PIC16CR54-HSISP [MICROCHIP]

8-BIT, MROM, 20 MHz, RISC MICROCONTROLLER, PDIP18, SKINNY, DIP-18;
PIC16CR54-HSISP
型号: PIC16CR54-HSISP
厂家: MICROCHIP    MICROCHIP
描述:

8-BIT, MROM, 20 MHz, RISC MICROCONTROLLER, PDIP18, SKINNY, DIP-18

光电二极管
文件: 总132页 (文件大小:907K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C5X  
EPROM/ROM-Based 8-Bit CMOS Microcontroller Series  
Pin Diagrams  
Devices Included in this Data Sheet  
• PIC16C54  
• PIC16CR54★  
• PIC16C55  
• PIC16C56  
• PIC16C57  
PDIP, SOIC, Windowed CERDIP  
•1  
2
3
4
5
6
7
8
9
18  
RA1  
RA2  
RA3  
17  
16  
15  
14  
13  
12  
11  
10  
RA0  
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
T0CKI  
MCLR/VPP  
VSS  
High-Performance RISC CPU Features  
RB7  
RB0  
• Only 33 single word instructions to learn  
RB6  
RB1  
RB2  
RB5  
• All instructions are single cycle (200 ns) except  
for program branches which are two-cycle  
RB3  
RB4  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
PDIP, SOIC, Windowed CERDIP  
EPROM/  
ROM  
MCLR/VPP  
OSC1/CLKIN  
OSC2/CLKOUT  
RC7  
28  
•1  
2
T0CKI  
VDD  
N/C  
Device  
Pins  
I/O  
RAM  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
3
PIC16C54  
PIC16CR54★  
PIC16C55  
PIC16C56  
PIC16C57  
18  
18  
28  
18  
28  
12  
12  
20  
12  
20  
512  
512  
512  
1K  
25  
25  
24  
25  
72  
4
VSS  
RC6  
5
N/C  
RC5  
6
RA0  
RA1  
RA2  
RA3  
RB0  
RB1  
RB2  
RB3  
RB4  
RC4  
7
RC3  
8
2K  
RC2  
9
• 12-bit wide instructions  
• 8-bit wide data path  
RC1  
10  
11  
12  
13  
14  
RC0  
RB7  
• Seven or eight special function hardware  
registers  
RB6  
RB5  
• Two-level deep hardware stack  
• Direct, indirect and relative addressing modes for  
data and instructions  
CMOS Technology  
Peripheral Features  
• Low-power, high-speed CMOS EPROM/ROM  
technology  
• 8-bit real time clock/counter (Timer0) with 8-bit  
programmable prescaler  
• Fully static design  
• Power-On Reset (POR)  
• Wide-operating voltage range:  
- EPROM Commercial/Industrial 2.5V to 6.25V  
- ROM Commercial/Industrial 2.0V to 6.25V  
- EPROM/ROM Automotive 2.5V to 6.0V  
• Low-power consumption  
• Device Reset Timer (DRT)  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
• Programmable code-protection  
• Power saving SLEEP mode  
- < 2 mA typical @ 5.0V, 4 MHz  
- 15 µA typical @ 3.0V, 32 kHz  
• Selectable oscillator options:  
- RC: Low-cost RC oscillator  
- < 3 µA typical standby current (with WDT  
disabled) @ 3.0V, 0°C to 70°C  
- XT: Standard crystal/resonator  
- HS: High-speed crystal/resonator  
- LP: Power saving, low frequency crystal  
The PIC16CR54 is not recommended for new designs. The PIC16CR54A is recommended, as found in the  
Enhanced PIC16C5X data sheet.  
1995 Microchip Technology Inc.  
DS30015M-page 1  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
Pin Diagrams (con’t)  
SSOP  
SSOP  
VSS  
1  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MCLR/VPP  
OSC1/CLKIN  
OSC2/CLKOUT  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RA2  
RA3  
T0CKI  
MCLR/VPP  
VSS  
1  
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
RA1  
RA0  
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
VDD  
RB7  
RB6  
RB5  
RB4  
T0CKI  
VDD  
VDD  
RA0  
RA1  
RA2  
RA3  
RB0  
RB1  
RB2  
RB3  
RB4  
VSS  
VSS  
RB0  
RB1  
RB2  
RB3  
10  
RC0  
RB7  
RB6  
RB5  
Table of Contents  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
General Description.............................................................................................................................................3  
PIC16C5X Device Varieties.................................................................................................................................5  
Architectural Overview.........................................................................................................................................7  
Memory Organization ........................................................................................................................................13  
I/O Ports.............................................................................................................................................................21  
Timer0 Module and TMR0 Register...................................................................................................................23  
Special Features of the CPU .............................................................................................................................27  
Instruction Set Summary ...................................................................................................................................39  
Development Support........................................................................................................................................51  
10.0 Electrical Characteristics - PIC16C54/55/56/57.................................................................................................57  
11.0 DC and AC Characteristics - PIC16C54/55/56/57.............................................................................................71  
12.0 Electrical Characteristics - PIC16CR54.............................................................................................................79  
13.0 DC and AC Characteristics - PIC16CR54 .........................................................................................................91  
14.0 Packaging Information.....................................................................................................................................101  
Appendix A: Compatibility................................................................................................................................115  
Appendix B: What’s New .................................................................................................................................115  
Appendix C: What’s Changed..........................................................................................................................116  
Appendix D: PIC16/17 Microcontrollers...........................................................................................................117  
Index................................................................................................................................................................125  
List of Examples ..............................................................................................................................................126  
List of Figures ..................................................................................................................................................126  
List of Tables ...................................................................................................................................................127  
Connecting to Microchip BBS..........................................................................................................................129  
Access to the Internet......................................................................................................................................129  
Reader Response............................................................................................................................................130  
PIC16C54/55/56/57 Product Identification System..........................................................................................131  
PIC16CR54 Product Identification System......................................................................................................131  
To Our Valued Customers  
We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional  
amount of time to ensure that these documents are correct. However, we realize that we may have missed a few  
things. If you find any information that is missing or appears in error, please use the reader response form in the  
back of this data sheet to inform us. We appreciate your assistance in making this a better document.  
To assist you in the use of this document, Appendix B contains a list of new information in this data sheet, while  
Appendix C contains information that has changed  
DS30015M-page 2  
1995 Microchip Technology Inc.  
PIC16C5X  
1.1  
Applications  
1.0  
GENERAL DESCRIPTION  
The PIC16C5X from Microchip Technology is a family  
of low-cost, high performance, 8-bit, fully static,  
EPROM/ROM-based CMOS microcontrollers. This  
family is pin and software compatible with the  
Enhanced PIC16C5X family of devices. It employs a  
RISC architecture with only 33 single word/single  
cycle instructions. All instructions are single cycle  
(200 ns) except for program branches which take two  
cycles. The PIC16C5X delivers performance an order  
of magnitude higher than its competitors in the same  
price category. The 12-bit wide instructions are highly  
symmetrical resulting in 2:1 code compression over  
other 8-bit microcontrollers in its class. The easy to  
use and easy to remember instruction set reduces  
development time significantly.  
The PIC16C5X series fits perfectly in applications  
ranging from high-speed automotive and appliance  
motor  
control  
to  
low-power  
remote  
transmitters/receivers, pointing devices and telecom  
processors. The EPROM technology makes  
customizing application programs (transmitter codes,  
motor speeds, receiver frequencies, etc.) extremely  
fast and convenient. The small footprint packages, for  
through- hole or surface mounting, make this  
microcontroller series perfect for applications with  
space limitations. Low-cost, low-power, high  
performance, ease of use and I/O flexibility make the  
PIC16C5X series very versatile even in areas where  
no microcontroller use has been considered before  
(e.g., timer functions, replacement of “glue” logic in  
larger systems, coprocessor applications).  
The PIC16C5X products are equipped with special  
features that reduce system cost and power  
requirements. The Power-On Reset (POR) and Device  
Reset Timer (DRT) eliminate the need for external  
reset circuitry. There are four oscillator configurations  
to choose from, including the power-saving LP (Low  
Power) oscillator and cost-saving RC oscillator. Power  
saving SLEEP mode, Watchdog Timer and code  
protection features improve system cost, power  
and reliability.  
The UV erasable CERDIP packaged versions are  
ideal for code development, while the cost effective  
One Time Programmable (OTP) versions are suitable  
for production in any volume. The customer can take  
full advantage of Microchip’s price leadership in OTP  
microcontrollers  
OTP’s flexibility.  
while  
benefiting  
from  
the  
The PIC16C5X products are supported by  
a
full-featured macro assembler, a software simulator,  
an in-circuit emulator, a ‘C’ compiler, fuzzy logic  
support tools, a low-cost development programmer,  
and a full featured programmer. All the tools are  
supported on IBM PC-AT and compatible machines.  
1995 Microchip Technology Inc.  
DS30015M-page 3  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
TABLE 1-1:  
PIC16C5X FAMILY OF DEVICES  
Clock  
Memory  
Peripherals  
Features  
PIC16C54  
20 512  
20 512  
25  
25  
TMR0  
TMR0  
TMR0  
12 2.5-6.25 33 18-pin DIP, SOIC; 20-pin SSOP  
12 2.5-6.25 33 18-pin DIP, SOIC; 20-pin SSOP  
12 2.0-6.25 33 18-pin DIP, SOIC; 20-pin SSOP  
PIC16C54A  
(2)  
20  
512 25  
PIC16CR54  
PIC16CR54A  
20  
20  
512 25  
512 25  
TMR0  
TMR0  
12 2.0-6.25 33 18-pin DIP, SOIC; 20-pin SSOP  
12 2.5-6.25 33 18-pin DIP, SOIC; 20-pin SSOP  
(1)  
PIC16CR54B  
PIC16C55  
20 512  
24  
25  
25  
TMR0  
TMR0  
TMR0  
20 2.5-6.25 33 28-pin DIP, SOIC, SSOP  
12 2.5-6.25 33 18-pin DIP, SOIC; 20-pin SSOP  
12 2.5-6.25 33 18-pin DIP, SOIC; 20-pin SSOP  
PIC16C56  
20  
20  
1K  
(1)  
1K  
PIC16CR56  
PIC16C57  
20  
20  
20  
2K  
2K  
2K  
72  
72  
72  
TMR0  
TMR0  
TMR0  
20 2.5-6.25 33 28-pin DIP, SOIC, SSOP  
20 2.5-6.25 33 28-pin DIP, SOIC, SSOP  
20 2.5-6.25 33 28-pin DIP, SOIC, SSOP  
PIC16CR57A  
(1)  
PIC16CR57B  
PIC16C58A  
PIC16CR58A  
20  
20  
20  
2K  
2K  
2K  
73  
73  
73  
TMR0  
TMR0  
TMR0  
12 2.5-6.25 33 18-pin DIP, SOIC; 20-pin SSOP  
12 2.5-6.25 33 18-pin DIP, SOIC; 20-pin SSOP  
12 2.5-6.25 33 18-pin DIP, SOIC; 20-pin SSOP  
(1)  
PIC16CR58B  
Legend: Grayed boxes: Devices NOT covered in this data sheet  
All PIC16/17 Family devices have Power-On Reset, selectable Watchdog Timer, selectable code protect and  
high I/O current capability.  
Note 1: Please contact your local sales office for availability of these devices.  
2: Not recommended for new designs.  
DS30015M-page 4  
1995 Microchip Technology Inc.  
PIC16C5X  
2.3  
Quick-Turnaround-Production (QTP)  
Devices  
2.0  
PIC16C5X DEVICE VARIETIES  
A variety of frequency ranges and packaging options  
are available. Depending on application and  
production requirements, the proper device option can  
be selected using the information in this section. When  
placing orders, please use the PIC16C5X Product  
Identification System at the back of this data sheet to  
specify the correct part number.  
Microchip offers a QTP Programming Service for  
factory production orders. This service is made  
available for users who choose not to program a  
medium to high quantity of units and whose code  
patterns have stabilized. The devices are identical to  
the OTP devices but with all EPROM locations and  
configuration bit options already programmed by the  
factory. Certain code and prototype verification  
procedures apply before production shipments are  
available. Please contact your Microchip Technology  
sales office for more details.  
For the PIC16C5X family of devices, there are two  
device types, as indicated in the device number:  
1. C, as in PIC16C54. These devices have  
EPROM program memory and operate over the  
standard voltage range.  
2. CR, as in PIC16CR54. These devices have  
ROM program memory and operate over the  
standard voltage range.  
2.4  
Serialized  
Quick-Turnaround-Production  
(SQTP) Devices  
2.1  
UV Erasable Devices  
Microchip offers the unique programming service  
where a few user-defined locations in each device are  
programmed with different serial numbers. The serial  
numbers may be random, pseudo-random or  
sequential.  
The UV erasable versions, offered in CERDIP  
packages, are optimal for prototype development and  
pilot programs.  
UV erasable devices can be programmed for any of  
the four oscillator configurations. Microchip's  
PICSTART and PRO MATE programmers both  
support programming of the PIC16C5X. Third party  
programmers also are available; refer to the Third  
Party Guide for a list of sources.  
Serial programming allows each device to have a  
unique number which can serve as an entry code,  
password or ID number.  
2.5  
Read Only Memory (ROM) Devices  
Microchip offers masked ROM versions of several of  
the highest volume parts, giving the customer a low  
cost option for high volume, mature products.  
2.2  
One-Time-Programmable (OTP)  
Devices  
The availability of OTP devices is especially useful for  
customers expecting frequent code changes and  
updates.  
The OTP devices, packaged in plastic packages,  
permit the user to program them once. In addition to  
the program memory, the configuration bits must be  
programmed.  
1995 Microchip Technology Inc.  
DS30015M-page 5  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
NOTES:  
DS30015M-page 6  
1995 Microchip Technology Inc.  
PIC16C5X  
The PIC16C5X device contains an 8-bit ALU and  
working register. The ALU is a general purpose  
arithmetic unit. It performs arithmetic and Boolean  
functions between data in the working register and any  
register file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16C5X family can be  
attributed to a number of architectural features  
commonly found in RISC microprocessors. To begin  
with, the PIC16C5X uses a Harvard architecture in  
which program and data are accessed on separate  
buses. This improves bandwidth over traditional von  
Neumann architecture where program and data are  
fetched on the same bus. Separating program and  
data memory further allows instructions to be sized  
differently than the 8-bit wide data word. Instruction  
opcodes are 12-bits wide making it possible to have all  
single word instructions. A 12-bit wide program  
memory access bus fetches a 12-bit instruction in a  
single cycle. A two-stage pipeline overlaps fetch and  
The ALU is 8-bits wide and capable of addition,  
subtraction, shift and logical operations. Unless  
otherwise mentioned, arithmetic operations are two's  
complement in nature. In two-operand instructions,  
typically one operand is the W (working) register. The  
other operand is a file register or an immediate  
constant. In single operand instructions, the operand  
is either the W register or a file register.  
The W register is an 8-bit working register used for  
ALU operations. It is not an addressable register.  
execution  
of  
instructions.  
Consequently,  
all  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC),  
and Zero (Z) bits in the STATUS register. The C and  
DC bits operate as a borrow and digit borrow out bit,  
respectively, in subtraction. See the SUBWFand ADDWF  
instructions for examples.  
instructions (33) execute in a single cycle (200 ns  
@ 20 MHz) except for program branches.  
The PIC16C54/CR54/C55 address 512 x 12 program  
memory, the PIC16C56 addresses 1K x 12, and the  
PIC16C57 addresses 2K x 12 of program memory. All  
program memory is internal.  
A simplified block diagram is shown in Figure 3-1, with  
the corresponding device pins described in Table 3-1  
and Table 3-2.  
The PIC16C5X can directly or indirectly address its  
register files and data memory. All special function  
registers including the program counter are mapped in  
the data memory. The PIC16C5X has a highly  
orthogonal (symmetrical) instruction set that makes it  
possible to carry out any operation on any register  
using any addressing mode. This symmetrical nature  
and lack of ‘special optimal situations’ make  
programming with the PIC16C5X simple yet efficient.  
In addition, the learning curve is reduced significantly.  
1995 Microchip Technology Inc.  
DS30015M-page 7  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
FIGURE 3-1: PIC16C5X SERIES BLOCK DIAGRAM  
9-11  
T0CKI  
PIN  
OSC1 OSC2 MCLR  
CONFIGURATION WORD  
9-11  
EPROM/ROM  
512 X 12 TO  
2048 X 12  
STACK 1  
STACK2  
“DISABLE” “OSC  
PC  
SELECT”  
WATCHDOG  
TIMER  
12  
2
“CODE  
OSCILLATOR/  
TIMING &  
CONTROL  
PROTECT”  
INSTRUCTION  
REGISTER  
WDT TIME  
OUT  
CLKOUT  
WDT/TMR0  
PRESCALER  
9
12  
8
“SLEEP”  
INSTRUCTION  
DECODER  
6
“OPTION”  
OPTION REG.  
FROM W  
DIRECT ADDRESS  
DIRECT RAM  
ADDRESS  
GENERAL  
PURPOSE  
REGISTER  
FILE  
5
5-7  
(SRAM)  
8
24, 25 or 72  
Bytes  
STATUS  
TMR0  
FSR  
8
8
DATA BUS  
W
ALU  
FROM W  
8
FROM W  
4
FROM W  
8
8
4
8
“TRIS 5”  
“TRIS 6”  
“TRIS 7”  
TRISB PORTB  
TRISA PORTA  
TRISC  
PORTC  
8
4
8
RC7:RC0  
(28 Pin  
Devices  
Only)  
RA3:RA0  
RB7:RB0  
DS30015M-page 8  
1995 Microchip Technology Inc.  
PIC16C5X  
TABLE 3-1:  
Name  
PIC16C54/CR54/C56 PINOUT DESCRIPTION  
DIP, SOIC SSOP I/O/P  
Input  
No.  
No.  
Type Levels  
Description  
RA0  
RA1  
RA2  
RA3  
17  
18  
1
19  
20  
1
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
2
2
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
6
7
8
7
8
9
10  
11  
12  
13  
14  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
9
10  
11  
12  
13  
T0CKI  
3
3
I
ST  
Clock input to Timer0. Must be tied to VSS or VDD, if not in  
use, to reduce current consumption.  
MCLR/VPP  
4
4
I
ST  
Master clear (reset) input/programming voltage input. This  
pin is an active low reset to the device. Voltage on  
MCLR/VPP must not exceed VDD to avoid unintended  
entering of programming mode.  
OSC1/CLKIN  
16  
15  
18  
17  
I
ST  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator  
in crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and  
denotes the instruction cycle rate.  
VDD  
VSS  
14  
5
15,16  
5,6  
P
P
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Legend: I = input, O = output, I/O = input/output,  
P = power, — = Not Used,  
TTL = TTL input, ST = Schmitt Trigger input  
1995 Microchip Technology Inc.  
DS30015M-page 9  
PIC16C5X  
TABLE 3-2:  
PIC16C55/C57 PINOUT DESCRIPTION  
DIP, SOIC SSOP I/O/P Input  
Name  
No.  
No.  
Type Levels  
Description  
RA0  
RA1  
RA2  
RA3  
6
7
8
9
5
6
7
8
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
10  
11  
12  
13  
14  
15  
16  
17  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
10  
11  
12  
13  
15  
16  
17  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
18  
19  
20  
21  
22  
23  
24  
25  
18  
19  
20  
21  
22  
23  
24  
25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
T0CKI  
1
2
I
ST  
Clock input to Timer0. Must be tied to VSS or VDD,  
if not in use, to reduce current consumption.  
MCLR/VPP  
28  
28  
I
ST  
Master clear (reset) input/programming voltage input. This  
pin is an active low reset to the device. Voltage on  
MCLR/VPP must not exceed VDD to avoid unintended  
entering of programming mode.  
OSC1/CLKIN  
27  
26  
27  
26  
I
ST  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator  
in crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and  
denotes the instruction cycle rate.  
VDD  
VSS  
N/C  
2
4
3,4  
1,14  
P
P
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Unused, do not connect  
3,5  
Legend: I = input, O = output, I/O = input/output,  
P = power, — = Not Used, TTL = TTL input,  
ST = Schmitt Trigger input  
DS30015M-page 10  
1995 Microchip Technology Inc.  
PIC16C5X  
3.1  
Clocking Scheme/Instruction Cycle  
3.2  
Instruction Flow/Pipelining  
The clock input (OSC1/CLKIN pin) is internally divided  
by four to generate four non-overlapping quadrature  
clocks namely Q1, Q2, Q3 and Q4. Internally, the  
program counter (PC) is incremented every Q1, and  
the instruction is fetched from program memory and  
latched into the instruction register in Q4. It is  
decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
is shown in Figure 3-2 and Example 3-1.  
An Instruction Cycle consists of four Q cycles (Q1, Q2,  
Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO)  
then two cycles are required to complete the  
instruction (Example 3-1).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is  
latched into the Instruction Register (IR) in cycle Q1.  
This instruction is then decoded and executed during  
the Q2, Q3, and Q4 cycles. Data memory is read  
during Q2 (operand read) and written during Q4  
(destination write).  
