Interrupt Enable bit  
1= LVD Interrupt is enabled  
0= LVD Interrupt is disabled  
bit 6-4: Unimplemented: Read as ’0’  
bit 3:  
BCLIE: Bus Collision Interrupt Enable bit  
1= Bus Collision interrupt is enabled  
0= Bus Collision interrupt is disabled  
bit 2-0: Unimplemented: Read as ’0’  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 21  
PIC16C717/770/771  
.
2.2.2.7  
PIR2 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the SSP Bus Collision and low-  
voltage detect interrupt flag bits.  
REGISTER 2-7: PERIPHERAL INTERRUPT REGISTER 2 (PIR2: 0Dh)  
R/W-0  
LVDIF  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
BCLIF  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7:  
LVDIF: Low-voltage Detect Interrupt Flag bit  
1= The supply voltage has fallen below the specified LVD voltage (must be cleared in software)  
0= The supply voltage is greater than the specified LVD voltage  
bit 6-4: Unimplemented: Read as ’0’  
bit 3:  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision has occurred while the SSP module configured in I2C Master was transmitting  
(must be cleared in software)  
0= No bus collision occurred  
bit 2-0: Unimplemented: Read as ’0’  
DS41120A-page 22  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
2.2.2.8  
PCON REGISTER  
Note: BOR is unknown on Power-on Reset. It  
must then be set by the user and checked  
on subsequent resets to see if BOR is  
clear, indicating a brown-out has occurred.  
The BOR status bit is a don’t care and is  
not necessarily predictable if the brown-out  
circuit is disabled (by clearing the BODEN  
bit in the Configuration word).  
The Power Control (PCON) register contains a flag bit  
to allow differentiation between a Power-on Reset  
(POR) to an external MCLR Reset or WDT Reset.  
Those devices with brown-out detection circuitry con-  
tain an additional bit to differentiate a Brown-out Reset  
condition from a Power-on Reset condition.  
The PCON register also contains the frequency select  
bit of the INTRC or ER oscillator.  
REGISTER 2-8: POWER CONTROL REGISTER (PCON: 8Eh)  
U-0  
U-0  
U-0  
U-0  
R/W-1  
U-0  
R/W-q  
R/W-q  
OSCF  
POR  
BOR  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7-4,2:Unimplemented: Read as ’0’  
bit 3:  
OSCF: Oscillator speed  
INTRC Mode  
1= 4 MHz nominal  
0= 37 KHz nominal  
ER Mode  
1= Oscillator frequency depends on the external resistor value on the OSC1 pin.  
0= 37 KHz nominal  
All other modes  
x= Ignored  
bit 1:  
bit 0:  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 23  
PIC16C717/770/771  
2.3  
PCL and PCLATH  
2.4  
Stack  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 13 bits  
wide. The low byte is called the PCL register. This reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<12:8>  
bits and is not directly readable or writable. All updates  
to the PCH register occur through the PCLATH register.  
The stack allows a combination of up to 8 program calls  
and interrupts to occur. The stack contains the return  
address from this branch in program execution.  
Mid-range devices have an 8-level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable. The PC is PUSHed onto the stack  
when a CALL instruction is executed or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN, RETLW or a RETFIE instruction execution.  
PCLATH is not modified when the stack is PUSHed or  
POPed.  
2.3.1  
PROGRAM MEMORY PAGING  
PIC16C717/770/771 devices are capable of address-  
ing a continuous 8K word block of program memory.  
The CALLand GOTOinstructions provide only 11 bits of  
address to allow branching within any 2K program  
memory page. When doing a CALLor GOTOinstruction,  
the upper 2 bits of the address are provided by  
PCLATH<4:3>. When doing a CALL or GOTO instruc-  
tion, the user must ensure that the page select bits are  
programmed so that the desired program memory  
page is addressed. A return instruction pops a PC  
address off the stack onto the PC register. Therefore,  
manipulation of the PCLATH<4:3> bits are not required  
for the return instructions (which POPs the address  
from the stack).  
After the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
DS41120A-page 24  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
The INDF register is not a physical register. Address-  
ing INDF actually addresses the register whose  
address is contained in the FSR register (FSR is a  
pointer). This is indirect addressing.  
EXAMPLE 2-1: HOW TO CLEAR RAM  
USING INDIRECT  
ADDRESSING  
movlw 0x20 ;initialize pointer  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF register indirectly results in a  
no-operation (although STATUS bits may be affected).  
movwf FSR  
; to RAM  
INDF ;clear INDF register  
FSR ;inc pointer  
NEXT  
clrf  
incf  
btfss FSR,4 ;all done?  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-1.  
goto  
NEXT ;NO, clear next  
CONTINUE  
:
;YES, continue  
An effective 9-bit address is obtained by concatenating  
the 8-bit FSR register and the IRP bit (STATUS<7>), as  
shown in Figure 2-4.  
FIGURE 2-4: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
from opcode  
7
RP1:RP0  
6
0
0
IRP  
FSR register  
bank select  
location select  
bank select  
location select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
Data  
Memory  
(1)  
7Fh  
Bank 0  
FFh  
Bank 1  
17Fh  
Bank 2  
1FFh  
Bank 3  
Note 1: For register file map detail see Figure 2-3.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 25  
PIC16C717/770/771  
NOTES:  
DS41120A-page 26  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
present on a pin, the pin must be configured as an ana-  
log input to prevent unnecessary current draw from the  
power supply. The Analog Select Register (ANSEL)  
allows the user to individually select the digital/analog  
mode on these pins. When the analog mode is active,  
the port pin will always read 0.  
3.0  
I/O PORTS  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Additional information on I/O ports may be found in the  
Note 1: On a Power-on Reset, the ANSEL register  
configures these mixed-signal pins as  
analog mode.  
PICmicro™  
(DS33023).  
Mid-Range  
Reference  
Manual,  
3.1  
I/O Port Analog/Digital Mode  
2: If a pin is configured as analog mode, the  
pin will always read '0', even if the digital  
output is active.  
The PIC16C717/770/771 have two I/O ports: PORTA  
and PORTB. Some of these port pins are mixed-signal  
(can be digital or analog). When an analog signal is  
REGISTER 3-1: ANALOG SELECT REGISTER (ANSEL: 9Dh)  
R/W-1  
R/W-1  
R/W-1  
ANS5  
R/W-1  
ANS4  
R/W-1  
ANS3  
R/W-1  
ANS2  
R/W-1  
ANS1  
R/W-1  
ANS0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as  
‘0’  
bit7  
bit0  
-n = Value at POR reset  
bit 7-6: Reserved: Do not use  
bit 5-0: ANS<5:0>: Analog Select between analog or digital function on pins AN<5:0>, respectively.  
0= Digital I/O. Pin is assigned to port or special function.  
1= Analog Input. Pin is assigned as analog input.  
Note: Setting a pin to an analog input disables digital inputs and any pull-up that may be present. The corre-  
sponding TRIS bit should be set to input mode when using pins as analog inputs.  
these pins as analog input/output, the ANSEL register  
must have the proper value to individually select the  
analog mode of the corresponding pins.  
3.2  
PORTA and the TRISA Register  
PORTA is a 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (=1) will make the corresponding PORTA pin  
an input, i.e., put the corresponding output driver in a  
hi-impedance mode. Clearing a TRISA bit (=0) will  
make the corresponding PORTA pin an output, i.e., put  
the contents of the output latch on the selected pin.  
Note: Upon reset, the ANSEL register configures  
the RA<3:0> pins as analog inputs. All  
RA<3:0> pins will read as ’0’.  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The RA4/T0CKI  
pin is a Schmitt Trigger input and an open drain output.  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, this value is modified, and then written to the port  
data latch.  
Pin RA5 is multiplexed with the device reset (MCLR)  
and programming input (VPP) functions. The RA5/  
MCLR/VPP input only pin has a Schmitt Trigger input  
buffer. All other RA port pins have Schmitt Trigger input  
buffers and full CMOS output buffers.  
Pins RA<3:0> are multiplexed with analog functions,  
such as analog inputs to the A/D converter, analog  
VREF inputs, and the on-board bandgap reference out-  
puts. When the analog peripherals are using any of  
Pins RA6 and RA7 are multiplexed with the oscillator  
input and output functions.  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 27  
PIC16C717/770/771  
EXAMPLE 3-1: INITIALIZING PORTA  
BCF  
STATUS, RP0 ; Select Bank 0  
CLRF  
PORTA ; Initialize PORTA by  
; clearing output  
; data latches  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0Fh  
; Value used to  
; initialize data  
; direction  
MOVWF TRISA  
; Set RA<3:0> as inputs  
; RA<7:4> as outputs. RA<7:6>availability depends on oscillator selection.  
; Set RA<1:0> as analog inputs, RA<7:2> are digital I/O  
MOVLW 03  
MOVWF ANSEL  
BCF  
STATUS, RP0 ; Return to Bank 0  
FIGURE 3-1: BLOCK DIAGRAM OF RA0/AN0, RA1/AN1/LVDIN  
Data Latch  
Data  
Bus  
D
Q
VDD  
VDD  
P
WR  
PORT  
Q
CK  
TRIS Mode  
N
D
Q
WR  
TRIS  
VSS  
VSS  
Q
CK  
RD  
TRIS  
Analog Select  
Schmitt  
Trigger  
D
Q
WR  
ANSEL  
Q
CK  
Q
D
EN  
RD  
PORT  
To A/D Converter input or LVD Module input  
DS41120A-page 28  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 3-2: BLOCK DIAGRAM OF RA2/AN2/VREF-/VRL AND RA3/AN3/VREF+/VRH  
Data Latch  
D
Data  
Bus  
Q
VDD  
VDD  
P
WR  
PORT  
Q
CK  
TRIS Mode  
N
D
Q
WR  
TRIS  
VSS  
VSS  
Q
CK  
RD  
TRIS  
Analog Select  
D
Q
Schmitt  
Trigger  
WR  
ANSEL  
Q
CK  
Q
D
EN  
RD  
PORT  
To A/D Converter input  
and Vref+, Vref- inputs  
VRH, VRL outputs  
(From Vref-LVD-BOR Module)  
VRH, VRL output enable  
Sense input for  
VRH, VRL amplifier  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 29  
PIC16C717/770/771  
FIGURE 3-3: BLOCK DIAGRAM OF RA4/T0CKI  
Data Latch  
Data  
Bus  
D
Q
WR  
Port  
Q
CK  
TRIS Latch  
N
D
Q
WR  
TRIS  
VSS  
Q
CK  
VSS  
RD  
TRIS  
Schmitt Trigger  
Input Buffer  
Q
D
EN  
RD  
PORT  
TMR0 clock input  
DS41120A-page 30  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 3-4: BLOCK DIAGRAM OF RA5/MCLR/VPP  
To MCLR Circuit  
MCLR Filter  
Program Mode  
HV Detect  
Data  
Bus  
VSS  
RD  
TRIS  
VSS  
Schmitt  
Trigger  
Q
D
EN  
RD PORT  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 31  
PIC16C717/770/771  
FIGURE 3-5: BLOCK DIAGRAM OF RA6/OSC2/CLKOUT PIN  
INTRC or ER with CLKOUT  
From OSC1  
CLKOUT (FOSC/4)  
Oscillator  
Circuit  
1
0
VDD  
Data  
Bus  
VDD  
P
D
Q
Q
WR  
PORTA  
CK  
VSS  
INTRC or ER  
Data Latch  
D
Q
N
WR  
TRISA  
CK  
Q
INTRC or ER without CLKOUT  
INTRC or ER with CLKOUT  
TRIS Latch  
VSS  
Schmitt Trigger  
Input Buffer  
RD TRISA  
Q
D
EN  
RD PORTA  
DS41120A-page 32  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 3-6: BLOCK DIAGRAM OF RA7/OSC1/CLKIN PIN  
To OSC2  
Oscillator  
Circuit  
VDD  
To Chip Clock Drivers  
VDD  
Schmitt Trigger  
Input Buffer  
Data  
Bus  
D
Q
Q
EC Mode  
P
WR  
PORTA  
CK  
Data Latch  
D
Q
N
WR  
TRISA  
CK  
Q
TRIS Latch  
INTRC  
VSS  
INTRC  
RD TRISA  
Schmitt Trigger  
Input Buffer  
Q
D
EN  
RD PORTA  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 33  
PIC16C717/770/771  
TABLE 3-1:  
PORTA FUNCTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
RA0  
AN0  
ST  
AN  
ST  
AN  
AN  
ST  
AN  
AN  
CMOS  
Bi-directional I/O  
A/D input  
RA0/AN0  
RA1  
CMOS  
Bi-directional I/O  
A/D input  
RA1/AN1/LVDIN  
AN1  
LVDIN  
RA2  
LVD input reference  
Bi-directional I/O  
A/D input  
CMOS  
AN2  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
VREF-  
VRL  
Negative analog reference input  
Internal voltage reference low output  
Bi-directional I/O  
AN  
RA3  
ST  
AN  
AN  
CMOS  
AN3  
A/D input  
VREF+  
VRH  
Positive analog reference input  
Internal voltage reference high output  
Bi-directional I/O  
AN  
OD  
RA4  
ST  
ST  
RA4/T0CKI  
T0CKI  
RA5  
TMR0 clock input  
ST  
Input port  
RA5/MCLR/VPP  
MCLR  
VPP  
ST  
Master clear  
Power  
ST  
Programming voltage  
Bi-directional I/O  
RA6  
CMOS  
XTAL  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
OSC2  
CLKOUT  
RA7  
Crystal/resonator  
CMOS  
CMOS  
FOSC/4 output  
ST  
XTAL  
ST  
Bi-directional I/O  
OSC1  
CLKIN  
Crystal/resonator  
External clock input/ER resistor connection  
DS41120A-page 34  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
xxxx 0000 uuuu 0000  
1111 1111 1111 1111  
05h  
85h  
9Dh  
PORTA  
TRISA  
ANSEL  
RA7  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
PORTA Data Direction Register  
ANS5 ANS4  
ANS3  
ANS2  
ANS1  
ANS0 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as ’0’. Shaded cells are not used by PORTA.  
enables the weak pull-up resistors. The weak pull-up is  
automatically turned off when the port pin is configured  
as an output. The pull-ups are disabled on a Power-on  
Reset.  
3.3  
PORTB and the TRISB Register  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (=1) will make the corresponding PORTB pin  
an input, i.e., put the corresponding output driver in a  
hi-impedance mode. Clearing a TRISB bit (=0) will  
make the corresponding PORTB pin an output, i.e., put  
the contents of the output latch on the selected pin.  
Each of the PORTB pins, if configured as input, also  
has an interrupt on change feature, which can be indi-  
vidually selected from the IOCB register. The RBIE bit  
in the INTCON register functions as a global enable bit  
to turn on/off the interrupt on change feature. The  
selected inputs are compared to the old value latched  
on the last read of PORTB. The "mismatch" outputs are  
OR’ed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
EXAMPLE 3-2: INITIALIZING PORTB  
BCF  
CLRF  
STATUS, RP0 ;  
PORTB ; Initialize PORTB by  
; clearing output  
; data latches  
STATUS, RP0 ; Select Bank 1  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
BSF  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
; Set RB<1:0> as analog  
inputs  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
MOVWF TRISB  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
MOVLW 03  
MOVWF ANSEL  
;
BCF  
STATUS, RP0 ; Return to Bank 0  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
Each of the PORTB pins has an internal pull-up, which  
can be individually enabled from the WPUB register. A  
single global enable bit can turn on/off the enabled pull-  
ups. Clearing the RBPU bit, (OPTION_REG<7>),  
REGISTER 3-2: WEAK PULL UP PORTB REGISTER (WPUB: 95h)  
R/W-1  
WPUB7  
bit7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WPUB0  
bit0  
WPUB6  
WPUB5  
WPUB4  
WPUB3  
WPUB2  
WPUB1  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read  
as ‘0’  
-n = Value at POR reset  
bit 7-0: WPUB<7:0>: PORTB Weak Pull-Up Control  
1= Weak pull up enabled.  
0= Weak pull up disabled  
Note 1: For the WPUB register setting to take effect, the RBPU bit in the OPTION_REG Register must be cleared.  
2: The weak pull up device is automatically disabled if the pin is in output mode (TRIS = 0).  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 35  
PIC16C717/770/771  
REGISTER 3-3: INTERRUPT ON CHANGE PORTB REGISTER (IOCB: 96h)  
R/W-1  
IOCB7  
R/W-1  
IOCB6  
R/W-1  
IOCB5  
R/W-1  
IOCB4  
R/W-0  
IOCB3  
R/W-0  
IOCB2  
R/W-0  
IOCB1  
R/W-0  
IOCB0  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit, read  
as ‘0’  
-n = Value at POR reset  
bit 7-0: IOCB<7:0>: Interrupt on Change PORTB Control  
1= Interrupt on change enabled.  
0= Interrupt on change disabled.  
Note 1: The interrupt enable bits GIE and RBIE in the INTCON Register must be set for individual interrupts to be  
recognized.  
DS41120A-page 36  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
The RB0 pin is multiplexed with the A/D converter ana-  
log input 4 and the external interrupt input (RB0/AN4/  
INT). When the pin is used as analog input, the ANSEL  
register must have the proper value to select the RB0  
pin as analog mode.  
The RB1 pin is multiplexed with the A/D converter ana-  
log input 5 and the MSSP module slave select input  
(RB1/AN5/SS). When the pin is used as analog input,  
the ANSEL register must have the proper value to  
select the RB1 pin as analog mode.  
Note: Upon reset, the ANSEL register configures  
the RB1 and RB0 pins as analog inputs.  
Both RB1 and RB0 pins will read as ’0’.  
FIGURE 3-7: BLOCK DIAGRAM OF RB0/AN4/INT, RB1/AN5/SS PIN  
WPUB Reg  
Data Bus  
Q
D
WR  
WPUB  
CK  
Q
VDD  
RBPU  
weak  
pull-up  
P
VDD  
PORTB Reg  
D
Q
VDD  
P
WR  
PORT  
CK  
Q
TRIS Reg  
N
D
Q
WR  
TRIS  
VSS  
CK  
Q
RD  
TRIS  
VSS  
Analog Select  
D
Q
Q
WR  
ANSEL  
CK  
TTL  
IOCB Reg  
D
Q
Schmitt  
WR  
IOCB  
Set  
RBIF  
Trigger  
Q
Q
CK  
Q
D
Q1  
From  
RB<7:0> pins  
EN  
Q
D
D
Q3  
EN  
EN  
RD  
PORT  
To INT input or MSSP module  
To A/D Converter  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 37  
PIC16C717/770/771  
FIGURE 3-8: BLOCK DIAGRAM OF RB2/SCK/SCL, RB3/CCP1/P1A, RB4/SDI/SDA,  
RB5/SDO/P1B  
WPUB Reg  
Data Bus  
D
Q
WR  
WPUB  
CK  
Q
VDD  
Spec. Func En.  
RBPU  
VDD  
weak  
pull-up  
P
SDA, SDO, SCK, CCPL, P1A, P1B  
PORTB Reg  
VDD  
P
1
0
D
Q
WR  
PORT  
CK  
Q
N
TRIS Reg  
VSS  
D
Q
WR  
TRIS  
VSS  
CK  
Q
RD  
TRIS  
TTL  
IOCB Reg  
Schmitt  
Trigger  
D
Q
WR  
IOCB  
Set  
RBIF  
Q
Q
D
CK  
Q
Q1  
From  
RB<7:0> pins  
EN  
Q
D
D
Q3  
EN  
EN  
RD  
PORT  
SCK, SCL, CC, SDI, SDA inputs  
DS41120A-page 38  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 3-9: BLOCK DIAGRAM OF RB6/T1OSO/T1CKI/P1C  
WPUB Reg  
Data Bus  
VDD  
D
Q
RBPU  
WR  
WPUB  
P
weak pull-up  
CK  
Q
VDD  
P
D
Q
VDD  
WR PORTB  
WR TRISB  
CK  
Q
Data Latch  
D
Q
Q
N
CK  
TRIS Latch  
VSS  
TTL  
RD TRISB  
T1OSCEN  
Input  
Buffer  
RD PORTB  
IOCB Reg  
D
Q
WR  
IOCB  
CK  
Q
TMR1 Clock  
Serial programming clock  
From RB7  
Schmitt  
Trigger  
TMR1 Oscillator  
Q
D
Q1  
EN  
Set RBIF  
Q
D
From  
RB<7:0> pins  
RD Port  
Q3  
EN  
Note: The TMR1 oscillator enable (T1OSCEN = 1) overrides the RB6 I/O port and P1C functions.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 39  
PIC16C717/770/771  
FIGURE 3-10: BLOCK DIAGRAM OF THE RB7/T1OSI/P1D  
VDD  
RBPU  
TMR1 Oscillator  
weak pull-up  
P
To RB6  
WPUB Reg  
Data Bus  
D
Q
T1OSCEN  
WR  
WPUB  
CK  
Q
VDD  
VDD  
P
D
Q
Q
WR PORTB  
WR TRISB  
CK  
Data Latch  
D
Q
Q
N
CK  
TRIS Latch  
VSS  
RD TRISB  
T10SCEN  
TTL  
Input  
Buffer  
RD PORTB  
IOCB Reg  
D
Q
WR  
IOCB  
CK  
Q
Serial programming input  
Q
Q
D
Schmitt Trigger  
Set RBIF  
Q1  
EN  
D
From  
RB<7:0> pins  
RD Port  
Q3  
EN  
Note: The TMR1 oscillator enable (T1OSCEN = 1) overrides the RB7 I/O port and P1D functions.  
DS41120A-page 40  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 3-3:  
PORTB FUNCTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
(1)  
RB0  
AN4  
INT  
TTL  
AN  
ST  
CMOS  
Bi-directional I/O  
RB0/AN4/INT  
RB1/AN5/SS  
A/D input  
Interrupt input  
Bi-directional I/O  
A/D input  
(1)  
RB1  
AN5  
SS  
TTL  
AN  
ST  
CMOS  
SSP slave select input  
(1)  
RB2  
SCK  
SCL  
RB3  
CCP1  
P1A  
TTL  
ST  
CMOS  
CMOS  
OD  
Bi-directional input  
RB2/SCK/SCL  
RB3/CCP1/P1A  
RB4/SDI/SDA  
RB5/SDO/P1B  
Serial clock I/O for SPI  
2
ST  
Serial clock I/O for I C  
(1)  
TTL  
ST  
CMOS  
CMOS  
CMOS  
CMOS  
Bi-directional input  
Capture 1 input/Compare 1 output  
PWM P1A output  
(1)  
RB4  
SDI  
TTL  
ST  
Bi-directional input  
Serial data in for SPI  
2
SDA  
RB5  
SDO  
P1B  
ST  
OD  
Serial data I/O for I C  
(1)  
ST  
CMOS  
CMOS  
CMOS  
CMOS  
XTAL  
Bi-directional I/O  
Serial data out for SPI  
PWM P1B output  
(1)  
RB6  
T1OSO  
T1CKI  
P1C  
RB7  
T1OSI  
P1D  
TTL  
ST  
Bi-directional I/O  
Crystal/Resonator  
TMR1 clock input  
PWM P1C output  
RB6/T1OSO/T1CKI/P1C  
CMOS  
CMOS  
(1)  
TTL  
Bi-directional I/O  
RB7/T1OSI/P1D  
XTAL  
TMR1 crystal/resonator  
PWM P1D output  
CMOS  
Note 1: Bit programmable pull-ups.  
TABLE 3-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
xxxx xx00 uuuu uu00  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 0000 1111 0000  
1111 1111 1111 1111  
06h, 106h PORTB  
86h, 186h TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
PORTB Data Direction Register  
T0SE  
PORTB Weak Pull-up Control  
PORTB Interrupt on Change Control  
ANS5 ANS4  
81h, 181h OPTION_REG RBPU INTEDG T0CS  
PSA  
PS2  
PS1  
PS0  
95h  
96h  
9Dh  
WPUB  
IOCB  
ANSEL  
ANS3  
ANS2  
ANS1  
ANS0  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 41  
PIC16C717/770/771  
NOTES:  
DS41120A-page 42  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
When interfacing the program memory block, the  
PMDATH & PMDATL registers form a 2-byte word,  
which holds the 14-bit data. The PMADRH & PMADRL  
registers form a 2-byte word, which holds the 12-bit  
address of the program memory location being  
accessed. Mid-range devices have up to 8K words of  
program EPROM with an address range from 0h to  
3FFFh. When the device contains less memory than  
the full address range of the PMADRH:PMARDL regis-  
ters, the most significant bits of the PMADRH register  
are ignored.  
4.0  
PROGRAM MEMORY READ  
(PMR)  
Program memory is readable during normal operation  
(full VDD range). It is indirectly addressed through the  
Special Function Registers:  
• PMCON1  
• PMDATH  
• PMDATL  
• PMADRH  
• PMADRL  
4.0.1  
PMCON1 REGISTER  
PMCON1 is the control register for program memory  
accesses.  
Control bit RD initiates a read operation. This bit cannot  
be cleared, only set, in software. It is cleared in hard-  
ware at completion of the read operation.  
REGISTER 4-1: PROGRAM MEMORY READ CONTROL REGISTER 1 (PMCON1: 18Ch)  
R-1  
Reserved  
bit7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/S-0  
RD  
R = Readable bit  
W = Writable bit  
S = Settable bit  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6-1: Unimplemented: Read as '0'  
bit 0: RD: Read Control bit  
Reserved: Read as ‘1’  
1= Initiates a Program memory read (read takes 2 cycles. RD is cleared in hardware.  
0= Reserved  
4.0.2  
PMDATH AND PMDATL REGISTERS  
The PMDATH:PMDATL registers are loaded with the  
contents of program memory addressed by the  
PMADRH and PMADRL registers upon completion of a  
Program Memory Read command.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 43  
PIC16C717/770/771  
REGISTER 4-2: PROGRAM MEMORY DATA HIGH (PMDATH: 10Eh)  
U-0  
U-0  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
PMD8  
bit0  
PMD13 PMD12 PMD11 PMD10  
PMD9  
R = Readable bit  
W = Writable bit  
S = Settable bit  
bit7  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-0: PMD<13:8>: The value of the program memory word pointed to by PMADRH and PMADRL after a  
program memory read command.  
REGISTER 4-3: PROGRAM MEMORY DATA LOW (PMDATL: 10Ch)  
R-x  
PMD7  
bit7  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
PMD0  
bit0  
PMD6  
PMD5  
PMD4  
PMD3  
PMD2  
PMD1  
R = Readable bit  
W = Writable bit  
S = Settable bit  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-0: PMD<7:0>: The value of the program memory word pointed to by PMADRH and PMADRL after a  
program memory read command.  
REGISTER 4-4: PROGRAM MEMORY ADDRESS HIGH (PMADRH: 10Fh)  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
PMA9  
R/W-x  
PMA8  
bit0  
PMA11 PMA10  
R = Readable bit  
W = Writable bit  
S = Settable bit  
bit7  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-4: Unimplemented: Read as '0'  
bit 3-0: PMA<11:8>: PMR Address bits  
REGISTER 4-5: PROGRAM MEMORY ADDRESS LOW (PMADRL: 10Dh)  
R/W-x  
PMA7  
bit7  
R/W-x  
PMA6  
R/W-x  
PMA5  
R/W-x  
PMA4  
R/W-x  
PMA3  
R/W-x  
PMA2  
R/W-x  
PMA1  
R/W-x  
PMA0  
bit0  
R = Readable bit  
W = Writable bit  
S = Settable bit  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-0: PMA<7:0>: PMR Address bits  
DS41120A-page 44  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
4.0.3  
READING THE EPROM PROGRAM  
MEMORY  
causes the second instruction immediately following  
the “BSF PMCON1,RD” instruction to be ignored. The data  
is available, in the very next cycle, in the PMDATH and  
PMDATL registers; therefore it can be read as 2 bytes  
in the following instructions. PMDATH and PMDATL  
registers will hold this value until another read or until it  
is written to by the user.  
To read a program memory location, the user must  
write 2 bytes of the address to the PMADRH and  
PMADRL registers, then set control bit RD  
(PMCON1<0>). Once the read control bit is set, the  
Program Memory Read (PMR) controller will use the  
second instruction cycle after to read the data. This  
EXAMPLE 4-1: OTP PROGRAM MEMORY READ  
BSF  
STATUS, RP1  
;
BCF  
STATUS, RP0  
; Bank 2  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
MS_PROG_PM_ADDR ;  
PMADRH  
; MS Byte of Program Memory Address to read  
LS_PROG_PM_ADDR ;  
PMADRL  
; LS Byte of Program Memory Address to read  
STATUS, RP0  
PMCON1, RD  
; Bank 3  
; Program Memory Read  
BSF  
NOP  
NOP  
; This instruction is executed  
; This instruction must be a NOP  
; PMDATH:PMDATL now has the data  
next instruction  
4.0.4  
OPERATION DURING CODE PROTECT  
When the device is code protected, the CPU can still  
perform the program memory read function.  
FIGURE 4-1: PROGRAM MEMORY READ CYCLE EXECUTION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Program  
Memory  
ADDR  
PMADRH,PMADRL  
PC  
PC+1  
PC+3  
PC+4  
PC+5  
BSF PMCON1,RD  
Executed here  
INSTR(PC-1)  
Executed here  
INSTR(PC+1)  
Executed here  
Forced NOP  
Executed here  
INSTR(PC+3)  
Executed here  
INSTR(PC+4)  
Executed here  
RD bit  
PMDATH  
PMDATL  
register  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 45  
PIC16C717/770/771  
NOTES:  
DS41120A-page 46  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
Additional information on external clock requirements  
is available in the PICmicro™ Mid-Range Reference  
Manual, (DS33023).  
5.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following fea-  
tures:  
5.2  
Prescaler  
• 8-bit timer/counter  
• Readable and writable  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer, respectively (Figure 5-2). For simplicity, this  
counter is being referred to as “prescaler” throughout  
this data sheet. Note that there is only one prescaler  
available which is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. Thus, a  
prescaler assignment for the Timer0 module means  
that there is no prescaler for the Watchdog Timer, and  
vice-versa.  
• Internal or external clock select  
• Edge select for external clock  
• 8-bit software programmable prescaler  
• Interrupt on overflow from FFh to 00h  
Figure 5-1 is a simplified block diagram of the Timer0  
module.  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
The prescaler is not readable or writable.  
The PSA and PS<2:0> bits (OPTION_REG<3:0>)  
determine the prescaler assignment and prescale ratio.  
5.1  
Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In timer mode, the Timer0 mod-  
ule will increment every instruction cycle (without pres-  
caler). If the TMR0 register is written, the increment is  
inhibited for the following two instruction cycles. The  
user can work around this by writing an adjusted value  
to the TMR0 register.  
Setting bit PSA will assign the prescaler to the Watch-  
dog Timer (WDT). When the prescaler is assigned to  
the WDT, prescale values of 1:1, 1:2, ..., 1:128 are  
selectable.  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In counter mode, Timer0 will  
increment either on every rising or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed in below.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF 1, MOVWF 1,  
BSF 1, x....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the WDT.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
FIGURE 5-1: TIMER0 BLOCK DIAGRAM  
Data Bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
RA4/T0CKI  
pin  
PSout  
(2 TCY delay)  
T0SE  
3
Set interrupt  
flag bit T0IF  
on overflow  
PS2, PS1, PS0  
PSA  
T0CS  
Note 1: T0CS, T0SE, PSA, PS<2:0> (OPTION_REG<5:0>).  
2: The prescaler is shared with Watchdog Timer (refer to Figure 5-2 for detailed block diagram).  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 47  
PIC16C717/770/771  
5.2.1  
SWITCHING PRESCALER ASSIGNMENT  
5.3  
Timer0 Interrupt  
The prescaler assignment is fully under software con-  
trol, i.e., it can be changed “on-the-fly” during program  
execution.  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module interrupt ser-  
vice routine before re-enabling this interrupt. The  
TMR0 interrupt cannot awaken the processor from  
SLEEP since the timer is shut off during SLEEP.  
Note: To avoid an unintended device RESET, a  
specific instruction sequence (shown in the  
PICmicro™ Mid-Range Reference Man-  
ual, DS33023) must be executed when  
changing the prescaler assignment from  
Timer0 to the WDT. This sequence must  
be followed even if the WDT is disabled.  
FIGURE 5-2: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (= FOSC/4)  
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
Pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS<2:0>  
PSA  
1
0
WDT Enable Bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS<2:0> are (OPTION_REG<5:0>).  
TABLE 5-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h,101h  
TMR0  
Timer0 register  
GIE PEIE  
xxxx xxxx uuuu uuuu  
RBIF 0000 000x 0000 000u  
0Bh,8Bh,  
10Bh,18Bh  
INTCON  
T0IE INTE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
81h,181h  
85h  
OPTION_REG RBPU INTEDG T0CS T0SE  
TRISA PORTA Data Direction Register  
PS0  
1111 1111 1111 1111  
1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as ’0’. Shaded cells are not used by Timer0.  
DS41120A-page 48  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
6.1  
Timer1 Operation  
6.0  
TIMER1 MODULE  
The Timer1 module timer/counter has the following fea-  
tures:  
Timer1 can operate in one of these modes:  
• As a timer  
• 16-bit timer/counter  
(Two 8-bit registers; TMR1H and TMR1L)  
• As a synchronous counter  
• As an asynchronous counter  
• Readable and writable (Both registers)  
• Internal or external clock select  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
• Interrupt on overflow from FFFFh to 0000h  
• Reset from ECCP module trigger  
In timer mode, Timer1 increments every instruction  
cycle. In counter mode, it increments on every rising  
edge of the external clock input.  
Timer1 has a control register, shown in Register 6-1.  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RB7/T1OSI/P1D and RB6/T1OSO/T1CKI/  
P1C pins are no longer available as I/O ports or PWM  
outputs. That is, the TRISB<7:6> value is ignored.  
Figure 6-2 is a simplified block diagram of the Timer1  
module.  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
Timer1 also has an internal “reset input”. This reset can  
be generated by the ECCP module (Section 7.0).  
REGISTER 6-1: TIMER1 CONTROL REGISTER (T1CON: 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit0  
bit7  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as ’0’  
bit 5-4: T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3:  
bit 2:  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1= Oscillator is enabled  
0= Oscillator is shut off  
Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1:  
bit 0:  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RB6/T1OSO/T1CKI /P1C(on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 49  
PIC16C717/770/771  
6.1.1  
TIMER1 COUNTER OPERATION  
In this mode, Timer1 is being incremented via an exter-  
nal source. Increments occur on a rising edge. After  
Timer1 is enabled in counter mode, the module must  
first have a falling edge before the counter begins to  
increment.  
FIGURE 6-1: TIMER1 INCREMENTING EDGE  
T1CKI  
(Initially high)  
First falling edge  
of the T1ON enabled  
T1CKI  
(Initially low)  
First falling edge  
of the T1ON enabled  
Note: Arrows indicate counter increments.  
FIGURE 6-2: TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
clock input  
0
TMR1  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
RB6/T1OSO/T1CKI/P1C  
RB7/T1OSI/P1D  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
2
SLEEP input  
T1CKPS<1:0>  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS41120A-page 50  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
6.2  
Timer1 Oscillator  
6.3  
Timer1 Interrupt  
A crystal oscillator circuit is built in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 6-1 shows the capacitor  
selection for the Timer1 oscillator.  
The TMR1 Register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 Interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit TMR1IF (PIR1<0>).  
This interrupt can be enabled/disabled by setting/clear-  
ing TMR1 interrupt enable bit TMR1IE (PIE1<0>).  
6.4  
Resetting Timer1 using a CCP Trigger  
Output  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
If the ECCP module is configured in compare mode to  
generate a “special event trigger" (CCP1M<3:0> =  
1011), this signal will reset Timer1 and start an A/D  
conversion (if the A/D module is enabled).  
TABLE 6-1:  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature. If  
Timer1 is running in asynchronous counter mode, this  
reset operation may not work.  
These values are for design guidance only.  
Note 1: Higher capacitance increases the stability of  
oscillator but also increases the start-up time.  
2: Since each resonator/crystal has its own charac-  
teristics, the user should consult the resonator/  
crystal manufacturer for appropriate values of  
external components.  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from ECCP1, the write will take prece-  
dence.  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair effectively becomes the period register for  
Timer1.  
TABLE 6-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x  
0000 000u  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh,18Bh  
-0-- 0000  
-0-- 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
-0-- 0000  
-0-- 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
PIE1  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CON  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC TMR1CS TMR1ON  
Legend: x= unknown, u= unchanged, -= unimplemented read as ’0’. Shaded cells are not used by the Timer1 module.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 51  
PIC16C717/770/771  
NOTES:  
DS41120A-page 52  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
7.1  
Timer2 Operation  
7.0  
TIMER2 MODULE  
The Timer2 module timer has the following features:  
Timer2 can be used as the PWM time-base for PWM  
mode of the ECCP module.  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
The TMR2 register is readable and writable, and is  
cleared on any device reset.  
• Readable and writable (Both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match of PR2  
The input clock (FOSC/4) has a prescale option of 1:1,  
1:4 or 1:16, selected by control bits T2CKPS<1:0>  
(T2CON<1:0>).  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
• SSP module optional use of TMR2 output to gen-  
erate clock shift  
Timer2 has a control register, shown in Register 7-1.  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Figure 7-1 is a simplified block diagram of the Timer2  
module.  
• a write to the TMR2 register  
• a write to the T2CON register  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
• any device reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset, or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 7-1:  
TIMER2 CONTROL REGISTER (T2CON1: 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as ’0’  
bit 6-3: TOUTPS<3:0>: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2:  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0: 2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 53  
PIC16C717/770/771  
7.2  
Timer2 Interrupt  
FIGURE 7-1: TIMER2 BLOCK DIAGRAM  
Sets flag  
TMR2  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is ini-  
