PIC16C773-04I/PT [MICROCHIP]

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D; 40分之28引脚, 8位CMOS微控制器W / 12位A / D
PIC16C773-04I/PT
型号: PIC16C773-04I/PT
厂家: MICROCHIP    MICROCHIP
描述:

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D
40分之28引脚, 8位CMOS微控制器W / 12位A / D

微控制器
文件: 总200页 (文件大小:3606K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C77X  
28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D  
Microcontroller Core Features:  
Pin Diagram  
600 mil. PDIP, Windowed CERDIP  
• High-performance RISC CPU  
• Only 35 single word instructions to learn  
• All single cycle instructions except for program  
branches which are two cycle  
MCLR/VPP  
RA0/AN0  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RB7  
RB6  
RA1/AN1  
RA2/AN2/VREF-/VRL  
RB5  
RB4  
RB3/AN9/LVDIN  
RB2/AN8  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
RA3/AN3/VREF+/VRH  
RA4/T0CKI  
RA5/AN4  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
AVDD  
RB1/SS  
RB0/INT  
VDD  
• 4K x 14 words of Program Memory,  
256 x 8 bytes of Data Memory (RAM)  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
• Interrupt capability (up to 14 internal/external  
interrupt sources)  
AVSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
• Eight level deep hardware stack  
• Direct, indirect, and relative addressing modes  
• Power-on Reset (POR)  
RC3/SCK/SCL  
RD0/PSP0  
RC4/SDI/SDA  
RD3/PSP3  
RD1/PSP1  
RD2/PSP2  
• Power-up Timer (PWRT) and  
Oscillator Start-up Timer (OST)  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
Peripheral Features:  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• Programmable code-protection  
• Power saving SLEEP mode  
• Selectable oscillator options  
• Timer1: 16-bit timer/counter with prescaler,  
can be incremented during sleep via external  
crystal/clock  
• Low-power, high-speed CMOS EPROM  
technology  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Fully static design  
Two Capture, Compare, PWM modules  
• In-Circuit Serial Programming (ISCP)  
• Wide operating voltage range: 2.5V to 5.5V  
• High Sink/Source Current 25/25 mA  
• Commercial and Industrial temperature ranges  
• Low-power consumption:  
• Capture is 16-bit, max. resolution is 12.5 ns,  
Compare is 16-bit, max. resolution is 200 ns,  
PWM max. resolution is 10-bit  
• 12-bit multi-channel Analog-to-Digital converter  
*
*
*
*
• On-chip absolute bandgap voltage reference  
generator  
- < 2 mA @ 5V, 4 MHz  
• Synchronous Serial Port (SSP) with SPI (Master  
Mode) and I2C  
- 22.5 µA typical @ 3V, 32 kHz  
- < 1 µA typical standby current  
• Universal Synchronous Asynchronous Receiver  
Transmitter, supports high/low speeds and 9-bit  
address mode (USART/SCI)  
• Parallel Slave Port (PSP) 8-bits wide, with  
external RD, WR and CS controls  
• Programmable Brown-out detection circuitry for  
Brown-out Reset (BOR)  
*
*
*
Enhanced features  
• Programmable Low-voltage detection circuitry  
This is an advanced copy of the data sheet and therefore the contents and  
specifications are subject to change based on device characterization.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 1  
PIC16C77X  
Pin Diagrams  
300 mil. SDIP, SOIC, Windowed CERDIP, SSOP  
MCLR/VPP  
RA0/AN0  
• 1  
2
28  
27  
RB7  
RB6  
RA1/AN1  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
3
4
5
26  
25  
24  
RB5  
RB4  
RB3/AN9/LVDIN  
RA4/T0CKI  
AVDD  
6
7
8
23  
22  
21  
RB2/AN8  
RB1/SS  
RB0/INT  
AVSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
9
20  
19  
18  
17  
16  
15  
VDD  
VSS  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
10  
11  
12  
13  
14  
RC3/SCK/SCL  
PLCC  
RA4/T0CKI  
RA5/AN4  
RB3/AN9/LVDIN  
7
8
9
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
RB2/AN8  
RB1/SS  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
AVDD  
10  
11  
12  
13  
14  
15  
16  
17  
RB0/INT  
VDD  
VSS  
PIC16C774  
AVSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
NC  
MQFP  
TQFP  
NC  
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
1
2
3
4
5
6
7
8
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RC0/T1OSO/T1CKI  
OSC2/CLKOUT  
OSC1/CLKIN  
AVSS  
AVDD  
PIC16C774  
VDD  
RE2/CS/AN7  
RE1/WR/AN6  
RE0/RD/AN5  
RA5/AN4  
RB0/INT  
RB1/SS  
9
10  
11  
RB2/AN8  
RB3/AN9/LVDIN  
RA4/T0CKI  
DS30275A-page 2  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
Key Features  
PICmicro™ Mid-Range Reference Manual  
(DS33023)  
PIC16C773  
DC - 20 MHz  
PIC16C774  
Operating Frequency  
Resets (and Delays)  
DC - 20 MHz  
POR, BOR, MCLR, WDT  
(PWRT, OST)  
POR, BOR, MCLR, WDT  
(PWRT, OST)  
Program Memory (14-bit words)  
Data Memory (bytes)  
Interrupts  
4K  
4K  
256  
256  
13  
14  
I/O Ports  
Ports A,B,C  
Ports A,B,C,D,E  
Timers  
3
3
Capture/Compare/PWM modules  
Serial Communications  
Parallel Communications  
12-bit Analog-to-Digital Module  
Instruction Set  
2
2
MSSP, USART  
MSSP, USART  
PSP  
6 input channels  
35 Instructions  
10 input channels  
35 Instructions  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 3  
PIC16C77X  
Table of Contents  
1.0 Device Overview ............................................................................................................................................................................ 5  
2.0 Memory Organization................................................................................................................................................................... 11  
3.0 I/O Ports....................................................................................................................................................................................... 27  
4.0 Timer0 Module ............................................................................................................................................................................. 39  
5.0 Timer1 Module ............................................................................................................................................................................. 41  
6.0 Timer2 Module ............................................................................................................................................................................. 45  
7.0 Capture/Compare/PWM (CCP) Module(s)................................................................................................................................... 47  
8.0 Master Synchronous Serial Port (MSSP) Module........................................................................................................................ 53  
9.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART) ................................................................. 97  
10.0 Voltage Reference Module and Low-voltage Detect.................................................................................................................. 113  
11.0 Analog-to-Digital Converter (A/D) Module ................................................................................................................................. 117  
12.0 Special Features of the CPU ..................................................................................................................................................... 127  
13.0 Instruction Set Summary............................................................................................................................................................ 143  
14.0 Development Support ................................................................................................................................................................ 145  
15.0 Electrical Characteristics............................................................................................................................................................ 151  
16.0 DC and AC Characteristics Graphs and Tables ........................................................................................................................ 173  
17.0 Packaging Information ............................................................................................................................................................... 175  
Appendix A: Revision History......................................................................................................................................................... 187  
Appendix B: Device Differences..................................................................................................................................................... 187  
Appendix C: Conversion Considerations........................................................................................................................................ 187  
Index .................................................................................................................................................................................................. 189  
Bit/Register Cross-Reference List...................................................................................................................................................... 196  
On-Line Support................................................................................................................................................................................. 197  
Reader Response .............................................................................................................................................................................. 198  
PIC16C77X Product Identification System......................................................................................................................................... 199  
To Our Valued Customers  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please check our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended  
workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revi-  
sion of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure  
that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing  
or appears in error, please:  
Fill out and mail in the reader response form in the back of this data sheet.  
E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
DS30275A-page 4  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
There a two devices (PIC16C773 and PIC16C774)  
covered by this datasheet. The PIC16C773 devices  
come in 28-pin packages and the PIC16C774 devices  
come in 40-pin packages. The 28-pin devices do not  
have a Parallel Slave Port implemented.  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information.  
Additional information may be found in the PICmicro™  
Mid-Range Reference Manual, (DS33023), which may  
be obtained from your local Microchip Sales Represen-  
tative or downloaded from the Microchip website. The  
Reference Manual should be considered a comple-  
mentary document to this data sheet, and is highly rec-  
ommended reading for a better understanding of the  
device architecture and operation of the peripheral  
modules.  
The following two figures are device block diagrams  
sorted by pin number; 28-pin for Figure 1-1 and 40-pin  
for Figure 1-2. The 28-pin and 40-pin pinouts are listed  
in Table 1-1 and Table 1-2, respectively.  
FIGURE 1-1: PIC16C773 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
EPROM  
RA0/AN0  
RA1/AN1  
Program  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
RA4/T0CKI  
Memory  
RAM  
File  
Registers  
8 Level Stack  
(13-bit)  
4K x 14  
256 x 8  
Program  
Bus  
14  
RAM Addr (1)  
PORTB  
9
RB0/INT  
RB1/SS  
Addr MUX  
Instruction reg  
7
Indirect  
Addr  
RB2/AN8  
RB3/AN9/LVDIN  
RB7:RB4  
Direct Addr  
8
FSR reg  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
3
MUX  
Instruction  
Decode &  
Control  
Power-up  
Timer  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
ALU  
Timing  
Generation  
Oscillator  
Start-up Timer  
OSC1/CLKIN  
8
OSC2/CLKOUT  
Power-on  
Reset  
W reg  
Watchdog  
Timer  
Precision  
Reference  
Low-voltage  
Detect  
Brown-out  
Reset  
MCLR VDD, VSS  
AVDD  
AVSS  
12-bit  
ADC  
Timer0  
Timer1  
Timer2  
USART  
Synchronous  
Serial Port  
CCP1,2  
Note 1: Higher order bits are from the STATUS register.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 5  
 
PIC16C77X  
FIGURE 1-2: PIC16C774 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
EPROM  
RA0/AN0  
RA1/AN1  
Program  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
RA4/T0CKI  
Memory  
RAM  
File  
Registers  
8 Level Stack  
4K x 14  
(13-bit)  
RA5/AN4  
256 x 8  
Program  
14  
RAM Addr (1)  
PORTB  
Bus  
9
RB0/INT  
RB1/SS  
RB2/AN8  
RB3/AN9/LVDIN  
RB7:RB4  
Addr MUX  
Instruction reg  
7
Indirect  
Addr  
Direct Addr  
8
FSR reg  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
MUX  
Instruction  
Decode &  
Control  
Power-up  
Timer  
RC6/TX/CK  
RC7/RX/DT  
ALU  
Timing  
Generation  
Oscillator  
OSC1/CLKIN  
OSC2/CLKOUT  
Start-up Timer  
8
PORTD  
Power-on  
Reset  
W reg  
Watchdog  
Timer  
RD7/PSP7:RD0/PSP0  
Brown-out  
Reset  
Precision  
Reference  
Low-voltage  
Detect  
PORTE  
Parallel Slave Port  
RE0/AN5/RD  
MCLR VDD, VSS  
RE1/AN6/WR  
RE2/AN7/CS  
AVDD  
AVSS  
12-bit  
ADC  
Timer0  
Timer1  
Timer2  
USART  
Synchronous  
Serial Port  
CCP1,2  
Note 1: Higher order bits are from the STATUS register.  
DS30275A-page 6  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
TABLE 1-1  
PIC16C773 PINOUT DESCRIPTION  
DIP,  
SSOP,  
SOIC  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(3)  
OSC1/CLKIN  
9
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
OSC2/CLKOUT  
10  
O
Oscillator crystal output. Connects to crystal or resonator in crystal  
oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has  
1/4 the frequency of OSC1, and denotes the instruction cycle rate.  
1
I/P  
ST  
Master clear (reset) input or programming voltage input. This pin is an  
active low reset to the device.  
MCLR/VPP  
PORTA is a bi-directional I/O port.  
RA0 can also be analog input0  
RA1 can also be analog input1  
RA0/AN0  
2
3
4
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
RA1/AN1  
RA2/AN2/VREF-/VRL  
RA2 can also be analog input2 or negative analog reference voltage  
input or internal voltage reference low  
RA3/AN3/VREF+/VRH  
5
6
I/O  
I/O  
TTL  
ST  
RA3 can also be analog input3 or positive analog reference voltage  
input or internal voltage reference high  
RA4/T0CKI  
RA4 can also be the clock input to the Timer0 module. Output is  
open drain type.  
PORTB is a bi-directional I/O port. PORTB can be software pro-  
grammed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
21  
22  
23  
24  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
RB1 can also be the SSP slave select  
RB2 can also be analog input8  
(1)  
RB1/SS  
RB2/AN8  
RB3/AN9/LVDIN  
TTL  
RB3 can also be analog input9 or the low voltage detect input  
reference  
RB4  
RB5  
RB6  
RB7  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
Interrupt on change pin.  
Interrupt on change pin.  
(2)  
(2)  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
11  
12  
I/O  
I/O  
ST  
ST  
RC0 can also be the Timer1 oscillator output or Timer1 clock input.  
RC1 can also be the Timer1 oscillator input or Capture2 input/  
Compare2 output/PWM2 output.  
RC2/CCP1  
13  
14  
15  
I/O  
I/O  
I/O  
ST  
ST  
ST  
RC2 can also be the Capture1 input/Compare1 output/PWM1  
output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC3 can also be the synchronous serial clock input/output for both  
2
SPI and I C modes.  
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5/SDO  
16  
17  
I/O  
I/O  
ST  
ST  
RC5 can also be the SPI Data Out (SPI mode).  
RC6/TX/CK  
RC6 can also be the USART Asynchronous Transmit or  
Synchronous Clock.  
RC7/RX/DT  
18  
I/O  
ST  
RC7 can also be the USART Asynchronous Receive or  
Synchronous Data.  
AVSS  
8
7
P
P
P
P
Ground reference for A/D converter  
Positive supply for A/D converter  
AVDD  
VSS  
19  
20  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured for the multiplexed function.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 7  
PIC16C77X  
TABLE 1-2  
PIC16C774 PINOUT DESCRIPTION  
DIP  
Pin#  
PLCC  
Pin#  
QFP I/O/P  
Pin# Type  
Buffer  
Type  
Pin Name  
Description  
(4)  
OSC1/CLKIN  
13  
14  
14  
15  
30  
31  
I
ST/CMOS  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator  
in crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and  
denotes the instruction cycle rate.  
MCLR/VPP  
1
2
18  
I/P  
ST  
Master clear (reset) input or programming voltage input.  
This pin is an active low reset to the device.  
PORTA is a bi-directional I/O port.  
RA0 can also be analog input0  
RA1 can also be analog input1  
RA0/AN0  
2
3
4
3
4
5
19  
20  
21  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
RA1/AN1  
RA2 can also be analog input2 or negative analog  
reference voltage input or internal voltage reference  
low  
RA2/AN2/VREF-/VRL  
RA3 can also be analog input3 or positive analog  
reference voltage input or internal voltage reference  
high  
RA3/AN3/VREF+/VRH  
5
6
22  
I/O  
TTL  
RA4/T0CKI  
RA5/AN4  
6
7
7
8
23  
24  
I/O  
I/O  
ST  
RA4 can also be the clock input to the Timer0 timer/  
counter. Output is open drain type.  
TTL  
RA5 can also be analog input4  
PORTB is a bi-directional I/O port. PORTB can be soft-  
ware programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
33  
34  
35  
36  
36  
37  
38  
39  
8
9
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
RB1 can also be the SSP slave select  
RB2 can also be analog input8  
(1)  
RB1/SS  
RB2/AN8  
10  
11  
RB3/AN9/LVDIN  
TTL  
RB3 can also be analog input9 or input reference for  
low voltage detect  
RB4  
RB5  
RB6  
37  
38  
39  
41  
42  
43  
44  
14  
15  
16  
17  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
Interrupt on change pin.  
Interrupt on change pin.  
(2)  
(2)  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
RB7  
40  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured for the multiplexed function.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
DS30275A-page 8  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
TABLE 1-2  
PIC16C774 PINOUT DESCRIPTION (Cont.’d)  
DIP  
Pin#  
PLCC  
Pin#  
QFP I/O/P  
Pin# Type  
Buffer  
Type  
Pin Name  
Description  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
15  
16  
17  
18  
23  
24  
25  
26  
16  
18  
19  
20  
25  
26  
27  
29  
32  
35  
36  
37  
42  
43  
44  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
RC0 can also be the Timer1 oscillator output or a  
Timer1 clock input.  
RC1 can also be the Timer1 oscillator input or  
Capture2 input/Compare2 output/PWM2 output.  
RC2/CCP1  
RC2 can also be the Capture1 input/Compare1  
output/PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC3 can also be the synchronous serial clock input/  
2
output for both SPI and I C modes.  
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5 can also be the SPI Data Out  
(SPI mode).  
RC6/TX/CK  
RC7/RX/DT  
RC6 can also be the USART Asynchronous  
Transmit or Synchronous Clock.  
RC7 can also be the USART Asynchronous Receive  
or Synchronous Data.  
PORTD is a bi-directional I/O port or parallel slave port  
when interfacing to a microprocessor bus.  
(3)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
19  
20  
21  
22  
27  
28  
29  
30  
21  
22  
23  
24  
30  
31  
32  
33  
38  
39  
40  
41  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
3
4
5
PORTE is a bi-directional I/O port.  
(3)  
(3)  
(3)  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
AVss  
8
9
9
25  
26  
27  
29  
I/O  
I/O  
I/O  
P
ST/TTL  
ST/TTL  
ST/TTL  
RE0 can also be read control for the parallel slave  
port, or analog input5.  
10  
11  
13  
RE1 can also be write control for the parallel slave  
port, or analog input6.  
10  
RE2 can also be select control for the parallel slave  
port, or analog input7.  
Ground reference for A/D converter  
Positive supply for A/D converter  
12  
AVDD  
VSS  
VDD  
NC  
11  
31  
32  
12  
34  
35  
28  
6
P
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
7
1,17,28, 12,13,  
40 33,34  
These pins are not internally connected. These pins  
should be left unconnected.  
Legend: I = input  
O = output  
I/O = input/output  
P = power  
— = Not used  
TTL = TTL input  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured for the multiplexed function.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 9  
PIC16C77X  
NOTES:  
DS30275A-page 10  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
2.2  
Data Memory Organization  
2.0  
MEMORY ORGANIZATION  
There are two memory blocks in each of these  
PICmicro® microcontrollers. Each block (Pro-  
gram Memory and Data Memory) has its own bus  
so that concurrent access can occur.  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers and the  
Special Function Registers. Bits RP1 and RP0 are the  
bank select bits.  
Additional information on device memory may be found  
RP1 RP0  
(STATUS<6:5>)  
in the PICmicro  
(DS33023).  
Mid-Range Reference Manual,  
= 00 Bank0  
= 01 Bank1  
= 10 Bank2  
= 11 Bank3  
2.1  
Program Memory Organization  
The PIC16C77X PICmicros have a 13-bit program  
counter capable of addressing an 8K x 14 program  
memory space. Each device has 4K x 14 words of pro-  
gram memory. Accessing a location above the physi-  
cally implemented address will cause a wraparound.  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM. All implemented banks contain special  
function registers. Some “high use” special function  
registers from one bank may be mirrored in another  
bank for code reduction and quicker access.  
The reset vector is at 0000h and the interrupt vector is  
at 0004h.  
FIGURE 2-1: PROGRAM MEMORY MAP  
AND STACK  
2.2.1  
GENERAL PURPOSE REGISTER FILE  
The register file can be accessed either directly, or indi-  
rectly through the File Select Register FSR.  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
On-chip  
Program  
Memory  
07FFh  
0800h  
Page 1  
0FFFh  
1000h  
3FFFh  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 11  
PIC16C77X  
FIGURE 2-2: REGISTER FILE MAP  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(*)  
TMR0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
Indirect addr.(*)  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
Indirect addr.(*)  
TMR0  
Indirect addr.(*)  
OPTION_REG  
PCL  
80h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
OPTION_REG  
PCL  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
PORTB  
TRISB  
TRISC  
TRISD  
TRISE  
(1)  
(1)  
PORTD  
PORTE  
(1)  
(1)  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PCLATH  
INTCON  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
SSPCON2  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
SSPADD  
SSPSTAT  
RCSTA  
TXREG  
TXSTA  
SPBRG  
RCREG  
REFCON  
LVDCON  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
ADRESL  
ADCON1  
A0h  
1A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
80 Bytes  
96 Bytes  
1EFh  
1F0h  
EFh  
F0h  
6Fh  
70h  
accesses  
70h - 7Fh  
accesses  
70h - 7Fh  
accesses  
70h-7Fh  
7Fh  
FFh  
17Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
(1) Not implemented on PIC16C773.  
Unimplemented data memory locations, read as ’0’.  
Not a physical register.  
*
DS30275A-page 12  
Advance Information  
1999 Microchip Technology Inc.  
 
PIC16C77X  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The special function registers can be classified into two  
sets; core (CPU) and peripheral. Those registers asso-  
ciated with the core functions are described in detail in  
this section. Those related to the operation of the  
peripheral features are described in detail in that  
peripheral feature section.  
The Special Function Registers are registers used by  
the CPU and Peripheral Modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 2-1.  
TABLE 2-1  
Address Name  
Bank 0  
PIC16C77X SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
00h(4)  
01h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--0x 0000  
xxxx 11xx  
xxxx xxxx  
xxxx xxxx  
---- -000  
0000 0000  
uuuu uuuu  
0000 0000  
000q quuu  
uuuu uuuu  
--0u 0000  
uuuu 11uu  
uuuu uuuu  
uuuu uuuu  
---- -000  
TMR0  
PCL  
02h(4)  
03h(4)  
04h(4)  
05h  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
Indirect data memory address pointer  
PORTA5(5) PORTA Data Latch when written: PORTA<4:0> pins when read  
RP1  
RP0  
TO  
PD  
Z
DC  
C
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
06h  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
07h  
08h(5)  
09h(5)  
RE2  
RE1  
RE0  
0Ah(1,4) PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000  
0000 000x  
0000 0000  
0--- 0--0  
---0 0000  
0Bh(4)  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
T0IE  
RCIF  
INTE  
TXIF  
RBIE  
SSPIF  
BCLIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
0000 000u  
0000 0000  
0--- 0--0  
PSPIF(3)  
LVDIF  
TMR1IF  
CCP2IF  
PIR2  
TMR1L  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
0000 0000  
TMR1H  
T1CON  
TMR2  
T1CKPS1  
T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
11h  
Timer2 module’s register  
TOUTPS3 TOUTPS2  
12h  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
13h  
Synchronous Serial Port Receive Buffer/Transmit Register  
14h  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
15h  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
16h  
17h  
CCP1X  
SREN  
CCP1Y  
CREN  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
ADDEN FERR OERR RX9D  
18h  
SPEN  
RX9  
19h  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
USART Transmit Data Register  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
Legend:  
USART Receive Data Register  
Capture/Compare/PWM Register2 (LSB)  
Capture/Compare/PWM Register2 (MSB)  
CCP2X  
A/D High Byte Result Register  
ADCS1 ADCS0 CHS2  
CCP2Y  
CCP2M3 CCP2M2 CCP2M1 CCP2M0  
CHS1  
CHS0  
GO/DONE  
CHS3  
ADON  
x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to  
the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.  
4: These registers can be addressed from any bank.  
5: These registers/bits are not implemented on the 28-pin devices read as '0'.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 13  
 
PIC16C77X  
TABLE 2-1  
Address Name  
Bank 1  
PIC16C77X SPECIAL FUNCTION REGISTER SUMMARY (Cont.’d)  
Value on: Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
80h(4)  
81h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
---0 0000  
0000 000x  
0000 0000  
0--- 0--0  
---- --qq  
0000 0000  
1111 1111  
0000 0000  
000q quuu  
uuuu uuuu  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
---0 0000  
0000 000u  
0000 0000  
0--- 0--0  
---- --uu  
OPTION_REG RBPU  
INTEDG  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect data memory address pointer  
bit5(5)  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h(4)  
83h(4)  
84h(4)  
85h  
PCL  
STATUS  
FSR  
PD  
Z
DC  
C
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PORTA Data Direction Register  
86h  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
87h  
88h(5)  
89h(5)  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction Bits  
8Ah(1,4) PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
8Bh(4)  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
T0IE  
RCIE  
INTE  
TXIE  
RBIE  
SSPIE  
BCLIE  
T0IF  
CCP1IE  
INTF  
TMR2IE  
RBIF  
TMR1IE  
CCP2IE  
BOR  
PSPIE(3)  
LVDIE  
PIE2  
PCON  
POR  
Unimplemented  
Unimplemented  
91h  
SSPCON2  
PR2  
GCEN  
AKSTAT  
AKDT  
AKEN  
RCEN  
PEN  
R/W  
RSEN  
UA  
SEN  
BF  
0000 0000  
1111 1111  
0000 0000  
0000 0000  
0000 0000  
1111 1111  
0000 0000  
0000 0000  
92h  
Timer2 Period Register  
93h  
SSPADD  
SSPSTAT  
Synchronous Serial Port (I2C mode) Address Register  
94h  
SMP  
CKE  
D/A  
P
S
95h  
Unimplemented  
Unimplemented  
Unimplemented  
CSRC  
96h  
97h  
98h  
TXSTA  
SPBRG  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010  
0000 0000  
0000 -010  
0000 0000  
99h  
Baud Rate Generator Register  
Unimplemented  
9Ah  
9Bh  
9Ch  
9Ah  
9Eh  
9Fh  
Legend:  
REFCON  
LVDCON  
VRHEN  
VRLEN  
VRHOEN  
BGST  
VRLOEN  
LVDEN  
0000 ----  
--00 0101  
0000 ----  
--00 0101  
LV3  
LV2  
LV1  
LV0  
Unimplemented  
A/D Low Byte Result Register  
ADFM VCFG2 VCFG1  
ADRESL  
ADCON1  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
VCFG0  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as ’0’.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to  
the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.  
4: These registers can be addressed from any bank.  
5: These registers/bits are not implemented on the 28-pin devices read as '0'.  
DS30275A-page 14  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
TABLE 2-1  
Address Name  
Bank 2  
PIC16C77X SPECIAL FUNCTION REGISTER SUMMARY (Cont.’d)  
Value on: Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
100h(4)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
000q quuu  
uuuu uuuu  
101h  
TMR0  
PCL  
102h(4)  
103h(4)  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
104h(4)  
105h  
106h  
107h  
108h  
109h  
Indirect data memory address pointer  
Unimplemented  
PORTB  
PORTB Data Latch when written: PORTB pins when read  
xxxx 11xx  
uuuu 11uu  
Unimplemented  
Unimplemented  
Unimplemented  
10Ah(1,4)  
10Bh(4)  
PCLATH  
INTCON  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
---0 0000  
---0 0000  
GIE  
PEIE  
T0IE  
0000 000x  
0000 000u  
10Ch-  
10Fh  
Unimplemented  
Bank 3  
180h(4)  
181h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000  
1111 1111  
0000 0000  
0001 1xxx  
0000 0000  
1111 1111  
0000 0000  
000q quuu  
OPTION_REG RBPU  
INTEDG  
Program Counter's (PC) Least Significant Byte  
IRP RP1 RP0 TO  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
182h(4)  
183h(4)  
PCL  
STATUS  
PD  
Z
DC  
C
184h(4)  
185h  
186h  
187h  
188h  
189h  
FSR  
Indirect data memory address pointer  
Unimplemented  
xxxx xxxx  
uuuu uuuu  
1111 1111  
1111 1111  
TRISB  
PORTB Data Direction Register  
Unimplemented  
Unimplemented  
Unimplemented  
18Ah(1,4)  
18Bh(4)  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
PCLATH  
---0 0000  
---0 0000  
INTCON  
GIE  
PEIE  
T0IE  
0000 000x  
0000 000u  
18Ch-  
18Fh  
Unimplemented  
Legend:  
x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as ’0’.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to  
the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.  
4: These registers can be addressed from any bank.  
5: These registers/bits are not implemented on the 28-pin devices read as '0'.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 15  
PIC16C77X  
2.2.2.1  
STATUS REGISTER  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
The STATUS register, shown in Figure 2-3, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions, not affecting any status bits, see the  
"Instruction Set Summary."  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as a borrow and  
digit borrow bit, respectively, in subtraction.  
See the SUBLWand SUBWFinstructions for  
examples.  
FIGURE 2-3: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
1 = Bank 2, 3 (100h - 1FFh)  
0 = Bank 0, 1 (00h - FFh)  
bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
Z: Zero bit  
1 = The result of an arithmetic or logic operation is zero  
0 = The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions) (for borrow the polarity is reversed)  
1 = A carry-out from the 4th low order bit of the result occurred  
0 = No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1 = A carry-out from the most significant bit of the result occurred  
0 = No carry-out from the most significant bit of the result occurred  
Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of  
the source register.  
DS30275A-page 16  
Advance Information  
1999 Microchip Technology Inc.  
 
PIC16C77X  
2.2.2.2  
OPTION_REG REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION_REG register is a readable and writable  
register which contains various control bits to configure  
the TMR0 prescaler/WDT postscaler (single assign-  
able register known also as the prescaler), the External  
INT Interrupt, TMR0, and the weak pull-ups on PORTB.  
FIGURE 2-4: OPTION_REG REGISTER (ADDRESS 81h, 181h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
RBPU: PORTB Pull-up Enable bit  
1 = PORTB pull-ups are disabled  
0 = PORTB pull-ups are enabled by individual port latch values  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
INTEDG: Interrupt Edge Select bit  
1 = Interrupt on rising edge of RB0/INT pin  
0 = Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1 = Transition on RA4/T0CKI pin  
0 = Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1 = Increment on high-to-low transition on RA4/T0CKI pin  
0 = Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1 = Prescaler is assigned to the WDT  
0 = Prescaler is assigned to the Timer0 module  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 17  
PIC16C77X  
2.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON Register is a readable and writable regis-  
ter which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/INT pin interrupts.  
FIGURE 2-5: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
GIE: Global Interrupt Enable bit  
1 = Enables all un-masked interrupts  
0 = Disables all interrupts  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
PEIE: Peripheral Interrupt Enable bit  
1 = Enables all un-masked peripheral interrupts  
0 = Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1 = Enables the TMR0 interrupt  
0 = Disables the TMR0 interrupt  
IINTE: RB0/INT External Interrupt Enable bit  
1 = Enables the RB0/INT external interrupt  
0 = Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1 = Enables the RB port change interrupt  
0 = Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1 = TMR0 register has overflowed (must be cleared in software)  
0 = TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1 = The RB0/INT external interrupt occurred (must be cleared in software)  
0 = The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0 = None of the RB7:RB4 pins have changed state  
DS30275A-page 18  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
2.2.2.4  
PIE1 REGISTER  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
This register contains the individual enable bits for the  
peripheral interrupts.  
FIGURE 2-6: PIE1 REGISTER (ADDRESS 8Ch)  
R/W-0  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
TMR2IE TMR1IE  
bit0  
R/W-0  
(1)  
PSPIE  
CCP1IE  
R
= Readable bit  
W = Writable bit  
bit7  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
PSPIE(1): Parallel Slave Port Read/Write Interrupt Enable bit  
1 = Enables the PSP read/write interrupt  
0 = Disables the PSP read/write interrupt  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
ADIE: A/D Converter Interrupt Enable bit  
1 = Enables the A/D interrupt  
0 = Disables the A/D interrupt  
RCIE: USART Receive Interrupt Enable bit  
1 = Enables the USART receive interrupt  
0 = Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1 = Enables the USART transmit interrupt  
0 = Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1 = Enables the SSP interrupt  
0 = Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1 = Enables the CCP1 interrupt  
0 = Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1 = Enables the TMR2 to PR2 match interrupt  
0 = Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1 = Enables the TMR1 overflow interrupt  
0 = Disables the TMR1 overflow interrupt  
Note 1: PSPIE is reserved on the 28-pin devices, always maintain this bit clear.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 19  
PIC16C77X  
2.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the individual flag bits for the  
peripheral interrupts.  
FIGURE 2-7: PIR1 REGISTER (ADDRESS 0Ch)  
R/W-0  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
TMR2IF TMR1IF  
bit0  
R/W-0  
(1)  
PSPIF  
RCIF  
TXIF  
CCP1IF  
R
= Readable bit  
W = Writable bit  
bit7  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
PSPIF(1): Parallel Slave Port Read/Write Interrupt Flag bit  
1 = A read or a write operation has taken place (must be cleared in software)  
0 = No read or write has occurred  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
ADIF: A/D Converter Interrupt Flag bit  
1 = An A/D conversion completed (must be cleared in software)  
0 = The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1 = The USART receive buffer is full (cleared by reading RCREG)  
0 = The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1 = The USART transmit buffer is empty (cleared by writing to TXREG)  
0 = The USART transmit buffer is full  
SSPIF: Synchronous Serial Port Interrupt Flag bit  
1 = The transmission/reception is complete (must be cleared in software)  
0 = Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1 = A TMR1 register capture occurred (must be cleared in software)  
0 = No TMR1 register capture occurred  
Compare Mode  
1 = A TMR1 register compare match occurred (must be cleared in software)  
0 = No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1 = TMR2 to PR2 match occurred (must be cleared in software)  
0 = No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1 = TMR1 register overflowed (must be cleared in software)  
0 = TMR1 register did not overflow  
Note 1: PSPIF is reserved on the 28-pin devices, always maintain this bit clear.  
DS30275A-page 20  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
2.2.2.6  
PIE2 REGISTER  
This register contains the individual enable bits for the  
CCP2, SSP bus collision, and low voltage detect inter-  
rupts.  
FIGURE 2-8: PIE2 REGISTER (ADDRESS 8Dh)  
R/W-0  
LVDIE  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
BCLIE  
CCP2IE  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7  
LVDIE: Low-voltage Detect Interrupt Enable bit  
1 = LVD Interrupt is enabled  
0 = LVD Interrupt is disabled  
bit 6-4: Unimplemented: Read as ’0’  
bit 3:  
BCLIE: Bus Collision Interrupt Enable bit  
1 = Bus Collision interrupt is enabled  
0 = Bus Collision interrupt is disabled  
bit 2-1: Unimplemented: Read as ’0’  
bit 0:  
CCP2IE: CCP2 Interrupt Enable bit  
1 = Enables the CCP2 interrupt  
0 = Disables the CCP2 interrupt  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 21  
PIC16C77X  
.
2.2.2.7  
PIR2 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the CCP2, SSP Bus Collision,  
and Low-voltage detect interrupt flag bits.  
FIGURE 2-9: PIR2 REGISTER (ADDRESS 0Dh)  
R/W-0  
LVDIF  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
BCLIF  
CCP2IF  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7:  
LVDIF: Low-voltage Detect Interrupt Flag bit  
1 = The supply voltage has fallen below the specified LVD voltage (must be cleared in software)  
0 = The supply voltage is greater than the specified LVD voltage  
bit 6-4: Unimplemented: Read as ’0’  
bit 3:  
BCLIF: Bus Collision Interrupt Flag bit  
1 = A bus collision has occurred while the SSP module configured in I2C Master was transmitting  
(must be cleared in software)  
0 = No bus collision occurred  
bit 2-1: Unimplemented: Read as ’0’  
bit 0:  
CCP2IF: CCP2 Interrupt Flag bit  
Capture Mode  
1 = A TMR1 register capture occurred (must be cleared in software)  
0 = No TMR1 register capture occurred  
Compare Mode  
1 = A TMR1 register compare match occurred (must be cleared in software)  
0 = No TMR1 register compare match occurred  
PWM Mode  
Unused  
DS30275A-page 22  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
2.2.2.8  
PCON REGISTER  
Note: BOR is unknown on Power-on Reset. It  
must then be set by the user and checked  
on subsequent resets to see if BOR is  
clear, indicating a brown-out has occurred.  
The BOR status bit is a don’t care and is  
not necessarily predictable if the brown-out  
circuit is disabled (by clearing the BODEN  
bit in the Configuration word).  
The Power Control (PCON) register contains a flag bit  
to allow differentiation between a Power-on Reset  
(POR) to an external MCLR Reset or WDT Reset.  
Those devices with brown-out detection circuitry con-  
tain an additional bit to differentiate a Brown-out Reset  
condition from a Power-on Reset condition.  
FIGURE 2-10: PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-1  
POR  
BOR  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7-2: Unimplemented: Read as ’0’  
bit 1:  
POR: Power-on Reset Status bit  
1 = No Power-on Reset occurred  
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0:  
BOR: Brown-out Reset Status bit  
1 = No Brown-out Reset occurred  
0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 23  
PIC16C77X  
2.3  
PCL and PCLATH  
2.4  
Program Memory Paging  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 13 bits  
wide. The low byte is called the PCL register. This reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<12:8>  
bits and is not directly readable or writable. All updates  
to the PCH register go through the PCLATH register.  
PIC16C77X devices are capable of addressing a con-  
tinuous 8K word block of program memory. The CALL  
and GOTOinstructions provide only 11 bits of address  
to allow branching within any 2K program memory  
page. When doing a CALL or GOTO instruction the  
upper  
2 bits of the address are provided by  
PCLATH<4:3>. When doing a CALL or GOTO instruc-  
tion, the user must ensure that the page select bits are  
programmed so that the desired program memory  
page is addressed. If a return from a CALLinstruction  
(or interrupt) is executed, the entire 13-bit PC is pushed  
onto the stack. Therefore, manipulation of the  
PCLATH<4:3> bits are not required for the return  
instructions (which POPs the address from the stack).  
2.3.1  
STACK  
The stack allows a combination of up to 8 program calls  
and interrupts to occur. The stack contains the return  
address from this branch in program execution.  
Midrange devices have an 8 level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable. The PC is PUSHed onto the stack  
when a CALL instruction is executed or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN, RETLW or a RETFIE instruction execution.  
PCLATH is not modified when the stack is PUSHed or  
POPed.  
After the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
DS30275A-page 24  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
The INDF register is not a physical register. Address-  
ing INDF actually addresses the register whose  
address is contained in the FSR register (FSR is a  
pointer). This is indirect addressing.  
EXAMPLE 2-1: HOW TO CLEAR RAM  
USING INDIRECT  
ADDRESSING  
movlw 0x20 ;initialize pointer  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF register indirectly results in a  
no-operation (although STATUS bits may be affected).  
movwf FSR  
clrf  
incf  
;
to RAM  
INDF ;clear INDF register  
FSR ;inc pointer  
NEXT  
btfss FSR,4 ;all done?  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-1.  
goto  
NEXT ;NO, clear next  
CONTINUE  
:
;YES, continue  
An effective 9-bit address is obtained by concatenating  
the 8-bit FSR register and the IRP bit (STATUS<7>), as  
shown in Figure 2-11.  
FIGURE 2-11: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
from opcode  
7
RP1:RP0  
6
0
0
IRP  
FSR register  
bank select  
location select  
bank select  
location select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
Data  
Memory(1)  
7Fh  
FFh  
17Fh  
1FFh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
Note 1: For register file map detail see Figure 2-2.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 25  
 