FIGURE 3-2: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Q4  
Internal  
phase  
clock  
PC  
PC+1  
PC+2  
PC  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3  
Flush  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
1995 Microchip Technology Inc.  
DS30015M-page 11  
PIC16C5X  
NOTES:  
DS30015M-page 12  
1995 Microchip Technology Inc.  
PIC16C5X  
FIGURE 4-3: PIC16C57 PROGRAM  
4.0  
MEMORY ORGANIZATION  
MEMORY MAP  
AND STACK  
4.1  
Program Memory Organization  
The PIC16C54, PIC16CR54 and PIC16C55 have a  
9-bit Program Counter (PC) capable of addressing a  
512 x 12 program memory space (Figure 4-1). The  
PIC16C56 has a 10-bit program counter capable of  
addressing a 1K x 12 program memory space  
(Figure 4-2). The PIC16C57 has an 11-bit program  
counter capable of addressing a 2K x 12 program  
memory space (Figure 4-3). Accessing a location  
above the physically implemented address will cause  
a wraparound.  
PC<10:0>  
11  
CALL, RETLW  
Stack Level 1  
Stack Level 2  
000h  
On-chip Program  
Memory (Page 0)  
0FFh  
100h  
1FFh  
200h  
The reset vector for the PIC16C54/CR54/C55 is at  
1FFh, at 3FFh for the PIC16C56, and at 7FFh for  
the PIC16C57.  
On-chip Program  
Memory (Page 1)  
2FFh  
300h  
3FFh  
400h  
FIGURE 4-1: PIC16C54/CR54/C55  
PROGRAM MEMORY MAP  
AND STACK  
On-chip Program  
Memory (Page 2)  
4FFh  
500h  
PC<8:0>  
5FFh  
600h  
9
CALL, RETLW  
On-chip Program  
Memory (Page 3)  
6FFh  
700h  
Stack Level 1  
Stack Level 2  
Reset Vector  
7FFh  
000h  
On-chip  
Program  
Memory  
4.2  
Data Memory Organization  
0FFh  
100h  
Data memory is composed of registers, or bytes of  
RAM. Therefore, data memory for a device is specified  
by its register file. The register file is divided into two  
functional groups: special function registers and  
general purpose registers.  
Reset Vector  
1FFh  
FIGURE 4-2: PIC16C56 PROGRAM  
MEMORY MAP  
The special function registers include the TMR0  
register, the Program Counter (PC), the Status  
Register, the I/O registers (ports), and the File Select  
Register (FSR). In addition, special purpose registers  
are used to control the I/O port configuration and  
prescaler options.  
AND STACK  
PC<9:0>  
10  
CALL, RETLW  
The general purpose registers are used for data and  
control information under command of the instructions.  
Stack Level 1  
Stack Level 2  
For the PIC16C54, PIC16CR54 and PIC16C56, the  
register file is composed of seven special function  
registers and 25 general purpose registers  
(Figure 4-4). For the PIC16C55, the register file is  
composed of eight special function registers and 24  
general purpose registers (Figure 4-5). For the  
PIC16C57, up to 48 additional general purpose  
000h  
On-chip Program  
Memory (Page 0)  
0FFh  
100h  
1FFh  
200h  
On-chip Program  
Memory (Page 1)  
2FFh  
300h  
registers may be addressed using  
scheme (Figure 4-6).  
a
banking  
Reset Vector  
3FFh  
4.2.1  
GENERAL PURPOSE REGISTER FILE  
The register file is accessed either directly or indirectly  
through the file select register FSR (Section 4.7).  
1995 Microchip Technology Inc.  
DS30015M-page 13  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
FIGURE 4-4: PIC16C54/CR54/C56  
REGISTER FILE MAP  
FIGURE 4-5: PIC16C55 REGISTER FILE  
MAP  
File Address  
File Address  
INDF(1)  
00h  
INDF(1)  
00h  
TMR0  
PCL  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
01h  
02h  
03h  
04h  
05h  
06h  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTA  
PORTB  
07h  
08h  
PORTC  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
0Fh  
10h  
0Fh  
10h  
1Fh  
1Fh  
Note 1: Not a physical register. See Section 4.7  
Note 1: Not a physical register. See Section 4.7  
FIGURE 4-6: PIC16C57 REGISTER FILE MAP  
FSR<6:5>  
File Address  
00h  
00  
01  
10  
11  
INDF(1)  
TMR0  
PCL  
20h  
40h  
60h  
01h  
02h  
03h  
04h  
05h  
STATUS  
FSR  
Addresses map back to  
addresses in Bank 0.  
PORTA  
PORTB  
06h  
07h  
08h  
PORTC  
General  
Purpose  
Register  
0Fh  
2Fh  
30h  
4Fh  
50h  
6Fh  
10h  
1Fh  
70h  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
3Fh  
5Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note 1: Not a physical register. See Section 4.7  
DS30015M-page 14  
1995 Microchip Technology Inc.  
PIC16C5X  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The special registers can be classified into two sets.  
The special function registers associated with the  
“core” functions are described in this section. Those  
related to the operation of the peripheral features are  
described in the section for each peripheral feature.  
The Special Function Registers are registers used by  
the CPU and peripheral functions to control the  
operation of the device (Table 4-1).  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
N/A  
N/A  
00h  
01h  
TRIS  
I/O control registers (TRISA, TRISB, TRISC)  
1111 1111 1111 1111  
--11 1111 --11 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
OPTION  
INDF  
Contains control bits to configure Timer0 and Timer0/WDT prescaler  
Uses contents of FSR to address data memory (not a physical register)  
8-bit real-time clock/counter  
TMR0  
(1)  
02h  
03h  
04h  
05h  
06h  
PCL  
Low order 8 bits of PC  
1111 1111 1111 1111  
0001 1xxx 000q quuu  
1xxx xxxx 1uuu uuuu  
---- xxxx ---- uuuu  
xxxx xxxx uuuu uuuu  
STATUS  
FSR  
PA2  
PA1  
PA0  
TO  
PD  
Z
DC  
C
Indirect data memory address pointer  
PORTA  
PORTB  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
RB7  
RB6  
RB5  
RB4  
(2)  
07h  
PORTC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
Legend: Shaded boxes = unimplemented or unused, – = unimplemented, read as '0' (if applicable)  
x= unknown, u= unchanged, q= see the tables in Section 7.7 for possible values.  
Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.5  
for an explanation of how to access these bits.  
2: File address 07h is a general purpose register on the PIC16C54/CR54/C56.  
1995 Microchip Technology Inc.  
DS30015M-page 15  
PIC16C5X  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
4.3  
STATUS Register  
This register contains the arithmetic status of the ALU,  
the RESET status, and the page preselect bits for  
program memories larger than 512 words.  
It is recommended, therefore, that only BCF, BSF and  
MOVWF instructions be used to alter the STATUS  
register because these instructions do not affect the Z,  
DC or C bits from the STATUS register. For other  
instructions which do affect STATUS bits, see  
Table 8-2, Instruction Set Summary.  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to  
the device logic. Furthermore, the TO and PD bits are  
not writable. Therefore, the result of an instruction  
with the STATUS register as destination may be  
different than intended.  
FIGURE 4-7: STATUS REGISTER (ADDRESS:03h)  
R/W-0  
PA2  
R/W-0  
PA1  
R/W-0  
PA0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
- n = Value at POR reset  
bit7  
6
5
4
3
2
1
bit0  
bit 7:  
PA2: This bit unused at this time.  
Use of the PA2 bit as a general purpose read/write bit is not recommended, since this may affect upward  
compatibility with future products.  
bit 6-5: PA1:PA0: Program page preselect bits (PIC16C56 and PIC16C57 only)  
00 = Page 0 (000h - 1FFh) - PIC16C56 and PIC16C57  
01 = Page 1 (200h - 3FFh) - PIC16C56 and PIC16C57  
10 = Page 2 (400h - 5FFh) - PIC16C57  
11 = Page 3 (600h - 7FFh) - PIC16C57  
Each page is 512 bytes.  
Using the PA1:PA0 bits as general purpose read/write bits in devices which do not use them for program  
page preselect is not recommended since this may affect upward compatibility with future products.  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
TO: Time-out bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
Z: Zero bit  
1 = The result of an arithmetic or logic operation is zero  
0 = The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (for ADDWFand SUBWFinstructions)  
ADDWF  
1 = A carry from the 4th low order bit of the result occurred  
0 = A carry from the 4th low order bit of the result did not occur  
SUBWF  
1 = A borrow from the 4th low order bit of the result did not occur  
0 = A borrow from the 4th low order bit of the result occurred  
bit 0:  
C: Carry/borrow bit (for ADDWF, SUBWFand RRF, RLFinstructions)  
ADDWF  
SUBWF  
RRF or RLF  
1 = A carry occurred  
0 = A carry did not occur  
1 = A borrow did not occur  
0 = A borrow occurred  
Load bit with LSb or MSb  
DS30015M-page 16  
1995 Microchip Technology Inc.  
PIC16C5X  
4.4  
OPTION Register  
The OPTION register is a 6-bit wide, write-only  
register which contains various control bits to  
configure the Timer0/WDT prescaler and Timer0.  
By executing the OPTION instruction, the contents of  
the W register will be transferred to the OPTION  
register. A RESET sets the OPTION<5:0> bits.  
FIGURE 4-8: OPTION REGISTER  
U-0  
U-0  
6
W-1  
T0CS  
5
W-1  
T0SE  
4
W-1  
PSA  
3
W-1  
PS2  
2
W-1  
PS1  
1
W-1  
PS0  
W = Writable bit  
= Unimplemented bit  
- n = Value at POR reset  
U
bit7  
bit0  
bit 7-6: Unimplemented.  
bit 5:  
bit 4:  
bit 3:  
T0CS: Timer0 Clock Source Select bit  
1 = Transition on T0CKI pin  
0 = Internal instruction cycle clock (CLKOUT)  
T0SE: Timer0 Source Edge Select bit  
1 = Increment on high-to-low transition on T0CKI pin  
0 = Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1 = Prescaler assigned to the WDT  
0 = Prescaler assigned to Timer0  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1995 Microchip Technology Inc.  
DS30015M-page 17  
PIC16C5X  
4.5  
Program Counter  
FIGURE 4-10: LOADING OF PC BRANCH  
INSTRUCTIONS - PIC16C56  
As a program instruction is executed, the Program  
Counter (PC) will contain the address of the next  
program instruction to be executed. The PC value is  
increased by one every instruction cycle, unless an  
instruction changes the PC.  
GOTO Instruction  
9
8
7
0
PC  
PCL  
For a GOTOinstruction, bits 8:0 of the PC are provided  
by the GOTO instruction word. The PC Latch (PCL) is  
mapped to PC<7:0> (Figure 4-9, Figure 4-10 and  
Figure 4-11).  
Instruction Word  
0
PA0  
7
For the PIC16C56 and PIC16C57, a page number  
must be supplied as well. Bit5 of the STATUS register  
provides this to bit9 of the PC for the PIC16C56  
(Figure 4-10). Bit5 and bit6 of the STATUS register  
provide page information to bit9 and bit10 of the PC  
for the PIC16C57 (Figure 4-11).  
STATUS  
CALL or Modify PCL Instruction  
9
8
7
0
PC  
PCL  
For a CALL instruction, or any instruction where the  
PCL is the destination, bits 7:0 of the PC are provided  
by the instruction word. However, PC<8> does not  
come from the instruction word, but is always cleared  
(Figure 4-9, Figure 4-10 and Figure 4-11).  
Instruction Word  
Reset to '0'  
PA0  
Instructions where the PCL is the destination, or  
Modify PCL instructions, include MOVWF PC, ADDWF  
PC,and BSF PC,5.  
7
0
STATUS  
For the PIC16C56 and PIC16C57, a page number  
again must be supplied. Bit5 of the STATUS register  
provides this to bit9 of the PC for the PIC16C56  
(Figure 4-10). Bit5 and bit6 of the STATUS register  
provide page information to bit9 and bit10 of the PC  
for the PIC16C57 (Figure 4-11).  
FIGURE 4-11: LOADING OF PC  
BRANCH INSTRUCTIONS -  
PIC16C57  
GOTO Instruction  
10  
9
8
7
0
Note: Because PC<8> is cleared in the CALL  
instruction, or any Modify PCL instruction,  
all subroutine calls or computed jumps are  
limited to the first 256 locations of any  
program memory page (512 words long).  
PC  
PCL  
Instruction Word  
2
PA1:PA0  
FIGURE 4-9: LOADING OF PC  
BRANCH INSTRUCTIONS -  
PIC16C54/CR54/C55  
7
0
STATUS  
GOTO Instruction  
CALL or Modify PCL Instruction  
8
7
0
PCL  
PC  
10  
9
8
7
0
PC  
PCL  
Instruction Word  
Instruction Word  
CALL or Modify PCL Instruction  
Reset to ‘0’  
PA1:PA0  
8
7
0
2
7
0
PCL  
PC  
STATUS  
Reset to '0'  
Instruction Word  
DS30015M-page 18  
1995 Microchip Technology Inc.  
PIC16C5X  
For the RETLW instruction, the PC is loaded with the  
Top Of Stack (TOS) contents. All of the devices  
covered in this data sheet have only two stacks. Each  
stack has the same bit width as the device PC.  
4.6  
Stack  
PIC16C5X devices have a 9-bit, 10-bit or 11-bit wide,  
two-level hardware push/pop stack (Figure 4-1,  
Figure 4-2 and Figure 4-3 respectively).  
4.5.1  
PAGING CONSIDERATIONS –  
PIC16C56/57  
A CALLinstruction will push the current value of stack 1  
into stack 2 and then push the current program counter  
value, incremented by one, into stack level 1. If more  
than two sequential CALL’s are executed, only the most  
recent two return addresses are stored.  
If the Program Counter is pointing to the last address  
of a selected memory page, when it increments it will  
cause the program to continue in the next higher page.  
However, the page preselect bits in the STATUS  
register will not be updated. Therefore, the next GOTO,  
CALL, or Modify PCL instruction will return the program  
to the page specified by the page preselect bits (PA0  
or PA1:PA0).  
A RETLW instruction will pop the contents of stack  
level 1 into the program counter and then copy stack  
level 2 contents into level 1. If more than two sequential  
RETLW’s are executed, the stack will be filled with the  
address previously stored in level 2.  
For example, a NOP at location 1FFh (page 0)  
increments the PC to 200h (page 1). A GOTO xxx at  
200h will return the program to address xxxh on  
page 0 (assuming that PA1:PA0 are clear).  
Note: The W register will be loaded with the  
literal value specified in the instruction.  
This is particularly useful for the  
implementation of data look-up tables  
within the program memory.  
To prevent this, the page preselect bits must be  
updated under program control.  
4.5.2  
EFFECTS OF RESET  
The Program Counter is set upon a RESET, which  
means that the PC addresses the last location in the  
last page (i.e., the reset vector).  
The STATUS register page preselect bits are cleared  
upon  
a RESET, which means that page 0 is  
pre-selected.  
Therefore, upon a RESET, a GOTO instruction at the  
reset vector location will automatically cause the  
program to jump to page 0.  
If an inadequate RESET occurs (i.e., POR conditions  
are not met, a brown-out occurs, etc.), page preselect  
bits in the STATUS register will not be cleared.  
Therefore, it is good programming practice to include  
the following code before the GOTO instruction at the  
reset vector location:  
BSF STATUS  
BSF FSR  
1995 Microchip Technology Inc.  
DS30015M-page 19  
PIC16C5X  
4.7  
Indirect Data Addressing; INDF and  
FSR Registers  
EXAMPLE 4-2: HOW TO CLEAR RAM  
USING INDIRECT  
ADDRESSING  
movlw 0x10 ;initialize pointer  
The INDF register is not  
a physical register.  
Addressing INDF actually addresses the register  
whose address is contained in the FSR register (FSR  
is a pointer). This is indirect addressing.  
movwf FSR  
;
to RAM  
NEXT  
clrf  
incf  
INDF ;clear INDF register  
FSR,F ;inc pointer  
btfsc FSR,4 ;all done?  
EXAMPLE 4-1: INDIRECT ADDRESSING  
• Register file 05 contains the value 10h  
• Register file 06 contains the value 0Ah  
• Load the value 05 into the FSR register  
• A read of the INDF register will return the value  
of 10h  
• Increment the value of the FSR register by one  
(FSR = 06)  
• A read of the INDR register now will return the  
value of 0Ah.  
goto  
NEXT ;NO, clear next  
CONTINUE  
:
;YES, continue  
The FSR is either a 5-bit (PIC16C54/CR54/C55/C56)  
or 7-bit (PIC16C57) wide register. It is used in  
conjunction with the INDF register to indirectly address  
the data memory area. The last two bits, FSR<6:5>,  
are also used on the PIC16C57 for direct  
addressing (Figure 4-12).  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF register indirectly results in a  
no-operation (although STATUS bits may be affected).  
The FSR<4:0> bits are used to select data memory  
addresses 00h to 1Fh.  
PIC16C54/CR54/C55/C56: Do not use banking.  
FSR<6:5> are unimplemented and read as '1's.  
A simple program to clear RAM locations 10h-1Fh  
using indirect addressing is shown in Example 4-2.  
PIC16C57: FSR<6:5> are the bank select bits and are  
used to select the bank to be addressed (00= bank 0,  
01= bank 1, 10= bank 2, 11= bank 3).  
FIGURE 4-12: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
(FSR)  
4
(opcode)  
0
5
(FSR)  
0
6
4
5
6
location select  
bank select  
location select  
bank  
00  
01  
10  
11  
00h  
Addresses map back  
to addresses in Bank 0.  
Data  
Memory  
0Fh  
10h  
(1)  
1Fh  
Bank 0  
3Fh  
Bank 1  
5Fh  
Bank 2  
7Fh  
Bank 3  
Note 1: For register map detail see Section 4.2.  
DS30015M-page 20  
1995 Microchip Technology Inc.  
PIC16C5X  
5.5  
I/O Interfacing  
5.0  
I/O PORTS  
As with any other register, the I/O registers can be  
written and read under program control. However,  
read instructions (e.g., MOVF PORTB,W) always read  
the I/O pins independent of the pin’s input/output  
modes. On RESET, all I/O ports are defined as input  
(inputs are at hi-impedance) since the I/O control  
registers (TRISA, TRISB, TRISC) are all set.  
The equivalent circuit for an I/O port pin is shown in  
Figure 5-1. All ports may be used for both input and  
output operations. For input operations these ports are  
non-latching. Any input must be present until read by  
an input instruction (e.g., MOVF PORTB, W). The  
outputs are latched and remain unchanged until the  
output latch is rewritten. To use a port pin as output,  
the corresponding direction control bit (in TRISA,  
TRISB, TRISC) must be cleared (= 0). For use as an  
input, the corresponding TRIS bit must be set. Any I/O  
pin can be programmed individually as input or output.  
5.1  
PORTA  
PORTA is a 4-bit I/O register. Only the low order 4 bits  
are used (RA3:RA0). Bits 7-4 are unimplemented and  
read as '0's.  
FIGURE 5-1: EQUIVALENT CIRCUIT  
FOR A SINGLE I/O PIN  
5.2  
PORTB  
Data  
Bus  
PORTB is an 8-bit I/O register (PORTB<7:0>).  
D
Q
Q
Data  
Latch  
5.3  
PORTC  
VDD  
P
WR  
Port  
CK  
PIC16C55/C57: 8-bit I/O register.  
PIC16C54/CR54/C56:  
General purpose register.  
N
I/O  
pin(1)  
W
Reg  
5.4  
TRIS Registers  
D
Q
Q
TRIS  
Latch  
The output driver control registers are loaded with the  
contents of the W register by executing the TRIS f  
instruction. A '1' from a TRIS register bit puts the  
corresponding output driver in a hi-impedance mode.  
A '0' puts the contents of the output data latch on the  
selected pins, enabling the output buffer.  
VSS  
TRIS ‘f’  
CK  
Reset  
Note:  
A read of the ports reads the pins, not the  
output data latches. That is, if an output  
driver on a pin is enabled and driven high,  
but the external system is holding it low, a  
read of the port will indicate that the pin  
is low.  
RD Port  
Note 1: I/O pins have protection diodes to VDD and VSS.  
The TRIS registers are “write-only” and are set (output  
drivers disabled) upon RESET.  
TABLE 5-1:  
SUMMARY OF PORT REGISTERS  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
N/A  
05h  
06h  
TRIS  
PORTA  
I/O control registers (TRISA, TRISB, TRISC)  
1111 1111 1111 1111  
---- xxxx ---- uuuu  
xxxx xxxx uuuu uuuu  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
PORTB  
PORTC  
RB7  
RB6  
RB5  
RB4  
(1)  
07h  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
Legend: Shaded boxes = unimplemented, read as ‘0’,  
= unimplemented, read as '0', x= unknown, u= unchanged  
Note 1: File address 07h is a general purpose register on the PIC16C54/CR54/C56.  