tialized to FFh upon reset.  
output (1)  
bit TMR2IF  
Reset  
Prescaler  
1:1, 1:4, 1:16  
TMR2 reg  
FOSC/4  
Postscaler  
1:1 to 1:16  
2
Comparator  
7.3  
Output of TMR2  
EQ  
4
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module which optionally uses  
it to generate shift clock.  
PR2 reg  
Note 1: TMR2 register output can be software selected  
by the SSP Module as a baud clock.  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh,18Bh  
-0-- 0000 -0-- 0000  
-0-- 0000 -0-- 0000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Ch  
8Ch  
11h  
12h  
92h  
PIR1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
PIE1  
TMR2  
T2CON  
PR2  
Timer2 register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
Legend: x= unknown, u= unchanged, -= unimplemented read as ’0’. Shaded cells are not used by the Timer2 module.  
DS41120A-page 54  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON and P1DEL reg-  
isters control the operation of ECCP. All are readable  
and writable.  
8.0  
ENHANCED CAPTURE/  
COMPARE/PWM(ECCP)  
MODULES  
The ECCP (Enhanced Capture/Compare/PWM)  
module contains a 16-bit register which can operate as  
a 16-bit capture register, as a 16-bit compare register  
or as a PWM master/slave Duty Cycle register.  
Table 8-1 shows the timer resources of the ECCP mod-  
ule modes.  
REGISTER 8-1: CCP1 CONTROL REGISTER (CCP1CON: 17h)  
R/W-0  
R/W-0  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PWM1M1 PWM1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0  
R = Readable bit  
W= Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-6: PWM1M<1:0>: PWM Output Configuration  
IF CCP1M<3:2> = 00, 01, 10  
xx- P1A assigned as Capture/Compare input. P1B, P1C, P1D assigned as Port pins.  
IF CCP1M<3:2> = 11  
00- Single output. P1A modulated. P1B, P1C, P1D assigned as Port pins.  
01- Full-bridge output forward. P1D modulated. P1A active. P1B, P1C inactive.  
10- Half-bridge output. P1A, P1B modulated with deadband control. P1C, P1D assigned as Port pins.  
11- Full-bridge output reverse. P1B modulated. P1C active. P1A, P1D inactive.  
bit 5-4: DC1B<1:0>: PWM Duty Cycle Least Significant bits  
Capture Mode: Unused  
Compare Mode: Unused  
PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRnL.  
bit 3-0: CCP1M<3:0>: ECCP1 Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCP module)  
0001= Unused (reserved)  
0010= Compare mode, toggle output on match (CCP1IF bit is set)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCP1IF bit is set)  
1001= Compare mode, clear output on match (CCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is  
unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit is set; ECCP resets TMR1, and starts an  
A/D conversion, if the A/D module is enabled.)  
1100= PWM mode. P1A, P1C active high. P1B, P1D active high.  
1101= PWM mode. P1A, P1C active high. P1B, P1D active low.  
1110= PWM mode. P1A, P1C active low. P1B, P1D active high.  
1111= PWM mode. P1A, P1C active low. P1B, P1D active low.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 55  
PIC16C717/770/771  
TABLE 8-1:  
ECCP MODE - TIMER  
RESOURCE  
EXAMPLE 8-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
CLRF  
CCP1CON, F ; Turn ECCP module off  
ECCP1 Mode  
Timer Resource  
MOVLW NEW_CAPT_PS ; Load WREG with the  
; new prescaler mode  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
; value and ECCP ON  
; Load CCP1CON with  
; this value  
MOVWF CCP1CON  
8.1  
Capture Mode  
FIGURE 8-1: CAPTURE MODE OPERATION  
BLOCK DIAGRAM  
In Capture mode, CCPR1H:CCPR1L captures the 16-  
bit value of the TMR1 register when an event occurs on  
pin CCP1. An event is defined as:  
Set flag bit CCP1IF  
(PIR1<2>)  
Prescaler  
÷ 1, 4, 16  
• every falling edge  
• every rising edge  
RB3/CCP1/  
P1A Pin  
CCPR1H  
CCPR1L  
TMR1L  
Capture  
Enable  
• every 4th rising edge  
• every 16th rising edge  
and  
edge detect  
TMR1H  
An event is selected by control bits CCP1M<3:0>  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value will be lost.  
CCP1CON<3:0>  
Q’s  
8.2  
Compare Mode  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the CCP1 pin is:  
8.1.1  
CCP1 PIN CONFIGURATION  
In Capture mode, the CCP1 pin should be configured  
as an input by setting the TRISB<3> bit.  
• driven High  
• driven Low  
Note: If the RB3/CCP1/P1A pin is configured as  
an output, a write to the port can cause a  
capture condition.  
• toggle output (High to Low or Low to High)  
• remains Unchanged  
The action on the pin is based on the value of control  
bits CCP1M<3:0>. At the same time, interrupt flag bit  
CCP1IF is set.  
8.1.2  
TIMER1 MODE SELECTION  
Timer1 must be running in timer mode or synchronized  
counter mode. In asynchronous counter mode, the  
capture operation may not work.  
8.2.1  
CCP1 PIN CONFIGURATION  
The user must configure the CCP1 pin as an output by  
clearing the appropriate TRISB bit.  
8.1.3  
SOFTWARE INTERRUPT  
Note: Clearing the CCP1CON register will force  
the CCP1 compare output latch to the  
default low level. This is not the port data  
latch.  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in operating mode.  
8.2.2  
TIMER1 MODE SELECTION  
8.1.4  
ECCP PRESCALER  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the ECCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
There are four prescaler settings, specified by bits  
CCP1M<3:0>. Whenever the ECCP module is turned  
off or the ECCP1 module is not in capture mode, the  
prescaler counter is cleared. This means that any reset  
will clear the prescaler counter.  
8.2.3  
SOFTWARE INTERRUPT MODE  
When generate software interrupt is chosen, the CCP1  
pin is not affected. Only an ECCP interrupt is generated  
(if enabled).  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore the first capture may be from  
a non-zero prescaler. Example 8-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
DS41120A-page 56  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
8.2.4  
SPECIAL EVENT TRIGGER  
FIGURE 8-2: COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
The special event trigger output of ECCP resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
Special event trigger will:  
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>).  
The special event trigger output of ECCP module will  
also start an A/D conversion if the A/D module is  
enabled.  
Special Event Trigger  
Set flag bit CCP1IF  
(PIR1<2>)  
Note: The special event trigger will not set the  
CCPR1H CCPR1L  
interrupt flag bit TMR1IF (PIR1<0>).  
Q
S
R
Output  
Logic  
Comparator  
match  
RB3/CCP1/  
P1A Pin  
TRISB<3>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
TABLE 8-2:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
RCIF  
RCIE  
INTE  
TXIF  
TXIE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 0000  
0000 0000  
1111 1111  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 000u  
0000 0000  
0000 0000  
1111 1111  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
(1)  
PSPIF  
PSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
(1)  
PIE1  
TRISB  
PORTB Data Direction Register  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
CCPR1H  
CCP1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1register  
T1CKPS1 T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS TMR1ON  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
PWM1M1 PWM1M0  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2  
CCP1M1  
CCP1M0  
Legend: x = unknown, u = unchanged, -= unimplemented read as ’0’. Shaded cells are not used by Capture and Timer1.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 57  
PIC16C717/770/771  
8.3  
PWM Mode  
In Pulse Width Modulation (PWM) mode, the ECCP  
module produces up to a 10-bit resolution PWM output.  
Figure 8-3 shows the simplified PWM block diagram.  
FIGURE 8-3:  
SIMPLIFIED PWM BLOCK DIAGRAM  
PWM1M1<1:0> CCP1M<3:0>  
CCP1CON<5:4>  
Duty cycle registers  
4
2
CCPR1L  
CCP1/P1A  
P1B  
RB3/CCP1/P1A  
RB5/SDO/P1B  
TRISB<3>  
TRISB<5>  
TRISB<6>  
TRISB<7>  
CCPR1H (Slave)  
Comparator  
OUTPUT  
CONTROLLER  
Q
R
S
RB6/T1OSO/T1CKI/  
P1C  
P1C  
(Note 1)  
TMR2  
P1D  
RB7/T1OSI/P1D  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
P1DEL  
Note: 8-bit timer TMR2 is concatenated with 2-bit internal Q clock or 2 bits of the prescaler to create 10-bit time-base.  
8.3.1  
PWM PERIOD  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
PWM PERIOD = (PR2) + 1] • 4 • TOSC •  
(TMR2 PRESCALE VALUE)  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
• TMR2 is cleared  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
Note: The Timer2 postscaler (see Section 7.0) is  
not used in the determination of the PWM  
frequency. The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
DS41120A-page 58  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
8.3.2  
PWM DUTY CYCLE  
FIGURE 8-4: SINGLE PWM OUTPUT  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
Period  
CCP1(2)  
Duty Cycle  
(1)  
(1)  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 prescale value)  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
2: Output signal is shown as asserted high.  
FIGURE 8-5: EXAMPLE OF SINGLE  
OUTPUT APPLICATION  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
PIC16C717/770/771  
Using PWM as  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
a D/A Converter  
R
CCP1  
VOUT  
Maximum PWM resolution (bits) for a given PWM fre-  
quency:  
C
FOSC  
---------------  
log  
FPWM  
-----------------------------  
=
bits  
Using PWM to  
Drive a Power  
Load  
V+  
log(2)  
PIC16C717/770/771  
L
O
A
D
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
CCP1  
8.3.3  
PWM OUTPUT CONFIGURATIONS  
The PWM1M1 bits in the CCP1CON register allows  
one of the following configurations:  
In the Half-Bridge output mode, two pins are used as  
outputs. The RB3/CCP1/P1A pin has the PWM output  
signal, while the RB5/SDO/P1B pin has the comple-  
mentary PWM output signal. This mode can be used  
for half-bridge applications, as shown on Figure 8-7, or  
for full-bridge applications, where four power switches  
are being modulated with two PWM signal.  
• Single output  
• Half-Bridge output  
• Full-Bridge output, Forward mode  
• Full-Bridge output, Reverse mode  
In the Single Output mode, the RB3/CCP1/P1A pin is  
used as the PWM output. Since the CCP1 output is  
multiplexed with the PORTB<3> data latch, the  
TRISB<3> bit must be cleared to make the CCP1 pin  
an output.  
Since the P1A and P1B outputs are multiplexed with  
the PORTB<3> and PORTB<5> data latches, the  
TRISB<3> and TRISB<5> bits must be cleared to con-  
figure P1A and P1B as outputs.  
In Half-Bridge output mode, the programmable dead-  
band delay can be used to prevent shoot-through cur-  
rent in bridge power devices. See Section 8.3.5 for  
more details of the deadband delay operations.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 59  
PIC16C717/770/771  
8.3.4  
OUTPUT POLARITY CONFIGURATION  
The PWM output polarities must be selected before the  
PWM outputs are enabled. Charging the polarity con-  
figuration while the PWM outputs are active is not rec-  
ommended, since it may result in unpredictable  
operation.  
The CCP1M<1:0> bits in the CCP1CON register allow  
user to choose the logic conventions (asserted high/  
low) for each of the outputs. See Register 8-1 for fur-  
ther details.  
FIGURE 8-6: HALF-BRIDGE PWM OUTPUT  
Period  
Period  
Duty Cycle  
P1A(2)  
P1B(2)  
td  
td  
(1)  
(1)  
(1)  
td = Deadband Delay  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
2: Output signals are shown as asserted high.  
DS41120A-page 60  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 8-7: EXAMPLE OF HALF-BRIDGE OUTPUT MODE APPLICATIONS  
V+  
PIC16C717/770/771  
FET  
DRIVER  
+
V
-
P1A  
+
-
LOAD  
FET  
DRIVER  
+
V
-
P1B  
V-  
V+  
PIC16C717/770/771  
FET  
DRIVER  
FET  
DRIVER  
P1A  
+
-
LOAD  
FET  
DRIVER  
FET  
DRIVER  
P1B  
V-  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 61  
PIC16C717/770/771  
In Full-Bridge output mode, four pins are used as out-  
puts; however, only two outputs are active at a time. In  
the Forward mode, RB3/CCP1/P1A pin is continuously  
active, and RB7/T1OSI/P1D pin is modulated. In the  
Reverse mode, RB6/T1OSO/T1CKI/P1C pin is contin-  
uously active, and RB5/SDO/P1B pin is modulated.  
P1A, P1B, P1C and P1D outputs are multiplexed with  
PORTB<3> and PORTB<5:7> data latches. TRISB<3>  
and TRISB<5:7> bits must be cleared to make the P1A,  
P1B, P1C, and P1D pins output.  
FIGURE 8-8: FULL-BRIDGE PWM OUTPUT  
FORWARD MODE  
Period  
1
(2)  
P1A  
0
Duty Cycle  
1
0
(2)  
(2)  
P1B  
1
0
P1C  
1
0
(2)  
P1D  
(1)  
(1)  
REVERSE MODE  
Period  
Duty Cycle  
1
0
(2)  
(2)  
(2)  
P1A  
P1B  
1
0
1
0
P1C  
(2) 1  
P1D  
0
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
2: Output signal is shown as asserted high.  
DS41120A-page 62  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 8-9: EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
PIC16C717/770/771  
FET  
DRIVER  
FET  
DRIVER  
P1D  
+
-
LOAD  
P1C  
FET  
DRIVER  
FET  
DRIVER  
P1A  
P1B  
V-  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 63  
PIC16C717/770/771  
8.3.5  
PROGRAMMABLE DEADBAND DELAY  
avoid this potentially destructive shoot-through current  
from flowing during switching, turning on the power  
switch is normally delayed to allow the other switch to  
completely turn off.  
In half-bridge or full-bridge applications, where all  
power switches are modulated at the PWM frequency  
at all time, the power switches normally require longer  
time to turn off than to turn on. If both the upper and  
lower power switches are switched at the same time  
(one turned on, and the other turned off), both switches  
will be on for a short period of time, until one switch  
completely turns off. During this time, a very high cur-  
rent, called shoot-through current, will flow through  
both power switches, shorting the bridge supply. To  
In the Half-Bridge Output mode, a digitally program-  
mable deadband delay is available to avoid shoot-  
through current from destroying the bridge power  
switches. The delay occurs at the signal transition from  
the non-active state to the active state. See Figure 8-6  
for illustration. The P1DEL register sets the amount of  
delay.  
REGISTER 8-2: PWM DELAY REGISTER (P1DEL: 97H)  
R/W-0  
bit7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as  
‘0’  
- n = Value at POR reset  
bit 7-0: P1DEL<7:0>: PWM Delay count for Half-Bridge output mode: Number of FOSC/4 (Tosc4) cycles  
between the P1A transition and the P1B transition.  
8.3.6  
DIRECTION CHANGE IN FULL-BRIDGE  
OUTPUT MODE  
modulated outputs, P1A and P1C signals, will transition  
to the new direction TOSC, 4TOSC or 16TOSC (for  
Timer2 presale T2CKRS<1:0> = 00, 01 and 1x respec-  
tively) earlier, before the end of the period. During this  
transition cycle, the modulated outputs, P1B and P1D,  
will go to the inactive state. See Figure 8-10 for illustra-  
tion.  
In the Full-Bridge Output mode, the PWM1M1 bit in the  
CCP1CON register allows user to control the Forward/  
Reverse direction. When the application firmware  
changes this direction control bit, the ECCP module will  
assume the new direction on the next PWM cycle. The  
current PWM cycle still continues, however, the non-  
FIGURE 8-10: PWM DIRECTION CHANGE  
(1)  
PERIOD  
PERIOD  
SIGNAL  
DC  
P1A (Active High)  
P1B (Active High)  
P1C (Active High)  
P1D (Active High)  
(2)  
Note 1: The Direction bit in the ECCP Control Register (CCP1CON.PWM1M1) is written anytime during the PWM cycle.  
2: The P1A and P1C signals switch TOSC, 4*Tosc or 16*TOSC depending on the Timer2 prescaler value earlier when  
changing direction. The modulated P1B and P1D signals are inactive at this time.  
DS41120A-page 64  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
Note that in the Full-Bridge output mode, the ECCP  
module does not provide any deadband delay. In gen-  
eral, since only one output is modulated at all time,  
deadband delay is not required. However, there is a sit-  
uation where a deadband delay might be required. This  
situation occurs when all of the following conditions are  
true:  
example, since the turn off time of the power devices is  
longer than the turn on time, a shoot-through current  
flows through the power devices, QB and QD, for the  
duration of t= toff-ton. The same phenomenon will occur  
to power devices, QC and QB, for PWM direction  
change from reverse to forward.  
If changing PWM direction at high duty cycle is required  
for the user’s application, one of the following require-  
ments must be met:  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn off time of the power switch, including  
the power device and driver circuit, is greater  
than turn on time.  
1. Avoid changing PWM output direction at or near  
100% duty cycle.  
2. Use switch drivers that compensate the slow  
turn off of the power devices. The total turn off  
time (toff) of the power device and the driver  
must be less than the turn on time (ton).  
Figure 8-11 shows an example, where the PWM direc-  
tion changes from forward to reverse at a near 100%  
duty cycle. At time t1, the output P1A and P1D become  
inactive, while output P1C becomes active. In this  
FIGURE 8-11: PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
FORWARD PERIOD  
REVERSE PERIOD  
1
0
P1A  
P1B  
1
0
(PWM)  
1
0
P1C  
1
0
P1D  
(PWM)  
t
on  
1
0
External Switch C  
t
off  
1
0
External Switch D  
Potential  
Shoot Through  
Current  
t = t - t  
1
0
off on  
t
1
Note 1: All signals are shown as active high.  
2: ton is the turn on delay of power switch and driver.  
3: toff is the turn off delay of power switch and driver.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 65  
PIC16C717/770/771  
8.3.7  
SYSTEM IMPLEMENTATION  
8.3.9  
SET UP FOR PWM OPERATION  
When the ECCP module is used in the PWM mode, the  
application hardware must use the proper external pull-  
up and/or pull-down resistors on the PWM output pins.  
When the microcontroller powers up, all of the I/O pins  
are in the high-impedance state. The external pull-up  
and pull-down resistors must keep the power switch  
devices in the off state until the microcontroller drives  
the I/O pins with the proper signal levels, or activates  
the PWM output(s).  
The following steps should be taken when configuring  
the ECCP module for PWM operation:  
1. Configure the PWM module:  
a) Disable the CCP1/P1A, P1B, P1C and/or  
P1D outputs by setting the respective  
TRISB bits.  
b) Set the PWM period by loading the PR2  
register.  
c) Set the PWM duty cycle by loading the  
CCPR1L register and CCP1CON<5:4>  
bits.  
8.3.8  
START-UP CONSIDERATIONS  
Prior to enabling the PWM outputs, the P1A, P1B, P1C  
and P1D latches may not be in the proper states.  
Enabling the TRISB bits for output at the same time  
with the CCP module may cause damage to the power  
switch devices. The CCP1 module must be enabled in  
the proper output mode with the TRISB bits enabled as  
inputs. Once the CCP1 completes a full PWM cycle, the  
P1A, P1B, P1C and P1D output latches are properly  
initialized. At this time, the TRISB bits can be enabled  
for outputs to start driving the power switch devices.  
The completion of a full PWM cycle is indicated by the  
TMR2IF bit going from a ’0’ to a ’1’.  
d) Configure the ECCP module for the desired  
PWM operation by loading the CCP1CON  
register. With the CCP1M<3:0> bits select  
the active high/low levels for each PWM  
output. With the PWM1M<1:0> bits select  
one of the available output modes: Single,  
Half-Bridge, Full-Bridge, Forward or Full-  
Bridge Reverse.  
e) For Half-Bridge output mode, set the dead-  
band delay by loading the P1DEL register.  
2. Configure and start TMR2:  
a) Clear the TMR2 interrupt flag bit by clearing  
the TMR2IF bit in the PIR1 register.  
b) Set the TMR2 prescale value by loading the  
T2CKPS<1:0> bits in the T2CON register.  
c) Enable Timer2 by setting the TMR2ON bit  
in the T2CON register.  
3. Enable PWM outputs after a new cycle has  
started:  
a) Wait until TMR2 overflows (TMR2IF bit  
becomes a ’1’). The new PWM cycle begins  
here.  
b) Enable the CCP1/P1A, P1B, P1C and/or  
P1D pin outputs by clearing the respective  
TRISB bits.  
TABLE 8-3:  
REGISTERS ASSOCIATED WITH PWM  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
10Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 000u  
18Bh  
0Ch  
8Ch  
86h, 186h  
11h  
PIR1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
-0-- 0000  
-0-- 0000  
1111 1111  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
-0-- 0000  
-0-- 0000  
1111 1111  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
PIE1  
TRISB  
TMR2  
PORTB Data Direction Register  
Timer2 register  
92h  
PR2  
Timer2 period register  
12h  
T2CON  
CCPR1L  
CCP1CON  
P1DEL  
TOUTPS3  
Capture/Compare/PWM register1 (LSB)  
PWM1M1 PWM1M0 DC1B1  
PWM1 Delay value  
TOUTPS2  
TOUTPS1  
DC1B0  
TOUTPS0  
CCP1M3  
TMR2ON  
CCP1M2  
T2CKPS1  
CCP1M1  
T2CKPS0  
CCP1M0  
15h  
17h  
97h  
Legend: Legend: x = unknown, u = unchanged, -= unimplemented read as ’0’. Shaded cells are not used by Capture and Timer1.  
DS41120A-page 66  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
9.0  
MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, etc. The MSSP module can operate in one  
of two modes:  
• Serial Peripheral Interface (SPI™)  
• Inter-Integrated Circuit (I2C™)  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 67  
PIC16C717/770/771  
REGISTER 9-1: SYNC SERIAL PORT STATUS REGISTER (SSPSTAT: 94h)  
R/W-0 R/W-0  
SMP CKE  
bit7  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read  
as ‘0’  
bit0  
- n = Value at POR reset  
bit 7:  
SMP: Sample bit  
SPI Master Mode  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave Mode  
SMP must be cleared when SPI is used in slave mode  
In I2C master or slave mode:  
1= Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0= Slew rate control enabled for high speed mode (400 kHz)  
bit 6:  
CKE: SPI Clock Edge Select (Figure 9-3, Figure 9-5, and Figure 9-6)  
CKP = 0  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
CKP = 1  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
bit 5:  
bit 4:  
D/A: Data/Address bit (I2C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: Stop bit  
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared)  
1= Indicates that a stop bit has been detected last (this bit is ’0’ on RESET)  
0= Stop bit was not detected last  
bit 3:  
bit 2:  
S: Start bit  
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared)  
1= Indicates that a start bit has been detected last (this bit is ’0’ on RESET)  
0= Start bit was not detected last  
R/W: Read/Write bit information (I2C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next start bit, stop bit, or not ACK bit.  
In I2C slave mode:  
1= Read  
0= Write  
In I2C master mode:  
1= Transmit is in progress  
0= Transmit is not in progress.  
Or’ing this bit with SEN, RSEN, PEN, RCEN, or AKEN will indicate if the MSSP is in IDLE mode  
bit 1:  
bit 0:  
UA: Update Address (10-bit I2C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
Receive (SPI and I2C modes)  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Transmit (I2C mode only)  
1= Data Transmit in progress (does not include the ACK and stop bits), SSPBUF is full  
0= Data Transmit complete (does not include the ACK and stop bits), SSPBUF is empty  
DS41120A-page 68  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
REGISTER 9-2: SYNC SERIAL PORT CONTROL REGISTER (SSPCON: 14h)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
R = Readable bit  
W = Writable bit  
- n = Value at POR reset  
bit7  
bit0  
bit 7:  
WCOL: Write Collision Detect bit  
Master Mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for a  
transmission to be started  
0= No collision  
Slave Mode:  
1= The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0= No collision  
bit 6:  
SSPOV: Receive Overflow Indicator bit  
In SPI mode  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow,  
the data in SSPSR is lost. Overflow can only occur in slave mode. In slave mode, the user must read the  
SSPBUF, even if only transmitting data, to avoid setting overflow. In master mode, the overflow bit is not  
set since each new reception (and transmission) is initiated by writing to the SSPBUF register. (Must be  
cleared in software).  
0= No overflow  
In I2C mode  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don’t care"  
in transmit mode. (Must be cleared in software).  
0= No overflow  
bit 5:  
SSPEN: Synchronous Serial Port Enable bit  
In both modes, when enabled, these pins must be properly configured as input or output.  
In SPI mode  
1= Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
In I2C mode  
1= Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4:  
CKP: Clock Polarity Select bit  
In SPI mode  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
In I2C slave mode  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch) (Used to ensure data setup time)  
In I2C master mode  
Unused in this mode  
bit 3-0: SSPM<3:0>: Synchronous Serial Port Mode Select bits  
0000= SPI master mode, clock = FOSC/4  
0001= SPI master mode, clock = FOSC/16  
0010= SPI master mode, clock = FOSC/64  
0011= SPI master mode, clock = TMR2 output/2  
0100= SPI slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin  
0110= I2C slave mode, 7-bit address  
0111= I2C slave mode, 10-bit address  
1000= I2C master mode, clock = FOSC / (4 (SSPADD+1) )  
1xx1= Reserved  
1x1x= Reserved  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 69  
PIC16C717/770/771  
REGISTER 9-3: SYNC SERIAL PORT CONTROL REGISTER2 (SSPCON2: 91h)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT  
ACKDT  
ACKEN  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit, Read  
as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
GCEN: General Call Enable bit (In I2C slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR.  
0= General call address disabled.  
ACKSTAT: Acknowledge Status bit (In I2C master mode only)  
In master transmit mode:  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
bit 5:  
bit 4:  
ACKDT: Acknowledge Data bit (In I2C master mode only)  
In master receive mode:  
Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.  
1= Not Acknowledge  
0= Acknowledge  
ACKEN: Acknowledge Sequence Enable bit (In I2C master mode only).  
In master receive mode:  
1= Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit. Automatically  
cleared by hardware.  
0= Acknowledge sequence idle  
bit 3:  
bit 2:  
RCEN: Receive Enable bit (In I2C master mode only).  
1= Enables Receive mode for I2C  
0= Receive idle  
PEN: Stop Condition Enable bit (In I2C master mode only).  
SCK release control  
1= Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Stop condition idle  
bit 1:  
bit 0:  
RSEN: Repeated Start Condition Enabled bit (In I2C master mode only)  
1= Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated Start condition idle.  
SEN: Start Condition Enabled bit (In I2C master mode only)  
1= Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Start condition idle.  
2
Note:  
For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I C module is not in the idle mode, this bit may not be set (no  
spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).  
DS41120A-page 70  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
9.1  
SPI Mode  
FIGURE 9-1: MSSP BLOCK DIAGRAM  
(SPI MODE)  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four  
modes of SPI are supported. To accomplish communi-  
cation, typically three pins are used:  
Internal  
Data Bus  
Read  
Write  
• Serial Data Out (SDO)  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
SSPBUF reg  
SSPSR reg  
Additionally, a fourth pin may be used when in a slave  
mode of operation:  
Shift  
Clock  
SDI  
• Slave Select (SS)  
bit0  
9.1.1  
OPERATION  
SDO  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
Control  
Enable  
SS  
SS  
Edge  
Select  
• Master Mode (SCK is the clock output)  
• Slave Mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
• Data input sample phase  
2
Clock Select  
(middle or end of data output time)  
• Clock edge  
(output data on rising/falling edge of SCK)  
• Clock Rate (Master mode only)  
• Slave Select Mode (Slave mode only)  
SSPM<3:0>  
SMP:CKE  
2
4
TMR2 Output  
2
Edge  
Select  
Tosc  
Prescaler  
4, 16, 64  
Figure 9-1 shows the block diagram of the MSSP mod-  
ule when in SPI mode.  
SCK  
Data to TX/RX in SSPSR  
Data direction bit  
The MSSP consists of a transmit/receive Shift Register  
(SSPSR) and a Buffer Register (SSPBUF). The  
SSPSR shifts the data in and out of the device, MSb  
first. The SSPBUF holds the data that was written to the  
SSPSR, until the received data is ready. Once the 8 bits  
of data have been received, that byte is moved to the  
SSPBUF register. Then the buffer full detect bit, BF  
(SSPSTAT<0>), and the interrupt flag bit, SSPIF  
(PIR1<3>), are set. This double buffering of the  
received data (SSPBUF) allows the next byte to start  
reception before reading the data that was just  
received. Any write to the SSPBUF register during  
transmission/reception of data will be ignored, and the  
write collision detect bit WCOL (SSPCON<7>) will be  
set. User software must clear the WCOL bit so that it  
can be determined if the following write(s) to the SSP-  
BUF register completed successfully.  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
full bit, BF (SSPSTAT<0>), indicates when the SSP-  
BUF has been loaded with the received data (transmis-  
sion is complete). When the SSPBUF is read, bit BF is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. Generally the MSSP Interrupt is used to  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 71  
PIC16C717/770/771  
determine when the transmission/reception has com-  
pleted. The SSPBUF must be read and/or written. If the  
interrupt method is not going to be used, then software  
polling can be done to ensure that a write collision does  
not occur. Example 9-1 shows the loading of the  
SSPBUF (SSPSR) for data transmission.  
SDI, SDO, SCK and SS pins as serial port pins. For the  
pins to behave as the serial port function, some must  
have their data direction bits (in the TRIS register)  
appropriately programmed. That is:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISB<5> cleared  
• SCK (Master mode) must have TRISB<2> cleared  
• SCK (Slave mode) must have TRISB<2> set  
EXAMPLE 9-1: LOADING THE SSPBUF  
(SSPSR) REGISTER  
• SS must have TRISB<1> set, and ANSEL<5>  
cleared  
BSF  
STATUS, RP0  
;Specify Bank 1  
;Has data been  
;received  
LOOP BTFSS SSPSTAT, BF  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value.  
;(transmit  
;complete)?  
GOTO LOOP  
;No  
BCF  
STATUS, RP0  
;Specify Bank 0  
;W reg = contents  
;of SSPBUF  
9.1.3  
TYPICAL CONNECTION  
MOVF SSPBUF, W  
Figure 9-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge, and latched on the opposite edge  
of the clock. Both processors should be programmed to  
same Clock Polarity (CKP), then both controllers would  
send and receive data at the same time. Whether the  
data is meaningful (or dummy data) depends on the  
application software. This leads to three scenarios for  
data transmission:  
MOVWF RXDATA  
MOVF TXDATA, W  
;Save in user RAM  
;W reg = contents  
; of TXDATA  
MOVWF SSPBUF  
;New data to xmit  
The SSPSR is not directly readable or writable, and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the MSSP status register (SSPSTAT) indi-  
cates the various status conditions.  
9.1.2  
ENABLING SPI I/O  
• Master sends data — Slave sends dummy data  
• Master sends data — Slave sends data  
To enable the serial port, MSSP Enable bit, SSPEN  
(SSPCON<5>) must be set. To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
isters, and then set bit SSPEN. This configures the  
• Master sends dummy data — Slave sends data  
FIGURE 9-2: SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM<3:0> = 00xxb  
SDO  
SPI Slave SSPM<3:0> = 010xb  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
Shift Register  
(SSPSR)  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
DS41120A-page 72  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
9.1.4  
MASTER MODE  
Figure 9-3, Figure 9-5 and Figure 9-6, where the MSb  
is transmitted first. In master mode, the SPI clock rate  
(bit rate) is user programmable to be one of the follow-  
ing:  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 9-2) is to broad-  
cast data by the software protocol.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
In master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI  
module is only going to receive, the SDO output could  
be disabled (programmed as an input). The SSPSR  
register will continue to shift in the signal present on the  
SDI pin at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “line activity monitor”.  
This allows a maximum bit clock frequency (at 20 MHz)  
of 8.25 MHz.  
Figure 9-3 shows the waveforms for Master mode.  
When CKE = 1, the SDO data is valid before there is a  
clock edge on SCK. The change of the input sample is  
shown based on the state of the SMP bit. The time  
when the SSPBUF is loaded with the received data is  
shown.  
The clock polarity is selected by appropriately program-  
ming bit CKP (SSPCON<4>). This then would give  
waveforms for SPI communication as shown in  
FIGURE 9-3: SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 clock  
modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit6  
bit6  
bit2  
bit2  
bit5  
bit5  
bit4  
bit4  
bit1  
bit1  
bit0  
bit0  
SDO  
(CKE = 0)  
bit7  
bit7  
bit3  
bit3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit0  
bit7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 73  
PIC16C717/770/771  
9.1.5  
SLAVE MODE  
SDO pin is no longer driven, even if in the middle of  
a transmitted byte, and becomes a floating output.  
External pull-up/ pull-down resistors may be desirable,  
depending on the application.  
In slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched the interrupt flag bit SSPIF (PIR1<3>)  
is set.  
Note 1: When the SPI module is in Slave Mode  
with SS pin control enabled, (SSP-  
CON<3:0> = 0100) the SPI module will  
reset if the SS pin is set to VDD.  
While in slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: If the SPI is used in Slave Mode with  
CKE = ’1’, then SS pin control must be  
enabled.  
While in sleep mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from sleep.  
When the SPI module resets, the bit counter is forced  
to 0. This can be done by either forcing the SS pin to a  
high level or clearing the SSPEN bit.  
9.1.6  
SLAVE SELECT SYNCHRONIZATION  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
The SS pin allows a synchronous slave mode. The  
SPI must be in slave mode with SS pin control  
enabled (SSPCON<3:0> = 0100). The pin must not  
be driven low for the SS pin to function as an input.  
TRISB<1> must be set. When the SS pin is low,  
transmission and reception are enabled and the  
SDO pin is driven. When the SS pin goes high, the  
FIGURE 9-4: SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit7  
bit7  
bit0  
bit0  
SDO  
bit7  
SDI  
(SMP = 0)  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2Ø  
SSPSR to  
SSPBUF  
DS41120A-page 74  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 9-5: SPI SLAVE MODE WAVEFORM (CKE = 0)  
SS  
optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
SDO  
bit7  
bit3  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2Ø  
SSPSR to  
SSPBUF  
FIGURE 9-6: SPI SLAVE MODE WAVEFORM (CKE = 1)  
SS  
not optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
bit0  
SDO  
bit7  
bit7  
bit3  
SDI  
(SMP = 0)  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2Ø  
SSPSR to  
SSPBUF  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 75  
PIC16C717/770/771  
9.1.7  
SLEEP OPERATION  
9.1.8  
EFFECTS OF A RESET  