 
PIC16C77X  
NOTES:  
DS30275A-page 26  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
FIGURE 3-1: BLOCK DIAGRAM OF  
3.0  
I/O PORTS  
RA3:RA2 PINS  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Data  
bus  
D
Q
Q
VDD  
P
WR  
Port  
Additional information on I/O ports may be found in the  
PICmicro™  
(DS33023).  
Mid-Range  
Reference  
Manual,  
CK  
Data Latch  
3.1  
PORTA and the TRISA Register  
I/O pin(1)  
N
D
Q
PORTA is a 6-bit wide bi-directional port for the 40/44  
pin devices and is 5-bits wide for the 28-pin devices.  
PORTA<5> is not on the 28-pin devices. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (=1) will make the corresponding PORTA pin  
an input, i.e., put the corresponding output driver in a  
hi-impedance mode. Clearing a TRISA bit (=0) will  
make the corresponding PORTA pin an output, i.e., put  
the contents of the output latch on the selected pin.  
WR  
TRIS  
VSS  
Analog  
Q
CK  
input  
mode  
TRIS Latch  
TTL  
input  
buffer  
RD TRIS  
Q
D
Reading the PORTA register reads the status of the  
pins whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore a write to a port implies that the port pins are  
read, this value is modified, and then written to the port  
data latch.  
EN  
RD PORT  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The RA4/T0CKI  
pin is a Schmitt Trigger input and an open drain output.  
All other RA port pins have TTL input levels and full  
CMOS output drivers.  
To A/D Converter  
Other PORTA pins are multiplexed with analog inputs  
and analog VREF inputs and precision on-board refer-  
ences (VRL/VRH). The operation of each pin is  
selected by clearing/setting the control bits in the  
ADCON1 register (A/D Control Register1).  
VRH, VRL  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs and read as '0'.  
VRHOEN, VRLOEN  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Sense input for  
VRO+, VRO- amplifier  
EXAMPLE 3-1: INITIALIZING PORTA  
BCF  
STATUS, RP0  
;
CLRF  
PORTA  
; Initialize PORTA by  
; clearing output  
; data latches  
Note 1: I/O pins have protection diodes to VDD and  
VSS.  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; TRISA<7:6> are always  
; read as ’0’.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 27  
PIC16C77X  
FIGURE 3-2: BLOCK DIAGRAM OF  
RA1:RA0 AND RA5 PINS  
FIGURE 3-3: BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
Data  
bus  
Data  
bus  
D
Q
Q
D
Q
Q
WR  
PORT  
VDD  
P
CK  
WR  
Port  
I/O pin(1)  
N
CK  
Data Latch  
D
Q
VSS  
Data Latch  
WR  
TRIS  
I/O pin(1)  
N
D
Q
Schmitt  
Trigger  
input  
Q
CK  
WR  
TRIS  
TRIS Latch  
buffer  
VSS  
Analog  
Q
CK  
input  
mode  
RD TRIS  
TRIS Latch  
Q
D
TTL  
input  
buffer  
RD TRIS  
EN  
RD PORT  
Q
D
TMR0 clock input  
Note 1: I/O pin has protection diodes to VSS only.  
EN  
RD PORT  
To A/D Converter  
Note 1: I/O pins have protection diodes to VDD and  
VSS.  
TABLE 3-1  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer Function  
RA0/AN0  
bit0  
bit1  
bit2  
TTL  
TTL  
TTL  
Input/output or analog input0  
RA1/AN1  
Input/output or analog input1  
RA2/AN2/VREF-/VRL  
Input/output or analog input2 or VREF- input or internal reference  
voltage low  
RA3/AN3/VREF+/VRH  
RA4/T0CKI  
bit3  
bit4  
bit5  
TTL  
ST  
Input/output or analog input or VREF+ input or output of internal  
reference voltage high  
Input/output or external clock input for Timer0  
Output is open drain type  
RA5/AN4(1)  
TTL  
Input/output or analog input  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: RA5 is reserved on the 28-pin devices, maintain this bit clear.  
TABLE 3-2  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
05h  
85h  
9Fh  
PORTA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
(1)  
TRISA  
PORTA Data Direction Register  
ADCON1 ADFM VCFG2 VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0 0000 0000 0000 0000  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
Note 1: PORTA<5>, TRISA<5> are reserved on the 28-pin devices, maintain these bits clear.  
DS30275A-page 28  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
The RB1 pin is multiplexed with the SSP module slave  
select (RB1/SS).  
3.2  
PORTB and the TRISB Register  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (=1) will make the corresponding PORTB pin  
an input, i.e., put the corresponding output driver in a  
hi-impedance mode. Clearing a TRISB bit (=0) will  
make the corresponding PORTB pin an output, i.e., put  
the contents of the output latch on the selected pin.  
FIGURE 3-5: BLOCK DIAGRAM OF RB1/SS  
PIN  
VDD  
RBPU(2)  
weak  
pull-up  
P
Data Latch  
Data bus  
D
Q
EXAMPLE 3-1: INITIALIZING PORTB  
I/O  
pin(1)  
WR Port  
CK  
TRIS Latch  
BCF  
STATUS, RP0  
;
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
D
Q
TTL  
Input  
Buffer  
WR TRIS  
BSF  
STATUS, RP0 ; Select Bank 1  
CK  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF TRISB  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
RD TRIS  
RD Port  
Q
D
EN  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (OPTION_REG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
SS input  
Schmitt Trigger  
Buffer  
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
The RB0 pin is multiplexed with the external interrupt  
(RB0/INT).  
The RB2 pin is multiplexed with analog channel 8  
(RB2/AN8).  
FIGURE 3-4: BLOCK DIAGRAM OF RB0 PIN  
VDD  
RBPU(2)  
FIGURE 3-6: BLOCK DIAGRAM OF  
weak  
P
pull-up  
RB2/AN8 PIN  
Data Latch  
Data bus  
VDD  
D
Q
RBPU(2)  
weak  
P
I/O  
pin(1)  
pull-up  
WR Port  
CK  
TRIS Latch  
Data Latch  
Data bus  
D
Q
D
Q
I/O  
pin(1)  
TTL  
Input  
Buffer  
WR Port  
CK  
TRIS Latch  
WR TRIS  
CK  
D
Q
Analog  
input mode  
WR TRIS  
CK  
RD TRIS  
RD Port  
TTL  
Input  
Buffer  
Q
D
EN  
RD TRIS  
Q
D
RB0/INT  
EN  
RD Port  
Schmitt Trigger  
Buffer  
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
To A/D converter  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 29  
PIC16C77X  
The RB3 pin is multiplexed with analog channel 9 and  
the low voltage detect input (RB3/AN9/LVDIN)  
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e. any RB7:RB4 pin con-  
figured as an output is excluded from the interrupt on  
change comparison). The input pins (of RB7:RB4) are  
compared with the old value latched on the last read of  
PORTB. The “mismatch” outputs of RB7:RB4 are  
OR’ed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
FIGURE 3-7: BLOCK DIAGRAM OF  
RB3/AN9/LVDIN PIN  
VDD  
RBPU(2)  
weak  
pull-up  
P
Data Latch  
Data bus  
D
Q
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
I/O  
pin(1)  
WR Port  
CK  
TRIS Latch  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
D
Q
Analog  
WR TRIS  
CK  
input mode  
or LVD input  
mode  
b) Clear flag bit RBIF.  
TTL  
Input  
Buffer  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition, and  
allow flag bit RBIF to be cleared.  
RD TRIS  
Q
D
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
EN  
RD Port  
To A/D converter and LVD reference input  
RD Port  
FIGURE 3-8: BLOCK DIAGRAM OF  
Note 1: I/O pins have diode protection to VDD and VSS.  
RB7:RB4 PINS  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
VDD  
RBPU(2)  
weak  
pull-up  
P
Data Latch  
Data bus  
D
Q
I/O  
pin(1)  
WR Port  
CK  
TRIS Latch  
D
Q
WR TRIS  
TTL  
Input  
Buffer  
CK  
ST  
Buffer  
RD TRIS  
RD Port  
Latch  
Q
Q
D
EN  
Q1  
Set RBIF  
D
From other  
RB7:RB4 pins  
RD Port  
Q3  
EN  
RB7:RB6 in serial programming mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
DS30275A-page 30  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
TABLE 3-3  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RB0/INT  
bit0  
TTL/ST(1) Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
TTL/ST(3)  
RB1/SS  
RB2/AN8  
RB3/AN9/LVDIN  
RB4  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Input/output pin or SSP slave select. Internal software programmable  
weak pull-up.  
TTL  
TTL  
TTL  
TTL  
Input/output pin or analog input8. Internal software programmable  
weak pull-up.  
Input/output pin or analog input9 or Low-voltage detect input. Internal  
software programmable weak pull-up.  
Input/output pin (with interrupt on change). Internal software  
programmable weak pull-up.  
RB5  
Input/output pin (with interrupt on change). Internal software  
programmable weak pull-up.  
TTL/ST(2) Input/output pin (with interrupt on change). Internal software  
programmable weak pull-up. Serial programming clock.  
TTL/ST(2) Input/output pin (with interrupt on change). Internal software  
programmable weak pull-up. Serial programming data.  
RB6  
RB7  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when used as the SSP slave select.  
TABLE 3-4  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
06h, 106h PORTB  
86h, 186h TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx 11xx uuuu 11uu  
1111 1111 1111 1111  
1111 1111 1111 1111  
PORTB Data Direction Register  
T0SE  
81h, 181h OPTION_REG RBPU INTEDG T0CS  
9Fh ADCON1  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
PSA  
PS2  
PS1  
PS0  
ADFM VCFG2 VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0 0000 0000 0000 0000  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 31  
PIC16C77X  
3.3  
PORTC and the TRISC Register  
FIGURE 3-9: PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE)  
PORTC is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (=1) will make the corresponding PORTC pin  
an input, i.e., put the corresponding output driver in a  
hi-impedance mode. Clearing a TRISC bit (=0) will  
make the corresponding PORTC pin an output, i.e., put  
the contents of the output latch on the selected pin.  
PORT/PERIPHERAL Select(2)  
Peripheral Data Out  
VDD  
0
Data bus  
D
Q
Q
P
WR  
PORT  
1
CK  
PORTC is multiplexed with several peripheral functions  
(Table 3-5). PORTC pins have Schmitt Trigger input  
buffers.  
Data Latch  
I/O  
D
Q
Q
pin(1)  
WR  
TRIS  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-mod-  
ify-write instructions (BSF, BCF, XORWF) with TRISC  
as destination should be avoided. The user should refer  
to the corresponding peripheral section for the correct  
TRIS bit settings.  
CK  
N
TRIS Latch  
VSS  
Schmitt  
Trigger  
RD TRIS  
Peripheral  
OE(3)  
Q
D
EN  
RD  
PORT  
Peripheral input  
EXAMPLE 3-1: INITIALIZING PORTC  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port  
data and peripheral output.  
BCF  
STATUS, RP0 ; Select Bank 0  
CLRF  
PORTC ; Initialize PORTC by  
; clearing output  
; data latches  
3: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF TRISC  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
DS30275A-page 32  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
TABLE 3-5  
Name  
PORTC FUNCTIONS  
Bit# Buffer Type  
Function  
bit0  
bit1  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input  
Input/output port pin or Timer1 oscillator input or Capture2  
input/Compare2 output/PWM2 output  
RC2/CCP1  
bit2  
bit3  
ST  
ST  
Input/output port pin or Capture1 input/Compare1 output/PWM1  
output  
RC3 can also be the synchronous serial clock for both SPI and I2C  
modes.  
RC3/SCK/SCL  
RC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).  
Input/output port pin or Synchronous Serial Port data output  
RC4/SDI/SDA  
bit4  
ST  
RC5/SDO  
bit5  
bit6  
ST  
ST  
RC6/TX/CK  
Input/output port pin or USART Asynchronous transmit or  
Synchronous clock  
RC7/RX/DT  
bit7  
ST  
Input/output port pin or USART Asynchronous receive or  
Synchronous data  
Legend: ST = Schmitt Trigger input  
TABLE 3-6  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
07h  
87h  
PORTC  
TRISC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
PORTC Data Direction Register  
Legend: x= unknown, u= unchanged.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 33  
PIC16C77X  
3.4  
PORTD and TRISD Registers  
FIGURE 3-10: PORTD BLOCK DIAGRAM (IN  
I/O PORT MODE)  
This section is applicable to the 40/44-pin devices only.  
Data  
bus  
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output.  
D
Q
WR  
PORT  
I/O pin(1)  
CK  
Data Latch  
PORTD can be configured as an 8-bit wide micropro-  
cessor port (parallel slave port) by setting control bit  
PSPMODE (TRISE<4>). In this mode, the input buffers  
are TTL.  
D
Q
WR  
TRIS  
Schmitt  
Trigger  
input  
CK  
TRIS Latch  
buffer  
RD TRIS  
Q
D
EN  
RD PORT  
Note 1: I/O pins have protection diodes to VDD and VSS.  
TABLE 3-7  
Name  
PORTD FUNCTIONS  
Bit#  
Buffer Type  
Function  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin or parallel slave port bit0  
Input/output port pin or parallel slave port bit1  
Input/output port pin or parallel slave port bit2  
Input/output port pin or parallel slave port bit3  
Input/output port pin or parallel slave port bit4  
Input/output port pin or parallel slave port bit5  
Input/output port pin or parallel slave port bit6  
Input/output port pin or parallel slave port bit7  
Legend: ST = Schmitt Trigger input TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port Mode.  
TABLE 3-8  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
88h  
89h  
PORTD RD7 RD6 RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 -111 0000 -111  
TRISD PORTD Data Direction Register  
TRISE IBF OBF IBOV PSPMODE  
PORTE Data Direction Bits  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PORTD.  
DS30275A-page 34  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
3.5  
PORTE and TRISE Register  
FIGURE 3-11: PORTE BLOCK DIAGRAM (IN  
I/O PORT MODE)  
This section is applicable to the 40/44-pin devices only.  
Data  
bus  
PORTE has three pins RE0/RD/AN5, RE1/WR/AN6  
and RE2/CS/AN7, which are individually configurable  
as inputs or outputs. These pins have Schmitt Trigger  
input buffers.  
D
Q
WR  
PORT  
I/O pin(1)  
CK  
Data Latch  
I/O PORTE becomes control inputs for the micropro-  
cessor port when bit PSPMODE (TRISE<4>) is set. In  
this mode, the user must make sure that the  
TRISE<2:0> bits are set (pins are configured as digital  
inputs). Ensure ADCON1 is configured for digital I/O. In  
this mode the input buffers are TTL.  
D
Q
WR  
TRIS  
Schmitt  
Trigger  
input  
CK  
TRIS Latch  
buffer  
Figure 3-12 shows the TRISE register, which also con-  
trols the parallel slave port operation.  
RD TRIS  
PORTE pins are multiplexed with analog inputs. When  
selected as an analog input, these pins will read as ’0’s.  
Q
D
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
EN  
RD PORT  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note: On a Power-on Reset these pins are con-  
figured as analog inputs.  
FIGURE 3-12: TRISE REGISTER (ADDRESS 89h)  
R-0  
IBF  
R-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
OBF  
IBOV PSPMODE  
bit2  
bit1  
bit0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7 :  
bit 6:  
bit 5:  
bit 4:  
IBF: Input Buffer Full Status bit  
1 = A word has been received and is waiting to be read by the CPU  
0 = No word has been received  
OBF: Output Buffer Full Status bit  
1 = The output buffer still holds a previously written word  
0 = The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in microprocessor mode)  
1 = A write occurred when a previously input word has not been read (must be cleared in software)  
0 = No overflow occurred  
PSPMODE: Parallel Slave Port Mode Select bit  
1 = Parallel slave port mode  
0 = General purpose I/O mode  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
PORTE Data Direction Bits  
Bit2: Direction Control bit for pin RE2/CS/AN7  
1 = Input  
0 = Output  
bit 1:  
bit 0:  
Bit1: Direction Control bit for pin RE1/WR/AN6  
1 = Input  
0 = Output  
Bit0: Direction Control bit for pin RE0/RD/AN5  
1 = Input  
0 = Output  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 35  
 
PIC16C77X  
TABLE 3-9  
PORTE FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RE0/RD/AN5  
bit0  
ST/TTL(1)  
Input/output port pin or read control input in parallel slave port mode or  
analog input:  
RD  
1 = Not a read operation  
0 = Read operation. Reads PORTD register (if chip selected)  
RE1/WR/AN6  
RE2/CS/AN7  
bit1  
bit2  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin or write control input in parallel slave port mode or  
analog input:  
WR  
1 = Not a write operation  
0 = Write operation. Writes PORTD register (if chip selected)  
Input/output port pin or chip select control input in parallel slave port  
mode or analog input:  
CS  
1 = Device is not selected  
0 = Device is selected  
Legend: ST = Schmitt Trigger input TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.  
TABLE 3-10  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Addr Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
09h  
89h  
9Fh  
PORTE  
RE2  
RE1  
RE0  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
TRISE  
IBF  
OBF  
IBOV  
PSPMODE  
VCFG0  
PORTE Data Direction Bits  
ADCON1 ADFM VCFG2 VCFG1  
PCFG3 PCFG2 PCFG1 PCFG0 0000 0000 0000 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PORTE.  
DS30275A-page 36  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
3.6  
Parallel Slave Port  
FIGURE 3-13: PORTD AND PORTE BLOCK  
DIAGRAM (PARALLEL SLAVE  
PORT)  
The Parallel Slave Port is implemented on the  
40/44-pin devices only.  
PORTD operates as an 8-bit wide Parallel Slave Port,  
or microprocessor port when control bit PSPMODE  
(TRISE<4>) is set. In slave mode it is asynchronously  
readable and writable by the external world through RD  
control input pin RE0/RD and WR control input pin  
RE1/WR.  
Data bus  
D
Q
WR  
PORT  
RDx  
pin  
CK  
TTL  
Q
D
It can directly interface to an 8-bit microprocessor data  
bus. The external microprocessor can read or write the  
PORTD latch as an 8-bit latch. Setting bit PSPMODE  
enables port pin RE0/RD to be the RD input, RE1/WR  
to be the WR input and RE2/CS to be the CS (chip  
select) input. For this functionality, the corresponding  
data direction bits of the TRISE register (TRISE<2:0>)  
must be configured as inputs (set). The configuration  
bits, PCFG3:PCFG0 (ADCON1<3:0>) must be config-  
ured to make pins RE2:RE0 as digital I/O.  
RD  
PORT  
EN  
One bit of PORTD  
Set interrupt flag  
PSPIF (PIR1<7>)  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. A read from the PSP occurs  
when both the CS and RD lines are first detected low.  
Read  
RD  
CS  
WR  
TTL  
Chip Select  
TTL  
TTL  
Write  
Note: I/O pin has protection diodes to VDD and VSS.  
FIGURE 3-14: PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 37  
PIC16C77X  
FIGURE 3-15: PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 3-11  
REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
09h  
89h  
0Ch  
8Ch  
9Fh  
PORTD  
PORTE  
TRISE  
PIR1  
Port data latch when written: Port pins when read  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
RE2  
RE1  
RE0  
IBF  
OBF  
IBOV PSPMODE  
PORTE Data Direction Bits  
PSPIF ADIF  
PSPIE ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PCFG3 PCFG2 PCFG1 PCFG0 0000 0000 0000 0000  
PIE1  
ADCON1 ADFM VCFG2 VCFG1  
VCFG0  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.  
DS30275A-page 38  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
Additional information on external clock requirements  
is available in the PICmicro™ Mid-Range Reference  
Manual, (DS33023).  
4.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following fea-  
tures:  
4.2  
Prescaler  
• 8-bit timer/counter  
• Readable and writable  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer, respectively (Figure 4-2). For simplicity, this  
counter is being referred to as “prescaler” throughout  
this data sheet. Note that there is only one prescaler  
available which is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. Thus, a  
prescaler assignment for the Timer0 module means  
that there is no prescaler for the Watchdog Timer, and  
vice-versa.  
• Internal or external clock select  
• Edge select for external clock  
• 8-bit software programmable prescaler  
• Interrupt on overflow from FFh to 00h  
Figure 4-1 is a simplified block diagram of the Timer0  
module.  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
The prescaler is not readable or writable.  
The PSA and PS2:PS0 bits (OPTION_REG<3:0>)  
determine the prescaler assignment and prescale ratio.  
4.1  
Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In timer mode, the Timer0 mod-  
ule will increment every instruction cycle (without pres-  
caler). If the TMR0 register is written, the increment is  
inhibited for the following two instruction cycles. The  
user can work around this by writing an adjusted value  
to the TMR0 register.  
Setting bit PSA will assign the prescaler to the Watch-  
dog Timer (WDT). When the prescaler is assigned to  
the WDT, prescale values of 1:1, 1:2, ..., 1:128 are  
selectable.  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In counter mode, Timer0 will  
increment either on every rising or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed in below.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF 1, MOVWF 1,  
BSF  
1,x....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the WDT.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
FIGURE 4-1: TIMER0 BLOCK DIAGRAM  
Data bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
RA4/T0CKI  
pin  
PSout  
(2 cycle delay)  
T0SE  
3
Set interrupt  
flag bit T0IF  
on overflow  
PS2, PS1, PS0  
PSA  
T0CS  
Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION_REG<5:0>).  
2: The prescaler is shared with Watchdog Timer (refer to Figure 4-2 for detailed block diagram).  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 39  
 
PIC16C77X  
4.2.1  
SWITCHING PRESCALER ASSIGNMENT  
4.3  
Timer0 Interrupt  
The prescaler assignment is fully under software con-  
trol, i.e., it can be changed “on the fly” during program  
execution.  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module interrupt ser-  
vice routine before re-enabling this interrupt. The  
TMR0 interrupt cannot awaken the processor from  
SLEEP since the timer is shut off during SLEEP.  
Note: To avoid an unintended device RESET, a  
specific instruction sequence (shown in the  
PICmicro™ Mid-Range Reference Man-  
ual, DS33023) must be executed when  
changing the prescaler assignment from  
Timer0 to the WDT. This sequence must  
be followed even if the WDT is disabled.  
FIGURE 4-2: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (=Fosc/4)  
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).  
TABLE 4-1  
REGISTERS ASSOCIATED WITH TIMER0  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h,101h  
TMR0  
Timer0 module’s register  
GIE PEIE T0IE INTE  
xxxx xxxx uuuu uuuu  
RBIF 0000 000x 0000 000u  
0Bh,8Bh,  
10Bh,18Bh  
INTCON  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
81h,181h  
85h  
OPTION_REG RBPU INTEDG T0CS T0SE  
TRISA  
PS0  
1111 1111 1111 1111  
--11 1111 --11 1111  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
DS30275A-page 40  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
5.1  
Timer1 Operation  
5.0  
TIMER1 MODULE  
The Timer1 module timer/counter has the following fea-  
tures:  
Timer1 can operate in one of these modes:  
• As a timer  
• 16-bit timer/counter  
(Two 8-bit registers; TMR1H and TMR1L)  
• As a synchronous counter  
• As an asynchronous counter  
• Readable and writable (Both registers)  
• Internal or external clock select  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
• Interrupt on overflow from FFFFh to 0000h  
• Reset from CCP module trigger  
In timer mode, Timer1 increments every instruction  
cycle. In counter mode, it increments on every rising  
edge of the external clock input.  
Timer1 has a control register, shown in Figure 5-1.  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
Figure 5-3 is a simplified block diagram of the Timer1  
module.  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
Timer1 also has an internal “reset input”. This reset can  
be generated by the CCP module (Section 7.0).  
FIGURE 5-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit0  
bit7  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as ’0’  
bit 5-4: T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3:  
bit 2:  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1 = Oscillator is enabled  
0 = Oscillator is shut off  
Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1  
1 = Do not synchronize external clock input  
0 = Synchronize external clock input  
TMR1CS = 0  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1:  
bit 0:  
TMR1CS: Timer1 Clock Source Select bit  
1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0 = Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1 = Enables Timer1  
0 = Stops Timer1  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 41  
 
PIC16C77X  
5.1.1  
TIMER1 COUNTER OPERATION  
In this mode, Timer1 is being incremented via an exter-  
nal source. Increments occur on a rising edge. After  
Timer1 is enabled in counter mode, the module must  
first have a falling edge before the counter begins to  
increment.  
FIGURE 5-2: TIMER1 INCREMENTING EDGE  
T1CKI  
(Default high)  
T1CKI  
(Default low)  
Note: Arrows indicate counter increments.  
FIGURE 5-3: TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
clock input  
0
TMR1  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
2
SLEEP input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS30275A-page 42  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
5.2  
Timer1 Oscillator  
5.3  
Timer1 Interrupt  
A crystal oscillator circuit is built in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 5-1 shows the capacitor  
selection for the Timer1 oscillator.  
The TMR1 Register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 Interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit TMR1IF (PIR1<0>).  
This interrupt can be enabled/disabled by setting/clear-  
ing TMR1 interrupt enable bit TMR1IE (PIE1<0>).  
5.4  
Resetting Timer1 using a CCP Trigger  
Output  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
If the CCP module is configured in compare mode to  
generate a “special event trigger" (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer1 and start an A/D  
conversion (if the A/D module is enabled).  
TABLE 5-1  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature. If  
Timer1 is running in asynchronous counter mode, this  
reset operation may not work.  
These values are for design guidance only.  
Crystals Tested:  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1, the write will take prece-  
dence.  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P  
STD XTL 200.000 kHz  
± 20 PPM  
± 20 PPM  
Note 1: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair effectively becomes the period register for  
Timer1.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
TABLE 5-2  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh,18Bh  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
0Ch  
PIR1  
PIE1  
PSPIF(1)  
PSPIE(1)  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
8Ch  
0Eh  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register  
0Fh  
10h  
T1CON  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC TMR1CS TMR1ON  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer1 module.  
Note 1: These bits are reserved on the 28-pin devices, always maintain these bits clear.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 43  
 
PIC16C77X  
NOTES:  
DS30275A-page 44  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
6.1  
Timer2 Operation  
6.0  
TIMER2 MODULE  
The Timer2 module timer has the following features:  
Timer2 can be used as the PWM time-base for PWM  
mode of the CCP module.  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
The TMR2 register is readable and writable, and is  
cleared on any device reset.  
• Readable and writable (Both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match of PR2  
The input clock (FOSC/4) has a prescale option of 1:1,  
1:4  
or  
1:16,  
selected  
by  
control  
bits  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
• SSP module optional use of TMR2 output to gen-  
erate clock shift  
Timer2 has a control register, shown in Figure 6-1.  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Figure 6-2 is a simplified block diagram of the Timer2  
module.  
• a write to the TMR2 register  
• a write to the T2CON register  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
• any device reset (Power-on Reset, MCLR reset,  
Watchdog Timer reset, or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
FIGURE 6-1: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6-3: TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2:  
TMR2ON: Timer2 On bit  
1 = Timer2 is on  
0 = Timer2 is off  
bit 1-0: T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 45  
 
PIC16C77X  
6.2  
Timer2 Interrupt  
FIGURE 6-2: TIMER2 BLOCK DIAGRAM  
Sets flag  
TMR2  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is ini-  
tialized to FFh upon reset.  
output (1)  
bit TMR2IF  
Reset  
Prescaler  
1:1, 1:4, 1:16  
TMR2 reg  
FOSC/4  
Postscaler  
1:1 to 1:16  
2
Comparator  
6.3  
Output of TMR2  
EQ  
4
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module which optionally uses  
it to generate shift clock.  
PR2 reg  
Note 1: TMR2 register output can be software selected  
by the SSP Module as a baud clock.  
TABLE 6-1  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh,18Bh  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Ch  
8Ch  
11h  
12h  
92h  
PIR1  
PSPIF(1)  
PSPIE(1)  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
PIE1  
TMR2  
T2CON  
PR2  
Timer2 module’s register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
Legend:  
Note 1:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer2 module.  
These bits are reserved on the 28-pin, always maintain these bits clear.  
DS30275A-page 46  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
CCP2 Module  
7.0  
CAPTURE/COMPARE/PWM  
(CCP) MODULE(S)  
Capture/Compare/PWM Register2 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. All are readable and writable.  
Each CCP (Capture/Compare/PWM) module contains  
a 16-bit register which can operate as a 16-bit capture  
register, as a 16-bit compare register or as a PWM  
master/slave Duty Cycle register. Table 7-1 shows the  
timer resources of the CCP module modes.  
Additional information on the CCP module is available  
in the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
The operation of CCP1 is identical to that of CCP2, with  
the exception of the special trigger. Therefore, opera-  
tion of a CCP module in the following sections is  
described with respect to CCP1.  
TABLE 7-1  
CCP MODE - TIMER  
RESOURCE  
CCP Mode  
Timer Resource  
Table 7-2 shows the interaction of the CCP modules.  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
CCP1 Module  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
TABLE 7-2  
INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Compare  
PWM  
Capture  
Compare  
Compare  
PWM  
Same TMR1 time-base.  
The compare should be configured for the special event trigger, which clears TMR1.  
The compare(s) should be configured for the special event trigger, which clears TMR1.  
The PWMs will have the same frequency, and update rate (TMR2 interrupt).  
PWM  
Capture  
Compare  
None  
None  
PWM  
FIGURE 7-1: CCP1CON REGISTER (ADDRESS 17h) / CCP2CON REGISTER (ADDRESS 1Dh)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCPxX CCPxY CCPxM3 CCPxM2 CCPxM1 CCPxM0  
bit0  
R = Readable bit  
W = Writable bit  
bit7  
U = Unimplemented bit, read  
as ‘0’  
- n =Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: CCPxX:CCPxY: PWM Least Significant bits  
Capture Mode: Unused  
Compare Mode: Unused  
PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0: CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM off (resets CCPx module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCPxIF bit is set)  
1001= Compare mode, clear output on match (CCPxIF bit is set)  
1010= Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected)  
1011= Compare mode, trigger special event (CCPxIF bit is set; CCP1 resets TMR1; CCP2 resets TMR1  
and starts an A/D conversion (if A/D module is enabled))  
11xx= PWM mode  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 47  
 
 
PIC16C77X  
7.1.4  
CCP PRESCALER  
7.1  
Capture Mode  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in capture mode,  
the prescaler counter is cleared. This means that any  
reset will clear the prescaler counter.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1. An event is defined as:  
• every falling edge  
• every rising edge  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore the first capture may be from  
a non-zero prescaler. Example 7-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
• every 4th rising edge  
• every 16th rising edge  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value will be lost.  
EXAMPLE 7-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
7.1.1  
CCP PIN CONFIGURATION  
CLRF  
CCP1CON  
;Turn CCP module off  
MOVLW NEW_CAPT_PS ;Load the W reg with  
; the new prescaler  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
; mode value and CCP ON  
MOVWF CCP1CON  
;Load CCP1CON with this  
; value  
Note: If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
FIGURE 7-2: CAPTURE MODE OPERATION  
BLOCK DIAGRAM  
Set flag bit CCP1IF  
(PIR1<2>)  
Prescaler  
÷ 1, 4, 16  
RC2/CCP1  
Pin  
CCPR1H  
CCPR1L  
TMR1L  
Capture  
Enable  
and  
edge detect  
TMR1H  
CCP1CON<3:0>  
Q’s  
7.1.2  
TIMER1 MODE SELECTION  
Timer1 must be running in timer mode or synchronized  
counter mode for the CCP module to use the capture  
feature. In asynchronous counter mode, the capture  
operation may not work.  
7.1.3  
SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in operating mode.  
DS30275A-page 48  
Advance Information  
1999 Microchip Technology Inc.  
 
PIC16C77X  
7.2.1  
CCP PIN CONFIGURATION  
7.2  
Compare Mode  
The user must configure the RC2/CCP1 pin as an out-  
put by clearing the TRISC<2> bit.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
• driven High  
• driven Low  
• remains Unchanged  
7.2.2  
TIMER1 MODE SELECTION  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, interrupt flag bit CCP1IF is set.  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
FIGURE 7-3: COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
7.2.3  
SOFTWARE INTERRUPT MODE  
When generate software interrupt is chosen the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
Special event trigger will:  
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>),  
and set bit GO/DONE (ADCON0<2>)  
which starts an A/D conversion  
7.2.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
Special Event Trigger (CCP2 only)  
Set flag bit CCP1IF  
(PIR1<2>)  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
Comparator  
match  
RC2/CCP1  
Pin  
The special trigger output of CCP2 resets the TMR1  
register pair, and starts an A/D conversion (if the A/D  
module is enabled).  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
Note: The special event trigger from the CCP2  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
TABLE 7-3  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
87h  
0Eh  
0Fh  
10h  
15h  
16h  
17h  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
1111 1111 1111 1111  
PIE1  
TRISC  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
PORTC Data Direction Register  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Capture/Compare/PWM register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR1H Capture/Compare/PWM register1 (MSB)  
CCP1CON CCP1X CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as ’0’. Shaded cells are not used by Capture and Timer1.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin, always maintain these bits clear.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 49  
PIC16C77X  
7.3.1  
PWM PERIOD  
7.3  
PWM Mode  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
PWM period = [(PR2) + 1] 4 TOSC •  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
• TMR2 is cleared  
Figure 7-4 shows a simplified block diagram of the CCP  
module in PWM mode.  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 7.3.3.  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
Note: The Timer2 postscaler (see Section 6.0) is  
not used in the determination of the PWM  
frequency. The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
FIGURE 7-4: SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCP1CON<5:4>  
Duty cycle registers  
CCPR1L  
7.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available: the CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Q
R
S
Comparator  
TMR2  
RC2/CCP1  
(Note 1)  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
Tosc (TMR2 prescale value)  
TRISC<2>  
Comparator  
Clear Timer,  
CCP1 pin and  
latch D.C.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
PR2  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock  
or 2 bits of the prescaler to create 10-bit time-base.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
A PWM output (Figure 7-5) has a time base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period (1/  
period).  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
FIGURE 7-5: PWM OUTPUT  
Maximum PWM resolution (bits) for a given PWM  
frequency:  
Period  
FOSC  
log  
(
)
FPWM  
=
bits  
log(2)  
Duty Cycle  
TMR2 = PR2  
Note: If the PWM duty cycle value is longer than  
the PWM period the CCP1 pin will not be  
cleared.  
TMR2 = Duty Cycle  
TMR2 = PR2  
For an example PWM period and duty cycle calcu-  
lation, see the PICmicro™ Mid-Range Reference  
Manual, (DS33023).  
DS30275A-page 50  
Advance Information  
1999 Microchip Technology Inc.  
 