1995 Microchip Technology Inc.  
DS30015M-page 21  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
5.6  
I/O Programming Considerations  
EXAMPLE 5-1: READ-MODIFY-WRITE  
INSTRUCTIONS ON AN  
I/O PORT  
5.6.1  
BI-DIRECTIONAL I/O PORTS  
;Initial PORT Settings  
Some instructions operate internally as read followed  
by write operations. The BCFand BSFinstructions, for  
example, read the entire port into the CPU, execute  
the bit operation and re-write the result. Caution must  
be used when these instructions are applied to a port  
where one or more pins are used as input/outputs. For  
example, a BSFoperation on bit5 of PORTB will cause  
all eight bits of PORTB to be read into the CPU, bit5 to  
be set and the PORTB value to be written to the output  
latches. If another bit of PORTB is used as a  
bi-directional I/O pin (say bit0) and it is defined as an  
input at this time, the input signal present on the pin  
itself would be read into the CPU and rewritten to the  
data latch of this particular pin, overwriting the  
previous content. As long as the pin stays in the input  
mode, no problem occurs. However, if bit0 is switched  
into output mode later on, the content of the data latch  
may now be unknown.  
;
;
PORTB<7:4> Inputs  
PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-ups and are  
;not connected to other circuitry  
;
;
;
PORT latch PORT pins  
---------- ----------  
BCF  
BCF  
MOVLW 03Fh  
TRIS PORTB  
PORTB, 7  
PORTB, 6  
;01pp pppp  
;10pp pppp  
;
11pp pppp  
11pp pppp  
;10pp pppp  
10pp pppp  
;
;Note that the user may have expected the pin  
;values to be 00pp pppp. The 2nd BCF caused  
;RB7 to be latched as the pin value (High).  
5.6.2  
SUCCESSIVE OPERATIONS ON I/O  
PORTS  
The actual write to an I/O port happens at the end of  
an instruction cycle, whereas for reading, the data  
must be valid at the beginning of the instruction cycle  
(Figure 5-2). Therefore, care must be exercised if a  
write followed by a read operation is carried out on the  
same I/O port. The sequence of instructions should  
allow the pin voltage to stabilize (load dependent)  
before the next instruction, which causes that file to be  
read into the CPU, is executed. Otherwise, the  
previous state of that pin may be read into the CPU  
rather than the new state. When in doubt, it is better to  
separate these instructions with a NOP or another  
instruction not accessing this I/O port.  
Example 5-1 shows the effect of two sequential  
read-modify-write instructions (e.g., BCF, BSF, etc.) on  
an I/O port.  
A pin actively outputting a high or a low should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”,  
“wired-and”). The resulting high output currents may  
damage the chip.  
FIGURE 5-2: SUCCESSIVE I/O OPERATION  
Q4  
Q4  
Q4  
Q1 Q2  
Q4  
Q3  
Q3  
Q3  
Q3  
Q1 Q2  
PC  
Q1 Q2  
Q1 Q2  
PC + 3  
NOP  
PC + 1  
PC + 2  
NOP  
This example shows a write to PORTB  
followed by a read from PORTB.  
Instruction  
fetched  
MOVWF PORTB MOVF PORTB,W  
Data setup time = (0.25 TCY – TPD)  
where: TCY = instruction cycle.  
TPD = propagation delay  
RB7:RB0  
Port pin  
written here  
Port pin  
sampled here  
Therefore, at higher clock frequencies, a  
write followed by a read may be problematic.  
Instruction  
executed  
MOVWF PORTB MOVF PORTB,W  
NOP  
(Write to  
PORTB)  
(Read  
PORTB)  
DS30015M-page 22  
1995 Microchip Technology Inc.  
PIC16C5X  
Counter mode is selected by setting the T0CS bit  
(OPTION<5>). In this mode, Timer0 will increment  
either on every rising or falling edge of pin T0CKI. The  
incrementing edge is determined by the source edge  
select bit T0SE (OPTION<4>). Clearing the T0SE bit  
selects the rising edge. Restrictions on the external  
clock input are discussed in detail in Section 6.1.  
6.0  
TIMER0 MODULE AND  
TMR0 REGISTER  
The Timer0 module has the following features:  
• 8-bit timer/counter register, TMR0  
- Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
- Edge select for external clock  
The prescaler may be used by either the Timer0  
module or the Watchdog Timer, but not both. The  
prescaler assignment is controlled in software by the  
control bit PSA (OPTION<3>). Clearing the PSA bit  
will assign the prescaler to Timer0. The prescaler is  
not readable or writable. When the prescaler is  
assigned to the Timer0 module, prescale values of  
1:2, 1:4,..., 1:256 are selectable. Section 6.2 details  
the operation of the prescaler.  
Figure 6-1 is a simplified block diagram of the Timer0  
module, while Figure 6-2 shows the electrical structure  
of the Timer0 input.  
Timer mode is selected by clearing the T0CS bit  
(OPTION<5>). In timer mode, the Timer0 module will  
increment every instruction cycle (without prescaler). If  
TMR0 register is written, the increment is inhibited for  
the following two cycles (Figure 6-3 and Figure 6-4).  
The user can work around this by writing an adjusted  
value to the TMR0 register.  
A summary of registers associated with the Timer0  
module is found in Table 6-1.  
FIGURE 6-1: TIMER0 BLOCK DIAGRAM  
Data bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
Clocks  
TMR0 reg  
T0CKI  
pin  
Programmable  
PSout  
Sync  
(2)  
Prescaler  
(1)  
(2 cycle delay)  
T0SE  
3
(1)  
(1)  
PS2, PS1, PS0  
PSA  
(1)  
T0CS  
Note 1: Bits T0CS, T0SE, PSA, PS2, PS1 and PS0 are located in the OPTION register.  
2: The prescaler is shared with the Watchdog Timer (Figure 6-6).  
FIGURE 6-2: ELECTRICAL STRUCTURE OF T0CKI PIN  
RIN  
T0CKI  
pin  
(1)  
Schmitt Trigger  
Input Buffer  
N
(1)  
VSS  
VSS  
Note 1: ESD protection circuits  
1995 Microchip Technology Inc.  
DS30015M-page 23  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
FIGURE 6-3: TIMER0 TIMING:  
INTERNAL CLOCK/NO PRESCALE  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetch  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
T0  
T0+1  
T0+2  
NT0  
NT0  
NT0  
NT0+1  
NT0+2  
Timer0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
FIGURE 6-4: TIMER0 TIMING:  
INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
0  
NT0  
Timer0  
Instruction  
Execute  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
TABLE 6-1:  
Address  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Name  
Bit 7  
Timer0 - 8-bit real-time clock/counter  
T0CS T0SE PSA  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01  
TMR0  
xxxx xxxx uuuu uuuu  
N/A  
OPTION  
PS2  
PS1  
PS0 --11 1111 --11 1111  
Legend: Shaded cells: Unimplemented bits,  
-= unimplemented, x = unknown, u= unchanged,  
DS30015M-page 24  
1995 Microchip Technology Inc.  
PIC16C5X  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple counter-type  
prescaler so that the prescaler output is symmetrical.  
For the external clock to meet the sampling  
requirement, the ripple counter must be taken into  
account. Therefore, it is necessary for T0CKI to have a  
period of at least 4TOSC (and a small RC delay of  
40 ns) divided by the prescaler value. The only  
requirement on T0CKI high and low time is that they  
do not violate the minimum pulse width requirement of  
10 ns. Refer to parameters 40, 41 and 42 in the  
electrical specification of the desired device.  
6.1  
Using Timer0 with an External Clock  
When an external clock input is used for Timer0, it  
must meet certain requirements. The external clock  
requirement is due to internal phase clock (TOSC)  
synchronization. Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
6.1.1  
EXTERNAL CLOCK SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is  
accomplished by sampling the prescaler output on the  
Q2 and Q4 cycles of the internal phase clocks  
(Figure 6-5). Therefore, it is necessary for T0CKI to be  
high for at least 2TOSC (and a small RC delay of 20 ns)  
and low for at least 2TOSC (and a small RC delay of  
20 ns). Refer to the electrical specification of the  
desired device.  
6.1.2  
TIMER0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the Timer0  
module is actually incremented. Figure 6-5 shows the  
delay from the external clock edge to the timer  
incrementing.  
FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
External Clock Input or  
misses sampling  
Prescaler Output (2)  
(1)  
External Clock/Prescaler  
Output After Sampling  
(3)  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc).  
Therefore, the error in measuring the interval between two edges on Timer0 input = ± 4Tosc max.  
2: External clock if no prescaler selected, Prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
1995 Microchip Technology Inc.  
DS30015M-page 25  
PIC16C5X  
following instruction sequence (Example 6-1) must be  
executed when changing the prescaler assignment from  
Timer0 to the WDT.  
6.2  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer (WDT), respectively (Section 6.1.2). For  
simplicity, this counter is being referred to as  
“prescaler” throughout this data sheet. Note that the  
prescaler may be used by either the Timer0 module or  
the WDT, but not both. Thus, a prescaler assignment  
for the Timer0 module means that there is no  
prescaler for the WDT, and vice-versa.  
EXAMPLE 6-1: CHANGING PRESCALER  
(TIMER0WDT)  
CLRF  
CLRWDT  
TMR0  
;Clear TMR0  
;Clears WDT and  
;prescaler  
MOVLW 'xxxx1xxx' ;Select new prescale  
OPTION ;value  
The PSA and PS2:PS0 bits (OPTION<3:0>)  
determine prescaler assignment and prescale ratio.  
To change prescaler from the WDT to the Timer0  
module, use the sequence shown in Example 6-2. This  
sequence must be used even if the WDT is disabled. A  
CLRWDTinstruction should be executed before switching  
the prescaler.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF 1, MOVWF 1,  
BSF 1,x, etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the WDT. The prescaler is neither  
readable nor writable. On a RESET, the prescaler  
contains all '0's.  
EXAMPLE 6-2: CHANGING PRESCALER  
(WDTTIMER0)  
CLRWDT  
;Clear WDT and  
;prescaler  
MOVLW 'xxxx0xxx'  
;Select TMR0, new  
;prescale value and  
;clock source  
6.2.1  
SWITCHING PRESCALER ASSIGNMENT  
The prescaler assignment is fully under software control  
(i.e., it can be changed “on the fly” during program  
execution). To avoid an unintended device RESET, the  
OPTION  
FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
TCY ( = Fosc/4)  
Data Bus  
8
0
M
U
X
1
M
U
X
T0CKI  
pin  
1
Sync  
2
Cycles  
TMR0 reg  
0
T0SE  
T0CS  
PSA  
0
1
8-bit Prescaler  
M
U
X
8
Watchdog  
Timer  
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
MUX  
PSA  
WDT  
Time-Out  
Note: T0CS, T0SE, PSA, PS2:PS0 are bits in the OPTION register.  
DS30015M-page 26  
1995 Microchip Technology Inc.  
PIC16C5X  
The SLEEP mode is designed to offer a very low  
current power-down mode. The user can wake up  
from SLEEP through external reset or through a  
Watchdog Timer time-out. Several oscillator options  
are also made available to allow the part to fit the  
application. The RC oscillator option saves system  
cost while the LP crystal option saves power. A set of  
configuration bits are used to select various options.  
7.0  
SPECIAL FEATURES OF THE  
CPU  
What sets  
a
microcontroller apart from other  
processors are special circuits to deal with the needs  
of real-time applications. The PIC16C5X family of  
microcontrollers has a host of such features intended  
to maximize system reliability, minimize cost through  
elimination of external components, provide power  
saving operating modes and offer code protection.  
These features are:  
7.1  
Configuration Bits  
The PIC16C5X configuration word consists of 12 bits,  
4 of which are implemented. Configuration bits can be  
programmed to select various device configurations.  
Two bits are for the selection of the oscillator type, one  
bit is the Watchdog Timer enable bit and one bit is the  
code protection bit (Figure 7-1).  
• Oscillator selection  
• Reset  
• Power-On Reset (POR)  
• Device Reset Timer (DRT)  
• Watchdog Timer (WDT)  
• SLEEP  
OTP, QTP or ROM devices have the oscillator  
configuration programmed at the factory and these  
parts are tested accordingly (see "Product  
Identification System" on the inside back cover).  
• Code protection  
• ID locations  
The PIC16C5X has a Watchdog Timer which can be  
shut off only through configuration bit WDTE. It runs  
off of its own RC oscillator for added reliability. There  
is an 18 ms delay provided by the Device Reset Timer  
(DRT), intended to keep the chip in reset until the  
crystal oscillator is stable. With this timer on-chip, most  
applications need no external reset circuitry.  
FIGURE 7-1: CONFIGURATION WORD FOR PIC16C54/CR54/C55/C56/C57  
9
8
7
6
5
4
CP  
3
WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
(1)  
Address  
:
FFFh  
bit11  
10  
2
1
bit 11-4: Unimplemented: Read as ’0’.  
bit 3:  
CP: Code protection bit  
1 = Code protection off  
0 = Code protection on  
bit 2:  
WDTE: Watchdog timer enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator selection bits  
11 = RC oscillator  
10 = HS oscillator  
01 = XT oscillator  
00 = LP oscillator  
Note 1: Refer to the PIC16C5X Programming Specifications (literature number DS30190) to  
determine how to access the configuration word.  
1995 Microchip Technology Inc.  
DS30015M-page 27  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
7.2  
Oscillator Configurations  
TABLE 7-1:  
CAPACITOR SELECTION  
FOR CERAMIC RESONATORS  
- PIC16C54/55/56/57  
7.2.1  
OSCILLATOR TYPES  
The PIC16C5X can be operated in four different  
oscillator modes. The user can program two  
configuration bits (FOSC1:FOSC0) to select one of  
these four modes:  
Osc  
Type  
Resonator Cap. Range Cap. Range  
Freq  
C1  
C2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68-100 pF  
15-33 pF  
10-22 pF  
68-100 pF  
15-33 pF  
10-22 pF  
• LP:  
• XT:  
• HS:  
• RC:  
Low Power Crystal  
Crystal/Resonator  
HS  
8.0 MHz  
16.0 MHz  
10-22 pF  
10 pF  
10-22 pF  
10 pF  
High Speed Crystal/Resonator  
Resistor/Capacitor  
These values are for design guidance only. Since  
each resonator has its own characteristics, the user  
should consult the resonator manufacturer for  
appropriate values of external components.  
7.2.2  
CRYSTAL OSCILLATOR / CERAMIC  
RESONATORS  
TABLE 7-2:  
CAPACITOR SELECTION  
FOR CRYSTAL OSCILLATOR  
- PIC16C54/55/56/57  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 7-2). The  
PIC16C5X oscillator design requires the use of a  
parallel cut crystal. Use of a series cut crystal may  
give a frequency out of the crystal manufacturers  
specifications. When in XT, LP or HS modes, the  
device can have an external clock source drive the  
OSC1/CLKIN pin (Figure 7-3).  
Osc  
Resonator Cap.Range Cap. Range  
Type  
Freq  
C1  
C2  
(1)  
LP  
XT  
32 kHz  
15 pF  
15 pF  
100 kHz  
200 kHz  
455 kHz  
1 MHz  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
15 pF  
200-300 pF  
100-200 pF  
15-100 pF  
15-30 pF  
15 pF  
FIGURE 7-2: CRYSTAL OPERATION OR  
CERAMIC RESONATOR (HS,  
XT OR LP OSC  
2 MHz  
4 MHz  
15 pF  
15 pF  
CONFIGURATION)  
HS  
4 MHz  
8 MHz  
20 MHz  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
(1)  
C1  
OSC1  
PIC16C5X  
Note 1: For VDD > 4.5V, C1 = C2 30pF is recom-  
mended.  
SLEEP  
XTAL  
(3)  
RF  
These values are for design guidance only. Rs may  
be required in HS mode as well as XT mode to avoid  
overdriving crystals with low drive level specification.  
Since each crystal has its own characteristics, the  
user should consult the crystal manufacturer for  
appropriate values of external components.  
To internal  
logic  
OSC2  
(2)  
RS  
(1)  
C2  
Note 1: See Capacitor Selection tables for  
recommended values of C1 and C2.  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
3: RF varies with the crystal chosen  
(approx. value = 10 M).  
FIGURE 7-3: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
OSC CONFIGURATION)  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16C5X  
Open  
DS30015M-page 28  
1995 Microchip Technology Inc.  
PIC16C5X  
7.2.3  
EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
TABLE 7-3:  
CAPACITOR SELECTION  
FOR CERAMIC RESONATORS  
- PIC16CR54  
Either a prepackaged oscillator or a simple oscillator  
circuit with TTL gates can be used as an external  
crystal oscillator circuit. Prepackaged oscillators  
provide a wide operating range and better stability. A  
well-designed crystal oscillator will provide good  
performance with TTL gates. Two types of crystal  
oscillator circuits can be used: one with parallel  
resonance, or one with series resonance.  
Osc  
Resonator Cap. Range Cap. Range  
Type  
Freq  
C1  
C2  
Data not available at this time.  
TABLE 7-4:  
CAPACITOR SELECTION  
FOR CRYSTAL OSCILLATOR  
- PIC16CR54  
Figure 7-4 shows implementation of  
a
parallel  
resonant oscillator circuit. The circuit is designed to  
use the fundamental frequency of the crystal. The  
74AS04 inverter performs the 180-degree phase shift  
that a parallel oscillator requires. The 4.7 kresistor  
provides the negative feedback for stability. The 10 kΩ  
potentiometers bias the 74AS04 in the linear region.  
Osc  
Resonator Cap.Range Cap. Range  
Type  
Freq  
C1  
C2  
(1)  
LP  
32 kHz  
15-33 pF  
15-33 pF  
15-30 pF  
15-33 pF  
15-33 pF  
15-30 pF  
100 kHz  
200 kHz  
This  
circuit  
could  
be  
used  
for  
external  
oscillator designs.  
XT  
100 kHz  
200 kHz  
1 MHz  
68-100 pF  
15-30 pF  
15-47 pF  
15-47 pF  
15-47 pF  
68-100 pF  
15-30 pF  
15-47 pF  
15-47 pF  
15-47 pF  
FIGURE 7-4: EXTERNAL PARALLEL  
RESONANT CRYSTAL  
2 MHz  
4 MHz  
OSCILLATOR CIRCUIT  
+5V  
HS  
4 MHz  
8 MHz  
20 MHz  
15-47 pF  
15-47 pF  
15-47 pF  
15-47 pF  
15-47 pF  
15-47 pF  
To Other  
Devices  
PIC16C5X  
10k  
74AS04  
4.7k  
Note 1: For VDD < 2.5V, C1 = C2 15-33pF is  
recommended.  
CLKIN  
74AS04  
These values are for design guidance only. Rs may  
be required in HS mode as well as XT mode to avoid  
overdriving crystals with low drive level specification.  
Since each crystal has its own characteristics, the  
user should consult the crystal manufacturer for  
appropriate values of external components.  
10k  
XTAL  
10k  
20 pF  
20 pF  
Figure 7-5 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental  
frequency of the crystal. The inverter performs a  
180-degree phase shift in a series resonant oscillator  
circuit. The 330resistors provide the negative  
feedback to bias the inverters in their linear region.  
FIGURE 7-5: EXTERNAL SERIES  
RESONANT CRYSTAL  
OSCILLATOR CIRCUIT  
To Other  
Devices  
330  
330  
PIC16C5X  
74AS04  
74AS04  
74AS04  
CLKIN  
0.1 µF  
XTAL  
1995 Microchip Technology Inc.  
DS30015M-page 29  
PIC16C5X  
7.2.4  
RC OSCILLATOR  
7.3  
Reset  
For timing insensitive applications, the RC device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the  
resistor (Rext) and capacitor (Cext) values, and the  
operating temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal  
process parameter variation. Furthermore, the  
difference in lead frame capacitance between package  
types will also affect the oscillation frequency,  
especially for low Cext values. The user also needs to  
take into account variation due to tolerance of external  
R and C components used.  
PIC16C5X devices may be reset in one of the  
following ways:  
• Power-On Reset (POR)  
• MCLR reset (normal operation)  
• MCLR wake-up reset (from SLEEP)  
• WDT reset (normal operation)  
• WDT wake-up reset (from SLEEP)  
Table 7-5 shows these reset conditions for the PCL  
and STATUS registers.  
Some registers are not affected in any reset condition.  
Their status is unknown on POR and unchanged in  
any other reset. Most other registers are reset to a  
“reset state” on Power-On Reset (POR), MCLR or  
WDT reset. A MCLR or WDT wake-up from SLEEP  
also results in a device reset, and not a continuation of  
operation before SLEEP.  
Figure 7-6 shows how the R/C combination is  
connected to the PIC16C5X. For Rext values below  
2.2 k, the oscillator operation may become unstable,  
or stop completely. For very high Rext values  
(e.g., 1 M) the oscillator becomes sensitive to noise,  
humidity and leakage. Thus, we recommend keeping  
Rext between 3 kand 100 k.  
The TO and PD bits (STATUS <4:3>) are set or  
cleared depending on the different reset conditions  
(Section 7.7). These bits may be used to determine  
the nature of the reset.  
Although the oscillator will operate with no external  
capacitor (Cext = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or  
package lead frame capacitance.  
Table 7-6 lists a full description of reset states of all  
registers. Figure 7-7 shows a simplified block diagram  
of the on-chip reset circuit.  
The Electrical Specifications sections show RC  
frequency variation from part to part due to normal  
process variation. The variation is larger for larger R  
(since leakage current variation will affect RC  
frequency more for large R) and for smaller C (since  
variation of input capacitance will affect RC  
frequency more).  