In master mode, all module clocks are halted and the  
transmission/reception will remain in that state until the  
device wakes from sleep. After the device returns to  
normal mode, the module will continue to transmit/  
receive data.  
A reset disables the MSSP module and terminates the  
current transfer.  
In slave mode, the SPI transmit/receive shift register  
operates asynchronously to the device. This allows the  
device to be placed in sleep mode and data to be  
shifted into the SPI transmit/receive shift register.  
When all 8 bits have been received, the MSSP interrupt  
flag bit will be set and if enabled will wake the device  
from sleep.  
TABLE 9-1:  
REGISTERS ASSOCIATED WITH SPI OPERATION  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR MCLR, WDT  
0Bh, 8Bh,  
10Bh,18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
13h  
14h  
94h  
PIR1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF -0-- 0000 -0-- 0000  
TMR1IE -0-- 0000 -0-- 0000  
xxxx xxxx uuuu uuuu  
PIE1  
SSPBUF  
SSPCON  
SSPSTAT  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0 0000 0000 0000 0000  
BF  
0000 0000 0000 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as ’0’. Shaded cells are not used by the MSSP in SPI mode.  
DS41120A-page 76  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
9.2  
MSSP I2C Operation  
FIGURE 9-8: I2C MASTER MODE BLOCK  
DIAGRAM  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on start and stop bits in  
hardware to determine a free bus (multi-master func-  
tion). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
Internal  
Data Bus  
Read  
Write  
SSPADD<6:0>  
7
Baud Rate Generator  
Refer to Application Note AN578, "Use of the SSP  
Module in the I 2C Multi-Master Environment."  
SSPBUF reg  
SSPSR reg  
SCL  
A "glitch" filter is on the SCL and SDA pins when the pin  
is an input. This filter operates in both the 100 kHz and  
400 kHz modes. In the 100 kHz mode, when these pins  
are an output, there is a slew rate control of the pin that  
is independent of device frequency.  
Shift  
Clock  
SDA  
MSb  
LSb  
Addr Match  
FIGURE 9-7: I2C SLAVE MODE BLOCK  
DIAGRAM  
Match detect  
SSPADD reg  
Internal  
Data Bus  
Set/Clear S bit  
and  
Read  
Write  
Start and Stop bit  
detect / generate  
Clear/Set P bit  
(SSPSTAT reg)  
SSPBUF reg  
SSPSR reg  
SCL  
SDA  
and Set SSPIF  
Shift  
Clock  
Two pins are used for data transfer. These are the SCL  
pin, which is the clock, and the SDA pin, which is the  
data. The MSSP module functions are enabled by set-  
ting SSP Enable bit SSPEN (SSPCON<5>).  
MSb  
LSb  
The MSSP module has six registers for I2C operation.  
They are the:  
Addr Match  
Match detect  
SSPADD reg  
• SSP Control Register (SSPCON)  
• SSP Control Register2 (SSPCON2)  
• SSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• SSP Shift Register (SSPSR) - Not directly acces-  
sible  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit detect  
• SSP Address Register (SSPADD)  
The SSPCON register allows control of the I2C opera-  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
• I2C Master mode, clock = OSC/4 (SSPADD +1)  
Before selecting any I2C mode, the SCL and SDA pins  
must be programmed to inputs by setting the appropri-  
ate TRIS bits. Selecting an I2C mode, by setting the  
SSPEN bit, enables the SCL and SDA pins to be used  
as the clock and data lines in I2C mode.  
The SSPSTAT register gives the status of the data  
transfer. This information includes detection of a  
START (S) or STOP (P) bit, specifies if the received  
byte was data or address if the next byte is the comple-  
tion of 10-bit address, and if this will be a read or write  
data transfer.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 77  
PIC16C717/770/771  
SSPBUF is the register to which the transfer data is  
written to or read from. The SSPSR register shifts the  
data in or out of the device. In receive operations, the  
SSPBUF and SSPSR create a doubled buffered  
receiver. This allows reception of the next byte to begin  
before reading the last byte of received data. When the  
complete byte is received, it is transferred to the  
SSPBUF register and flag bit SSPIF is set. If another  
complete byte is received before the SSPBUF register  
is read, a receiver overflow has occurred and bit  
SSPOV (SSPCON<6>) is set and the byte in the  
SSPSR is lost.  
9.2.1.1  
ADDRESSING  
Once the MSSP module has been enabled, it waits for  
a START condition to occur. Following the START con-  
dition, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
a) The SSPSR register value is loaded into the  
SSPBUF register on the falling edge of the 8th  
SCL pulse.  
The SSPADD register holds the slave address. In 10-bit  
mode, the user needs to write the high byte of the  
address (1111 0 A9 A8 0). Following the high byte  
address match, the low byte of the address needs to be  
loaded (A7:A0).  
b) The buffer full bit, BF is set on the falling edge of  
the 8th SCL pulse.  
c) An ACK pulse is generated.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) - on the falling  
edge of the 9th SCL pulse.  
9.2.1  
SLAVE MODE  
In slave mode, the SCL and SDA pins must be config-  
ured as inputs. The MSSP module will override the  
input state with the output data when required (slave-  
transmitter).  
In 10-bit address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write  
so the slave device will receive the second address  
byte. For a 10-bit address the first byte would equal  
1111 0 A9 A8 0’, where A9 and A8 are the two MSbs  
of the address. The sequence of events for a 10-bit  
address is as follows, with steps 7- 9 for slave-transmit-  
ter:  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the acknowledge (ACK) pulse, and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
There are certain conditions that will cause the MSSP  
module not to give this ACK pulse. These are if either  
(or both):  
1. Receive first (high) byte of Address (bits SSPIF,  
BF, and bit UA (SSPSTAT<1>) are set).  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
If the BF bit is set, the SSPSR register value is not  
loaded into the SSPBUF, but bit SSPIF and SSPOV are  
set. Table 9-2 shows what happens when a data trans-  
fer byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow condi-  
tion. Flag bit BF is cleared by reading the SSPBUF reg-  
ister while bit SSPOV is cleared through software.  
4. Receive second (low) byte of Address (bits  
SSPIF, BF, and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of Address. This will clear bit UA and  
release the SCL line.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
The SCL clock input must have a minimum high and  
low time for proper operation. The high and low times  
of the I2C specification as well as the requirement of the  
MSSP module is shown in timing parameter #100 and  
parameter #101 of the Electrical Specifications.  
7. Receive Repeated Start condition.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
Note: Following the Repeated Start condition  
(step 7) in 10-bit mode, the user only  
needs to match the first 7-bit address. The  
user does not update the SSPADD for the  
second half of the address.  
DS41120A-page 78  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
9.2.1.2  
SLAVE RECEPTION  
A MSSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the received byte.  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
Note: The SSPBUF will be loaded if the SSPOV  
bit is set and the BF flag is cleared. If a  
read of the SSPBUF was performed, but  
the user did not clear the state of the  
SSPOV bit before the next receive  
occurred, the ACK is not sent and the SSP-  
BUF is updated.  
When the address byte overflow condition exists, then  
no acknowledge (ACK) pulse is given. An overflow con-  
dition is defined as either bit BF (SSPSTAT<0>) or bit  
SSPOV (SSPCON<6>) and is set.  
TABLE 9-2:  
DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
Generate ACK  
Pulse  
(SSP Interrupt occurs  
if enabled)  
BF  
SSPOV  
SSPSR SSPBUF  
0
1
1
0
0
0
1
1
Yes  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
9.2.1.3  
SLAVE TRANSMISSION  
A MSSP interrupt is generated for each data transfer  
byte. The SSPIF flag bit must be cleared in software,  
and the SSPSTAT register is used to determine the sta-  
tus of the byte transfer. The SSPIF flag bit is set on the  
falling edge of the ninth clock pulse.  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit, and the SCL pin is held low.  
The transmit data must be loaded into the SSPBUF  
register, which also loads the SSPSR register. Then the  
SCL pin should be enabled by setting bit CKP (SSP-  
CON<4>). The master must monitor the SCL pin prior  
to asserting another clock pulse. The slave devices  
may be holding off the master by stretching the clock.  
The eight data bits are shifted out on the falling edge of  
the SCL input. This ensures that the SDA signal is valid  
during the SCL high time (Figure 9-10).  
As a slave-transmitter, the ACK pulse from the master-  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line was high (not ACK), then the  
data transfer is complete. When the not ACK is latched  
by the slave, the slave logic is reset and the slave then  
monitors for another occurrence of the START bit. If the  
SDA line was low (ACK), the transmit data must be  
loaded into the SSPBUF register, which also loads the  
SSPSR register. Then the SCL pin should be enabled  
by setting the CKP bit.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 79  
PIC16C717/770/771  
FIGURE 9-9: I2C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
R/W=0  
ACK  
Not  
Receiving Address  
A7 A6 A5 A4  
Receiving Data  
Receiving Data  
ACK  
ACK  
SDA  
A3 A2 A1  
D5  
D2  
6
D0  
8
D5  
D2  
D0  
8
D7 D6  
D4 D3  
D7 D6  
D4 D3  
D1  
7
D1  
7
3
9
7
1
2
4
9
5
4
3
6
9
5
1
2
3
6
1
2
4
8
5
P
SCL  
S
SSPIF  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
FIGURE 9-10: I2C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
R/W = 0  
Transmitting Data Not ACK  
D7 D6 D5 D4 D3 D2 D1 D0  
R/W = 1  
Receiving Address  
ACK  
SDA  
SCL  
A7 A6 A5 A4 A3 A2 A1  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
SSPIF  
BF (SSPSTAT<0>)  
CKP (SSPCON<4>)  
cleared in software  
SSPBUF is written in software  
From SSP interrupt  
service routine  
Set bit after writing to SSPBUF  
(the SSPBUF must be written-to  
before the CKP bit can be set)  
DS41120A-page 80  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
2
FIGURE 9-11: I C SLAVE-TRANSMITTER (10-BIT ADDRESS)  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 81  
PIC16C717/770/771  
2
FIGURE 9-12: I C SLAVE-RECEIVER (10-BIT ADDRESS)  
DS41120A-page 82  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
9.2.2  
GENERAL CALL ADDRESS SUPPORT  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag is set (eighth  
bit), and on the falling edge of the ninth bit (ACK bit), the  
SSPIF flag is set.  
The addressing procedure for the I2C bus is such that  
the first byte after the START condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address,  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
acknowledge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF to determine if the address was device spe-  
cific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match, and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when GCEN is set while the slave is config-  
ured in 10-bit address mode, then the second half of  
the address is not necessary, the UA bit will not be set,  
and the slave will begin receiving data after the  
acknowledge (Figure 9-13).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all 0’s with R/W = 0  
The general call address is recognized when the Gen-  
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>  
is set). Following a start-bit detect, 8 bits are shifted  
into SSPSR and the address is compared against  
SSPADD. It is also compared to the general call  
address, fixed in hardware.  
FIGURE 9-13: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT MODE)  
Address is compared to General Call Address  
after ACK, set interrupt flag  
Receiving data  
D5 D4 D3 D2 D1  
ACK  
9
R/W = 0  
ACK  
General Call Address  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
S
SSPIF  
BF  
(SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV  
(SSPCON<6>)  
’0’  
’1’  
GCEN  
(SSPCON2<7>)  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 83  
PIC16C717/770/771  
9.2.3  
SLEEP OPERATION  
from a reset or when the MSSP module is disabled.  
Control of the I2C bus may be taken when the P bit is  
set, or the bus is idle with both the S and P bits clear.  
While in sleep mode, the I2C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs, wake the processor from  
sleep (if the SSP interrupt bit is enabled).  
In master mode, the SCL and SDA lines are manipu-  
lated by the MSSP hardware.  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP Interrupt if enabled):  
9.2.4  
EFFECTS OF A RESET  
• START condition  
A reset disables the MSSP module and terminates the  
current transfer.  
• STOP condition  
• Data transfer byte transmitted/received  
• Acknowledge transmit  
• Repeated Start  
9.2.5  
MASTER MODE  
Master mode operation is supported by interrupt gen-  
eration on the detection of the START and STOP con-  
ditions. The STOP (P) and START (S) bits are cleared  
2
FIGURE 9-14: MSSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM<3:0>,  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA in  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit detect,  
Stop bit detect  
Write collision detect  
Clock Arbitration  
State counter for  
end of XMIT/RCV  
SCL in  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
DS41120A-page 84  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
9.2.6  
MULTI-MASTER OPERATION  
9.2.7.1  
I2C MASTER MODE OPERATION  
In multi-master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a reset or  
when the MSSP module is disabled. Control of the I2C  
bus may be taken when bit P (SSPSTAT<4>) is set, or  
the bus is idle with both the S and P bits clear. When  
the bus is busy, enabling the SSP Interrupt will gener-  
ate the interrupt when the STOP condition occurs.  
The master device generates all of the serial clock  
pulses and the START and STOP conditions. A trans-  
fer is ended with a STOP condition or with a Repeated  
Start condition. Since the Repeated Start condition is  
also the beginning of the next serial transfer, the I2C  
bus will not be released.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic '0'. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an acknowledge bit is received. START and STOP  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
In multi-master operation, the SDA line must be moni-  
tored for arbitration to see if the signal level is the  
expected output level. This check is performed in hard-  
ware, with the result placed in the BCLIF bit.  
The states where arbitration can be lost are:  
• Address Transfer  
In Master receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case the R/W bit will be  
logic '1'. Thus the first byte transmitted is a 7-bit slave  
address followed by a '1' to indicate receive bit. Serial  
data is received via SDA while SCL outputs the serial  
clock. Serial data is received 8 bits at a time. After each  
byte is received, an acknowledge bit is transmitted.  
START and STOP conditions indicate the beginning  
and end of transmission.  
• Data Transfer  
• A Start Condition  
• A Repeated Start Condition  
• An Acknowledge Condition  
9.2.7  
I2C MASTER OPERATION SUPPORT  
Master Mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON and by setting the  
SSPEN bit. Once master mode is enabled, the user  
has six options.  
The baud rate generator used for SPI mode operation  
is now used to set the SCL clock frequency for either  
100 kHz, 400 kHz, or 1 MHz I2C operation. The baud  
rate generator reload value is contained in the lower 7  
bits of the SSPADD register. The baud rate generator  
will automatically begin counting on a write to the SSP-  
BUF. Once the given operation is complete (i.e. trans-  
mission of the last data bit is followed by ACK), the  
internal clock will automatically stop counting and the  
SCL pin will remain in its last state  
- Assert a start condition on SDA and SCL.  
- Assert a Repeated Start condition on SDA and  
SCL.  
- Write to the SSPBUF register initiating trans-  
mission of data/address.  
- Generate a stop condition on SDA and SCL.  
- Configure the I2C port to receive data.  
- Generate an Acknowledge condition at the end  
of a received byte of data.  
A typical transmit sequence would go as follows:  
Note: The MSSP Module, when configured in I2C  
Master Mode, does not allow queueing of  
events. For instance, the user is not  
allowed to initiate a start condition and  
immediately write the SSPBUF register to  
initiate transmission before the START  
condition is complete. In this case, the  
SSPBUF will not be written to, and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
a) The user generates a Start Condition by setting  
the START enable bit (SEN) in SSPCON2.  
b) SSPIF is set. The module will wait the required  
start time before any other operation takes  
place.  
c) The user loads the SSPBUF with address to  
transmit.  
d) Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
e) The MSSP Module shifts in the ACK bit from the  
slave device, and writes its value into the  
SSPCON2 register ( SSPCON2<6>).  
f) The module generates an interrupt at the end of  
the ninth clock cycle by setting SSPIF.  
g) The user loads the SSPBUF with eight bits of  
data.  
h) DATA is shifted out the SDA pin until all 8 bits  
are transmitted.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 85  
PIC16C717/770/771  
i) The MSSP Module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register ( SSPCON2<6>).  
In I2C master mode, the BRG is reloaded automatically.  
If Clock Arbitration is taking place for instance, the BRG  
will be reloaded when the SCL pin is sampled high  
(Figure 9-16).  
j) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
FIGURE 9-15: BAUD RATE GENERATOR  
BLOCK DIAGRAM  
k) The user generates a STOP condition by setting  
the STOP enable bit PEN in SSPCON2.  
SSPM<3:0>  
SSPADD<6:0>  
l) Interrupt is generated once the STOP condition  
is complete.  
SSPM<3:0>  
SCL  
Reload  
Control  
9.2.8  
BAUD RATE GENERATOR  
Reload  
In I2C master mode, the reload value for the BRG is  
located in the lower 7 bits of the SSPADD register  
(Figure 9-15). When the BRG is loaded with this value,  
the BRG counts down to 0 and stops until another  
reload has taken place. The BRG count is decremented  
twice per instruction cycle (TCY) on the Q2 and Q4  
clock.  
FOSC/4  
BRG Down Counter  
CLKOUT  
FIGURE 9-16: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL allowed to transition high  
SCL de-asserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements  
(on Q2 and Q4 cycles)  
BRG  
value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place, and BRG starts its count.  
BRG  
reload  
DS41120A-page 86  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
9.2.9  
I2C MASTER MODE START CONDITION  
TIMING  
9.2.9.1  
WCOL STATUS FLAG  
If the user writes the SSPBUF when an START  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
To initiate a START condition, the user sets the start  
condition enable bit, SEN (SSPCON2<0>). If the SDA  
and SCL pins are sampled high, the baud rate genera-  
tor is re-loaded with the contents of SSPADD<6:0>,  
and starts its count. If SCL and SDA are both sampled  
high when the baud rate generator times out (TBRG),  
the SDA pin is driven low. The action of the SDA being  
driven low while SCL is high is the START condition,  
and causes the S bit (SSPSTAT<3>) to be set. Follow-  
ing this, the baud rate generator is reloaded with the  
contents of SSPADD<6:0> and resumes its count.  
When the baud rate generator times out (TBRG), the  
SEN bit (SSPCON2<0>) will be automatically cleared  
by hardware, the baud rate generator is suspended  
leaving the SDA line held low, and the START condition  
is complete.  
Note: Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the START  
condition is complete.  
Note: If at the beginning of START condition, the  
SDA and SCL pins are already sampled  
low, or if during the START condition, the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs, the  
Bus Collision Interrupt Flag (BCLIF) is set,  
the START condition is aborted, and the  
I2C module is reset into its IDLE state.  
FIGURE 9-17: FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
Write to SEN bit occurs here.  
SDA = 1,  
At completion of start bit,  
Hardware clears SEN bit  
and sets SSPIF bit  
SCL = 1  
TBRG  
TBRG  
Write to SSPBUF occurs here  
2nd Bit  
1st Bit  
SDA  
TBRG  
SCL  
TBRG  
S
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 87  
PIC16C717/770/771  
FIGURE 9-18: START CONDITION FLOWCHART  
SSPEN = 1,  
SSPCON<3:0> = 1000  
Idle Mode  
SEN (SSPCON2<0> = 1)  
Bus collision detected,  
Set BCLIF,  
No  
SDA = 1?  
SCL = 1?  
Release SCL,  
Clear SEN  
Yes  
Load BRG with  
SSPADD<6:0>  
No  
No  
Yes  
No  
BRG  
Rollover?  
SCL= 0?  
SDA = 0?  
Yes  
Yes  
Reset BRG  
Force SDA = 0,  
Load BRG with  
SSPADD<6:0>,  
Set S bit.  
BRG  
rollover?  
No  
No  
SCL = 0?  
Yes  
Yes  
Reset BRG  
Force SCL = 0,  
Start Condition Done,  
Clear SEN  
and set SSPIF  
DS41120A-page 88  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
9.2.10 I2C MASTER MODE REPEATED START  
CONDITION TIMING  
Immediately following the SSPIF bit getting set, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode) or eight bits of data (7-bit  
mode).  
A Repeated Start condition occurs when the RSEN bit  
(SSPCON2<1>) is set high and the I2C module is in the  
idle state. When the RSEN bit is set, the SCL pin is  
asserted low. When the SCL pin is sampled low, the  
baud rate generator is loaded with the contents of  
SSPADD<6:0>, and begins counting. The SDA pin is  
released (brought high) for one baud rate generator  
count (TBRG). When the baud rate generator times out,  
if SDA is sampled high, the SCL pin will be de-asserted  
(brought high). When SCL is sampled high the baud  
rate generator is re-loaded with the contents of  
SSPADD<6:0> and begins counting. SDA and SCL  
must be sampled high for one TBRG. This action is then  
followed by assertion of the SDA pin (SDA is low) for  
one TBRG while SCL is high. Following this, the RSEN  
bit in the SSPCON2 register will be automatically  
cleared, and the baud rate generator is not reloaded,  
leaving the SDA pin held low. As soon as a start con-  
dition is detected on the SDA and SCL pins, the S bit  
(SSPSTAT<3>) will be set. The SSPIF bit will not be set  
until the baud rate generator has timed-out.  
9.2.10.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
Note: Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
Note 1: If RSEN is set while any other event is in  
progress, it will not take effect.  
Note 2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes  
from low to high.  
• SCL goes low before SDA is asserted  
low. This may indicate that another  
master is attempting to transmit a  
data "1".  
FIGURE 9-19: REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
SDA = 1,  
At completion of start bit,  
hardware clear RSEN bit  
and set SSPIF  
occurs here.  
SCL = 1  
SDA = 1,  
SCL (no change)  
TBRG TBRG  
TBRG  
1st Bit  
SDA  
Write to SSPBUF occurs here.  
TBRG  
Falling edge of ninth clock  
End of Xmit  
SCL  
TBRG  
Sr = Repeated Start  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 89  
PIC16C717/770/771  
FIGURE 9-20: REPEATED START CONDITION FLOWCHART (PAGE 1)  
Start  
Idle Mode,  
SSPEN = 1,  
SSPCON<3:0> = 1000  
B
RSEN = 1  
Force SCL = 0  
No  
SCL = 0?  
Yes  
Release SDA,  
Load BRG with  
SSPADD<6:0>  
No  
BRG  
rollover?  
Yes  
Release SCL  
(Clock Arbitration)  
No  
SCL = 1?  
Yes  
Bus Collision,  
Set BCLIF,  
Release SDA,  
Clear RSEN  
No  
SDA = 1?  
Yes  
Load BRG with  
SSPADD<6:0>  
C
A
DS41120A-page 90  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 9-21: REPEATED START CONDITION FLOWCHART (PAGE 2)  
B
C
A
Yes  
No  
No  
No  
BRG  
rollover?  
SDA = 0?  
SCL = 1?  
Yes  
Yes  
Reset BRG  
Force SDA = 0,  
Load BRG with  
SSPADD<6:0>  
Set S  
No  
No  
BRG  
rollover?  
SCL = ’0’?  
Yes  
Yes  
Force SCL = 0,  
Repeated Start  
condition done,  
Clear RSEN,  
Reset BRG  
Set SSPIF.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 91  
PIC16C717/770/771  
9.2.11 I2C MASTER MODE TRANSMISSION  
9.2.11.3 ACKSTAT STATUS FLAG  
Transmission of a data byte, a 7-bit address, or either  
half of a 10-bit address is accomplished by simply writ-  
ing a value to the SSPBUF register. This action will set  
the buffer full flag (BF) and allow the baud rate genera-  
tor to begin counting and start the next transmission.  
Each bit of address/data will be shifted out onto the  
SDA pin after the falling edge of SCL is asserted (see  
data hold time spec). SCL is held low for one baud  
rate generator roll over count (TBRG). Data should be  
valid before SCL is released high (see data setup time  
spec). When the SCL pin is released high, it is held that  
way for TBRG, the data on the SDA pin must remain  
stable for that duration and some hold time after the  
next falling edge of SCL. After the eighth bit is shifted  
out (the falling edge of the eighth clock), the BF flag is  
cleared and the master releases SDA allowing the  
slave device being addressed to respond with an ACK  
bit during the ninth bit time, if an address match occurs  
or if data was received properly. The status of ACK is  
read into the ACKDT on the falling edge of the ninth  
clock. If the master receives an acknowledge, the  
acknowledge status bit (ACKSTAT) is cleared. If not,  
the bit is set. After the ninth clock the SSPIF is set, and  
the master clock (baud rate generator) is suspended  
until the next data byte is loaded into the SSPBUF leav-  
ing SCL low and SDA unchanged (Figure 9-23).  
In transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an acknowledge  
(ACK = 0), and is set when the slave does not acknowl-  
edge (ACK = 1). A slave sends an acknowledge when  
it has recognized its address (including a general call),  
or when the slave has properly received its data.  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL until all seven  
address bits and the R/W bit are completed. On the fall-  
ing edge of the eighth clock, the master will de-assert  
the SDA pin allowing the slave to respond with an  
acknowledge. On the falling edge of the ninth clock, the  
master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT status bit (SSPCON2<6>).  
Following the falling edge of the ninth clock transmis-  
sion of the address, the SSPIF is set, the BF flag is  
cleared, and the baud rate generator is turned off until  
another write to the SSPBUF takes place, holding SCL  
low and allowing SDA to float.  
9.2.11.1 BF STATUS FLAG  
In transmit mode, the BF bit (SSPSTAT<0>) is set when  
the CPU writes to SSPBUF and is cleared when all 8  
bits are shifted out.  
9.2.11.2 WCOL STATUS FLAG  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e. SSPSR is still shifting out a  
data byte), then WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared in software.  
DS41120A-page 92  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 9-22: MASTER TRANSMIT FLOWCHART  
Idle Mode  
Write SSPBUF  
Num_Clocks = 0,  
BF = 1  
Force SCL = 0  
Release SDA so  
slave can drive ACK,  
Force BF = 0  
Yes  
Num_Clocks  
= 8?  
No  
Load BRG with  
SSPADD<6:0>,  
start BRG count  
Load BRG with  
SSPADD<6:0>,  
start BRG count,  
SDA = Current Data bit  
No  
BRG  
rollover?  
BRG  
rollover?  
No  
Yes  
Yes  
Force SCL = 1,  
Stop BRG  
Stop BRG,  
Force SCL = 1  
(Clock Arbitration)  
No  
(Clock Arbitration)  
SCL = 1?  
Yes  
No  
SCL = 1?  
Yes  
Read SDA and place into  
ACKSTAT bit (SSPCON2<6>)  
Bus collision detected  
Set BCLIF, hold prescale off,  
Clear XMIT enable  
No  
SDA =  
Data bit?  
Load BRG with  
SSPADD<6:0>,  
count high time  
Yes  
Load BRG with  
SSPADD<6:0>,  
count SCL high time  
No  
Rollover?  
Yes  
No  
No  
No  
SDA =  
Data bit?  
BRG  
rollover?  
Yes  
SCL = 0?  
Force SCL = 0,  
Set SSPIF  
Yes  
Yes  
Reset BRG  
Num_Clocks  
= Num_Clocks + 1  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 93  
PIC16C717/770/771  
2
FIGURE 9-23: I C MASTER MODE TIMING (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
DS41120A-page 94  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
9.2.12 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by setting the  
receive enable bit, RCEN (SSPCON2<3>).  
Note: The MSSP Module must be in an IDLE  
STATE before the RCEN bit is set, or the  
RCEN bit will be disregarded.  
The baud rate generator begins counting, and on each  
rollover, the state of the SCL pin changes (high to low/  
low to high) and data is shifted into the SSPSR. After  
the falling edge of the eighth clock, the receive enable  
flag is automatically cleared, the contents of the  
SSPSR are loaded into the SSPBUF, the BF flag is set,  
the SSPIF is set, and the baud rate generator is sus-  
pended from counting, holding SCL low. The SSP is  
now in IDLE state, awaiting the next command. When  
the buffer is read by the CPU, the BF flag is automati-  
cally cleared. The user can then send an acknowledge  
bit at the end of reception, by setting the acknowledge  
sequence enable bit, ACKEN (SSPCON2<4>).  
9.2.12.1 BF STATUS FLAG  
In receive operation, BF is set when an address or data  
byte is loaded into SSPBUF from SSPSR. It is cleared  
when SSPBUF is read.  
9.2.12.2 SSPOV STATUS FLAG  
In receive operation, SSPOV is set when 8 bits are  
received into the SSPSR, and the BF flag is already set  
from a previous reception.  
9.2.12.3 WCOL STATUS FLAG  
If the user writes the SSPBUF when a receive is  
already in progress (i.e. SSPSR is still shifting in a data  
byte), then WCOL is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 95  
PIC16C717/770/771  
FIGURE 9-24: MASTER RECEIVER FLOWCHART  
Idle mode  
RCEN = 1  
Num_Clocks = 0,  
Release SDA  
Force SCL=0,  
Load BRG w/  
SSPADD<6:0>,  
start count  
BRG  
No  
rollover?  
Yes  
Release SCL  
(Clock Arbitration)  
No  
SCL = 1?  
Yes  
Sample SDA,  
Shift data into SSPSR  
Load BRG with  
SSPADD<6:0>,  
start count.  
No  
No  
BRG  
SCL = 0?  
Yes  
rollover?  
Yes  
Num_Clocks  
= Num_Clocks + 1  
No  
Num_Clocks  
= 8?  
Yes  
Force SCL = 0,  
Set SSPIF,  
Set BF.  
Move contents of SSPSR  
into SSPBUF,  
Clear RCEN.  
DS41120A-page 96  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
2
FIGURE 9-25: I C MASTER MODE TIMING (RECEPTION 7-BIT ADDRESS)  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 97  
PIC16C717/770/771  
9.2.13 ACKNOWLEDGE SEQUENCE TIMING  
the baud rate generator counts for TBRG . The SCL pin  
is then pulled low. Following this, the ACKEN bit is  
automatically cleared, the baud rate generator is turned  
off, and the MSSP module then goes into IDLE mode.  
(Figure 9-26)  
An acknowledge sequence is enabled by setting the  
acknowledge  
sequence  
enable  
bit,  
ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the acknowledge data  
bit is presented on the SDA pin. If the user wishes to  
generate an acknowledge, then the ACKDT bit should  
be cleared. If not, the user should set the ACKDT bit  
before starting an acknowledge sequence. The baud  
rate generator then counts for one rollover period  
(TBRG), and the SCL pin is de-asserted (pulled high).  
When the SCL pin is sampled high (clock arbitration),  
9.2.13.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when an acknowledged  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 9-26: ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
Write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
TBRG  
SDA  
SCL  
D0  
ACK  
8
9
SSPIF  
Cleared in  
software  
Set SSPIF at the end  
of receive  
Cleared in  
software  
Set SSPIF at the end  
of acknowledge sequence  
Note: TBRG = one baud rate generator period.  
DS41120A-page 98  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 9-27: ACKNOWLEDGE FLOWCHART  
Idle mode  
Set ACKEN  
Force SCL = 0  
BRG  
Yes  
rollover?  
No  
No  
SCL = 0?  
Yes  
Force SCL = 0,  
Clear ACKEN,  
Set SSPIF  
Yes  
SCL = 0?  
No  
Reset BRG  
Drive ACKDT bit  
(SSPCON2<5>)  
onto SDA pin,  
Load BRG with  
SSPADD<6:0>,  
start count.  
No  
ACKDT = 1?  
Yes  
No  
BRG  
rollover?  
Yes  
SDA = 1?  
No  
Yes  
Force SCL = 1  
Bus collision detected,  
Set BCLIF,  
Release SCL,  
Clear ACKEN  
No  
SCL = 1?  
Yes  
(Clock Arbitration)  
Load BRG with  
SSPADD <6:0>,  
start count.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 99  
PIC16C717/770/771  
9.2.14 STOP CONDITION TIMING  
while SCL is high, the P bit (SSPSTAT<4>) is set. A  
TBRG later the PEN bit is cleared and the SSPIF bit is  
set (Figure 9-28).  
A stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit PEN (SSPCON2<2>). At the end of a receive/trans-  
mit, the SCL line is held low after the falling edge of the  
ninth clock. When the PEN bit is set, the master will  
assert the SDA line low . When the SDA line is sam-  
pled low, the baud rate generator is reloaded and  
counts down to 0. When the baud rate generator times  
out, the SCL pin will be brought high and one TBRG  
(baud rate generator rollover count) later, the SDA pin  
will be de-asserted. When the SDA pin is sampled high  
Whenever the firmware decides to take control of the  
bus, it will first determine if the bus is busy by checking  
the S and P bits in the SSPSTAT register. If the bus is  
busy, then the CPU can be interrupted (notified) when  
a Stop bit is detected (i.e. bus is free).  
9.2.14.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when a STOP sequence  
is in progress, then WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
FIGURE 9-28: STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1 for TBRG, followed by SDA = 1 for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set  
Write to SSPCON2  
Set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
TBRG  
SCL  
ACK  
SDA  
P
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup stop condition.  
Note: TBRG = one baud rate generator period.  
DS41120A-page 100  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 9-29: STOP CONDITION FLOWCHART  
Idle Mode,  
SSPEN = 1,  
SSPCON<3:0> = 1000  
PEN = 1  
Start BRG  
Force SDA = 0  
SCL doesn’t change  
No  
BRG  
rollover?  
Yes  
No  
SDA = 0?  
Release SDA,  
Start BRG  
Yes  
Start BRG  
No  
BRG  
rollover?  
No  
BRG  
rollover?  
Yes  
Bus Collision detected,  
Set BCLIF,  
No  
Yes  
P bit Set?  
Yes  
Clear PEN  
De-assert SCL,  
SCL = 1  
SDA going from  
0 to 1 while SCL = 1  
Set SSPIF,  
Stop Condition done  
PEN cleared.  
(Clock Arbitration)  
No  
SCL = 1?  
Yes  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 101  
PIC16C717/770/771  
9.2.15 CLOCK ARBITRATION  
9.2.16 SLEEP OPERATION  
Clock arbitration occurs when the master, during any  
receive, transmit or repeated start/stop condition, de-  
asserts the SCL pin (SCL allowed to float high). When  
the SCL pin is allowed to float high, the baud rate gen-  
erator (BRG) is suspended from counting until the SCL  
pin is actually sampled high. When the SCL pin is sam-  
pled high, the baud rate generator is reloaded with the  
contents of SSPADD<6:0> and begins counting. This  
ensures that the SCL high time will always be at least  
one BRG rollover count in the event that the clock is  
held low by an external device (Figure 9-30).  
While in sleep mode, the I2C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs, wake the processor from  
sleep ( if the SSP interrupt is enabled).  
9.2.17 EFFECTS OF A RESET  
A reset disables the MSSP module and terminates the  
current transfer.  
FIGURE 9-30: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE  
BRG overflow,  
Release SCL,  
If SCL = 1 Load BRG with  