 
PIC16C77X  
7.3.3  
SET-UP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2 regis-  
ter.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP1 module for PWM operation.  
TABLE 7-4  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
5.5  
Maximum Resolution (bits)  
TABLE 7-5  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on:  
Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
all other  
resets  
0Bh,8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
87h  
11h  
92h  
12h  
15h  
16h  
17h  
PIR1  
PSPIF(1)  
PSPIE(1)  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
1111 1111 1111 1111  
PIE1  
TRISC  
TMR2  
PORTC Data Direction Register  
Timer2 module’s register  
0000 0000 0000 0000  
PR2  
Timer2 module’s period register  
1111 1111 1111 1111  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin, always maintain these bits clear.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 51  
PIC16C77X  
NOTES:  
DS30275A-page 52  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
8.0  
MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C™)  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 53  
PIC16C77X  
FIGURE 8-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)  
R/W-0 R/W-0  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
SMP  
CKE  
R/W  
R =Readable bit  
W =Writable bit  
bit7  
bit0  
U =Unimplemented bit, read  
as ‘0’  
- n =Value at POR reset  
bit 7:  
SMP: Sample bit  
SPI Master Mode  
1 = Input data sampled at end of data output time  
0 = Input data sampled at middle of data output time  
SPI Slave Mode  
SMP must be cleared when SPI is used in slave mode  
In I2C master or slave mode:  
1= Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0= Slew rate control enabled for high speed mode (400 kHz)  
bit 6:  
CKE: SPI Clock Edge Select (Figure 8-6, Figure 8-8, and Figure 8-9)  
CKP = 0  
1 = Data transmitted on rising edge of SCK  
0 = Data transmitted on falling edge of SCK  
CKP = 1  
1 = Data transmitted on falling edge of SCK  
0 = Data transmitted on rising edge of SCK  
bit 5:  
bit 4:  
D/A: Data/Address bit (I2C mode only)  
1 = Indicates that the last byte received or transmitted was data  
0 = Indicates that the last byte received or transmitted was address  
P: Stop bit  
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared)  
1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET)  
0 = Stop bit was not detected last  
bit 3:  
bit 2:  
S: Start bit  
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared)  
1 = Indicates that a start bit has been detected last (this bit is '0' on RESET)  
0 = Start bit was not detected last  
R/W: Read/Write bit information (I2C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next start bit, stop bit, or not ACK bit.  
In I2C slave mode:  
1 = Read  
0 = Write  
In I2C master mode:  
1 = Transmit is in progress  
0 = Transmit is not in progress.  
Or’ing this bit with SEN, RSEN, PEN, RCEN, or AKEN will indicate if the MSSP is in IDLE mode  
bit 1:  
bit 0:  
UA: Update Address (10-bit I2C mode only)  
1 = Indicates that the user needs to update the address in the SSPADD register  
0 = Address does not need to be updated  
BF: Buffer Full Status bit  
Receive (SPI and I2C modes)  
1 = Receive complete, SSPBUF is full  
0 = Receive not complete, SSPBUF is empty  
Transmit (I2C mode only)  
1 = Data Transmit in progress (does not include the ACK and stop bits), SSPBUF is full  
0 = Data Transmit complete (does not include the ACK and stop bits), SSPBUF is empty  
DS30275A-page 54  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
FIGURE 8-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WCOL SSPOV SSPEN  
bit7  
SSPM3 SSPM2 SSPM1 SSPM0  
bit0  
R = Readable bit  
W = Writable bit  
- n =Value at POR reset  
bit 7:  
WCOL: Write Collision Detect bit  
Master Mode:  
1 = A write to the SSPBUF register was attempted while the I2C conditions were not valid for a  
transmission to be started  
0 = No collision  
Slave Mode:  
1 = The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0 = No collision  
bit 6:  
SSPOV: Receive Overflow Indicator bit  
In SPI mode  
1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow,  
the data in SSPSR is lost. Overflow can only occur in slave mode. In slave mode, the user must read the  
SSPBUF, even if only transmitting data, to avoid setting overflow. In master mode, the overflow bit is not  
set since each new reception (and transmission) is initiated by writing to the SSPBUF register. (Must be  
cleared in software).  
0 = No overflow  
In I2C mode  
1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don’t care"  
in transmit mode. (Must be cleared in software).  
0 = No overflow  
bit 5:  
SSPEN: Synchronous Serial Port Enable bit  
In both modes, when enabled, these pins must be properly configured as input or output.  
In SPI mode  
1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
In I2C mode  
1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
bit 4:  
CKP: Clock Polarity Select bit  
In SPI mode  
1 = Idle state for clock is a high level  
0 = Idle state for clock is a low level  
In I2C slave mode  
SCK release control  
1 = Enable clock  
0 = Holds clock low (clock stretch) (Used to ensure data setup time)  
In I2C master mode  
Unused in this mode  
bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI master mode, clock = FOSC/4  
0001= SPI master mode, clock = FOSC/16  
0010= SPI master mode, clock = FOSC/64  
0011= SPI master mode, clock = TMR2 output/2  
0100= SPI slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin  
0110= I2C slave mode, 7-bit address  
0111= I2C slave mode, 10-bit address  
1000= I2C master mode, clock = FOSC / (4 * (SSPADD+1) )  
1xx1= Reserved  
1x1x= Reserved  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 55  
PIC16C77X  
FIGURE 8-3: SSPCON2: SYNC SERIAL PORT CONTROL REGISTER2 (ADDRESS 91h)  
R/W-0  
GCEN  
bit7  
R/W-0  
R/W-0  
AKDT  
R/W-0  
AKEN  
R/W-0  
RCEN  
R/W-0 R/W-0 R/W-0  
AKSTAT  
PEN  
RSEN  
SEN  
R =Readable bit  
W =Writable bit  
U =Unimplemented bit,  
Read as ‘0’  
bit0  
- n =Value at POR reset  
bit 7:  
bit 6:  
GCEN: General Call Enable bit (In I2C slave mode only)  
1 = Enable interrupt when a general call address (0000h) is received in the SSPSR.  
0 = General call address disabled.  
AKSTAT: Acknowledge Status bit (In I2C master mode only)  
In master transmit mode:  
1 = Acknowledge was not received from slave  
0 = Acknowledge was received from slave  
bit 5:  
bit 4:  
AKDT: Acknowledge Data bit (In I2C master mode only)  
In master receive mode:  
Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.  
1 = Not Acknowledge  
0 = Acknowledge  
AKEN: Acknowledge Sequence Enable bit (In I2C master mode only).  
In master receive mode:  
1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit AKDT data bit. Automatically  
cleared by hardware.  
0 = Acknowledge sequence idle  
bit 3:  
RCEN: Receive Enable bit (In I2C master mode only).  
1 = Enables Receive mode for I2C  
0 = Receive idle  
bit 2:  
PEN: Stop Condition Enable bit (In I2C master mode only).  
SCK release control  
1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0 = Stop condition idle  
bit 1: RSEN: Repeated Start Condition Enabled bit (In I2C master mode only)  
1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0 = Repeated Start condition idle.  
bit 0: SEN: Start Condition Enabled bit (In I2C master mode only)  
1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0 = Start condition idle.  
Note: For bits AKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the idle mode, this bit may not be  
set (no spooling), and the SSPBUF may not be written (or writes to the SSPBUF are disabled).  
DS30275A-page 56  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
8.1  
SPI Mode  
FIGURE 8-4: MSSP BLOCK DIAGRAM  
(SPI MODE)  
The SPI mode allows 8-bits of data to be synchro-  
nously transmitted and received simultaneously. All  
four modes of SPI are supported. To accomplish com-  
munication, typically three pins are used:  
Internal  
data bus  
Read  
Write  
• Serial Data Out (SDO)  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
SSPBUF reg  
SSPSR reg  
Additionally, a fourth pin may be used when in a slave  
mode of operation:  
shift  
clock  
SDI  
• Slave Select (SS)  
bit0  
8.1.1  
OPERATION  
SDO  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
Control  
Enable  
SS  
SS  
Edge  
Select  
• Master Mode (SCK is the clock output)  
• Slave Mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
• Data input sample phase  
2
Clock Select  
(middle or end of data output time)  
• Clock edge  
(output data on rising/falling edge of SCK)  
• Clock Rate (Master mode only)  
• Slave Select Mode (Slave mode only)  
SSPM3:SSPM0  
SMP:CKE  
2
4
TMR2 output  
2
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Figure 8-4 shows the block diagram of the MSSP mod-  
ule when in SPI mode.  
SCK  
Data to TX/RX in SSPSR  
Data direction bit  
The MSSP consists of a transmit/receive Shift Register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR,  
until the received data is ready. Once the 8-bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then the buffer full detect bit BF  
(SSPSTAT<0>) and the interrupt flag bit SSPIF  
(PIR1<3>) are set. This double buffering of the  
received data (SSPBUF) allows the next byte to start  
reception before reading the data that was just  
received. Any write to the SSPBUF register during  
transmission/reception of data will be ignored, and the  
write collision detect bit WCOL (SSPCON<7>) will be  
set. User software must clear the WCOL bit so that it  
can be determined if the following write(s) to the SSP-  
BUF register completed successfully.  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
full bit, BF (SSPSTAT<0>), indicates when the SSP-  
BUF has been loaded with the received data (transmis-  
sion is complete). When the SSPBUF is read, bit BF is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. Generally the MSSP Interrupt is used to  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 57  
 
PIC16C77X  
determine when the transmission/reception has com-  
pleted. The SSPBUF must be read and/or written. If the  
interrupt method is not going to be used, then software  
polling can be done to ensure that a write collision does  
not occur. Example 8-1 shows the loading of the  
SSPBUF (SSPSR) for data transmission.  
SDI, SDO, SCK, and SS pins as serial port pins. For the  
pins to behave as the serial port function, some must  
have their data direction bits (in the TRIS register)  
appropriately programmed. That is:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> cleared  
• SCK (Master mode) must have TRISC<3>  
cleared  
EXAMPLE 8-1: LOADING THE SSPBUF  
(SSPSR) REGISTER  
• SCK (Slave mode) must have TRISC<3> set  
• SS must have TRISA<5> set  
BSF  
STATUS, RP0  
;Specify Bank 1  
;Has data been  
;received  
LOOP BTFSS SSPSTAT, BF  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value.  
;(transmit  
;complete)?  
GOTO LOOP  
;No  
BCF  
STATUS, RP0  
;Specify Bank 0  
;W reg = contents  
;of SSPBUF  
8.1.3  
TYPICAL CONNECTION  
MOVF SSPBUF, W  
Figure 8-5 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge, and latched on the opposite edge  
of the clock. Both processors should be programmed to  
same Clock Polarity (CKP), then both controllers would  
send and receive data at the same time. Whether the  
data is meaningful (or dummy data) depends on the  
application software. This leads to three scenarios for  
data transmission:  
MOVWF RXDATA  
MOVF TXDATA, W  
;Save in user RAM  
;W reg = contents  
; of TXDATA  
MOVWF SSPBUF  
;New data to xmit  
The SSPSR is not directly readable or writable, and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the MSSP status register (SSPSTAT) indi-  
cates the various status conditions.  
8.1.2  
ENABLING SPI I/O  
• Master sends data — Slave sends dummy data  
• Master sends data — Slave sends data  
To enable the serial port, MSSP Enable bit, SSPEN  
(SSPCON<5>) must be set. To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
isters, and then set bit SSPEN. This configures the  
• Master sends dummy data — Slave sends data  
FIGURE 8-5: SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM3:SSPM0 = 00xxb  
SPI Slave SSPM3:SSPM0 = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
Shift Register  
(SSPSR)  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
DS30275A-page 58  
Advance Information  
1999 Microchip Technology Inc.  
 
 
PIC16C77X  
8.1.4  
MASTER MODE  
Figure 8-6, Figure 8-8, and Figure 8-9 where the MSb  
is transmitted first. In master mode, the SPI clock rate  
(bit rate) is user programmable to be one of the follow-  
ing:  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 8-5) is to broad-  
cast data by the software protocol.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
In master mode the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI  
module is only going to receive, the SDO output could  
be disabled (programmed as an input). The SSPSR  
register will continue to shift in the signal present on the  
SDI pin at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “line activity monitor”.  
This allows a maximum bit clock frequency (at 20 MHz)  
of 8.25 MHz.  
Figure 8-6 shows the waveforms for Master mode.  
When CKE = 1, the SDO data is valid before there is a  
clock edge on SCK. The change of the input sample is  
shown based on the state of the SMP bit. The time  
when the SSPBUF is loaded with the received data is  
shown.  
The clock polarity is selected by appropriately program-  
ming bit CKP (SSPCON<4>). This then would give  
waveforms for SPI communication as shown in  
FIGURE 8-6: SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 clock  
modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit6  
bit6  
bit2  
bit2  
bit5  
bit5  
bit4  
bit4  
bit1  
bit1  
bit0  
bit0  
SDO  
(CKE = 0)  
bit7  
bit7  
bit3  
bit3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit0  
bit7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 59  
 
PIC16C77X  
8.1.5  
SLAVE MODE  
SDO pin is no longer driven, even if in the middle of  
a transmitted byte, and becomes a floating output.  
External pull-up/ pull-down resistors may be desirable,  
depending on the application.  
In slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched the interrupt flag bit SSPIF (PIR1<3>)  
is set.  
Note: When the SPI module is in Slave Mode  
with SS pin control enabled, (SSP-  
CON<3:0> = 0100) the SPI module will  
reset if the SS pin is set to VDD.  
While in slave mode the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
Note: If the SPI is used in Slave Mode with  
CKE = ’1’, then SS pin control must be  
enabled.  
While in sleep mode, the slave can transmit/receive  
data. When a byte is received the device will wake-up  
from sleep.  
When the SPI module resets, the bit counter is forced  
to 0. This can be done by either forcing the SS pin to a  
high level or clearing the SSPEN bit.  
8.1.6  
SLAVE SELECT SYNCHRONIZATION  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver the SDO pin can be configured as  
an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
The SS pin allows a synchronous slave mode. The  
SPI must be in slave mode with SS pin control  
enabled (SSPCON<3:0> = 0100). The pin must not  
be driven low for the SS pin to function as an input.  
TRISA<5> must be set. When the SS pin is low,  
transmission and reception are enabled and the  
SDO pin is driven. When the SS pin goes high, the  
FIGURE 8-7: SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit7  
bit7  
bit0  
bit0  
SDO  
bit7  
SDI  
(SMP = 0)  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS30275A-page 60  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
FIGURE 8-8: SPI SLAVE MODE WAVEFORM (CKE = 0)  
SS  
optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
SDO  
bit7  
bit3  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 8-9: SPI SLAVE MODE WAVEFORM (CKE = 1)  
SS  
not optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
bit0  
SDO  
bit7  
bit7  
bit3  
SDI  
(SMP = 0)  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 61  
PIC16C77X  
8.1.7  
SLEEP OPERATION  
8.1.8  
EFFECTS OF A RESET  
In master mode all module clocks are halted, and the  
transmission/reception will remain in that state until the  
device wakes from sleep. After the device returns to  
normal mode, the module will continue to transmit/  
receive data.  
A reset disables the MSSP module and terminates the  
current transfer.  
In slave mode, the SPI transmit/receive shift register  
operates asynchronously to the device. This allows the  
device to be placed in sleep mode, and data to be  
shifted into the SPI transmit/receive shift register.  
When all 8-bits have been received, the MSSP interrupt  
flag bit will be set and if enabled will wake the device  
from sleep.  
TABLE 8-1  
REGISTERS ASSOCIATED WITH SPI OPERATION  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR MCLR, WDT  
0Bh, 8Bh,  
10Bh,18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
13h  
14h  
94h  
PIR1  
PSPIF(1)  
PSPIE(1)  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
PIE1  
SSPBUF  
SSPCON  
SSPSTAT  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0 0000 0000 0000 0000  
BF  
0000 0000 0000 0000  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as ’0’. Shaded cells are not used by the SSP in SPI mode.  
Note 1: These bits are reserved on the 28-pin devices, always maintain these bits clear.  
DS30275A-page 62  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
8.2  
MSSP I2C Operation  
FIGURE 8-11: I2C MASTER MODE BLOCK  
DIAGRAM  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on start and stop bits in  
hardware to determine a free bus (multi-master func-  
tion). The MSSP module implements the standard  
mode specifications as well as 7-bit and 10-bit address-  
ing.  
Internal  
data bus  
Read  
Write  
SSPADD<6:0>  
7
Baud Rate Generator  
Refer to Application Note AN578, "Use of the SSP  
Module in the I 2C Multi-Master Environment."  
SSPBUF reg  
SSPSR reg  
SCL  
A "glitch" filter is on the SCL and SDA pins when the pin  
is an input. This filter operates in both the 100 kHz and  
400 kHz modes. In the 100 kHz mode, when these pins  
are an output, there is a slew rate control of the pin that  
is independant of device frequency.  
shift  
clock  
SDA  
MSb  
LSb  
Addr Match  
FIGURE 8-10: I2C SLAVE MODE BLOCK  
DIAGRAM  
Match detect  
SSPADD reg  
Internal  
data bus  
Set/Clear S bit  
and  
Read  
Write  
Start and Stop bit  
detect / generate  
Clear/Set P bit  
(SSPSTAT reg)  
SSPBUF reg  
SSPSR reg  
SCL  
SDA  
and Set SSPIF  
shift  
clock  
Two pins are used for data transfer. These are the SCL  
pin, which is the clock, and the SDA pin, which is the  
data. The SDA and SCL pins that are automatically  
configured when the I2C mode is enabled. The SSP  
module functions are enabled by setting SSP Enable  
bit SSPEN (SSPCON<5>).  
MSb  
LSb  
Addr Match  
Match detect  
SSPADD reg  
The MSSP module has six registers for I2C operation.  
They are the:  
• SSP Control Register (SSPCON)  
• SSP Control Register2 (SSPCON2)  
• SSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• SSP Shift Register (SSPSR) - Not directly acces-  
sible  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit detect  
• SSP Address Register (SSPADD)  
The SSPCON register allows control of the I2C opera-  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
• I2C Master mode, clock = OSC/4 (SSPADD +1)  
Before selecting any I2C mode, the SCL and SDA pins  
must be programmed to inputs by setting the appropri-  
ate TRIS bits. Selecting an I2C mode, by setting the  
SSPEN bit, enables the SCL and SDA pins to be used  
as the clock and data lines in I2C mode.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 63  
PIC16C77X  
The SSPSTAT register gives the status of the data  
transfer. This information includes detection of a  
START (S) or STOP (P) bit, specifies if the received  
byte was data or address if the next byte is the comple-  
tion of 10-bit address, and if this will be a read or write  
data transfer.  
8.2.1.1  
ADDRESSING  
Once the MSSP module has been enabled, it waits for  
a START condition to occur. Following the START con-  
dition, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
SSPBUF is the register to which the transfer data is  
written to or read from. The SSPSR register shifts the  
data in or out of the device. In receive operations, the  
SSPBUF and SSPSR create a doubled buffered  
receiver. This allows reception of the next byte to begin  
before reading the last byte of received data. When the  
complete byte is received, it is transferred to the  
SSPBUF register and flag bit SSPIF is set. If another  
complete byte is received before the SSPBUF register  
is read, a receiver overflow has occurred and bit  
SSPOV (SSPCON<6>) is set and the byte in the  
SSPSR is lost.  
a) The SSPSR register value is loaded into the  
SSPBUF register on the falling edge of the 8th  
SCL pulse.  
b) The buffer full bit, BF is set on the falling edge of  
the 8th SCL pulse.  
c) An ACK pulse is generated.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) - on the falling  
edge of the 9th SCL pulse.  
The SSPADD register holds the slave address. In 10-bit  
mode, the user needs to write the high byte of the  
address (1111 0 A9 A8 0). Following the high byte  
address match, the low byte of the address needs to be  
loaded (A7:A0).  
In 10-bit address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write  
so the slave device will receive the second address  
byte. For a 10-bit address the first byte would equal  
1111 0 A9 A8 0’, where A9 and A8 are the two MSbs  
of the address. The sequence of events for a 10-bit  
address is as follows, with steps 7- 9 for slave-transmit-  
ter:  
8.2.1  
SLAVE MODE  
In slave mode, the SCL and SDA pins must be config-  
ured as inputs. The MSSP module will override the  
input state with the output data when required (slave-  
transmitter).  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the acknowledge (ACK) pulse, and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
1. Receive first (high) byte of Address (bits SSPIF,  
BF, and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
There are certain conditions that will cause the MSSP  
module not to give this ACK pulse. These are if either  
(or both):  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of Address (bits  
SSPIF, BF, and UA are set).  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
5. Update the SSPADD register with the first (high)  
byte of Address. This will clear bit UA and  
release the SCL line.  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
If the BF bit is set, the SSPSR register value is not  
loaded into the SSPBUF, but bit SSPIF and SSPOV are  
set. Table 8-2 shows what happens when a data trans-  
fer byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow condi-  
tion. Flag bit BF is cleared by reading the SSPBUF reg-  
ister while bit SSPOV is cleared through software.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
7. Receive Repeated Start condition.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
The SCL clock input must have a minimum high and  
low time for proper operation. The high and low times  
of the I2C specification as well as the requirement of the  
MSSP module is shown in timing parameter #100 and  
parameter #101 of the Electrical Specifications.  
Note: Following the Repeated Start condition  
(step 7) in 10-bit mode, the user only  
needs to match the first 7-bit address. The  
user does not update the SSPADD for the  
second half of the address.  
DS30275A-page 64  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
8.2.1.2  
SLAVE RECEPTION  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the received byte.  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
Note: The SSPBUF will be loaded if the SSPOV  
bit is set and the BF flag is cleared. If a  
read of the SSPBUF was performed, but  
the user did not clear the state of the  
SSPOV bit before the next receive  
occured. The ACK is not sent and the SSP-  
BUF is updated.  
When the address byte overflow condition exists, then  
no acknowledge (ACK) pulse is given. An overflow con-  
dition is defined as either bit BF (SSPSTAT<0>) is set  
or bit SSPOV (SSPCON<6>) is set.  
TABLE 8-2  
DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
Generate ACK  
Pulse  
(SSP Interrupt occurs  
if enabled)  
BF  
SSPOV  
SSPSR SSPBUF  
0
1
1
0
0
0
1
1
Yes  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
8.2.1.3  
SLAVE TRANSMISSION  
An SSP interrupt is generated for each data transfer  
byte. The SSPIF flag bit must be cleared in software,  
and the SSPSTAT register is used to determine the sta-  
tus of the byte tranfer. The SSPIF flag bit is set on the  
falling edge of the ninth clock pulse.  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit, and the SCL pin is held low.  
The transmit data must be loaded into the SSPBUF  
register, which also loads the SSPSR register. Then the  
SCL pin should be enabled by setting bit CKP (SSP-  
CON<4>). The master must monitor the SCL pin prior  
to asserting another clock pulse. The slave devices  
may be holding off the master by stretching the clock.  
The eight data bits are shifted out on the falling edge of  
the SCL input. This ensures that the SDA signal is valid  
during the SCL high time (Figure 8-13).  
As a slave-transmitter, the ACK pulse from the master-  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line was high (not ACK), then the  
data transfer is complete. When the not ACK is latched  
by the slave, the slave logic is reset and the slave then  
monitors for another occurrence of the START bit. If the  
SDA line was low (ACK), the transmit data must be  
loaded into the SSPBUF register, which also loads the  
SSPSR register. Then the SCL pin should be enabled  
by setting the CKP bit.  
FIGURE 8-12: I2C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
R/W=0  
ACK  
Not  
Receiving Address  
A7 A6 A5 A4  
Receiving Data  
Receiving Data  
ACK  
ACK  
SDA  
A3 A2 A1  
D7 D6 D5 D4 D3 D2  
D0  
8
D7 D6  
D5  
D4 D3  
D2  
D0  
8
D1  
7
D1  
7
3
9
7
1
2
4
9
5
4
3
6
9
5
6
1
2
3
6
1
2
4
8
5
P
SCL  
S
SSPIF  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 65  
PIC16C77X  
FIGURE 8-13: I2C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
R/W = 0  
Transmitting Data Not ACK  
D7 D6 D5 D4 D3 D2 D1 D0  
R/W = 1  
Receiving Address  
ACK  
SDA  
SCL  
A7 A6 A5 A4 A3 A2 A1  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
SSPIF  
BF (SSPSTAT<0>)  
CKP (SSPCON<4>)  
cleared in software  
SSPBUF is written in software  
From SSP interrupt  
service routine  
Set bit after writing to SSPBUF  
(the SSPBUF must be written-to  
before the CKP bit can be set)  
DS30275A-page 66  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
2
FIGURE 8-14: I C SLAVE-TRANSMITTER (10-BIT ADDRESS)  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 67  
PIC16C77X  
2
FIGURE 8-15: I C SLAVE-RECEIVER (10-BIT ADDRESS)  
DS30275A-page 68  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
8.2.2  
GENERAL CALL ADDRESS SUPPORT  
If the general call address matches, the SSPSR is  
transfered to the SSPBUF, the BF flag is set (eighth bit),  
and on the falling edge of the ninth bit (ACK bit) the  
SSPIF flag is set.  
The addressing procedure for the I2C bus is such that  
the first byte after the START condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address which  
can address all devices. When this address is used, all  
devices should, in theory, respond with an acknowl-  
edge.  
When the interrupt is serviced. The source for the  
interrupt can be checked by reading the contents of the  
SSPBUF to determine if the address was device spe-  
cific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match, and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when GCEN is set while the slave is config-  
ured in 10-bit address mode, then the second half of  
the address is not necessary, the UA bit will not be set,  
and the slave will begin receiving data after the  
acknowledge (Figure 8-16).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all 0’s with R/W = 0  
The general call address is recognized when the Gen-  
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>  
is set). Following a start-bit detect, 8-bits are shifted  
into SSPSR and the address is compared against  
SSPADD, and is also compared to the general call  
address, fixed in hardware.  
FIGURE 8-16: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT MODE)  
Address is compared to General Call Address  
after ACK, set interrupt flag  
Receiving data  
D5 D4 D3 D2 D1  
ACK  
9
R/W = 0  
ACK  
General Call Address  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
S
SSPIF  
BF  
(SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV  
(SSPCON<6>)  
’0’  
’1’  
GCEN  
(SSPCON2<7>)  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 69  
 
PIC16C77X  
8.2.3  
SLEEP OPERATION  
8.2.4  
EFFECTS OF A RESET  
While in sleep mode, the I2C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs wake the processor from  
sleep (if the SSP interrupt is enabled).  
A reset diables the SSP module and terminates the  
current transfer.  
TABLE 8-3  
REGISTERS ASSOCIATED WITH I2C OPERATION  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR MCLR, WDT  
0Bh, 8Bh,  
10Bh,18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
0Dh  
8Dh  
13h  
14h  
91h  
94h  
PIR1  
PSPIF(1)  
PSPIE(1)  
LVDIF  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
BCLIF  
BCLIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
CCP2IF 0--- 0--0 0--- 0--0  
CCP2IE 0--- 0--0 0--- 0--0  
xxxx xxxx uuuu uuuu  
PIE1  
PIR2  
PIE2  
LVDIE  
SSPBUF  
SSPCON  
SSPCON2  
SSPSTAT  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL  
GCEN  
SMP  
SSPOV  
AKSTAT  
CKE  
SSPEN  
AKDT  
D/A  
CKP  
AKEN  
P
SSPM3  
RCEN  
S
SSPM2  
PEN  
SSPM1  
RSEN  
UA  
SSPM0 0000 0000 0000 0000  
SEN  
0000 0000 0000 0000  
R/W  
BF  
0000 0000 0000 0000  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the SSP in I2C mode.  
Note 1: These bits are reserved on the 28-pin devices, always maintain these bits clear.  
2: These bits are reserved on these devices, always maintain these bits clear.  
DS30275A-page 70  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
8.2.5  
MASTER MODE  
In master mode, the SCL and SDA lines are manipu-  
lated by the MSSP hardware.  
Master mode of operation is supported by interrupt  
generation on the detection of the START and STOP  
conditions. The STOP (P) and START (S) bits are  
cleared from a reset or when the MSSP module is dis-  
abled. Control of the I2C bus may be taken when the P  
bit is set, or the bus is idle with both the S and P bits  
clear.  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP Interrupt if enabled):  
• START condition  
• STOP condition  
• Data transfer byte transmitted/received  
• Acknowledge transmit  
• Repeated Start  
2
FIGURE 8-17: SSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
data bus  
SSPM3:SSPM0,  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
rate  
generator  
SDA  
shift  
clock  
SDA in  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit detect,  
Stop bit detect  
Write collision detect  
Clock Arbitration  
State counter for  
end of XMIT/RCV  
SCL in  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset AKSTAT, PEN (SSPCON2)  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 71  
PIC16C77X  
8.2.6  
MULTI-MASTER OPERATION  
8.2.7.4  
I2C MASTER MODE OPERATION  
In multi-master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a reset or  
when the MSSP module is disabled. Control of the I2C  
bus may be taken when bit P (SSPSTAT<4>) is set, or  
the bus is idle with both the S and P bits clear. When  
the bus is busy, enabling the SSP Interrupt will gener-  
ate the interrupt when the STOP condition occurs.  
The master device generates all of the serial clock  
pulses and the START and STOP conditions. A trans-  
fer is ended with a STOP condition or with a Repeated  
Start condition. Since the Repeated Start condition is  
also the beginning of the next serial transfer, the I2C  
bus will not be released.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic '0'. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an acknowledge bit is received. START and STOP  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
In multi-master operation, the SDA line must be moni-  
tored, for abitration, to see if the signal level is the  
expected output level. This check is performed in hard-  
ware, with the result placed in the BCLIF bit.  
The states where arbitration can be lost are:  
• Address Transfer  
In Master receive mode the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case the R/W bit will be  
logic '1'. Thus the first byte transmitted is a 7-bit slave  
address followed by a '1' to indicate receive bit. Serial  
data is received via SDA while SCL outputs the serial  
clock. Serial data is received 8 bits at a time. After each  
byte is received, an acknowledge bit is transmitted.  
START and STOP conditions indicate the beginning  
and end of transmission.  
• Data Transfer  
• A Start Condition  
• A Repeated Start Condition  
• An Acknowledge Condition  
8.2.7  
I2C MASTER OPERATION SUPPORT  
Master Mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON and by setting the  
SSPEN bit. Once master mode is enabled, the user  
has six options.  
The baud rate generator used for SPI mode operation  
is now used to set the SCL clock frequency for either  
100 kHz, 400 kHz, or 1 MHz I2C operation. The baud  
rate generator reload value is contained in the lower 7  
bits of the SSPADD register. The baud rate generator  
will automatically begin counting on a write to the SSP-  
BUF. Once the given operation is complete (i.e. trans-  
mission of the last data bit is followed by ACK), the  
internal clock will automatically stop counting and the  
SCL pin will remain in its last state  
- Assert a start condition on SDA and SCL.  
- Assert a Repeated Start condition on SDA and  
SCL.  
- Write to the SSPBUF register initiating trans-  
mission of data/address.  
- Generate a stop condition on SDA and SCL.  
- Configure the I2C port to receive data.  
- Generate an Acknowledge condition at the end  
of a received byte of data.  
A typical transmit sequence would go as follows:  
Note: The MSSP Module, when configured in I2C  
Master Mode, does not allow queueing of  
events. For instance: The user is not  
allowed to initiate a start condition, and  
immediately write the SSPBUF register to  
initiate transmission before the START  
condition is complete. In this case the  
SSPBUF will not be written to, and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
a) The user generates a Start Condition by setting  
the START enable bit (SEN) in SSPCON2.  
b) SSPIF is set. The module will wait the required  
start time before any other operation takes  
place.  
c) The user loads the SSPBUF with address to  
transmit.  
d) Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
e) The MSSP Module shifts in the ACK bit from the  
slave device, and writes its value into the  
SSPCON2 register ( SSPCON2<6>).  
f) The module generates an interrupt at the end of  
the ninth clock cycle by setting SSPIF.  
g) The user loads the SSPBUF with eight bits of  
data.  
h) DATA is shifted out the SDA pin until all 8 bits  
are transmitted.  
DS30275A-page 72  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
i) The MSSP Module shifts in the ACK bit from the  
slave device, and writes its value into the  
SSPCON2 register ( SSPCON2<6>).  
In I2C master mode, the BRG is reloaded automatically.  
If Clock Arbitration is taking place for instance, the BRG  
will be reloaded when the SCL pin is sampled high  
(Figure 8-19).  
j) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
FIGURE 8-18: BAUD RATE GENERATOR  
BLOCK DIAGRAM  
k) The user generates a STOP condition by setting  
the STOP enable bit PEN in SSPCON2.  
SSPM3:SSPM0  
SSPADD<6:0>  
l) Interrupt is generated once the STOP condition  
is complete.  
8.2.8  
BAUD RATE GENERATOR  
SSPM3:SSPM0  
SCL  
Reload  
Control  
Reload  
In I2C master mode, the reload value for the BRG is  
located in the lower 7 bits of the SSPADD register  
(Figure 8-18). When the BRG is loaded with this value,  
the BRG counts down to 0 and stops until another  
reload has taken place. The BRG count is decremented  
twice per instruction cycle (TCY) on the Q2 and Q4  
clock.  
Fosc/4  
BRG Down Counter  
CLKOUT  
FIGURE 8-19: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL allowed to transition high  
SCL de-asserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements  
(on Q2 and Q4 cycles)  
BRG  
value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place, and BRG starts its count.  
BRG  
reload  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 73  
 
 
PIC16C77X  
8.2.9  
I2C MASTER MODE START CONDITION  
TIMING  
8.2.9.5  
WCOL STATUS FLAG  
If the user writes the SSPBUF when an START  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
To initiate a START condition, the user sets the start  
condition enable bit, SEN (SSPCON2<0>). If the SDA  
and SCL pins are sampled high, the baud rate genera-  
tor is re-loaded with the contents of SSPADD<6:0>,  
and starts its count. If SCL and SDA are both sampled  
high when the baud rate generator times out (TBRG),  
the SDA pin is driven low. The action of the SDA being  
driven low while SCL is high is the START condition,  
and causes the S bit (SSPSTAT<3>) to be set. Follow-  
ing this, the baud rate generator is reloaded with the  
contents of SSPADD<6:0> and resumes its count.  
When the baud rate generator times out (TBRG), the  
SEN bit (SSPCON2<0>) will be automatically cleared  
by hardware, the baud rate generator is suspended  
leaving the SDA line held low, and the START condition  
is complete.  
Note: Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the START  
condition is complete.  
Note: If at the beginning of START condition the  
SDA and SCL pins are already sampled  
low, or if during the START condition the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs, the  
Bus Collision Interrupt Flag (BCLIF) is set,  
the START condition is aborted, and the  
I2C module is reset into its IDLE state.  
FIGURE 8-20: FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
Write to SEN bit occurs here.  
SDA = 1,  
At completion of start bit,  
Hardware clears SEN bit  
and sets SSPIF bit  
SCL = 1  
TBRG  
TBRG  
Write to SSPBUF occurs here  
2nd Bit  
1st Bit  
TBRG  
SDA  
SCL  
TBRG  
S
DS30275A-page 74  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
FIGURE 8-21: START CONDITION FLOWCHART  
SSPEN = 1,  
SSPCON<3:0> = 1000  
Idle Mode  
SEN (SSPCON2<0> = 1)  
Bus collision detected,  
Set BCLIF,  
No  
SDA = 1?  
Release SCL,  
Clear SEN  
SCL = 1?  
Yes  
Load BRG with  
SSPADD<6:0>  
No  
No  
Yes  
No  
BRG  
Rollover?  
SCL= 0?  
SDA = 0?  
Yes  
Yes  
Reset BRG  
Force SDA = 0,  
Load BRG with  
SSPADD<6:0>,  
Set S bit.  
BRG  
rollover?  
No  
No  
SCL = 0?  
Yes  
Yes  
Reset BRG  
Force SCL = 0,  
Start Condition Done,  
Clear SEN  
and set SSPIF  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 75  
PIC16C77X  
8.2.10 I2C MASTER MODE REPEATED START  
CONDITION TIMING  
Immediately following the SSPIF bit getting set, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode) or eight bits of data (7-bit  
mode).  
A Repeated Start condition occurs when the RSEN bit  
(SSPCON2<1>) is programmed high and the I2C mod-  
ule is in the idle state. When the RSEN bit is set, the  
SCL pin is asserted low. When the SCL pin is sampled  
low, the baud rate generator is loaded with the contents  
of SSPADD<6:0>, and begins counting. The SDA pin  
is released (brought high) for one baud rate generator  
count (TBRG). When the baud rate generator times out,  
if SDA is sampled high, the SCL pin will be de-asserted  
(brought high). When SCL is sampled high the baud  
rate generator is re-loaded with the contents of  
SSPADD<6:0> and begins counting. SDA and SCL  
must be sampled high for one TBRG. This action is then  
followed by assertion of the SDA pin (SDA is low) for  
one TBRG while SCL is high. Following this, the RSEN  
bit in the SSPCON2 register will be automatically  
cleared, and the baud rate generator is not reloaded,  
leaving the SDA pin held low. As soon as a start con-  
dition is detected on the SDA and SCL pins, the S bit  
(SSPSTAT<3>) will be set. The SSPIF bit will not be set  
until the baud rate generator has timed-out.  
8.2.10.6 WCOL STATUS FLAG  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
Note: Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
Note 2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes from low to  
high.  
• SCL goes low before SDA is asserted low. This  
may indicate that another master is attempting  
to transmit a data "1".  
FIGURE 8-22: REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
occurs here.  
SDA = 1,  
SCL(no change)  
SDA = 1,  
SCL = 1  
At completion of start bit,  
hardware clear RSEN bit  
and set SSPIF  
TBRG  
TBRG  
TBRG  
1st Bit  
SDA  
Write to SSPBUF occurs here.  
TBRG  
Falling edge of ninth clock  
End of Xmit  
SCL  
TBRG  
Sr = Repeated Start  
DS30275A-page 76  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
FIGURE 8-23: REPEATED START CONDITION FLOWCHART (PAGE 1)  
Start  
Idle Mode,  
SSPEN = 1,  
SSPCON<3:0> = 1000  
B
RSEN = 1  
Force SCL = 0  
No  
SCL = 0?  
Yes  
Release SDA,  
Load BRG with  
SSPADD<6:0>  
No  
BRG  
rollover?  
Yes  
Release SCL  
(Clock Arbitration)  
No  
SCL = 1?  
Yes  
Bus Collision,  
Set BCLIF,  
Release SDA,  
Clear RSEN  
No  
SDA = 1?  
Yes  
Load BRG with  
SSPADD<6:0>  
C
A
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 77  
PIC16C77X  
FIGURE 8-24: REPEATED START CONDITION FLOWCHART (PAGE 2)  
B
C
A
Yes  
No  
No  
No  
BRG  
rollover?  
SDA = 0?  
SCL = 1?  
Yes  
Yes  
Reset BRG  
Force SDA = 0,  
Load BRG with  
SSPADD<6:0>  
Set S  
No  
No  
BRG  
rollover?  
SCL = ’0’?  
Yes  
Yes  
Force SCL = 0,  
Reset BRG  
Repeated Start  
condition done,  
Clear RSEN,  
Set SSPIF.  
DS30275A-page 78  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
8.2.11 I2C MASTER MODE TRANSMISSION  
8.2.11.7 BF STATUS FLAG  
Transmission of a data byte, a 7-bit address, or either  
half of a 10-bit address is accomplished by simply writ-  
ing a value to SSPBUF register. This action will set the  
buffer full flag (BF) and allow the baud rate generator to  
begin counting and start the next transmission. Each  
bit of address/data will be shifted out onto the SDA pin  
after the falling edge of SCL is asserted (see data hold  
time spec). SCL is held low for one baud rate gener-  
ator roll over count (TBRG). Data should be valid before  
SCL is released high (see Data setup time spec).  
When the SCL pin is released high, it is held that way  
for TBRG, the data on the SDA pin must remain stable  
for that duration and some hold time after the next fall-  
ing edge of SCL. After the eighth bit is shifted out (the  
falling edge of the eighth clock), the BF flag is cleared  
and the master releases SDA allowing the slave device  
being addressed to respond with an ACK bit during the  
ninth bit time, if an address match occurs or if data was  
received properly. The status of ACK is read into the  
AKDT on the falling edge of the ninth clock. If the mas-  
ter receives an acknowledge, the acknowledge status  
bit (AKSTAT) is cleared. If not, the bit is set. After the  
ninth clock the SSPIF is set, and the master clock  
(baud rate generator) is suspended until the next data  
byte is loaded into the SSPBUF leaving SCL low and  
SDA unchanged (Figure 8-26).  
In transmit mode, the BF bit (SSPSTAT<0>) is set when  
the CPU writes to SSPBUF and is cleared when all 8  
bits are shifted out.  
8.2.11.8 WCOL STATUS FLAG  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e. SSPSR is still shifting out a  
data byte), then WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared in software.  
8.2.11.9 AKSTAT STATUS FLAG  
In transmit mode, the AKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an acknowledge  
(ACK = 0), and is set when the slave does not acknowl-  
edge (ACK = 1). A slave sends an acknowledge when  
it has recognized its address (including a general call),  
or when the slave has properly received its data.  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL until all seven  
address bits and the R/W bit are completed. On the fall-  
ing edge of the eighth clock the master will de-assert  
the SDA pin allowing the slave to respond with an  
acknowledge. On the falling edge of the ninth clock the  
master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the AKSTAT status bit (SSPCON2<6>). Fol-  
lowing the falling edge of the ninth clock transmission  
of the address, the SSPIF is set, the BF flag is cleared,  
and the baud rate generator is turned off until another  
write to the SSPBUF takes place, holding SCL low and  
allowing SDA to float.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 79  
PIC16C77X  
FIGURE 8-25: MASTER TRANSMIT FLOWCHART  
Idle Mode  
Write SSPBUF  
Num_Clocks = 0,  
BF = 1  
Force SCL = 0  
Release SDA so  
slave can drive ACK,  
Force BF = 0  
Yes  
Num_Clocks  
= 8?  
No  
Load BRG with  
SSPADD<6:0>,  
start BRG count  
Load BRG with  
SSPADD<6:0>,  
start BRG count,  
SDA = Current Data bit  
No  
BRG  
rollover?  
BRG  
No  
rollover?  
Yes  
Yes  
Force SCL = 1,  
Stop BRG  
Stop BRG,  
Force SCL = 1  
(Clock Arbitration)  
No  
(Clock Arbitration)  
SCL = 1?  
Yes  
No  
SCL = 1?  
Yes  
Read SDA and place into  
AKSTAT bit (SSPCON2<6>)  
Bus collision detected  
No  
SDA =  
Data bit?  
Set BCLIF, hold prescale off,  
Clear XMIT enable  
Load BRG with  
SSPADD<6:0>,  
count high time  
Yes  
Load BRG with  
SSPADD<6:0>,  
count SCL high time  
No  
Rollover?  
Yes  
No  
No  
No  
SDA =  
Data bit?  
BRG  
rollover?  
Yes  
SCL = 0?  
Force SCL = 0,  
Set SSPIF  
Yes  
Yes  
Reset BRG  
Num_Clocks  
= Num_Clocks + 1  
DS30275A-page 80  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
2
FIGURE 8-26: I C MASTER MODE TIMING (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 81  
PIC16C77X  
8.2.12 I2C MASTER MODE RECEPTION  
8.2.12.10 BF STATUS FLAG  
Master mode reception is enabled by programming the  
receive enable bit, RCEN (SSPCON2<3>).  
In receive operation, BF is set when an address or data  
byte is loaded into SSPBUF from SSPSR. It is cleared  
when SSPBUF is read.  
Note: The SSP Module must be in an IDLE  
STATE before the RCEN bit is set, or the  
RCEN bit will be disregarded.  
8.2.12.11 SSPOV STATUS FLAG  
In receive operation, SSPOV is set when 8 bits are  
received into the SSPSR, and the BF flag is already set  
from a previous reception.  
The baud rate generator begins counting, and on each  
rollover, the state of the SCL pin changes (high to low/  
low to high) and data is shifted into the SSPSR. After  
the falling edge of the eighth clock, the receive enable  
flag is automatically cleared, the contents of the  
SSPSR are loaded into the SSPBUF, the BF flag is set,  
the SSPIF is set, and the baud rate generator is sus-  
pended from counting, holding SCL low. The SSP is  
now in IDLE state, awaiting the next command. When  
the buffer is read by the CPU, the BF flag is automati-  
cally cleared. The user can then send an acknowledge  
bit at the end of reception, by setting the acknowledge  
sequence enable bit, AKEN (SSPCON2<4>).  
8.2.12.12 WCOL STATUS FLAG  
If the user writes the SSPBUF when a receive is  
already in progress (i.e. SSPSR is still shifting in a data  
byte), then WCOL is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
DS30275A-page 82  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
FIGURE 8-27: MASTER RECEIVER FLOWCHART  
Idle mode  
RCEN = 1  
Num_Clocks = 0,  
Release SDA  
Force SCL=0,  
Load BRG w/  
SSPADD<6:0>,  
start count  
BRG  
No  
rollover?  
Yes  
Release SCL  
(Clock Arbitration)  
No  
SCL = 1?  
Yes  
Sample SDA,  
Shift data into SSPSR  
Load BRG with  
SSPADD<6:0>,  
start count.  
No  
No  
BRG  
rollover?  
SCL = 0?  
Yes  
Yes  
Num_Clocks  
= Num_Clocks + 1  
No  
Num_Clocks  
= 8?  
Yes  
Force SCL = 0,  
Set SSPIF,  
Set BF.  
Move contents of SSPSR  
into SSPBUF,  
Clear RCEN.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 83  
PIC16C77X  
2
FIGURE 8-28: I C MASTER MODE TIMING (RECEPTION 7-BIT ADDRESS)  
DS30275A-page 84  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
8.2.13 ACKNOWLEDGE SEQUENCE TIMING  
rate generator counts for TBRG . The SCL pin is then  
pulled low. Following this, the AKEN bit is automati-  
cally cleared, the baud rate generator is turned off, and  
the SSP module then goes into IDLE mode. (Figure 8-  
29)  
An acknowledge sequence is enabled by setting the  
acknowledge  
sequence  
enable  
bit,  
AKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the acknowledge data  
bit is presented on the SDA pin. If the user wishes to  
generate an acknowledge, then the AKDT bit should be  
cleared. If not, the user should set the AKDT bit before  
starting an acknowledge sequence. The baud rate  
generator then counts for one rollover period (TBRG),  
and the SCL pin is de-asserted (pulled high). When the  
SCL pin is sampled high (clock arbitration), the baud  
8.2.13.13 WCOL STATUS FLAG  
If the user writes the SSPBUF when an acknowledege  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 8-29: ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
Write to SSPCON2  
AKEN automatically cleared  
AKEN = 1, AKDT = 0  
TBRG  
TBRG  
SDA  
SCL  
D0  
ACK  
8
9
SSPIF  
Cleared in  
software  
Set SSPIF at the end  
of receive  
Cleared in  
software  
Set SSPIF at the end  
of acknowledge sequence  
Note: TBRG= one baud rate generator period.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 85  
 