Also, see the Electrical Specifications sections for  
variation of oscillator frequency due to VDD for given  
Rext/Cext values as well as frequency variation due to  
operating temperature for given R, C, and VDD values.  
The oscillator frequency, divided by four, is available  
on the OSC2/CLKOUT pin, and can be used for test  
purposes or to synchronize other logic.  
FIGURE 7-6: RC OSCILLATOR MODE  
VDD  
Rext  
Internal  
clock  
OSC1  
N
PIC16C5X  
Cext  
VSS  
Fosc/4  
OSC2/CLKOUT  
DS30015M-page 30  
1995 Microchip Technology Inc.  
PIC16C5X  
TABLE 7-5:  
RESET CONDITIONS FOR SPECIAL REGISTERS  
PCL  
Addr: 02h  
STATUS  
Addr: 03h  
Condition  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
0001 1xxx  
Power-On Reset  
(1)  
000u uuuu  
MCLR reset (normal operation)  
MCLR wake-up (from SLEEP)  
WDT reset (normal operation)  
WDT wake-up (from SLEEP)  
0001 0uuu  
(2)  
0000 1uuu  
0000 0uuu  
Legend: u= unchanged, x= unknown, -= unimplemented read as '0'.  
Note 1: TO and PD bits retain their last value until one of the other reset conditions occur.  
2: The CLRWDTinstruction will set the TO and PD bits.  
TABLE 7-6:  
RESET CONDITIONS FOR ALL REGISTERS  
Register  
W
Address  
N/A  
Power-On Reset  
xxxx xxxx  
1111 1111  
--11 1111  
xxxx xxxx  
xxxx xxxx  
1111 1111  
MCLR or WDT Reset  
uuuu uuuu  
1111 1111  
TRIS  
N/A  
--11 1111  
OPTION  
INDF  
N/A  
uuuu uuuu  
00h  
uuuu uuuu  
TMR0  
PCL(1)  
01h  
1111 1111  
02h  
STATUS(1)  
0001 1xxx  
000q quuu  
03h  
1xxx xxxx  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
1uuu uuuu  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
FSR  
04h  
05h  
06h  
07h  
PORTA  
PORTB  
PORTC(2)  
xxxx xxxx  
uuuu uuuu  
General Purpose  
register files  
08-7Fh  
Legend: u= unchanged, x= unknown, -= unimplemented, read as '0',  
q= see tables in Section 7.7 for possible values.  
Note 1: See Table 7-5 for reset value for specific conditions.  
2: General purpose register file on the PIC16C54/CR54/C56.  
FIGURE 7-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
Power-Up  
Detect  
POR (Power-On Reset)  
VDD  
MCLR/VPP pin  
WDT Time-out  
8-bit Asynch  
RESET  
S
R
Q
Q
On-Chip  
RC OSC  
Ripple Counter  
(Start-Up Timer)  
CHIP RESET  
1995 Microchip Technology Inc.  
DS30015M-page 31  
PIC16C5X  
7.4  
Power-On Reset (POR)  
FIGURE 7-8: ELECTRICAL STRUCTURE OF  
MCLR/VPP PIN  
The PIC16C5X family incorporates on-chip Power-On  
Reset (POR) circuitry which provides an internal chip  
reset for most power-up situations. To use this feature,  
the user merely ties the MCLR/VPP pin (Figure 7-8) to  
VDD. A simplified block diagram of the on-chip  
Power-On Reset circuit is shown in Figure 7-7.  
RIN  
(1)  
MCLR  
pin  
Schmitt Trigger  
Input Buffer  
N
(1)  
The Power-On Reset circuit and the Device Reset  
Timer (Section 7.5) circuit are closely related. On  
power-up, the reset latch is set and the DRT is reset.  
The DRT timer begins counting once it detects MCLR  
to be high. After the time-out period, which is typically  
18 ms, it will reset the reset latch and thus end the  
on-chip reset signal.  
VSS  
VSS  
Note 1: ESD protection circuits  
FIGURE 7-9: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
A power-up example where MCLR is not tied to VDD is  
shown in Figure 7-10. VDD is allowed to rise and  
stabilize before bringing MCLR high. The chip will  
actually come out of reset TDRT msec after MCLR  
goes high.  
VDD  
VDD  
In Figure 7-11, the on-chip Power-On Reset feature is  
being used (MCLR and VDD are tied together). The  
VDD is stable before the start-up timer times out and  
there is no problem in getting a proper reset. However,  
Figure 7-12 depicts a problem situation where VDD  
rises too slowly. The time between when the DRT  
senses a high on the MCLR/VPP pin, and when the  
MCLR/VPP pin (and VDD) actually reach their full  
value, is too long. In this situation, when the start-up  
timer times out, VDD has not reached the VDD (min)  
value and the chip is, therefore, not guaranteed to  
function correctly.  
D
R
R1  
MCLR  
PIC16C5X  
C
• External Power-On Reset circuit is required  
only if VDD power-up is too slow. The diode D  
helps discharge the capacitor quickly when  
VDD powers down.  
• R < 40 kis recommended to make sure that  
voltage drop across R does not exceed 0.2V  
(max leakage current spec on MCLR/VPP pin  
is 5 µA). A larger voltage drop will degrade  
VIH level on MCLR/VPP pin.  
On-chip POR is guaranteed to work if the rate of rise  
of VDD is no slower than 0.05V/ms and VDD starts from  
0V. If the on-chip POR time delay is too short for low  
frequency crystals/resonators (which require much  
longer than 18 ms to start-up and stabilize) or for high  
frequency crystals/resonators (which have to reach a  
higher VDD voltage for operation), we recommend that  
external RC circuits be used to achieve longer POR  
delay times (Figure 7-9).  
• R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor C  
in the event of MCLR pin breakdown due to  
ESD or EOS.  
DS30015M-page 32  
1995 Microchip Technology Inc.  
PIC16C5X  
FIGURE 7-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
FIGURE 7-11: TIME-OUT SEQUENCE ON POWER-UP (MCLRTIED TO VDD): FAST VDD RISE TIME  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
FIGURE 7-12: TIME-OUT SEQUENCE ON POWER-UP (MCLRTIED TO VDD): SLOW VDD RISETIME  
V1  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
When VDD rises slowly, the TDRT time-out expires long before VDD has reached its final value. In  
this example, the chip will reset properly if, and only if, V1 VDD min.  
1995 Microchip Technology Inc.  
DS30015M-page 33  
PIC16C5X  
7.5  
Device Reset Timer (DRT)  
7.6  
Watchdog Timer (WDT)  
The Device Reset Timer (DRT) provides a fixed 18 ms  
nominal time-out on reset. The DRT operates on an  
internal RC oscillator. The processor is kept in RESET  
as long as the DRT is active. The DRT delay allows  
VDD to rise above VDD min., and for the oscillator to  
stabilize.  
The Watchdog Timer (WDT) is a free running on-chip  
RC oscillator which does not require any external  
components. This RC oscillator is separate from the  
RC oscillator of the OSC1/CLKIN pin. That means that  
the WDT will run even if the clock on the OSC1/CLKIN  
and OSC2/CLKOUT pins have been stopped, for  
example, by execution of a SLEEPinstruction. During  
normal operation or SLEEP, a WDT reset or wake-up  
reset generates a device RESET.  
Oscillator circuits based on crystals or ceramic  
resonators require a certain time after power-up to  
establish a stable oscillation. The on-chip DRT keeps  
the device in a RESET for approximately 18 ms after  
the voltage on the MCLR/VPP pin has reached a logic  
high (VIHMC) level. Thus, external RC networks  
connected to the MCLR input are not required in most  
cases, allowing for savings in cost-sensitive and/or  
space restricted applications.  
The TO bit (STATUS<4>) will be cleared upon a  
Watchdog Timer reset.  
The WDT can be permanently disabled by  
programming the configuration bit WDTE as a '0'  
(Section 7.1).  
7.6.1  
WDT PERIOD  
The Device Reset time delay will vary from chip to chip  
due to VDD, temperature, and process variation. See  
AC parameters for details.  
The WDT has a nominal time-out period of 18 ms,  
(with no prescaler). If a longer time-out period is  
desired, a prescaler with a division ratio of up to 1:128  
can be assigned to the WDT (under software control)  
by writing to the OPTION register. Thus, time-out a  
period of a nominal 2.3 seconds can be realized.  
These periods vary with temperature, VDD and  
part-to-part process variations (see DC specs).  
The DRT will also be triggered upon a Watchdog  
Timer time-out. This is particularly important for  
applications using the WDT to wake the PIC16C5X  
from SLEEP mode automatically.  
Under worst case conditions (VDD = Min., Temperature  
= Max., max. WDT prescaler), it may take several  
seconds before a WDT time-out occurs.  
7.6.2  
WDT PROGRAMMING CONSIDERATIONS  
The CLRWDT instruction clears the WDT and the  
postscaler, if assigned to the WDT, and prevents it  
from timing out and generating a device RESET.  
The SLEEP instruction resets the WDT and the  
postscaler, if assigned to the WDT. This gives the  
maximum SLEEP time before a WDT wake-up reset.  
DS30015M-page 34  
1995 Microchip Technology Inc.  
PIC16C5X  
FIGURE 7-13: WATCHDOG TIMER BLOCK DIAGRAM  
From Timer0 Clock Source  
(Figure 6-6)  
0
M
Postscaler  
1
Watchdog  
Timer  
U
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT Enable  
EPROM Bit  
To Timer0 (Figure 6-6)  
1
0
PSA  
MUX  
Note: T0CS, T0SE, PSA, PS2:PS0  
are bits in the OPTION register.  
WDT  
Time-out  
TABLE 7-7:  
SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(2)  
FFFh  
N/A  
Config. Word  
OPTION  
CP  
WDTE FOSC1 FOSC0 ---- uuuu ---- uuuu  
PS2 PS1 PS0 --11 1111 --11 1111  
T0CS  
T0SE  
PSA  
Legend: Shaded boxes = Not used by Watchdog Timer,  
= unimplemented, read as '0', u= unchanged  
Note 1: Refer to the PIC16C5X Programming Specifications (literature number DS30190) to determine how to access the configu-  
ration word.  
2: Only the first 8 bits of the Configuration Word are shown. Reset values (for POR, MCLR and WDT) for bits 12:8 are unim-  
plemented, read as ’0’. Initial values of bits 3:0 = 1111.  
1995 Microchip Technology Inc.  
DS30015M-page 35  
PIC16C5X  
7.7  
Time-Out Sequence and Power Down  
Status Bits (TO/PD)  
7.8  
Reset on Brown-Out  
A brown-out is a condition where device power (VDD)  
dips below its minimum value, but not to zero, and  
then recovers. The device should be reset in the event  
of a brown-out.  
The TO and PD bits in the STATUS register can be  
tested to determine if a RESET condition has been  
caused by  
a power-up condition, a MCLR or  
Watchdog Timer (WDT) reset, or a MCLR or WDT  
wake-up reset.  
To reset PIC16C5X devices when a brown-out occurs,  
external brown-out protection circuits may be built  
(Figure 7-14 and Figure 7-15).  
TABLE 7-8:  
TO/PD STATUS AFTER  
RESET  
FIGURE 7-14: BROWN-OUT PROTECTION  
CIRCUIT 1  
TO  
PD  
RESET was caused by  
Power-up (POR)  
1
u
1
u
VDD  
(1)  
MCLR reset (normal operation)  
VDD  
1
0
0
0
1
0
MCLR wake-up reset (from SLEEP)  
WDT reset (normal operation)  
33k  
WDT wake-up reset (from SLEEP)  
10k  
MCLR  
Legend: u= unchanged  
Note 1: The TO and PD bits maintain their status (u) until  
a reset occurs. A low-pulse on the MCLR input  
does not change the TO and PD status bits.  
40k  
PIC16C5X  
These STATUS bits are only affected by events listed  
in Table 7-9.  
This circuit will activate reset when VDD goes below Vz +  
0.7V (where Vz = Zener voltage).  
TABLE 7-9:  
EVENTS AFFECTING TO/PD  
STATUS BITS  
Event  
TO PD  
Remarks  
FIGURE 7-15: BROWN-OUT PROTECTION  
CIRCUIT 2  
1
0
1
1
1
u
0
1
Power-up  
WDT Time-out  
No effect on PD  
VDD  
SLEEPinstruction  
CLRWDTinstruction  
Legend: u= unchanged  
A WDT time-out will occur regardless of the status of the TO  
bit. A SLEEPinstruction will be executed, regardless of the  
status of the PD bit. Table 7-8 reflects the status of TO and  
PD after the corresponding event.  
VDD  
R1  
Q1  
MCLR  
R2  
40k  
PIC16C5X  
Table 7-5 lists the reset conditions for the special  
function registers, while Table 7-6 lists the reset  
conditions for all the registers.  
This brown-out circuit is less expensive, although  
less accurate. Transistor Q1 turns off when VDD  
is below a certain level such that:  
R1  
= 0.7V  
VDD •  
R1 + R2  
DS30015M-page 36  
1995 Microchip Technology Inc.  
PIC16C5X  
7.9  
Power-Down Mode (SLEEP)  
7.10  
Code Protection  
A device may be powered down (SLEEP) and later  
powered up (Wake-up from SLEEP).  
The program memory can be code protected by  
selecting the code protect option when programming  
the device.  
7.9.1  
SLEEP  
In a code protected mode, the configuration word will  
not be protected, allowing reading of all bits.  
The Power-Down mode is entered by executing a  
SLEEPinstruction.  
For EPROM devices, program memory locations 40h  
and above cannot be further programmed. However,  
the first 64 locations, 00h-3Fh, may be programmed.  
These locations are not considered "secure".  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the TO bit (STATUS<4>) is set, the PD  
bit (STATUS<3>) is cleared and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, driving low, or hi-impedance).  
7.11  
ID Locations  
Four memory locations are designated as ID locations  
where the user can store checksum or other  
code-identification numbers. These locations are not  
accessible during normal execution but are readable  
and writable during program/verify.  
It should be noted that a RESET generated by a WDT  
time-out does not drive the MCLR/VPP pin low.  
For lowest current consumption while powered down,  
the T0CKI input should be at VDD or VSS and the  
MCLR/VPP pin must be at a logic high level (VIHMC).  
Use only the lower four bits of the ID locations and  
always program the upper eight bits as '1's.  
7.9.2  
WAKE-UP FROM SLEEP  
Note: Microchip will assign a unique pattern  
number for QTP and SQTP requests and  
for ROM devices. This pattern number will  
be unique and traceable to the  
submitted code.  
The device can wake-up from SLEEP through one of  
the following events:  
1. An external reset input on MCLR/VPP pin.  
2. A Watchdog Timer time-out reset (if WDT was  
enabled).  
Both of these events cause a device reset. The TO  
and PD bits can be used to determine the cause of  
device reset. The TO bit is cleared if a WDT time-out  
occurred (and caused wake-up). The PD bit, which is  
set on power-up, is cleared when SLEEPis invoked.  
The WDT is cleared when the device wakes from  
sleep, regardless of the wake-up source.  
1995 Microchip Technology Inc.  
DS30015M-page 37  
PIC16C5X  
NOTES:  
DS30015M-page 38  
1995 Microchip Technology Inc.  
PIC16C5X  
All instructions are executed within one single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of an  
instruction. In this case, the execution takes two  
instruction cycles. One instruction cycle consists of  
four oscillator periods. Thus, for an oscillator  
frequency of 4 MHz, the normal instruction execution  
time is 1 µs. If a conditional test is true or the program  
counter is changed as a result of an instruction, the  
instruction execution time is 2 µs.  
8.0  
INSTRUCTION SET SUMMARY  
Each PIC16C5X instruction is a 12-bit word divided  
into an OPCODE, which specifies the instruction type,  
and one or more operands which further specify the  
operation of the instruction. The PIC16C5X instruction  
set summary in Table 8-2 groups the instructions into  
byte-oriented, bit-oriented, and literal and control  
operations. Table 8-1 shows the opcode field  
descriptions.  
For byte-oriented instructions, 'f' represents a file  
register designator and 'd' represents a destination  
designator. The file register designator is used to  
specify which one of the 32 file registers is to be used  
by the instruction.  
Figure 8-1 shows the three general formats that the  
instructions can have. All examples in the figure use the  
following format to represent a hexadecimal number:  
0xhhh  
where 'h' signifies a hexadecimal digit.  
The destination designator specifies where the result  
of the operation is to be placed. If 'd' is '0', the result is  
placed in the W register. If 'd' is '1', the result is placed  
in the file register specified in the instruction.  
FIGURE 8-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the number of the  
file in which the bit is located.  
11  
6
5
d
4
0
OPCODE  
f (FILE #)  
d = 0 for destination W  
d = 1 for destination f  
For literal and control operations, 'k' represents an  
8 or 9-bit constant or literal value.  
f = 5-bit file register address  
Bit-oriented file register operations  
11 8 7  
b (BIT #)  
TABLE 8-1:  
OPCODE FIELD  
DESCRIPTIONS  
5
4
0
OPCODE  
f (FILE #)  
Field  
Description  
b = 3-bit bit address  
f = 5-bit file register address  
f
W
b
k
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Literal and control operations (except GOTO)  
11  
Bit address within an 8-bit file register  
Literal field, constant data or label  
8
7
0
OPCODE  
k (literal)  
Don't care location (= 0 or 1)  
k = 8-bit immediate value  
Literal and control operations - GOTOinstruction  
11 0  
The assembler will generate code with x = 0. It is  
the recommended form of use for compatibility  
with all Microchip software tools.  
x
d
9
8
Destination select;  
OPCODE  
k (literal)  
d = 0 (store result in W)  
d = 1 (store result in file register 'f')  
Default is d = 1  
k = 9-bit immediate value  
label Label name  
TOS  
PC  
Top of Stack  
Program Counter  
Watchdog Timer Counter  
Time-Out bit  
WDT  
TO  
PD  
Power-Down bit  
Destination, either the W register or the specified  
register file location  
dest  
Options  
[ ]  
( )  
Contents  
Assigned to  
Register bit field  
In the set of  
< >  
User defined term (font is courier)  
italics  
1995 Microchip Technology Inc.  
DS30015M-page 39  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
TABLE 8-2:  
INSTRUCTION SET SUMMARY  
12-Bit Opcode  
Cycles MSb LSb Affected Notes  
Mnemonic,  
Operands  
Status  
Description  
0001 11df ffff  
C,DC,Z  
1,2,4  
2,4  
4
1
1
1
1
1
1
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
Move W to f  
No Operation  
Rotate left f through Carry  
Rotate right f through Carry  
Subtract W from f  
Swap f  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f,d  
f,d  
f
0001 01df ffff  
0000 011f ffff  
0000 0100 0000  
0010 01df ffff  
0000 11df ffff  
Z
Z
Z
Z
Z
None  
Z
None  
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
2,4  
2,4  
2,4  
2,4  
2,4  
2,4  
1,4  
1(2) 0010 11df ffff  
0010 10df ffff  
1(2) 0011 11df ffff  
1
1
1
1
1
1
1
1
1
1
0001 00df ffff  
0010 00df ffff  
0000 001f ffff  
0000 0000 0000  
0011 01df ffff  
0011 00df ffff  
0000 10df ffff  
0011 10df ffff  
0001 10df ffff  
Z
None  
None  
C
2,4  
2,4  
1,2,4  
2,4  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
C
C,DC,Z  
None  
Z
2,4  
Exclusive OR W with f  
BIT-ORIENTED FILE REGISTER OPERATIONS  
1
1
0100 bbbf ffff  
0101 bbbf ffff  
None  
None  
None  
None  
2,4  
2,4  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
1 (2) 0110 bbbf ffff  
1 (2) 0111 bbbf ffff  
LITERAL AND CONTROL OPERATIONS  
1
2
1
2
1
1
1
2
1
1
1
1110 kkkk kkkk  
1001 kkkk kkkk  
0000 0000 0100  
101k kkkk kkkk  
1101 kkkk kkkk  
1100 kkkk kkkk  
0000 0000 0010  
1000 kkkk kkkk  
0000 0000 0011  
0000 0000 0fff  
1111 kkkk kkkk  
Z
None  
O, PD  
None  
Z
None  
None  
None  
TO, PD  
None  
Z
AND literal with W  
Call subroutine  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
OPTION  
RETLW  
SLEEP  
TRIS  
k
k
k
k
k
k
k
k
f
1
3
T
Clear Watchdog Timer  
Unconditional branch  
Inclusive OR Literal with W  
Move Literal to W  
Load OPTION register  
Return, place Literal in W  
Go into standby mode  
Load TRIS register  
Exclusive OR Literal to W  
XORLW  
k
Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except forGOTO.  
(Section 4.5)  
2: When an I/O register is modified as a function of itself (e.g.MOVF PORTB, 1), the value used will be that value  
present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven  
low by an external device, the data will be written back with a '0'.  
3: The instruction TRIS f, where f = 5, 6, or 7 causes the contents of the W register to be written to the tristate  
latches of PORTA, B or C, respectively. A '1' forces the pin to a hi-impedance state and disables the output buff-  
ers.  
4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared  
(if assigned to TMR0).  