SSPADD<6:0>, and start count  
to measure high time interval  
BRG overflow occurs,  
Release SCL, Slave device holds SCL low.  
SCL = 1 BRG starts counting  
clock high interval.  
SCL  
SDA  
SCL line sampled once every machine cycle (TOSC 4).  
Hold off BRG until SCL is sampled high.  
TBRG  
TBRG  
TBRG  
DS41120A-page 102  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
9.2.18 MULTI -MASTER COMMUNICATION, BUS  
COLLISION, AND BUS ARBITRATION  
If a START, Repeated Start, STOP or Acknowledge  
condition was in progress when the bus collision  
occurred, the condition is aborted, the SDA and SCL  
lines are de-asserted, and the respective control bits in  
the SSPCON2 register are cleared. When the user  
services the bus collision interrupt service routine, and  
if the I2C bus is free, the user can resume communica-  
tion by asserting a START condition.  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a ’1’ on SDA by letting SDA float high and  
another master asserts a ’0’. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a ’1’ and the data sampled on the SDA pin = ’0’,  
then a bus collision has taken place. The master will  
set the Bus Collision Interrupt Flag, BCLIF, and reset  
the I2C port to its IDLE state. (Figure 9-31).  
The Master will continue to monitor the SDA and SCL  
pins, and if a STOP condition occurs, the SSPIF bit will  
be set.  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the trans-  
mitter left off when bus collision occurred.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are de-asserted, and  
the SSPBUF can be written to. When the user services  
the bus collision interrupt service routine, and if the I2C  
bus is free, the user can resume communication by  
asserting a START condition.  
In multi-master mode, the interrupt generation on the  
detection of start and stop conditions allows the deter-  
mination of when the bus is free. Control of the I2C bus  
can be taken when the P bit is set in the SSPSTAT reg-  
ister, or the bus is idle and the S and P bits are cleared.  
FIGURE 9-31: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high  
data doesn’t match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt.  
BCLIF  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 103  
PIC16C717/770/771  
9.2.18.1 BUS COLLISION DURING A START  
CONDITION  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data ’1’ during the START condition.  
During a START condition, a bus collision occurs if:  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 9-34). If however a ’1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The baud rate generator is then reloaded and  
counts down to 0, and during this time, if the SCL pins  
is sampled as ’0’, a bus collision does not occur. At the  
end of the BRG count the SCL pin is asserted low.  
a) SDA or SCL are sampled low at the beginning of  
the START condition (Figure 9-32).  
b) SCL is sampled low before SDA is asserted low.  
(Figure 9-33).  
During a START condition both the SDA and the SCL  
pins are monitored.  
If:  
Note: The reason that bus collision is not a factor  
during a START condition is that no two  
bus masters can assert a START condition  
at the exact same time. Therefore, one  
master will always assert SDA before the  
other. This condition does not cause a bus  
collision, because the two masters must be  
allowed to arbitrate the first address follow-  
ing the START condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, REPEATED  
START or STOP conditions.  
the SDA pin is already low  
or the SCL pin is already low,  
then:  
the START condition is aborted,  
and the BCLIF flag is set,  
and the SSP module is reset to its IDLE state  
(Figure 9-32).  
The START condition begins with the SDA and SCL  
pins de-asserted. When the SDA pin is sampled high,  
the baud rate generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
FIGURE 9-32: BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1  
SDA  
SCL  
Set SEN, enable start  
condition if SDA = 1, SCL=1  
SEN cleared automatically because of bus collision.  
SSP module reset into idle state.  
SEN  
SDA sampled low before  
START condition.  
Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1  
BCLIF  
SSPIF and BCLIF are  
cleared in software.  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software.  
DS41120A-page 104  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 9-33: BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
SCL  
SEN  
Set SEN, enable start  
sequence if SDA = 1, SCL = 1  
SCL = 0 before SDA = 0,  
Bus collision occurs, Set BCLIF.  
SCL = 0 before BRG time out,  
Bus collision occurs, Set BCLIF.  
BCLIF  
Interrupts cleared  
in software.  
S
’0’  
’0’  
’0’  
’0’  
SSPIF  
FIGURE 9-34: BRG RESET DUE TO SDA COLLISION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA  
SDA  
SCL  
s
SCL pulled low after BRG  
Timeout  
SEN  
Set SEN, enable start  
sequence if SDA = 1, SCL = 1  
’0’  
BCLIF  
S
SSPIF  
Interrupts cleared  
in software.  
SDA = 0, SCL = 1  
Set SSPIF  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 105  
PIC16C717/770/771  
9.2.18.2 BUS COLLISION DURING A REPEATED  
START CONDITION  
however SDA is sampled high, then the BRG is  
reloaded and begins counting. If SDA goes from high  
to low before the BRG times out, no bus collision  
occurs, because no two masters can assert SDA at  
exactly the same time.  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
If, however, SCL goes from high to low before the BRG  
times out and SDA has not already been asserted, then  
a bus collision occurs. In this case, another master is  
attempting to transmit a data ’1’ during the Repeated  
Start condition.  
b) SCL goes low before SDA is asserted low, indi-  
cating that another master is attempting to trans-  
mit a data ’1’.  
When the user de-asserts SDA and the pin is allowed  
to float high, the BRG is loaded with SSPADD<6:0>,  
and counts down to 0. The SCL pin is then de-  
asserted, and when sampled high, the SDA pin is sam-  
pled. If SDA is low, a bus collision has occurred (i.e.  
another master is attempting to transmit a data ’0’). If  
If at the end of the BRG time out both SCL and SDA are  
still high, the SDA pin is driven low, the BRG is  
reloaded, and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is com-  
plete (Figure 9-35).  
FIGURE 9-35: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL  
RSEN  
BCLIF  
Cleared in software  
’0’  
’0’  
’0’  
S
’0’  
SSPIF  
FIGURE 9-36: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
Set BCLIF. Release SDA and SCL  
BCLIF  
RSEN  
Interrupt cleared  
in software  
’0’  
’0’  
’0’  
’0’  
S
SSPIF  
DS41120A-page 106  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
9.2.18.3 BUS COLLISION DURING A STOP  
CONDITION  
The STOP condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allow to float.  
When the pin is sampled high (clock arbitration), the  
baud rate generator is loaded with SSPADD<6:0> and  
counts down to 0. After the BRG times out SDA is sam-  
pled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ’0’. If the SCL pin is sampled low before  
SDA is allowed to float high, a bus collision occurs.  
This is another case of another master attempting to  
drive a data ’0’ (Figure 9-37).  
Bus collision occurs during a STOP condition if:  
a) After the SDA pin has been de-asserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is de-asserted, SCL is sam-  
pled low before SDA goes high.  
FIGURE 9-37: BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
Set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
’0’  
’0’  
’0’  
’0’  
SSPIF  
FIGURE 9-38: BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high  
Set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
’0’  
’0’  
SSPIF  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 107  
PIC16C717/770/771  
9.2.19 CONNECTION CONSIDERATIONS FOR I2C  
BUS  
VOL max = 0.4V at 3 mA, Rp min = (5.5-0.4)/0.003 =  
1.7 kΩ. VDD as a function of Rp is shown in Figure 9-39.  
The desired noise margin of 0.1VDD for the low level  
limits the maximum value of Rs. Series resistors are  
optional and used to improve ESD susceptibility.  
For standard-mode I2C bus devices, the values of  
resistors Rp and Rs in Figure 9-39 depends on the fol-  
lowing parameters  
The bus capacitance is the total capacitance of wire,  
connections, and pins. This capacitance limits the max-  
imum value of Rp due to the specified rise time  
(Figure 9-39).  
• Supply voltage  
• Bus capacitance  
• Number of connected devices  
(input current + leakage current).  
The SMP bit is the slew rate control enabled bit. This bit  
is in the SSPSTAT register, and controls the slew rate  
of the I/O pins when in I2C mode (master or slave).  
The supply voltage limits the minimum value of resistor  
Rp due to the specified minimum sink current of 3 mA  
at VOL max = 0.4V for the specified output stages. For  
example, with a supply voltage of VDD = 5V+10% and  
FIGURE 9-39: SAMPLE DEVICE CONFIGURATION FOR I2C BUS  
VDD + 10%  
DEVICE  
RP  
RP  
RS  
RS  
SDA  
SCL  
C =10 pF to 400 pF  
b
2
Note: I C devices with input levels related to VDD must have one common supply line to which the pull-up resistor is also connected.  
TABLE 9-3:  
REGISTERS ASSOCIATED WITH I2C OPERATION  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR MCLR, WDT  
0Bh, 8Bh,  
10Bh,18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
0Dh  
8Dh  
13h  
14h  
91h  
94h  
PIR1  
PIE1  
ADIF  
ADIE  
SSPIF  
SSPIE  
BCLIF  
BCLIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF -0-- 0000 -0-- 0000  
TMR1IE -0-- 0000 -0-- 0000  
CCP2IF 0--- 0--0 0--- 0--0  
CCP2IE 0--- 0--0 0--- 0--0  
xxxx xxxx uuuu uuuu  
PIR2  
LVDIF  
LVDIE  
PIE2  
SSPBUF  
SSPCON  
SSPCON2  
SSPSTAT  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
RCEN  
S
SSPM2  
PEN  
SSPM1  
RSEN  
UA  
SSPM0  
SEN  
BF  
0000 0000 0000 0000  
0000 0000 0000 0000  
GCEN ACKSTAT ACKDT ACKEN  
SMP CKE D/A  
P
R/W  
0000 0000 0000 0000  
2
Legend: x= unknown, u= unchanged, -= unimplemented read as ’0’. Shaded cells are not used by the MSSP in I C mode.  
DS41120A-page 108  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
The source for the reference voltages comes from the  
bandgap reference circuit. The bandgap circuit is ener-  
gized anytime the reference voltage is required by the  
other sub-modules, and is powered down when not in  
use. The control registers for this module are LVDCON  
and REFCON, as shown in Register 10-1 and  
Figure 10-2.  
10.0 VOLTAGE REFERENCE  
MODULE AND LOW-VOLTAGE  
DETECT  
The Voltage Reference module provides reference volt-  
ages for the Brown-out Reset circuitry, the Low-voltage  
Detect circuitry and the A/D converter.  
REGISTER 10-1: LOW-VOLTAGE DETECT CONTROL REGISTER (LVDCON: 9Ch)  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-1  
BGST  
LVDEN  
LV3  
LV2  
LV1  
LV0  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as ’0’  
bit 5:  
BGST: Bandgap Stable Status Flag bit  
1= Indicates that the bandgap voltage is stable, and LVD interrupt is reliable  
0= Indicates that the bandgap voltage is not stable, and LVD interrupt should not be enabled  
bit 4:  
LVDEN: Low-voltage Detect Power Enable bit  
1= Enables LVD, powers up bandgap circuit and reference generator  
0= Disables LVD, powers down bandgap circuit if unused by BOR or VRH/VRL  
bit 3-0: LV<3:0>: Low Voltage Detection Limit bits (1)  
1111= External analog input is used  
1110= 4.5V  
1101= 4.2V  
1100= 4.0V  
1011= 3.8V  
1010= 3.6V  
1001= 3.5V  
1000= 3.3V  
0111= 3.0V  
0110= 2.8V  
0101= 2.7V  
0100= 2.5V  
0011= Reserved. Do not use.  
0010= Reserved. Do not use.  
0001= Reserved. Do not use.  
0000= Reserved. Do not use.  
Note 1: These are the minimum trip points for the LVD. See Table 15-3 for the trip point tolerances. Selection of  
reserved setting may result in an inadvertent interrupt.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 109  
PIC16C717/770/771  
REGISTER 10-2: VOLTAGE REFERENCE CONTROL REGISTER (REFCON: 9BH)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
VRHEN  
VRLEN  
VRHOEN  
VRLOEN  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
VRHEN: Voltage Reference High Enable bit (VRH = 4.096V nominal)  
1= Enabled, powers up reference generator  
0= Disabled, powers down reference generator if unused by LVD, BOR, or VRL  
VRLEN: Voltage Reference Low Enable bit (VRL = 2.048V nominal)  
1= Enabled, powers up reference generator  
0= Disabled, powers down reference generator if unused by LVD, BOR, or VRH  
VRHOEN: High Voltage Reference Output Enable bit  
1= Enabled, VRH analog reference is output on RA3 if enabled (VRHEN = 1)  
0= Disabled, analog reference is used internally only  
VRLOEN: Low Voltage Reference Output Enable bit  
1= Enabled, VRL analog reference is output on RA2 if enabled (VRLEN = 1)  
0= Disabled, analog reference is used internally only  
bit 3-0: Unimplemented: Read as '0’  
Each reference, if enabled, can be output on an exter-  
nal pin by setting the VRHOEN (high reference output  
enable) or VRLOEN (low reference output enable) con-  
trol bit. If the reference is not enabled, the VRHOEN  
and VRLOEN bits will have no effect on the corre-  
sponding pin. The device specific pin can then be used  
as general purpose I/O.  
10.1  
Bandgap Voltage Reference  
The bandgap module generates a stable voltage refer-  
ence of over a range of temperatures and device supply  
voltages. This module is enabled anytime any of the fol-  
lowing are enabled:  
• Brown-out Reset  
• Low-voltage Detect  
Note: If VRH or VRL is enabled and the other ref-  
erence (VRL or VRH), the BOR, and the  
LVD modules are not enabled, the band-  
gap will require a start-up time before the  
bandgap reference is stable. Before using  
the internal VRH or VRL reference, ensure  
that the bandgap reference voltage is sta-  
ble by monitoring the BGST bit in the LVD-  
CON register. The voltage references will  
not be reliable until the bandgap is stable  
as shown by BGST being set.  
• Either of the internal analog references (VRH,  
VRL)  
Whenever the above are all disabled, the bandgap  
module is disabled and draws no current.  
10.2  
Internal VREF for A/D Converter  
The bandgap output voltage is used to generate two  
stable references for the A/D converter module. These  
references are enabled in software to provide the user  
with the means to turn them on and off in order to min-  
imize current consumption. Each reference can be indi-  
vidually enabled.  
The VRH reference is enabled with control bit VRHEN  
(REFCON<7>). When this bit is set, the gain amplifier  
is enabled. After a specified start-up time a stable ref-  
erence of 4.096V nominal is generated and can be  
used by the A/D converter as a reference input.  
The VRL reference is enabled by setting control bit  
VRLEN (REFCON<6>). When this bit is set, the gain  
amplifier is enabled. After a specified start up time a  
stable reference of 2.048V nominal is generated and  
can be used by the A/D converter as a reference input.  
Each voltage reference is available for external use via  
VRL and VRH pins.  
DS41120A-page 110  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
control. This allows a user to power the module on  
and off to periodically monitor the supply voltage, and  
thus minimize total current consumption.  
10.3  
Low-voltage Detect (LVD)  
This module is used to generate an interrupt when the  
supply voltage falls below a specified “trip” voltage.  
This module operates completely under software  
FIGURE 10-1: BLOCK DIAGRAM OF LVD AND VOLTAGE REFERENCE CIRCUIT  
LVDCON  
REFCON  
VDD  
LVDEN  
VRHEN + VRLEN  
generates  
LVDIF  
RA1/AN1/LVDIN  
VRH  
BODEN  
BGAP  
VRL  
LVDEN  
The LVD module is enabled by setting the LVDEN bit in  
the LVDCON register. The “trip point” voltage is the  
minimum supply voltage level at which the device can  
operate before the LVD module asserts an interrupt.  
When the supply voltage is equal to or less than the trip  
point, the module will generate an interrupt signal set-  
ting interrupt flag bit LVDIF. If interrupt enable bit LVDIE  
was set, then an interrupt is generated. The LVD inter-  
rupt can wake the device from sleep. The "trip point"  
voltage is software programmable to any one of 16 val-  
ues, five of which are reserved (See Figure 10-1). The  
trip point is selected by programming the LV<3:0> bits  
(LVDCON<3:0>).  
If the bandgap reference voltage is previously unused  
by either the brown-out circuitry or the voltage refer-  
ence circuitry, then the bandgap circuit requires a time  
to start-up and become stable before a low voltage con-  
dition can be reliably detected. The low-voltage inter-  
rupt flag is prevented from being set until the bandgap  
has reached a stable reference voltage.  
When the bandgap is stable the BGST (LVDCON<5>)  
bit is set indicating that the low-voltage interrupt flag bit  
is released to be set if VDD is equal to or less than the  
LVD trip point.  
10.3.1 EXTERNAL ANALOG VOLTAGE INPUT  
Note: The LVDIF bit can not be cleared until the  
supply voltage rises above the LVD trip  
point. If interrupts are enabled, clear the  
LVDIE bit once the first LVD interrupt  
occurs to prevent reentering the interrupt  
service routine immediately after exiting  
the ISR.  
The LVD module has an additional feature that allows  
the user to supply the trip voltage to the module from  
an external source. This mode is enabled when  
LV<3:0> = 1111. When these bits are set the compar-  
ator input is multiplexed from an external input pin  
(RA1/AN1/LVDIN).  
Once the LV bits have been programmed for the speci-  
fied trip voltage, the low-voltage detect circuitry is then  
enabled by setting the LVDEN (LVDCON<4>) bit.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 111  
PIC16C717/770/771  
NOTES:  
DS41120A-page 112  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
The A/D module has four registers. These registers  
are:  
11.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The analog-to-digital (A/D) converter module has six  
inputs for the PIC16C717/770/771.  
• A/D Result Register Low ADRESL  
• A/D Result Register High ADRESH  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
The PIC16C717 analog-to-digital converter (A/D)  
allows conversion of an analog input signal to a corre-  
sponding 10-bit digital value, while the A/D converter  
in the PIC16C770/771 allows conversion to a corre-  
sponding 12-bit digital value. The A/D module has up  
to 6 analog inputs, which are multiplexed into one  
sample and hold. The output of the sample and hold is  
the input into the converter, which generates the result  
via successive approximation. The analog reference  
voltages are software selectable to either the device’s  
analog positive and negative supply voltages (AVDD/  
AVSS), the voltage level on the VREF+ and VREF- pins,  
or internal voltage references if enabled (VRH, VRL).  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off and any  
conversion is aborted.  
11.1  
Control Registers  
The ADCON0 register, shown in Register 11-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 11-2, configures the func-  
tions of the port pins, the voltage reference configura-  
tion and the result format. The port pins can be  
configured as analog inputs or as digital I/O.  
The A/D converter can be triggered by setting the GO/  
DONE bit, or by the special event compare mode of  
the ECCP1 module. When conversion is complete, the  
GO/DONE bit returns to ’0’, the ADIF bit in the PIR1  
register is set, and an A/D interrupt will occur, if  
enabled.  
The combination of the ADRESH and ADRESL regis-  
ters contain the result of the A/D conversion. The reg-  
ister pair is referred to as the ADRES register. When  
the A/D conversion is complete, the result is loaded  
into ADRES, the GO/DONE bit (ADCON0<2>) is  
cleared, and the A/D interrupt flag ADIF is set. The  
block diagram of the A/D module is shown in  
Figure 11-3.  
The A/D converter has a unique feature of being able to  
operate while the device is in SLEEP mode. To operate  
in sleep, the A/D conversion clock must be derived from  
the A/D’s internal RC oscillator.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 113  
PIC16C717/770/771  
REGISTER 11-1: A/D CONTROL REGISTER 0 (ADCON0: 1Fh).  
R/W-0  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
CHS3  
R/W-0  
ADON  
ADCS1  
ADCS0  
GO/DONE  
R =  
W =  
Readable bit  
Writable bit  
bit7  
bit 0  
- n = Value at POR reset  
bit 7-6: ADCS<1:0>: A/D Conversion Clock Select bits  
If internal VRL and/or VRH are not used for A/D reference (VCFG<2:0> = 000, 001, 011or101):  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from a dedicated RC oscillator = 1 MHz max)  
If internal VRL and/or VRH are used for A/D reference (VCFG<2:0> = 010, 100, 110or111):  
00= FOSC/16  
01= FOSC/64  
10= FOSC/256  
11= FRC (clock derived from a dedicated RC oscillator = 125 kHz max)  
bit 1,5-3:CHS:<3:0>: Analog Channel Select bits  
0000= channel 00 (AN0)  
0001= channel 01 (AN1)  
0010= channel 02 (AN2)  
0011= channel 03 (AN3)  
0100= channel 04 (AN4)  
0101= channel 05 (AN5)  
0110= reserved, do not select  
0111= reserved, do not select  
1000= reserved, do not select  
1001= reserved, do not select  
1010= reserved, do not select  
1011= reserved, do not select  
1100= reserved, do not select  
1101= reserved, do not select  
1110= reserved, do not select  
1111= reserved, do not select  
bit 2:  
bit 0:  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter is shutoff and consumes no operating current  
DS41120A-page 114  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
REGISTER 11-2: A/D CONTROL REGISTER 1 (ADCON1: 9Fh)  
R/W-0  
ADFM  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VCFG2  
VCFG1  
VCFG0  
Reserved  
R =  
W =  
U =  
Readable bit  
Writable bit  
Unimplemented bit, read as ‘0’  
bit7  
bit 0  
- n = Value at POR reset  
bit 7:  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6-4: VCFG<2:0>: Voltage reference configuration bits  
A/D VREF+  
AVDD  
A/D VREF-  
AVSS  
000  
001  
010  
011  
100  
101  
110  
111  
External VREF+  
Internal VRH  
External VREF+  
Internal VRH  
AVDD  
External VREF-  
Internal VRL  
AVSS  
AVSS  
External VREF-  
Internal VRL  
AVSS  
AVDD  
Internal VRL  
bit 3-0: Reserved: Do not use.  
The value that is in the ADRESH and ADRESL regis-  
ters are not modified for a Power-on Reset. The  
ADRESH and ADRESL registers will contain unknown  
data after a Power-on Reset.  
The A/D conversion results can be left justified (ADFM  
bit cleared), or right justified (ADFM bit set).  
Figure 11-1 through Figure 11-2 show the A/D result  
data format of the PIC16C717/770/771.  
FIGURE 11-1: PIC16C770/771 12-BIT A/D RESULT FORMATS  
ADRESH (1Eh)  
ADRESL (9Eh)  
LSB  
Left Justified  
MSB  
(ADFM = 0)  
bit7  
bit7  
12-bit A/D Result  
Unused  
Right Justified  
(ADFM = 1)  
MSB  
LSB  
bit7  
bit7  
Unused  
12-bit A/D Result  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 115  
PIC16C717/770/771  
FIGURE 11-2: PIC16C717 10-BIT A/D RESULT FORMAT  
(ADFM = 0)  
MSB  
bit7  
LSB  
bit7  
bit7  
10-bit A/D Result  
MSB  
Unused  
(ADFM = 1)  
LSB  
bit7  
Unused  
Unused  
10-bit A/D Result  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS and ANSEL bits  
selected as an input. To determine acquisition time, see  
Section 11.6. After this acquisition time has elapsed,  
the A/D conversion can be started. The following steps  
should be followed for doing an A/D conversion:  
11.2.2 CONFIGURING THE REFERENCE  
VOLTAGES  
The VCFG bits in the ADCON1 register configure the  
A/D module reference inputs. The reference high  
input can come from an internal reference (VRH) or  
(VRL), an external reference (VREF+), or AVDD. The  
low reference input can come from an internal refer-  
ence (VRL), an external reference (VREF-), or AVSS. If  
an external reference is chosen for the reference high  
or reference low inputs, the port pin that multiplexes  
the incoming external references is configured as an  
analog input, regardless of the values contained in the  
A/D port configuration bits (PCFG<3:0>).  
11.2  
Configuring the A/D Module  
11.2.1 CONFIGURING ANALOG PORT PINS  
The ANSEL and TRIS registers control the operation  
of the A/D port pins. The port pins that are desired as  
analog inputs must have their corresponding TRIS bit  
set (input). If the TRIS bit is cleared (output), the digital  
output level (VOH or VOL) will be converted. The proper  
ANSEL bits must be set (analog input) to disable the  
digital input buffer.  
The A/D operation is independent of the state of the  
TRIS bits and the ANSEL bits.  
Note 1: When reading the PORTA or PORTB reg-  
ister, all pins configured as analog input  
channels will read as ’0’.  
2: Analog levels on any pin that is defined as  
a digital input, including the ANx pins, may  
cause the input buffer to consume current  
that is out of the devices specification.  
DS41120A-page 116  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
After the A/D module has been configured as desired  
and the analog input channels have their correspond-  
ing TRIS bits selected for port inputs, the selected  
channel must be acquired before conversion is  
started. The A/D conversion cycle can be initiated by  
setting the GO/DONE bit. The A/D conversion begins  
and lasts for 13TAD. The following steps should be fol-  
lowed for performing an A/D conversion:  
4. Wait the required acquisition time (3TAD)  
5. Start conversion  
• Set GO/DONE bit (ADCON0)  
6. Wait 13TAD until A/D conversion is complete, by  
either:  
• Polling for the GO/DONE bit to be cleared  
OR  
1. Configure port pins:  
• Waiting for the A/D interrupt  
• Configure analog input mode (ANSEL)  
• Configure pin as input (TRISA or TRISB)  
2. Configure the A/D module  
7. Read A/D Result registers (ADRESH and  
ADRESL), clear ADIF if required.  
8. For next conversion, go to step 1, step 2 or step  
3 as required.  
• Configure A/D Result Format / voltage refer-  
ence (ADCON1)  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The ADRESH and  
ADRESL registers will be updated with the partially  
completed A/D conversion value. That is, the ADRESH  
and ADRESL registers will contain the value of the  
current incomplete conversion.  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
3. Configure A/D interrupt (if required)  
• Clear ADIF bit  
Note: Do not set the ADON bit and the GO/  
DONE bit in the same instruction. Doing so  
will cause the GO/DONE bit to be automat-  
ically cleared.  
• Set ADIE bit  
• Set PEIE bit  
• Set GIE bit  
FIGURE 11-3: A/D BLOCK DIAGRAM  
CHS<3:0>  
VAIN  
RB1/AN5/SS  
(Input voltage)  
RB0/AN4/INT  
RA3/AN3/VREF+/VRH  
RA2/AN2/VREF-/VRL  
RA1/AN1  
AVDD  
RA0/AN0  
VREF+  
VRH  
VRL  
(Reference  
voltage +)  
VCFG<2:0>  
A/D  
Converter  
VREF-  
VRL  
(Reference  
voltage -)  
AVSS  
VCFG<2:0>  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 117  
PIC16C717/770/771  
If the VRH or VRL are used for the A/D converter refer-  
ence, then the TAD requirement is automatically  
increased by a factor of 8.  
11.3  
Selecting the A/D Conversion Clock  
The A/D conversion cycle requires 13TAD: 1 TAD for set-  
tling time, and 12 TAD for conversion. The source of the  
A/D conversion clock is software selected. If neither the  
internal VRH nor VRL are used for the A/D converter,  
the four possible options for TAD are:  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs. Table 11-1 shows the resultant TAD times  
derived from the device operating frequencies and the  
A/D clock source selected.  
• 2 TOSC  
• 8 TOSC  
The ADIF bit is set on the rising edge of the 14th TAD.  
The GO/DONE bit is cleared on the falling edge of the  
14th TAD.  
• 32 TOSC  
• A/D RC oscillator  
TABLE 11-1: TAD vs. DEVICE OPERATING FREQUENCIES  
A/D Reference  
A/D Clock Source (TAD)  
Source  
Device Frequency  
Operation  
2 TOSC  
ADCS<1:0>  
20 MHz  
100 ns(2)  
800 ns(2)  
1.6 µs  
2 - 6 µs(1,4)  
800 ns(2)  
6.4 µs(2)  
5 MHz  
4 MHz  
500 ns(2)  
2.0 µs  
8.0 µs(3)  
2 - 6 µs(1,4)  
4 µs(2)  
1.25 MHz  
1.6 µs  
00  
01  
10  
11  
00  
01  
10  
11  
400 ns(2)  
ExternalVREF or  
Analog Supply  
8 TOSC  
1.6 µs  
6.4 µs  
24 µs(3)  
2 - 6 µs(1,4)  
32 TOSC  
A/D RC  
6.4 µs  
2 - 6 µs(1,4)  
3.2 µs(2)  
12.8 µs  
Internal VRH or 16 TOSC  
12.8 µs  
VRL  
64 TOSC  
16 µs  
64 µs(3)  
16 - 48 µs(4,5)  
51.2 µs  
256 TOSC  
12.8 µs  
16 - 48 µs(4,5)  
51.2 µs  
16 - 48 µs(4,5)  
192 µs(3)  
16 - 48 µs(4,5)  
A/D RC  
Legend: Shaded cells are outside of recommended range.  
Note 1: The A/D RC source has a typical TAD time of 4 µs for VDD > 3.0V.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the A/D RC clock source is only recommended if the conversion will be  
performed during sleep.  
5: The resource has a typical TAD time of 32 µs for VDD > 3.0V.  
DS41120A-page 118  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
11.4  
A/D Conversions  
Example 11-1 shows an example that performs an A/D  
conversion. The port pins are configured as analog  
inputs. The analog reference VREF+ is the device AVDD  
and the analog reference VREF- is the device AVSS. The  
A/D interrupt is enabled and the A/D conversion clock  
is TRC. The conversion is performed on the AN0  
channel.  
EXAMPLE 11-1: PERFORMING AN A/D CONVERSION  
BCF  
BSF  
CLRF  
PIR1, ADIF  
STATUS, RP0  
ADCON1  
;Clear A/D Int Flag  
;Select Bank 1  
;Configure A/D Voltage Reference  
MOVLW 0x01  
MOVWF ANSEL  
MOVWF TRISA  
;disable AN0 digital input buffer  
;RA0 is input mode  
;Enable A/D interrupt  
;Select Bank 0  
BSF  
BCF  
PIE1, ADIE  
STATUS, RP0  
MOVLW 0xC1  
;RC clock, A/D is on,  
;Ch 0 is selected  
;
MOVWF ADCON0  
BSF  
BSF  
INTCON, PEIE  
INTCON, GIE  
;Enable Peripheral  
;Enable All Interrupts  
;
; Ensure that the required sampling time for the  
; selected input channel has lapsed. Then the  
; conversion may be started.  
BSF  
ADCON0, GO  
:
;Start A/D Conversion  
;The ADIF bit will be  
;set and the GO/DONE bit  
;cleared upon completion-  
;of the A/D conversion.  
:
; Wait for A/D completion and read ADRESH:ADRESL for result.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 119  
PIC16C717/770/771  
11.5  
A/D Converter Module Operation  
Figure 11-4 shows the flowchart of the A/D converter  
module.  
FIGURE 11-4: FLOWCHART OF A/D OPERATION  
ADON = 0  
Yes  
ADON = 0?  
No  
Sample  
Selected Channel  
Yes  
GO = 0?  
No  
Yes  
Yes  
Start of A/D  
Conversion Delayed  
1 Instruction Cycle  
Finish Conversion  
GO = 0  
SLEEP  
A/D Clock  
= RC?  
Instruction?  
ADIF = 1  
No  
No  
Yes  
From Sleep?  
Yes  
Instruction?  
Wake-up  
Abort Conversion  
GO = 0  
Finish Conversion  
GO = 0  
SLEEP  
Wait 2 Tad  
ADIF = 0  
ADIF = 1  
No  
No  
SLEEP  
Power down A/D  
Finish Conversion  
GO = 0  
Stay in Sleep  
Powerdown A/D  
Wait 2 Tad  
ADIF = 1  
Wait 2 Tad  
DS41120A-page 120  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD), see Figure 11-5. The maximum recom-  
mended impedance for analog sources is 2.5 k.  
After the analog input channel is selected (changed)  
this sampling must be done before the conversion can  
be started.  
11.6  
A/D Sample Requirements  
11.6.1 RECOMMENDED SOURCE IMPEDANCE  
The maximum recommended impedance for ana-  
log sources is 2.5 k. This value is calculated based  
on the maximum leakage current of the input pin. The  
leakage current is 100 nA max., and the analog input  
voltage cannot be varied by more than 1/4 LSb or  
250 µV due to leakage. This places a requirement on  
the input impedance of 250 µV/100 nA = 2.5 k.  
To calculate the minimum sampling time, Equation 11-  
2 may be used. This equation assumes that 1/4 LSb  
error is used (16384 steps for the A/D). The 1/4 LSb  
error is the maximum error allowed for the A/D to meet  
its specified resolution.  
11.6.2 SAMPLING TIME CALCULATION  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 11-5. The  
The CHOLD is assumed to be 25 pF for the 12-bit  
A/D.  
EXAMPLE 11-2: A/D SAMPLING TIME EQUATION  
(-T /C (RIC +RSS + RS)  
(-T /C (RIC +RSS + RS)  
C
C
VHOLD =(VREF - VREF/16384) = (VREF) • (1 -e  
) VREF(1 - 1/16384) = VREF • (1 -e  
)
Tc = -CHOLD (1k+ RSS + RS) In (1/16384)  
Figure 11-3 shows the calculation of the minimum time  
required to charge CHOLD. This calculation is based on  
the following system assumptions:  
CHOLD = 25 pF  
RS = 2.5 kΩ  
1/4 LSb error  
VDD = 5V RSS = 10 k(worst case)  
Temp (system Max.) = 50°C  
Note 1:The reference voltage (VREF) has no  
effect on the equation, since it cancels  
itself out.  
2:The charge holding capacitor (CHOLD) is  
not discharged after each conversion.  
3:The maximum recommended impedance  
for analog sources is 2.5 k. This is  
required to meet the pin leakage specifi-  
cation.  
4:After a conversion has completed, you  
must wait 2 TAD time before sampling can  
begin again. During this time, the holding  
capacitor is not connected to the selected  
A/D input channel.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 121  
PIC16C717/770/771  
EXAMPLE 11-3: CALCULATING THE MINIMUM  
REQUIRED SAMPLE TIME  
TACQ =  
Amplifier Settling Time  
+ Holding Capacitor Charging Time  
+Temperature offset  
TACQ =  
5 µs  
+ TC  
+ [(Temp - 25°C)(0.05 µs/°C)] †  
TC = Holding Capacitor Charging Time  
TC = (CHOLD) (RIC + RSS + RS) In (1/16384)  
TC = -25 pF (1 k+10 k+ 2.5 k) In (1/16384)  
TC = -25 pF (13.5 k) In (1/16384)  
TC = -0.338 (-9.704)µs  
TC = 3.3µs  
TACQ =  
5 µs  
+ 3.3 µs  
+ [(50°C - 25°C)(0.05 µs / °C)]  
TACQ =  
TACQ =  
8.3 µs + 1.25 µs  
9.55 µs  
† The temperature coefficient is only required for  
temperatures > 25°C.  
FIGURE 11-5: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
VT = 0.6V  
Port Pin  
Rs  
SS  
RIC 1k  
RSS  
CPIN  
5 pF  
VA  
ILEAKAGE  
± 100 nA  
CHOLD = 25 pF  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
ILEAKAGE = leakage current at the pin due to  
VDD 4V  
3V  
various junctions  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 10 11  
Sampling Switch (RSS)  
( k)  
DS41120A-page 122  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
11.7  
Use of the ECCP1 Trigger  
11.9  
Faster Conversion - Lower  
Resolution Trade-off  
An A/D conversion can be started by the “special event  
trigger” of the CCP module. This requires that the  
CCP1M<3:0> bits be programmed as 1011band that  
the A/D module is enabled (ADON is set). When the  
trigger occurs, the GO/DONE bit will be set on Q2 to  
start the A/D conversion and the Timer1 counter will  
be reset to zero. Timer1 is reset to automatically  
repeat the A/D conversion cycle, with minimal software  
overhead (moving the ADRESH and ADRESL to the  
desired location). The appropriate analog input chan-  
nel must be selected before the “special event trigger”  
sets the GO/DONE bit (starts a conversion cycle).  
Not all applications require a result with 12-bits of res-  
olution, but may instead require a faster conversion  
time. The A/D module allows users to make the trade-  
off of conversion speed to resolution. Regardless of  
the resolution required, the acquisition time is the  
same. To speed up the conversion, the A/D module  
may be halted by clearing the GO/DONE bit after the  
desired number of bits in the result have been con-  
verted. Once the GO/DONE bit has been cleared, all  
of the remaining A/D result bits are ‘0’. The equation  
to determine the time before the GO/DONE bit can be  
switched is as follows:  
If the A/D module is not enabled (ADON is cleared),  
then the “special event trigger” will be ignored by the  
A/D module, but will still reset the Timer1 counter.  
Conversion time = (N+1)TAD  
Where: N = number of bits of resolution required,  
and 1TAD is the amplifier settling time.  
11.8  
Effects of a RESET  
Since TAD is based from the device oscillator, the user  
must use some method (a timer, software loop, etc.) to  
determine when the A/D GO/DONE bit may be  
cleared. Table 11-4 shows a comparison of time  
required for a conversion with 4-bits of resolution, ver-  