PIC16C77X  
FIGURE 8-30: ACKNOWLEDGE FLOWCHART  
Idle mode  
Set AKEN  
Force SCL = 0  
BRG  
Yes  
rollover?  
No  
No  
SCL = 0?  
Yes  
Force SCL = 0,  
Clear AKEN,  
Set SSPIF  
Yes  
SCL = 0?  
No  
Reset BRG  
Drive AKDT bit  
(SSPCON2<5>)  
onto SDA pin,  
Load BRG with  
SSPADD<6:0>,  
start count.  
No  
AKDT = 1?  
Yes  
No  
BRG  
rollover?  
Yes  
SDA = 1?  
No  
Yes  
Force SCL = 1  
Bus collision detected,  
Set BCLIF,  
Release SCL,  
Clear AKEN  
No  
SCL = 1?  
Yes  
(Clock Arbitration)  
Load BRG with  
SSPADD <6:0>,  
start count.  
DS30275A-page 86  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
8.2.14 STOP CONDITION TIMING  
while SCL is high, the P bit (SSPSTAT<4>) is set. A  
TBRG later the PEN bit is cleared and the SSPIF bit is  
set (Figure 8-31).  
A stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit PEN (SSPCON2<2>). At the end of a receive/trans-  
mit the SCL line is held low after the falling edge of the  
ninth clock. When the PEN bit is set, the master will  
assert the SDA line low . When the SDA line is sam-  
pled low, the baud rate generator is reloaded and  
counts down to 0. When the baud rate generator times  
out, the SCL pin will be brought high, and one TBRG  
(baud rate generator rollover count) later, the SDA pin  
will be de-asserted. When the SDA pin is sampled high  
Whenever the firmware decides to take control of the  
bus, it will first determine if the bus is busy by checking  
the S and P bits in the SSPSTAT register. If the bus is  
busy, then the CPU can be interrupted (notified) when  
a Stop bit is detected (i.e. bus is free).  
8.2.14.14 WCOL STATUS FLAG  
If the user writes the SSPBUF when a STOP sequence  
is in progress, then WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
FIGURE 8-31: STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1 for TBRG, followed by SDA = 1 for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set  
Write to SSPCON2  
Set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
ACK  
SDA  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup stop condition.  
Note: TBRG = one baud rate generator period.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 87  
 
PIC16C77X  
FIGURE 8-32: STOP CONDITION FLOWCHART  
Idle Mode,  
SSPEN = 1,  
SSPCON<3:0> = 1000  
PEN = 1  
Start BRG  
Force SDA = 0  
SCL doesn’t change  
No  
BRG  
rollover?  
Yes  
No  
SDA = 0?  
Release SDA,  
Start BRG  
Yes  
Start BRG  
No  
BRG  
rollover?  
No  
BRG  
Yes  
rollover?  
Bus Collision detected,  
Set BCLIF,  
No  
Yes  
P bit Set?  
Yes  
Clear PEN  
De-assert SCL,  
SCL = 1  
SDA going from  
0 to 1 while SCL = 1  
(Clock Arbitration)  
Set SSPIF,  
No  
Stop Condition done  
PEN cleared.  
SCL = 1?  
Yes  
DS30275A-page 88  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
8.2.15 CLOCK ARBITRATION  
8.2.16 SLEEP OPERATION  
Clock arbitration occurs when the master, during any  
receive, transmit, or repeated start/stop condition, de-  
asserts the SCL pin (SCL allowed to float high). When  
the SCL pin is allowed to float high, the baud rate gen-  
erator (BRG) is suspended from counting until the SCL  
pin is actually sampled high. When the SCL pin is sam-  
pled high, the baud rate generator is reloaded with the  
contents of SSPADD<6:0> and begins counting. This  
ensures that the SCL high time will always be at least  
one BRG rollover count in the event that the clock is  
held low by an external device (Figure 8-33).  
While in sleep mode, the I2C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs wake the processor from  
sleep ( if the SSP interrupt is enabled).  
8.2.17 EFFECTS OF A RESET  
A reset disables the SSP module and terminates the  
current transfer.  
FIGURE 8-33: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE  
BRG overflow,  
Release SCL,  
If SCL = 1 Load BRG with  
SSPADD<6:0>, and start count  
to measure high time interval  
BRG overflow occurs,  
Release SCL, Slave device holds SCL low.  
SCL = 1 BRG starts counting  
clock high interval.  
SCL  
SDA  
SCL line sampled once every machine cycle (T 4).  
Hold off BRG until SCL is sampled high.  
osc  
TBRG  
TBRG  
TBRG  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 89  
 
PIC16C77X  
8.2.18 MULTI -MASTER COMMUNICATION, BUS  
COLLISION, AND BUS ARBITRATION  
If a START, Repeated Start, STOP, or Acknowledge  
condition was in progress when the bus collision  
occurred, the condition is aborted, the SDA and SCL  
lines are de-asserted, and the respective control bits in  
the SSPCON2 register are cleared. When the user  
services the bus collision interrupt service routine, and  
if the I2C bus is free, the user can resume communica-  
tion by asserting a START condition.  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a ’1’ on SDA by letting SDA float high and  
another master asserts a ’0’. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a ’1’ and the data sampled on the SDA pin = ’0’,  
then a bus collision has taken place. The master will  
set the Bus Collision Interrupt Flag, BCLIF and reset  
the I2C port to its IDLE state. (Figure 8-34).  
The Master will continue to monitor the SDA and SCL  
pins, and if a STOP condition occurs, the SSPIF bit will  
be set.  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the trans-  
mitter left off when bus collision occurred.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are de-asserted, and  
the SSPBUF can be written to. When the user services  
the bus collision interrupt service routine, and if the I2C  
bus is free, the user can resume communication by  
asserting a START condition.  
In multi-master mode, the interrupt generation on the  
detection of start and stop conditions allows the deter-  
mination of when the bus is free. Control of the I2C bus  
can be taken when the P bit is set in the SSPSTAT reg-  
ister, or the bus is idle and the S and P bits are cleared.  
FIGURE 8-34: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high  
data doesn’t match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt.  
BCLIF  
DS30275A-page 90  
Advance Information  
1999 Microchip Technology Inc.  
 
PIC16C77X  
8.2.18.15 BUS COLLISION DURING A START  
CONDITION  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data ’1’ during the START condition.  
During a START condition, a bus collision occurs if:  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 8-37). If however a ’1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The baud rate generator is then reloaded and  
counts down to 0, and during this time, if the SCL pins  
is sampled as ’0’, a bus collision does not occur. At the  
end of the BRG count the SCL pin is asserted low.  
a) SDA or SCL are sampled low at the beginning of  
the START condition (Figure 8-35).  
b) SCL is sampled low before SDA is asserted low.  
(Figure 8-36).  
During a START condition both the SDA and the SCL  
pins are monitored.  
If:  
Note: The reason that bus collision is not a factor  
during a START condition is that no two  
bus masters can assert a START condition  
at the exact same time. Therefore, one  
master will always assert SDA before the  
other. This condition does not cause a bus  
collision because the two masters must be  
allowed to arbitrate the first address follow-  
ing the START condition, and if the  
address is the same, arbitration must be  
allowed to continue into the data portion,  
REPEATED START, or STOP conditions.  
the SDA pin is already low  
or the SCL pin is already low,  
then:  
the START condition is aborted,  
and the BCLIF flag is set,  
and the SSP module is reset to its IDLE state  
(Figure 8-35).  
The START condition begins with the SDA and SCL  
pins de-asserted. When the SDA pin is sampled high,  
the baud rate generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
FIGURE 8-35: BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1  
SDA  
SCL  
Set SEN, enable start  
condition if SDA = 1, SCL=1  
SEN cleared automatically because of bus collision.  
SSP module reset into idle state.  
SEN  
SDA sampled low before  
START condition.  
Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1  
BCLIF  
SSPIF and BCLIF are  
cleared in software.  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 91  
 
PIC16C77X  
FIGURE 8-36: BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
SCL  
SEN  
Set SEN, enable start  
sequence if SDA = 1, SCL = 1  
SCL = 0 before SDA = 0,  
Bus collision occurs, Set BCLIF.  
SCL = 0 before BRG time out,  
Bus collision occurs, Set BCLIF.  
BCLIF  
Interrupts cleared  
in software.  
S
’0’  
’0’  
’0’  
’0’  
SSPIF  
FIGURE 8-37: BRG RESET DUE TO SDA COLLISION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
TBRG  
Set SSPIF  
Less than TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA  
SDA  
SCL  
S
SCL pulled low after BRG  
Timeout  
SEN  
Set SEN, enable start  
sequence if SDA = 1, SCL = 1  
’0’  
BCLIF  
S
SSPIF  
Interrupts cleared  
in software.  
SDA = 0, SCL = 1  
Set SSPIF  
DS30275A-page 92  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
8.2.18.16 BUS COLLISION DURING A REPEATED  
START CONDITION  
however SDA is sampled high then the BRG is  
reloaded and begins counting. If SDA goes from high  
to low before the BRG times out, no bus collision  
occurs, because no two masters can assert SDA at  
exactly the same time.  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
If, however, SCL goes from high to low before the BRG  
times out and SDA has not already been asserted, then  
a bus collision occurs. In this case, another master is  
attempting to transmit a data ’1’ during the Repeated  
Start condition.  
b) SCL goes low before SDA is asserted low, indi-  
cating that another master is attempting to trans-  
mit a data ’1’.  
When the user de-asserts SDA and the pin is allowed  
to float high, the BRG is loaded with SSPADD<6:0>,  
and counts down to 0. The SCL pin is then de-  
asserted, and when sampled high, the SDA pin is sam-  
pled. If SDA is low, a bus collision has occurred (i.e.  
another master is attempting to transmit a data ’0’). If  
If at the end of the BRG time out both SCL and SDA are  
still high, the SDA pin is driven low, the BRG is  
reloaded, and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is com-  
plete (Figure 8-38).  
FIGURE 8-38: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL  
RSEN  
BCLIF  
Cleared in software  
’0’  
’0’  
’0’  
S
’0’  
SSPIF  
FIGURE 8-39: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
BCLIF  
RSEN  
Set BCLIF. Release SDA and SCL  
Interrupt cleared  
in software  
’0’  
’0’  
’0’  
’0’  
S
SSPIF  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 93  
 
PIC16C77X  
8.2.18.17 BUS COLLISION DURING A STOP  
CONDITION  
The STOP condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allow to float.  
When the pin is sampled high (clock arbitration), the  
baud rate generator is loaded with SSPADD<6:0> and  
counts down to 0. After the BRG times out SDA is sam-  
pled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ’0’. If the SCL pin is sampled low before  
SDA is allowed to float high, a bus collision occurs.  
This is another case of another master attempting to  
drive a data ’0’ (Figure 8-40).  
Bus collision occurs during a STOP condition if:  
a) After the SDA pin has been de-asserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is de-asserted, SCL is sam-  
pled low before SDA goes high.  
FIGURE 8-40: BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
Set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
’0’  
’0’  
’0’  
’0’  
SSPIF  
FIGURE 8-41: BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high  
Set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
’0’  
’0’  
SSPIF  
DS30275A-page 94  
Advance Information  
1999 Microchip Technology Inc.  
 
PIC16C77X  
Connection Considerations for I2C  
Bus  
example, with a supply voltage of VDD = 5V+10% and  
VOL max = 0.4V at 3 mA, Rp min = (5.5-0.4)/0.003 =  
1.7 kΩ. VDD as a function of Rp is shown in Figure 8-42.  
The desired noise margin of 0.1VDD for the low level  
limits the maximum value of Rs. Series resistors are  
optional and used to improve ESD susceptibility.  
8.3  
For standard-mode I2C bus devices, the values of  
resistors Rp Rs in Figure 8-42 depends on the following  
parameters  
• Supply voltage  
• Bus capacitance  
• Number of connected devices  
(input current + leakage current).  
The bus capacitance is the total capacitance of wire,  
connections, and pins. This capacitance limits the max-  
imum value of Rp due to the specified rise time  
(Figure 8-42).  
The supply voltage limits the minimum value of resistor  
Rp due to the specified minimum sink current of 3 mA  
at VOL max = 0.4V for the specified output stages. For  
The SMP bit is the slew rate control enabled bit. This bit  
is in the SSPSTAT register, and controls the slew rate  
of the I/O pins when in I2C mode (master or slave).  
FIGURE 8-42: SAMPLE DEVICE CONFIGURATION FOR I2C BUS  
VDD + 10%  
DEVICE  
Rp  
Rp  
Rs  
Rs  
SDA  
SCL  
Cb=10 - 400 pF  
2
NOTE: I C devices with input levels related to VDD must have one common supply  
line to which the pull up resistor is also connected.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 95  
 
PIC16C77X  
NOTES:  
DS30275A-page 96  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
The USART can be configured in the following modes:  
9.0  
ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
• Asynchronous (full duplex)  
• Synchronous - Master (half duplex)  
• Synchronous - Slave (half duplex)  
Bit SPEN (RCSTA<7>), and bits TRISC<7:6>, have to  
be set in order to configure pins RC6/TX/CK and RC7/  
RX/DT as the Universal Synchronous Asynchronous  
Receiver Transmitter.  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial Com-  
munications Interface or SCI). The USART can be con-  
figured as a full duplex asynchronous system that can  
communicate with peripheral devices such as CRT ter-  
minals and personal computers, or it can be configured  
as a half duplex synchronous system that can commu-  
nicate with peripheral devices such as A/D or D/A inte-  
grated circuits, Serial EEPROMs etc.  
The USART module also has a multi-processor com-  
munication capability using 9-bit address detection.  
FIGURE 9-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7:  
CSRC: Clock Source Select bit  
Asynchronous mode  
Don’t care  
Synchronous mode  
1 = Master mode (Clock generated internally from BRG)  
0 = Slave mode (Clock from external source)  
bit 6:  
TX9: 9-bit Transmit Enable bit  
1 = Selects 9-bit transmission  
0 = Selects 8-bit transmission  
bit 5:  
TXEN: Transmit Enable bit  
1 = Transmit enabled  
0 = Transmit disabled  
Note: SREN/CREN overrides TXEN in SYNC mode.  
bit 4:  
SYNC: USART Mode Select bit  
1 = Synchronous mode  
0 = Asynchronous mode  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode  
1 = High speed  
0 = Low speed  
Synchronous mode  
Unused in this mode  
bit 1:  
bit 0:  
TRMT: Transmit Shift Register Status bit  
1 = TSR empty  
0 = TSR full  
TX9D: 9th bit of transmit data. Can be parity bit.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 97  
PIC16C77X  
FIGURE 9-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
R/W-0  
R-0  
R-0  
R-x  
CREN ADDEN  
FERR  
OERR  
RX9D  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
SPEN: Serial Port Enable bit  
1 = Serial port enabled (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)  
0 = Serial port disabled  
RX9: 9-bit Receive Enable bit  
1 = Selects 9-bit reception  
0 = Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode  
Don’t care  
Synchronous mode - master  
1 = Enables single receive  
0 = Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - slave  
Unused in this mode  
bit 4:  
CREN: Continuous Receive Enable bit  
Asynchronous mode  
1 = Enables continuous receive  
0 = Disables continuous receive  
Synchronous mode  
1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0 = Disables continuous receive  
bit 3:  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1)  
1 = Enables address detection, enable interrupt and load of the receive buffer when RSR<8> is set  
0 = Disables address detection, all bytes are received, and ninth bit can be used as parity bit  
bit 2:  
bit 1:  
bit 0:  
FERR: Framing Error bit  
1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)  
0 = No framing error  
OERR: Overrun Error bit  
1 = Overrun error (Can be cleared by clearing bit CREN)  
0 = No overrun error  
RX9D: 9th bit of received data (Can be parity bit)  
DS30275A-page 98  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
9.1  
USART Baud Rate Generator (BRG)  
EXAMPLE 9-1: CALCULATING BAUD RATE  
ERROR  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In asynchronous  
mode bit BRGH (TXSTA<2>) also controls the baud  
rate. In synchronous mode bit BRGH is ignored.  
Table 9-1 shows the formula for computation of the  
baud rate for different USART modes which only apply  
in master mode (internal clock).  
Desired Baud rate = Fosc / (64 (X + 1))  
9600  
X
=
=
16000000 /(64 (X + 1))  
25.042 = 25  
Calculated Baud Rate=16000000 / (64 (25 + 1))  
=
=
9615  
Error  
(Calculated Baud Rate - Desired Baud Rate)  
Desired Baud Rate  
=
=
(9615 - 9600) / 9600  
0.16%  
Given the desired baud rate and Fosc, the nearest inte-  
ger value for the SPBRG register can be calculated  
using the formula in Table 9-1. From this, the error in  
baud rate can be determined.  
It may be advantageous to use the high baud rate  
(BRGH = 1) even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
Example 9-1 shows the calculation of the baud rate  
error for the following conditions:  
FOSC = 16 MHz  
Desired Baud Rate = 9600  
BRGH = 0  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
SYNC = 0  
9.1.1  
SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
TABLE 9-1  
SYNC  
BAUD RATE FORMULA  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+1))  
(Synchronous) Baud Rate = FOSC/(4(X+1))  
Baud Rate= FOSC/(16(X+1))  
NA  
X = value in SPBRG (0 to 255)  
TABLE 9-2  
REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on:  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
0000 -010 0000 -010  
98h  
TXSTA CSRC TX9 TXEN SYNC  
BRGH TRMT TX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
18h  
99h  
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D  
SPBRG Baud Rate Generator Register  
Legend: x = unknown, -= unimplemented read as '0'. Shaded cells are not used by the BRG.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 99  
 
 
PIC16C77X  
TABLE 9-3  
BAUD RATES FOR SYNCHRONOUS MODE  
FOSC = 20 MHz  
16 MHz  
KBAUD  
10 MHz  
KBAUD  
7.15909 MHz  
KBAUD  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
ERROR (decimal)  
SPBRG  
value  
ERROR (decimal)  
SPBRG  
value  
ERROR (decimal)  
%
%
%
%
KBAUD  
ERROR (decimal)  
0.3  
1.2  
2.4  
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
9.6  
NA  
-
+1.73  
+0.16  
+0.16  
-1.96  
0
-
NA  
-
+0.16  
+0.16  
-0.79  
+2.56  
0
-
9.766  
19.23  
75.76  
96.15  
312.5  
500  
+1.73  
+0.16  
-1.36  
+0.16  
+4.17  
0
255  
129  
32  
25  
7
4
0
255  
9.622  
19.24  
77.82  
94.20  
298.3  
NA  
+0.23  
+0.23  
+1.32  
-1.88  
-0.57  
-
185  
92  
22  
18  
5
-
0
255  
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
19.53  
76.92  
96.15  
294.1  
500  
255  
64  
51  
16  
9
19.23  
76.92  
95.24  
307.69  
500  
207  
51  
41  
12  
7
5000  
19.53  
-
-
0
255  
4000  
15.625  
-
-
0
255  
2500  
9.766  
-
-
1789.8  
6.991  
-
-
FOSC = 5.0688 MHz  
SPBRG  
4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
SPBRG  
value  
ERROR (decimal)  
SPBRG  
value KBAUD  
ERROR (decimal)  
SPBRG  
value KBAUD  
ERROR (decimal)  
SPBRG  
value  
RATE KBAUD  
(K)  
%
value KBAUD  
%
KBAUD  
%
%
%
ERROR (decimal)  
ERROR (decimal)  
0.3  
1.2  
2.4  
NA  
NA  
NA  
-
-
-
0
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
9.622  
19.04  
74.57  
99.43  
298.3  
NA  
-
-
-
-
-
-
92  
46  
11  
8
2
-
0
255  
NA  
1.202  
2.404  
9.615  
19.24  
83.34  
NA  
NA  
NA  
250  
0.9766  
-
-
207  
103  
25  
12  
2
-
-
-
0
0.303  
1.170  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
+1.14  
-2.48  
26  
6
-
-
-
-
-
-
-
+0.16  
+0.16  
+0.16  
+0.16  
-
-
-
-
-
-
-
-
-
9.6  
9.6  
131  
65  
15  
12  
3
-
0
255  
9.615  
19.231 +0.16  
76.923 +0.16  
1000  
NA  
NA  
+0.16  
103  
51  
12  
9
-
-
+0.23  
-0.83  
-2.90  
+3.57  
-0.57  
-
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
19.2  
79.2  
97.48  
316.8  
NA  
0
+3.13  
+1.54  
+5.60  
-
-
-
+8.51  
+4.17  
-
-
-
-
-
-
-
-
-
1267  
4.950  
100  
3.906  
0
255  
894.9  
3.496  
-
-
8.192  
0.032  
0
255  
255  
TABLE 9-4  
BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 20 MHz  
16 MHz  
10 MHz  
7.15909 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
%
KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal)  
0.3  
1.2  
2.4  
NA  
-
-
255  
129  
32  
15  
3
2
0
-
0
NA  
1.202  
2.404  
9.615  
19.23  
83.33  
NA  
NA  
NA  
250  
0.977  
-
-
207  
103  
25  
12  
2
-
-
-
0
NA  
1.202  
2.404  
9.766  
19.53  
78.13  
NA  
NA  
NA  
156.3  
0.6104  
-
-
129  
64  
15  
7
1
-
-
-
NA  
1.203  
2.380  
9.322  
18.64  
NA  
NA  
NA  
NA  
111.9  
0.437  
-
-
92  
46  
11  
5
-
-
-
-
1.221  
2.404  
9.469  
19.53  
78.13  
104.2  
312.5  
NA  
+1.73  
+0.16  
-1.36  
+1.73  
+1.73  
+8.51  
+4.17  
-
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
+1.73  
+1.73  
+0.23  
-0.83  
-2.90  
-2.90  
-
-
-
-
-
-
9.6  
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
+8.51  
+1.73  
-
-
-
-
-
-
-
-
-
-
312.5  
1.221  
-
-
0
255  
0
255  
255  
255  
FOSC = 5.0688 MHz  
4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
%
%
KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal)  
0.3  
1.2  
2.4  
0.31  
1.2  
2.4  
+3.13  
0
0
+3.13  
+3.13  
+3.13  
-
-
-
-
-
255  
65  
32  
7
3
0
-
-
-
0
0.3005 -0.17  
207  
51  
25  
-
-
-
-
-
-
0.301  
1.190  
2.432  
9.322  
18.64  
NA  
NA  
NA  
NA  
55.93  
0.2185  
+0.23  
-0.83  
+1.32  
-2.90  
185  
46  
22  
5
2
-
-
-
-
0
0.300  
1.202  
2.232  
NA  
NA  
NA  
NA  
NA  
NA  
15.63  
0.0610  
+0.16  
+0.16  
-6.99  
51  
12  
6
-
-
-
-
-
-
0.256 -14.67  
1
-
-
-
-
-
-
-
-
1.202  
2.404  
NA  
+1.67  
+1.67  
NA  
NA  
-
-
-
-
-
-
-
-
-
-
9.6  
9.9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NA  
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
19.8  
79.2  
NA  
NA  
NA  
NA  
NA  
-2.90  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
NA  
NA  
NA  
NA  
79.2  
0.3094  
62.500  
3.906  
0
255  
0
255  
0.512  
0.0020  
0
255  
255  
255  
DS30275A-page 100  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
TABLE 9-5  
BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 20 MHz  
16 MHz  
10 MHz  
7.16 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
%
KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal)  
9.6  
9.615  
19.230  
37.878  
56.818  
+0.16  
+0.16  
-1.36  
-1.36  
-1.36  
0
129  
64  
32  
21  
10  
4
9.615  
19.230  
38.461  
58.823  
111.111  
250  
+0.16  
+0.16  
+0.16  
+2.12  
-3.55  
0
103  
51  
25  
16  
8
9.615  
18.939  
39.062  
56.818  
125  
+0.16  
-1.36  
+1.7  
-1.36  
+8.51  
-
64  
32  
15  
10  
4
9.520  
19.454  
37.286  
55.930  
111.860  
NA  
-0.83  
+1.32  
-2.90  
-2.90  
-2.90  
-
46  
22  
11  
7
3
-
19.2  
38.4  
57.6  
115.2 113.636  
250  
625  
250  
625  
3
-
NA  
625  
-
0
0
1
NA  
-
0
NA  
-
-
1250  
1250  
0
0
NA  
-
-
NA  
-
-
NA  
-
-
FOSC = 5.068 MHz  
%
4 MHz  
3.579 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
%
KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal)  
9.6  
19.2  
9.6  
18.645  
0
32  
16  
NA  
1.202  
-
-
9.727  
18.643 -2.90  
+1.32  
22  
11  
8.928  
20.833 +8.51  
-6.99  
6
2
NA  
NA  
-
-
-
-
-2.94  
207  
+0.17  
+0.13  
+0.16  
38.4  
57.6  
115.2  
250  
625  
1250  
39.6  
52.8  
105.6  
NA  
NA  
NA  
+3.12  
-8.33  
-8.33  
-
-
-
7
5
2
-
-
-
2.403  
9.615  
19.231 +0.16  
NA  
NA  
NA  
103  
25  
12  
-
-
-
37.286 -2.90  
55.930 -2.90  
111.860 -2.90  
223.721 -10.51  
NA  
NA  
5
3
1
0
-
31.25 -18.61  
1
0
-
-
-
NA  
NA  
NA  
NA  
NA  
NA  
-
-
-
-
-
-
-
-
-
-
-
-
62.5  
NA  
NA  
NA  
NA  
+8.51  
-
-
-
-
-
-
-
-
-
-
-
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 101  
PIC16C77X  
(occurs in one TCY), the TXREG register is empty and  
flag bit TXIF (PIR1<4>) is set. This interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
( PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicated the sta-  
tus of the TXREG register, another bit TRMT  
(TXSTA<1>) shows the status of the TSR register. Sta-  
tus bit TRMT is a read only bit which is set when the  
TSR register is empty. No interrupt logic is tied to this  
bit, so the user has to poll this bit in order to determine  
if the TSR register is empty.  
9.2  
USART Asynchronous Mode  
In this mode, the USART uses standard nonreturn-to-  
zero (NRZ) format (one start bit, eight or nine data bits  
and one stop bit). The most common data format is  
8-bits. An on-chip dedicated 8-bit baud rate generator  
can be used to derive standard baud rate frequencies  
from the oscillator. The USART transmits and receives  
the LSb first. The USART’s transmitter and receiver are  
functionally independent but use the same data format  
and baud rate. The baud rate generator produces a  
clock either x16 or x64 of the bit shift rate, depending  
on bit BRGH (TXSTA<2>). Parity is not supported by  
the hardware, but can be implemented in software (and  
stored as the ninth data bit). Asynchronous mode is  
stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
memory so it is not available to the user.  
Note 2: Flag bit TXIF is set when enable bit TXEN  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
is set.  
Steps to follow when setting up an Asynchronous  
Transmission:  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 9.1)  
• Baud Rate Generator  
• Sampling Circuit  
• Asynchronous Transmitter  
• Asynchronous Receiver  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
3. If interrupts are desired, then set enable bit  
TXIE.  
9.2.1  
USART ASYNCHRONOUS TRANSMITTER  
The USART transmitter block diagram is shown in  
Figure 9-3. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available). Once the  
TXREG register transfers the data to the TSR register  
4. If 9-bit transmission is desired, then set transmit  
bit TX9.  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts trans-  
mission).  
FIGURE 9-3: USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG register  
TXIE  
8
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
TSR register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
DS30275A-page 102  
Advance Information  
1999 Microchip Technology Inc.  
 
PIC16C77X  
FIGURE 9-4: ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
Start Bit  
Bit 0  
Bit 1  
WORD 1  
Bit 7/8  
Stop Bit  
TXIF bit  
(Transmit buffer  
reg. empty flag)  
WORD 1  
Transmit Shift Reg  
TRMT bit  
(Transmit shift  
reg. empty flag)  
FIGURE 9-5: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
Start Bit  
Start Bit  
Bit 0  
Bit 1  
Bit 7/8  
Bit 0  
Stop Bit  
TXIF bit  
(interrupt reg. flag)  
WORD 2  
WORD 1  
TRMT bit  
(Transmit shift  
reg. empty flag)  
WORD 1  
Transmit Shift Reg.  
WORD 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 9-6  
REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on:  
POR,  
BOR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000 0000 0000  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
0Ch  
18h  
19h  
8Ch  
PIR1  
PSPIF  
SPEN  
ADIF RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF  
RCSTA  
RX9 SREN CREN ADDEN FERR OERR RX9D  
TXREG USART Transmit Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE RCIE  
TXIE  
SSPIE CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
98h  
TXSTA  
TX9 TXEN SYNC  
99h  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 103  
PIC16C77X  
9.2.2  
USART ASYNCHRONOUS RECEIVER  
9.2.3  
SETTING UP 9-BIT MODE WITH ADDRESS  
DETECT  
The receiver block diagram is shown in Figure 9-6. The  
data is received on the RC7/RX/DT pin and drives the  
data recovery block. The data recovery block is actually  
a high speed shifter operating at x16 times the baud  
rate, whereas the main receive serial shifter operates at  
the bit rate or at FOSC.  
Steps to follow when setting up an Asynchronous  
Reception with Address Detect Enabled:  
• Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired, set  
bit BRGH.  
The USART module has a special provision for multi-  
processor communication. When the RX9 bit is set in  
the RCSTA register, 9-bits are received and the ninth bit  
is placed in the RX9D status bit of the RSTA register.  
The port can be programmed such that when the stop  
bit is received, the serial port interrupt will only be acti-  
vated if the RX9D bit = 1. This feature is enabled by  
setting the ADDEN bit RCSTA<3> in the RCSTA regis-  
ter. This feature can be used in a multi-processor sys-  
tem as follows:  
• Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
• If interrupts are desired, then set enable bit RCIE.  
• Set bit RX9 to enable 9-bit reception.  
• Set ADDEN to enable address detect.  
• Enable the reception by setting enable bit CREN.  
• Flag bit RCIF will be set when reception is com-  
plete, and an interrupt will be generated if enable  
bit RCIE was set.  
• Read the RCSTA register to get the ninth bit and  
determine if any error occurred during reception.  
A master processor intends to transmit a block of data  
to one of many slaves. It must first send out an address  
byte that identifies the target slave. An address byte is  
identified by the RX9D bit being a ‘1’ (instead of a ‘0’ for  
a data byte). If the ADDEN bit is set in the slave’s  
RCSTA register, all data bytes will be ignored. How-  
ever, if the ninth received bit is equal to a ‘1’, indicating  
that the received byte is an address, the slave will be  
interrupted and the contents of the RSR register will be  
transferred into the receive buffer. This allows the slave  
to be interrupted only by addresses, so that the slave  
can examine the received byte to see if it is addressed.  
The addressed slave will then clear its ADDEN bit and  
prepare to receive data bytes from the master.  
• Read the 8-bit received data by reading the  
RCREG register, to determine if the device is  
being addressed.  
• If any error occurred, clear the error by clearing  
enable bit CREN.  
• If the device has been addressed, clear the  
ADDEN bit to allow data bytes and address bytes  
to be read into the receive buffer, and interrupt the  
CPU.  
When ADDEN is set, all data bytes are ignored. Fol-  
lowing the STOP bit, the data will not be loaded into the  
receive buffer, and no interrupt will occur. If another  
byte is shifted into the RSR register, the previous data  
byte will be lost.  
The ADDEN bit will only take effect when the receiver  
is configured in 9-bit mode.  
The receiver block diagram is shown in Figure 9-6.  
Once Asynchronous mode is selected, reception is  
enabled by setting bit CREN (RCSTA<4>).  
DS30275A-page 104  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
FIGURE 9-6: USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
SPBRG  
÷ 64  
RSR register  
LSb  
MSb  
or  
÷ 16  
0
Baud Rate Generator  
1
7
Stop (8)  
Start  
• • •  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
8
SPEN  
RX9  
Enable  
Load of  
ADDEN  
Receive  
Buffer  
RX9  
ADDEN  
RSR<8>  
8
RX9D  
RCREG register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
FIGURE 9-7: ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT  
Start  
bit  
Start  
bit  
RC7/RX/DT (pin)  
bit0  
bit1  
Stop  
bit  
bit8 Stop  
bit  
bit0  
bit8  
Load RSR  
Read  
WORD 1  
RCREG  
Bit8 = 0, Data Byte  
Bit8 = 1, Address Byte  
RCIF  
Note: This timing diagram shows a data byte followed by an address byte. The data byte is not read into the RCREG (receive buffer)  
because ADDEN = 1.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 105  
PIC16C77X  
FIGURE 9-8: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST  
Start  
bit  
Start  
bit  
RC7/RX/DT (pin)  
bit0  
bit1  
Stop  
bit  
bit8 Stop  
bit  
bit0  
bit8  
Load RSR  
Read  
WORD 1  
RCREG  
Bit8 = 1, Address Byte  
Bit8 = 0, Data Byte  
RCIF  
Note: This timing diagram shows an address byte followed by a data byte. The data byte is not read into the RCREG (receive buffer)  
because ADEN was not updated and still = 0.  
TABLE 9-7  
REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on:  
POR,  
BOR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
RX9 SREN CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE RCIE  
TXIE  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TX9 TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.  
DS30275A-page 106  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. TRMT is a read  
only bit which is set when the TSR is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
The TSR is not mapped in data memory so it is not  
available to the user.  
9.3  
USART Synchronous Master Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner i.e. transmission and reception  
do not occur at the same time. When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA<4>). In  
addition enable bit SPEN (RCSTA<7>) is set in order to  
configure the RC6/TX/CK and RC7/RX/DT I/O pins to  
CK (clock) and DT (data) lines respectively. The Master  
mode indicates that the processor transmits the master  
clock on the CK line. The Master mode is entered by  
setting bit CSRC (TXSTA<7>).  
Steps to follow when setting up a Synchronous Master  
Transmission:  
9.3.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 9.1).  
The USART transmitter block diagram is shown in  
Figure 9-3. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer register  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one Tcycle), the TXREG is empty and inter-  
rupt bit, TXIF (PIR1<4>) is set. The interrupt can be  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. If interrupts are desired, then set enable bit  
TXIE.  
4. If 9-bit transmission is desired, then set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
TABLE 9-8  
REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF RCIF TXIF  
SSPIF CCP1IF TMR2IF TMR1IF  
OERR RX9D  
RCSTA  
RX9 SREN CREN ADDEN FERR  
TXREG USART Transmit Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE  
TX9 TXEN SYNC BRGH TRMT TX9D  
TXSTA  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 107  
PIC16C77X  
FIGURE 9-9: SYNCHRONOUS TRANSMISSION  
Q1Q2 Q3Q4 Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2 Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
Bit 0  
Bit 1  
Bit 2  
Bit 7  
Bit 0  
Bit 1  
WORD 2  
Bit 7  
WORD 1  
Write to  
TXREG reg  
Write word1  
Write word2  
TXIF bit  
(Interrupt flag)  
TRMT bit  
’1’  
Note: Sync master mode; SPBRG = ’0’. Continuous transmission of two 8-bit words.  
’1’  
TXEN bit  
FIGURE 9-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit2  
bit1  
bit6  
bit7  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
DS30275A-page 108  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
9.3.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, then set enable bit  
RCIE.  
Once Synchronous mode is selected, reception is  
enabled by setting either enable bit SREN (RCSTA<5>)  
or enable bit CREN (RCSTA<4>). Data is sampled on  
the RC7/RX/DT pin on the falling edge of the clock. If  
enable bit SREN is set, then only a single word is  
received. If enable bit CREN is set, the reception is  
continuous until CREN is cleared. If both bits are set  
then CREN takes precedence.  
5. If 9-bit reception is desired, then set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
Steps to follow when setting up a Synchronous Master  
Reception:  
9. Read the 8-bit received data by reading the  
RCREG register.  
1. Initialize the SPBRG register for the appropriate  
baud rate. (Section 9.1)  
10. If any error occurred, clear the error by clearing  
bit CREN.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
TABLE 9-9  
REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF  
RCSTA  
RX9 SREN CREN ADDEN FERR OERR RX9D  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE  
TX9 TXEN SYNC BRGH TRMT TX9D  
TXSTA  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.  
FIGURE 9-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2Q3 Q4Q1Q2Q3 Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4Q1Q2Q3 Q4 Q1 Q2Q3Q4Q1Q2 Q3 Q4 Q1 Q2Q3Q4Q1Q2 Q3Q4 Q1Q2 Q3 Q4 Q1 Q2Q3Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
bit SREN  
SREN bit  
CREN bit  
'0'  
'0'  
RCIF bit  
(interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates SYNC master mode with bit SREN = '1' and bit BRGH = '0'.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 109  
PIC16C77X  
9.4.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
9.4  
USART Synchronous Slave Mode  
Synchronous slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the RC6/TX/CK pin (instead of being supplied internally  
in master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA<7>).  
The operation of the synchronous master and slave  
modes is identical except in the case of the SLEEP  
mode. Also, bit SREN is a don’t care in slave mode.  
If receive is enabled, by setting bit CREN, prior to the  
SLEEPinstruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector  
(0004h).  
9.4.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
The operation of the synchronous master and slave  
modes are identical except in the case of the SLEEP  
mode.  
Steps to follow when setting up a Synchronous Slave  
Reception:  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
2. If interrupts are desired, then set enable bit  
RCIE.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will now be  
set.  
3. If 9-bit reception is desired, then set bit RX9.  
4. To enable reception, set enable bit CREN.  
5. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated, if  
enable bit RCIE was set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP and if the global interrupt  
is enabled, the program will branch to the inter-  
rupt vector (0004h).  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
Steps to follow when setting up a Synchronous Slave  
Transmission:  
7. Read the 8-bit received data by reading the  
RCREG register.  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, then set enable bit  
TXIE.  
4. If 9-bit transmission is desired, then set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
DS30275A-page 110  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
TABLE 9-10  
REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF  
RCSTA  
RX9 SREN CREN ADDEN FERR OERR RX9D  
TXREG USART Transmit Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE RCIE TXIE  
TX9 TXEN SYNC  
SSPIE CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
TXSTA  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.  
TABLE 9-11  
REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF  
RCSTA  
RX9 SREN CREN ADDEN FERR OERR RX9D  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE  
TX9 TXEN SYNC BRGH TRMT TX9D  
TXSTA  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 111  
PIC16C77X  
NOTES:  
DS30275A-page 112  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
The source for the reference voltages comes from the  
bandgap reference circuit. The bandgap circuit is ener-  
gized anytime the reference voltage is required by the  
other sub-modules, and is powered down when not in  
use. The control registers for this module are LVDCON  
and REFCON, as shown in Figure 10-1 and  
Figure 10-2.  
10.0 VOLTAGE REFERENCE  
MODULE AND LOW-VOLTAGE  
DETECT  
The Voltage Reference module provides reference volt-  
ages for the Brown-out Reset circuitry, the Low-voltage  
Detect circuitry and the A/D converter.  
FIGURE 10-1: LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-1  
BGST  
LVDEN  
LV3  
LV2  
LV1  
LV0  
R = Readable bit  
W = Writable bit  
U = Unimplementedbit,  
read as ‘0’  
bit7  
bit0  
- n =Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5:  
BGST: Bandgap Stable Status Flag bit  
1 = Indicates that the bandgap voltage is stable, and LVD interrupt is reliable  
0 = Indicates that the bandgap voltage is not stable, and LVD interrupt should not be enabled  
bit 4:  
LVDEN: Low-voltage Detect Power Enable bit  
1 = Enables LVD, powers up bandgap circuit and reference generator  
0 = Disables LVD, powers down bandgap circuit if unused by BOR or VRH/VRL  
bit 3-0: LV3:LV0: Low Voltage Detection Limit bits (1)  
1111= External analog input is used  
1110= 4.5V  
1101= 4.2V  
1100= 4.0V  
1011= 3.8V  
1010= 3.6V  
1001= 3.5V  
1000= 3.3V  
0111= 3.0V  
0110= 2.8V  
0101= 2.7V  
0100= 2.5V  
Note 1: These are the minimum trip points for the LVD, see Table 15-3 for the trip point tolerances. Selection  
of an unused setting may result in an inadvertant interrupt.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 113  
 