DS30015M-page 40  
1995 Microchip Technology Inc.  
PIC16C5X  
ADDWF  
Syntax:  
Add W and f  
[ label ] ADDWF f,d  
0 f 31  
ANDWF  
Syntax:  
AND W with f  
[ label ] ANDWF f,d  
Operands:  
Operands:  
0 f 31  
d
[0,1]  
d
[0,1]  
Operation:  
(W) + (f) (dest)  
Operation:  
(W) .AND. (f) (dest)  
Status Affected: C, DC, Z  
Status Affected:  
Encoding:  
Z
0001  
11df  
ffff  
0001  
01df  
ffff  
Encoding:  
Add the contents of the W register and  
register 'f'. If 'd' is 0 the result is stored  
in the W register. If 'd' is '1' the result is  
stored back in register 'f'.  
The contents of the W register are  
AND’ed with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
'1' the result is stored back in register 'f'.  
Description:  
Description:  
Words:  
1
Words:  
1
1
Cycles:  
Example:  
1
Cycles:  
Example:  
ADDWF FSR, 0  
ANDWF FSR,  
1
Before Instruction  
Before Instruction  
W
=
0x17  
W
=
0x17  
FSR = 0xC2  
FSR = 0xC2  
After Instruction  
After Instruction  
W
=
0xD9  
W
=
0x17  
FSR = 0xC2  
FSR = 0x02  
ANDLW  
And literal with W  
BCF  
Bit Clear f  
Syntax:  
[ label ] ANDLW  
k
Syntax:  
Operands:  
[ label ] BCF f,b  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
0 f 31  
0 b 7  
(W).AND. (k) (W)  
Operation:  
0 (f<b>)  
Z
Status Affected: None  
1110  
kkkk  
kkkk  
0100  
bbbf  
ffff  
Encoding:  
Description:  
Words:  
The contents of the W register are  
AND’ed with the eight-bit literal 'k'. The  
result is placed in the W register.  
Bit 'b' in register 'f' is cleared.  
1
1
Words:  
1
Cycles:  
Cycles:  
Example:  
1
BCF  
FLAG_REG,  
7
Example:  
ANDLW 0x5F  
Before Instruction  
Before Instruction  
FLAG_REG = 0xC7  
W
=
0xA3  
After Instruction  
After Instruction  
FLAG_REG = 0x47  
W
=
0x03  
1995 Microchip Technology Inc.  
DS30015M-page 41  
PIC16C5X  
BSF  
Bit Set f  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
Operands:  
[ label ] BSF f,b  
Syntax:  
[ label ] BTFSS f,b  
0 f 31  
0 b 7  
Operands:  
0 f 31  
0 b < 7  
Operation:  
1 (f<b>)  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
Status Affected: None  
0101  
bbbf  
ffff  
0111  
bbbf  
ffff  
Encoding:  
Description:  
Words:  
Encoding:  
Bit 'b' in register 'f' is set.  
If bit 'b' in register 'f' is '1' then the next  
instruction is skipped.  
Description:  
1
1
If bit 'b' is '1', then the next instruction  
fetched during the current instruction  
execution, is discarded and an NOP is  
executed instead, making this a 2 cycle  
instruction.  
Cycles:  
BSF  
FLAG_REG,  
7
Example:  
Before Instruction  
FLAG_REG = 0x0A  
Words:  
1
After Instruction  
Cycles:  
Example:  
1(2)  
FLAG_REG = 0x8A  
HERE  
FALSE GOTO  
TRUE  
BTFSS FLAG,1  
PROCESS_CODE  
BTFSC  
Bit Test f, Skip if Clear  
Syntax:  
[ label ] BTFSC f,b  
Operands:  
0 f 31  
0 b 7  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If FLAG<1>  
PC  
Operation:  
skip if (f<b>) = 0  
=
=
=
=
0,  
Status Affected: None  
address (FALSE);  
1,  
address (TRUE)  
bbbf  
ffff  
if FLAG<1>  
PC  
Encoding:  
0110  
If bit 'b' in register 'f' is 0 then the next  
instruction is skipped.  
Description:  
If bit 'b' is 0 then the next instruction  
fetched during the current instruction  
execution is discarded, and an NOP is  
executed instead, making this a 2 cycle  
instruction.  
Words:  
1
Cycles:  
Example:  
1(2)  
HERE  
FALSE GOTO  
TRUE  
BTFSC  
FLAG,1  
PROCESS_CODE  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
if FLAG<1>  
PC  
=
=
=
=
0,  
address (TRUE);  
1,  
address(FALSE)  
if FLAG<1>  
PC  
DS30015M-page 42  
1995 Microchip Technology Inc.  
PIC16C5X  
CALL  
Subroutine Call  
[ label ] CALL k  
0 k 255  
CLRW  
Clear W  
Syntax:  
Syntax:  
[ label ] CLRW  
None  
Operands:  
Operation:  
Operands:  
Operation:  
(PC) + 1Top of Stack;  
k PC<7:0>;  
00h (W);  
1 Z  
(STATUS<6:5>) PC<10:9>;  
0 PC<8>  
Status Affected:  
Encoding:  
Z
0000  
0100  
0000  
Status Affected: None  
The W register is cleared. Zero bit (Z)  
is set.  
Description:  
1001  
kkkk  
kkkk  
Encoding:  
Subroutine call. First, return address  
(PC+1) is pushed onto the stack. The  
eight bit immediate address is loaded  
into PC bits <7:0>. The upper bits  
PC<10:9> are loaded from STA-  
TUS<6:5>, PC<8> is cleared. CALLis  
a two cycle instruction.  
Description:  
Words:  
1
Cycles:  
Example:  
1
CLRW  
Before Instruction  
W
=
0x5A  
After Instruction  
Words:  
1
2
W
=
0x00  
Cycles:  
Example:  
Z
=
1
HERE  
CALL  
THERE  
Before Instruction  
CLRWDT  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
PC  
=
address (HERE)  
Syntax:  
After Instruction  
PC  
=
address (THERE)  
Operands:  
Operation:  
TOS =  
address (HERE + 1)  
00h WDT;  
0 WDT prescaler (if assigned);  
1 TO;  
1 PD  
CLRF  
Clear f  
Syntax:  
[ label ] CLRF  
f
Status Affected: TO, PD  
Operands:  
Operation:  
0 f 31  
0000  
0000  
0100  
Encoding:  
00h (f);  
1 Z  
The CLRWDTinstruction resets the  
WDT. It also resets the prescaler, if the  
prescaler is assigned to the WDT and  
not Timer0. Status bits TO and PD are  
set.  
Description:  
Status Affected:  
Encoding:  
Z
0000  
011f  
ffff  
The contents of register 'f' are cleared  
and the Z bit is set.  
Description:  
Words:  
1
Cycles:  
Example:  
1
Words:  
1
1
CLRWDT  
Cycles:  
Example:  
Before Instruction  
CLRF  
FLAG_REG  
WDT counter  
=
=
?
Before Instruction  
FLAG_REG  
After Instruction  
WDT counter  
=
0x5A  
0x00  
After Instruction  
WDT prescale =  
0
1
1
FLAG_REG  
Z
=
=
0x00  
1
TO  
PD  
=
=
1995 Microchip Technology Inc.  
DS30015M-page 43  
PIC16C5X  
COMF  
Complement f  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 31  
Syntax:  
Operands:  
[ label ] COMF f,d  
0 f 31  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(f) (dest)  
Operation:  
(f) – 1 d; skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected: None  
0010  
01df  
ffff  
0010  
11df  
ffff  
Encoding:  
The contents of register 'f' are comple-  
mented. If 'd' is 0 the result is stored in  
the W register. If 'd' is 1 the result is  
stored back in register 'f'.  
The contents of register 'f' are decre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Description:  
If the result is 0, the next instruction,  
which is already fetched, is discarded  
and an NOP is executed instead mak-  
ing it a two cycle instruction.  
Words:  
1
1
Cycles:  
Example:  
COMF  
REG1,0  
Words:  
1
Before Instruction  
REG1  
=
0x13  
0x13  
Cycles:  
Example:  
1(2)  
After Instruction  
HERE  
DECFSZ  
GOTO  
CONTINUE •  
CNT, 1  
LOOP  
REG1  
=
W
=
0xEC  
DECF  
Decrement f  
[ label ] DECF f,d  
0 f 31  
Before Instruction  
PC  
=
address (HERE)  
Syntax:  
After Instruction  
Operands:  
CNT  
if CNT  
PC  
if CNT  
PC  
=
=
=
=
CNT - 1;  
0,  
address (CONTINUE);  
0,  
d
[0,1]  
Operation:  
(f) – 1 (dest)  
Status Affected:  
Encoding:  
Z
address (HERE+1)  
0000  
11df  
ffff  
Decrement register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 511  
Syntax:  
Words:  
1
1
Operands:  
Operation:  
Cycles:  
Example:  
k PC<8:0>;  
STATUS<6:5> PC<10:9>  
DECF  
CNT,  
1
Before Instruction  
Status Affected: None  
CNT  
=
0x01  
0
101k  
kkkk  
kkkk  
Encoding:  
Z
=
GOTOis an unconditional branch. The  
9-bit immediate value is loaded into PC  
bits <8:0>. The upper bits of PC are  
loaded from STATUS<6:5>. GOTOis a  
two cycle instruction.  
Description:  
After Instruction  
CNT  
=
0x00  
1
Z
=
Words:  
1
Cycles:  
Example:  
2
GOTO THERE  
After Instruction  
PC  
=
address (THERE)  
DS30015M-page 44  
1995 Microchip Technology Inc.  
PIC16C5X  
INCF  
Increment f  
IORLW  
Inclusive OR literal with W  
Syntax:  
Operands:  
[ label ] INCF f,d  
Syntax:  
[ label ] IORLW k  
0 k 255  
0 f 31  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
(W) .OR. (k) (W)  
Z
Operation:  
(f) + 1 (dest)  
Status Affected:  
Encoding:  
Z
1101  
kkkk  
kkkk  
0010  
10df  
ffff  
The contents of the W register are  
OR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Words:  
1
Cycles:  
Example:  
1
Words:  
1
1
IORLW 0x35  
Cycles:  
Example:  
Before Instruction  
INCF  
CNT,  
1
W
=
0x9A  
Before Instruction  
After Instruction  
CNT  
=
0xFF  
0
W
=
0xBF  
Z
=
Z
=
0
After Instruction  
CNT  
Z
=
=
0x00  
1
IORWF  
Inclusive OR W with f  
[ label ] IORWF f,d  
0 f 31  
Syntax:  
Operands:  
INCFSZ  
Increment f, Skip if 0  
[ label ] INCFSZ f,d  
0 f 31  
d
[0,1]  
Syntax:  
Operation:  
(W).OR. (f) (dest)  
Operands:  
Status Affected:  
Encoding:  
Z
d
[0,1]  
0001  
00df  
ffff  
Operation:  
(f) + 1 (dest), skip if result = 0  
Inclusive OR the W register with regis-  
ter 'f'. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Status Affected: None  
0011  
11df  
ffff  
Encoding:  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Words:  
1
1
Cycles:  
Example:  
If the result is 0, then the next instruc-  
tion, which is already fetched, is dis-  
carded and an NOP is executed  
instead making it a two cycle instruc-  
tion.  
IORWF  
RESULT, 0  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
After Instruction  
RESULT =  
Words:  
1
0x13  
0x93  
0
Cycles:  
Example:  
1(2)  
W
Z
=
=
HERE  
INCFSZ  
GOTO  
CNT,  
LOOP  
1
CONTINUE •  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
CNT  
if CNT  
PC  
if CNT  
PC  
=
=
=
=
CNT + 1;  
0,  
address (CONTINUE);  
0,  
address (HERE +1)  
1995 Microchip Technology Inc.  
DS30015M-page 45  
PIC16C5X  
MOVF  
Move f  
MOVWF  
Syntax:  
Move W to f  
[ label ] MOVWF  
0 f 31  
Syntax:  
Operands:  
[ label ] MOVF f,d  
f
0 f 31  
Operands:  
Operation:  
d
[0,1]  
(W) (f)  
Operation:  
(f) (dest)  
Status Affected: None  
Status Affected:  
Encoding:  
Z
0000  
001f  
ffff  
Encoding:  
0010  
00df  
ffff  
Move data from the W register to regis-  
ter 'f'.  
Description:  
The contents of register 'f' is moved to  
destination 'd'. If 'd' is 0, destination is  
the W register. If 'd' is 1, the destination  
is file register 'f'. 'd' is 1 is useful to test  
a file register since status flag Z is  
affected.  
Description:  
Words:  
1
Cycles:  
Example:  
1
MOVWF TEMP_REG  
Before Instruction  
Words:  
1
1
TEMP_REG  
W
=
=
0xFF  
0x4F  
Cycles:  
Example:  
MOVF  
FSR,  
0
After Instruction  
TEMP_REG  
W
=
=
0x4F  
0x4F  
After Instruction  
W
=
value in FSR register  
NOP  
No Operation  
[ label ] NOP  
None  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
No operation  
k (W)  
Status Affected: None  
0000  
0000  
0000  
Status Affected: None  
Encoding:  
Description:  
Words:  
1100  
kkkk  
kkkk  
Encoding:  
No operation.  
The eight bit literal 'k' is loaded into the  
W register. The don’t cares will assem-  
ble as 0s.  
Description:  
1
Cycles:  
1
NOP  
Example:  
Words:  
1
Cycles:  
Example:  
1
MOVLW 0x5A  
After Instruction  
W
=
0x5A  
DS30015M-page 46  
1995 Microchip Technology Inc.  
PIC16C5X  
OPTION  
Syntax:  
Load OPTION Register  
[ label ] OPTION  
None  
RLF  
Rotate Left f through Carry  
Syntax:  
Operands:  
[ label ] RLF f,d  
Operands:  
Operation:  
0 f 31  
d
[0,1]  
(W) OPTION  
Status Affected: None  
Operation:  
See description below  
C
0000  
0000  
0010  
Encoding:  
Status Affected:  
Encoding:  
The content of the W register is loaded  
into the OPTION register.  
Description:  
0011  
01df  
ffff  
The contents of register 'f' are rotated  
one bit to the left through the Carry  
Flag. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is stored  
back in register 'f'.  
Description:  
Words:  
Cycles:  
Example  
1
1
OPTION  
Before Instruction  
register 'f'  
C
W
=
0x07  
0x07  
After Instruction  
OPTION =  
Words:  
1
Cycles:  
Example:  
1
RLF  
REG1,0  
RETLW  
Return with Literal in W  
[ label ] RETLW k  
0 k 255  
Before Instruction  
Syntax:  
REG1  
C
=
=
1110 0110  
0
Operands:  
Operation:  
After Instruction  
k (W);  
TOS PC  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
Status Affected: None  
1000  
kkkk  
kkkk  
Encoding:  
The W register is loaded with the eight  
bit literal 'k'. The program counter is  
loaded from the top of the stack (the  
return address). This is a two cycle  
instruction.  
Description:  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 31  
Syntax:  
Operands:  
d
[0,1]  
Words:  
1
2
Operation:  
See description below  
C
Cycles:  
Example:  
Status Affected:  
Encoding:  
CALL TABLE ;W contains  
;table offset  
;value.  
0011  
00df  
ffff  
The contents of register 'f' are rotated  
one bit to the right through the Carry  
Flag. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is placed  
back in register 'f'.  
Description:  
;W now has table  
;value.  
TABLE  
ADDWF PC  
RETLW k1  
RETLW k2  
;W = offset  
;Begin table  
;
register 'f'  
C
Words:  
1
Cycles:  
Example:  
1
RETLW kn  
; End of table  
RRF  
REG1,0  
Before Instruction  
W
=
0x07  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
W
=
value of k8  
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
1995 Microchip Technology Inc.  
DS30015M-page 47  
PIC16C5X  
SLEEP  
Enter SLEEP Mode  
SUBWF  
Subtract W from f  
Syntax:  
Syntax:  
[label]  
None  
[label] SUBWF f,d  
SLEEP  
Operands:  
0 f 31  
Operands:  
Operation:  
d
[0,1]  
00h WDT;  
0 WDT prescaler;  
1 TO;  
Operation:  
(f) – (W) → (dest)  
Status Affected: C, DC, Z  
0 PD  
0000  
10df  
ffff  
Encoding:  
Status Affected: TO, PD  
Subtract (2’s complement method) the  
W register from register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
0000  
0000  
0011  
Encoding:  
Time-out status bit (TO) is set. The  
power down status bit (PD) is cleared.  
The WDT and its prescaler are  
cleared.  
Description:  
Words:  
1
1
Cycles:  
The processor is put into SLEEP mode  
with the oscillator stopped. See sec-  
tion on SLEEP for more details.  
SUBWF  
REG1, 1  
Example 1:  
Before Instruction  
Words:  
1
REG1  
W
C
=
=
=
3
2
?
Cycles:  
Example:  
1
SLEEP  
After Instruction  
REG1  
W
C
=
=
=
1
2
1
; result is positive  
Example 2:  
Before Instruction  
REG1  
W
C
=
=
=
2
2
?
After Instruction  
REG1  
W
C
=
=
=
0
2
1
; result is zero  
Example 3:  
Before Instruction  
REG1  
W
C
=
=
=
1
2
?
After Instruction  
REG1  
W
C
=
=
=
FF  
2
0
; result is negative  
DS30015M-page 48  
1995 Microchip Technology Inc.  
PIC16C5X  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ] SWAPF f,d  
0 f 31  
XORLW  
Exclusive OR literal with W  
Syntax:  
[label] XORLW k  
0 k 255  
Operands:  
Operands:  
d
[0,1]  
Operation:  
(W) .XOR. k → (W)  
Z
Operation:  
(f<3:0>) (dest<7:4>);  
(f<7:4>) (dest<3:0>)  
Status Affected:  
Encoding:  
1111  
kkkk  
kkkk  
Status Affected: None  
The contents of the W register are  
XOR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
Description:  
0011  
10df  
ffff  
Encoding:  
The upper and lower nibbles of register  
'f' are exchanged. If 'd' is 0 the result is  
placed in W register. If 'd' is 1 the result  
is placed in register 'f'.  
Description:  
Words:  
1
Cycles:  
Example:  
1
Words:  
Cycles:  
Example  
1
1
XORLW 0xAF  
Before Instruction  
W
=
0xB5  
SWAPF  
REG1,  
0
After Instruction  
Before Instruction  
W
=
0x1A  
REG1  
=
0xA5  
After Instruction  
REG1  
W
=
=
0xA5  
0X5A  
XORWF  
Exclusive OR W with f  
[ label ] XORWF f,d  
0 f 31  
Syntax:  
Operands:  
TRIS  
Load TRIS Register  
d
[0,1]  
Syntax:  
[ label ] TRIS  
f = 5, 6 or 7  
f
Operation:  
(W) .XOR. (f) → (dest)  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Z
(W) TRIS register f  
0001  
10df  
ffff  
Status Affected: None  
Exclusive OR the contents of the W  
register with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
0000  
0000  
0fff  
Encoding:  
TRIS register 'f' (f = 5, 6, or 7) is loaded  
with the contents of the W register  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
TRIS  
PORTA  
REG,1  
XORWF  
Before Instruction  
Before Instruction  
W
=
0XA5  
0XA5  
REG  
=
0xAF  
0xB5  
W
=
After Instruction  
TRISA  
=
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
1995 Microchip Technology Inc.  
DS30015M-page 49  
PIC16C5X  
NOTES:  
DS30015M-page 50  
1995 Microchip Technology Inc.  
PIC16C5X  
The PICMASTER Emulator System has been  
designed as a real-time emulation system with  
advanced features that are generally found on more  
expensive development tools. The PC compatible 386  
9.0  
DEVELOPMENT SUPPORT  
9.1  
Development Tools  
The PIC16/17 microcontrollers are supported with a full  
range of hardware and software development tools:  
(and  
better)  
machine  
platform  
and  
the  
Microsoft Windows 3.x environment was chosen to  
best make these features available to you, the  
end user.  
• PICMASTER Real-Time In-Circuit Emulator  
• PRO MATE Universal Programmer  
• PICSTART Low-Cost Prototype Programmer  
• PICDEM-1 Low-Cost Demonstration Board  
• PICDEM-2 Low-Cost Demonstration Board  
• MPASM Assembler  
The PICMASTER Universal Emulator System consists  
primarily of four major components:  
• Host-Interface Card  
• Emulator Control Pod  
Target-Specific Emulator Probe  
• PC-Host Emulation Control Software  
• MPSIM Software Simulator  
• C Compiler (MP-C)  
• Fuzzy logic development system  
(fuzzyTECH MP)  
The Windows operating system allows the developer to  
take full advantage of the many powerful features and  
functions of the PICMASTER system.  
9.2  
PICMASTER High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
PICMASTER emulation can operate in one window,  
while a text editor is running in a second window.  
PC-Host Emulation Control software takes full advan-  
tage of Dynamic Data Exchange (DDE), a feature of  
Windows. DDE allows data to be dynamically trans-  
ferred between two or more Windows programs. With  
this feature, data collected with PICMASTER can be  
automatically transferred to a spreadsheet or database  
program for further analysis.  
The PICMASTER Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for all  
microcontrollers in the PIC16C5X, PIC16CXX and  
PIC17CXX families. PICMASTER is supplied with the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, "make" and download, and  
source debugging from a single environment. A  
PICMASTER System configuration is shown  
in Figure 9-1.  