sus the normal 12-bit resolution conversion. The  
example is for devices operating at 20 MHz. The A/D  
clock is programmed for 32 TOSC.  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off, and any  
conversion is aborted. The value that is in the  
ADRESH and ADRESL registers are not modified.  
The ADRESH and ADRESL registers will contain  
unknown data after a Power-on Reset.  
EXAMPLE 11-4: 4-BIT vs. 12-BIT  
CONVERSION TIME  
EXAMPLE  
4 Bit Example:  
Conversion Time = (N + 1) TAD  
= (4 + 1) TAD  
= (5)(1.6 µS)  
= 8 µS  
12 Bit Example:  
Conversion Time = (N + 1) TAD  
= (12 + 1) TAD  
= (13)(1.6 µS)  
= 20.8 µS  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 123  
PIC16C717/770/771  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
11.10 A/D Operation During Sleep  
The A/D module can operate during SLEEP mode. This  
requires that the A/D clock source be configured for RC  
(ADCS<1:0> = 11b). With the RC clock source  
selected, when the GO/DONE bit is set the A/D module  
waits one instruction cycle before starting the conver-  
sion cycle. This allows the SLEEPinstruction to be exe-  
cuted, which eliminates all digital switching noise  
during the sample and conversion. When the conver-  
sion cycle is completed the GO/DONE bit is cleared,  
and the result loaded into the ADRESH and ADRESL  
registers. If the A/D interrupt is enabled, the device will  
wake-up from SLEEP. If the A/D interrupt is not  
enabled, the A/D module will then be turned off,  
although the ADON bit will remain set.  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be configured to  
RC (ADCS<1:0> = 11b).  
11.11 Connection Considerations  
Since the analog inputs employ ESD protection, they  
have diodes to VDD and VSS. This requires that the  
analog input must be between VDD and VSS. If the input  
voltage exceeds this range by greater than 0.3V (either  
direction), one of the diodes becomes forward biased  
and it may damage the device if the input current spec-  
ification is exceeded.  
An external RC filter is sometimes added for anti-alias-  
ing of the input signal. The R component should be  
selected to ensure that the total source impedance is  
kept under the 2.5 krecommended specification. Any  
external components connected (via hi-impedance) to  
an analog input pin (capacitor, zener diode, etc.) should  
have very little leakage current at the pin.  
When the A/D clock source is another clock option (not  
RC), a SLEEP instruction causes the present conver-  
sion to be aborted and the A/D module is turned off,  
though the ADON bit will remain set.  
TABLE 11-2: SUMMARY OF A/D REGISTERS  
Value on:  
POR,  
BOR  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
10Bh,18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
PIR1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF TMR1IF -0-- 0000 -0-- 0000  
TMR2IE TMR1IE -0-- 0000 -0-- 0000  
0Ch  
PIE1  
8Ch  
1Eh  
9Eh  
9Bh  
1Fh  
9Fh  
05h  
06h  
85h  
86h  
9Dh  
ADRESH A/D High Byte Result Register  
ADRESL A/D Low Byte Result Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
REFCON VRHEN VRLEN VRHOEN VRLOEN  
CHS3  
ADON  
0000 ----  
0000 0000 0000 0000  
0000 ---- 0000 ----  
0000 ----  
ADCON0 ADCS1 ADCS0  
CHS2  
CHS1  
CHS0 GO/DONE  
ADCON1  
PORTA  
PORTB  
TRISA  
ADFM  
VCFG2  
VCFG1  
VCFG0  
PORTA Data Latch when written: PORTA pins when read  
PORTB Data Latch when written: PORTB pins when read  
PORTA Data Direction Register  
000x 0000 000u 0000  
xxxx xx00 uuuu uu00  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
TRISB  
PORTB Data Direction Register  
ANSEL  
ANS5  
ANS4  
ANS3  
ANS2  
ANS1  
ANS0  
Legend: x= unknown, u= unchanged, -= unimplemented read as ’0’. Shaded cells are not used for A/D conversion.  
DS41120A-page 124  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
Some of the core features provided may not be neces-  
sary to each application that a device may be used for.  
The configuration word bits allow these features to be  
configured/enabled/disabled as necessary. These fea-  
tures include code protection, brown-out reset and its  
trippoint, the power-up timer, the watchdog timer and  
the devices oscillator mode. As can be seen in  
Figure 12-1, some additional configuration word bits  
have been provided for brown-out reset trippoint selec-  
tion.  
12.0 SPECIAL FEATURES OF THE  
CPU  
These devices have a host of features intended to  
maximize system reliability, minimize cost through elim-  
ination of external components, provide power saving  
operating modes and offer code protection. These are:  
• Oscillator Selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
• Watchdog Timer (WDT)  
• Low-voltage detection  
• SLEEP  
• Code protection  
• ID locations  
• In-circuit serial programming (ICSP)  
These devices have a Watchdog Timer, which can be  
shut off only through configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 72 ms (nominal) on power-up type resets  
only (POR, BOR), designed to keep the part in reset  
while the power supply stabilizes. With these two timers  
on-chip, most applications need no external reset cir-  
cuitry.  
SLEEP mode is designed to offer a very low current  
power-down mode. The user can wake-up from SLEEP  
through external reset, Watchdog Timer Wake-up, or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The INTRC and ER oscillator options save system cost  
while the LP crystal option saves power. A set of con-  
figuration bits are used to select various options.  
Additional information on special features is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
12.1  
Configuration Bits  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
The user will note that address 2007h is beyond the  
user program memory space. In fact, it belongs to the  
special test/configuration memory space (2000h -  
3FFFh), which can be accessed only during program-  
ming.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 125  
PIC16C717/770/771  
FIGURE 12-1: CONFIGURATION WORD FOR 16C717/770/771 DEVICE  
CP  
CP BORV1 BORV0 CP  
11 10  
CP  
8
BODEN MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0  
Register: CONFIG  
Address 2007h  
bit13 12  
9
7
6
5
4
3
2
1
bit0  
bit 13,12: CP: Program Memory Code Protection  
bit 9,8: 1= Code protection off  
(2)  
0= All program memory is protected  
bit 11-10: BORV<1:0>: Brown-out Reset Voltage bits  
00= VBOR set to 4.5V  
01= VBOR set to 4.2V  
10= VBOR set to 2.7V  
11= VBOR set to 2.5V  
bit 7:  
bit 6:  
Unimplemented: Read as ’1’  
(1)  
BODEN: Brown-out Detect Reset Enable bit  
1= Brown-out Detect Reset enabled  
0= Brown-out Detect Reset disabled  
bit 5:  
bit 4:  
bit 3:  
MCLRE: RA5/MCLR pin function select  
1= RA5/MCLR pin function is MCLR  
0= RA5/MCLR pin function is digital input, MCLR internally tied to VDD  
(1)  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 2-0: FOSC<2:0>: Oscillator Selection bits  
000= LP oscillator: Ceramic resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
001= XT oscillator: Crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
010= HS oscillator: High frequency crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
011= EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN function on RA7/OSC1/CLKIN  
100= INTRC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
101= INTRC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
110= ER oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN  
111= ER oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN  
Note 1: Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT), regardless of the value of bit PWRTE.  
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2: All of the CP bits must be given the same value to enable code protection.  
12.2.2 LP, XT AND HS MODES  
12.2  
Oscillator Configurations  
In LP, XT or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 12-2). The  
PIC16C717/770/771 oscillator design requires the use  
of a parallel cut crystal. Use of a series cut crystal may  
give a frequency out of the crystal manufacturers spec-  
ifications.  
12.2.1  
OSCILLATOR TYPES  
The PIC16C717/770/771 can be operated in four differ-  
ent oscillator modes. The user can program three con-  
figuration bits (FOSC<2:0>) to select one of these eight  
modes:  
• LP  
• XT  
• HS  
• ER  
Low Power Crystal  
Crystal/Resonator  
High Speed Crystal/Resonator  
External Resistor (with and without  
CLKOUT)  
• INTRC Internal 4 MHz (with and without  
CLKOUT)  
• EC  
External Clock  
DS41120A-page 126  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
12.2.3 EC MODE  
FIGURE 12-2: CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(HS, XT OR LP  
In applications where the clock source is external, the  
PIC16C717/770/771 should be programmed to select  
the EC (External Clock) mode. In this mode, the RA6/  
OSC2/CLKOUT pin is available as an I/O pin. See  
Figure 12-3 for illustration.  
OSC CONFIGURATION)  
C1(1)  
OSC1  
To  
internal  
logic  
FIGURE 12-3: EXTERNAL CLOCK INPUT  
OPERATION (EC OSC  
XTAL  
RS(2)  
RF(3)  
OSC2  
SLEEP  
PIC16C717/770/771  
CONFIGURATION)  
C2(1)  
OSC1  
PIC16C717/770/771  
Clock from  
ext. system  
Note1: See Table 12-1 and Table 12-2 for recom-  
mended values of C1 and C2.  
RA6  
I/O  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
3: RF varies with the crystal chosen.  
TABLE 12-1: CERAMIC RESONATORS  
Ranges Tested:  
Mode  
XT  
Freq  
OSC1  
OSC2  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
These values are for design guidance only. See  
notes at bottom of page.  
All resonators used did not have built-in capacitors.  
TABLE 12-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
Osc Type  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
20 MHz  
These values are for design guidance only. See  
notes at bottom of page.  
Note 1: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
2: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 127  
PIC16C717/770/771  
12.2.4 ER MODE  
12.2.6 CLKOUT  
For timing insensitive applications, the ER (External  
Resistor) clock mode offers additional cost savings.  
Only one external component, a resistor connected to  
the OSC1 pin and VSS, is needed to set the operating  
frequency of the internal oscillator. The resistor draws  
a DC bias current which controls the oscillation fre-  
quency. In addition to the resistance value, the oscilla-  
tor frequency will vary from unit to unit, and as a  
function of supply voltage and temperature. Since the  
controlling parameter is a DC current and not a capac-  
itance, the particular package type and lead frame will  
not have a significant effect on the resultant frequency.  
In the INTRC and ER modes, the PIC16C717/770/771  
can be configured to provide a clock out signal by pro-  
gramming the configuration word. The oscillator fre-  
quency, divided by 4, can be used for test purposes or  
to synchronize other logic.  
In the INTRC and ER modes, if the CLKOUT output is  
enabled, CLKOUT is held low during reset.  
12.2.7 DUAL SPEED OPERATION FOR ER AND  
INTRC MODES  
A software programmable dual speed oscillator is avail-  
able in either ER or INTRC oscillator modes. This fea-  
ture allows the applications to dynamically toggle the  
oscillator speed between normal and slow frequencies.  
The nominal slow frequency is 37KHz. In ER mode, the  
slow speed operation is fixed and does not vary with  
resistor size. Applications that require low current  
power savings, but cannot tolerate putting the part into  
sleep, may use this mode.  
Figure 12-4 shows how the controlling resistor is con-  
nected to the PIC16C717/770/771. For Rext values  
below 38k ohms, the oscillator operation may become  
unstable, or stop completely. For very high Rext values  
(e.g. 1M), the oscillator becomes sensitive to noise,  
humidity and leakage. Thus, we recommend keeping  
Rext between 38k and 1M ohms.  
The OSCF bit in the PCON register is used to control  
FIGURE 12-4: EXTERNAL RESISTOR  
dual speed mode.  
See the PCON Register,  
Register 2-8, for details.  
PIC16C717/770/771  
When changing the INTRC or ER internal oscillator  
speed, there is a period of time when the processor is  
inactive. When the speed changes from fast to slow, the  
processor inactive period is in the range of 100 µS to  
300 µS. For speed change from slow to fast, the pro-  
cessor is in active for 1.25 µS to 3.25 µS.  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
REXT  
The Electrical Specification section shows the relation-  
ship between the Rext resistance value and the operat-  
ing frequency as well as frequency variations due to  
operating temperature for given Rext and VDD values.  
The ER oscillator mode has two options that control the  
OSC2 pin. The first allows it to be used as a general  
purpose I/O port. The other configures the pin as CLK-  
OUT. The ER oscillator does not run during reset.  
12.2.5 INTRC MODE  
The internal RC oscillator provides a fixed 4 MHz (nom-  
inal) system clock at VDD = 5V and 25°C, see “Electrical  
Specifications” section for information on variation over  
voltage and temperature. The INTRC oscillator does  
not run during reset.  
DS41120A-page 128  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
Some registers are not affected in any reset condition.  
Their status is unknown on a power-up reset and  
unchanged in any other reset. Most other registers are  
placed into an initialized state upon reset, however they  
are not affected by a WDT reset during sleep, because  
this is considered a WDT Wakeup, which is viewed as  
the resumption of normal operation.  
12.3  
Reset  
The PIC16C717/770/771 devices have several differ-  
ent resets. These resets are grouped into two classifi-  
cations; power-up and non-power-up. The power-up  
type resets are the power-on and brown-out resets  
which assume the device VDD was below its normal  
operating range for the device’s configuration. The non-  
power up type resets assume normal operating limits  
were maintained before/during and after the reset.  
Several status bits have been provided to indicate  
which reset occurred (see Table 12-4). See Table 12-6  
for a full description of reset states of all registers.  
• Power-on Reset (POR)  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 12-5.  
• Programmable Brown-out Reset (PBOR)  
• MCLR reset during normal operation  
• MCLR reset during SLEEP  
These devices have a MCLR noise filter in the MCLR  
reset path. The filter will detect and ignore small pulses.  
• WDT Reset (during normal operation)  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
FIGURE 12-5: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
Time-out  
WDT  
Module  
VDD rise  
detect  
Power-on Reset  
VDD  
Programmable  
Brown-out  
S
R
BODEN  
OST/PWRT  
OST  
Chip_Reset  
Q
10-bit Ripple counter  
OSC1  
PWRT  
10-bit Ripple counter  
Dedicated  
Oscillator  
Enable PWRT  
Enable OST  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 129  
PIC16C717/770/771  
12.4  
Power-On Reset (POR)  
12.5  
Power-up Timer (PWRT)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.5V - 2.1V). To  
take advantage of the POR, just enable the internal  
MCLR feature. This will eliminate external RC compo-  
nents usually needed to create a Power-on Reset. A  
maximum rise time for VDD is specified. See Electrical  
Specifications for details. For a slow rise time, see  
Figure 12-6.  
The Power-up Timer provides a fixed TPWRT time-out  
on power-up type resets only. For a POR, the PWRT is  
invoked when the POR pulse is generated. For a BOR,  
the PWRT is invoked when the device exits the reset  
condition (VDD rises above BOR trippoint). The Power-  
up Timer operates on an internal RC oscillator. The  
chip is kept in reset as long as the PWRT is active. The  
PWRT’s time delay is designed to allow VDD to rise to  
an acceptable level. A configuration bit is provided to  
enable/disable the PWRT for the POR only. For a BOR  
the PWRT is always available regardless of the config-  
uration bit setting.  
Two delay timers, (PWRT on OST), have been pro-  
vided which hold the device in reset after a POR  
(dependent upon device configuration) so that all oper-  
ational parameters have been met prior to releasing the  
device to resume/begin normal operation.  
The power-up time delay will vary from chip-to-chip due  
to VDD, temperature and process variation. See DC  
parameters for details.  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature,...) must be met to ensure oper-  
ation. If these conditions are not met, the device must  
be held in reset until the operating conditions are met.  
Brown-out Reset may be used to meet the startup con-  
ditions, or if necessary an external POR circuit may be  
implemented to delay end of reset for as long as  
needed.  
12.6  
Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over. This ensures that the crystal oscil-  
lator or resonator has started and stabilized.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on a power-up type reset or a wake-up  
from SLEEP.  
FIGURE 12-6: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD RAMP)  
12.7  
Programmable Brown-Out Reset  
(PBOR)  
VDD  
VDD  
The Programmable Brown-out Reset module is used to  
generate a reset when the supply voltage falls below a  
specified trip voltage. The trip voltage is configurable to  
any one of four voltages provided by the BORV<1:0>  
configuration word bits.  
D
R
R1  
MCLR  
PIC16C717/770/771  
C
Configuration bit, BODEN, can disable (if clear/pro-  
grammed) or enable (if set) the Brown-out Reset cir-  
cuitry. If VDD falls below the specified trippoint for longer  
than TBOR, (parameter #35), the brown-out situation  
will reset the chip. A reset may not occur if VDD falls  
below the trippoint for less than TBOR. The chip will  
remain in Brown-out Reset until VDD rises above VBOR.  
The Power-up Timer will be invoked at that point and  
will keep the chip in RESET an additional TPWRT. If VDD  
drops below VBOR while the Power-up Timer is running,  
the chip will go back into a Brown-out Reset and the  
Power-up Timer will be re-initialized. Once VDD rises  
above VBOR, the Power-up Timer will again begin a  
TPWRT time delay. Even though the PWRT is always  
enabled when brown-out is enabled, the PWRT config-  
uration word bit should be cleared (enabled) when  
brown-out is enabled.  
Note 1: External Power-on Reset circuit is required  
only if VDD power-up slope is too slow. The  
diode D helps discharge the capacitor  
quickly when VDD powers down.  
2: R < 40 kis recommended to make sure  
that voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
(ESD) or Electrical Overstress (EOS).  
DS41120A-page 130  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
Table 12-5 shows the reset conditions for some special  
function registers, while Table 12-6 shows the reset  
conditions for all the registers.  
12.8  
Time-out Sequence  
On power-up, the time-out sequence is as follows: First  
PWRT time-out is invoked by the POR pulse. When the  
PWRT delay expires, the Oscillator Start-up Timer is  
activated. The total time-out will vary based on oscilla-  
tor configuration and the status of the PWRT. For  
example, in RC mode with the PWRT disabled, there  
will be no time-out at all. Figure 12-7, Figure 12-8,  
Figure 12-9 and Figure 12-10 depict time-out  
sequences on power-up.  
12.9  
Power Control/Status Register  
(PCON)  
The Power Control/Status Register, PCON, has two  
status bits that provide indication of which power-up  
type reset occurred.  
Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is set  
on a Power-on Reset. It must then be set by the user  
and checked on subsequent resets to see if bit BOR  
cleared, indicating a BOR occurred. However, if the  
brown-out circuitry is disabled, the BOR bit is a "Don’t  
Care" bit and is considered unknown upon a POR.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(Figure 12-9). This is useful for testing purposes or to  
synchronize more than one PICmicro microcontroller  
operating in parallel.  
Bit1 is POR (Power-on Reset Status bit). It is cleared on  
a Power-on Reset and unaffected otherwise. The user  
must set this bit following a Power-on Reset.  
TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up from  
Oscillator Configuration  
Brown-out  
SLEEP  
PWRTE = 0  
TPWRT + 1024TOSC  
TPWRT  
PWRTE = 1  
XT, HS, LP  
1024TOSC  
TPWRT + 1024TOSC  
TPWRT  
1024TOSC  
EC, ER, INTRC  
TABLE 12-4: STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
1
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 12-5: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
uuu1 0uuu  
---- 1-01  
---- 1-uu  
---- 1-uu  
---- 1-uu  
---- u-uu  
---- 1-u0  
---- u-uu  
---- u-uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
000h  
Brown-out Reset  
Interrupt wake-up from SLEEP, GIE = 0  
Interrupt wake-up from SLEEP, GIE = 1  
PC + 1  
0004h  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as '0'.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 131  
PIC16C717/770/771  
TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Register  
Power-on Reset or  
Brown-out Reset  
MCLR Reset or  
WDT Reset  
Wake-up via WDT or  
Interrupt  
W
xxxx xxxx  
0000 0000  
xxxx xxxx  
0000h  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000h  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
INDF  
TMR0  
PCL  
PC + 1(1)  
000q quuu(2)  
uuuu uuuu  
uuuu 0000  
uuuu uu00  
---0 0000  
0000 000u  
uuuq quuu(2)  
uuuu uuuu  
uuuu uuuu  
uuuu uu00  
---u uuuu  
STATUS  
0001 1xxx  
FSR  
xxxx xxxx  
xxxx 0000  
xxxx xx00  
---0 0000  
0000 000x  
PORTA  
PORTB  
PCLATH  
INTCON  
uuuu uuqq  
PIR1  
-0-- 0000  
-0-- 0000  
-0-- uuuu  
q--- q---  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
u--- u---  
---- u-uu  
1111 1111  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu ----  
PIR2  
0--- 0---  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
0000 0000  
1111 1111  
1111 1111  
1111 1111  
-0-- 0000  
0--- 0---  
---- 1-qq  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
1111 0000  
0000 0000  
0000 ----  
0--- 0---  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
0000 0000  
1111 1111  
1111 1111  
1111 1111  
-0-- 0000  
0--- 0---  
---- 1-uu  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
1111 0000  
0000 0000  
0000 ----  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
ADRESH  
ADCON0  
OPTION_REG  
TRISA  
TRISB  
PIE1  
PIE2  
PCON  
PR2  
SSPADD  
SSPSTAT  
WPUB  
IOCB  
P1DEL  
REFCON  
Legend: u = unchanged,  
x
= unknown, -= unimplemented bit, read as ’0’, q= value  
depends on condition  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the  
interrupt vector (0004h).  
2: See Table 12-5 for reset value for specific condition.  
DS41120A-page 132  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
Register  
Power-on Reset or  
Brown-out Reset  
MCLR Reset or  
WDT Reset  
Wake-up via WDT or  
Interrupt  
LVDCON  
ANSEL  
--00 0101  
1111 1111  
xxxx xxxx  
0000 000  
--00 0101  
1111 1111  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---- uuuu  
1--- ---0  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---- uuuu  
1--- ---0  
ADRESL  
ADCON1  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
PMCON1  
xxxx xxxx  
xxxx xxxx  
--xx xxxx  
---- xxxx  
1--- ---0  
Legend: u = unchanged,  
x = unknown, -= unimplemented bit, read as ’0’, q= value  
depends on condition  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the  
interrupt vector (0004h).  
2: See Table 12-5 for reset value for specific condition.  
FIGURE 12-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 133  
PIC16C717/770/771  
FIGURE 12-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 12-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 12-10: SLOW VDD RISE TIME (MCLR TIED TO VDD)  
5V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
(1)  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
Note 1: Time dependent on oscillator circuit  
DS41120A-page 134  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
12.10 Interrupts  
The devices have up to 11 sources of interrupt. The  
interrupt control register (INTCON) records individual  
interrupt requests in flag bits. It also has individual and  
global interrupt enable bits.  
The peripheral interrupt flags are contained in the spe-  
cial function registers PIR1 and PIR2. The correspond-  
ing interrupt enable bits are contained in special  
function registers PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in special function reg-  
ister INTCON.  
Note: Individual interrupt flag bits are set regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
A global interrupt enable bit, GIE (INTCON<7>),  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled and an  
interrupt’s flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set,  
regardless of the status of the GIE bit. The GIE bit is  
cleared on reset.  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the interrupt service routine the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs. The latency  
is the same for one or two cycle instructions. Individual  
interrupt flag bits are set regardless of the status of  
their corresponding mask bit or the GIE bit  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine as well as sets the GIE bit, which  
re-enables interrupts.  
FIGURE 12-11: INTERRUPT LOGIC  
LVDIF  
LVDIE  
Wake-up (If in SLEEP mode)  
ADIF  
ADIE  
T0IF  
T0IE  
INTF  
INTE  
Interrupt to CPU  
RBIF  
RBIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
PEIE  
GIE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
BCLIF  
BCLIE  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 135  
PIC16C717/770/771  
12.10.1 INT INTERRUPT  
12.11 Context Saving During Interrupts  
External interrupt on RB0/INT pin is edge triggered:  
either rising if bit INTEDG (OPTION_REG<6>) is set,  
or falling, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the interrupt service rou-  
tine before re-enabling this interrupt. The INT interrupt  
can wake-up the processor from SLEEP, if bit INTE was  
set prior to going into SLEEP. The status of global inter-  
rupt enable bit GIE decides whether or not the proces-  
sor branches to the interrupt vector following wake-up.  
See Section 12.13 for details on SLEEP mode.  
During an interrupt, only the PC is saved on the stack.  
At the very least, W and STATUS should be saved to  
preserve the context for the interrupted program. All  
registers that may be corrupted by the ISR, such as  
PCLATH or FSR, should be saved.  
Example 12-1 stores and restores the STATUS, W and  
PCLATH registers. The register, W_TEMP, is defined in  
Common RAM, the last 16 bytes of each bank that may  
be accessed from any bank. The STATUS_TEMP and  
PCLATH_TEMP are defined in bank 0.  
The example:  
a) Stores the W register.  
b) Stores the STATUS register in bank 0.  
c) Stores the PCLATH register in bank 0.  
d) Executes the ISR code.  
12.10.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>). (Section 2.2.2.3)  
e) Restores the PCLATH register.  
f) Restores the STATUS register  
g) Restores W.  
12.10.3 PORTB INTCON CHANGE  
Note  
that  
W_TEMP,  
STATUS_TEMP  
and  
PCLATH_TEMP are defined in the common RAM area  
(70h - 7Fh) to avoid register bank switching during con-  
text save and restore.  
An input change on PORTB<7:0> sets flag bit RBIF  
(INTCON<0>). The PORTB pin(s) which can individu-  
ally generate interrupt is selectable in the IOCB regis-  
ter. The interrupt can be enabled/disabled by setting/  
clearing  
enable  
bit  
RBIE  
(INTCON<4>).  
(Section 2.2.2.3)  
EXAMPLE 12-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
#define  
#define  
#define  
org  
W_TEMP  
0x70  
0x71  
0x72  
STATUS_TEMP  
PCLATH_TEMP  
0x04  
W_TEMP  
STATUS,w  
; start at Interrupt Vector  
; Save W register  
MOVWF  
MOVF  
MOVWF STATUS_TEMP  
MOVF PCLATH,w  
MOVWF PCLATH_TEMP  
; save STATUS  
; save PCLATH  
:
(Interrupt Service Routine)  
:
MOVF  
PCLATH_TEMP,w  
MOVWF PCLATH  
MOVF  
STATUS_TEMP,w  
MOVWF STATUS  
SWAPF W_TEMP,f  
SWAPF W_TEMP,w  
RETFIE  
;
; swapf loads W without affecting STATUS flags  
DS41120A-page 136  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
The WDT can be permanently disabled by program-  
ming the configuration bit WDTE (Section 12.1)’0’.  
12.12 Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC oscil-  
lator, which does not require any external components.  
This oscillator is in dependent from the processor  
clock. The WDT will run, even if the main clock of the  
device has been stopped, for example, by execution of  
a SLEEPinstruction.  
WDT time-out period values may be found in the Elec-  
trical Specifications. Values for the WDT prescaler may  
be assigned using the OPTION_REG register.  
Note: The CLRWDTand SLEEPinstructions clear  
the WDT and the postscaler, if assigned to  
the WDT, and prevent it from timing out and  
generating a device RESET condition.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the STATUS register  
will be cleared upon a Watchdog Timer time-out.  
.
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
FIGURE 12-12: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 5-2)  
0
Postscaler  
M
U
X
1
WDT Timer  
8
(1)  
8 - to - 1 MUX  
PS<2:0>  
PSA  
WDT  
Enable Bit  
(2)  
To TMR0 (Figure 5-2)  
0
1
(1)  
MUX  
PSA  
WDT  
Time-out  
Note 1: PSA and PS<2:0> are bits in the OPTION_REG register.  
2: WDTE bit in the configuration word.  
TABLE 12-7: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address Name  
Bit 7  
Bit 6  
Bit 5  
MCLRE PWRTE  
T0CS T0SE  
Bit 4  
Bit 3  
WDTE FOSC2 FOSC1  
PSA PS2 PS1  
Bit 2  
Bit 1  
Bit 0  
FOSC0  
PS0  
Config. bits(1)  
BODEN  
INTEDG  
2007h  
81h,181h OPTION_REG RBPU  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Figure 12-1 for the full description of the configuration word bits.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 137  
PIC16C717/770/771  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
12.13 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
12.13.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
For lowest current consumption in this mode, place all  
I/O pins at either VDD, or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D, disable external clocks. Pull all I/O pins, that  
are hi-impedance inputs, high or low externally to avoid  
switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake up from sleep. The SLEEPinstruction  
will be completely executed before the wake-up.  
Therefore, the WDT and WDT postscaler will be  
cleared, the TO bit will be set and the PD bit will  
be cleared.  
12.13.1 WAKE-UP FROM SLEEP  
The device can wake up from SLEEP through one of  
the following events:  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
1. External reset input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change, or some  
Peripheral Interrupts.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
External MCLR Reset will cause a device reset. All  
other events are considered a continuation of program  
execution and cause a "wake-up". The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device reset. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked. The TO  
bit is cleared if a WDT time-out occurred (and caused  
wake-up).  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
2. CCP capture mode interrupt.  
3. Special event trigger (Timer1 in asynchronous  
mode using an external clock).  
4. SSP (Start/Stop) bit detect interrupt.  
5. SSP transmit or receive in slave mode (SPI/I2C).  
6. A/D conversion (when A/D clock source is RC).  
7. Low-voltage detect.  
Other peripherals cannot generate interrupts since dur-  
ing SLEEP, no on-chip clocks are present.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
DS41120A-page 138  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 12-13: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
Tost(1)  
CLKOUT(3)  
INT pin  
INTF flag  
(INTCON<1>)  
Interrupt Latency(2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
Instruction  
fetched  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1: TOST = 1024TOSC (drawing not to scale) This delay applies to LP, XT and HS modes only.  
2: GIE = ’1’ assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = ’0’, execution will continue in-line.  
3: CLKOUT is not available in these osc modes, but shown here for timing reference.  
12.14 Program Verification/Code Protection  
12.16 In-Circuit Serial Programming  
(ICSP™)  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
PIC16CXXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
Note: Microchip does not recommend code pro-  
tecting windowed devices.  
12.15 ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 least significant bits of the ID  
location are used.  
For complete details of serial programming, please  
refer to the In-Circuit Serial Programming (ICSP™)  
Guide, (DS30277).  
For ROM devices, these values are submitted along  
with the ROM code.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 139  
PIC16C717/770/771  
NOTES:  
DS41120A-page 140  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
Table 13-2 lists the instructions recognized by the  
MPASM assembler.  
13.0 INSTRUCTION SET SUMMARY  
Each PIC16CXXX instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CXX instruction  
set summary in Table 13-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 13-1  
shows the opcode field descriptions.  
Figure 13-1 shows the general formats that the instruc-  
tions can have.  
Note: To maintain upward compatibility with  
future PIC16CXXX products, do not use  
the OPTIONand TRISinstructions.  
All examples use the following format to represent a  
hexadecimal number:  
For byte-oriented instructions, ’f’ represents a file reg-  
ister designator and ’d’ represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
0xhh  
where h signifies a hexadecimal digit.  
The destination designator specifies where the result of  
the operation is to be placed. If ’d’ is zero, the result is  
placed in the W register. If ’d’ is one, the result is placed  
in the file register specified in the instruction.  
FIGURE 13-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
8
7
6
0
0
For bit-oriented instructions, ’b’ represents a bit field  
designator which selects the number of the bit affected  
by the operation, while ’f’ represents the number of the  
file in which the bit is located.  
OPCODE  
d
f (FILE #)  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
For literal and control operations, ’k’ represents an  
eight or eleven bit constant or literal value.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
TABLE 13-1: OPCODE FIELD  
DESCRIPTIONS  
7
6
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Field  
Description  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Literal and control operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
k
General  
x
Don’t care location (= 0 or 1)  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
13  
8
7
0
0
OPCODE  
k (literal)  
k = 8-bit immediate value  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
PC  
TO  
PD  
Program Counter  
Time-out bit  
k (literal)  
Power-down bit  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
A description of each instruction is available in the  
PICmicro™  
(DS33023).  
Mid-Range  
Reference  
Manual,  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 141  
PIC16C717/770/771  
TABLE 13-2: PIC16CXXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d Add W and f  
f, d AND W with f  
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0000 0011  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
f
-
Clear f  
Clear W  
f, d Complement f  
f, d Decrement f  
f, d Decrement f, Skip if 0  
f, d Increment f  
f, d Increment f, Skip if 0  
f, d Inclusive OR W with f  
f, d Move f  
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
1(2) 00  
00  
1(2) 00  
1
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
Z
Z
1,2  
f
-
Move W to f  
No Operation  
f, d Rotate Left f through Carry  
f, d Rotate Right f through Carry  