PIC16C77X  
FIGURE 10-2: REFCON: VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
VRHEN  
bit7  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
VRLEN VRHOEN VRLOEN  
R = Readable bit  
W = Writable bit  
U = Unimplemented  
bit, read as ‘0’  
- n =Value at POR  
reset  
bit0  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
VRHEN: Voltage Reference High Enable bit (VRH = 4.096V)  
1 = Enabled, powers up reference generator  
0 = Disabled, powers down reference generator if unused by LVD, BOR, or VRL  
VRLEN: Voltage Reference Low Enable bit (VRL = 2.048V)  
1 = Enabled, powers up reference generator  
0 = Disabled, powers down reference generator if unused by LVD, BOR, or VRH  
VRHOEN: High Voltage Reference Output Enable bit  
1 = Enabled, VRH analog reference is presented on RA3 if enabled (VRHEN = 1)  
0 = Disabled, analog reference is used internally only  
VRLOEN: Low Voltage Reference Output Enable bit  
1 = Enabled, VRL analog reference is presented on RA2 if enabled (VRLEN = 1)  
0 = Disabled, analog reference is used internally only  
bit 3-0: Unimplemented: Read as '0’  
Each voltage reference can source/sink up to 5 mA of  
current.  
10.1  
Bandgap Voltage Reference  
The bandgap module generates a stable voltage refer-  
ence of 1.22V over a range of temperatures and device  
supply voltages. This module is enabled anytime any of  
the following are enabled:  
Each reference, if enabled, can be presented on an  
external pin by setting the VRHOEN (high reference  
output enable) or VRLOEN (low reference output  
enable) control bit. If the reference is not enabled, the  
VRHOEN and VRLOEN bits will have no effect on the  
corresponding pin. The device specific pin can then be  
used as general purpose I/O.  
• Brown-out Reset  
• Low-voltage Detect  
• Either of the internal analog references (VRH,  
VRL)  
Note: If VRH or VRL is enabled and the other ref-  
erence (VRL or VRH), the BOR, and the  
LVD modules are not enabled, the band-  
gap will require a start-up time of no more  
than 50 µs before the bandgap reference is  
stable. Before using the internal VRH or  
VRL reference, ensure that the bandgap  
reference voltage is stable by monitoring  
the BGST bit in the LVDCON register. The  
voltage references will not be reliable until  
the bandgap is stable as shown by BGST  
being set.  
Whenever the above are all disabled, the bandgap  
module is disabled and draws no current.  
10.2  
Internal VREF for A/D Converter  
The bandgap output voltage is used to generate two  
stable references for the A/D converter module. These  
references are enabled in software to provide the user  
with the means to turn them on and off in order to min-  
imize current consumption. Each reference can be indi-  
vidually enabled.  
The 4.096V reference (VRH) is enabled with control bit  
VRHEN (REFCON<7>). When this bit is set, the gain  
amplifier is enabled. After a specified start-up time a  
stable reference of 4.096V is generated and can be  
used by the A/D converter as the VRH input.  
The 2.048V reference (VRL) is enabled by setting con-  
trol bit VRLEN (REFCON<6>). When this bit is set, the  
gain amplifier is enabled. After a specified start up time  
a stable reference of 2.048V is generated and can be  
used by the A/D converter as the VRL input.  
DS30275A-page 114  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
control. This allows a user to power the module on  
and off to periodically monitor the supply voltage, and  
thus minimize total current consumption.  
10.3  
Low-voltage Detect (LVD)  
This module is used to generate an interrupt when the  
supply voltage falls below a specified “trip” voltage.  
This module operates completely under software  
FIGURE 10-3: BLOCK DIAGRAM OF LVD AND VOLTAGE REFERENCE CIRCUIT  
VDD  
LVDCON  
REFCON  
VDD  
LVDEN  
VRxEN  
RB3/AN9/LVDIN  
LVD  
A/D Ref = 4.096V  
BODEN  
BGAP  
A/D Ref = 2.048V  
EN  
The LVD module is enabled by setting the LVDEN bit in  
the LVDCON register. The “trip point” voltage is the  
minimum supply voltage level at which the device can  
operate before the LVD module asserts an interrupt.  
When the supply voltage is equal to or less than the trip  
point, the module will generate an interrupt signal set-  
ting interrupt flag bit LVDIF. If interrupt enable bit LVDIE  
was set, then an interrupt is generated. The LVD inter-  
rupt can wake the device from sleep. The "trip point"  
voltage is software programmable to any one of 16 val-  
ues, five of which are reserved (See Figure 10-1). The  
trip point is selected by programming the LV3:LV0 bits  
(LVDCON<3:0>).  
If the bandgap reference voltage is previously unused  
by either the brown-out circuitry or the voltage refer-  
ence circuitry, then the bandgap circuit requires a time  
to start-up and become stable before a low voltage con-  
dition can be reliably detected. The low-voltage inter-  
rupt flag is prevented from being set until the bandgap  
has reached a stable reference voltage.  
When the bandgap is stable the BGST (LVDCON<5>)  
bit is set indicating that the low-voltage interrupt flag bit  
is released to be set if VDD is equal to or less than the  
LVD trip point.  
10.3.1 EXTERNAL ANALOG VOLTAGE INPUT  
Note: The LVDIF bit can not be cleared until the  
supply voltage rises above the LVD trip  
point. If interrupts are enabled, clear the  
LVDIE bit once the first LVD interrupt  
occurs to prevent reentering the interrupt  
service routine immediately after exiting  
the ISR.  
The LVD module has an additional feature that allows  
the user to supply the trip voltage to the module from  
an external source. This mode is enabled when  
LV3:LV0 = 1111. When these bits are set the compar-  
ator input is multiplexed from an external input pin  
(RB3/AN9/LVDIN.  
Once the LV bits have been programmed for the speci-  
fied trip voltage, the low-voltage detect circuitry is then  
enabled by setting the LVDEN (LVDCON<4>) bit.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 115  
PIC16C77X  
NOTES:  
DS30275A-page 116  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
The A/D module has four registers. These registers  
are:  
11.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The analog-to-digital (A/D) converter module has six  
inputs for the PIC16C773 and ten for the PIC16C774.  
• A/D Result Register Low ADRESL  
• A/D Result Register High ADRESH  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
The analog-to-digital converter (A/D) allows conver-  
sion of an analog input signal to a corresponding  
12-bit digital number. The A/D module has up to 10  
analog inputs, which are multiplexed into one sample  
and hold. The output of the sample and hold is the  
input into the converter, which generates the result via  
successive approximation. The analog reference volt-  
ages are software selectable to either the device’s  
analog positive and negative supply voltages  
(AVDD/AVSS), the voltage level on the VREF+ and  
VREF- pins, or internal voltage references if available  
(VRH, VRL).  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off and any  
conversion is aborted.  
11.1  
Control Registers  
The ADCON0 register, shown in Figure 11-1, controls  
the operation of the A/D module. The ADCON1 regis-  
ter, shown in Figure 11-2, configures the functions of  
the port pins, the voltage reference configuration and  
the result format. The port pins can be configured as  
analog inputs or as digital I/O.  
The A/D converter has a unique feature of being able to  
operate while the device is in SLEEP mode. To operate  
in sleep, the A/D conversion clock must be derived from  
the A/D’s internal RC oscillator.  
The combination of the ADRESH and ADRESL regis-  
ters contain the result of the A/D conversion. The reg-  
ister pair is referred to as the ADRES register. When  
the A/D conversion is complete, the result is loaded  
into ADRES, the GO/DONE bit (ADCON0<2>) is  
cleared, and the A/D interrupt flag ADIF is set. The  
block diagram of the A/D module is shown in  
Figure 11-3.  
FIGURE 11-1: ADCON0 REGISTER (ADDRESS 1Fh).  
R/W-0  
ADCS1  
bit7  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
CHS3  
R/W-0  
ADON  
bit 0  
ADCS0  
GO/DONE  
R =  
W =  
Readable bit  
Writable bit  
- n = Value at POR reset  
bit 7:6  
ADCS1:ADCS0: A/D Conversion Clock Select bits  
00 = Fosc/2  
01 = Fosc/8  
10 = Fosc/32  
11 = FRC (clock derived from an RC oscillator = 1 MHz max)  
bit 5:3,1 CHS3:CHS0: Analog Channel Select bits  
0000 = channel 00 (AN0)  
0001 = channel 01 (AN1)  
0010 = channel 02 (AN2)  
0011 = channel 03 (AN3)  
0100 = channel 04 (AN4) (Reserved on 28-pin devices, do not use)  
0101 = channel 05 (AN5) (Reserved on 28-pin devices, do not use)  
0110 = channel 06 (AN6) (Reserved on 28-pin devices, do not use)  
0111 = channel 07 (AN7) (Reserved on 28-pin devices, do not use)  
1000 = channel 08 (AN8)  
1001 = channel 09 (AN9)  
1010, 1011, 1100, 1101, 1110,1111 are reserved, do not select.  
bit 2:  
bit 0:  
GO/DONE: A/D Conversion Status bit  
1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0 = A/D conversion completed/not in progress  
ADON: A/D On bit  
1 = A/D converter module is operating  
0 = A/D converter is shutoff and consumes no operating current  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 117  
 
PIC16C77X  
FIGURE 11-2: ADCON1 REGISTER (ADDRESS 9Fh)  
R/W-0  
ADFM  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VCFG2  
VCFG1  
VCFG0 PCFG3 PCFG2 PCFG1 PCFG0  
R =  
W =  
U =  
Readable bit  
Writable bit  
Unimplemented bit, read as ‘0’  
bit7  
bit 0  
- n = Value at POR reset  
bit 7:  
ADFM: A/D Result Format Select bit  
1 = Right justified  
0 = Left justified  
bit 6:4  
VCFG2:VCFG0: Voltage reference configuration bits  
A/D VREFH  
AVDD  
A/D VREFL  
AVSS  
000  
001  
010  
011  
100  
101  
110  
111  
External VREF+  
Internal VRH  
External VREF+  
Internal VRH  
AVDD  
External VREF-  
Internal VRL  
AVSS  
AVSS  
External VREF-  
Internal VRL  
AVSS  
AVDD  
Internal VRL  
(1)  
bit 3:0  
PCFG3:PCFG0: A/D Port Configuration bits  
AN9 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
A = Analog input D= Digital I/O  
Note 1: Selection of an unimplemented channel produces a result of 0xFFFFFF.  
DS30275A-page 118  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
The value that is in the ADRESH and ADRESL regis-  
ters are not modified for a Power-on Reset. The  
ADRESH and ADRESL registers will contain unknown  
data after a Power-on Reset.  
After the A/D module has been configured as desired.  
and the analog input channels have their correspond-  
ing TRIS bits selected for port inputs, the selected  
channel must be acquired before conversion is  
started. The A/D conversion cycle can be initiated by  
setting the GO/DONE bit. The A/D conversion begins,  
and lasts for 13TAD. The following steps should be fol-  
lowed for performing an A/D conversion:  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 11.6.  
After this acquisition time has elapsed the A/D conver-  
sion can be started. The following steps should be fol-  
lowed for doing an A/D conversion:  
1. Configure the A/D module  
• Configure analog pins / voltage reference /  
and digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if required)  
• Clear ADIF bit  
11.2  
11.3  
Configuring the A/D Module  
Configuring Analog Port Pins  
The ADCON1 and TRIS registers control the operation  
of the A/D port pins. The port pins that are desired as  
analog inputs must have their corresponding TRIS bit  
set (input). If the TRIS bit is cleared (output), the digital  
output level (VOH or VOL) will be converted.  
• Set ADIE bit  
• Set PEIE bit  
• Set GIE bit  
3. Wait the required acquisition time (3TAD)  
4. Start conversion  
The A/D operation is independent of the state of the  
CHS3:CHS0 bits and the TRIS bits.  
• Set GO/DONE bit (ADCON0)  
Note 1: When reading the PORTA or PORTE reg-  
ister, all pins configured as analog input  
channels will read as cleared (a low level).  
When reading the PORTB register, all  
pins configured as analog input channels  
will read as set (a high level). Pins config-  
ured as digital inputs, will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
5. Wait 13TAD until A/D conversion is complete, by  
either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result registers (ADRESH and  
ADRESL), clear ADIF if required.  
7. For next conversion, go to step 1, step 2 or step  
3 as required.  
Note 2: Analog levels on any pin that is defined as  
a digital input (including the ANx pins),  
may cause the input buffer to consume  
current that is out of the devices specifica-  
tion.  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The ADRESH and  
ADRESL registers WILL be updated with the partially  
completed A/D conversion value. That is, the ADRESH  
and ADRESL registers WILL contain the value of the  
current incomplete conversion.  
11.3.1 CONFIGURING THE REFERENCE  
VOLTAGES  
Note: Do not set the ADON bit and the  
GO/DONE bit in the same instruction.  
Doing so will cause the GO/DONE bit to be  
automatically cleared.  
The VCFG bits in the ADCON1 register configure the  
A/D module reference inputs. The reference high  
input can come from an internal reference (VRH) or  
(VRL), an external reference (VREF+), or AVDD. The  
low reference input can come from an internal refer-  
ence (VRL), an external reference (VREF-), or AVSS. If  
an external reference is chosen for the reference high  
or reference low inputs, the port pin that multiplexes  
the incoming external references is configured as an  
analog input, regardless of the values contained in the  
A/D port configuration bits (PCFG3:PCFG0).  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 119  
PIC16C77X  
FIGURE 11-3: A/D BLOCK DIAGRAM  
CHS3:CHS0  
RB3/AN9  
RB2/AN8  
RE2/AN7  
(1)  
(1)  
RE1/AN6  
(1)  
VAIN  
RE0/AN5  
RA5/AN4  
(1)  
(Input voltage)  
RA3/AN3/VREF+/VRH  
RA2/AN2/VREF-/VRL  
RA1/AN1  
AVDD  
RA0/AN0  
VREFH  
VRH  
VRL  
(Reference  
voltage)  
VCFG2:VCFG0  
A/D  
Converter  
VREFL  
VRL  
(Reference  
voltage)  
AVSS  
VCFG2:VCFG0  
Note 1: Not available on 28-pin devices.  
DS30275A-page 120  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
Note that these options are the same as those of the  
8-bit A/D.  
11.4  
Selecting the A/D Conversion Clock  
The A/D conversion cycle requires 13TAD: 1 TAD for set-  
tling time, and 12 TAD for conversion. The source of the  
A/D conversion clock is software selected. The four  
possible options for TAD are:  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs. Table 11-1 shows the resultant TAD times  
derived from the device operating frequencies and the  
A/D clock source selected.  
• 2 TOSC  
• 8 TOSC  
The ADIF bit is set on the rising edge of the 14th TAD.  
The GO/DONE bit is cleared on the falling edge of the  
14th TAD.  
• 32 TOSC  
• Internal RC oscillator  
TABLE 11-1  
TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Device Frequency  
Operation  
ADCS<1:0>  
20 MHz  
5 MHz  
4 MHz  
1.25 MHz  
2 TOSC  
8 TOSC  
32 TOSC  
RC  
00  
01  
10  
11  
100 ns(2)  
800 ns(2)  
1.6 µs  
400 ns(2)  
500 ns(2)  
1.6 µs  
6.4 µs  
24 µs(3)  
2 - 6 µs(1,4)  
1.6 µs  
2.0 µs  
6.4 µs  
2 - 6 µs(1,4)  
8.0 µs(3)  
2 - 6 µs(1,4)  
2 - 6 µs(1,4)  
Note 1: The RC source has a typical TAD time of 4 µs for VDD > 3.0V.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the RC A/D conversion clock source is only recommended if the conver-  
sion will be performed during sleep.  
11.5  
A/D Conversions  
Figure 11-5 shows an example that performs an A/D  
conversion. The port pins are configured as analog  
inputs. The analog reference VREF+ is the device AVDD  
and the analog reference VREF- is the device AVSS. The  
A/D interrupt is enabled, and the A/D conversion clock  
is TRC. The conversion is performed on the AN0 chan-  
nel.  
FIGURE 11-4: PERFORMING AN A/D CONVERSION  
BCF  
BSF  
CLRF  
BSF  
BCF  
PIR1, ADIF  
STATUS, RP0  
ADCON1  
PIE1, ADIE  
STATUS, RP0  
0xC1  
;Clear A/D Int Flag  
;Select Page 1  
;Configure A/D Inputs  
;Enable A/D interrupt  
;Select Page 0  
;RC clock, A/D is on,  
;Ch 0 is selected  
;
;Enable Peripheral  
;Enable All Interrupts  
MOVLW  
MOVWF  
BSF  
BSF  
ADCON0  
INTCON, PEIE  
INTCON, GIE  
;
; Ensure that the required sampling time for the  
; selected input channel has lapsed. Then the  
; conversion may be started.  
BSF  
ADCON0, GO  
:
;Start A/D Conversion  
;The ADIF bit will be  
;set and the GO/DONE bit  
;cleared upon completion-  
;of the A/D conversion.  
:
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 121  
 
PIC16C77X  
FIGURE 11-5: FLOWCHART OF A/D OPERATION  
ADON = 0  
Yes  
ADON = 0?  
No  
Sample  
Selected Channel  
Yes  
GO = 0?  
No  
Yes  
Yes  
Start of A/D  
Conversion Delayed  
1 Instruction Cycle  
Finish Conversion  
SLEEP  
Instruction?  
A/D Clock  
= RC?  
GO = 0  
ADIF = 1  
No  
No  
Yes  
Yes  
Abort Conversion  
GO = 0  
Wake-up  
From Sleep?  
Finish Conversion  
SLEEP  
Instruction?  
Wait 2 TAD  
GO = 0  
ADIF = 1  
ADIF = 0  
No  
No  
SLEEP  
Power down A/D  
Finish Conversion  
Stay in Sleep  
Powerdown A/D  
Wait 2 TAD  
GO = 0  
ADIF = 1  
Wait 2 TAD  
DS30275A-page 122  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD), see Figure 11-8. The maximum recom-  
mended impedance for analog sources is 2.5 k.  
After the analog input channel is selected (changed)  
this sampling must be done before the conversion can  
be started.  
11.6  
A/D Sample Requirements  
11.6.1 RECOMMENDED SOURCE IMPEDANCE  
The maximum recommended impedance for ana-  
log sources is 2.5 k. This value is calculated based  
on the maximum leakage current of the input pin. The  
leakage current is 100 nA max., and the analog input  
voltage cannot be vary by more than 1/4 LSb or  
250 mV due to leakage. This places a requirement on  
the input impedance of 250 µV/100 nA = 2.5 k.  
To calculate the minimum sampling time,  
Equation 11-6 may be used. This equation assumes  
that 1/4 LSb error is used (16384 steps for the A/D).  
The 1/4 LSb error is the maximum error allowed for the  
A/D to meet its specified resolution.  
11.6.2 SAMPLING TIME CALCULATION  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 11-8. The  
The CHOLD is assumed to be 25 pF for the 12-bit  
A/D.  
FIGURE 11-6: A/D SAMPLING TIME EQUATION  
(-TC/C (RIC +RSS + RS)  
(-TC/C (RIC +RSS + RS)  
VHOLD =(VREF - VREF/16384) = (VREF) • (1 -e  
) VREF(1 - 1/16384) = VREF • (1 -e  
)
TC = -CHOLD (1k+ RSS + RS) In (1/16384)  
Figure 11-7 shows the calculation of the minimum time  
required to charge CHOLD. This calculation is based on  
the following system assumptions:  
CHOLD = 25 pF  
RS = 2.5 kΩ  
1/4 LSb error  
VDD = 5V RSS = 10 k(worst case)  
Temp (system Max.) = 50°C  
Note 1:The reference voltage (VREF) has no  
effect on the equation, since it cancels  
itself out.  
2:The charge holding capacitor (CHOLD) is  
not discharged after each conversion.  
3:The maximum recommended impedance  
for analog sources is 2.5 k. This is  
required to meet the pin leakage specifi-  
cation.  
4:After a conversion has completed, 2 TAD  
time must be waited before sampling can  
begin again. During this time the holding  
capacitor is not connected to the selected  
A/D input channel.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 123  
 
PIC16C77X  
FIGURE 11-7: CALCULATING THE MINIMUM REQUIRED SAMPLE TIME  
TACQ =  
Amplifier Settling Time  
+ Holding Capacitor Charging Time  
+Temperature Coefficient  
TACQ =  
5 µs  
+ TC  
+ [(Temp - 25°C)(0.05 µs/°C)] †  
TC = + Holding Capacitor Charging Time  
TC = (CHOLD) (RIC + RSS + RS) In (1/16384)  
TC = -25 pF (1 k+10 k+ 2.5 k) In (1/16384)  
TC = -25 pF (13.5 k) In (1/16384)  
TC = -0.338 (-9.704)µs  
TC = 3.3µs  
TACQ =  
5 µs  
+ 3.3 µs  
+ [(50°C - 25°C)(0.05 µs / °C)]  
TACQ =  
TACQ =  
8.3 µs + 1.25 µs  
9.55 µs  
† The temperature coefficient is only required for  
temperatures > 25°C.  
FIGURE 11-8: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
VT = 0.6V  
Port Pin  
Rs  
SS  
RIC 1k  
RSS  
CPIN  
VA  
ILEAKAGE  
± 100 nA  
CHOLD = 25 pF  
VSS  
5 pF  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
ILEAKAGE = leakage current at the pin due to  
various junctions  
VDD 4V  
3V  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 10 11  
Sampling Switch  
( k)  
DS30275A-page 124  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
11.7  
Use of the CCP Trigger  
11.9  
Faster Conversion - Lower  
Resolution Trade-off  
An A/D conversion can be started by the “special event  
trigger” of the CCP module. This requires that the  
CCPnM<3:0> bits be programmed as 1011b and that  
the A/D module is enabled (ADON is set). When the  
trigger occurs, the GO/DONE bit will be set on Q2 to  
start the A/D conversion and the Timer1 counter will  
be reset to zero. Timer1 is reset to automatically  
repeat the A/D conversion cycle, with minimal software  
overhead (moving the ADRESH and ADRESL to the  
desired location). The appropriate analog input chan-  
nel must be selected before the “special event trigger”  
sets the GO/DONE bit (starts a conversion cycle).  
Not all applications require a result with 12-bits of res-  
olution, but may instead require a faster conversion  
time. The A/D module allows users to make the  
trade-off of conversion speed to resolution. Regard-  
less of the resolution required, the acquisition time is  
the same. To speed up the conversion, the A/D mod-  
ule may be halted by clearing the GO/DONE bit after  
the desired number of bits in the result have been con-  
verted. Once the GO/DONE bit has been cleared, all  
of the remaining A/D result bits are ‘0’. The equation  
to determine the time before the GO/DONE bit can be  
switched is as follows:  
If the A/D module is not enabled (ADON is cleared),  
then the “special event trigger” will be ignored by the  
A/D module, but will still reset the Timer1 counter.  
Conversion time = N•TAD + 1TAD  
Where: N = number of bits of resolution required,  
and 1TAD is the amplifier settling time.  
11.8  
Effects of a RESET  
Since TAD is based from the device oscillator, the user  
must use some method (a timer, software loop, etc.) to  
determine when the A/D GO/DONE bit may be  
cleared. Table 11-2 shows a comparison of time  
required for a conversion with 4-bits of resolution, ver-  
sus the normal 12-bit resolution conversion. The  
example is for devices operating at 20 MHz. The A/D  
clock is programmed for 32 TOSC.  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off, and any  
conversion is aborted. The value that is in the  
ADRESH and ADRESL registers are not modified.  
The ADRESH and ADRESL registers will contain  
unknown data after a Power-on Reset.  
TABLE 11-2  
4-BIT vs. 12-BIT  
CONVERSION TIMES  
Resolution  
Freq.  
(MHz)  
4-bit  
12-bit  
Tosc  
20 50 ns  
20 1.6 µs  
20 8 µs  
50 ns  
TAD = 32 Tosc  
1TAD+N•TAD  
1.6 µs  
20.8 µs  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 125  
 
PIC16C77X  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
11.10 A/D Operation During Sleep  
The A/D module can operate during SLEEP mode. This  
requires that the A/D clock source be configured for RC  
(ADCS1:ADCS0 = 11b). With the RC clock source  
selected, when the GO/DONE bit is set the A/D module  
waits one instruction cycle before starting the conver-  
sion cycle. This allows the SLEEP instruction to be exe-  
cuted, which eliminates all digital switching noise  
during the sample and conversion. When the conver-  
sion cycle is completed the GO/DONE bit is cleared,  
and the result loaded into the ADRESH and ADRESL  
registers. If the A/D interrupt is enabled, the device will  
wake-up from SLEEP. If the A/D interrupt is not  
enabled, the A/D module will then be turned off,  
although the ADON bit will remain set.  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be configured to  
RC (ADCS1:ADCS0 = 11b).  
11.11 Connection Considerations  
Since the analog inputs employ ESD protection, they  
have diodes to VDD and VSS. This requires that the  
analog input must be between VDD and VSS. If the input  
voltage exceeds this range by greater than 0.3V (either  
direction), one of the diodes becomes forward biased  
and it may damage the device if the input current spec-  
ification is exceeded.  
An external RC filter is sometimes added for anti-alias-  
ing of the input signal. The R component should be  
selected to ensure that the total source impedance is  
kept under the 2.5 krecommended specification. Any  
external components connected (via hi-impedance) to  
an analog input pin (capacitor, zener diode, etc.) should  
have very little leakage current at the pin.  
When the A/D clock source is another clock option (not  
RC), a SLEEP instruction causes the present conver-  
sion to be aborted and the A/D module is turned off,  
though the ADON bit will remain set.  
TABLE 11-3  
SUMMARY OF A/D REGISTERS  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
10Bh,18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF TMR1IF 0000 0000 0000 0000  
TMR2IE TMR1IE 0000 0000 0000 0000  
0Ch  
8Ch  
1Eh  
9Eh  
9Bh  
1Fh  
(1)  
ADRESH A/D High Byte Result Register  
ADRESL A/D Low Byte Result Register  
REFCON VRHEN VRLEN VRHOEN  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
VRLOEN  
CHS1  
0000---- 0000 ----  
0000 0000 0000 0000  
00000000 0000 0000  
--0x 0000 --0u 0000  
xxxx 11xx uuuu 11uu  
---- -000 ---- -000  
--11 1111 --11 1111  
1111 1111 1111 1111  
0000 -111 0000 -111  
ADCON0  
ADCON1  
PORTA  
PORTB  
PORTE  
TRISA  
ADCS1  
ADFM  
ADCS0  
VCFG2  
CHS2  
CHS0  
PCFG3  
GO/DONE  
PCFG2  
CHS3  
PCFG1  
ADON  
PCFG0  
9Fh  
VCFG1  
VCFG0  
05h  
PORTA5(2) PORTA Data Latch when written: PORTA<4:0> pins when read  
06h  
PORTB Data Latch when written: PORTB pins when read  
09h(2)  
85h  
RE2  
RE1  
RE0  
bit5(2)  
PORTA Data Direction Register  
86h  
TRISB  
PORTB Data Direction Register  
IBF OBF IBOV  
89h(2)  
TRISE  
PSPMODE  
PORTE Data Direction Bits  
Legend: x= unknown, u= unchanged, -= unimplemented read as ’0’. Shaded cells are not used for A/D conversion.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.  
2: These bits/registers are not implemented on the 28-pin devices, read as ’0’.  
DS30275A-page 126  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
Some of the core features provided may not be neces-  
sary to each application that a device may be used for.  
The configuration word bits allow these features to be  
configured/enabled/disabled as necessary. These fea-  
tures include code protection, brown-out reset and its  
trippoint, the power-up timer, the watchdog timer and  
the devices oscillator mode. As can be seen in  
Figure 12-1, some additional configuration word bits  
have been provided for brown-out reset trippoint selec-  
tion.  
12.0 SPECIAL FEATURES OF THE  
CPU  
These PICmicro devices have a host of features  
intended to maximize system reliability, minimize cost  
through elimination of external components, provide  
power saving operating modes and offer code protec-  
tion. These are:  
• Oscillator Selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
• Watchdog Timer (WDT)  
• Low-voltage detection  
• SLEEP  
• Code protection  
• ID locations  
• In-circuit serial programming  
These devices have a Watchdog Timer which can be  
shut off only through configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 72 ms (nominal) on power-up type resets  
only (POR, BOR), designed to keep the part in reset  
while the power supply stabilizes. With these two timers  
on-chip, most applications need no external reset cir-  
cuitry.  
SLEEP mode is designed to offer a very low current  
power-down mode. The user can wake-up from SLEEP  
through external reset, Watchdog Timer Wake-up, or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
Additional information on special features is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
12.1  
Configuration Bits  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
The user will note that address 2007h is beyond the  
user program memory space. In fact, it belongs to the  
special test/configuration memory space (2000h -  
3FFFh), which can be accessed only during program-  
ming.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 127  
 
PIC16C77X  
FIGURE 12-1: CONFIGURATION WORD  
CP1 CP0 BORV1 BORV0 CP1 CP0  
bit13 12 11 10  
-
BODEN CP1 CP0 PWRTE WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
Address 2007h  
9
8
7
6
5
4
3
2
1
(2)  
bit 13-12: CP1:CP0: Code Protection bits  
bit 9-8: 11 = Program memory code protection off  
bit 5-4: 10 = 0800h-0FFFh code protected  
01 = 0400h-0FFFh code protected  
00 = 0000h-0FFFh code protected  
(3)  
bit 11-10: BORV1:BORV0: Brown-out Reset Voltage bits  
11 = VBOR set to 2.5V  
10 = VBOR set to 2.7V  
01 = VBOR set to 4.2V  
00 = VBOR set to 4.5V  
bit 7:  
bit 6:  
Unimplemented, Read as ’1’  
(1)  
BODEN: Brown-out Reset Enable bit  
1 = Brown-out Reset enabled  
0 = Brown-out Reset disabled  
(1)  
bit 3:  
bit 2:  
PWRTE: Power-up Timer Enable bit  
1 = PWRT disabled  
0 = PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11 = RC oscillator  
10 = HS oscillator  
01 = XT oscillator  
00 = LP oscillator  
Note 1: Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT) regardless of the value of bit PWRTE.  
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.  
3: These are the minimum trip points for the BOR, see Table 15-4 for the trip point tolerances. Selection of an unused  
setting may result in an inadvertant interrupt.  
12.2.2 CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
12.2  
Oscillator Configurations  
12.2.1  
OSCILLATOR TYPES  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 12-2). The  
PIC16C77X oscillator design requires the use of a par-  
allel cut crystal. Use of a series cut crystal may give a  
frequency out of the crystal manufacturers specifica-  
tions.  
The PIC16C77X can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
Crystal/Resonator  
A difference from the other mid-range devices may be  
noted in that the device can be driven from an external  
clock only when configured in HS mode (Figure 12-3).  
High Speed Crystal/Resonator  
Resistor/Capacitor  
DS30275A-page 128  
Advance Information  
1999 Microchip Technology Inc.  
 
PIC16C77X  
FIGURE 12-2: CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(HS, XT OR LP  
TABLE 12-2  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
OSC CONFIGURATION)  
Osc Type  
C1(1)  
OSC1  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
To  
internal  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
logic  
XTAL  
RS(2)  
RF(3)  
OSC2  
4 MHz  
15 pF  
15 pF  
SLEEP  
PIC16C77X  
4 MHz  
15 pF  
15 pF  
C2(1)  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
20 MHz  
Note1: See Table 12-1 and Table 12-2 for recom-  
mended values of C1 and C2.  
These values are for design guidance only. See  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
notes at bottom of page.  
Crystals Used  
3: RF varies with the crystal chosen.  
32 kHz  
200 kHz  
1 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
± 30 PPM  
FIGURE 12-3: EXTERNAL CLOCK INPUT  
OPERATION (HS OSC  
4 MHz  
ECS ECS-40-20-1  
CONFIGURATION)  
8 MHz  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
20 MHz  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16C77X  
Note 1: Recommended values of C1 and C2 are  
identical to the ranges tested (Table 12-1).  
2: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
Open  
TABLE 12-1  
CERAMIC RESONATORS  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
4: Rs may be required in HS mode as well as  
XT mode to avoid overdriving crystals with  
low drive level specification.  
Ranges Tested:  
Mode  
XT  
Freq  
OSC1  
OSC2  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
These values are for design guidance only. See  
notes at bottom of page.  
Resonators Used:  
455 kHz Panasonic EFO-A455K04B ± 0.3%  
2.0 MHz Murata Erie CSA2.00MG  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
16.0 MHz Murata Erie CSA16.00MX  
± 0.5%  
± 0.5%  
± 0.5%  
± 0.5%  
All resonators used did not have built-in capacitors.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 129  
 
 
PIC16C77X  
12.2.3 RC OSCILLATOR  
For timing insensitive applications the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. These factors and the variation due to tol-  
erances of external R and C components used need to  
be taken into account for each application. Figure 12-4  
shows how the R/C combination is connected to the  
PIC16C77X.  
FIGURE 12-4: RC OSCILLATOR MODE  
VDD  
Rext  
Internal  
OSC1  
clock  
Cext  
PIC16C77X  
VSS  
OSC2/CLKOUT  
Fosc/4  
DS30275A-page 130  
Advance Information  
1999 Microchip Technology Inc.  
 