Under Windows, as many as four PICMASTER emula-  
tors can be run simultaneously from the same PC mak-  
ing development of multi-microcontroller systems  
possible (e.g., a system containing a PIC16CXX  
processor and a PIC17CXX processor).  
Interchangeable target probes allow the system to be  
easily reconfigured for emulation of different proces-  
sors. The universal architecture of the PICMASTER  
allows expansion to support all new PIC16C5X,  
PIC16CXX and PIC17CXX microcontrollers.  
The PICMASTER probes specifications are shown  
in Table 9-1.  
FIGURE 9-1: PICMASTER SYSTEM CONFIGURATION  
In-Line  
5 VDC  
Power Supply  
(Optional)  
90 - 250 VAC  
Windows 3.x  
Power Switch  
Interchangeable  
Emulator Probe  
Power Connector  
PC Bus  
PC-Interface  
PICMASTER Emulator Pod  
Common Interface Card  
PC Compatible Computer  
Logic Probes  
1995 Microchip Technology Inc.  
DS30015M-page 51  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
TABLE 9-1:  
PICMASTER PROBE  
SPECIFICATION  
TABLE 9-1:  
PICMASTER PROBE  
SPECIFICATION  
PROBE  
PROBE  
PICMASTER  
PROBE  
PICMASTER  
PROBE  
Devices  
Devices  
Maximum Operating  
Maximum Operating  
Frequency  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
20 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
Voltage  
Frequency  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
10 MHz  
20 MHz  
20 MHz  
20 MHz  
Voltage  
PIC16C54  
PROBE-16D  
PROBE-16D  
PROBE-16D  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
PIC16C65  
PIC16C65A  
PIC16C620  
PIC16C621  
PIC16C622  
PIC16C70  
PIC16C71  
PIC16C71A  
PIC16C72  
PIC16C73  
PIC16C73A  
PIC16C74  
PIC16C74A  
PIC16C83  
PIC16C84  
PIC17C42  
PIC17C43  
PIC17C44  
PROBE-16F  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
4.5V - 5.5V  
(1)  
PIC16C54A  
PIC16CR54  
PIC16CR54A  
PIC16CR54B  
PIC16C55  
PROBE-16F  
PROBE-16H  
PROBE-16H  
PROBE-16H  
(1)  
PROBE-16D  
PROBE-16D  
(1)  
(1)  
PROBE-16D  
PROBE-16B  
PROBE-16B  
(1)  
PIC16CR55  
PIC16C56  
PROBE-16D  
PROBE-16D  
(1)  
PROBE-16B  
PROBE-16F  
(1)  
(1)  
PIC16CR56  
PIC16C57  
PROBE-16D  
PROBE-16D  
PROBE-16D  
PROBE-16F  
(1)  
PIC16CR57A  
PIC16CR57B  
PIC16C58A  
PIC16CR58A  
PIC16CR58B  
PIC16C61  
PROBE-16F  
PROBE-16F  
(1)  
PROBE-16D  
PROBE-16D  
PROBE-16D  
(1)  
PROBE-16F  
PROBE-16C  
PROBE-16C  
PROBE-17B  
PROBE-17B  
PROBE-17B  
(1)  
PROBE-16D  
PROBE-16G  
PROBE-16E  
PIC16C62  
(1)  
PIC16C62A  
PIC16CR62  
PIC16C63  
PROBE-16E  
PROBE-16E  
PROBE-16F  
(1)  
(1)  
Note 1: This PICMASTER probe can be used to  
functionally emulate the device listed in the  
previous column. Contact your Microchip sales  
office for details.  
PIC16C64  
PROBE-16E  
(1)  
PIC16C64A  
PIC16CR64  
PROBE-16E  
PROBE-16E  
(1)  
DS30015M-page 52  
1995 Microchip Technology Inc.  
PIC16C5X  
9.3  
PRO MATE Universal Programmer  
9.5  
PICDEM-1 Low-Cost PIC16/17  
Demonstration Board  
The PRO MATE Universal Programmer is  
a
full-featured programmer capable of operating in  
stand-alone mode as well as PC-hosted mode.  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s  
microcontrollers. The microcontrollers supported are:  
PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61,  
PIC16C62X, PIC16C71, PIC16C8X, PIC17C42,  
PIC17C43 and PIC17C44. All necessary hardware and  
software is included to run basic demo programs. The  
users can program the sample microcontrollers  
The PRO MATE has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for displaying error messages, keys to  
enter commands and a modular detachable socket  
assembly to support various package types. In stand-  
alone mode the PRO MATE can read, verify or program  
PIC16C5X, PIC16CXX and PIC17CXX devices. It can  
also set configuration and code-protect bits in  
this mode.  
provided with the PICDEM-1 board, on  
a
PRO MATE or PICSTART-16B programmer, and  
easily test firmware. The user can also connect the  
PICDEM-1 board to the PICMASTER emulator and  
download the firmware to the emulator for testing.  
Additional prototype area is available for the user to  
build some additional hardware and connect it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, a potentiometer for simulated  
analog input, push-button switches and eight LEDs  
connected to PORTB.  
In PC-hosted mode, the PRO MATE connects to the  
PC via one of the COM (RS-232) ports. PC based  
user-interface software makes using the programmer  
simple and efficient. The user interface is full-screen  
and menu-based. Full screen display and editing of  
data, easy selection of bit configuration and part type,  
easy selection of VDD min, VDD max and VPP levels,  
load and store to and from disk files (Intel hex format)  
are some of the features of the software. Essential  
commands such as read, verify, program and blank  
check can be issued from the screen. Additionally,  
serial programming support is possible where each  
part is programmed with a different serial number,  
sequential or random.  
9.6  
PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C64, PIC16C65, PIC16C73 and  
PIC16C74 microcontrollers. All the necessary  
hardware and software is included to run the basic  
demonstration programs. The user can program  
the sample microcontrollers provided with the  
PICDEM-2 board, on a PRO MATE programmer or  
PICSTART-16C, and easily test firmware. The  
PICMASTER emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding  
additional hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
The PRO MATE has a modular “programming socket  
module”. Different socket modules are required for  
different processor types and/or package types.  
PRO MATE supports all PIC16C5X, PIC16CXX and  
PIC17CXX processors.  
9.4  
PICSTART Low-Cost Development  
System  
a
RS-232 interface, push-button switches,  
a
The PICSTART programmer is an easy to use, very  
low-cost prototype programmer. It connects to the PC  
via one of the COM (RS-232) ports. A PC-based user  
interface software makes using the programmer simple  
and efficient. The user interface is full-screen and  
menu-based. PICSTART is not recommended for  
production programming.  
potentiometer for simulated analog input, a Serial  
EEPROM to demonstrate usage of the I C bus and  
separate headers for connection to an LCD module  
and a keypad.  
2
1995 Microchip Technology Inc.  
DS30015M-page 53  
PIC16C5X  
9.7  
MPLAB Integrated Development  
Environment Software  
9.8  
MPASM Assembler  
The MPASM CrossAssembler is a PC-hosted symbolic  
assembler. It supports all microcontroller series  
including the PIC16C5X, PIC16CXX, and PIC17CXX  
families.  
The MPLAB Software brings an ease of software  
development previously unseen in the 8-bit  
microcontroller market. MPLAB is a windows based  
application which contains:  
MPASM offers full featured Macro capabilities,  
conditional assembly, and several source and listing  
formats. It generates various object code formats to  
support Microchip's development tools as well as third  
party programmers.  
• A full featured editor  
• Three operating modes  
- editor  
- emulator  
- simulator (available soon)  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar with project information  
MPASM allows full symbolic debugging from  
the  
Microchip Universal Emulator System  
(PICMASTER).  
MPASM has the following features to assist in  
developing software for specific use applications.  
• Extensive on-line help  
MPLAB allows you to:  
• Provides translation of Assembler source code to  
object code for all Microchip microcontrollers.  
• edit your source files (either assembly or "C")  
• one touch assemble (or compile) and download to  
PIC16/17 tools (automatically updates all project  
information)  
• debug using:  
- source files  
- absolute listing file  
• transfer data dynamically via DDE (soon to be  
replaced by OLE)  
• Macro assembly capability  
• Produces all the files (Object, Listing, Symbol,  
and special) required for symbolic debug with  
Microchip’s emulator systems.  
• Supports Hex (default), Decimal and Octal  
source and listing formats.  
MPASM provides a rich directive language to support  
programming of the PIC16/17. Directives are helpful in  
making the development of your assemble source  
code shorter and more maintainable.  
• run up to four emulators on the same PC  
The ability to use MPLAB with Microchip’s simulator  
(available soon) allows a consistent platform and the  
ability to easily switch from the low cost simulator to the  
full featured emulator with minimal retraining due to  
development tools.  
Data Directives are those that control the  
allocation of memory and provide a way to refer to  
data items symbolically (i.e., by meaningful  
names).  
Control Directives control the MPASM listing  
display. They allow the specification of titles and  
sub-titles, page ejects and other listing control.  
This eases the readability of the printed  
output file.  
Conditional Directives permit sections of  
conditionally assembled code. This is most useful  
where additional functionality may wished to be  
added depending on the product (less  
functionality for the low end product, then for the  
high end product). Also this is very helpful in the  
debugging of a program.  
Macro Directives control the execution and data  
allocation within macro body definitions. This  
makes very simple the re-use of functions in a  
program as well as between programs.  
DS30015M-page 54  
1995 Microchip Technology Inc.  
PIC16C5X  
9.9  
MPSIM Software Simulator  
9.11  
fuzzyTECH-MP Fuzzy Logic  
Development System  
The MPSIM Software Simulator allows code  
development in a PC host environment. It allows the  
user to simulate the PIC16/17 series microcontrollers  
on an instruction level. On any given instruction, the  
user may examine or modify any of the data areas or  
provide external stimulus to any of the pins. The  
input/output radix can be set by the user and the  
execution can be performed in; single step, execute  
until break, or in a trace mode. MPSIM fully supports  
symbolic debugging using MP-C and MPASM. The  
Software Simulator offers the low cost flexibility to  
develop and debug code outside of the laboratory  
environment making it an excellent multi-project  
software development tool.  
fuzzyTECH-MP fuzzy logic development tool is  
available in two versions - a low cost introductory  
version, MP Explorer, for designers to gain  
comprehensive working knowledge of fuzzy logic  
system design; and full-featured version,  
a
a
fuzzyTECH-MP, edition for implementing more  
complex systems.  
Both versions include Microchip’s fuzzyLAB  
demonstration board for hands-on experience with  
fuzzy logic systems implementation.  
9.12  
Development Systems  
For convenience, the development tools are packaged  
into comprehensive systems as listed in Table 9-2.  
9.10  
MP-C C Compiler  
The MP-C Code Development System is a complete 'C'  
compiler and integrated development environment for  
Microchip’s PIC16/17 family of microcontrollers. The  
compiler provides powerful integration capabilities and  
ease of use not found with other compilers.  
For easier source level debugging, the compiler  
provides symbol information that is compatible with the  
PICMASTER Universal Emulator memory display  
(PICMASTER emulator software versions 1.13  
and later).  
The MP-C Code Development System is supplied  
directly by Byte Craft Limited of Waterloo, Ontario,  
Canada. If you have any questions, please contact  
your regional Microchip FAE or Microchip technical  
support personnel at (602) 786-7627.  
TABLE 9-2:  
Item  
DEVELOPMENT SYSTEM PACKAGES  
Name  
System Description  
1.  
2.  
3.  
PICMASTER System  
PICMASTER In-Circuit Emulator, PRO MATE Programmer, Assembler, Soft-  
ware Simulator, Samples and your choice of Target Probe.  
PICSTART System  
PRO MATE System  
PICSTART Low-Cost Prototype Programmer, Assembler, Software Simulator  
and Samples.  
PRO MATE Universal Programmer, full featured stand-alone or PC-hosted  
programmer, Assembler, Simulator  
1995 Microchip Technology Inc.  
DS30015M-page 55  
PIC16C5X  
NOTES:  
DS30015M-page 56  
1995 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
10.0 ELECTRICAL CHARACTERISTICS - PIC16C54/55/56/57  
Absolute Maximum Ratings†  
Ambient Temperature under bias...........................................................................................................55°C to +125°C  
Storage Temperature .............................................................................................................................65°C to +150°C  
Voltage on VDD with respect to VSS ............................................................................................................... 0V to +7.5V  
(2)  
Voltage on MCLR with respect to VSS ......................................................................................................... 0V to +14V  
Voltage on all other pins with respect to VSS ................................................................................. –0.6V to (VDD + 0.6V)  
(1)  
Total Power Dissipation ....................................................................................................................................800 mW  
Max. Current out of VSS pin ..................................................................................................................................150 mA  
Max. Current into VDD pin .......................................................................................................................................50 mA  
Max. Current into an input pin (T0CKI only) ....................................................................................................................±500 µA  
Input Clamp Current, IIK (VI < 0 or VI > VDD)....................................................................................................................±20 mA  
Output Clamp Current, IOK (V0 < 0 or V0 > VDD).............................................................................................................±20 mA  
Max. Output Current sunk by any I/O pin................................................................................................................25 mA  
Max. Output Current sourced by any I/O pin...........................................................................................................20 mA  
Max. Output Current sourced by a single I/O port (PORTA, B or C).......................................................................40 mA  
Max. Output Current sunk by a single I/O port (PORTA, B or C)............................................................................50 mA  
Note 1: Power Dissipation is calculated as follows: Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,  
a series resistor of 50 to 100 should be used when applying a “low” level to the MCLR pin rather than  
pulling this pin directly to VSS  
NOTICE: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated  
in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1995 Microchip Technology Inc.  
DS30015M-page 57  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
PIC16C54/55/56/57  
TABLE 10-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
(RC, XT & 10) AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16C5X-RC  
PIC16C5X-XT  
PIC16C5X-10  
VDD: 3.0 V to 6.2 V  
IDD: 3.3 mA max. at 5. V  
IPD: 9 µA max. at 3.0 V, WDT dis  
Freq: 4 MHz max.  
RC  
N/A  
N/A  
VDD: 3.0V to 6.25V  
VDD: 3.0V to 6.25V  
IDD: 1.8 mA typ. at 5.5V  
IPD: 0.6 µA typ. at 3.0V WDT dis  
Freq: 4 MHz max.  
IDD: 3.3 mA max. at 5.5V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 4 MHz max.  
XT  
HS  
LP  
N/A  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 9.0 mA typ. at 5.5V  
IPD: 0.6 µA typ. at 3.0V WDT dis  
Freq: 20 MHz max.  
IDD: 10 mA max. at 5.5V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 10 MHz max.  
N/A  
VDD: 2.5V to 6.25V  
VDD: 2.5V to 6.25V  
VDD: 2.5V to 6.25V  
IDD: 15 µA typ. at 3.0V  
IPD: 0.6 µA typ. at 3.0V, WDT dis  
Freq: 40 kHz max.  
IDD: 15 µA typ. at 3.0V  
IPD: 0.6 µA typ. at 3.0V, WDT dis  
Freq: 40 kHz max.  
IDD: 15 µA typ. at 3.0V  
IPD: 0.6 µA typ. at 3.0V, WDT dis  
Freq: 40 kHz max.  
The shaded sections indicate oscillator selections which should work by design, but are not tested. It is recommended  
that the user select the device type from information in unshaded sections.  
TABLE 10-2: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
(HS, LP & JW) AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16C5X-HS  
PIC16C5X-LP  
PIC16C5X/JW  
VDD: 3.0V to 6.25V  
IDD: 3.3 mA max. at 5.5V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 4 MHz max.  
RC  
N/A  
N/A  
VDD: 3.0V to 6.25V  
IDD: 3.3 mA max. at 5.5V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 4 MHz max.  
XT  
HS  
LP  
N/A  
N/A  
N/A  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 20 mA max. at 5.5V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 20 MHz max.  
IDD: 20 mA max. at 5.5V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 20 MHz max.  
VDD: 2.5V to 6.25V  
VDD: 2.5V to 6.25V  
VDD: 2.5V to 6.25V  
IDD: 15 µA typ. at 3.0V  
IPD: 0.6 µA typ. at 3.0V, WDT dis  
Freq: 40 kHz max.  
IDD: 32 µA max. at 32 kHz, 3.0V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 40 kHz max.  
IDD: 32 µA max. at 32 kHz, 3.0V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 40 kHz max.  
The shaded sections indicate oscillator selections which should work by design, but are not tested. It is recommended  
that the user select the device type from information in unshaded sections.  
DS30015M-page 58  
1995 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
10.1  
DC Characteristics: PIC16C5X-RC, XT, 10, HS, LP (Commercial)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C  
(1)  
Characteristic  
Sym Min  
Typ  
Max Units  
Conditions  
Supply Voltage  
PIC16C5X-RC  
PIC16C5X-XT  
PIC16C5X-10  
PIC16C5X-HS  
PIC16C5X-LP  
VDD  
3.0  
3.0  
4.5  
4.5  
2.5  
6.25  
6.25  
5.5  
5.5  
6.25  
V
V
V
V
V
FOSC = DC to 4 MHz  
FOSC = DC to 4 MHz  
FOSC = DC to 10 MHz  
FOSC = DC to 20 MHz  
FOSC = DC to 40 kHz  
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
V
V
Device in SLEEP Mode  
VDD Start Voltage to ensure  
Power-On Reset  
VPOR  
VSS  
See Section 7.4 for details on  
Power-On Reset  
VDD Rise Rate to ensure  
Power-On Reset  
SVDD 0.05*  
IDD  
V/ms See Section 7.4 for details on  
Power-On Reset  
(3)  
Supply Current  
PIC16C5X-RC  
(4)  
1.8  
1.8  
4.8  
4.8  
9.0  
15  
3.3  
3.3  
10  
10  
20  
32  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
FOSC = 32 kHz, VDD = 3.0V,  
WDT disabled  
PIC16C5X-XT  
PIC16C5X-10  
PIC16C5X-HS  
PIC16C5X-LP  
(5)  
Power Down Current  
IPD  
4.0  
0.6  
12  
9
µA  
µA  
VDD = 3.0V, WDT enabled  
VDD = 3.0V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1995 Microchip Technology Inc.  
DS30015M-page 59  
PIC16C5X  
PIC16C54/55/56/57  
10.2  
DC Characteristics: PIC16C5XI-RC, XT, 10, HS, LP (Industrial)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +85°C  
(1)  
Characteristic  
Sym Min  
Typ  
Max Units  
Conditions  
Supply Voltage  
PIC16C5XI-RC  
PIC16C5XI-XT  
PIC16C5XI-10  
PIC16C5XI-HS  
PIC16C5XI-LP  
VDD  
3.0  
3.0  
4.5  
4.5  
2.5  
6.25  
6.25  
5.5  
5.5  
6.25  
V
V
V
V
V
FOSC = DC to 4 MHz  
FOSC = DC to 4 MHz  
FOSC = DC to 10 MHz  
FOSC = DC to 20 MHz  
FOSC = DC to 40 kHz  
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-On Reset  
VPOR  
VSS  
See Section 7.4 for details on  
Power-On Reset  
VDD Rise Rate to ensure  
Power-On Reset  
SVDD 0.05*  
IDD  
V/ms See Section 7.4 for details on  
Power-On Reset  
(3)  
Supply Current  
PIC16C5XI-RC  
(4)  
1.8  
1.8  
4.8  
4.8  
9.0  
19  
3.3  
3.3  
10  
10  
20  
40  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
FOSC = 32 kHz, Vdd = 3.0V,  
WDT disabled  
PIC16C5XI-XT  
PIC16C5XI-10  
PIC16C5XI-HS  
PIC16C5XI-LP  
(5)  
Power Down Current  
IPD  
5.0  
0.6  
14  
12  
µA  
µA  
VDD = 3.0V, WDT enabled  
VDD = 3.0V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30015M-page 60  
1995 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
10.3  
DC Characteristics: PIC16C5XE-RC, XT, 10, HS, LP (Automotive)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C  
(1)  
Characteristic  
Sym Min  
Typ  
Max Units  
Conditions  
Supply Voltage  
PIC16C5XE-RC  
PIC16C5XE-XT  
PIC16C5XE-10  
PIC16C5XE-HS  
PIC16C5XE-LP  
VDD  
3.25  
3.25  
4.5  
6.0  
6.0  
5.5  
5.5  
6.0  
V
V
V
V
V
FOSC = DC to 4 MHz  
FOSC = DC to 4 MHz  
FOSC = DC to 10 MHz  
FOSC = DC to 16 MHz  
FOSC = DC to 40 kHz  
4.5  
2.5  
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-On Reset  
VPOR  
VSS  
See Section 7.4 for details on  
Power-On Reset  
VDD rise rate to ensure  
Power-On Reset  
SVDD 0.05*  
IDD  
V/ms See Section 7.4 for details on  
Power-On Reset  
(3)  
Supply Current  
PIC16C5XE-RC  
(4)  
1.8  
1.8  
4.8  
4.8  
9.0  
25  
3.3  
3.3  
10  
10  
20  
55  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 16 MHz, VDD = 5.5V  
FOSC = 32 kHz, VDD = 3.25V,  
WDT disabled  
PIC16C5XE-XT  
PIC16C5XE-10  
PIC16C5XE-HS  
PIC16C5XE-LP  
(5)  
Power Down Current  
IPD  
5.0  
0.8  
22  
18  
µA  
µA  
VDD = 3.25V, WDT enabled  
VDD = 3.25V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1995 Microchip Technology Inc.  