f, d Subtract W from f  
f, d Swap nibbles in f  
f, d Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b Bit Clear f  
f, b Bit Set f  
f, b Bit Test f, Skip if Clear  
f, b Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
1,2  
1,2  
3
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO,PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS41120A-page 142  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
13.1  
Instruction Descriptions  
Add Literal and W  
ADDLW  
ANDWF  
AND W with f  
[label] ANDWF f,d  
0 f 127  
Syntax:  
[label] ADDLW  
0 k 255  
k
Syntax:  
Operands:  
Operation:  
Operands:  
d
[0,1]  
(W) + k (W)  
Operation:  
(W) .AND. (f) (destination)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Z
Description:  
The contents of the W register  
are added to the eight bit literal ’k’  
and the result is placed in the W  
register.  
AND the W register with register  
'f'. If 'd' is 0, the result is stored in  
the W register. If 'd' is 1, the result  
is stored back in register 'f'.  
BCF  
Bit Clear f  
ADDWF  
Syntax:  
Add W and f  
Syntax:  
Operands:  
[label] BCF f,b  
[label] ADDWF f,d  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d
[0,1]  
Operation:  
0 (f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected: None  
Status Affected: C, DC, Z  
Description:  
Bit 'b' in register 'f' is cleared.  
Description:  
Add the contents of the W register  
with register ’f’. If ’d’ is 0, the result  
is stored in the W register. If ’d’ is  
1, the result is stored back in reg-  
ister ’f’.  
ANDLW  
AND Literal with W  
BSF  
Bit Set f  
Syntax:  
[label] ANDLW  
k
Syntax:  
Operands:  
[label] BSF f,b  
Operands:  
Operation:  
Status Affected:  
Description:  
0 k 255  
0 f 127  
0 b 7  
(W) .AND. (k) (W)  
Operation:  
1 (f<b>)  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight bit literal  
'k'. The result is placed in the W  
register.  
Description:  
Bit 'b' in register 'f' is set.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 143  
PIC16C717/770/771  
BTFSS  
Bit Test f, Skip if Set  
CLRF  
Clear f  
Syntax:  
[label] BTFSS f,b  
Syntax:  
[label] CLRF  
0 f 127  
f
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
00h (f)  
1 Z  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
If bit ’b’ in register ’f’ is ’0’, the next  
The contents of register ’f’ are  
cleared and the Z bit is set.  
instruction is executed.  
If bit ’b’ is ’1’, then the next instruc-  
tion is discarded and a NOPis exe-  
cuted instead making this a 2TCY  
instruction.  
BTFSC  
Bit Test, Skip if Clear  
CLRW  
Clear W  
Syntax:  
[label] BTFSC f,b  
Syntax:  
[ label ] CLRW  
None  
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
00h (W)  
1 Z  
Operation:  
skip if (f<b>) = 0  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
If bit ’b’ in register ’f’ is ’1’, the next  
W register is cleared. Zero bit (Z)  
is set.  
instruction is executed.  
If bit ’b’, in register ’f’, is ’0’, the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a 2TCY instruction.  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
CALL  
Call Subroutine  
Syntax:  
[ label ] CALL k  
Operands:  
Operation:  
Operands:  
Operation:  
0 k 2047  
00h WDT  
0 WDT prescaler,  
1 TO  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
1 PD  
Status Affected: None  
Status Affected: TO, PD  
Description:  
Call Subroutine. First, return  
Description: CLRWDTinstruction resets the  
address (PC+1) is pushed onto  
the stack. The eleven bit immedi-  
ate address is loaded into PC bits  
<10:0>. The upper bits of the PC  
are loaded from PCLATH. CALLis  
a two cycle instruction.  
Watchdog Timer. It also resets  
the prescaler of the WDT. Status  
bits TO and PD are set.  
DS41120A-page 144  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
COMF  
Complement f  
[ label ] COMF f,d  
0 f 127  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 2047  
Syntax:  
Operands:  
Syntax:  
Operands:  
Operation:  
d
[0,1]  
k PC<10:0>  
Operation:  
(f) (destination)  
PCLATH<4:3> PC<12:11>  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ’f’ are  
complemented. If ’d’ is 0, the  
result is stored in W. If ’d’ is 1, the  
result is stored back in register ’f’.  
Description:  
GOTOis an unconditional branch.  
The eleven bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a two  
cycle instruction.  
DECF  
Decrement f  
[label] DECF f,d  
0 f 127  
INCF  
Increment f  
Syntax:  
Operands:  
Syntax:  
Operands:  
[ label ] INCF f,d  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(f) - 1 (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register ’f’. If ’d’ is 0,  
the result is stored in the W regis-  
ter. If ’d’ is 1, the result is stored  
back in register ’f’.  
The contents of register ’f’ are  
incremented. If ’d’ is 0, the result  
is placed in the W register. If ’d’ is  
1, the result is placed back in reg-  
ister ’f’.  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 127  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
[ label ] INCFSZ f,d  
0 f 127  
Operands:  
d
[0,1]  
Operands:  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
d
[0,1]  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Description: The contents of register ’f’ are  
Status Affected: None  
decremented. If ’d’ is 0, the result  
is placed in the W register. If ’d’ is  
1, the result is placed back in reg-  
ister ’f’.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
then a NOPis executed instead  
making it a 2TCY instruction.  
Description:  
The contents of register ’f’ are  
incremented. If ’d’ is 0, the result is  
placed in the W register. If ’d’ is 1,  
the result is placed back in regis-  
ter ’f’.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0, a  
NOPis executed instead making it  
a 2TCY instruction.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 145  
PIC16C717/770/771  
IORLW  
Inclusive OR Literal with W  
[ label ] IORLW k  
0 k 255  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
(W) .OR. k (W)  
Z
k (W)  
Status Affected: None  
The contents of the W register are  
OR’ed with the eight bit literal 'k'.  
The result is placed in the W reg-  
ister.  
Description:  
The eight bit literal 'k' is loaded  
into W register. The don’t cares  
will assemble as 0’s.  
MOVWF  
Syntax:  
Move W to f  
IORWF  
Inclusive OR W with f  
[ label ] IORWF f,d  
0 f 127  
[ label ] MOVWF  
0 f 127  
f
Syntax:  
Operands:  
Operation:  
Operands:  
(W) (f)  
d
[0,1]  
Status Affected: None  
Operation:  
(W) .OR. (f) (destination)  
Description:  
Move data from W register to reg-  
ister 'f'.  
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register 'f'. If 'd' is 0 the result is  
placed in the W register. If 'd' is 1  
the result is placed back in regis-  
ter 'f'.  
NOP  
No Operation  
[ label ] NOP  
None  
Syntax:  
MOVF  
Move f  
Operands:  
Operation:  
Syntax:  
Operands:  
[ label ] MOVF f,d  
0 f 127  
No operation  
Status Affected: None  
Description: No operation.  
d
[0,1]  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
The contents of register f are  
moved to a destination dependant  
upon the status of d. If d = 0, des-  
tination is W register. If d = 1, the  
destination is file register f itself. d  
= 1 is useful to test a file register  
since status flag Z is affected.  
DS41120A-page 146  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RLF  
Rotate Left f through Carry  
Syntax:  
Syntax:  
[ label ] RLF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d
[0,1]  
TOS PC,  
1 GIE  
Operation:  
See description below  
C
Status Affected: None  
Status Affected:  
Description:  
The contents of register ’f’ are  
rotated one bit to the left through  
the Carry Flag. If ’d’ is 0, the  
result is placed in the W register.  
If ’d’ is 1, the result is stored back  
in register ’f’.  
C
Register f  
RETLW  
Return with Literal in W  
Syntax:  
[ label ] RETLW k  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 127  
Operands:  
Operation:  
0 k 255  
Syntax:  
Operands:  
k (W);  
TOS PC  
d
[0,1]  
Status Affected: None  
Operation:  
See description below  
C
Description:  
The W register is loaded with the  
Status Affected:  
Description:  
eight bit literal ’k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two cycle instruction.  
The contents of register ’f’ are  
rotated one bit to the right through  
the Carry Flag. If ’d’ is 0, the result  
is placed in the W register. If ’d’ is  
1, the result is placed back in reg-  
ister ’f’.  
C
Register f  
RETURN  
Syntax:  
Return from Subroutine  
[ label ] RETURN  
None  
SLEEP  
Operands:  
Operation:  
Syntax:  
[ label  
]
TOS PC  
SLEEP  
Status Affected: None  
Operands:  
Operation:  
None  
Description: Return from subroutine. The stack  
00h WDT,  
0 WDT prescaler,  
1 TO,  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two cycle  
instruction.  
0 PD  
Status Affected:  
Description:  
TO, PD  
The power-down status bit, PD is  
cleared. Time-out status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
See Section 13.8 for more  
details.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 147  
PIC16C717/770/771  
SUBLW  
Subtract W from Literal  
XORLW  
Exclusive OR Literal with W  
Syntax:  
[ label ]  
Syntax:  
[label]  
SUBLW k  
XORLW k  
Operands:  
Operation:  
0 k 255  
Operands:  
0 k 255  
k - (W) → (W)  
Operation:  
(W) .XOR. k → (W)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Z
Description:  
The W register is subtracted (2’s  
The contents of the W register  
are XOR’ed with the eight bit lit-  
eral 'k'. The result is placed in  
the W register.  
complement method) from the  
eight bit literal 'k'. The result is  
placed in the W register.  
XORWF  
Syntax:  
Exclusive OR W with f  
[label] XORWF f,d  
0 f 127  
SUBWF  
Subtract W from f  
Syntax:  
[ label ]  
SUBWF f,d  
Operands:  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) .XOR. (f) → (destination)  
Operation:  
(f) - (W) → (destination)  
Status Affected:  
Description:  
Z
Status Affected: C, DC, Z  
Exclusive OR the contents of the  
W register with register 'f'. If 'd' is  
0, the result is stored in the W  
register. If 'd' is 1, the result is  
stored back in register 'f'.  
Description:  
Subtract (2’s complement method)  
W register from register 'f'. If 'd' is 0,  
the result is stored in the W regis-  
ter. If 'd' is 1, the result is stored  
back in register 'f'.  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ] SWAPF f,d  
0 f 127  
Operands:  
d
[0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Status Affected: None  
Description:  
The upper and lower nibbles of  
register 'f' are exchanged. If 'd' is  
0, the result is placed in W regis-  
ter. If 'd' is 1, the result is placed in  
register 'f'.  
DS41120A-page 148  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
MPLAB allows you to:  
14.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Integrated Development Environment  
- MPLAB™ IDE Software  
• Debug using:  
- source files  
• Assemblers/Compilers/Linkers  
- MPASM Assembler  
- absolute listing file  
- object code  
- MPLAB-C17 and MPLAB-C18 C Compilers  
- MPLINK/MPLIB Linker/Librarian  
• Simulators  
The ability to use MPLAB with Microchip’s simulator,  
MPLAB-SIM, allows a consistent platform and the abil-  
ity to easily switch from the cost-effective simulator to  
the full featured emulator with minimal retraining.  
- MPLAB-SIM Software Simulator  
• Emulators  
- MPLAB-ICE Real-Time In-Circuit Emulator  
- PICMASTER®/PICMASTER-CE In-Circuit  
14.2  
MPASM Assembler  
Emulator  
MPASM is a full featured universal macro assembler for  
all PICmicro MCU’s. It can produce absolute code  
directly in the form of HEX files for device program-  
mers, or it can generate relocatable objects for  
MPLINK.  
- ICEPIC™  
• In-Circuit Debugger  
- MPLAB-ICD for PIC16F877  
• Device Programmers  
MPASM has a command line interface and a Windows  
shell and can be used as a standalone application on a  
Windows 3.x or greater system. MPASM generates  
relocatable object files, Intel standard HEX files, MAP  
files to detail memory usage and symbol reference, an  
absolute LST file which contains source lines and gen-  
erated machine code, and a COD file for MPLAB  
debugging.  
- PRO MATE II Universal Programmer  
- PICSTART Plus Entry-Level Prototype  
Programmer  
• Low-Cost Demonstration Boards  
- SIMICE  
- PICDEM-1  
- PICDEM-2  
- PICDEM-3  
MPASM features include:  
- PICDEM-17  
- SEEVAL  
• MPASM and MPLINK are integrated into MPLAB  
projects.  
- KEELOQ  
• MPASM allows user defined macros to be created  
for streamlined assembly.  
14.1  
MPLAB Integrated Development  
Environment Software  
• MPASM allows conditional assembly for multi pur-  
pose source files.  
• MPASM directives allow complete control over the  
assembly process.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. MPLAB is a Windows -based applica-  
tion which contains:  
14.3  
MPLAB-C17 and MPLAB-C18  
C Compilers  
• Multiple functionality  
- editor  
The MPLAB-C17 and MPLAB-C18 Code Development  
Systems are complete ANSI ‘C’ compilers and inte-  
grated development environments for Microchip’s  
PIC17CXXX and PIC18CXXX family of microcontrol-  
lers, respectively. These compilers provide powerful  
integration capabilities and ease of use not found with  
other compilers.  
- simulator  
- programmer (sold separately)  
- emulator (sold separately)  
• A full featured editor  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
• On-line help  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 149  
PIC16C717/770/771  
Interchangeable processor modules allow the system  
to be easily reconfigured for emulation of different pro-  
cessors. The universal architecture of the MPLAB-ICE  
allows expansion to support new PICmicro microcon-  
trollers.  
14.4  
MPLINK/MPLIB Linker/Librarian  
MPLINK is a relocatable linker for MPASM and  
MPLAB-C17 and MPLAB-C18. It can link relocatable  
objects from assembly or C source files along with pre-  
compiled libraries using directives from a linker script.  
The MPLAB-ICE Emulator System has been designed  
as a real-time emulation system with advanced fea-  
tures that are generally found on more expensive devel-  
opment tools. The PC platform and Microsoft® Windows  
3.x/95/98 environment were chosen to best make these  
features available to you, the end user.  
MPLIB is a librarian for pre-compiled code to be used  
with MPLINK. When a routine from a library is called  
from another source file, only the modules that contains  
that routine will be linked in with the application. This  
allows large libraries to be used efficiently in many dif-  
ferent applications. MPLIB manages the creation and  
modification of library files.  
MPLAB-ICE 2000 is a full-featured emulator system  
with enhanced trace, trigger, and data monitoring fea-  
tures. Both systems use the same processor modules  
and will operate across the full operating speed range  
of the PICmicro MCU.  
MPLINK features include:  
• MPLINK works with MPASM and MPLAB-C17  
and MPLAB-C18.  
• MPLINK allows all memory areas to be defined as  
sections to provide link-time flexibility.  
14.7  
PICMASTER/PICMASTER CE  
The PICMASTER system from Microchip Technology is  
a full-featured, professional quality emulator system.  
This flexible in-circuit emulator provides a high-quality,  
universal platform for emulating Microchip 8-bit  
PICmicro microcontrollers (MCUs). PICMASTER sys-  
tems are sold worldwide, with a CE compliant model  
available for European Union (EU) countries.  
MPLIB features include:  
• MPLIB makes linking easier because single librar-  
ies can be included instead of many smaller files.  
• MPLIB helps keep code maintainable by grouping  
related modules together.  
• MPLIB commands allow libraries to be created  
and modules to be added, listed, replaced,  
deleted, or extracted.  
14.8  
ICEPIC  
ICEPIC is a low-cost in-circuit emulation solution for the  
Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X, and PIC16CXXX families of 8-bit one-time-  
programmable (OTP) microcontrollers. The modular  
system can support different subsets of PIC16C5X or  
PIC16CXXX products through the use of  
interchangeable personality modules or daughter  
boards. The emulator is capable of emulating without  
target application circuitry being present.  
14.5  
MPLAB-SIM Software Simulator  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment by simulating  
the PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file or user-defined key press to any of the pins. The  
execution can be performed in single step, execute until  
break, or trace mode.  
14.9  
MPLAB-ICD In-Circuit Debugger  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C17 and MPLAB-C18 and MPASM. The Soft-  
ware Simulator offers the flexibility to develop and  
debug code outside of the laboratory environment mak-  
ing it an excellent multi-project software development  
tool.  
Microchip’s In-Circuit Debugger, MPLAB-ICD, is a pow-  
erful, low-cost run-time development tool. This tool is  
based on the flash PIC16F877 and can be used to  
develop for this and other PICmicro microcontrollers  
from the PIC16CXXX family. MPLAB-ICD utilizes the  
In-Circuit Debugging capability built into the  
PIC16F87X. This feature, along with Microchip’s In-Cir-  
cuit Serial Programming protocol, offers cost-effective  
in-circuit flash programming and debugging from the  
graphical user interface of the MPLAB Integrated  
Development Environment. This enables a designer to  
develop and debug source code by watching variables,  
single-stepping and setting break points. Running at  
full speed enables testing hardware in real-time. The  
MPLAB-ICD is also a programmer for the flash  
PIC16F87X family.  
14.6  
MPLAB-ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLAB-ICE Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers (MCUs). Software control of  
MPLAB-ICE is provided by the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
“make” and download, and source debugging from a  
single environment.  
DS41120A-page 150  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
the PICDEM-1 board, on a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the MPLAB-ICE emulator and download the  
firmware to the emulator for testing. Additional proto-  
type area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
14.10 PRO MATE II Universal Programmer  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode. PRO MATE II is CE  
compliant.  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for instructions and error messages,  
keys to enter commands and a modular detachable  
socket assembly to support various package types. In  
stand-alone mode the PRO MATE II can read, verify or  
program PICmicro devices. It can also set code-protect  
bits in this mode.  
14.14 PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The MPLAB-ICE emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
usage of the I2C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
14.11 PICSTART Plus Entry Level  
Development System  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient.  
PICSTART Plus supports all PICmicro devices with up  
to 40 pins. Larger pin count devices such as the  
PIC16C92X, and PIC17C76X may be supported with  
an adapter socket. PICSTART Plus is CE compliant.  
14.12 SIMICE Entry-Level  
Hardware Simulator  
SIMICE is an entry-level hardware development sys-  
tem designed to operate in a PC-based environment  
with Microchip’s simulator MPLAB-SIM. Both SIMICE  
and MPLAB-SIM run under Microchip Technology’s  
MPLAB Integrated Development Environment (IDE)  
software. Specifically, SIMICE provides hardware sim-  
ulation for Microchip’s PIC12C5XX, PIC12CE5XX, and  
PIC16C5X families of PICmicro 8-bit microcontrollers.  
SIMICE works in conjunction with MPLAB-SIM to pro-  
vide non-real-time I/O port emulation. SIMICE enables  
a developer to run simulator code for driving the target  
system. In addition, the target system can provide input  
to the simulator code. This capability allows for simple  
and interactive debugging without having to manually  
generate MPLAB-SIM stimulus files. SIMICE is a valu-  
able debugging tool for entry-level system develop-  
ment.  
14.15 PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The MPLAB-ICE emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
14.13 PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 151  
PIC16C717/770/771  
14.16 PICDEM-17  
The PICDEM-17 is an evaluation board that demon-  
strates the capabilities of several Microchip microcon-  
trollers,  
including  
PIC17C752,  
PIC17C756,  
PIC17C762, and PIC17C766. All necessary hardware  
is included to run basic demo programs, which are sup-  
plied on a 3.5-inch disk. A programmed sample is  
included, and the user may erase it and program it with  
the other sample programs using the PRO MATE II or  
PICSTART Plus device programmers and easily debug  
and test the sample code. In addition, PICDEM-17 sup-  
ports down-loading of programs to and executing out of  
external FLASH memory on board. The PICDEM-17 is  
also usable with the MPLAB-ICE or PICMASTER emu-  
lator, and all of the sample programs can be run and  
modified using either emulator. Additionally, a gener-  
ous prototype area is available for user hardware.  
14.17 SEEVAL Evaluation and Programming  
System  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance Disk is included to aid in trade-  
off analysis and reliability calculations. The total kit can  
significantly reduce time-to-market and result in an  
optimized system.  
14.18 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
DS41120A-page 152  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 14-1: DEVELOPMENT TOOLS FROM MICROCHIP  
5 1 2 0 P M C  
X X R X F C M  
X X  
H C S X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X C 8 2 C 1 P I  
X X 7 C 7 C 1 P I  
X 4 C 7 C 1 P I  
X X 9 C 6 C 1 P I  
X 8 X 1 6 C I F P  
X 8 C 6 C 1 P I  
X X 7 C 6 C 1 P I  
X 7 C 6 C 1 P I  
X 6 2 6 1 F C I P  
X X C 6 X C 1 P I  
X 6 C 6 C 1 P I  
X 5 C 6 C 1 P I  
0 0 4 0 1 C I P  
X X C 2 X C 1 P I  
s l o o e T a r f t o w S s r o t a u l E m e r g g b e u D s m e a r m o g P r r  
t i s K v a E l d a n d s a r o B o m e D  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 153  
PIC16C717/770/771  
NOTES:  
DS41120A-page 154  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
15.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR and RA4)........................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +7.5V  
Maximum voltage between AVDD and VDD pins................................................................................................................. ± 0.3V  
Maximum voltage between AVSS and VSS pins ................................................................................................................. ± 0.3V  
Voltage on MCLR with respect to VSS........................................................................................................ -0.3V to +8.5V  
Voltage on RA4 with respect to Vss......................................................................................................... -0.3V to +10.5V  
Total power dissipation (Note 1)................................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..................................................................................................................... ± 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ............................................................................................................. ± 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA and PORTB (combined).................................................................................200 mA  
Maximum current sourced by PORTA and PORTB (combined)............................................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 155  
PIC16C717/770/771  
FIGURE 15-1: PIC16C717/770/771 VOLTAGE-FREQUENCY GRAPH, -40°C TA +85°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 15-2: PIC16LC717/770/771 VOLTAGE-FREQUENCY GRAPH, 0°C TA +70°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
DS41120A-page 156  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 15-3: PIC16LC717/770/771 VOLTAGE-FREQUENCY GRAPH,  
-40°C TA 0°C, +70°C TA +85°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
VDD  
(Volts)  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 157  
PIC16C717/770/771  
15.1  
DC Characteristics: PIC16C717/770/771 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial and  
0°C  
TA +70°C for commercial  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
D001  
VDD  
Supply Voltage  
4.0  
5.5  
V
D002*  
VDR  
RAM Data Retention  
1.5  
V
(1)  
Voltage  
D003  
D004*  
D010  
VPOR  
SVDD  
IDD  
VDD start voltage to  
ensure internal Power-on Reset signal  
VSS  
V
See section on Power-on Reset for  
details  
VDD rise rate to ensure internal Power-  
on Reset signal  
0.05  
V/ms See section on Power-on Reset for  
details. PWRT enabled  
(2)  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
mA  
mA  
FOSC = 20 MHz, VDD = 5.5V*  
FOSC = 20 MHz, VDD = 4.0V  
FOSC = 4 MHz, VDD = 4.0V*  
FOSC = 32 KHz, VDD = 4.0V  
Supply Current  
(3)  
D020  
D020A  
IPD  
TBD  
16  
19  
mA  
µA  
µA  
VDD = 5.5V, 0°C to +70°C*  
VDD = 4.0V, 0°C to +70°C  
VDD = 4.0V, -40°C to +85°C  
Power-down Current  
1.5  
1.5  
(5)  
Module Differential Current  
D021  
IWDT  
Watchdog Timer  
6.0  
20  
µA  
µA  
VDD = 4.0V  
VDD = 4.0V  
(6)  
IBG  
D023B*  
Bandgap voltage generator  
40µA TBD  
D025*  
D026*  
IT1OSC Timer1 oscillator  
5
300  
10  
10  
70  
70  
9
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 4.0V  
IAD  
A/D Converter  
VDD = 5.5V, A/D on, not converting  
VDD = 4.0V*  
ILVD  
IPBOR  
IVRH  
IVRL  
Fosc  
Low Voltage Detect  
TBD  
TBD  
TBD  
TBD  
Programmable Brown-Out Reset  
Voltage Reference High  
Voltage Reference Low  
PBOR enabled, VDD = 5.0V*  
VDD = 5.0V, no load on VRH*  
VDD = 4.0V, no load on VRL*  
1A  
LP oscillator, operating freq.  
9
TBD  
0
4
200  
KHz All temperatures  
MHz All temperatures, OSCF = 1  
MHz All temperatures, OSCF = 0  
INTRC oscillator operating freq.  
37  
37  
ER oscillator operating freq.  
TBD MHz All temperatures, OSCF = 1  
4
MHz All temperatures, OSCF = 0  
MHz All temperatures  
MHz All temperatures  
XT oscillator operating freq.  
HS oscillator operating freq.  
0
20  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consump-  
tion.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the  
part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For ER osc configuration, current through Rext is not included. The current through the resistor can be estimated by the for-  
mula Ir = TBD with Rext in kOhm.  
5: The current is the additional current consumed when the peripheral is enabled. This current should be added to the base  
(IPD or IDD) current.  
6: The bandgap voltage reference provides 1.22V nominal to the VRL, VRH, LVD and BOR circuits. When calculating current con-  
sumption use the following formula: IVRL + IVRH + ILVD + IBOR + IBG. Any of the IVRL, IVRH, ILVD or IBOR can be 0.  
DS41120A-page 158  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
15.2  
DC Characteristics: PIC16LC717/770/771 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial and  
0°C  
TA +70°C for commercial  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
D001  
VDD  
Supply Voltage  
2.5  
5.5  
V
V
(1)  
D002*  
VDR  
1.5  
RAM Data Retention Voltage  
D003  
D004*  
D010  
VPOR  
VDD start voltage to ensure  
internal Power-on Reset signal  
VSS  
V
See section on Power-on Reset for details  
SVDD  
VDD rise rate to ensure internal 0.05  
Power-on Reset signal  
V/ms See section on Power-on Reset for details.  
PWRT enabled  
Supply  
Current  
IDD  
TBD  
mA  
FOSC = 20 MHz, VDD = 5.5V*  
(2)  
TBD  
TBD  
TBD  
mA  
mA  
mA  
FOSC = 20 MHz, VDD = 4.0V  
FOSC = 10 MHz, VDD = 3.0V  
FOSC = 4 MHz, VDD = 2.5V  
TBD  
mA  
FOSC = 32 KHz, VDD = 2.5V  
(3)  
D020  
D020A  
IPD  
TBD TBD  
µA  
µA  
µA  
µA  
µA  
VDD = 5.5V, 0°C to +70°C  
VDD = 4.0V, 0°C to +70°C  
VDD = 4.0V, -40°C to +85°C  
VDD = 2.5V, 0°C to +70°C  
VDD = 3.0V, -40°C to +85°C  
Power-down Current  
1.5  
1.5  
0.9  
0.9  
16  
19  
5
5
(5)  
Module Differential Current  
D021  
D023B* IBG  
IWDT  
Watchdog Timer  
Bandgap voltage generator  
Timer1 oscillator  
6
40  
20  
TBD  
µA  
µA  
VDD = 3.0V  
VDD = 3.0V  
D025*  
D026*  
IT1OSC  
1.5  
300  
10  
3
µA  
µA  
µA  
µA  
VDD = 3.0V  
IAD  
A/D Converter  
VDD = 5.5V, A/D on, not converting  
VDD = 4.0V*  
ILVD  
IPBOR  
Low Voltage Detect  
TBD  
TBD  
Programmable Brown-Out  
Reset  
10  
PBOR enabled, VDD = 5.0V*  
IVRH  
IVRL  
Fosc  
Voltage Reference High  
Voltage Reference Low  
70  
70  
TBD  
TBD  
µA  
µA  
VDD = 5.0V, no load on VRH*  
VDD = 4.0V, no load on VRL*  
1A  
LP oscillator, operating freq.  
INTRC oscillator operating freq.  
9
TBD  
0
4
200  
KHz All temperatures  
MHz All temperatures, OSCF = 1  
MHz All temperatures, OSCF = 0  
37  
37  
ER oscillator operating freq.  
TBD MHz All temperatures, OSCF = 1  
4
MHz All temperatures, OSCF = 0  
MHz All temperatures  
MHz All temperatures  
XT oscillator operating freq.  
HS oscillator operating freq.  
0
20  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current con-  
sumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For ER osc configuration, current through Rext is not included. The current through the resistor can be estimated by the  
formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: The current is the additional current consumed when the peripheral is enabled. This current should be added to the base  
(IPD or IDD) current.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 159  
PIC16C717/770/771  
15.3  
DC Characteristics: PIC16C717/770/771 & PIC16LC717/770/771 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial and  
0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 15.1  
and Section 15.2.  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
with TTL buffer  
VIL  
D030  
VSS  
VSS  
VSS  
VSS  
0.15VDD  
0.8V  
V
V
V
V
For entire VDD range  
D030A  
D031  
D032  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
MCLR  
0.2VDD  
0.2VDD  
For entire VDD range  
D033  
OSC1 (in XT, HS, LP and EC)  
Input High Voltage  
I/O ports  
VSS  
0.3VDD  
V
VIH  
with TTL buffer  
D040  
2.0  
(0.25VDD  
+ 0.8V)  
0.8VDD  
0.8VDD  
0.7VDD  
50  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
D040A  
For entire VDD range  
D041  
D042  
D042A  
D070  
with Schmitt Trigger buffer  
MCLR  
VDD  
VDD  
VDD  
400  
V
V
V
For entire VDD range  
OSC1 (XT, HS, LP and EC)  
IPURB PORTB weak pull-up current per pin  
250  
µA VDD = 5V, VPIN = VSS  
(1,2)  
Input Leakage Current  
D060  
IIL  
IIL  
I/O ports (with digital functions)  
±1  
µA Vss VPIN VDD, Pin at hi-imped-  
ance  
D060A  
I/O ports (with analog functions)  
±100  
nA Vss VPIN VDD, Pin at hi-imped-  
ance  
D061  
D063  
RA5/MCLR/VPP  
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS, LP and EC  
osc configuration  
OSC1  
Output Low Voltage  
D080  
VOL I/O ports  
Output High Voltage  
0.6  
V
IOL = 8.5 mA, VDD = 4.5V  
(2)  
D090  
VOH  
VDD - 0.7  
V
V
IOH = -3.0 mA, VDD = 4.5V  
I/O ports  
D150*  
VOD Open-Drain High Voltage  
Capacitive Loading Specs on Out-  
put Pins*  
10.5  
RA4 pin  
D100  
COSC2 OSC2 pin  
15  
pF In XT, HS and LP modes when exter-  
nal clock is used to drive OSC1.  
D101  
D102  
CIO All I/O pins and OSC2 (in RC mode)  
50  
400  
pF  
pF  
2
CB  
SCL, SDA in I C mode  
CVRH VRH pin  
CVRL VRL pin  
200  
200  
pF VRH output enabled  
pF VRL output enabled  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent nor-  
mal operating conditions. Higher leakage current may be measured at different input voltages.  
2: Negative current is defined as current sourced by the pin.  
DS41120A-page 160  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
15.4  
AC Characteristics: PIC16C717/770/771 & PIC16LC717/770/771 (Commercial, Industrial)  
15.4.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
2. TppS  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 15-4: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF  
15 pF  
for all pins except OSC2  
for OSC2 output  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 161  
PIC16C717/770/771  
15.4.2 TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 15-5: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-1: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
100  
100  
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
0.25TCY + 25  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
150  
Port out valid  
PIC16C717/770/771  
PIC16LC717/770/771  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
100  
200  
ns  
ns  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16C717/770/771  
PIC16LC717/770/771  
PIC16C717/770/771  
PIC16LC717/770/771  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
TCY  
TCY  
RB7:RB0 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS41120A-page 162  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 15-6: EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1  
1
3
4
3
4
2
CLKOUT  
TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
1A  
FOSC  
External CLKIN Frequency  
(Note 1)  
DC  
DC  
DC  
DC  
0.1  
4
20  
20  
200  
4
MHz XT osc mode  
MHz EC osc mode  
MHz HS osc mode  
kHz LP osc mode  
MHz XT osc mode  
Oscillator Frequency  
(Note 1)  
4
5
20  
200  
MHz HS osc mode  
kHz LP osc mode  
1
TOSC  
External CLKIN Period  
(Note 1)  
250  
50  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
XT and RC osc mode  
EC osc mode  
HS osc mode  
LP osc mode  
XT osc mode  
HS osc mode  
LP osc mode  
TCY = 4/FOSC  
XT oscillator  
LP oscillator  
HS oscillator  
EC oscillator  
XT oscillator  
LP oscillator  
HS oscillator  
EC oscillator  
50  
5
Oscillator Period  
(Note 1)  
250  
50  
10,000  
250  
5
2
TCY  
Instruction Cycle Time (Note 1)  
200  
100  
2.5  
15  
TCY  
DC  
3*  
TosL,  
TosH  
External Clock in (OSC1) High or  
Low Time  
4*  
TosR,  
TosF  
External Clock in (OSC1) Rise or  
Fall Time  
25  
50  
15  
ns  
ns  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 163  
PIC16C717/770/771  
TABLE 15-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC16C717/770/771 AND  
PIC16LC717/770/771  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial),  
–40°C TA +85°C (industrial),  
Operating Voltage VDD range is described in Section 15.1 and Section 15.2  
Parameter  
Sym  
Typ(1)  
Characteristic  
Min*  
Max* Units  
Conditions  
MHz VDD = 5.0V  
MHz VDD = 2.5V  
No.  
Internal Calibrated RC Frequency  
3.65  
4.00  
4.28  
4.31  
Internal Calibrated RC Frequency  
3.55  
4.00  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
FIGURE 15-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 15-4 for load conditions.  
FIGURE 15-8: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
DS41120A-page 164  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30*  
TMCL  
MCLR Pulse Width (low)  
2
µs VDD = 5V, -40°C to +85°C  
ms VDD = 5V, -40°C to +85°C  
31*  
TWDT  
Watchdog Timer Time-out Period  
(No Prescaler)  
7
18  
33  
32*  
33*  
34*  
TOST  
TPWRT  
TIOZ  
Oscillation Start-up Timer Period  
Power up Timer Period  
28  
1024 TOSC  
132  
2.1  
TOSC = OSC1 period  
72  
ms VDD = 5V, -40°C to +85°C  
µs  
I/O Hi-impedance from MCLR Low  
or Watchdog Timer Reset  
35*  
*
TBOR  
Brown-out Reset pulse width  
100  
µs  
VDD VBOR (D005)  
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 15-9: BROWN-OUT RESET CHARACTERISTICS  
VDD  
VBOR  
(device not in Brown-out Reset)  
(device in Brown-out Reset)  
RESET (due to BOR)  
72 ms time out  
FIGURE 15-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 15-4 for load conditions.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 165  
PIC16C717/770/771  
TABLE 15-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40*  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