PIC16C77X  
Some registers are not affected in any reset condition.  
Their status is unknown on a power-up reset and  
unchanged in any other reset. Most other registers are  
placed into an initialized state upon reset, however they  
are not affected by a WDT reset during sleep because  
this is considered a WDT Wakeup, which is viewed as  
the resumption of normal operation.  
12.3  
Reset  
The PIC16C77X devices have several different resets.  
These resets are grouped into two classifications;  
power-up and non-power-up. The power-up type resets  
are the power-on and brown-out resets which assume  
the device VDD was below its normal operating range  
for the device’s configuration. The non-power up type  
resets assume normal operating limits were main-  
tained before/during and after the reset.  
Several status bits have been provided to indicate  
which reset occurred (see Table 12-4). See Table 12-6  
for a full description of reset states of all registers.  
• Power-on Reset (POR)  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 12-5.  
• Brown-out Reset (BOR)  
• MCLR reset during normal operation  
• MCLR reset during SLEEP  
• WDT Reset (during normal operation)  
These devices have a MCLR noise filter in the MCLR  
reset path. The filter will detect and ignore small pulses.  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
FIGURE 12-5: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
BODEN  
S
R
OST/PWRT  
OST  
10-bit Ripple counter  
Chip_Reset  
Q
OSC1  
(1)  
On-chip  
RC OSC  
PWRT  
10-bit Ripple counter  
Enable PWRT  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 131  
 
PIC16C77X  
12.4  
Power-On Reset (POR)  
12.5  
Power-up Timer (PWRT)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.5V - 2.1V). To  
take advantage of the POR, just tie the MCLR pin  
directly (or through a resistor) to VDD. This will elimi-  
nate external RC components usually needed to create  
a Power-on Reset. A maximum rise time for VDD is  
specified. See Electrical Specifications for details. For  
a slow rise time, see Figure 12-6.  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up type resets only. For a POR, the  
PWRT is invoked when the POR pulse is generated.  
For a BOR, the PWRT is invoked when the device exits  
the reset condition (VDD rises above BOR trippoint).  
The Power-up Timer operates on an internal RC oscil-  
lator. The chip is kept in reset as long as the PWRT is  
active. The PWRT’s time delay is designed to allow VDD  
to rise to an acceptable level. A configuration bit is pro-  
vided to enable/disable the PWRT for the POR only. For  
a BOR the PWRT is always available regardless of the  
configuration bit setting.  
Two delay timers have been provided which hold the  
device in reset after a POR (dependant upon device  
configuration) so that all operational parameters have  
been met prior to releasing to device to resume/begin  
normal operation.  
The power-up time delay will vary from chip to chip due  
to VDD, temperature, and process variation. See DC  
parameters for details.  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature,...) must be met to ensure oper-  
ation. If these conditions are not met, the device must  
be held in reset until the operating conditions are met.  
Brown-out Reset may be used to meet the startup con-  
ditions, or if necessary an external POR circuit may be  
implemented to delay end of reset for as long as  
needed.  
12.6  
Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over. This ensures that the crystal oscil-  
lator or resonator has started and stabilized.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on a power-up type reset or a wake-up  
from SLEEP.  
FIGURE 12-6: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
12.7  
Brown-Out Reset (BOR)  
The Brown-out Reset module is used to generate a  
reset when the supply voltage falls below a specified  
trip voltage. The trip voltage is configurable to any one  
of four voltages provided by the BORV1:BORV0 config-  
uration word bits.  
VDD  
D
R
R1  
MCLR  
Configuration bit, BODEN, can disable (if clear/pro-  
grammed) or enable (if set) the Brown-out Reset cir-  
cuitry. If VDD falls below the specified trippoint for  
greater than parameter #35 in the electrical specifica-  
tions section, the brown-out situation will reset the chip.  
A reset may not occur if VDD falls below the trippoint for  
less than parameter #35. The chip will remain in Brown-  
out Reset until VDD rises above BVDD. The Power-up  
Timer will be invoked at that point and will keep the chip  
in RESET an additional 72 ms. If VDD drops below  
BVDD while the Power-up Timer is running, the chip will  
go back into a Brown-out Reset and the Power-up  
Timer will be re-initialized. Once VDD rises above  
BVDD, the Power-up Timer will again begin a 72 ms  
time delay. Even though the PWRT is always enabled  
when brown-out is enabled, the PWRT configuration  
word bit should be cleared (enabled) when brown-out is  
enabled.  
PIC16C77X  
C
Note 1: External Power-on Reset circuit is required  
only if VDD power-up slope is too slow. The  
diode D helps discharge the capacitor  
quickly when VDD powers down.  
2: R < 40 kis recommended to make sure  
that voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
(ESD) or Electrical Overstress (EOS).  
DS30275A-page 132  
Advance Information  
1999 Microchip Technology Inc.  
 
PIC16C77X  
Table 12-5 shows the reset conditions for some special  
function registers, while Table 12-6 shows the reset  
conditions for all the registers.  
12.8  
Time-out Sequence  
On power-up the time-out sequence is as follows: First  
PWRT time-out is invoked by the POR pulse. When the  
PWRT delay expires the Oscillator Start-up Timer is  
activated. The total time-out will vary based on oscilla-  
tor configuration and the status of the PWRT. For exam-  
ple, in RC mode with the PWRT disabled, there will be  
no time-out at all. Figure 12-7, Figure 12-8, Figure 12-  
9 and Figure 12-10 depict time-out sequences on  
power-up.  
12.9  
Power Control/Status Register  
(PCON)  
The Power Control/Status Register, PCON has two sta-  
tus bits that provide indication of which power-up type  
reset occurred.  
Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is set  
on a Power-on Reset. It must then be set by the user  
and checked on subsequent resets to see if bit BOR  
cleared, indicating a BOR occurred. However, if the  
brown-out circuitry is disabled, the BOR bit is a "Don’t  
Care" bit and is considered unknown upon a POR.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(Figure 12-9). This is useful for testing purposes or to  
synchronize more than one PICmicro microcontroller  
operating in parallel.  
Bit1 is POR (Power-on Reset Status bit). It is cleared on  
a Power-on Reset and unaffected otherwise. The user  
must set this bit following a Power-on Reset.  
TABLE 12-3  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up from  
Oscillator Configuration  
Brown-out  
SLEEP  
PWRTE = 0  
72 ms + 1024TOSC  
72 ms  
PWRTE = 1  
XT, HS, LP  
RC  
1024TOSC  
72 ms + 1024TOSC  
1024TOSC  
72 ms  
TABLE 12-4  
STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
1
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 12-5  
RESET CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --01  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
000h  
Brown-out Reset  
Interrupt wake-up from SLEEP  
PC + 1(1)  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 133  
 
PIC16C77X  
TABLE 12-6  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Devices  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
W
773 774  
773 774  
773 774  
773 774  
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
PCL  
xxxx xxxx  
0000h  
uuuu uuuu  
0000h  
uuuu uuuu  
PC + 1(2)  
000q quuu(3)  
uuuu uuuu  
--0u 0000  
uuuu 11uu  
uuuu uuuu  
uuuu uuuu  
---- -000  
---0 0000  
0000 000u  
uuuq quuu(3)  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---u uuuu  
STATUS  
773 774  
0001 1xxx  
FSR  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
xxxx xxxx  
--0x 0000  
xxxx 11xx  
xxxx xxxx  
xxxx xxxx  
---- -000  
---0 0000  
0000 000x  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
uuuu uuuu(1)  
ruuu uuuu(1)  
uuuu uuuu(1)  
PIR1  
773 774  
773 774  
773 774  
r000 0000  
0000 0000  
0--- 0--0  
r000 0000  
0000 0000  
0--- 0--0  
u--- u--u(1)  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
PIR2  
TMR1L  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
0000 0000  
1111 1111  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
0000 0000  
1111 1111  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
OPTION_REG  
Legend: u = unchanged,  
x = unknown, -= unimplemented bit, read as ’0’, q= value depends  
on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the  
interrupt vector (0004h).  
3: See Table 12-5 for reset value for specific condition.  
DS30275A-page 134  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
TABLE 12-6  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.’d)  
Devices  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
773 774  
---1 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
r000 0000  
0000 0000  
0--- 0--0  
---- --qq  
1111 1111  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 ----  
--00 0101  
xxxx xxxx  
0000 000  
---1 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
r000 0000  
0000 0000  
0--- 0--0  
---- --uu  
1111 1111  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 ----  
--00 0101  
uuuu uuuu  
0000 0000  
---u uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
ruuu uuuu  
uuuu uuuu  
u--- u--u  
---- --uu  
1111 1111  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu ----  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PIE1  
PIE2  
PCON  
PR2  
SSPADD  
SSPSTAT  
TXSTA  
SPBRG  
REFCON  
LVDCON  
ADRESL  
ADCON1  
Legend: u = unchanged,  
x = unknown, -= unimplemented bit, read as ’0’, q= value depends  
on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the  
interrupt vector (0004h).  
3: See Table 12-5 for reset value for specific condition.  
FIGURE 12-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 135  
PIC16C77X  
FIGURE 12-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 12-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 12-10: SLOW RISE TIME (MCLR TIED TO VDD)  
5V  
1V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
DS30275A-page 136  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
12.10 Interrupts  
The PIC16C77X family has up to 14 sources of inter-  
rupt. The interrupt control register (INTCON) records  
individual interrupt requests in flag bits. It also has indi-  
vidual and global interrupt enable bits.  
The peripheral interrupt flags are contained in the spe-  
cial function registers PIR1 and PIR2. The correspond-  
ing interrupt enable bits are contained in special  
function registers PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in special function reg-  
ister INTCON.  
Note: Individual interrupt flag bits are set regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupt’s flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set  
regardless of the status of the GIE bit. The GIE bit is  
cleared on reset.  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the interrupt service routine the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs. The latency  
is the same for one or two cycle instructions. Individual  
interrupt flag bits are set regardless of the status of  
their corresponding mask bit or the GIE bit  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine as well as sets the GIE bit, which  
re-enables interrupts.  
FIGURE 12-11: INTERRUPT LOGIC  
LVDIF  
LVDIE  
PSPIF  
PSPIE  
Wake-up (If in SLEEP mode)  
ADIF  
ADIE  
T0IF  
T0IE  
RCIF  
RCIE  
INTF  
INTE  
Interrupt to CPU  
TXIF  
TXIE  
RBIF  
RBIE  
SSPIF  
SSPIE  
PEIE  
GIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
CCP2IF  
CCP2IE  
BCLIF  
BCLIE  
The following table shows which devices have which interrupts.  
Device  
T0IF INTF RBIF PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF LVDIF  
BCLIF CCP2IF  
PIC16C773 Yes Yes Yes  
PIC16C774 Yes Yes Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 137  
PIC16C77X  
12.10.1 INT INTERRUPT  
12.10.3 PORTB INTCON CHANGE  
External interrupt on RB0/INT pin is edge triggered:  
either rising if bit INTEDG (OPTION_REG<6>) is set,  
or falling, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the interrupt service rou-  
tine before re-enabling this interrupt. The INT interrupt  
can wake-up the processor from SLEEP, if bit INTE was  
set prior to going into SLEEP. The status of global inter-  
rupt enable bit GIE decides whether or not the proces-  
sor branches to the interrupt vector following wake-up.  
See Section 12.13 for details on SLEEP mode.  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>).  
(Section 3.2)  
12.11 Context Saving During Interrupts  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt, i.e., W register and STATUS  
register. This will have to be implemented in software.  
Example 12-1 stores and restores the W and STATUS  
registers. The register, W_TEMP, must be defined in  
each bank and must be defined at the same offset from  
the bank base address (i.e., if W_TEMP is defined at  
0x20 in bank 0, it must also be defined at 0xA0 in bank  
1).  
12.10.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>). (Section 4.0)  
The example:  
a) Stores the W register.  
b) Stores the STATUS register in bank 0.  
c) Stores the PCLATH register.  
d) Executes the interrupt service routine code  
(User-generated).  
e) Restores the STATUS register (and bank select  
bit).  
f) Restores the W and PCLATH registers.  
EXAMPLE 12-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
MOVF  
MOVWF  
CLRF  
BCF  
W_TEMP  
STATUS,W  
STATUS  
STATUS_TEMP  
PCLATH, W  
PCLATH_TEMP  
PCLATH  
STATUS, IRP  
FSR, W  
;Copy W to TEMP register, could be bank one or zero  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
;Only required if using pages 1, 2 and/or 3  
;Save PCLATH into W  
;Page zero, regardless of current page  
;Return to Bank 0  
MOVF  
MOVWF  
:
;Copy FSR to W  
;Copy FSR from W to FSR_TEMP  
FSR_TEMP  
:(ISR)  
:
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP, W  
PCLATH  
STATUS_TEMP,W  
;Restore PCLATH  
;Move W into PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
DS30275A-page 138  
Advance Information  
1999 Microchip Technology Inc.  
 
PIC16C77X  
The WDT can be permanently disabled by clearing  
configuration bit WDTE (Section 12.1).  
12.12 Watchdog Timer (WDT)  
The Watchdog Timer is as a free running on-chip RC  
oscillator which does not require any external compo-  
nents. This RC oscillator is separate from the RC oscil-  
lator of the OSC1/CLKIN pin. That means that the WDT  
will run, even if the clock on the OSC1/CLKIN and  
OSC2/CLKOUT pins of the device has been stopped,  
for example, by execution of a SLEEPinstruction.  
WDT time-out period values may be found in the Elec-  
trical Specifications section under parameter #31. Val-  
ues for the WDT prescaler may be assigned using the  
OPTION_REG register.  
Note: The CLRWDTand SLEEPinstructions clear  
the WDT and the postscaler, if assigned to  
the WDT, and prevent it from timing out and  
generating a device RESET condition.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the STATUS register  
will be cleared upon a Watchdog Timer time-out.  
.
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
FIGURE 12-12: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 4-2)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Section 4-2)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION_REG register.  
FIGURE 12-13: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
2007h  
Name  
Bit 7  
(1)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
WDTE  
PS2  
Bit 1  
FOSC1  
PS1  
Bit 0  
FOSC0  
PS0  
BODEN(1)  
INTEDG  
PWRTE(1)  
PSA  
Config. bits  
OPTION_REG  
CP1  
CP0  
81h,181h  
RBPU  
T0CS T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Figure 12-1 for the full description of the configuration word bits.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 139  
PIC16C77X  
Other peripherals cannot generate interrupts since dur-  
ing SLEEP, no on-chip clocks are present.  
12.13 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD, or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D, disable external clocks. Pull all I/O pins, that  
are hi-impedance inputs, high or low externally to avoid  
switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
12.13.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The MCLR pin must be at a logic high level (VIHMC).  
12.13.1 WAKE-UP FROM SLEEP  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
The device can wake up from SLEEP through one of  
the following events:  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake up from sleep. The SLEEPinstruction  
will be completely executed before the wake-up.  
Therefore, the WDT and WDT postscaler will be  
cleared, the TO bit will be set and the PD bit will  
be cleared.  
1. External reset input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change, or some  
Peripheral Interrupts.  
External MCLR Reset will cause a device reset. All  
other events are considered a continuation of program  
execution and cause a "wake-up". The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device reset. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked. The TO  
bit is cleared if a WDT time-out occurred (and caused  
wake-up).  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. PSP read or write.  
2. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
3. CCP capture mode interrupt.  
4. Special event trigger (Timer1 in asynchronous  
mode using an external clock).  
5. SSP (Start/Stop) bit detect interrupt.  
6. SSP transmit or receive in slave mode (SPI/I2C).  
7. USART RX or TX (synchronous slave mode).  
8. A/D conversion (when A/D clock source is RC).  
9. Low-voltage detect.  
DS30275A-page 140  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
FIGURE 12-14: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
TOST(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = ’1’ assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = ’0’, execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
12.14 Program Verification/Code Protection  
12.16 In-Circuit Serial Programming  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
PIC16CXXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
Note: Microchip does not recommend code pro-  
tecting windowed devices.  
12.15 ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 least significant bits of the ID  
location are used.  
For complete details of serial programming, please  
refer to the In-Circuit Serial Programming (ICSP™)  
Guide, (DS30277).  
For ROM devices, these values are submitted along  
with the ROM code.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 141  
PIC16C77X  
NOTES:  
DS30275A-page 142  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
Table 13-2 lists the instructions recognized by the  
MPASM assembler.  
13.0 INSTRUCTION SET SUMMARY  
Each PIC16CXXX instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CXX instruction  
set summary in Table 13-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 13-1  
shows the opcode field descriptions.  
Figure 13-1 shows the general formats that the instruc-  
tions can have.  
Note: To maintain upward compatibility with  
future PIC16CXXX products, do not use  
the OPTIONand TRISinstructions.  
All examples use the following format to represent a  
hexadecimal number:  
For byte-oriented instructions, ’f’ represents a file reg-  
ister designator and ’d’ represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
0xhh  
where h signifies a hexadecimal digit.  
The destination designator specifies where the result of  
the operation is to be placed. If ’d’ is zero, the result is  
placed in the W register. If ’d’ is one, the result is placed  
in the file register specified in the instruction.  
FIGURE 13-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
8
7
6
0
0
For bit-oriented instructions, ’b’ represents a bit field  
designator which selects the number of the bit affected  
by the operation, while ’f’ represents the number of the  
file in which the bit is located.  
OPCODE  
d
f (FILE #)  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
For literal and control operations, ’k’ represents an  
eight or eleven bit constant or literal value.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
TABLE 13-1  
OPCODE FIELD  
DESCRIPTIONS  
7
6
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Field  
Description  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Don’t care location (= 0 or 1)  
Literal and control operations  
General  
13  
8
7
0
0
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
OPCODE  
k (literal)  
k = 8-bit immediate value  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
PC  
TO  
PD  
Program Counter  
Time-out bit  
k (literal)  
Power-down bit  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
A description of each instruction is available in the  
PICmicro™  
(DS33023).  
Mid-Range  
Reference  
Manual,  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 143  
 
PIC16C77X  
TABLE 13-2  
PIC16CXXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d Add W and f  
f, d AND W with f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0xxx xxxx  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
f
-
Clear f  
Clear W  
f, d Complement f  
f, d Decrement f  
f, d Decrement f, Skip if 0  
f, d Increment f  
f, d Increment f, Skip if 0  
f, d Inclusive OR W with f  
f, d Move f  
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
f
-
Move W to f  
No Operation  
f, d Rotate Left f through Carry  
f, d Rotate Right f through Carry  
f, d Subtract W from f  
f, d Swap nibbles in f  
f, d Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b Bit Clear f  
f, b Bit Set f  
f, b Bit Test f, Skip if Clear  
f, b Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
1,2  
1,2  
3
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO,PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS30275A-page 144  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
14.3  
ICEPIC: Low-Cost PICmicro  
In-Circuit Emulator  
14.0 DEVELOPMENT SUPPORT  
14.1  
Development Tools  
ICEPIC is a low-cost in-circuit emulator solution for the  
Microchip PIC12CXXX, PIC16C5X and PIC16CXXX  
families of 8-bit OTP microcontrollers.  
The PICmicro microcontrollers are supported with a  
full range of hardware and software development tools:  
• MPLAB -ICE Real-Time In-Circuit Emulator  
ICEPIC is designed to operate on PC-compatible  
machines ranging from 386 through Pentium based  
machines under Windows 3.x, Windows 95, or Win-  
dows NT environment. ICEPIC features real time, non-  
intrusive emulation.  
• ICEPIC Low-Cost PIC16C5X and PIC16CXXX  
In-Circuit Emulator  
• PRO MATE II Universal Programmer  
• PICSTART Plus Entry-Level Prototype  
Programmer  
14.4  
PRO MATE II: Universal Programmer  
• SIMICE  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode. PRO MATE II is CE  
compliant.  
• PICDEM-1 Low-Cost Demonstration Board  
• PICDEM-2 Low-Cost Demonstration Board  
• PICDEM-3 Low-Cost Demonstration Board  
• MPASM Assembler  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for displaying error messages, keys to  
enter commands and a modular detachable socket  
assembly to support various package types. In stand-  
alone mode the PRO MATE II can read, verify or pro-  
• MPLAB SIM Software Simulator  
• MPLAB-C17 (C Compiler)  
• Fuzzy Logic Development System  
(fuzzyTECH MP)  
• KEELOQ® Evaluation Kits and Programmer  
14.2  
MPLAB-ICE: High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
gram  
PIC12CXXX,  
PIC14C000,  
PIC16C5X,  
PIC16CXXX and PIC17CXX devices. It can also set  
configuration and code-protect bits in this mode.  
14.5  
PICSTART Plus Entry Level  
Development System  
The MPLAB-ICE Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers (MCUs). MPLAB-ICE is sup-  
plied with the MPLAB Integrated Development Environ-  
ment (IDE), which allows editing, “make” and  
download, and source debugging from a single envi-  
ronment.  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient. PICSTART Plus is not  
recommended for production programming.  
Interchangeable processor modules allow the system  
to be easily reconfigured for emulation of different pro-  
cessors. The universal architecture of the MPLAB-ICE  
allows expansion to support all new Microchip micro-  
controllers.  
PICSTART Plus supports all PIC12CXXX, PIC14C000,  
PIC16C5X, PIC16CXXX and PIC17CXX devices with  
up to 40 pins. Larger pin count devices such as the  
PIC16C923, PIC16C924 and PIC17C756 may be sup-  
ported with an adapter socket. PICSTART Plus is CE  
compliant.  
The MPLAB-ICE Emulator System has been designed  
as a real-time emulation system with advanced fea-  
tures that are generally found on more expensive devel-  
opment tools. The PC compatible 386 (and higher)  
machine platform and Microsoft Windows 3.x or  
Windows 95 environment were chosen to best make  
these features available to you, the end user.  
MPLAB-ICE  
is  
available  
in  
two  
versions.  
MPLAB-ICE 1000 is a basic, low-cost emulator system  
with simple trace capabilities. It shares processor mod-  
ules with the MPLAB-ICE 2000. This is a full-featured  
emulator system with enhanced trace, trigger, and data  
monitoring features. Both systems will operate across  
the entire operating speed reange of the PICmicro  
MCU.  
1999 Microchip Technology Inc.  
DS30275A-page 145  
PIC16C77X  
14.6  
SIMICE Entry-Level Hardware  
Simulator  
14.8  
PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
SIMICE is an entry-level hardware development sys-  
tem designed to operate in a PC-based environment  
with Microchip’s simulator MPLAB™-SIM. Both SIM-  
ICE and MPLAB-SIM run under Microchip Technol-  
ogy’s MPLAB Integrated Development Environment  
(IDE) software. Specifically, SIMICE provides hardware  
simulation for Microchip’s PIC12C5XX, PIC12CE5XX,  
and PIC16C5X families of PICmicro 8-bit microcontrol-  
lers. SIMICE works in conjunction with MPLAB-SIM to  
provide non-real-time I/O port emulation. SIMICE  
enables a developer to run simulator code for driving  
the target system. In addition, the target system can  
provide input to the simulator code. This capability  
allows for simple and interactive debugging without  
having to manually generate MPLAB-SIM stimulus  
files. SIMICE is a valuable debugging tool for entry-  
level system development.  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The MPLAB-ICE emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
usage of the I2C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
14.7  
PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
14.9  
PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
the PICDEM-1 board, on a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the MPLAB-ICE emulator and download the  
firmware to the emulator for testing. Additional proto-  
type area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The MPLAB-ICE emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
DS30275A-page 146  
1999 Microchip Technology Inc.  
PIC16C77X  
14.10 MPLAB Integrated Development  
Environment Software  
14.12 Software Simulator (MPLAB-SIM)  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment. It allows the  
user to simulate the PICmicro series microcontrollers  
on an instruction level. On any given instruction, the  
user may examine or modify any of the data areas or  
provide external stimulus to any of the pins. The input/  
output radix can be set by the user and the execution  
can be performed in; single step, execute until break, or  
in a trace mode.  
The MPLAB IDE Software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. MPLAB is a windows based application  
which contains:  
• A full featured editor  
• Three operating modes  
- editor  
- emulator  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C17 and MPASM. The Software Simulator  
offers the low cost flexibility to develop and debug code  
outside of the laboratory environment making it an  
excellent multi-project software development tool.  
- simulator  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar with project information  
• Extensive on-line help  
MPLAB allows you to:  
14.13 MPLAB-C17 Compiler  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Debug using:  
- source files  
The MPLAB-C17 Code Development System is a  
complete ANSI ‘C’ compiler and integrated develop-  
ment environment for Microchip’s PIC17CXXX family of  
microcontrollers. The compiler provides powerful inte-  
gration capabilities and ease of use not found with  
other compilers.  
- absolute listing file  
For easier source level debugging, the compiler pro-  
vides symbol information that is compatible with the  
MPLAB IDE memory display.  
The ability to use MPLAB with Microchip’s simulator  
allows a consistent platform and the ability to easily  
switch from the low cost simulator to the full featured  
emulator with minimal retraining due to development  
tools.  
14.14 Fuzzy Logic Development System  
(fuzzyTECH-MP)  
14.11 Assembler (MPASM)  
fuzzyTECH-MP fuzzy logic development tool is avail-  
able in two versions - a low cost introductory version,  
MP Explorer, for designers to gain a comprehensive  
working knowledge of fuzzy logic system design; and a  
full-featured version, fuzzyTECH-MP, Edition for imple-  
menting more complex systems.  
The MPASM Universal Macro Assembler is a PC-  
hosted symbolic assembler. It supports all microcon-  
troller series including the PIC12C5XX, PIC14000,  
PIC16C5X, PIC16CXXX, and PIC17CXX families.  
MPASM offers full featured Macro capabilities, condi-  
tional assembly, and several source and listing formats.  
It generates various object code formats to support  
Microchip's development tools as well as third party  
programmers.  
Both versions include Microchip’s fuzzyLAB demon-  
stration board for hands-on experience with fuzzy logic  
systems implementation.  
14.15 SEEVAL Evaluation and  
Programming System  
MPASM allows full symbolic debugging from MPLAB-  
ICE, Microchip’s Universal Emulator System.  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance Disk is included to aid in trade-  
off analysis and reliability calculations. The total kit can  
significantly reduce time-to-market and result in an  
optimized system.  
MPASM has the following features to assist in develop-  
ing software for specific use applications.  
• Provides translation of Assembler source code to  
object code for all Microchip microcontrollers.  
• Macro assembly capability.  
• Produces all the files (Object, Listing, Symbol, and  
special) required for symbolic debug with  
Microchip’s emulator systems.  
• Supports Hex (default), Decimal and Octal source  
and listing formats.  
MPASM provides a rich directive language to support  
programming of the PICmicro. Directives are helpful in  
making the development of your assemble source code  
shorter and more maintainable.  
1999 Microchip Technology Inc.  
DS30275A-page 147  
PIC16C77X  
14.16 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
DS30275A-page 148  
1999 Microchip Technology Inc.  
PIC16C77X  
TABLE 14-1  
DEVELOPMENT TOOLS FROM MICROCHIP  
y
z
u
s t  
o d u P c r o t r u l m a E  
s l o o  
a r e f t T w S o  
s e r  
r a g m o r m P  
s
B o o a r d D e m  
1999 Microchip Technology Inc.  
DS30275A-page 149  
PIC16C77X  
NOTES:  
DS30275A-page 150  
1999 Microchip Technology Inc.  
PIC16C77X  
15.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR. and RA4).......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2).................................................................................................0 to +8.5V  
Voltage on RA4 with respect to Vss..................................................................................................................0 to +8.5V  
Total power dissipation (Note 1)................................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..................................................................................................................... ± 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ............................................................................................................. ± 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)....................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3) ..............................................200 mA  
Maximum current sunk by PORTC and PORTD (combined) (Note 3)..................................................................200 mA  
Maximum current sourced by PORTC and PORTD (combined) (Note 3).............................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLR pin rather than pulling  
this pin directly to VSS.  
Note 3: PORTD and PORTE are not implemented on the PIC16C773.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
TABLE 15-1  
CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
PIC16C773-04  
PIC16C774-04  
PIC16C773-20  
PIC16C774-20  
PIC16LC773-04  
PIC16LC774-04  
OSC  
JW Devices  
VDD: 4.0V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 5.5V  
VDD: 4.0V to 5.5V  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3.0V  
IPD: 5 µA max. at 3V  
Freq: 4 MHz max.  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
RC  
XT  
VDD: 4.0V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 5.5V  
VDD: 4.0V to 5.5V  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3.0V  
IPD: 5 µA max. at 3V  
Freq: 4 MHz max.  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 13.5 mA typ. at 5.5V IDD: 20 mA max. at 5.5V  
IDD: 20 mA max. at 5.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 20 MHz max.  
HS  
LP  
Not tested for functionality  
IPD: 1.5 µA typ. at 4.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 4 MHz max.  
Freq: 20 MHz max.  
VDD: 4.0V to 5.5V  
IDD: 52.5 µA typ. at 32  
kHz, 4.0V  
VDD: 2.5V to 5.5V  
IDD: 48 µA max. at 32 kHz,  
3.0V  
VDD: 2.5V to 5.5V  
IDD: 48 µA max. at 32 kHz,  
3.0V  
Not tested for functionality  
IPD: 0.9 µA typ. at 4.0V  
Freq: 200 kHz max.  
IPD: 5.0 µA max. at 3.0V  
Freq: 200 kHz max.  
IPD: 5.0 µA max. at 3.0V  
Freq: 200 kHz max.  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications.  
It is recommended that the user select the device type that ensures the specifications required.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 151  
PIC16C77X  
15.1  
DC Characteristics: PIC16C77X (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial and  
0°C  
TA +70°C for commercial  
Param  
No.  
Characteristic  
Supply Voltage  
Sym  
Min Typ† Max Units  
Conditions  
D001  
D001A  
VDD  
4.0  
4.5  
5.5  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002* RAM Data Retention  
Voltage (Note 1)  
VDR  
1.5  
V
D003  
VDD start voltage to  
ensure internal Power-on  
Reset signal  
VPOR  
VSS  
V
See section on Power-on Reset for details  
D004* VDD rise rate to ensure  
internal Power-on Reset  
signal  
SVDD  
IDD  
0.05  
5
V/ms See section on Power-on Reset for details.  
PWRT enabled  
D010  
Supply Current (Note 2)  
2.7  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
D020  
13.5 30  
mA HS osc configuration  
FOSC = 20 MHz, VDD = 5.5V  
Power-down Current  
IPD  
1.5  
1.5  
16  
19  
µA VDD = 4.0V, -0°C to +70°C  
µA VDD = 4.0V, -40°C to +85°C  
D020A (Note 3)  
Module Differential Cur-  
rent (Note 5)  
D021  
Watchdog Timer  
IWDT  
6.0  
20  
µA VDD = 4.0V  
D023* Brown-out Reset Current IBOR  
TBD 200  
µA BOR enabled, VDD = 5.0V  
(Note 5)  
D023B* Bandgap voltage  
generator  
6
40µA TBD µA  
IBG  
D025* Timer1 oscillator  
IT1OSC  
5
9
µA VDD = 4.0V  
D026* A/D Converter  
IAD  
300  
µA VDD = 5.5V, A/D on, not converting  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: The current is the additional current consumed when the peripheral is enabled. This current should be  
added to the base (IPD or IDD) current.  
6: The bandgap voltate reference provides 1.22V to the VRL, VRH, LVD and BOR circuits. When calculating cur-  
rent consumption use the following formula: IVRL + IVRH + ILVD + IBOR + IBG. Any of the IVRL, IVRH,  
ILVD or IBOR can be 0.  
DS30275A-page 152  
Advance Information  
1999 Microchip Technology Inc.  
 
PIC16C77X  
15.2  
DC Characteristics:PIC16LC77X-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
DC CHARACTERISTICS  
0°C  
TA +70°C for commercial  
Param  
No.  
Characteristic  
Supply Voltage  
Sym  
Min Typ† Max Units  
Conditions  
D001  
VDD  
2.5  
5.5  
V
V
V
LP, XT, RC osc configuration (DC - 4  
MHz)  
D002* RAM Data Retention  
Voltage (Note 1)  
VDR  
1.5  
VSS  
D003  
VDD start voltage to  
ensure internal Power-on  
Reset signal  
VPOR  
See section on Power-on Reset for  
details  
D004* VDD rise rate to ensure  
internal Power-on Reset  
signal  
SVDD  
IDD  
0.05  
V/ms See section on Power-on Reset for  
details. PWRT enabled  
D010  
Supply Current (Note 2)  
2.0  
3.8  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
22.5 48  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT dis-  
abled  
D020  
D020A (Note 3)  
Power-down Current  
IPD  
0.9  
0.9  
5
5
µA VDD = 3.0V, 0°C to +70°C  
µA VDD = 3.0V, -40°C to +85°C  
Module Differential Cur-  
rent (note5)  
D021  
Watchdog Timer  
IWDT  
6
20  
µA VDD = 3.0V  
D023* Brown-out Reset Current IBOR  
TBD 200  
µA BOR enabled, VDD = 5.0V  
(Note 5)  
D025* Timer1 oscillator  
D026* A/D Converter  
IT1OSC  
IAD  
1.5  
3
µA VDD = 3.0V  
300  
µA VDD = 5.5V, A/D on, not converting  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: The current is the additional current consumed when the peripheral is enabled. This current should be  
added to the base (IPD or IDD) current.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 153  
 
PIC16C77X  
15.3  
DC Characteristics: PIC16C77X (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 15.1 and  
Section 15.2.  
Param  
No.  
Characteristic  
Sym  
Min  
Typ†  
Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D030A  
D031  
with TTL buffer  
VSS  
VSS  
0.15VDD  
0.8V  
V
V
For entire VDD range  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
All others  
I2C compliant  
For entire VDD range  
VSS  
VSS  
0.3VDD  
0.2VDD  
V
D032  
D033  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports  
VSS  
VSS  
0.2VDD  
0.3VDD  
V
V
Note1  
VIH  
with TTL buffer  
D040  
D040A  
2.0  
0.25VDD  
+ 0.8V  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
For entire VDD range  
with Schmitt Trigger buffer  
RC3 and RC4  
All others  
I2C compliant  
For entire VDD range  
D041  
D042  
0.7VDD  
0.8VDD  
VDD  
VDD  
V
V
MCLR  
0.8VDD  
0.7VDD  
0.9VDD  
50  
VDD  
VDD  
VDD  
400  
V
V
V
D042A OSC1 (XT, HS and LP)  
Note1  
D043  
D070  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current  
(Notes 2, 3)  
IPURB  
250  
µA VDD = 5V, VPIN = VSS  
D060  
I/O ports (digital)  
IIL  
IIL  
±1  
µA Vss VPIN VDD, Pin at hi-  
impedance  
nA Vss VPIN VDD, Pin at hi-  
impedance  
D060A I/O ports (RA0-RA3, RA5, RB2,  
RB3 analog)  
±100  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP  
osc configuration  
Output Low Voltage  
D080  
D083  
I/O ports  
VOL  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C77X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
DS30275A-page 154  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 15.1 and  
Section 15.2.  
Param  
No.  
Characteristic  
Sym  
Min  
Typ†  
Max Units  
Conditions  
Output High Voltage  
D090  
D092  
I/O ports (Note 3)  
VOH VDD - 0.7  
VDD - 0.7  
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config)  
D150* Open-Drain High Voltage  
Capacitive Loading Specs on  
Output Pins  
VOD  
8.5  
RA4 pin  
D100  
OSC2 pin  
COSC2  
15  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1.  
D101  
D102  
All I/O pins and OSC2 (in RC  
mode) SCL, SDA in I2C mode  
CIO  
CB  
50  
400  
pF  
pF  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C77X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 155  
PIC16C77X  
15.4  
DC Characteristics: VREF  
TABLE 15-2  
ELECTRICAL CHARACTERISTICS: VREF  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial  
Operating voltage VDD range as described in DC spec Section 15.1 and Section 15.2.  
DC CHARACTERISTICS  
Param  
No.  
Characteristic  
Symbol  
Min  
Typ†  
Max  
Units  
Conditions  
Output Voltage  
VRL  
VRH  
IVRL  
IVRH  
TCVOUT  
IVREFSO  
IVREFSI  
2.0  
4.0  
2.048  
4.096  
70  
70  
15*  
2.1  
4.2  
TBD  
TBD  
50*  
5*  
-5*  
TBD*  
V
V
µA  
µA  
VDD 2.5V  
VDD 4.5V  
No load on VRL.  
No load on VRH.  
D400  
D401A VRL Quiescent Supply Current  
D401B VRH Quiescent Supply Current  
D402  
D404  
D405  
D406  
Ouput Voltage Drift  
External Load Source  
External Load Sink  
Load Regulation  
ppm/°C Note 1  
mA  
mA  
1
Isource = 0 mA to  
5 mA  
Isink  
5 mA  
VOUT/  
IOUT  
mV/mA  
1
TBD*  
50*  
= 0 mA to  
D407  
Line Regulation  
VOUT/  
VDD  
µV/V  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Production tested at TAMB = 25°C. Specifications over temp limits guaranteed by characterization.  
DS30275A-page 156  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
FIGURE 15-1: LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
VLHYS  
VLVD  
(LVDIF set by hardware)  
LVDIF  
(LVDIF can be cleared in software anytime during  
the gray area)  
TABLE 15-3  
ELECTRICAL CHARACTERISTICS: LVD  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial  
Operating voltage VDD range as described in DC spec Section 15.1 and Section 15.2.  
DC CHARACTERISTICS  
Param  
No.  
Characteristic  
Symbol  
Min Typ† Max Units  
Conditions  
D420  
LVV = 0100  
LVV = 0101  
LVV = 0110  
LVV = 0111  
LVV = 1000  
LVV = 1001  
LVV = 1010  
LVV = 1011  
LVV = 1100  
LVV = 1101  
LVV = 1110  
2.5  
2.7  
2.8  
3.0  
3.3  
3.5  
3.6  
3.8  
4.0  
4.2  
4.5  
2.58 2.66  
2.78 2.86  
2.89 2.98  
V
V
V
V
V
V
V
V
V
LVD Voltage  
3.1  
3.2  
3.41 3.52  
3.61 3.72  
3.72 3.84  
3.92 4.04  
4.13 4.26  
4.33 4.46  
4.64 4.78  
V
V
µA  
D421 Supply Current  
D422* LVD Voltage Drift Temperature  
coefficient  
ILVD  
TCVOUT  
10  
15  
20  
50 ppm/°C  
D423* LVD Voltage Drift with respect to  
VDD Regulation  
VLVD/  
VDD  
50  
µV/V  
D424* Low-voltage Detect Hysteresis  
VLHYS  
TBD  
100  
mV  
*
These parameters are characterized but not tested.  
Note 1: Production tested at Tamb = 25°C. Specifications over temp limits ensured by characterization.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 157  
PIC16C77X  
FIGURE 15-2: BROWN-OUT RESET CHARACTERISTICS  
VDD  
(device not in Brown-out Reset)  
VBHYS  
VBOR  
(device in Brown-out Reset)  
RESET (due to BOR)  
72 ms time out  
TABLE 15-4  
ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 15.1 and  
Section 15.2.  
Param  
No.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
2.5  
2.58  
2.66  
D005  
BOR Voltage  
BORV1:0 = 11  
BORV1:0 = 10  
BORV1:0 = 01  
BORV1:0 = 00  
2.7  
4.2  
4.5  
2.78  
4.33  
4.64  
15  
2.86  
4.46  
4.78  
50  
VBOR  
V
D006*  
BOR Voltage Drift Temperature coef-  
ficient  
TCVOUT  
ppm/°C  
D006A* BOR Voltage Drift with respect to  
VBOR/  
VDD  
50  
µV/V  
VDD Regulation  
D007  
Brown-out Hysteresis  
VBHYS  
IBOR  
TBD  
10  
100  
20  
mV  
µA  
D022A Supply Current  
*
These parameters are characterized but not tested.  
Note 1: Production tested at TAMB = 25°C. Specifications over temp limits ensured by characterization.  
DS30275A-page 158  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
15.5  
AC Characteristics: PIC16C77X (Commercial, Industrial)  
15.5.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
2. TppS  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 159  
PIC16C77X  
FIGURE 15-3: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2, but including PORTD and PORTE outputs as  
ports  
15 pF for OSC2 output  
Note: PORTD and PORTE are not implemented on the PIC16C773.  
DS30275A-page 160  
Advance Information  
1999 Microchip Technology Inc.  
 