DS30015M-page 61  
PIC16C5X  
PIC16C54/55/56/57  
10.4  
DC Characteristics: PIC16C5X-RC, XT, 10, HS, LP (Commercial)  
PIC16C5XI-RC, XT, 10, HS, LP (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
All Pins Except  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Power Supply Pins  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and  
Section 10.3.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
PIC16C5X-RC only  
PIC16C5X-XT, 10, HS, LP  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
(5)  
4.0V < VDD 5.5V  
VDD > 5.5V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
(4)  
PIC16C5X-RC only  
PIC16C5X-XT, 10, HS, LP  
Hysteresis of Schmitt  
Trigger inputs  
VHYS  
IIL  
0.15VDD*  
V
(2,3)  
Input Leakage Current  
For VDD 5.5V  
I/O ports  
–1  
–5  
0.5  
+1  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
VPIN = VSS + 0.25V  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
PIC16C5X-XT, 10, HS, LP  
MCLR  
µA  
µA  
µA  
µA  
0.5  
0.5  
0.5  
+5  
+3  
+3  
T0CKI  
OSC1  
–3  
–3  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
VOH  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
PIC16C5X-RC  
Output High Voltage  
(3)  
I/O ports  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = –5.4 mA, VDD = 4.5V  
IOH = –1.0 mA, VDD = 4.5V,  
PIC16C5X-RC  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C5X be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
DS30015M-page 62  
1995 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
10.5  
DC Characteristics: PIC16C5X-RC, XT, 10, HS, LP (Automotive)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and  
Section 10.3.  
DC Characteristics  
All Pins Except  
Power Supply Pins  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
VIL  
Vss  
Vss  
Vss  
Vss  
Vss  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
PIC16C5X-RC only  
PIC16C5X-XT, 10, HS, LP  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
(5)  
4.0V < VDD 5.5V  
VDD > 5.5 V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
(4)  
PIC16C5X-RC only  
PIC16C5X-XT, 10, HS, LP  
Hysteresis of Schmitt  
Trigger inputs  
VHYS  
IIL  
0.15VDD*  
V
(2,3)  
Input Leakage Current  
For VDD 5.5 V  
I/O ports  
–1  
–5  
0.5  
+1  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
VPIN = VSS + 0.25V  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
PIC16C5X-XT, 10, HS, LP  
MCLR  
µA  
µA  
µA  
µA  
0.5  
0.5  
0.5  
+5  
+3  
+3  
T0CKI  
OSC1  
–3  
–3  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
VOH  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
PIC16C5X-RC  
Output High Voltage  
(3)  
I/O ports  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = –5.4 mA, VDD = 4.5V  
IOH = –1.0 mA, VDD = 4.5V,  
PIC16C5X-RC  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C5X be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
1995 Microchip Technology Inc.  
DS30015M-page 63  
PIC16C5X  
PIC16C54/55/56/57  
10.6  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
oscillator  
OSC1  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 10-1: LOAD CONDITIONS - PIC16C54/55/56/57  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
modes when external clock  
is used to drive OSC1  
VSS  
DS30015M-page 64  
1995 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
10.7  
Timing Diagrams and Specifications  
FIGURE 10-2: EXTERNAL CLOCK TIMING - PIC16C54/55/56/57  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 10-3: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial),  
–40°C TA +85°C (industrial),  
–40°C TA +125°C (automotive)  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and Section 10.3  
Parameter  
No.  
(1)  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
(2)  
FOSC  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
MHz RC osc mode  
MHz XT osc mode  
4
10  
20  
16  
40  
4
MHz 10 MHz mode  
MHz HS osc mode (Com/Indust)  
MHz HS osc mode (Automotive)  
kHz LP osc mode  
(2)  
Oscillator Frequency  
MHz RC osc mode  
4
MHz XT osc mode  
10  
20  
16  
40  
MHz 10 MHz mode  
4
MHz HS osc mode (Com/Indust)  
MHz HS osc mode (Automotive)  
kHz LP osc mode  
4
DC  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating  
conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
1995 Microchip Technology Inc.  
DS30015M-page 65  
PIC16C5X  
PIC16C54/55/56/57  
TABLE 10-3: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57 (CON’T)  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial),  
–40°C TA +85°C (industrial),  
–40°C TA +125°C (automotive)  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and Section 10.3  
Parameter  
(1)  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
RC osc mode  
(2)  
1
TOSC  
External CLKIN Period  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
XT osc mode  
10 MHz mode  
HS osc mode (Com/Indust)  
HS osc mode (Automotive)  
LP osc mode  
62.5  
25  
(2)  
Oscillator Period  
250  
250  
100  
50  
RC osc mode  
10,000  
250  
250  
250  
XT osc mode  
10 MHz mode  
HS osc mode (Com/Indust)  
HS osc mode (Automotive)  
LP osc mode  
62.5  
25  
(3)  
2
3
TCY  
Instruction Cycle Time  
4/FOSC  
TosL, TosH Clock in (OSC1) Low or High Time  
50*  
20*  
2*  
XT oscillator  
HS oscillator  
LP oscillator  
XT oscillator  
HS oscillator  
LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating  
conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30015M-page 66  
1995 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 10-3: CLKOUT AND I/O TIMING - PIC16C54/55/56/57  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
13  
12  
16  
18  
14  
19  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.  
TABLE 10-4: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54/55/56/57  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial),  
–40°C TA +85°C (industrial),  
–40°C TA +125°C (automotive)  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and  
Section 10.3  
Parameter  
(1)  
No.  
Sym  
Characteristic  
(2)  
Min  
Typ  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
OSC1to CLKOUT↓  
15  
15  
5
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
OSC1to CLKOUT↑  
(2)  
CLKOUT rise time  
(2)  
TckF  
CLKOUT fall time  
5
(2)  
CLKOUTto Port out valid  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
(2)  
Port in valid before CLKOUT↑  
(2)  
0.25 TCY+30*  
Port in hold after CLKOUT↑  
OSC1(Q1 cycle) to Port out valid  
0*  
(3)  
100*  
OSC1(Q2 cycle) to Port input invalid (I/O in  
TBD  
hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
(3)  
20  
21  
TioR  
TioF  
Port output rise time  
10  
10  
25**  
25**  
ns  
ns  
(3)  
Port output fall time  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 10-1 for loading conditions.  
1995 Microchip Technology Inc.  
DS30015M-page 67  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 10-4: RESET, WATCHDOG TIMER, AND  
DEVICE RESET TIMER TIMING - PIC16C54/55/56/57  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 10-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54/55/56/57  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial),  
–40°C TA +85°C (industrial),  
–40°C TA +125°C (automotive)  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and Section 10.3  
Parameter  
No.  
(1)  
Sym Characteristic  
Min Typ  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
100*  
9*  
ns VDD = 5.0V  
Twdt Watchdog Timer Time-out Period  
(No Prescaler)  
18*  
30*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
9*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
ns  
TioZ I/O Hi-impedance from MCLR Low  
100*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30015M-page 68  
1995 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 10-5: TIMER0 CLOCK TIMINGS - PIC16C54/55/56/57  
T0CKI  
40  
41  
42  
TABLE 10-6: TIMER0 CLOCK REQUIREMENTS - PIC16C54/55/56/57  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C (commercial),  
–40°C TA +85°C (industrial),  
–40°C TA +125°C (automotive)  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and  
Section 10.3  
Parameter  
(1)  
Sym Characteristic  
Min  
Typ  
Max Units Conditions  
No.  
40  
Tt0H T0CKI High Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
1995 Microchip Technology Inc.  
DS30015M-page 69  
PIC16C5X  
PIC16C54/55/56/57  
NOTES:  
DS30015M-page 70  
1995 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
11.0 DC AND AC CHARACTERISTICS - PIC16C54/55/56/57  
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed. In some  
graphs or tables the data presented are outside specified operating range (e.g., outside specified VDD range). This is  
for information only and devices will operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period of  
time. “Typical” represents the mean of the distribution while “max” or “min” represents (mean + 3σ) and (mean – 3σ)  
respectively, where σ is standard deviation.  
FIGURE 11-1: TYPICAL RC OSCILLATOR FREQUENCY vs.TEMPERATURE  
FOSC  
Frequency normalized to +25°C  
FOSC (25°C)  
1.10  
Rext 10 kΩ  
Cext = 100 pF  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
VDD = 5.5 V  
VDD = 3.5 V  
0.92  
0.90  
0.88  
0
10  
20  
25  
30  
40  
50  
60  
70  
T(°C)  
TABLE 11-1: RC OSCILLATOR FREQUENCIES  
Average  
Fosc @ 5 V, 25°C  
Cext  
Rext  
20 pF  
3.3 k  
5 k  
4.973 MHz  
3.82 MHz  
2.22 MHz  
262.15 kHz  
1.63 MHz  
1.19 MHz  
684.64 kHz  
71.56 kHz  
660 kHz  
± 27%  
± 21%  
± 21%  
± 31%  
± 13%  
± 13%  
± 18%  
± 25%  
± 10%  
± 14%  
± 15%  
± 19%  
10 k  
100 k  
3.3 k  
5 k  
100 pF  
300 pF  
10 k  
100 k  
3.3 k  
5.0 k  
10 k  
160 k  
484.1 kHz  
267.63 kHz  
29.44 kHz  
The frequencies are measured on DIP packages.  
The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation  
indicated is ±3 standard deviation from average value for VDD = 5 V.  
1995 Microchip Technology Inc.  
DS30015M-page 71  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 11-2: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD,  
FIGURE 11-3: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD,  
CEXT = 20PF  
CEXT = 100 PF  
5.5  
1.8  
R = 3.3k  
R = 3.3k  
5.0  
1.6  
4.5  
1.4  
R = 5k  
R = 5k  
4.0  
1.2  
1.0  
3.5  
3.0  
0.8  
R = 10k  
R = 10k  
2.5  
0.6  
Measured on DIP Packages, T = 25°C  
2.0  
0.4  
Measured on DIP Packages, T = 25°C  
0.2  
1.5  
R = 100k  
0.0  
1.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
R = 100k  
0.5  
FIGURE 11-4: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD,  
0.0  
CEXT = 300 PF  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
800  
700  
R = 3.3k  
600  
R = 5k  
500  
400  
300  
200  
100  
0
R = 10k  
Measured on DIP Packages, T = 25°C  
R = 100k  
5.5 6.0  
3.0  
3.5  
4.0  
4.5  
5.0  
VDD (Volts)  
DS30015M-page 72  
1995 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 11-5: TYPICAL IPD vs. VDD,  
FIGURE 11-7: TYPICAL IPD vs. VDD,  
WATCHDOG DISABLED  
WATCHDOG ENABLED  
2.5  
2.0  
1.5  
20  
18  
16  
14  
12  
T = 25°C  
T = 25°C  
10  
8
1.0  
0.5  
0.0  
6
4
2
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
VDD (Volts)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
VDD (Volts)  
FIGURE 11-6: MAXIMUM IPD vs. VDD,  
WATCHDOG DISABLED  
FIGURE 11-8: MAXIMUM IPD vs. VDD,  
WATCHDOG ENABLED  
60  
100  
50  
+125˚C  
+85˚C  
10  
40  
–55°C  
+70˚C  
0˚C  
+85°C  
30  
–40˚C  
+125°C  
–40°C  
+70°C  
–55˚C  
1
20  
10  
0
0°C  
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
VDD (Volts)  
VDD (Volts)  
IPD, with WDT enabled, has two components:  
The leakage current which increases with higher temperature  
and the operating current of the WDT logic which increases  
with lower temperature. At –40°C, the latter dominates  
explaining the apparently anomalous behavior.  
1995 Microchip Technology Inc.  
DS30015M-page 73  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 11-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS vs. VDD  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 11-10: VIH, VIL OF MCLR,T0CKI AND OSC1 (IN RC MODE) vs. VDD  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
Note: These input pins have Schmitt Trigger input buffers.  
FIGURE 11-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT  
(IN XT, HS, AND LP MODES) vs. VDD  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
DS30015M-page 74  
1995 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 11-12: TYPICAL IDD vs. FREQUENCY (EXTERNAL CLOCK, 25°C)  
10  
1.0  
0.1  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
0.01  
10k  
100k  
1M  
10M  
100M  
External Clock Frequency (Hz)  
FIGURE 11-13: MAXIMUM IDD vs. FREQUENCY (EXTERNAL CLOCK, –40°C TO +85°C)  
10  
1.0  
7.0  
6.5  
6.0  
0.1  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
0.01  
10k  
100k  
1M  
10M  
100M  
External Clock Frequency (Hz)  
1995 Microchip Technology Inc.  
DS30015M-page 75  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 11-14: MAXIMUM IDD vs. FREQUENCY (EXTERNAL CLOCK –55°C TO +125°C)  
10  
1.0  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
0.1  
2.5  
0.01  
10k  
100k  
1M  
10M  
100M  
External Clock Frequency (Hz)  
FIGURE 11-15: WDT TIMER TIME-OUT  
PERIOD vs. VDD  
FIGURE 11-16: TRANSCONDUCTANCE (gm)  
OF HS OSCILLATOR vs. VDD  
50  
45  
40  
9000  
8000  
Max –40°C  
7000  
6000  
35  
30  
5000  
Max +85°C  
Typ +25°C  
25  
4000  
3000  
Max +70°C  
20  
Typ +25°C  
Min +85°C  
15  
2000  
MIn 0°C  
10  
100  
0
MIn –40°C  
5
2
3
4
5
6
7
2
3
4
5
6
7
VDD (Volts)  
VDD (Volts)  
DS30015M-page 76  
1995 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 11-17: TRANSCONDUCTANCE (gm)  
OF LP OSCILLATOR vs. VDD  
FIGURE 11-19: TRANSCONDUCTANCE (gm)  
OF XT OSCILLATOR vs. VDD  
45  
2500  
40  
Max –40°C  
Max –40°C  
2000  
35  
30  
1500  
25  
Typ +25°C  
Typ +25°C  
20  
1000  
15  
Min +85°C  
500  
10  
Min +85°C  
5
0
0
2
3
4
5
6
7
2
3
4
5
6
7
VDD (Volts)  
VDD (Volts)  
FIGURE 11-18: IOH vs. VOH, VDD = 3 V  
FIGURE 11-20: IOH vs. VOH, VDD = 5 V  
0
0
Min +85°C  
–5  
–10  
Min +85°C  
–10  
–20  
Typ +25°C  
Typ +25°C  
–15  
Max –40°C  
–30  
Max –40°C  
–20  
–40  
–25  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
0.5 1.0 1.5 2.0 2.5 3.0  
VOH (Volts)  
VOH (Volts)  
1995 Microchip Technology Inc.  
DS30015M-page 77  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 11-21: IOL vs. VOL, VDD = 3 V  
FIGURE 11-22: IOL vs. VOL, VDD = 5 V  
90  
80  
70  
45  
Max –40°C  
Max –40°C  
40  
35  
60  
50  
30  
25  
Typ +25°C  
Typ +25°C  
Min +85°C  
40  
20  
Min +85°C  
30  
20  
15  
10  
10  
0
5
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
0.0  
0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
VOL (Volts)  
TABLE 11-2: INPUT CAPACITANCE FOR  
PIC16C54/56  
TABLE 11-3: INPUT CAPACITANCE FOR  
PIC16C55/57  
Typical Capacitance (pF)  
Pin  
Typical Capacitance (pF)  
Pin  
18L PDIP  
18L SOIC  
28L PDIP  
(600 mil)  
28L SOIC  
RA port  
RB port  
5.0  
4.3  
RA port  
RB port  
5.2  
5.6  
5.0  
17.0  
6.6  
4.6  
4.5  
4.8  
4.7  
4.1  
17.0  
3.5  
3.5  
3.5  
5.0  
4.3  
MCLR  
17.0  
4.0  
17.0  
3.5  
RC port  
OSC1  
MCLR  
OSC2/CLKOUT  
T0CKI  
4.3  
3.5  
OSC1  
3.2  
2.8  
OSC2/CLKOUT  
T0CKI  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
DS30015M-page 78  
1995 Microchip Technology Inc.  
PIC16CR54  
PIC16C5X  
12.0 ELECTRICAL CHARACTERISTICS - PIC16CR54  
Absolute Maximum Ratings†  
Ambient Temperature under bias...........................................................................................................55°C to +125°C  
Storage Temperature .............................................................................................................................65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V  
(2)  
Voltage on MCLR with respect to VSS .........................................................................................................0 to +14.0V  
Voltage on all other pins with respect to VSS ................................................................................ –0.6 V to (VDD + 0.6V)  
(1)  
Total Power Dissipation ....................................................................................................................................800 mW  
Max. Current out of VSS pin ..................................................................................................................................150 mA  
Max. Current into VDD pin .......................................................................................................................................50 mA  
Max. Current into an input pin (T0CKI only) ....................................................................................................................±500 µA  
Input Clamp Current, IIK (VI < 0 or VI > VDD)....................................................................................................................±20 mA  
Output Clamp Current, IOK (V0 < 0 or V0 > VDD).............................................................................................................±20 mA  
Max. Output Current sunk by any I/O pin........................................................................................................25 mA  
Max. Output Current sourced by any I/O pin...............................................................................................20 mA  
Max. Output Current sourced by a single I/O port (PORTA or B)......................................................................40 mA  
Max. Output Current sunk by a single I/O port (PORTA or B)......................................................................50 mA  
Note 1: Power Dissipation is calculated as follow: PDIS = VDD x {IDD - {(VDD-VOH) x IH} + (VOL x IOL)  
Note 2: Voltage spikes below Vss at the MCLR pin, nducing currents greatethan 80 mmay cuse latch-up. Thus,  
a series resistor of 50 to 100shouused when applg a w level to thMCLR pin rather than pulling  
this pin directly to Vss.  
NOTICE: Stresses above those listed under "Maximum Ratigs" may cause permanent damage to the device.  
This is a stress rating only and funcnal eration of thdevice at thosor any other conditions above those  
indicated in the operation listings of thispecificatios nt implied. Expose to maximum rating conditions for  
extended periods may affect device reliability.  
1995 Microchip Technology Inc.  
DS30015M-page 79  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
PIC16CR54  
TABLE 12-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16CR54-RC  
PIC16CR54-XT  
PIC16CR54-10  
PIC16CR54-HS  
PIC16CR54-LP  
RC  
VDD: 2.5V to 6.25V  
IDD: 3.6 mA max at  
6.0V  
N/A  
N/A  
N/A  
N/A  
IPD: 6 µA max at 2.5V,  
WDT dis  
Freq: 4 MHz max  
XT  
HS  
LP  
VDD: 2.5V to 6.25V  
IDD: 3.6 mA max at  
6.0V  
IPD: 6 µA max at  
2.5V, WDT dis  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Freq: 4 MHz max  
VDD: 4.5V to 5.5V  
IDD: 10 mA max at  
5.5V  
IPD: 6 µA max at  
2.5V, WDT dis  
Freq: 10 MHz max  
VDD: 4.5V to 5.5V  
IDD: 20 mA max at  
5.5V  
IPD: 6 µA
2.5V, s  
Freq: 20 MHz x  
N/A  
N/A  
VDD2.0V to 6.25V  
: µA max at  
32 kHz, 2.0V  
IPD: 6 µA max at  
2.5V, WDT dis  
N/A  
N/A  
Freq: 200 kHz max  
The shaded sections indicate oscillator selecch should work by design, but are not ested. It is recommended  
that the user select the device type from informin unshadd sections.  
DS30015M-page 80  
1995 Microchip Technology Inc.  
PIC16CR54  
PIC16C5X  
12.1  
DC Characteristics: PIC16CR54-RC, XT, HS, LP (Commercial)  
PIC16CR54I-RC, XT, HS, LP (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym  
Min Typ  
Max  
Units Conditions  
Supply Voltage  
PIC16CR54-RC  
PIC16CR54-XT  
PIC16CR54-10  
PIC16CR54-HS  
PIC16CR54-LP  
VDD  
2.5  
2.5  
4.5  
4.5  
2.0  
6.25  
6.25  
5.5  
5.5  
6.25  
V
V
V
V
V
FOSC = DC to 4 MHz  
FOSC = DC to 4 MHz  
FOSC = DC to 10 MHz  
FOSC = DC to 20 MHz  
FOSC = DC to 200 kHz  
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
VSS  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
IDD  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
PIC16CR54-RC , XT  
2.0  
0.8  
90  
4.8  
4.8  
9.0  
10.0  
3.6  
1.8  
350  
10  
10  
20  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 6.0V  
FOSC = 4 MHz, VDD = 3.0V  
FOSC = 200 kHz, VDD = 2.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
FOSC = 32 kHz, VDD = 2.0V  
FOSC = 32 kHz, VDD = 6.0V  
PIC16CR54-10  
PIC16CR54-HS  
mA  
mA  
mA  
µA  
PIC16CR54-LP  
20  
70  
µA  
Power-Down Current  
(5)  
Commercial  
IPD  
IPD  
1
2
3
5
6
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
8*  
15  
25  
Power-Down Current  
(5)  
Industrial  
1
2
3
3
5
8
µA  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 4.0V, WDT enabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
10*  
20*  
18  
45  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1995 Microchip Technology Inc.  