0.5TCY + 20  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
10  
0.5TCY + 20  
10  
ns  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
With Prescaler  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4, ..., 256)  
N
0.5TCY + 20  
15  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
ns Must also meet  
parameter 47  
Synchronous, PIC16C717/770/771  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC717/770/771  
25  
Asynchronous PIC16C717/770/771  
PIC16LC717/770/771  
30  
ns  
ns  
50  
0.5TCY + 20  
15  
T1CKI Low Time  
Synchronous, Prescaler = 1  
ns Must also meet  
parameter 47  
Synchronous, PIC16C717/770/771  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC717/770/771  
25  
Asynchronous PIC16C717/770/771  
PIC16LC717/770/771  
30  
50  
ns  
ns  
T1CKI input period Synchronous  
PIC16C717/770/771 Greater of:  
ns N = prescale value  
(1, 2, 4, 8)  
30 OR TCY + 40  
N
PIC16LC717/770/771 Greater of:  
ns N = prescale value  
(1, 2, 4, 8)  
50 OR TCY + 40  
N
Asynchronous PIC16C717/770/771  
PIC16LC717/770/771  
Timer1 oscillator input frequency range  
(oscillator enabled by setting bit T1OSCEN)  
60  
50  
ns  
ns  
100  
DC  
Ft1  
kHz  
48  
*
Tcke2tmr1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 15-11: ENHANCED CAPTURE/COMPARE/PWM TIMINGS (ECCP1)  
RB3/CCP1/P1A  
(Capture Mode)  
50  
51  
52  
RB3/CCP1/P1A  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 15-4 for load conditions.  
54  
DS41120A-page 166  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 15-6: ENHANCED CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP1)  
Param Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
50*  
TccL CCP1 input low  
time  
No Prescaler  
0.5TCY + 20  
ns  
PIC16C717/770/771  
PIC16LC717/770/771  
10  
ns  
ns  
ns  
ns  
ns  
With Prescaler  
No Prescaler  
20  
51*  
TccH  
0.5TCY + 20  
CCP1 input high  
time  
PIC16C717/770/771  
PIC16LC717/770/771  
10  
20  
With Prescaler  
52*  
53*  
TccP  
3TCY + 40  
ns N = prescale value  
(1,4 or 16)  
CCP1 input period  
N
PIC16C717/770/771  
PIC16LC717/770/771  
PIC16C717/770/771  
PIC16LC717/770/771  
TccR CCP1 output fall time  
TccF CCP1 output fall time  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54*  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 167  
PIC16C717/770/771  
15.5  
Analog Peripherals Characteristics:  
PIC16C717/770/771 & PIC16LC717/  
770/771 (Commercial, Industrial)  
15.5.1 BANDGAP MODULE  
FIGURE 15-12: BANDGAP START-UP TIME  
VBGAP  
VBGAP = 1.2V  
(internal use only)  
Enable Bandgap  
TBGAP  
Bandgap stable  
TABLE 15-7: BANDGAP START-UP TIME  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max Units  
TBD  
Conditions  
36*  
TBGAP  
Bandgap start-up time  
30  
µS Defined as the time between the  
instant that the bandgap is  
enabled and the moment that  
the bandgap reference voltage  
is stable.  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS41120A-page 168  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
15.5.2 LOW VOLTAGE DETECT MODULE (LVD)  
TABLE 15-8: LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
VLVD  
(LVDIF set by hardware)  
LVDIF  
(LVDIF can be cleared in software anytime during  
the gray area)  
TABLE 15-9: ELECTRICAL CHARACTERISTICS: LVD  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial  
Operating voltage VDD range as described in DC spec Section 15.1 and Section 15.2.  
DC CHARACTERISTICS  
Param  
No.  
Characteristic  
Symbol  
Min Typ† Max Units  
Conditions  
D420*  
LVV = 0100  
LVV = 0101  
LVV = 0110  
LVV = 0111  
LVV = 1000  
LVV = 1001  
LVV = 1010  
LVV = 1011  
LVV = 1100  
LVV = 1101  
LVV = 1110  
2.5  
2.7  
2.8  
3.0  
3.3  
3.5  
3.6  
3.8  
4.0  
4.2  
4.5  
2.58 2.66  
2.78 2.86  
2.89 2.98  
V
V
V
V
V
V
V
V
V
V
V
LVD Voltage  
3.1  
3.2  
3.41 3.52  
3.61 3.72  
3.72 3.84  
3.92 4.04  
4.13 4.26  
4.33 4.46  
4.64 4.78  
D422*  
D423*  
*
LVD Voltage Temperature  
coefficient  
LVD Voltage Supply Regulation  
TCVOUT  
15  
50 ppm/°C  
VLVD/  
VDD  
50 µV/V  
These parameters are characterized but not tested.  
Note 1: Production tested at Tamb = 25°C. Specifications over temperature limits ensured by characterization.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 169  
PIC16C717/770/771  
15.5.3 PROGRAMMABLE BROWN-OUT RESET  
MODULE (PBOR)  
TABLE 15-10: DC CHARACTERISTICS: PBOR  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial  
Operating voltage VDD range as described in DC spec Section 15.1 and Section 15.2.  
DC CHARACTERISTICS  
Param  
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
No.  
2.5  
2.58  
2.66  
D005*  
BOR Voltage  
BORV<1:0> = 11  
BORV<1:0> = 10  
BORV<1:0> = 01  
BORV<1:0> = 00  
2.7  
4.2  
4.5  
2.78  
4.33  
4.64  
15  
2.86  
4.46  
4.78  
50  
VBOR  
V
D006*  
BOR Voltage Temperature coefficient  
TCVOUT  
VBOR/  
VDD  
ppm/°C  
µV/V  
D006A* BOR Voltage Supply Regulation  
50  
*
These parameters are characterized but not tested.  
15.5.4 VREF MODULE  
TABLE 15-11: DC CHARACTERISTICS: VREF  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 15.1  
and Section 15.2.  
Param  
No.  
Symbol  
Characteristic  
Output Voltage  
Min  
Typ†  
Max  
Units  
Conditions  
VDD 2.5V  
VRL  
VRH  
2.0  
4.0  
2.048  
4.096  
15  
2.1  
4.2  
50  
V
V
D400  
VDD 4.5V  
D402*  
TCVOUT Output Voltage Tempera-  
ture coefficient  
ppm/°C  
1
D404*  
D405*  
*
IVREFSO External Load Source  
5
-5  
200  
TBD  
TBD  
mA  
mA  
pF  
IVREFSI  
External Load Sink  
External capacitor load  
Load Regulation  
CL  
D406*  
Isource = 0 mA to 5 mA  
VOUT/  
IOUT  
mV/mA  
1
Isink  
= 0 mA to 5 mA  
D407*  
*
Supply Regulation  
VOUT/  
VDD  
50  
µV/V  
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
DS41120A-page 170  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
15.5.5 A/D CONVERTER MODULE  
TABLE 15-12: PIC16C770/771 AND PIC16LC770/771 A/D CONVERTER CHARACTERISTICS:  
Param  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR  
Resolution  
12 bits  
bit Min. resolution for A/D is 1 mV,  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
A03  
A04  
EIL  
Integral error  
TBD  
TBD  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
EDL  
Differential error  
No missing codes to 10 bits  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
A06  
A07  
EOFF  
EGN  
Offset error  
Gain Error  
TBD  
TBD  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
LSb VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
(3)  
A10  
A20  
Monotonicity  
guaranteed  
V
AVSS VAIN VREF+  
VREF  
Reference voltage  
(VREF+ VREF-)  
4.096  
VDD +0.3V  
Absolute minimum electrical spec to  
ensure 12-bit accuracy.  
A21  
A22  
VREF+ Reference V High  
(AVDD or VREF+)  
VREF-  
AVSS  
AVDD  
V
V
Min. resolution for A/D is 1 mV  
VREF-  
Reference V Low  
VREF+  
Min. resolution for A/D is 1 mV  
(AVSS or VREF-)  
A25  
A30  
VAIN  
ZAIN  
Analog input voltage  
VREFL  
VREFH  
V
Recommended  
2.5  
kΩ  
impedance of analog  
voltage source  
A50  
IREF  
VREF input current  
10  
µA During VAIN acquisition.  
(Note 2)  
Based on differential of VHOLD to VAIN.  
To charge CHOLD see Section 11.0.  
During A/D conversion cycle.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power down current spec includes any  
such leakage from the A/D module.  
2: VREF input current is from External VREF+, or VREF-, or AVSS, or AVDD pin, whichever is selected as reference input.  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 171  
PIC16C717/770/771  
FIGURE 15-13: PIC16C770/771 AND PIC16LC770/771 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
1/2 TCY  
134  
131  
Q4  
130  
A/D CLK  
11  
10  
9
8
3
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
DONE  
OLD_DATA  
ADIF  
GO  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 15-13: PIC16C770/771 AND PIC16LC770/771 A/D CONVERSION REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
130*  
TAD  
A/D clock period  
1.6  
µs  
µs  
Tosc based, VREF 2.5V  
3.0  
Tosc based, VREF full range  
130*  
TAD  
A/D Internal RC  
oscillator period  
ADCS<1:0> = 11 (RC mode)  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
µs  
µs  
At VDD = 2.5V  
At VDD = 5.0V  
131*  
132*  
TCNV  
Conversion time (not  
including  
acquisition time)  
(Note 1)  
13TAD  
TAD Set GO bit to new data in A/D result  
register  
TACQ  
Acquisition Time  
Note 2  
5*  
11.5  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if  
the “new” input voltage has not  
changed by more than 1LSb (i.e  
1mV @ 4.096V) from the last sam-  
pled voltage (as stated on CHOLD).  
134*  
TGO  
Q4 to A/D clock start  
TOSC/2  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.6 for minimum conditions.  
DS41120A-page 172  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 15-14: PIC16C770/771 AND PIC16LC770/771 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
134  
131  
Q4  
130  
A/D CLK  
11  
10  
9
3
2
1
0
8
A/D DATA  
ADRES  
OLD_DATA  
NEW_DATA  
DONE  
ADIF  
GO  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 15-14: PIC16C770/771 AND PIC16LC770/771 A/D CONVERSION REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
130*  
TAD  
A/D clock period  
1.6  
µs  
µs  
VREF 2.5V  
TBD  
VREF full range  
130*  
TAD  
A/D Internal RC  
oscillator period  
ADCS<1:0> = 11 (RC mode)  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
µs  
µs  
At VDD = 3.0V  
At VDD = 5.0V  
131*  
132*  
TCNV  
TACQ  
Conversion time (not  
including acquisition  
time) (Note 1)  
13TAD  
Acquisition Time  
Note 2  
5*  
11.5  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if  
the “new” input voltage has not  
changed by more than 1LSb (i.e  
1mV @ 4.096V) from the last sam-  
pled voltage (as stated on CHOLD).  
134*  
TGO  
Q4 to A/D clock start  
TOSC/2 + TCY  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.6 for minimum conditions.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 173  
PIC16C717/770/771  
TABLE 15-15: PIC16C717 AND PIC16LC717 A/D CONVERTER CHARACTERISTICS:  
Param  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR  
Resolution  
10 bits  
bit Min. resolution for A/D is 4.1 mV,  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
A03  
A04  
EIL  
Integral error  
TBD  
TBD  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
EDL  
Differential error  
No missing codes to 10 bits  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
A06  
A07  
EOFF  
EGN  
Offset error  
Gain Error  
TBD  
TBD  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
LSb VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
(3)  
A10  
A20  
Monotonicity  
guaranteed  
V
AVSS VAIN VREF+  
VREF  
Reference voltage  
(VREF+ VREF-)  
4.096  
VDD +0.3V  
Absolute minimum electrical spec to  
ensure 10-bit accuracy.  
A21  
A22  
VREF+ Reference V High  
(AVDD or VREF+)  
VREF-  
AVSS  
AVDD  
V
V
Min. resolution for A/D is 4.1 mV  
VREF-  
Reference V Low  
VREF+  
Min. resolution for A/D is 4.1 mV  
(AVSS or VREF-)  
A25  
A30  
VAIN  
ZAIN  
Analog input voltage  
VREFL  
VREFH  
V
Recommended  
2.5  
kΩ  
impedance of analog  
voltage source  
A50  
IREF  
VREF input current  
10  
µA During VAIN acquisition.  
(Note 2)  
Based on differential of VHOLD to VAIN.  
To charge CHOLD see Section 11.0.  
During A/D conversion cycle.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than leakage current. The power down current spec includes any such  
leakage from the A/D module.  
2: VREF current is from External VREF+, or VREF-, or AVSS, or AVDD pin, whichever is selected as reference input.  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
DS41120A-page 174  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 15-15: PIC16C717 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
134  
1/2 TCY  
131  
Q4  
130  
A/D CLK  
9
8
7
6
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 15-16: PIC16C717 AND PIC16LC717 A/D CONVERSION REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
130*  
TAD  
A/D clock period  
1.6  
µs  
µs  
Tosc based, VREF 2.5V  
3.0  
Tosc based, VREF full range  
130*  
TAD  
A/D Internal RC  
oscillator period  
ADCS<1:0> = 11 (RC mode)  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
µs  
µs  
At VDD = 2.5V  
At VDD = 5.0V  
131*  
132*  
TCNV  
Conversion time (not  
including  
acquisition time)  
(Note 1)  
11TAD  
TAD Set GO bit to new data in A/D result  
register  
TACQ  
Acquisition Time  
Note 2  
5*  
11.5  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if  
the “new” input voltage has not  
changed by more than 1LSb (i.e  
1mV @ 4.096V) from the last sam-  
pled voltage (as stated on CHOLD).  
134*  
TGO  
Q4 to A/D clock start  
TOSC/2  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.6 for minimum conditions.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 175  
PIC16C717/770/771  
FIGURE 15-16: PIC16C717 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
134  
131  
Q4  
130  
A/D CLK  
9
8
7
3
2
1
0
6
A/D DATA  
ADRES  
NEW_DATA  
DONE  
OLD_DATA  
ADIF  
GO  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 15-17: PIC16C717 AND PIC16LC717 A/D CONVERSION REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
130*  
TAD  
A/D clock period  
1.6  
µs  
µs  
VREF 2.5V  
TBD  
VREF full range  
130*  
TAD  
A/D Internal RC  
oscillator period  
ADCS<1:0> = 11 (RC mode)  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
µs  
µs  
At VDD = 3.0V  
At VDD = 5.0V  
131*  
132*  
TCNV  
TACQ  
Conversion time (not  
including acquisition  
time) (Note 1)  
11TAD  
Acquisition Time  
Note 2  
5*  
11.5  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if  
the “new” input voltage has not  
changed by more than 1LSb (i.e  
1mV @ 4.096V) from the last sam-  
pled voltage (as stated on CHOLD).  
134*  
TGO  
Q4 to A/D clock start  
TOSC/2 + TCY  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.6 for minimum conditions.  
DS41120A-page 176  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
16.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
The graphs and tables provided in this section are for  
design guidance and are not tested.  
In some graphs or tables, the data presented are out-  
side specified operating range (i.e., outside specified  
VDD range). This is for information only.  
The data presented in this section is a statistical sum-  
mary of data collected on units from different lots over  
a period of time and matrix samples. ’Typical’ repre-  
sents the mean of the distribution at 25°C. ’Max’ or ’min’  
represents (mean + 3σ) or (mean - 3σ) respectively,  
where σ is standard deviation, over the whole temper-  
ature range.  
Graphs and Tables not available at this time.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 177  
PIC16C717/770/771  
NOTES:  
DS41120A-page 178  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
17.0 PACKAGING INFORMATION  
17.1  
Package Marking Information  
18-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC16C717/P  
9917017  
18-Lead CERDIP Windowed  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
PIC16C717/JW  
9905017  
18-Lead SOIC  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C717/SO  
YYWWNNN  
9910017  
Example  
20-Lead PDIP  
PIC16C770/P  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
9917017  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask  
rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with  
your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 179  
PIC16C717/770/771  
Package Marking Information (Cont’d)  
20-Lead SSOP  
Example  
PIC16C770  
XXXXXXXXXXX  
XXXXXXXXXXX  
20I/SS  
YYWWNNN  
9917017  
20-Lead CERDIP Windowed  
Example  
PIC16C770/JW  
9905017  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
20-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXXXXXX  
PIC16C771/SO  
YYWWNNN  
9910017  
DS41120A-page 180  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
17.2  
18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
A
L
c
A1  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.155  
.130  
18  
2.54  
3.94  
3.30  
Top to Seating Plane  
A
.140  
.170  
3.56  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.890  
.125  
.008  
.045  
.014  
.310  
5
.145  
2.92  
0.38  
7.62  
6.10  
22.61  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.68  
.313  
.250  
.898  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.905  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
22.80  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
22.99  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
eB  
α
β
5
10  
15  
5
10  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-007  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 181  
PIC16C717/770/771  
17.3  
18-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)  
E1  
D
W2  
2
1
n
W1  
E
A2  
A
c
L
A1  
B1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.183  
.160  
.023  
.313  
.290  
.900  
.138  
.010  
.055  
.019  
.385  
.140  
.200  
2.54  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.170  
.195  
4.32  
3.94  
4.64  
4.06  
0.57  
7.94  
7.37  
22.86  
3.49  
0.25  
1.40  
0.47  
9.78  
3.56  
5.08  
4.95  
A2  
A1  
.155  
.015  
.300  
.285  
.880  
.125  
.008  
.050  
.016  
.345  
.130  
.190  
.165  
.030  
.325  
.295  
.920  
.150  
.012  
.060  
.021  
.425  
.150  
.210  
4.19  
0.76  
8.26  
7.49  
23.37  
3.81  
0.30  
1.52  
0.53  
10.80  
3.81  
5.33  
0.38  
7.62  
7.24  
22.35  
3.18  
0.20  
1.27  
0.41  
8.76  
3.30  
4.83  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
Tip to Seating Plane  
Lead Thickness  
c
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Width  
B1  
B
eB  
W1  
W2  
Window Length  
*Controlling Parameter  
JEDEC Equivalent: MO-036  
Drawing No. C04-010  
DS41120A-page 182  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
17.4  
18-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
p
E1  
D
2
1
B
n
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.050  
.099  
.091  
.008  
.407  
.295  
.454  
.020  
.033  
4
1.27  
Overall Height  
A
.093  
.104  
2.36  
2.24  
2.50  
2.31  
0.20  
10.34  
7.49  
11.53  
0.50  
0.84  
4
2.64  
2.39  
0.30  
10.67  
7.59  
11.73  
0.74  
1.27  
8
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.291  
.446  
.010  
.016  
0
.094  
.012  
.420  
.299  
.462  
.029  
.050  
8
0.10  
10.01  
7.39  
11.33  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.012  
.020  
15  
0.23  
0.36  
0
0.27  
0.42  
12  
0.30  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-051  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 183  
PIC16C717/770/771  
17.5  
20-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
A
L
c
A1  
β
B1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
Number of Pins  
Pitch  
20  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.295  
.240  
1.025  
.120  
.008  
.055  
.014  
.310  
5
.145  
3.68  
0.38  
7.49  
6.10  
26.04  
3.05  
0.20  
1.40  
0.36  
7.87  
5
.310  
.250  
1.033  
.130  
.012  
.060  
.018  
.370  
10  
.325  
.260  
1.040  
.140  
.015  
.065  
.022  
.430  
15  
7.87  
6.35  
26.24  
3.30  
0.29  
1.52  
0.46  
9.40  
10  
8.26  
6.60  
26.42  
3.56  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
eB  
α
β
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
5
10  
15  
5
10  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-019  
DS41120A-page 184  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
17.6  
20-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)  
DRAWING NOT AVAILABLE  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 185  
PIC16C717/770/771  
17.7  
20-Lead Plastic Small Outline (SO) – Wide, 300 mi (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
A1  
L
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
Number of Pins  
Pitch  
20  
.050  
.099  
.091  
.008  
.407  
.295  
.504  
.020  
.033  
4
1.27  
Overall Height  
A
.093  
.088  
.004  
.394  
.291  
.496  
.010  
.016  
0
.104  
2.36  
2.24  
2.50  
2.31  
0.20  
10.34  
7.49  
12.80  
0.50  
0.84  
4
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.094  
.012  
.420  
.299  
.512  
.029  
.050  
8
2.39  
0.30  
10.67  
7.59  
13.00  
0.74  
1.27  
8
0.10  
10.01  
7.39  
12.60  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
β
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-094  
DS41120A-page 186  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
17.8  
20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
1
n
α
c
A2  
A
φ
L
A1  
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
Number of Pins  
Pitch  
20  
.026  
.073  
.068  
.006  
.309  
.207  
.284  
.030  
.007  
4
0.66  
Overall Height  
A
.068  
.078  
1.73  
1.63  
1.85  
1.73  
0.15  
7.85  
5.25  
7.20  
0.75  
0.18  
101.60  
0.32  
5
1.98  
1.83  
0.25  
8.18  
5.38  
7.34  
0.94  
0.25  
203.20  
0.38  
10  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.064  
.002  
.299  
.201  
.278  
.022  
.004  
0
.072  
.010  
.322  
.212  
.289  
.037  
.010  
8
0.05  
7.59  
5.11  
7.06  
0.56  
0.10  
0.00  
0.25  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
β
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-150  
Drawing No. C04-072  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 187  
PIC16C717/770/771  
NOTES:  
DS41120A-page 188  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
APPENDIX A: REVISION HISTORY  
Version  
Date  
Revision Description  
A
9/16/99  
This is a new data sheet. However, the devices described in this data sheet are  
the upgrades to the devices found in the PIC16C7X Data Sheet, DS30390E.  
APPENDIX B: DEVICE DIFFERENCES  
The differences between the devices in this data sheet  
are listed in Table B-1.  
TABLE B-1:  
Difference  
DEVICE DIFFERENCES  
PIC16C717  
PIC16C770  
PIC16C771  
Program Memory  
A/D  
2K  
2K  
4K  
6 channels, 10 bits  
Not available  
6 channels, 12 bits  
Available  
6 channels, 12 bits  
Available  
Dedicated AVDD  
and AVSS  
Packages  
18-pin PDIP, 18-pin windowed  
CERDIP, 18-pin SOIC,  
20-pin SSOP  
20-pin PDIP, 20-pin windowed  
CERDIP, 20-pin SOIC,  
20-pin SSOP  
20-pin PDIP, 20-pin windowed  
CERDIP, 20-pin SOIC,  
20-pin SSOP  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 189  
PIC16C717/770/771  
NOTES:  
DS41120A-page 190  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
INDEX  
A
C
Capture (CCP Module) ....................................................... 56  
Block Diagram ............................................................ 56  
CCP Pin Configuration ............................................... 56  
CCPR1H:CCPR1L Registers ..................................... 56  
Changing Between Capture Prescalers ..................... 56  
Software Interrupt....................................................... 56  
Timer1 Mode Selection............................................... 56  
CCP1CON .......................................................................... 15  
CCP2CON .......................................................................... 15  
CCPR1H Register......................................................... 13, 15  
CCPR1L Register ............................................................... 15  
CCPR2H Register............................................................... 15  
CCPR2L Register ............................................................... 15  
CKE .................................................................................... 68  
CKP .................................................................................... 69  
Clock Polarity Select bit, CKP............................................. 69  
Code Examples  
Loading the SSPBUF register .................................... 72  
Code Protection........................................................ 125, 139  
Compare (CCP Module) ..................................................... 56  
Block Diagram ............................................................ 57  
CCP Pin Configuration ............................................... 56  
CCPR1H:CCPR1L Registers ..................................... 56  
Software Interrupt....................................................... 56  
Special Event Trigger ........................................... 51, 57  
Timer1 Mode Selection............................................... 56  
Configuration Bits ............................................................. 125  
A/D.................................................................................... 113  
A/D Converter Enable (ADIE Bit)................................ 19  
ADCON0 Register..................................................... 113  
ADCON1 Register............................................. 113, 115  
ADRES Register ....................................................... 113  
Block Diagram........................................................... 117  
Configuring Analog Port............................................ 116  
Conversion time........................................................ 123  
Conversions.............................................................. 119  
converter characteristics................... 169, 170, 171, 174  
Faster Conversion - Lower Resolution Tradeoff ....... 123  
Internal Sampling Switch (Rss) Impedence.............. 121  
Operation During Sleep ............................................ 124  
Sampling Requirements............................................ 121  
Sampling Time.......................................................... 121  
Source Impedance.................................................... 121  
Special Event Trigger (CCP)....................................... 57  
A/D Conversion Clock....................................................... 118  
ACK..................................................................................... 78  
Acknowledge Data bit, AKD................................................ 70  
Acknowledge Pulse............................................................. 78  
Acknowledge Sequence Enable bit, AKE ........................... 70  
Acknowledge Status bit, AKS ............................................. 70  
ACKSTAT ........................................................................... 92  
ADCON0 Register............................................................. 113  
ADCON1 Register..................................................... 113, 115  
ADRES.............................................................................. 113  
ADRES Register ........................................... 13, 14, 113, 124  
AKD..................................................................................... 70  
AKE..................................................................................... 70  
AKS..................................................................................... 70  
Application Note AN578, "Use of the SSP Module in the I2C  
Multi-Master Environment."................................................. 77  
Architecture  
D
D/A...................................................................................... 68  
Data Memory ...................................................................... 11  
Bank Select (RP<1:0> Bits).................................. 11, 16  
General Purpose Registers ........................................ 11  
Register File Map ....................................................... 12  
Special Function Registers......................................... 13  
Data/Address bit, D/A ......................................................... 68  
DC Characteristics  
PIC16C717/770/771................................................. 158  
Development Support....................................................... 149  
Device Differences............................................................ 189  
Direct Addressing ............................................................... 25  
PIC16C717/PIC16C717 Block Diagram ....................... 5  
PIC16C770/771/PIC16C770/771 Block Diagram ......... 6  
Assembler  
MPASM Assembler................................................... 149  
B
E
Banking, Data Memory ................................................. 11, 16  
Baud Rate Generator.......................................................... 86  
BF ..................................................................... 68, 78, 92, 95  
Block Diagrams  
Enhanced Capture/Compare/PWM (CCP)  
CCP1  
CCPR1H Register .............................................. 55  
CCPR1L Register............................................... 55  
Enable (CCP1IE Bit)........................................... 19  
Timer Resources ........................................................ 56  
Enhanced Capture/Compare/PWM (ECCP)....................... 55  
External Power-on Reset Circuit....................................... 130  
Baud Rate Generator.................................................. 86  
2
I C Master Mode......................................................... 84  
2
I C Module.................................................................. 77  
RA3:RA0 and RA5 Port Pins .................... 28, 30, 31, 37  
2
SSP (I C Mode) .......................................................... 77  
SSP (SPI Mode).......................................................... 71  
BOR. See Brown-out Reset  
F
Firmware Instructions ....................................................... 141  
Flowcharts  
BRG .................................................................................... 86  
Brown-out Reset (BOR).................................... 125, 131, 132  
Buffer Full bit, BF ................................................................ 78  
Buffer Full Status bit, BF ..................................................... 68  
Bus Arbitration .................................................................. 103  
Bus Collision Section ........................................................ 103  
Bus Collision During a RESTART Condition..................... 106  
Bus Collision During a Start Condition.............................. 104  
Bus Collision During a Stop Condition .............................. 107  
Acknowledge .............................................................. 99  
Master Receiver ......................................................... 96  
Master Transmit.......................................................... 93  
Restart Condition........................................................ 90  
Start Condition............................................................ 88  
Stop Condition.......................................................... 101  
FSR Register.......................................................... 13, 14, 15  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 191  
PIC16C717/770/771  
Indirect Addressing............................................................. 25  
FSR Register.............................................................. 11  
Instruction Format............................................................. 141  
Instruction Set................................................................... 141  
ADDLW..................................................................... 143  
ADDWF..................................................................... 143  
ANDLW..................................................................... 143  
ANDWF..................................................................... 143  
BCF .......................................................................... 143  
BSF........................................................................... 143  
BTFSC...................................................................... 144  
BTFSS ...................................................................... 144  
CALL......................................................................... 144  
CLRF ........................................................................ 144  
CLRW ....................................................................... 144  
CLRWDT .................................................................. 144  
COMF ....................................................................... 145  
DECF........................................................................ 145  
DECFSZ ................................................................... 145  
GOTO ....................................................................... 145  
INCF ......................................................................... 145  
INCFSZ..................................................................... 145  
IORLW...................................................................... 146  
IORWF...................................................................... 146  
MOVF ....................................................................... 146  
MOVLW .................................................................... 146  
MOVWF.................................................................... 146  
NOP.......................................................................... 146  
RETFIE..................................................................... 147  
RETLW ..................................................................... 147  
RETURN................................................................... 147  
RLF........................................................................... 147  
RRF .......................................................................... 147  
SLEEP ...................................................................... 147  
SUBLW..................................................................... 148  
SUBWF..................................................................... 148  
SWAPF..................................................................... 148  
XORLW .................................................................... 148  
XORWF .................................................................... 148  
Summary Table ........................................................ 142  
INTCON.............................................................................. 15  
INTCON Register................................................................ 18  
GIE Bit ........................................................................ 18  
INTE Bit ...................................................................... 18  
INTF Bit ...................................................................... 18  
PEIE Bit ...................................................................... 18  
RBIE Bit ...................................................................... 18  
RBIF Bit ................................................................ 18, 35  
T0IE Bit....................................................................... 18  
T0IF Bit....................................................................... 18  
G
GCE ....................................................................................70  
General Call Address Sequence.........................................83  
General Call Address Support ............................................83  
General Call Enable bit, GCE .............................................70  
I
I/O Ports..............................................................................27  
2
I C.......................................................................................77  
2
I C Master Mode Receiver Flowchart .................................96  
2
I C Master Mode Reception................................................95  
2
I C Master Mode Restart Condition ....................................89  
2
I C Mode Selection .............................................................77  
2
I C Module  
Acknowledge Flowchart..............................................99  
Acknowledge Sequence timing...................................98  
Addressing ..................................................................78  
Baud Rate Generator..................................................86  
Block Diagram.............................................................84  
BRG Block Diagram....................................................86  
BRG Reset due to SDA Collision..............................105  