PIC16C77X  
15.5.2 TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 15-4: EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
1
3
4
3
2
CLKOUT  
TABLE 15-5  
EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
Fosc External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
MHz XT and RC osc mode  
MHz HS osc mode (-04)  
MHz HS osc mode (-20)  
kHz LP osc mode  
(Note 1)  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
4
5
20  
200  
MHz HS osc mode  
kHz LP osc mode  
1
Tosc External CLKIN Period  
250  
250  
50  
TCY  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
XT and RC osc mode  
HS osc mode (-04)  
HS osc mode (-20)  
LP osc mode  
(Note 1)  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
50  
RC osc mode  
XT osc mode  
10,000  
250  
250  
HS osc mode (-04)  
HS osc mode (-20)  
LP osc mode  
5
2
TCY  
Instruction Cycle Time (Note 1)  
200  
100  
2.5  
15  
DC  
TCY = 4/FOSC  
3*  
TosL, External Clock in (OSC1) High or  
TosH Low Time  
XT oscillator  
LP oscillator  
HS oscillator  
4*  
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
25  
XT oscillator  
50  
LP oscillator  
15  
HS oscillator  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 161  
PIC16C77X  
FIGURE 15-5: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: Refer to Figure 15-3 for load conditions.  
TABLE 15-6  
CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
100  
100  
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
0.25TCY + 25  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
150  
Port out valid  
PIC16C77X  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
100  
200  
ns  
ns  
PIC16LC77X  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16C77X  
PIC16LC77X  
PIC16C77X  
PIC16LC77X  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
TCY  
TCY  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS30275A-page 162  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
FIGURE 15-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 15-3 for load conditions.  
FIGURE 15-7: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 15-7  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER,POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30*  
TmcL MCLR Pulse Width (low)  
100  
ns  
VDD = 5V, -40°C to +85°C  
31*  
Twdt  
Watchdog Timer Time-out Period  
7
18  
33  
ms VDD = 5V, -40°C to +85°C  
(No Prescaler)  
32*  
33*  
34*  
Tost  
Oscillation Start-up Timer Period  
28  
1024TOSC  
TOSC = OSC1 period  
Tpwrt Power up Timer Period  
72  
132  
100  
ms VDD = 5V, -40°C to +85°C  
TIOZ  
I/O Hi-impedance from MCLR Low  
ns  
or Watchdog Timer Reset  
35*  
TBOR  
Brown-out Reset pulse width  
100  
µs  
VDD VBOR (D005)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 163  
PIC16C77X  
FIGURE 15-8: BANDGAP START-UP TIME  
VBGAP  
VBGAP = 1.2V  
Enable Bandgap  
TBGAP  
Bandgap stable  
TABLE 15-8  
BANDGAP START-UP TIME  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
TBD  
Conditions  
36*  
TBGAP Bandgap start-up time  
30  
µs Defined as the time between  
the instant that the bandgap  
is enabled and the moment  
that the bandgap reference  
voltage is stable.  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30275A-page 164  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
TABLE 15-9  
A/D CONVERTER CHARACTERISTICS:  
Param  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR  
Resolution  
12 bits  
bit Min. resolution for A/D is 1 mV,  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
A03  
A04  
EIL  
Integral error  
+/-2 LSb  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
EDL  
Differential error  
+2 LSb  
-1 LSb  
No missing codes to 12-bits  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
A06  
A07  
EOFF Offset error  
less than  
±2 LSb  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
EGN  
Gain Error  
+/- 2LSb  
LSb VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
(3)  
A10  
A20  
Monotonicity  
guaranteed  
V
AVSS VAIN VREF+  
VREF Reference voltage  
(VREF+ VREF-)  
4.096  
VDD +0.3V  
Absolute minimum electrical spec to  
ensure 12-bit accuracy.  
A21  
A22  
VREF+ Reference V High  
(AVDD or VREF+)  
VREF-  
AVSS  
AVDD  
V
V
Min. resolution for A/D is 1 mV  
VREF- Reference V Low  
(AVSS or VREF-)  
VREF+  
Min. resolution for A/D is 1 mV  
A25  
A30  
VAIN  
ZAIN Recommended  
impedance of analog  
Analog input voltage  
VREFL  
VREFH  
V
2.5  
kΩ  
voltage source  
A50  
IREF  
VREF input current  
10  
µA During VAIN acquisition.  
(Note 2)  
Based on differential of VHOLD to VAIN.  
To charge CHOLD see Section 11.0.  
During A/D conversion cycle.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note1: When A/D is off, it will not consume any current other than minor leakage current. The power down current spec includes any  
such leakage from the A/D module.  
2: VREF current is from External VREF+, OR VREF-, or AVSS, or AVDD pin, whichever is selected as reference input.  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 165  
PIC16C77X  
FIGURE 15-9: A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
1/2 Tcy  
134  
131  
Q4  
130  
A/D CLK  
9
8
7
6
3
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
DONE  
OLD_DATA  
ADIF  
GO  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 15-10 A/D CONVERSION REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
130*  
TAD  
A/D clock period  
1.6  
µs  
µs  
Tosc based, VREF 2.5V  
3.0  
Tosc based, VREF full range  
130*  
TAD  
A/D Internal RC  
oscillator period  
ADCS1:ADCS0 = 11 (RC mode)  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
µs  
µs  
At VDD = 2.5V  
At VDD = 5.0V  
131*  
132*  
TCNV Conversion time (not  
including  
13TAD  
TAD Set GO bit to new data in A/D result  
register  
acquisition time)  
(Note 1)  
TACQ Acquisition Time  
Note 2  
5*  
11.5  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if  
the “new” input voltage has not  
changed by more than 1LSb (i.e  
1mV @ 4.096V) from the last sam-  
pled voltage (as stated on CHOLD).  
134*  
TGO  
Q4 to A/D clock start  
TOSC/2  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.6 for minimum conditions.  
DS30275A-page 166  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
FIGURE 15-10: A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
134  
131  
Q4  
130  
A/D CLK  
9
8
7
3
2
1
0
6
A/D DATA  
ADRES  
NEW_DATA  
OLD_DATA  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 15-11 A/D CONVERSION REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
130*  
TAD  
A/D clock period  
1.6  
µs  
µs  
VREF 2.5V  
TBD  
VREF full range  
130*  
TAD  
A/D Internal RC  
oscillator period  
ADCS1:ADCS0 = 11 (RC mode)  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
µs  
µs  
At VDD = 3.0V  
At VDD = 5.0V  
131*  
132*  
TCNV Conversion time (not  
including acquisition  
time)(Note 1)  
13TAD  
TACQ Acquisition Time  
Note 2  
5*  
11.5  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if  
the “new” input voltage has not  
changed by more than 1LSb (i.e  
1mV @ 4.096V) from the last sam-  
pled voltage (as stated on CHOLD).  
134*  
TGO  
Q4 to A/D clock start  
TOSC/2 + TCY  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.6 for minimum conditions.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 167  
PIC16C77X  
FIGURE 15-11: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 15-3 for load conditions.  
TABLE 15-12 TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40*  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
0.5TCY + 20  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
10  
0.5TCY + 20  
10  
ns  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
With Prescaler  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4, ..., 256)  
N
0.5TCY + 20  
15  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
ns Must also meet  
parameter 47  
Synchronous, PIC16C77X  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC77X  
25  
Asynchronous PIC16C77X  
PIC16LC77X  
30  
ns  
ns  
50  
T1CKI Low Time  
Synchronous, Prescaler = 1  
Synchronous, PIC16C77X  
0.5TCY + 20  
ns Must also meet  
parameter 47  
15  
25  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC77X  
Asynchronous PIC16C77X  
PIC16LC77X  
30  
ns  
ns  
50  
Greater of:  
30 OR TCY + 40  
N
T1CKI input period Synchronous  
PIC16C77X  
ns N = prescale value  
(1, 2, 4, 8)  
PIC16LC77X  
Greater of:  
50 OR TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous PIC16C77X  
PIC16LC77X  
60  
100  
DC  
50  
ns  
ns  
Ft1  
Timer1 oscillator input frequency range  
(oscillator enabled by setting bit T1OSCEN)  
kHz  
48  
*
TCKEZtmr1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30275A-page 168  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
FIGURE 15-12: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 15-3 for load conditions.  
54  
TABLE 15-13 CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Parameter Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
50*  
TccL CCP1 and CCP2 No Prescaler  
input low time  
0.5TCY + 20  
ns  
PIC16C77X  
10  
ns  
ns  
ns  
ns  
ns  
With Prescaler  
PIC16LC77X  
20  
51*  
TccH  
No Prescaler  
0.5TCY + 20  
CCP1 and CCP2  
input high time  
PIC16C77X  
10  
20  
With Prescaler  
PIC16LC77X  
52*  
53*  
TccP  
3TCY + 40  
ns N = prescale value  
(1,4 or 16)  
CCP1 and CCP2 input period  
N
PIC16C77X  
PIC16LC77X  
PIC16C77X  
PIC16LC77X  
TccR CCP1 and CCP2 output fall time  
TccF CCP1 and CCP2 output fall time  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54*  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 169  
PIC16C77X  
FIGURE 15-13: PARALLEL SLAVE PORT TIMING (PIC16C774)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 15-3 for load conditions.  
TABLE 15-14 PARALLEL SLAVE PORT REQUIREMENTS (PIC16C774)  
Parameter  
No.  
Sym  
Characteristic  
Min Typ† Max Units Conditions  
62*  
TdtV2wrH Data in valid before WRor CS(setup time)  
20  
25  
ns  
ns  
Extended  
Temperature  
Range Only  
63*  
64*  
TwrH2dtI WRor CSto data–in invalid (hold time) PIC16C774  
PIC16LC774  
20  
35  
ns  
ns  
ns  
TrdL2dtV RDand CSto data–out valid  
80  
90  
ns Extended  
Temperature  
Range Only  
65*  
TrdH2dtI RDor CSto data–out invalid  
10  
30  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30275A-page 170  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
FIGURE 15-14: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
122  
Note: Refer to Figure 15-3 for load conditions.  
TABLE 15-15 USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ† Max Units Conditions  
120*  
TckH2dtV  
SYNC XMIT (MASTER &  
SLAVE)  
Clock high to data out valid  
PIC16C774/773  
PIC16LC774/773  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
121*  
122*  
Tckrf  
Tdtrf  
Clock out rise time and fall time PIC16C774/773  
(Master Mode)  
PIC16LC774/773  
50  
Data out rise time and fall time PIC16C774/773  
PIC16LC774/773  
45  
50  
*
These parameters are characterized but not tested.  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 15-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
125  
pin  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 15-3 for load conditions.  
TABLE 15-16 USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
125*  
TdtV2ckL  
SYNC RCV (MASTER & SLAVE)  
Data setup before CK (DT setup time)  
15  
ns  
ns  
126*  
TckL2dtl  
Data hold after CK (DT hold time)  
15  
*
These parameters are characterized but not tested.  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 171  
PIC16C77X  
NOTES:  
DS30275A-page 172  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
The graphs and tables provided in this section are for design guidance and are not tested.  
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are guaranteed to operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period  
of time and matrix samples. ’Typical’ represents the mean of the distribution at 25°C. ’Max’ or ’min’ represents  
(mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.  
Graphs and Tables not available at this time.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 173  
PIC16C77X  
NOTES:  
DS30275A-page 174  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
17.0 PACKAGING INFORMATION  
17.1  
Package Marking Information  
28-Lead PDIP (Skinny DIP)  
Example  
PIC16C773-20/SP  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
AABBCDE  
9917HAT  
28-Lead CERDIP Windowed  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16C774/JW  
9905HAT  
AABBCDE  
28-Lead SOIC  
Example  
PIC16C773-20/SO  
9910SAA  
XXXXXXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXXXXXX  
AABBCDE  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C773  
20I/SS  
AABBCAE  
9817SBP  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
AA  
BB  
C
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
O = Outside Vendor  
C = 5” Line  
S = 6” Line  
H = 8” Line  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask  
rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with  
your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 175  
PIC16C77X  
Package Marking Information (Cont’d)  
40-Lead PDIP  
Example  
PIC16C774-04/P  
9912SAA  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
AABBCDE  
40-Lead CERDIP Windowed  
Example  
XXXXXXXXXXXXX  
PIC16C774/JW  
XXXXXXXXXXXXX  
XXXXXXXXXXXXX  
AABBCDE  
9905HAT  
44-Lead TQFP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C774  
-04/PT  
9911HAT  
AABBCDE  
44-Lead MQFP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C774  
-20/PQ  
AABBCDE  
9904SAT  
44-Lead PLCC  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
AABBCDE  
PIC16C774  
-04/L  
9903SAT  
DS30275A-page 176  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
17.2  
K04-070 28-Lead Skinny Plastic Dual In-line (SP) – 300 mil  
E
D
2
α
n
1
E1  
A1  
A
R
L
c
B1  
β
A2  
p
eB  
B
Units  
INCHES*  
NOM  
0.300  
28  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
7.62  
MAX  
n
p
B
B1  
R
c
28  
2.54  
0.48  
1.33  
0.13  
0.25  
3.81  
2.29  
0.51  
3.30  
34.67  
7.30  
7.18  
8.89  
10  
0.100  
0.019  
0.053  
0.005  
0.010  
0.150  
0.090  
0.020  
0.130  
1.365  
0.288  
0.283  
0.350  
10  
0.016  
0.022  
0.41  
0.56  
0.040  
0.000  
0.008  
0.140  
0.070  
0.015  
0.125  
1.345  
0.280  
0.270  
0.320  
5
0.065  
0.010  
0.012  
0.160  
0.110  
0.025  
0.135  
1.385  
0.295  
0.295  
0.380  
15  
1.02  
0.00  
0.20  
3.56  
1.78  
0.38  
3.18  
34.16  
7.11  
6.86  
8.13  
5
1.65  
0.25  
0.30  
4.06  
2.79  
0.64  
3.43  
35.18  
7.49  
7.49  
9.65  
15  
A
A1  
A2  
L
D
E
E1  
eB  
α
β
5
10  
15  
5
10  
15  
*
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 177  
PIC16C77X  
17.3  
K04-080 28-Lead Ceramic Dual In-line with Window (JW) – 300 mil  
E
D
W2  
2
1
n
W1  
E1  
A
A1  
R
L
c
B1  
B
A2  
eB  
p
Units  
INCHES*  
NOM  
0.300  
28  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
MIN  
MAX  
MIN  
NOM  
7.62  
28  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
W1  
W2  
0.098  
0.100  
0.019  
0.058  
0.013  
0.010  
0.183  
0.125  
0.023  
0.140  
1.458  
0.290  
0.270  
0.385  
0.140  
0.300  
0.102  
2.49  
0.41  
2.54  
0.47  
1.46  
0.32  
0.25  
4.64  
3.18  
0.57  
3.56  
37.02  
7.37  
6.86  
9.78  
0.14  
0.3  
2.59  
0.016  
0.050  
0.010  
0.008  
0.170  
0.107  
0.015  
0.135  
1.430  
0.285  
0.255  
0.345  
0.130  
0.290  
0.021  
0.065  
0.015  
0.012  
0.195  
0.143  
0.030  
0.145  
1.485  
0.295  
0.285  
0.425  
0.150  
0.310  
0.53  
1.65  
0.38  
0.30  
4.95  
3.63  
0.76  
3.68  
37.72  
7.49  
7.24  
10.80  
0.15  
0.31  
1.27  
0.25  
0.20  
4.32  
2.72  
0.00  
3.43  
36.32  
7.24  
6.48  
8.76  
0.13  
0.29  
Package Width  
Radius to Radius Width  
Overall Row Spacing  
Window Width  
Window Length  
* Controlling Parameter.  
DS30275A-page 178  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
17.4  
K04-052 28-Lead Plastic Small Outline (SO) – Wide, 300 mil  
E1  
E
p
D
B
2
1
n
X
α
45°  
L
R2  
c
A
A1  
φ
R1  
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES*  
NOM  
0.050  
28  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
1.27  
MAX  
p
n
A
A1  
A2  
Number of Pins  
28  
2.50  
1.47  
0.19  
17.93  
7.51  
10.33  
0.50  
0.13  
0.13  
0.41  
4
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Chamfer Distance  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
0.093  
0.099  
0.058  
0.008  
0.706  
0.296  
0.407  
0.020  
0.005  
0.005  
0.016  
4
0.104  
2.36  
2.64  
0.048  
0.004  
0.700  
0.292  
0.394  
0.010  
0.005  
0.005  
0.011  
0
0.068  
0.011  
0.712  
0.299  
0.419  
0.029  
0.010  
0.010  
0.021  
8
1.22  
0.10  
17.78  
7.42  
10.01  
0.25  
0.13  
0.13  
0.28  
0
1.73  
0.28  
18.08  
7.59  
10.64  
0.74  
0.25  
0.25  
0.53  
8
D
E
E1  
X
R1  
R2  
L
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.010  
0.009  
0.014  
0
0.015  
0.011  
0.017  
12  
0.020  
0.012  
0.019  
15  
0.25  
0.23  
0.36  
0
0.38  
0.27  
0.42  
12  
0.51  
0.30  
0.48  
15  
0
12  
15  
0
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 179  
PIC16C77X  
17.5  
K04-073 28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm  
E1  
E
p
D
B
2
1
n
α
L
A
R2  
c
A1  
R1  
A2  
φ
L1  
β
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.026  
28  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.65  
28  
MAX  
p
n
A
A1  
A2  
D
E
E1  
R1  
R2  
L
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
0.068  
0.073  
0.036  
0.005  
0.402  
0.208  
0.306  
0.005  
0.005  
0.020  
4
0.078  
1.73  
0.66  
1.86  
0.91  
0.13  
10.20  
5.29  
7.78  
0.13  
0.13  
0.51  
4
1.99  
0.026  
0.002  
0.396  
0.205  
0.301  
0.005  
0.005  
0.015  
0
0.046  
0.008  
0.407  
0.212  
0.311  
0.010  
0.010  
0.025  
8
1.17  
0.21  
10.33  
5.38  
7.90  
0.25  
0.25  
0.64  
8
0.05  
10.07  
5.20  
7.65  
0.13  
0.13  
0.38  
0
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.000  
0.005  
0.010  
0
0.005  
0.007  
0.012  
5
0.010  
0.009  
0.015  
10  
0.00  
0.13  
0.25  
0
0.13  
0.18  
0.32  
5
0.25  
0.22  
0.38  
10  
0
5
10  
0
5
10  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS30275A-page 180  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
17.6  
K04-016 40-Lead Plastic Dual In-line (P) – 600 mil  
E
D
α
2
n
1
A1  
L
E1  
A
R
c
B1  
B
β
A2  
p
eB  
Units  
INCHES*  
NOM  
0.600  
40  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
15.24  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
α
40  
2.54  
0.46  
1.27  
0.13  
0.25  
4.06  
2.36  
0.51  
3.30  
51.26  
13.59  
14.35  
15.49  
10  
0.100  
0.018  
0.050  
0.005  
0.010  
0.160  
0.093  
0.020  
0.130  
2.018  
0.535  
0.565  
0.610  
10  
0.016  
0.020  
0.41  
0.51  
0.045  
0.000  
0.009  
0.110  
0.073  
0.020  
0.125  
2.013  
0.530  
0.545  
0.630  
5
0.055  
0.010  
0.011  
0.160  
0.113  
0.040  
0.135  
2.023  
0.540  
0.585  
0.670  
15  
1.14  
0.00  
0.23  
2.79  
1.85  
0.51  
3.18  
51.13  
13.46  
13.84  
16.00  
5
1.40  
0.25  
0.28  
4.06  
2.87  
1.02  
3.43  
51.38  
13.72  
14.86  
17.02  
15  
β
5
10  
15  
5
10  
15  
*
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 181  
PIC16C77X  
17.7  
K04-014 40-Lead Ceramic Dual In-line with Window (JW) – 600 mil  
E
W
D
2
1
n
A1  
L
E1  
A
R
c
eB  
B1  
A2  
p
B
Units  
INCHES*  
NOM  
0.600  
40  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
MIN  
MAX  
MIN  
NOM  
15.24  
40  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
W
0.098  
0.100  
0.020  
0.053  
0.005  
0.011  
0.205  
0.135  
0.045  
0.140  
2.050  
0.520  
0.580  
0.660  
0.350  
0.102  
2.49  
0.41  
2.54  
0.50  
2.59  
0.58  
1.40  
0.25  
0.36  
5.59  
3.89  
1.52  
3.68  
52.32  
13.36  
15.24  
18.03  
9.14  
0.016  
0.050  
0.000  
0.008  
0.190  
0.117  
0.030  
0.135  
2.040  
0.514  
0.560  
0.610  
0.340  
0.023  
0.055  
0.010  
0.014  
0.220  
0.153  
0.060  
0.145  
2.060  
0.526  
0.600  
0.710  
0.360  
1.27  
0.00  
1.33  
0.13  
0.20  
0.28  
4.83  
5.21  
2.97  
3.43  
0.00  
1.14  
3.43  
3.56  
51.82  
13.06  
14.22  
15.49  
8.64  
52.07  
13.21  
14.73  
16.76  
8.89  
Package Width  
Radius to Radius Width  
Overall Row Spacing  
Window Diameter  
*
Controlling Parameter.  
DS30275A-page 182  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
17.8  
K04-076 44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.1 mm Lead Form  
E1  
E
# leads = n1  
p
D
D1  
2
1
B
n
X x 45°  
L
α
A
R2  
c
φ
R1  
A1  
β
A2  
L1  
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.031  
44  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.80  
44  
MAX  
p
n
n1  
A
A1  
A2  
R1  
R2  
L
Number of Pins  
Pins along Width  
Overall Pack. Height  
Shoulder Height  
Standoff  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
11  
11  
0.039  
0.015  
0.002  
0.003  
0.003  
0.005  
0
0.043  
0.025  
0.004  
0.003  
0.006  
0.010  
3.5  
0.047  
1.00  
0.38  
1.10  
0.64  
0.10  
0.08  
0.14  
0.25  
3.5  
1.20  
0.035  
0.006  
0.010  
0.008  
0.015  
7
0.89  
0.15  
0.25  
0.20  
0.38  
7
0.05  
0.08  
0.08  
0.13  
0
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Outside Tip Length  
Outside Tip Width  
Molded Pack. Length  
Molded Pack. Width  
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
L1  
c
B
0.003  
0.004  
0.012  
0.463  
0.463  
0.390  
0.390  
0.025  
5
0.008  
0.006  
0.015  
0.472  
0.472  
0.394  
0.394  
0.035  
10  
0.013  
0.008  
0.018  
0.482  
0.482  
0.398  
0.398  
0.045  
15  
0.08  
0.09  
0.30  
11.75  
11.75  
9.90  
9.90  
0.64  
5
0.20  
0.15  
0.38  
12.00  
12.00  
10.00  
10.00  
0.89  
10  
0.33  
0.20  
0.45  
12.25  
12.25  
10.10  
10.10  
1.14  
15  
D1  
E1  
D
E
X
α
β
5
12  
15  
5
12  
15  
*
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent:MS-026 ACB  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 183  
PIC16C77X  
17.9  
K04-071 44-Lead Plastic Quad Flatpack (PQ) 10x10x2 mm Body, 1.6/0.15 mm Lead Form  
E1  
E
# leads = n1  
p
D
D1  
2
1
B
n
X x 45°  
α
L
R2  
c
A
R1  
φ
A1  
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.031  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.80  
44  
MAX  
p
n
n1  
A
A1  
A2  
R1  
R2  
L
Number of Pins  
Pins along Width  
Overall Pack. Height  
Shoulder Height  
Standoff  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
44  
11  
11  
0.079  
0.086  
0.044  
0.006  
0.005  
0.012  
0.020  
3.5  
0.093  
2.00  
0.81  
2.18  
1.11  
0.15  
0.13  
0.30  
0.51  
3.5  
2.35  
0.032  
0.002  
0.005  
0.005  
0.015  
0.056  
0.010  
0.010  
0.015  
0.025  
1.41  
0.25  
0.25  
0.38  
0.64  
7
0.05  
0.13  
0.13  
0.38  
0
Foot Angle  
φ
0
7
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Outside Tip Length  
Outside Tip Width  
Molded Pack. Length  
Molded Pack. Width  
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
L1  
c
B
D1  
E1  
0.011  
0.005  
0.012  
0.510  
0.510  
0.390  
0.390  
0.025  
0.016  
0.007  
0.015  
0.520  
0.520  
0.394  
0.394  
0.035  
10  
0.021  
0.009  
0.018  
0.530  
0.530  
0.398  
0.398  
0.045  
15  
0.28  
0.13  
0.30  
12.95  
12.95  
9.90  
9.90  
0.635  
5
0.41  
0.18  
0.37  
13.20  
13.20  
10.00  
10.00  
0.89  
10  
0.53  
0.23  
0.45  
13.45  
13.45  
10.10  
10.10  
1.143  
15  
D
E
X
α
5
5
β
12  
15  
5
12  
15  
*
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent:MS-022AB  
DS30275A-page 184  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
17.10 K04-048 44-Lead Plastic Leaded Chip Carrier (L) – Square  
E1  
E
# leads = n1  
D1  
D
n 1 2  
α
A3  
CH2 x 45°  
CH1 x 45°  
R1  
c
L
A
35°  
A1  
B1  
B
R2  
β
A2  
p
E2  
D2  
Units  
INCHES*  
NOM  
44  
MILLIMETERS  
Dimension Limits  
Number of Pins  
Pitch  
Overall Pack. Height  
Shoulder Height  
Standoff  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
A
A1  
A2  
A3  
CH1  
CH2  
E1  
D1  
E
D
E2  
D2  
n1  
c
B1  
B
44  
0.050  
0.173  
0.103  
0.023  
0.029  
0.045  
0.005  
0.690  
0.690  
0.653  
0.653  
0.620  
0.620  
11  
0.010  
0.029  
0.018  
0.058  
0.005  
0.025  
5
1.27  
4.38  
2.60  
0.57  
0.74  
1.14  
0.13  
17.53  
17.53  
16.59  
16.59  
15.75  
15.75  
11  
0.165  
0.180  
4.19  
2.41  
0.38  
0.61  
1.02  
4.57  
2.79  
0.76  
0.86  
1.27  
0.095  
0.015  
0.024  
0.040  
0.000  
0.685  
0.685  
0.650  
0.650  
0.610  
0.610  
0.110  
0.030  
0.034  
0.050  
0.010  
0.695  
0.695  
0.656  
0.656  
0.630  
0.630  
Side 1 Chamfer Dim.  
Corner Chamfer (1)  
Corner Chamfer (other)  
Overall Pack. Width  
Overall Pack. Length  
Molded Pack. Width  
Molded Pack. Length  
Footprint Width  
Footprint Length  
Pins along Width  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Upper Lead Length  
Shoulder Inside Radius  
J-Bend Inside Radius  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
0.00  
0.25  
17.40  
17.40  
16.51  
16.51  
15.49  
15.49  
17.65  
17.65  
16.66  
16.66  
16.00  
16.00  
0.008  
0.026  
0.015  
0.050  
0.003  
0.015  
0
0.012  
0.032  
0.021  
0.065  
0.010  
0.035  
10  
0.20  
0.66  
0.38  
1.27  
0.08  
0.38  
0
0.25  
0.74  
0.46  
1.46  
0.13  
0.64  
5
0.30  
0.81  
0.53  
1.65  
0.25  
0.89  
10  
L
R1  
R2  
α
β
0
5
10  
0
5
10  
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent:MO-047 AC  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 185  
PIC16C77X  
NOTES:  
DS30275A-page 186  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
APPENDIX A: REVISION HISTORY  
Version  
Date  
Revision Description  
A
99  
This is a new data sheet. However, the devices described in this data sheet are  
the upgrades to the devices found in the PIC16C7X Data Sheet, DS30390E.  
APPENDIX B: DEVICE DIFFERENCES  
The differences between the devices in this data sheet  
are listed in Table B-1.  
TABLE B-1:  
DEVICE DIFFERENCES  
Difference  
PIC16C773  
6 channels, 12 bits  
no  
PIC16C774  
10 channels, 12 bits  
A/D  
Parallel Slave Port  
Packages  
yes  
28-pin PDIP, 28-pin windowed CERDIP,  
28-pin SOIC, 28-pin SSOP  
40-pin PDIP, 40-pin windowed CERDIP,  
44-pin TQFP, 44-pin MQFP,  
44-pin PLCC  
APPENDIX C: CONVERSION CONSIDERATIONS  
Considerations for converting from previous versions of  
devices to the ones listed in this data sheet are listed in  
the following:  
Program Memory Differences  
none  
Data Memory Differences  
PIC16C774 vs. PIC16C74A  
1. Data memory size has increased to 256 from  
192 by adding bank 2.  
• RA2  
• RA3  
• RA5  
Added VREF- and VRL  
Added VREF+ and VRH  
Removed SS  
2. Bank 1 locations 0xF0 - 0xFF are now common  
RAM locations across banks 0-3.  
• Pin 11 AVDD vs. VDD  
• Pin 12 AVSS vs. VSS  
Peripheral Differences  
1. 12-bit A/D replaces 8-bit A/D.  
• RB1  
• RB2  
• RB3  
Added SS, SS is now ST vs. TTL  
2. Master Synchronous Serial Port replace  
Synchronous Serial Port.  
Added AN8  
Added AN9 and LVDIN  
3. USART adds 9-bit address mode to module.  
4. Bandgap Voltage Reference added.  
PIC16C773 vs. PIC16C73A  
5. Low-voltage Detect Module added.  
• RA2  
• RA3  
• Pin 7  
• Pin 8  
• RB1  
• RB2  
• RB3  
Added VREF- and VRL  
6. Selectable Brown-out Reset voltages added.  
Added VREF+ and VRH  
AVDD vs. removed RA5/SS/AN4  
AVSS vs. VSS  
Added SS, SS is now ST vs. TTL  
Added AN8  
Added AN9 and LVDIN  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 187  
 
PIC16C77X  
NOTES:  
DS30275A-page 188  
Advance Information  
1999 Microchip Technology Inc.  
PIC16C77X  
INDEX  
A
C
Capture (CCP Module) ...................................................... 48  
Block Diagram ........................................................... 48  
CCP Pin Configuration .............................................. 48  
CCPR1H:CCPR1L Registers .................................... 48  
Changing Between Capture Prescalers .................... 48  
Software Interrupt ...................................................... 48  
Timer1 Mode Selection .............................................. 48  
Capture/Compare/PWM (CCP) ......................................... 47  
CCP1 ......................................................................... 47  
CCP1CON Register ........................................... 47  
CCPR1H Register ............................................. 47  
CCPR1L Register .............................................. 47  
Enable (CCP1IE Bit) .......................................... 19  
Flag (CCP1IF Bit) .............................................. 20  
RC2/CCP1 Pin ................................................. 7, 9  
CCP2 ......................................................................... 47  
CCP2CON Register ........................................... 47  
CCPR2H Register ............................................. 47  
CCPR2L Register .............................................. 47  
Enable (CCP2IE Bit) .......................................... 21  
Flag (CCP2IF Bit) .............................................. 22  
RC1/T1OSI/CCP2 Pin ..................................... 7, 9  
Interaction of Two CCP Modules ............................... 47  
Timer Resources ....................................................... 47  
CCP1CON ......................................................................... 15  
CCP1CON Register ........................................................... 47  
CCP1M3:CCP1M0 Bits ............................................. 47  
CCP1X:CCP1Y Bits ................................................... 47  
CCP2CON ......................................................................... 15  
CCP2CON Register ........................................................... 47  
CCP2M3:CCP2M0 Bits ............................................. 47  
CCP2X:CCP2Y Bits ................................................... 47  
CCPR1H Register ........................................................ 13, 15  
CCPR1L Register .............................................................. 15  
CCPR2H Register ........................................................ 13, 15  
CCPR2L Register ........................................................ 13, 15  
CKE ................................................................................... 54  
CKP ................................................................................... 55  
Clock Polarity Select bit, CKP ............................................ 55  
Code Examples  
A/D ................................................................................... 117  
A/D Converter Enable (ADIE Bit) ............................... 19  
A/D Converter Flag (ADIF Bit) ................................... 20  
ADCON0 Register .................................................... 117  
ADCON1 Register ............................................ 117, 118  
ADRES Register ...................................................... 117  
Analog Port Pins ...................................... 7, 8, 9, 36, 37  
Block Diagram .......................................................... 120  
Configuring Analog Port ........................................... 119  
Conversion time ....................................................... 125  
Conversions ............................................................. 121  
converter characteristics .................. 156, 157, 158, 165  
Faster Conversion - Lower Resolution Tradeoff ...... 125  
Internal Sampling Switch (Rss) Impedence ............. 123  
Operation During Sleep ........................................... 126  
Sampling Requirements ........................................... 123  
Sampling Time ......................................................... 123  
Source Impedance ................................................... 123  
Special Event Trigger (CCP) ...................................... 49  
A/D Conversion Clock ...................................................... 121  
ACK .................................................................................... 64  
Acknowledge Data bit, AKD ............................................... 56  
Acknowledge Pulse ............................................................ 64  
Acknowledge Sequence Enable bit, AKE .......................... 56  
Acknowledge Status bit, AKS ............................................ 56  
ADCON0 Register ............................................................ 117  
ADCON1 Register .................................................... 117, 118  
ADRES ............................................................................. 117  
ADRES Register .......................................... 13, 14, 117, 126  
AKD .................................................................................... 56  
AKE .................................................................................... 56  
AKS .............................................................................. 56, 79  
Application Note AN578, "Use of the SSP  
Module in the I2C Multi-Master Environment." ................... 63  
Architecture  
PIC16C63A/PIC16C73B Block Diagram ...................... 5  
PIC16C65B/PIC16C74B Block Diagram ...................... 6  
Assembler  
MPASM Assembler .................................................. 147  
Loading the SSPBUF register ................................... 58  
Code Protection ....................................................... 127, 141  
Compare (CCP Module) .................................................... 49  
Block Diagram ........................................................... 49  
CCP Pin Configuration .............................................. 49  
CCPR1H:CCPR1L Registers .................................... 49  
Software Interrupt ...................................................... 49  
Special Event Trigger .......................................... 43, 49  
Timer1 Mode Selection .............................................. 49  
Configuration Bits ............................................................ 127  
Conversion Considerations .............................................. 187  
B
Banking, Data Memory ................................................ 11, 16  
Baud Rate Generator ......................................................... 73  
BF .................................................................... 54, 64, 79, 82  
Block Diagrams  
Baud Rate Generator ................................................. 73  
2
I C Master Mode ........................................................ 71  
2
I C Module ................................................................. 63  
2
SSP (I C Mode) ......................................................... 63  
SSP (SPI Mode) ......................................................... 57  
BOR. See Brown-out Reset  
D
BRG ................................................................................... 73  
Brown-out Reset (BOR) ................... 127, 131, 132, 133, 134  
BOR Status (BOR Bit) ................................................ 23  
Buffer Full bit, BF ............................................................... 64  
Buffer Full Status bit, BF .................................................... 54  
Bus Arbitration ................................................................... 90  
Bus Collision  
Section ....................................................................... 90  
Bus Collision During a RESTART Condition ...................... 93  
Bus Collision During a Start Condition ............................... 91  
Bus Collision During a Stop Condition ............................... 94  
D/A ..................................................................................... 54  
Data Memory ..................................................................... 11  
Bank Select (RP1:RP0 Bits) ................................ 11, 16  
General Purpose Registers ....................................... 11  
Register File Map ...................................................... 12  
Special Function Registers ........................................ 13  
Data/Address bit, D/A ........................................................ 54  
DC Characteristics  
PIC16C73 ................................................................ 152  
PIC16C74 ................................................................ 152  
Development Support ...................................................... 145  
Development Tools .......................................................... 145  
Device Differences ........................................................... 187  
Direct Addressing .............................................................. 25  
1999 Microchip Technology Inc.  
Preliminary  
DS30275A-page 189  
PIC16C77X  
Restart Condition Flowchart ...................................... 77  
Slave Mode ................................................................ 64  
Slave Reception ........................................................ 65  
Slave Transmission ................................................... 65  
SSPBUF .................................................................... 64  
Start Condition Flowchart .......................................... 75  
Stop Condition Flowchart ........................................... 88  
Stop Condition Receive or Transmit timing ............... 87  
Stop Condition timing ................................................. 87  
Waveforms for 7-bit Reception .................................. 65  
Waveforms for 7-bit Transmission ............................. 66  
E
Errata ...................................................................................4  
External Power-on Reset Circuit ......................................132  
F
Firmware Instructions .......................................................143  
Flowcharts  
Acknowledge ..............................................................86  
Master Receiver .........................................................83  
Master Transmit .........................................................80  
Restart Condition .......................................................77  
Start Condition ...........................................................75  
Stop Condition ...........................................................88  
FSR Register ..........................................................13, 14, 15  
Fuzzy Logic Dev. System (fuzzyTECH -MP) ..................147  
2
I C Module Address Register, SSPADD ........................... 64  
I C Slave Mode .................................................................. 64  
2
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator ......... 145  
ID Locations ............................................................. 127, 141  
In-Circuit Serial Programming (ICSP) ...................... 127, 141  
INDF .................................................................................. 15  
INDF Register .............................................................. 13, 14  
Indirect Addressing ............................................................ 25  
FSR Register ............................................................. 11  
Instruction Format ............................................................ 143  
Instruction Set .................................................................. 143  
Summary Table ....................................................... 144  
INTCON ............................................................................. 15  
INTCON Register ............................................................... 18  
GIE Bit ....................................................................... 18  
INTE Bit ..................................................................... 18  
INTF Bit ..................................................................... 18  
PEIE Bit ..................................................................... 18  
RBIE Bit ..................................................................... 18  
RBIF Bit ............................................................... 18, 30  
T0IE Bit ...................................................................... 18  
T0IF Bit ...................................................................... 18  
G
GCE ...................................................................................56  
General Call Address Sequence ........................................69  
General Call Address Support ...........................................69  
General Call Enable bit, GCE ............................................56  
I
I/O Ports .............................................................................27  
2
I C ......................................................................................63  
2
I C Master Mode Receiver Flowchart ................................83  
2
I C Master Mode Reception ...............................................82  
2
I C Master Mode Restart Condition ...................................76  
2
I C Mode Selection ............................................................63  
2
I C Module  
Acknowledge Flowchart .............................................86  
Acknowledge Sequence timing ..................................85  
Addressing .................................................................64  
Baud Rate Generator .................................................73  
Block Diagram ............................................................71  
BRG Block Diagram ...................................................73  
BRG Reset due to SDA Collision ...............................92  
BRG Timing ...............................................................73  
Bus Arbitration ...........................................................90  
Bus Collision ..............................................................90  
Acknowledge ......................................................90  
Restart Condition ...............................................93  
Restart Condition Timing (Case1) ......................93  
Restart Condition Timing (Case2) ......................93  
Start Condition ...................................................91  
Start Condition Timing ................................. 91, 92  
Stop Condition ...................................................94  
Stop Condition Timing (Case1) ..........................94  
Stop Condition Timing (Case2) ..........................94  
Transmit Timing .................................................90  
Bus Collision timing ....................................................90  
Clock Arbitration .........................................................89  
Clock Arbitration Timing (Master Transmit) ................89  
Conditions to not give ACK Pulse ..............................64  
General Call Address Support ...................................69  
Master Mode ..............................................................71  
Master Mode 7-bit Reception timing ..........................84  
Master Mode Operation .............................................72  
Master Mode Start Condition .....................................74  
Master Mode Transmission ........................................79  
Master Mode Transmit Sequence ..............................72  
Master Transmit Flowchart ........................................80  
Multi-Master Communication .....................................90  
Multi-master Mode .....................................................72  
Operation ...................................................................63  
Repeat Start Condition timing ....................................76  
2
Inter-Integrated Circuit (I C) .............................................. 53  
internal sampling switch (Rss) impedence ...................... 123  
Interrupt Sources ..................................................... 127, 137  
Block Diagram ......................................................... 137  
Capture Complete (CCP) ........................................... 48  
Compare Complete (CCP) ......................................... 49  
Interrupt on Change (RB7:RB4 ) ............................... 30  
RB0/INT Pin, External ...................................... 7, 8, 138  
TMR0 Overflow .................................................. 40, 138  
TMR1 Overflow .................................................... 41, 43  
TMR2 to PR2 Match .................................................. 46  
TMR2 to PR2 Match (PWM) ................................ 45, 50  
USART Receive/Transmit Complete ......................... 97  
Interrupts, Context Saving During .................................... 138  
Interrupts, Enable Bits  
A/D Converter Enable (ADIE Bit) ............................... 19  
CCP1 Enable (CCP1IE Bit) ................................. 19, 48  
CCP2 Enable (CCP2IE Bit) ....................................... 21  
Global Interrupt Enable (GIE Bit) ....................... 18, 137  
Interrupt on Change (RB7:RB4) Enable  
(RBIE Bit) ........................................................... 18, 138  
Peripheral Interrupt Enable (PEIE Bit) ....................... 18  
PSP Read/Write Enable (PSPIE Bit) ......................... 19  
RB0/INT Enable (INTE Bit) ........................................ 18  
SSP Enable (SSPIE Bit) ............................................ 19  
TMR0 Overflow Enable (T0IE Bit) ............................. 18  
TMR1 Overflow Enable (TMR1IE Bit) ........................ 19  
TMR2 to PR2 Match Enable (TMR2IE Bit) ................ 19  
USART Receive Enable (RCIE Bit) ........................... 19  
USART Transmit Enable (TXIE Bit) ........................... 19  
DS30275A-page 190  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C77X  
Interrupts, Flag Bits  
A/D Converter Flag (ADIF Bit) ................................... 20  
PCON Register .......................................................... 23, 133  
BOR Bit ...................................................................... 23  
POR Bit ...................................................................... 23  
PICDEM-1 Low-Cost PICmicro Demo Board .................. 146  
PICDEM-2 Low-Cost PIC16CXX Demo Board ................ 146  
PICDEM-3 Low-Cost PIC16CXXX Demo Board ............. 146  
PICSTART Plus Entry Level Development System ...... 145  
PIE1 Register .................................................................... 19  
ADIE Bit ..................................................................... 19  
CCP1IE Bit ................................................................ 19  
PSPIE Bit ................................................................... 19  
RCIE Bit ..................................................................... 19  
SSPIE Bit ................................................................... 19  
TMR1IE Bit ................................................................ 19  
TMR2IE Bit ................................................................ 19  
TXIE Bit ..................................................................... 19  
PIE2 Register .................................................................... 21  
CCP2IE Bit ................................................................ 21  
Pinout Descriptions  
CCP1 Flag (CCP1IF Bit) ................................ 20, 48, 49  
CCP2 Flag (CCP2IF Bit) ............................................ 22  
Interrupt on Change (RB7:RB4) Flag  
(RBIF Bit) ..................................................... 18, 30, 138  
PSP Read/Write Flag (PSPIF Bit) .............................. 20  
RB0/INT Flag (INTF Bit) ............................................. 18  
SSP Flag (SSPIF Bit) ................................................. 20  
TMR0 Overflow Flag (T0IF Bit) .......................... 18, 138  
TMR1 Overflow Flag (TMR1IF Bit) ............................ 20  
TMR2 to PR2 Match Flag (TMR2IF Bit) ..................... 20  
USART Receive Flag (RCIF Bit) ................................ 20  
USART Transmit Flag (TXIE Bit) ............................... 20  
K
KeeLoq Evaluation and Programming Tools ................. 148  
M
Master Clear (MCLR) ....................................................... 7, 8  
MCLR Reset, Normal Operation .............. 131, 133, 134  
MCLR Reset, SLEEP ............................... 131, 133, 134  
Memory Organization  
Data Memory ............................................................. 11  
Program Memory ....................................................... 11  
MPLAB Integrated Development Environment Software . 147  
Multi-Master Communication ............................................. 90  
Multi-Master Mode ............................................................. 72  
PIC16C63A/PIC16C73B .............................................. 7  
PIC16C65B/PIC16C74B .............................................. 8  
PIR1 Register .................................................................... 20  
ADIF Bit ..................................................................... 20  
CCP1IF Bit ................................................................. 20  
PSPIF Bit ................................................................... 20  
RCIF Bit ..................................................................... 20  
SSPIF Bit ................................................................... 20  
TMR1IF Bit ................................................................ 20  
TMR2IF Bit ................................................................ 20  
TXIF Bit ...................................................................... 20  
PIR2 Register .................................................................... 22  
CCP2IF Bit ................................................................. 22  
Pointer, FSR ...................................................................... 25  
POR. See Power-on Reset  
PORTA ...................................................................... 7, 8, 15  
Analog Port Pins ...................................................... 7, 8  
Initialization ................................................................ 27  
PORTA Register ........................................................ 27  
RA3:RA0 and RA5 Port Pins ..................................... 28  
RA4/T0CKI Pin .................................................. 7, 8, 28  
RA5/SS/AN4 Pin .......................................................... 8  
TRISA Register .......................................................... 27  
PORTA Register ........................................................ 13, 126  
PORTB ...................................................................... 7, 8, 15  
Initialization ................................................................ 29  
PORTB Register ........................................................ 29  
Pull-up Enable (RBPU Bit) ......................................... 17  
RB0/INT Edge Select (INTEDG Bit) .......................... 17  
RB0/INT Pin, External ..................................... 7, 8, 138  
RB3:RB0 Port Pins .................................................... 29  
RB7:RB4 Interrupt on Change ................................. 138  
RB7:RB4 Interrupt on Change Enable (RBIE Bit) .... 18,  
138  
O
OPCODE Field Descriptions ............................................ 143  
OPTION_REG Register ..................................................... 17  
INTEDG Bit ................................................................ 17  
PS2:PS0 Bits ....................................................... 17, 39  
PSA Bit ................................................................. 17, 39  
RBPU Bit .................................................................... 17  
T0CS Bit ............................................................... 17, 39  
T0SE Bit ............................................................... 17, 39  
OSC1/CLKIN Pin ............................................................. 7, 8  
OSC2/CLKOUT Pin ......................................................... 7, 8  
Oscillator Configuration .................................................... 128  
HS .................................................................... 128, 133  
LP ..................................................................... 128, 133  
RC ............................................................ 128, 130, 133  
XT .................................................................... 128, 133  
Oscillator, Timer1 ......................................................... 41, 43  
Oscillator, WDT ................................................................ 139  
P
P ......................................................................................... 54  
Packaging ........................................................................ 175  
Paging, Program Memory ............................................ 11, 24  
Parallel Slave Port (PSP) ......................................... 9, 34, 37  
Block Diagram ............................................................ 37  
RE0/RD/AN5 Pin .............................................. 9, 36, 37  
RE1/WR/AN6 Pin ............................................. 9, 36, 37  
RE2/CS/AN7 Pin .............................................. 9, 36, 37  
Read Waveforms ....................................................... 38  
Read/Write Enable (PSPIE Bit) .................................. 19  
Read/Write Flag (PSPIF Bit) ...................................... 20  
Select (PSPMODE Bit) .................................. 34, 35, 37  
Write Waveforms ....................................................... 37  
PCL Register ................................................................ 13, 14  
PCLATH Register .................................................. 13, 14, 15  
RB7:RB4 Interrupt on Change Flag (RBIF Bit) ... 18,30,  
138  
RB7:RB4 Port Pins .................................................... 30  
TRISB Register .......................................................... 29  
PORTB Register ........................................................ 13, 126  
PORTC ...................................................................... 7, 9, 15  
Block Diagram ........................................................... 32  
Initialization ................................................................ 32  
PORTC Register ........................................................ 32  
RC0/T1OSO/T1CKI Pin ........................................... 7, 9  
RC1/T1OSI/CCP2 Pin ............................................. 7, 9  
RC2/CCP1 Pin ......................................................... 7, 9  
RC3/SCK/SCL Pin ................................................... 7, 9  
1999 Microchip Technology Inc.  
Preliminary  
DS30275A-page 191  
PIC16C77X  
RC4/SDI/SDA Pin ....................................................7, 9  
RC5/SDO Pin ...........................................................7, 9  
RC6/TX/CK Pin .................................................. 7, 9, 98  
RC7/RX/DT Pin ............................................ 7, 9, 98, 99  
TRISC Register .................................................... 32, 97  
PORTC Register ................................................................13  
PORTD ..................................................................... 9, 15, 37  
Block Diagram ............................................................34  
Parallel Slave Port (PSP) Function ............................34  
PORTD Register ........................................................34  
TRISD Register ..........................................................34  
PORTD Register ................................................................13  
PORTE ...........................................................................9, 15  
Analog Port Pins .............................................. 9, 36, 37  
Block Diagram ............................................................35  
Input Buffer Full Status (IBF Bit) ................................35  
Input Buffer Overflow (IBOV Bit) ................................35  
Output Buffer Full Status (OBF Bit) ............................35  
PORTE Register ........................................................35  
PSP Mode Select (PSPMODE Bit) ................34, 35, 37  
RE0/RD/AN5 Pin .............................................. 9, 36, 37  
RE1/WR/AN6 Pin ............................................. 9, 36, 37  
RE2/CS/AN7 Pin .............................................. 9, 36, 37  
TRISE Register ..........................................................35  
PORTE Register ........................................................ 13, 126  
Postscaler, Timer2  
Select (TOUTPS3:TOUTPS0 Bits) ............................45  
Postscaler, WDT ................................................................39  
Assignment (PSA Bit) .......................................... 17, 39  
Block Diagram ............................................................40  
Rate Select (PS2:PS0 Bits) ................................. 17, 39  
Switching Between Timer0 and WDT ........................40  
Power-on Reset (POR) ....................127, 131, 132, 133, 134  
Oscillator Start-up Timer (OST) ....................... 127, 132  
POR Status (POR Bit) ................................................23  
Power Control (PCON) Register ..............................133  
Power-down (PD Bit) .................................................16  
Power-on Reset Circuit, External .............................132  
Power-up Timer (PWRT) ................................. 127, 132  
Time-out (TO Bit) .......................................................16  
Time-out Sequence ..................................................133  
Time-out Sequence on Power-up ....................135, 136  
PR2 Register ......................................................................14  
Prescaler, Capture .............................................................48  
Prescaler, Timer0 ...............................................................39  
Assignment (PSA Bit) .......................................... 17, 39  
Block Diagram ............................................................40  
Rate Select (PS2:PS0 Bits) ................................. 17, 39  
Switching Between Timer0 and WDT ........................40  
Prescaler, Timer1 ...............................................................42  
Select (T1CKPS1:T1CKPS0 Bits) ..............................41  
Prescaler, Timer2 ...............................................................50  
Select (T2CKPS1:T2CKPS0 Bits) ..............................45  
PRO MATE II Universal Programmer ............................145  
Product Identification System ...........................................199  
Program Counter  
Programming, Device Instructions ................................... 143  
PWM (CCP Module) .......................................................... 50  
Block Diagram ........................................................... 50  
CCPR1H:CCPR1L Registers ..................................... 50  
Duty Cycle ................................................................. 50  
Example Frequencies/Resolutions ............................ 51  
Output Diagram ......................................................... 50  
Period ........................................................................ 50  
Set-Up for PWM Operation ........................................ 51  
TMR2 to PR2 Match ............................................ 45, 50  
TMR2 to PR2 Match Enable (TMR2IE Bit) ................ 19  
TMR2 to PR2 Match Flag (TMR2IF Bit) ..................... 20  
Q
Q-Clock .............................................................................. 50  
R
R/W .................................................................................... 54  
R/W bit ............................................................................... 64  
R/W bit ............................................................................... 65  
RCE,Receive Enable bit, RCE ........................................... 56  
RCREG .............................................................................. 15  
RCSTA Register .......................................................... 15, 98  
CREN Bit ................................................................... 98  
FERR Bit .................................................................... 98  
OERR Bit ................................................................... 98  
RX9 Bit ...................................................................... 98  
RX9D Bit .................................................................... 98  
SPEN Bit .............................................................. 97, 98  
SREN Bit ................................................................... 98  
Read/Write bit, R/W ........................................................... 54  
Receive Overflow Indicator bit, SSPOV ............................. 55  
Register File ....................................................................... 11  
Register File Map ............................................................... 12  
Registers  
FSR  
Summary ........................................................... 15  
INDF  
Summary ........................................................... 15  
INTCON  
Summary ........................................................... 15  
PCL  
Summary ........................................................... 15  
PCLATH  
Summary ........................................................... 15  
PORTB  
Summary ........................................................... 15  
SSPSTAT .................................................................. 54  
STATUS  
Summary ........................................................... 15  
Summary ................................................................... 13  
TMR0  
Summary ........................................................... 15  
TRISB  
Summary ........................................................... 15  
Reset ....................................................................... 127, 131  
Block Diagram ......................................................... 131  
Reset Conditions for All Registers ........................... 134  
Reset Conditions for PCON Register ...................... 133  
Reset Conditions for Program Counter .................... 133  
Reset Conditions for STATUS Register ................... 133  
Restart Condition Enabled bit, RSE ................................... 56  
Revision History ............................................................... 187  
RSE ................................................................................... 56  
PCL Register ..............................................................24  
PCLATH Register .............................................. 24, 138  
Reset Conditions ......................................................133  
Program Memory ...............................................................11  
Interrupt Vector ..........................................................11  
Paging ..................................................................11, 24  
Program Memory Map ...............................................11  
Reset Vector ..............................................................11  
Program Verification .........................................................141  
Programming Pin (Vpp) ....................................................7, 8  
DS30275A-page 192  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C77X  
SSP Module  
S
SPI Master Mode ....................................................... 59  
SPI Master./Slave Connection ................................... 58  
SPI Slave Mode ......................................................... 60  
SSPCON1 Register ................................................... 63  
SSP Overflow Detect bit, SSPOV ...................................... 64  
SSPADD Register .............................................................. 14  
SSPBUF ...................................................................... 15, 64  
SSPBUF Register .............................................................. 13  
SSPCON Register ............................................................. 13  
SSPCON1 ................................................................... 55, 63  
SSPCON2 ......................................................................... 56  
SSPEN .............................................................................. 55  
SSPIF ................................................................................ 65  
SSPM3:SSPM0 ................................................................. 55  
SSPOV .................................................................. 55, 64, 82  
SSPSTAT .................................................................... 54, 64  
SSPSTAT Register ............................................................ 14  
Stack .................................................................................. 24  
Start bit (S) ........................................................................ 54  
Start Condition Enabled bit, SAE ....................................... 56  
STATUS Register ...................................................... 16, 138  
C Bit ........................................................................... 16  
DC Bit ........................................................................ 16  
IRP Bit ....................................................................... 16  
PD Bit ........................................................................ 16  
RP1:RP0 Bits ............................................................. 16  
TO Bit ........................................................................ 16  
Z Bit ........................................................................... 16  
Stop bit (P) ......................................................................... 54  
Stop Condition Enable bit .................................................. 56  
Synchronous Serial Port .................................................... 53  
Synchronous Serial Port Enable bit, SSPEN ..................... 55  
Synchronous Serial Port Mode Select bits,  
SAE .................................................................................... 56  
SCK .................................................................................... 57  
SCL .................................................................................... 64  
SDA .................................................................................... 64  
SDI ..................................................................................... 57  
SDO ................................................................................... 57  
SEEVAL Evaluation and Programming System ............ 147  
Serial Clock, SCK .............................................................. 57  
Serial Clock, SCL ............................................................... 64  
Serial Data Address, SDA .................................................. 64  
Serial Data In, SDI ............................................................. 57  
Serial Data Out, SDO ......................................................... 57  
Slave Select Synchronization ............................................ 60  
Slave Select, SS ................................................................ 57  
SLEEP ............................................................. 127, 131, 140  
SMP ................................................................................... 54  
Software Simulator (MPLAB-SIM) ................................... 147  
SPBRG Register ................................................................ 14  
SPE .................................................................................... 56  
Special Features of the CPU ........................................... 127  
Special Function Registers ................................................ 13  
PIC16C73 .................................................................. 13  
PIC16C73A ................................................................ 13  
PIC16C74 .................................................................. 13  
PIC16C74A ................................................................ 13  
PIC16C76 .................................................................. 13  
PIC16C77 .................................................................. 13  
Speed, Operating ................................................................. 1  
SPI  
Master Mode .............................................................. 59  
Serial Clock ................................................................ 57  
Serial Data In ............................................................. 57  
Serial Data Out .......................................................... 57  
Serial Peripheral Interface (SPI) ................................ 53  
Slave Select ............................................................... 57  
SPI clock .................................................................... 59  
SPI Mode ................................................................... 57  
SPI Clock Edge Select, CKE ............................................. 54  
SPI Data Input Sample Phase Select, SMP ...................... 54  
SPI Master/Slave Connection ............................................ 58  
SPI Module  
SSPM3:SSPM0 ................................................................. 55  
T
T1CON .............................................................................. 15  
T1CON Register .......................................................... 15, 41  
T1CKPS1:T1CKPS0 Bits ........................................... 41  
T1OSCEN Bit ............................................................ 41  
T1SYNC Bit ............................................................... 41  
TMR1CS Bit ............................................................... 41  
TMR1ON Bit .............................................................. 41  
T2CON Register .......................................................... 15, 45  
T2CKPS1:T2CKPS0 Bits ........................................... 45  
TMR2ON Bit .............................................................. 45  
TOUTPS3:TOUTPS0 Bits ......................................... 45  
Timer0 ............................................................................... 39  
Block Diagram ........................................................... 39  
Clock Source Edge Select (T0SE Bit) ................. 17, 39  
Clock Source Select (T0CS Bit) .......................... 17, 39  
Overflow Enable (T0IE Bit) ........................................ 18  
Overflow Flag (T0IF Bit) .................................... 18, 138  
Overflow Interrupt .............................................. 40, 138  
RA4/T0CKI Pin, External Clock ............................... 7, 8  
Timer1 ............................................................................... 41  
Block Diagram ........................................................... 42  
Capacitor Selection ................................................... 43  
Clock Source Select (TMR1CS Bit) ........................... 41  
External Clock Input Sync (T1SYNC Bit) ................... 41  
Module On/Off (TMR1ON Bit) ................................... 41  
Oscillator .............................................................. 41, 43  
Oscillator Enable (T1OSCEN Bit) .............................. 41  
Overflow Enable (TMR1IE Bit) .................................. 19  
Overflow Flag (TMR1IF Bit) ....................................... 20  
Master/Slave Connection ........................................... 58  
Slave Mode ................................................................ 60  
Slave Select Synchronization .................................... 60  
Slave Synch Timnig ................................................... 60  
SS ...................................................................................... 57  
SSP .................................................................................... 53  
Block Diagram (SPI Mode) ........................................ 57  
Enable (SSPIE Bit) ..................................................... 19  
Flag (SSPIF Bit) ......................................................... 20  
RA5/SS/AN4 Pin .......................................................... 8  
RC3/SCK/SCL Pin ................................................... 7, 9  
RC4/SDI/SDA Pin .................................................... 7, 9  
RC5/SDO Pin ........................................................... 7, 9  
SPI Mode ................................................................... 57  
SSPADD .................................................................... 64  
SSPBUF ............................................................... 59, 64  
SSPCON1 .................................................................. 55  
SSPCON2 .................................................................. 56  
SSPSR ................................................................. 59, 64  
SSPSTAT ............................................................. 54, 64  
TMR2 Output for Clock Shift ................................ 45, 46  
2
SSP I C  
2
SSP I C Operation ..................................................... 63  
1999 Microchip Technology Inc.  
Preliminary  
DS30275A-page 193  
PIC16C77X  
Overflow Interrupt ................................................ 41, 43  
RC0/T1OSO/T1CKI Pin ...........................................7, 9  
RC1/T1OSI/CCP2 Pin ..............................................7, 9  
Special Event Trigger (CCP) ................................ 43, 49  
T1CON Register ........................................................41  
TMR1H Register ........................................................41  
TMR1L Register .........................................................41  
Timer2  
Block Diagram ............................................................46  
PR2 Register ........................................................ 45, 50  
SSP Clock Shift .................................................... 45, 46  
T2CON Register ........................................................45  
TMR2 Register ...........................................................45  
TMR2 to PR2 Match Enable (TMR2IE Bit) ................19  
TMR2 to PR2 Match Flag (TMR2IF Bit) .....................20  
TMR2 to PR2 Match Interrupt ........................ 45, 46, 50  
Timing Diagrams  
PSPMODE Bit ................................................ 34, 35, 37  
TXREG .............................................................................. 15  
TXSTA Register ................................................................. 97  
BRGH Bit ............................................................. 97, 99  
CSRC Bit ................................................................... 97  
SYNC Bit ................................................................... 97  
TRMT Bit .................................................................... 97  
TX9 Bit ....................................................................... 97  
TX9D Bit .................................................................... 97  
TXEN Bit .................................................................... 97  
U
UA ...................................................................................... 54  
Universal Synchronous Asynchronous Receiver Transmitter  
(USART)  
Asynchronous Receiver  
Setting Up Reception ....................................... 104  
Timing Diagram ............................................... 105  
Update Address, UA .......................................................... 54  
USART ............................................................................... 97  
Asynchronous Mode ................................................ 102  
Master Transmission ....................................... 103  
Receive Block Diagram ................................... 105  
Transmit Block Diagram .................................. 102  
Baud Rate Generator (BRG) ..................................... 99  
Baud Rate Error, Calculating ............................. 99  
Baud Rate Formula ........................................... 99  
Baud Rates, Asynchronous Mode (BRGH=0) . 100  
Baud Rates, Asynchronous Mode (BRGH=1) . 101  
Baud Rates, Synchronous Mode ..................... 100  
High Baud Rate Select (BRGH Bit) ............. 97, 99  
Sampling ............................................................ 99  
Clock Source Select (CSRC Bit) ................................ 97  
Continuous Receive Enable (CREN Bit) .................... 98  
Framing Error (FERR Bit) .......................................... 98  
Mode Select (SYNC Bit) ............................................ 97  
Overrun Error (OERR Bit) .......................................... 98  
RC6/TX/CK Pin ........................................................ 7, 9  
RC7/RX/DT Pin ........................................................ 7, 9  
RCSTA Register ........................................................ 98  
Receive Data, 9th bit (RX9D Bit) ............................... 98  
Receive Enable (RCIE Bit) ........................................ 19  
Receive Enable, 9-bit (RX9 Bit) ................................. 98  
Receive Flag (RCIF Bit) ............................................. 20  
Serial Port Enable (SPEN Bit) ............................. 97, 98  
Single Receive Enable (SREN Bit) ............................ 98  
Synchronous Master Mode ...................................... 107  
Reception ........................................................ 109  
Transmission ................................................... 108  
Synchronous Slave Mode ........................................ 110  
Transmit Data, 9th Bit (TX9D) ................................... 97  
Transmit Enable (TXEN Bit) ...................................... 97  
Transmit Enable (TXIE Bit) ........................................ 19  
Transmit Enable, Nine-bit (TX9 Bit) ........................... 97  
Transmit Flag (TXIE Bit) ............................................ 20  
Transmit Shift Register Status (TRMT Bit) ................ 97  
TXSTA Register ......................................................... 97  
Acknowledge Sequence Timing .................................85  
Baud Rate Generator with Clock Arbitration ..............73  
BRG Reset Due to SDA Collision ..............................92  
Brown-out Reset ......................................................163  
Bus Collision  
Start Condition Timing .......................................91  
Bus Collision During a Restart Condition (Case 1) ....93  
Bus Collision During a Restart Condition (Case2) .....93  
Bus Collision During a Start Condition (SCL = 0) ......92  
Bus Collision During a Stop Condition .......................94  
Bus Collision for Transmit and Acknowledge .............90  
Capture/Compare/PWM ...........................................169  
CLKOUT and I/O ......................................................162  
External Clock Timing ..............................................161  
2
I C Master Mode First Start bit timing ........................74  
2
I C Master Mode Reception timing ............................84  
2
I C Master Mode Transmission timing .......................81  
Master Mode Transmit Clock Arbitration ....................89  
Power-up Timer .......................................................163  
Repeat Start Condition ...............................................76  
Reset ........................................................................163  
Slave Synchronization ...............................................60  
Start-up Timer ..........................................................163  
Stop Condition Receive or Transmit ..........................87  
Time-out Sequence on Power-up ....................135, 136  
Timer0 ......................................................................168  
Timer1 ......................................................................168  
USART Asynchronous Master Transmission ...........103  
USART Synchronous Receive .................................171  
USART Synchronous Reception ..............................109  
USART Synchronous Transmission ................ 108, 171  
USART, Asynchronous Reception ...........................105  
Wake-up from SLEEP via Interrupt ..........................141  
Watchdog Timer .......................................................163  
TMR0 .................................................................................15  
TMR0 Register ...................................................................13  
TMR1H ...............................................................................15  
TMR1H Register ................................................................13  
TMR1L ...............................................................................15  
TMR1L Register .................................................................13  
TMR2 .................................................................................15  
TMR2 Register ...................................................................13  
TRISA Register .......................................................... 14, 126  
TRISB Register .......................................................... 14, 126  
TRISC Register ..................................................................14  
TRISD Register ..................................................................14  
TRISE Register .................................................... 14, 35, 126  
IBF Bit ........................................................................35  
IBOV Bit .....................................................................35  
OBF Bit ......................................................................35  
DS30275A-page 194  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C77X  
W
W Register ....................................................................... 138  
Wake-up from SLEEP .............................................. 127, 140  
Interrupts .......................................................... 133, 134  
MCLR Reset ............................................................ 134  
Timing Diagram ........................................................ 141  
WDT Reset .............................................................. 134  
Watchdog Timer (WDT) ........................................... 127, 139  
Block Diagram .......................................................... 139  
Enable (WDTE Bit) ................................................... 139  
Programming Considerations .................................. 139  
RC Oscillator ............................................................ 139  
Time-out Period ....................................................... 139  
WDT Reset, Normal Operation ................ 131, 133, 134  
WDT Reset, SLEEP ......................................... 133, 134  
Waveform for General Call Address Sequence ................. 69  
WCOL .................................................. 55, 74, 79, 82, 85, 87  
WCOL Status Flag ............................................................. 74  
Write Collision Detect bit, WCOL ....................................... 55  
WWW, On-Line Support ...................................................... 4  
1999 Microchip Technology Inc.  
Preliminary  
DS30275A-page 195  
PIC16C77X  
T0CS ..................................................OPTION_REG<5>  
T0IE ...................................................INTCON<5>  
T0IF ...................................................INTCON<2>  
T0SE ..................................................OPTION_REG<4>  
T1CKPS1:T1CKPS0 ..........................T1CON<5:4>  
T1OSCEN ..........................................T1CON<3>  
T1SYNC .............................................T1CON<2>  
T2CKPS1:T2CKPS0 ..........................T2CON<1:0>  
TMR1CS ............................................T1CON<1>  
TMR1IE ..............................................PIE1<0>  
TMR1IF ..............................................PIR1<0>  
TMR1ON ............................................T1CON<0>  
TMR2IE ..............................................PIE1<1>  
TMR2IF ..............................................PIR1<1>  
TMR2ON ............................................T2CON<2>  
TO ......................................................STATUS<4>  
TOUTPS3:TOUTPS0 .........................T2CON<6:3>  
TRMT .................................................TXSTA<1>  
TX9 ....................................................TXSTA<6>  
TX9D ..................................................TXSTA<0>  
TXEN .................................................TXSTA<5>  
TXIE ...................................................PIE1<4>  
TXIF ...................................................PIR1<4>  
UA ......................................................SSPSTAT<1>  
WCOL ................................................SSPCON<7>  
Z .........................................................STATUS<2>  
BIT/REGISTER CROSS-REFERENCE  
LIST  
ADCS1:ADCS0 ..................................ADCON0<7:6>  
ADIE ...................................................PIE1<6>  
ADIF ...................................................PIR1<6>  
ADON .................................................ADCON0<0>  
BF .......................................................SSPSTAT<0>  
BOR ...................................................PCON<0>  
BRGH .................................................TXSTA<2>  
C .........................................................STATUS<0>  
CCP1IE ..............................................PIE1<2>  
CCP1IF ..............................................PIR1<2>  
CCP1M3:CCP1M0 .............................CCP1CON<3:0>  
CCP1X:CCP1Y ..................................CCP1CON<5:4>  
CCP2IE ..............................................PIE2<0>  
CCP2IF ..............................................PIR2<0>  
CCP2M3:CCP2M0 .............................CCP2CON<3:0>  
CCP2X:CCP2Y ..................................CCP2CON<5:4>  
CHS2:CHS0 .......................................ADCON0<5:3>  
CKE ....................................................SSPSTAT<6>  
CKP ....................................................SSPCON<4>  
CREN .................................................RCSTA<4>  
CSRC .................................................TXSTA<7>  
D/A .....................................................SSPSTAT<5>  
DC ......................................................STATUS<1>  
FERR .................................................RCSTA<2>  
GIE .....................................................INTCON<7>  
GO/DONE ..........................................ADCON0<2>  
IBF ......................................................TRISE<7>  
IBOV ...................................................TRISE<5>  
INTE ...................................................INTCON<4>  
INTEDG ..............................................OPTION_REG<6>  
INTF ...................................................INTCON<1>  
IRP .....................................................STATUS<7>  
OBF ....................................................TRISE<6>  
OERR .................................................RCSTA<1>  
P .........................................................SSPSTAT<4>  
PCFG2:PCFG0 ..................................ADCON1<2:0>  
PD ......................................................STATUS<3>  
PEIE ...................................................INTCON<6>  
POR ...................................................PCON<1>  
PS2:PS0 .............................................OPTION_REG<2:0>  
PSA ....................................................OPTION_REG<3>  
PSPIE .................................................PIE1<7>  
PSPIF .................................................PIR1<7>  
PSPMODE .........................................TRISE<4>  
R/W ....................................................SSPSTAT<2>  
RBIE ...................................................INTCON<3>  
RBIF ...................................................INTCON<0>  
RBPU .................................................OPTION_REG<7>  
RCIE ...................................................PIE1<5>  
RCIF ...................................................PIR1<5>  
RP1:RP0 ............................................STATUS<6:5>  
RX9 ....................................................RCSTA<6>  
RX9D ..................................................RCSTA<0>  
S .........................................................SSPSTAT<3>  
SMP ...................................................SSPSTAT<7>  
SPEN .................................................RCSTA<7>  
SREN .................................................RCSTA<5>  
SSPEN ...............................................SSPCON<5>  
SSPIE .................................................PIE1<3>  
SSPIF .................................................PIR1<3>  
SSPM3:SSPM0 ..................................SSPCON<3:0>  
SSPOV ...............................................SSPCON<6>  
SYNC .................................................TXSTA<4>  
DS30275A-page 196  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C77X  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip’s development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-602-786-7302 for the rest of the world.  
981103  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICSTART, PICMASTER and PRO MATE are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries. FlexROM, MPLAB and fuzzy-  
LAB are trademarks and SQTP is a service mark of Micro-  
chip in the U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Sys-  
tems, technical information and more  
• Listing of seminars and events  
1998 Microchip Technology Inc.  
DS30275A-page 197  
PIC16C77X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30275A  
Device:  
PIC16C77X  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30275A-page 198  
1998 Microchip Technology Inc.  
PIC16C77X  
PIC16C77X PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
-XX  
Examples:  
Frequency Temperature Package  
Range Range  
Pattern  
g)  
PIC16C774 -04/P 301 = Commercial temp.,  
PDIP package, 4 MHz, normal VDD limits, QTP  
pattern #301.  
h)  
i)  
PIC16LC773 - 04I/SO = Industrial temp., SOIC  
package, 200 kHz, Extended VDD limits.  
Device  
PIC16C77X(1), PIC16C77XT(2);VDD range 4.0V to 5.5V  
PIC16LC77X(1), PIC16LC77XT(2);VDD range 2.5V to 5.5V  
PIC16C774 - 20I/P = Industrial temp., PDIP  
package, 20MHz, normal VDD limits.  
Frequency Range  
04  
20  
= 4 MHz  
= 20 MHz  
Note 1:  
C
= CMOS  
LC = Low Power CMOS  
= in tape and reel - SOIC, SSOP,  
PLCC,  
MQFP, TQFP packages only.  
b = blank  
Temperature Range  
b(3)  
I
=
=
0°C to  
70°C (Commercial)  
T
-40°C to +85°C (Industrial)  
2:  
Package  
JW  
PQ  
PT  
SO  
SP  
P
=
=
=
=
=
=
=
=
Windowed CERDIP/Ceramic  
MQFP (Metric PQFP)  
TQFP (Thin Quad Flatpack)  
SOIC  
Skinny plastic dip  
PDIP  
L
PLCC  
SSOP  
SS  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type (including LC devices).  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
1999 Microchip Technology Inc.  
Advance Information  
DS30275A-page 199  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
Corporate Office  
AMERICAS (continued)  
Toronto  
ASIA/PACIFIC (continued)  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
2355 West Chandler Blvd.  
5925 Airport Road, Suite 200  
200 Middle Road  
Chandler, AZ 85224-6199  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Tel: 602-786-7200 Fax: 602-786-7277  
Technical Support: 602-786-7627  
Web: http://www.microchip.com  
ASIA/PACIFIC  
Hong Kong  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Atlanta  
Microchip Technology Inc.  
Microchip Asia Pacific  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tung Hua North Road  
Taipei, Taiwan, ROC  
RM 3801B, Tower Two  
Metroplaza  
Tel: 770-640-0034 Fax: 770-640-0307  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Boston  
Microchip Technology Inc.  
EUROPE  
India  
Microchip Technology Inc.  
United Kingdom  
Arizona Microchip Technology Ltd.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
India Liaison Office  
505 Eskdale Road  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-1189-21-5858 Fax: 44-1189-21-5835  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Japan  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Tel: 630-285-0071 Fax: 630-285-0075  
France  
Arizona Microchip Technology SARL  
Zone Industrielle de la Bonde  
2 Rue du Buisson aux Fraises  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Dallas  
Microchip Technology Inc.  
14651 Dallas Parkway, Suite 816  
Dallas, TX 75240-8809  
Tel: 972-991-7177 Fax: 972-991-8588  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Korea  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Italy  
Detroit  
Microchip Technology Inc.  
42705 Grand River, Suite 201  
Novi, MI 48375-1727  
Tel: 248-374-1888 Fax: 248-374-2874  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
Tel: 39-39-6899939 Fax: 39-39-6899883  
Los Angeles  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
02/10/99  
Tel: 714-263-1888 Fax: 714-263-1338  
Microchip received ISO 9001 Quality  
System certification for its worldwide  
headquarters, design, and wafer  
fabrication facilities in January, 1997.  
New York  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 516-273-5305 Fax: 516-273-5335  
®
Our field-programmable PICmicro 8-  
®
bit MCUs, KEELOQ code hopping  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
devices, Serial EEPROMs, related  
specialty memory products and devel-  
opment systems conform to the strin-  
gent quality standards of the  
International Standard Organization  
(ISO).  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 2/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
DS30275A-page 200  
1999 Microchip Technology Inc.  

相关型号:

PIC16C773-04I/SO

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D
MICROCHIP

PIC16C773-04I/SP

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D
MICROCHIP

PIC16C773-04I/SS

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D
MICROCHIP

PIC16C773-20/JW

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D
MICROCHIP

PIC16C773-20/L

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D
MICROCHIP

PIC16C773-20/P

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D
MICROCHIP

PIC16C773-20/PQ

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D
MICROCHIP

PIC16C773-20/PT

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D
MICROCHIP

PIC16C773-20/SO

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D
MICROCHIP

PIC16C773-20/SP

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D
MICROCHIP

PIC16C773-20/SS

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D
MICROCHIP

PIC16C773-20I/JW

28/40-Pin, 8-Bit CMOS Microcontrollers w/ 12-Bit A/D
MICROCHIP