BRG Timing ................................................................86  
Bus Arbitration ..........................................................103  
Bus Collision .............................................................103  
Acknowledge.....................................................103  
Restart Condition ..............................................106  
Restart Condition Timing (Case1).....................106  
Restart Condition Timing (Case2).....................106  
Start Condition ..................................................104  
Start Condition Timing .............................. 104, 105  
Stop Condition ..................................................107  
Stop Condition Timing (Case1).........................107  
Stop Condition Timing (Case2).........................107  
Transmit Timing ................................................103  
Bus Collision timing...................................................103  
Clock Arbitration........................................................102  
Clock Arbitration Timing (Master Transmit)...............102  
Conditions to not give ACK Pulse ...............................78  
General Call Address Support ....................................83  
Master Mode...............................................................84  
Master Mode 7-bit Reception timing ...........................97  
Master Mode Operation ..............................................85  
Master Mode Start Condition ......................................87  
Master Mode Transmission.........................................92  
Master Mode Transmit Sequence...............................85  
Master Transmit Flowchart .........................................93  
Multi-Master Communication ....................................103  
Multi-master Mode ......................................................85  
Operation ....................................................................77  
Repeat Start Condition timing .....................................89  
Restart Condition Flowchart........................................90  
Slave Mode.................................................................78  
Slave Reception..........................................................79  
Slave Transmission.....................................................79  
SSPBUF......................................................................78  
Start Condition Flowchart............................................88  
Stop Condition Flowchart..........................................101  
Stop Condition Receive or Transmit timing...............100  
Stop Condition timing................................................100  
Waveforms for 7-bit Reception ...................................80  
Waveforms for 7-bit Transmission ..............................80  
2
Inter-Integrated Circuit (I C) ............................................... 67  
internal sampling switch (Rss) impedence ....................... 121  
Interrupt Sources ...................................................... 125, 135  
Block Diagram .......................................................... 135  
Capture Complete (CCP)............................................ 56  
Compare Complete (CCP).......................................... 56  
RB0/INT Pin, External............................................... 136  
TMR0 Overflow................................................... 48, 136  
TMR1 Overflow..................................................... 49, 51  
TMR2 to PR2 Match ................................................... 54  
TMR2 to PR2 Match (PWM)................................. 53, 58  
Interrupts  
2
I C Module Address Register, SSPADD.............................78  
2
I C Slave Mode...................................................................78  
Synchronous Serial Port Interrupt............................... 20  
Interrupts, Context Saving During..................................... 136  
ID Locations ..............................................................125, 139  
In-Circuit Serial Programming (ICSP) ....................... 125, 139  
INDF....................................................................................15  
INDF Register ............................................................... 13, 14  
DS41120A-page 192  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
Interrupts, Enable Bits  
PICDEM-1 Low-Cost PICmicro Demo Board ................... 151  
PICDEM-2 Low-Cost PIC16CXX Demo Board................. 151  
PICDEM-3 Low-Cost PIC16CXXX Demo Board .............. 151  
PICSTART Plus Entry Level Development System.......... 151  
PIE1 Register ..................................................................... 19  
ADIE Bit...................................................................... 19  
CCP1IE Bit ................................................................. 19  
PSPIE Bit.................................................................... 19  
RCIE Bit...................................................................... 19  
SSPIE Bit.................................................................... 19  
TMR1IE Bit ................................................................. 19  
TMR2IE Bit ................................................................. 19  
PIE2 Register ..................................................................... 21  
Pinout Descriptions  
PIC16C717................................................................... 9  
PIC16C770................................................................... 7  
PIC16C770/771............................................................ 7  
PIC16C771................................................................... 7  
PIR1 Register ..................................................................... 20  
PIR2 Register ..................................................................... 22  
PMCON1 ............................................................................ 43  
Pointer, FSR ....................................................................... 25  
POR. See Power-on Reset  
A/D Converter Enable (ADIE Bit)................................ 19  
CCP1 Enable (CCP1IE Bit)................................... 19, 56  
Global Interrupt Enable (GIE Bit) ........................ 18, 135  
Interrupt on Change (RB7:RB4) Enable  
(RBIE Bit)............................................................ 18, 136  
Peripheral Interrupt Enable (PEIE Bit) ........................ 18  
PSP Read/Write Enable (PSPIE Bit) .......................... 19  
RB0/INT Enable (INTE Bit) ......................................... 18  
SSP Enable (SSPIE Bit) ............................................. 19  
TMR0 Overflow Enable (T0IE Bit)............................... 18  
TMR1 Overflow Enable (TMR1IE Bit)......................... 19  
TMR2 to PR2 Match Enable (TMR2IE Bit) ................. 19  
USART Receive Enable (RCIE Bit) ............................ 19  
Interrupts, Flag Bits  
CCP1 Flag (CCP1IF Bit)............................................. 56  
Interrupt on Change (RB7:RB4) Flag  
(RBIF Bit) ...................................................... 18, 35, 136  
RB0/INT Flag (INTF Bit).............................................. 18  
TMR0 Overflow Flag (T0IF Bit)........................... 18, 136  
INTRC Mode ..................................................................... 128  
K
KeeLoq Evaluation and Programming Tools.................. 152  
PORTA ............................................................................... 15  
Initialization................................................................. 28  
PORTA Register......................................................... 27  
TRISA Register........................................................... 27  
PORTA Register......................................................... 13, 124  
PORTB ............................................................................... 15  
Initialization................................................................. 35  
PORTB Register......................................................... 35  
Pull-up Enable (RBPU Bit).......................................... 17  
RB0/INT Edge Select (INTEDG Bit) ........................... 17  
RB0/INT Pin, External .............................................. 136  
RB7:RB4 Interrupt on Change.................................. 136  
RB7:RB4 Interrupt on Change Enable  
(RBIE Bit)........................................................... 18, 136  
RB7:RB4 Interrupt on Change Flag  
(RBIF Bit)...................................................... 18, 35, 136  
TRISB Register........................................................... 35  
PORTB Register......................................................... 13, 124  
Postscaler, Timer2  
Select (TOUTPS Bits)................................................. 53  
Postscaler, WDT................................................................. 47  
Assignment (PSA Bit)........................................... 17, 47  
Block Diagram ............................................................ 48  
Rate Select (PS Bits)............................................ 17, 47  
Switching Between Timer0 and WDT......................... 48  
Power-on Reset (POR)..................... 125, 129, 130, 131, 132  
Oscillator Start-up Timer (OST)........................ 125, 130  
Power Control (PCON) Register............................... 131  
Power-down (PD Bit).................................................. 16  
Power-on Reset Circuit, External ............................. 130  
Power-up Timer (PWRT).................................. 125, 130  
Time-out (TO Bit)........................................................ 16  
Time-out Sequence .................................................. 131  
Time-out Sequence on Power-up..................... 133, 134  
PR2 Register ...................................................................... 14  
Prescaler, Capture.............................................................. 56  
Prescaler, Timer0 ............................................................... 47  
Assignment (PSA Bit)........................................... 17, 47  
Block Diagram ............................................................ 48  
Rate Select (PS Bits)............................................ 17, 47  
Switching Between Timer0 and WDT......................... 48  
Prescaler, Timer1 ............................................................... 50  
Select (T1CKPS Bits) ................................................. 49  
M
Master Clear (MCLR)  
MCLR Reset, Normal Operation............... 129, 131, 132  
MCLR Reset, SLEEP................................ 129, 131, 132  
Memory Organization  
Data Memory .............................................................. 11  
Program Memory ........................................................ 11  
MPLAB Integrated Development Environment Software .. 149  
Multi-Master Communication ............................................ 103  
Multi-Master Mode .............................................................. 85  
O
OPCODE Field Descriptions............................................. 141  
OPERATION....................................................................... 45  
OPTION_REG Register ...................................................... 17  
INTEDG Bit ................................................................. 17  
PS Bits .................................................................. 17, 47  
PSA Bit.................................................................. 17, 47  
RBPU Bit..................................................................... 17  
T0CS Bit................................................................ 17, 47  
T0SE Bit................................................................ 17, 47  
Oscillator Configuration..................................................... 126  
CLKOUT ................................................................... 128  
Dual Speed Operation for ER and INTRC Modes .... 128  
EC............................................................. 126, 127, 131  
ER..................................................................... 126, 131  
ER Mode................................................................... 128  
HS..................................................................... 126, 131  
INTRC............................................................... 126, 131  
LP...................................................................... 126, 131  
XT ..................................................................... 126, 131  
Oscillator, Timer1.......................................................... 49, 51  
Oscillator, WDT................................................................. 137  
P
P.......................................................................................... 68  
Packaging ......................................................................... 179  
Paging, Program Memory............................................. 11, 24  
Parallel Slave Port (PSP)  
Read/Write Enable (PSPIE Bit)................................... 19  
PCL Register................................................................. 13, 14  
PCLATH Register ................................................... 13, 14, 15  
PCON Register ........................................................... 23, 131  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 193  
PIC16C717/770/771  
Prescaler, Timer2................................................................59  
Select (T2CKPS Bits)..................................................53  
PRO MATE II Universal Programmer.............................151  
Program ..............................................................................43  
Program Counter  
SCL..................................................................................... 78  
SDA .................................................................................... 78  
SDI...................................................................................... 71  
SDO.................................................................................... 71  
SEEVAL Evaluation and Programming System............. 152  
Serial Clock, SCK ............................................................... 71  
Serial Clock, SCL................................................................ 78  
Serial Data Address, SDA .................................................. 78  
Serial Data In, SDI.............................................................. 71  
Serial Data Out, SDO ......................................................... 71  
Slave Select Synchronization ............................................. 74  
Slave Select, SS................................................................. 71  
SLEEP .............................................................. 125, 129, 138  
SMP.................................................................................... 68  
Software Simulator (MPLAB-SIM) .................................... 150  
SPE..................................................................................... 70  
Special Features of the CPU ............................................ 125  
Special Function Registers................................................. 13  
PIC16C717 ................................................................. 13  
PIC16C717/770/771 ................................................... 13  
PIC16C770 ................................................................. 13  
PIC16C771 ................................................................. 13  
Speed, Operating.................................................................. 1  
SPI  
PCL Register...............................................................24  
PCLATH Register ............................................... 24, 136  
Reset Conditions.......................................................131  
Program Memory ................................................................11  
Interrupt Vector ...........................................................11  
Paging................................................................... 11, 24  
Program Memory Map ................................................11  
Reset Vector ...............................................................11  
Program Verification..........................................................139  
Programmable Brown-out Reset (PBOR) ................. 129, 130  
Programming, Device Instructions ....................................141  
PWM (CCP Module)............................................................58  
Block Diagram.............................................................58  
CCPR1H:CCPR1L Registers......................................58  
Duty Cycle...................................................................59  
Output Diagram...........................................................59  
Period..........................................................................58  
TMR2 to PR2 Match .............................................53, 58  
TMR2 to PR2 Match Enable (TMR2IE Bit) .................19  
Master Mode............................................................... 73  
Serial Clock................................................................. 71  
Serial Data In.............................................................. 71  
Serial Data Out ........................................................... 71  
Serial Peripheral Interface (SPI)................................. 67  
Slave Select................................................................ 71  
SPI Clock.................................................................... 73  
SPI Mode.................................................................... 71  
SPI Clock Edge Select, CKE .............................................. 68  
SPI Data Input Sample Phase Select, SMP ....................... 68  
SPI Master/Slave Connection............................................. 72  
SPI Module  
Q
Q-Clock ...............................................................................59  
R
R/W .....................................................................................68  
R/W bit ................................................................................78  
R/W bit ................................................................................79  
RAM. See Data Memory  
RCE,Receive Enable bit, RCE............................................70  
RCREG ...............................................................................15  
RCSTA Register..................................................................15  
Read/Write bit, R/W ............................................................68  
READING............................................................................45  
Receive Overflow Indicator bit, SSPOV..............................69  
Register File........................................................................11  
Register File Map................................................................12  
Registers  
FSR Summary ............................................................15  
INDF Summary ...........................................................15  
INTCON Summary......................................................15  
PCL Summary.............................................................15  
PCLATH Summary .....................................................15  
PORTB Summary .......................................................15  
SSPSTAT....................................................................68  
STATUS Summary .....................................................15  
TMR0 Summary..........................................................15  
TRISB Summary.........................................................15  
Reset......................................................................... 125, 129  
Block Diagram...........................................................129  
Brown-out Reset (BOR). See Brown-out Reset (BOR)  
MCLR Reset. See MCLR  
Master/Slave Connection............................................ 72  
Slave Mode................................................................. 74  
Slave Select Synchronization ..................................... 74  
Slave Synch Timnig.................................................... 74  
SS....................................................................................... 71  
SSP..................................................................................... 67  
Block Diagram (SPI Mode) ......................................... 71  
Enable (SSPIE Bit) ..................................................... 19  
SPI Mode.................................................................... 71  
SSPADD..................................................................... 78  
SSPBUF ............................................................... 73, 78  
SSPCON1 .................................................................. 69  
SSPCON2 .................................................................. 70  
SSPSR ................................................................. 73, 78  
SSPSTAT ............................................................. 68, 77  
TMR2 Output for Clock Shift................................. 53, 54  
2
SSP I C  
2
SSP I C Operation ..................................................... 77  
SSP Module  
Power-on Reset (POR). See Power-on Reset (POR)  
Reset Conditions for All Registers ............................132  
Reset Conditions for PCON Register........................131  
Reset Conditions for Program Counter.....................131  
Reset Conditions for STATUS Register....................131  
Restart Condition Enabled bit, RSE....................................70  
Revision History ................................................................189  
RSE.....................................................................................70  
SPI Master Mode........................................................ 73  
SPI Master./Slave Connection.................................... 72  
SPI Slave Mode.......................................................... 74  
SSPCON1 Register.................................................... 77  
SSP Overflow Detect bit, SSPOV....................................... 78  
SSPADD Register............................................................... 14  
SSPBUF ....................................................................... 15, 78  
SSPBUF Register............................................................... 13  
SSPCON Register .............................................................. 13  
SSPCON1..................................................................... 69, 77  
SSPCON2........................................................................... 70  
SSPEN................................................................................ 69  
S
SAE.....................................................................................70  
SCK.....................................................................................71  
DS41120A-page 194  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
SSPIF............................................................................ 20, 79  
SSPM3:SSPM0................................................................... 69  
SSPOV.................................................................... 69, 78, 95  
SSPSTAT...................................................................... 68, 77  
SSPSTAT Register ............................................................. 14  
Stack................................................................................... 24  
Start bit (S).......................................................................... 68  
Start Condition Enabled bit, SAE ........................................ 70  
STATUS Register ....................................................... 16, 136  
C Bit ............................................................................ 16  
DC Bit.......................................................................... 16  
IRP Bit......................................................................... 16  
PD Bit.......................................................................... 16  
RP1:RP0 Bits.............................................................. 16  
TO Bit.......................................................................... 16  
Z Bit............................................................................. 16  
Status Register ................................................................... 16  
Stop bit (P) .......................................................................... 68  
Stop Condition Enable bit ................................................... 70  
Synchronous Serial Port ..................................................... 67  
Synchronous Serial Port Enable bit, SSPEN ...................... 69  
Synchronous Serial Port Interrupt....................................... 20  
Synchronous Serial Port Mode Select bits,  
Timing Diagrams  
Acknowledge Sequence Timing ................................. 98  
Baud Rate Generator with Clock Arbitration............... 86  
BRG Reset Due to SDA Collision............................. 105  
Brown-out Reset....................................................... 164  
Bus Collision  
Start Condition Timing...................................... 104  
Bus Collision During a Restart Condition (Case 1)... 106  
Bus Collision During a Restart Condition (Case2).... 106  
Bus Collision During a Start Condition (SCL = 0)..... 105  
Bus Collision During a Stop Condition...................... 107  
Bus Collision for Transmit and Acknowledge ........... 103  
Capture/Compare/PWM ........................................... 166  
CLKOUT and I/O ...................................................... 162  
External Clock Timing............................................... 162  
2
I C Master Mode First Start bit timing ........................ 87  
2
I C Master Mode Reception timing............................. 97  
2
I C Master Mode Transmission timing ....................... 94  
Master Mode Transmit Clock Arbitration .................. 102  
Power-up Timer........................................................ 164  
Repeat Start Condition ............................................... 89  
Reset ........................................................................ 164  
Slave Synchronization................................................ 74  
Start-up Timer........................................................... 164  
Stop Condition Receive or Transmit......................... 100  
Time-out Sequence on Power-up..................... 133, 134  
Timer0 ...................................................................... 165  
Timer1 ...................................................................... 165  
Wake-up from SLEEP via Interrupt .......................... 139  
Watchdog Timer ....................................................... 164  
TMR0.................................................................................. 15  
TMR0 Register.................................................................... 13  
TMR1H ............................................................................... 15  
TMR1H Register................................................................. 13  
TMR1L................................................................................ 15  
TMR1L Register.................................................................. 13  
TMR2.................................................................................. 15  
TMR2 Register.................................................................... 13  
TRISA Register........................................................... 14, 124  
TRISB Register........................................................... 14, 124  
TXREG ............................................................................... 15  
SSPM<3:0>......................................................................... 69  
T
T1CON................................................................................ 15  
T1CON Register ........................................................... 15, 49  
T1CKPS Bits............................................................... 49  
T1OSCEN Bit.............................................................. 49  
T1SYNC Bit................................................................. 49  
TMR1CS Bit................................................................ 49  
TMR1ON Bit................................................................ 49  
T2CON Register ........................................................... 15, 53  
T2CKPS Bits............................................................... 53  
TMR2ON Bit................................................................ 53  
TOUTPS Bits .............................................................. 53  
Timer0................................................................................. 47  
Block Diagram............................................................. 47  
Clock Source Edge Select (T0SE Bit)................... 17, 47  
Clock Source Select (T0CS Bit)............................ 17, 47  
Overflow Enable (T0IE Bit) ......................................... 18  
Overflow Flag (T0IF Bit)...................................... 18, 136  
Overflow Interrupt ............................................... 48, 136  
Timer1................................................................................. 49  
Block Diagram............................................................. 50  
Capacitor Selection..................................................... 51  
Clock Source Select (TMR1CS Bit) ............................ 49  
External Clock Input Sync (T1SYNC Bit).................... 49  
Module On/Off (TMR1ON Bit)..................................... 49  
Oscillator............................................................... 49, 51  
Oscillator Enable (T1OSCEN Bit) ............................... 49  
Overflow Enable (TMR1IE Bit).................................... 19  
Overflow Interrupt ................................................. 49, 51  
Special Event Trigger (CCP)................................. 51, 57  
T1CON Register ......................................................... 49  
TMR1H Register ......................................................... 49  
TMR1L Register.......................................................... 49  
Timer2  
U
Update Address, UA........................................................... 68  
USART  
Receive Enable (RCIE Bit) ......................................... 19  
W
W Register........................................................................ 136  
Wake-up from SLEEP............................................... 125, 138  
Interrupts .......................................................... 131, 132  
MCLR Reset............................................................. 132  
Timing Diagram ........................................................ 139  
WDT Reset............................................................... 132  
Watchdog Timer (WDT)............................................ 125, 137  
Block Diagram .......................................................... 137  
Enable (WDTE Bit) ................................................... 137  
Programming Considerations................................... 137  
RC Oscillator ............................................................ 137  
Time-out Period........................................................ 137  
WDT Reset, Normal Operation................. 129, 131, 132  
WDT Reset, SLEEP ......................................... 131, 132  
Waveform for General Call Address Sequence.................. 83  
WCOL................................................. 69, 87, 92, 95, 98, 100  
WCOL Status Flag.............................................................. 87  
Write Collision Detect bit, WCOL........................................ 69  
WWW, On-Line Support ....................................................... 3  
Block Diagram............................................................. 54  
PR2 Register......................................................... 53, 58  
SSP Clock Shift..................................................... 53, 54  
T2CON Register ......................................................... 53  
TMR2 Register............................................................ 53  
TMR2 to PR2 Match Enable (TMR2IE Bit) ................. 19  
TMR2 to PR2 Match Interrupt......................... 53, 54, 58  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 195  
PIC16C717/770/771  
NOTES:  
DS41120A-page 196  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip’s development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-786-7302 for the rest of the world.  
981103  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICSTART, PICMASTER and PRO MATE are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries. FlexROM, MPLAB and fuzzy-  
LAB are trademarks and SQTP is a service mark of Micro-  
chip in the U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Sys-  
tems, technical information and more  
• Listing of seminars and events  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page197  
PIC16C717/770/771  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS41120A  
Device:  
PIC16C717/770/771  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS41120A-page198  
Advanced Information  
1999 Microchip Technology Inc.  
PIC16C717/770/771  
PIC16C717/770/771 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.  
Examples  
PART NO.  
X /XX XXX  
-
Pattern:  
QTP, SQTP, Code or Special Requirements  
a) PIC16C771/P Commercial  
Temp., PDIP Package,  
normal VDD limits.  
Package:  
JW  
SO  
P
=
=
=
=
Windowed CERDIP  
SOIC  
PDIP  
SSOP  
SS  
Temperature  
Range:  
-
I
=
=
0°C to +70°C  
-40°C to +85°C  
Device  
PIC16C771 : VDD range 4.0V to 5.5V  
PIC16C771T :VDD range 4.0V to 5.5V (Tape/Reel)  
PIC16LC771 : VDD range 2.5V to 5.5V  
PIC16LC771T:VDD range 2.5V to 5.5V (Tape/Reel)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type (including LC devices).  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 786-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
1999 Microchip Technology Inc.  
Advanced Information  
DS41120A-page 199  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Beijing  
United Kingdom  
Microchip Technology, Beijing  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing 100027 PRC  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 86-10-85282100 Fax: 86-10-85282104  
India  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75248  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Japan  
France  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Italy  
Los Angeles  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
11/15/99  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
1999 Microchip Technology Inc.  

相关型号:

PIC16C770-04I/JW

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D
MICROCHIP

PIC16C770-04I/P

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D
MICROCHIP

PIC16C770-04I/SO

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D
MICROCHIP

PIC16C770-04I/SS

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D
MICROCHIP

PIC16C770-20/JW

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D
MICROCHIP

PIC16C770-20/P

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D
MICROCHIP

PIC16C770-20/SO

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D
MICROCHIP

PIC16C770-20/SS

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D
MICROCHIP

PIC16C770-20I/JW

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D
MICROCHIP

PIC16C770-20I/P

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D
MICROCHIP

PIC16C770-20I/SO

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D
MICROCHIP

PIC16C770-20I/SS

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D
MICROCHIP