DS30015M-page 81  
PIC16C5X  
PIC16CR54  
12.2  
DC Characteristics: PIC16CR54E-RC, XT, HS, LP (Automotive)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C  
(1)  
Characteristic  
Sym  
Min Typ  
Max Units  
Conditions  
Supply Voltage  
PIC16CR54E-RC  
PIC16CR54E-XT  
PIC16CR54E-10  
PIC16CR54E-HS  
PIC16CR54E-LP  
VDD  
3.25  
3.25  
4.5  
4.5  
2.5  
6.0  
6.0  
5.5  
5.5  
6.0  
V
V
V
V
V
FOSC = DC to 4 MHz  
FOSC = DC to 4 MHz  
FOSC = DC to 10 MHz  
FOSC = DC to 16 MHz  
FOSC = DC to 200 kHz  
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
VSS  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
IDD  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
PIC16CR54E-RC  
1.8  
1.8  
4.8  
4.8  
9.0  
25  
3.3  
3.3  
10  
10  
20  
55  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 16 MHz, VDD = 5.5V  
FOSC = 32 kHz, VDD = 3.25V,  
WDT disabled  
PIC16CR54E-XT  
PIC16CR54E-10  
PIC16CR54E-HS  
PIC16CR54E-LP  
(5)  
Power-Down Current  
IPD  
5
0.8  
22  
18  
µA  
µA  
VDD = 3.25V, WDT enabled  
VDD = 3.25V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30015M-page 82  
1995 Microchip Technology Inc.  
PIC16CR54  
PIC16C5X  
12.3  
DC Characteristics: PIC16CR54-RC, XT, HS, LP (Commercial)  
PIC16CR54I-RC, XT, HS, LP (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
Operating Voltage VDD range is described in Section 12.1.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.20 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
PIC16CR54-RC only  
PIC16CR54-XT, 10, HS, LP  
Input High Voltage  
I/O ports  
VIH  
(5)  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
VDD = 3.0V to 5.5V  
Full VDD range  
(5)  
0.6 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
(4)  
PIC16CR54-RC only  
PIC16CR54-XT, 10, HS, LP  
Hysteresis of Schmitt  
Trigger inputs  
VHYS 0.15VDD*  
V
(2,3)  
Input Leakage Current  
IIL  
For VDD 5.5 V  
I/O ports  
–1  
+1  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
VPIN = VSS + 0.25V  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
PIC16CR54-XT, 10, HS, LP  
MCLR  
–5  
µA  
µA  
µA  
µA  
0.5  
0.5  
0.5  
+5  
+5  
+3  
T0CKI  
OSC1  
–3  
–3  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
Vol  
0.5  
0.5  
V
V
IOL = 10 mA, VDD = 6.0V  
IOL = 1.9 mA, VDD = 6.0V  
(3,4)  
Output High Voltage  
I/O ports  
VOH  
VDD –0.5  
VDD –0.5  
V
V
IOH = –4.0 mA, VDD = 6.0V  
IOH = –0.8 mA, VDD = 6.0V  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C5X be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
1995 Microchip Technology Inc.  
DS30015M-page 83  
PIC16C5X  
PIC16CR54  
12.4  
DC Characteristics: PIC16CR54E-RC, XT, HS, LP (Automotive)  
DC Characteristics  
All Pins Except  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C  
Power Supply Pins  
Operating Voltage VDD range is described in Section 12.2.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
VIL  
Vss  
Vss  
Vss  
Vss  
Vss  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
PIC16CR54E-RC only  
PIC16CR54E-XT, 10, HS, LP  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
(5)  
4.0V < VDD 5.5V  
VDD > 5.5V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
(4)  
PIC16CR54E-RC only  
PIC16CR54E-XT, 10, HS, LP  
Hysteresis of Schmitt  
Trigger inputs  
VHYS 0.15VDD*  
V
(2,3)  
Input Leakage Current  
IIL  
For VDD 5.5 V  
I/O ports  
–1  
0.5  
+1  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
VPIN = VSS + 0.25V  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
PIC16CR54E-XT, 10, HS, LP  
MCLR  
–5  
µA  
µA  
µA  
µA  
0.5  
0.5  
0.5  
+5  
+3  
+3  
T0CKI  
OSC1  
–3  
–3  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
Vol  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
PIC16CR54-RC  
(3)  
Output High Voltage  
I/O ports  
VOH  
VDD –0.7  
VDD –0.7  
V
V
IOH = –5.4 mA, VDD = 4.5V  
IOH = –1.0 mA, VDD = 4.5V,  
PIC16CR54-RC  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input volt-  
age.  
3: Negative current is defined as coming out of the pin.  
4: For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C5X be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
DS30015M-page 84  
1995 Microchip Technology Inc.  
PIC16CR54  
PIC16C5X  
12.5  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
oscillator  
OSC1  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 12-1: LOAD CONDITIONS  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
modes when external clock  
is used to drive OSC1  
VSS  
1995 Microchip Technology Inc.  
DS30015M-page 85  
PIC16C5X  
PIC16CR54  
12.6  
Timing Diagrams and Specifications  
FIGURE 12-2: EXTERNAL CLOCK TIMING - PIC16CR54  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 12-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial),  
–40°C TA +85°C (industrial),  
–40°C TA +125°C (automotive)  
Operating Voltage VDD range is described in Section 12.1 and Section 12.2  
Parameter  
No.  
(1)  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
(2)  
FOSC  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
4
MHz RC osc mode  
MHz XT osc mode  
10  
20  
16  
200  
4
MHz 10 MHz mode  
MHz HS osc mode (Com/Indust)  
MHz HS osc mode (Automotive)  
kHz LP osc mode  
(2)  
Oscillator Frequency  
MHz RC osc mode  
4
MHz XT osc mode  
10  
20  
16  
200  
MHz 10 MHz mode  
4
MHz HS osc mode (Com/Indust)  
MHz HS osc mode (Automotive)  
kHz LP osc mode  
4
DC  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating condi-  
tions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30015M-page 86  
1995 Microchip Technology Inc.  
PIC16CR54  
PIC16C5X  
TABLE 12-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54 (CON’T)  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial),  
–40°C TA +85°C (industrial),  
–40°C TA +125°C (automotive)  
Operating Voltage VDD range is described in Section 12.1 and Section 12.2  
Parameter  
(1)  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
RC osc mode  
(2)  
1
TOSC  
External CLKIN Period  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
XT osc mode  
10 MHz mode  
HS osc mode (Com/Indust)  
HS osc mode (Automotive)  
LP osc mode  
62.5  
5
(2)  
Oscillator Period  
250  
250  
100  
50  
RC osc mode  
10,000  
250  
250  
250  
XT osc mode  
10 MHz mode  
HS osc mode (Com/Indust)  
HS osc mode (Automotive)  
LP osc mode  
62.5  
5
(3)  
2
3
TCY  
Instruction Cycle Time  
4/FOSC  
TosL, TosH Clock in (OSC1) Low or High Time  
50*  
20*  
2*  
XT oscillator  
HS oscillator  
LP oscillator  
XT oscillator  
HS oscillator  
LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating condi-  
tions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
1995 Microchip Technology Inc.  
DS30015M-page 87  
PIC16C5X  
PIC16CR54  
FIGURE 12-3: CLKOUT AND I/O TIMING - PIC16CR54  
Q1  
Q4  
Q2  
Q3  
OSC1  
10  
11  
CLKOUT  
12  
13  
18  
19  
16  
14  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.  
TABLE 12-3: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16CR54  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial),  
–40°C TA +85°C (industrial),  
–40°C TA +125°C (automotive)  
Operating Voltage VDD range is described in Section 12.1 and Section 12.2  
Parameter  
(1)  
No.  
Sym  
Characteristic  
(2)  
Min  
Typ  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
OSC1to CLKOUT↓  
15  
15  
5
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
OSC1to CLKOUT↑  
(2)  
CLKOUT rise time  
(2)  
TckF  
CLKOUT fall time  
5
(2)  
CLKOUTto Port out valid  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
(2)  
Port in valid before CLKOUT↑  
(2)  
0.25 TCY+30*  
Port in hold after CLKOUT↑  
OSC1(Q1 cycle) to Port out valid  
0*  
(3)  
100*  
OSC1(Q2 cycle) to Port input invalid (I/O in  
TBD  
hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
(3)  
20  
21  
TioR  
TioF  
Port output rise time  
10  
10  
25**  
25**  
ns  
ns  
(3)  
Port output fall time  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 12-1 for loading conditions.  
DS30015M-page 88  
1995 Microchip Technology Inc.  
PIC16CR54  
PIC16C5X  
FIGURE 12-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16CR54  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 12-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16CR54  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial),  
–40°C TA +85°C (industrial),  
–40°C TA +125°C (automotive)  
Operating Voltage VDD range is described in Section 12.1 and Section 12.2  
Parameter  
No.  
(1)  
Sym Characteristic  
Min Typ  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
100*  
7*  
ns VDD = 5.0V  
Twdt Watchdog Timer Time-out Period  
(No Prescaler)  
18*  
30*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
7*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
ns  
TioZ I/O Hi-impedance from MCLR Low  
100*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
1995 Microchip Technology Inc.  
DS30015M-page 89  
PIC16C5X  
PIC16CR54  
FIGURE 12-5: TIMER0 CLOCK TIMINGS - PIC16CR54  
T0CKI  
40  
41  
42  
TABLE 12-5: TIMER0 CLOCK REQUIREMENTS - PIC16CR54  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial),  
–40°C TA +85°C (industrial),  
–40°C TA +125°C (automotive)  
Operating Voltage VDD range is described in Section 12.1 and Section 12.2  
Parameter  
(1)  
Sym Characteristic  
Min  
Typ  
Max Units Conditions  
No.  
40  
Tt0H T0CKI High Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
DS30015M-page 90  
1995 Microchip Technology Inc.  
PIC16CR54  
PIC16C5X  
13.0 DC AND AC CHARACTERISTICS - PIC16CR54  
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed. In some  
graphs or tables the data presented are outside specified operating range (e.g., outside specified VDD range). This is  
for information only and devices are will properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period of  
time. “Typical” represents the mean of the distribution while “max” or “min” represents (mean + 3σ) and (mean – 3σ)  
respectively, where σ is standard deviation.  
FIGURE 13-1: TYPICAL RC OSCILLATOR FREQUENCY vs.TEMPERATURE  
FOSC  
Frequency normalized to +25°C  
FOSC (25°C)  
1.10  
Rext 10 kΩ  
Cext = 100 pF  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
VDD = 5.5V  
VDD = 3.5V  
0.92  
0.90  
0.88  
0
10  
20  
25  
30  
40  
50  
60  
70  
T(°C)  
TABLE 13-1: RC OSCILLATOR FREQUENCIES  
Average  
Fosc @ 5V, 25°C  
Cext  
Rext  
Part to Part Variation  
20 pF  
3.3 k  
5 k  
6.02 MHz  
4.06 MHz  
2.47 MHz  
261 kHz  
1.82 MHz  
1.28 MHz  
715 kHz  
72.4 kHz  
712.4 kHz  
508 kHz  
278 kHz  
28 kHz  
± 28%  
± 25%  
± 24%  
± 39%  
± 18%  
± 21%  
± 18%  
± 28%  
± 14%  
± 13%  
± 13%  
± 23%  
10 k  
100 k  
3.3 k  
5 k  
100 pF  
300 pF  
10 k  
100 k  
3.3 k  
5 k  
10 k  
100 k  
Measured on DIP packages.  
The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation  
indicated is ±3 standard deviation from average value for full VDD range.  
1995 Microchip Technology Inc.  
DS30015M-page 91  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
PIC16CR54  
FIGURE 13-2: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD,  
FIGURE 13-3: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD,  
CEXT = 100 PF  
CEXT = 20 PF  
6.5  
2.0  
1.8  
R = 3.3k  
R = 3.3k  
6.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
5.5  
5.0  
R = 5k  
4.5  
R = 5k  
4.0  
3.5  
3.0  
R = 10k  
Measured on DIP Packages, T = 25˚C  
R = 10k  
2.5  
2.0  
R = 100k  
5.5 6.0  
1.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Measured on DIP Packages, T = 25˚C  
VDD (Volts)  
1.0  
0.5  
R = 100k  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
DS30015M-page 92  
1995 Microchip Technology Inc.  
PIC16CR54  
PIC16C5X  
FIGURE 13-4: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD,  
FIGURE 13-5: TYPICAL IPD vs. VDD,  
WATCHDOG ENABLED  
CEXT = 300 PF  
0.8  
10  
R = 3.3k  
0.7  
T = 25˚C  
0.6  
1.0  
R = 5k  
0.5  
0.4  
0.1  
R = 10k  
0.3  
0.2  
Measured on DIP Packages, T = 25˚C  
0.01  
0.1  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
R = 100k  
VDD (Volts)  
0.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
6.0  
VDD (Volts)  
FIGURE 13-6: MAXIMUM IPD vs. VDD,  
WATCHDOG ENABLED  
35  
30  
–40°C  
25  
20  
15  
10  
+85°C  
5
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
VDD (Volts)  
1995 Microchip Technology Inc.  
DS30015M-page 93  
PIC16C5X  
PIC16CR54  
FIGURE 13-7: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS vs. VDD  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 13-8: VIH, VIL OF MCLR,T0CKI AND OSC1 (IN RC MODE) vs. VDD  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
Note: These input pins have Schmitt Trigger input buffers.  
FIGURE 13-9: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT  
(IN XT, HS, AND LP MODES) vs. VDD  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
DS30015M-page 94  
1995 Microchip Technology Inc.  
PIC16CR54  
PIC16C5X  
FIGURE 13-10: TYPICAL IDD vs. FREQUENCY (EXTERNAL CLOCK 25°C)  
10  
1.0  
0.1  
6.0  
5.5  
5.0  
4.5  
4.0  
0.01  
3.5  
3.0  
2.5  
0.001  
10k  
100k  
1M  
10M  
External Clock Frequency (Hz)  
1995 Microchip Technology Inc.  
DS30015M-page 95  
PIC16C5X  
PIC16CR54  
FIGURE 13-11: MAXIMUM IDD vs. FREQUENCY (EXTERNAL CLOCK –40°C TO +85°C)  
10000  
1000  
100  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
10  
10k  
100k  
1M  
10M  
External Clock Frequency (Hz)  
DS30015M-page 96  
1995 Microchip Technology Inc.  
PIC16CR54  
PIC16C5X  
FIGURE 13-12: WDT TIMER TIME-OUT  
PERIOD vs. VDD  
FIGURE 13-13: TRANSCONDUCTANCE (gm)  
OF HS OSCILLATOR vs. VDD  
50  
45  
40  
9000  
8000  
7000  
35  
6000  
Max –40°C  
30  
5000  
Max +85°C  
Typ +25°C  
Typ +25°C  
25  
4000  
Max +70°C  
Min +85°C  
20  
3000  
15  
2000  
100  
0
MIn 0°C  
10  
MIn –40°C  
5
2
3
4
5
6
7
2
3
4
5
6
7
VDD (Volts)  
VDD (Volts)  
1995 Microchip Technology Inc.  
DS30015M-page 97  
PIC16C5X  
PIC16CR54  
FIGURE 13-14: TRANSCONDUCTANCE (gm)  
OF LP OSCILLATOR vs. VDD  
FIGURE 13-16: IOH vs. VOH, VDD = 3 V  
45  
0
Max –40°C  
40  
–5  
35  
30  
Min +85°C  
–10  
Typ +25°C  
Typ +25°C  
25  
20  
15  
–15  
Max –40°C  
Min +85°C  
–20  
10  
5
0
–25  
0.0 0.5 1.0  
1.5 2.0  
2.5 3.0  
2
3
4
5
6
7
VOH (Volts)  
VDD (Volts)  
FIGURE 13-17: IOH vs. VOH, VDD = 5 V  
FIGURE 13-15: TRANSCONDUCTANCE (gm)  
OF XT OSCILLATOR vs. VDD  
2500  
0
–5  
2000  
Max –40°C  
–10  
Min +85°C  
–15  
1500  
–20  
Typ +25°C  
Typ +25°C  
1000  
–25  
–30  
Min +85°C  
500  
Max –40°C  
–35  
–40  
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
2
3
4
5
6
7
VOH (Volts)  
VDD (Volts)  
DS30015M-page 98  
1995 Microchip Technology Inc.  
PIC16CR54  
PIC16C5X  
FIGURE 13-18: IOL vs. VOL, VDD = 3 V  
FIGURE 13-19: IOL vs. VOL, VDD = 5 V  
45  
90  
80  
70  
40  
35  
Max –40°C  
Max –40°C  
30  
25  
60  
50  
Typ +25°C  
Min +85°C  
Typ +25°C  
Min +85°C  
20  
40  
15  
10  
30  
20  
5
0
10  
0
0.0  
0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
0.0  
0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
TABLE 13-2: INPUT CAPACITANCE FOR  
PIC16CR54  
Typical Capacitance (pF)  
Pin  
18L PDIP  
18L SOIC  
RA, RB port  
MCLR  
5.0  
2.0  
4.0  
3.2  
4.3  
2.0  
3.5  
2.8  
OSC1, OSC2/CLKOUT  
T0CKI  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
1995 Microchip Technology Inc.  
DS30015M-page 99  
PIC16C5X  
PIC16CR54  
NOTES:  
DS30015M-page 100  
1995 Microchip Technology Inc.  
PIC16C5X  
14.0 PACKAGING INFORMATION  
14.1  
Package Marking Information  
18-Lead PDIP  
Example  
MMMMMMMMMMMMXXX  
MMMMMMMMXXXXXXX  
PIC16C56-  
RCI/P456  
AABB CDE  
9523 CBA  
28-Lead Skinny PDIP (.300")  
Example  
MMMMMMMMMMMMMMMMM  
XXXXXXXXXXXXXXXXX  
PIC16C55-  
RCI/P456  
AABB CDE  
9523 CBA  
28-Lead PDIP (.600")  
Example  
MMMMMMMMMMMMXXX  
MMMMMMMMXXXXXXX  
XXXXXXXXXXXXXXX  
AABB CDE  
PIC16C55-  
XTI/P126  
9542 CDA  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
AA  
BB  
C
Year code (last two digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
C = Chandler, Arizona, U.S.A.,  
S = Tempe, Arizona, U.S.A.  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line,  
it will be carried over to the next line thus limiting the number of available  
characters for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week  
code, facility code, mask rev#, and assembly code. For OTP marking  
beyond this, certain price adders apply. Please check with your Microchip  
Sales Office. For QTP devices, any special marking adders are included in  
QTP price.  
1995 Microchip Technology Inc.  
DS30015M-page 101  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
18-Lead SOIC  
Example  
MMMMMMMMM  
XXXXXXXXX  
PIC16C54-  
XTI/S0218  
AABB CDE  
9518 CDK  
28-Lead SOIC  
Example  
MMMMMMMMMMMMMMMMMMXX  
XXXXXXXXXXXXXXXXXXXX  
PIC16C57-XT/SO  
AABB CDE  
9515 CBK  
20-Lead SSOP  
Example  
MMMMMMMM  
XXXXXXXX  
AABB CDE  
PIC16C54  
XTI/218  
9520 CBP  
28-Lead SSOP  
Example  
MMMMMMMMMMMM  
XXXXXXXXXXXX  
PIC16C57-  
XT/SS123  
AABB CDE  
9525 CBK  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
AA  
BB  
C
Year code (last two digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
C = Chandler, Arizona, U.S.A.,  
S = Tempe, Arizona, U.S.A.  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line,  
it will be carried over to the next line thus limiting the number of available  
characters for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week  
code, facility code, mask rev#, and assembly code. For OTP marking  
beyond this, certain price adders apply. Please check with your Microchip  
Sales Office. For QTP devices, any special marking adders are included in  
QTP price.  
DS30015M-page 102  
1995 Microchip Technology Inc.  
PIC16C5X  
18-Lead CERDIP Windowed  
Example  
Example  
MMMMMMMM  
MMMMMMMM  
AABB CDE  
PIC16C54  
/JW  
9501 CBA  
28-Lead CERDIP Skinny Windowed  
MMMMMMMMMMMMMM  
XXXXXXXXXXXXXX  
AABBCDE  
PIC16C57  
/JW  
9338 CCT  
28-Lead CERDIP Windowed  
Example  
MMMMMMMMMM  
MMMMMM  
PIC16C57  
/JW  
AABB CDE  
9538 CBA  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
AA  
BB  
C
Year code (last two digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
C = Chandler, Arizona, U.S.A.,  
S = Tempe, Arizona, U.S.A.  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line,  
it will be carried over to the next line thus limiting the number of available  
characters for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week  
code, facility code, mask rev#, and assembly code. For OTP marking  
beyond this, certain price adders apply. Please check with your Microchip  
Sales Office. For QTP devices, any special marking adders are included in  
QTP price.  
1995 Microchip Technology Inc.  
DS30015M-page 103  
PIC16C5X  
14.2  
18-Lead Plastic Dual In-Line (PDIP) - 300 mil  
N
α
C
E1  
E
eA  
eB  
Pin No. 1  
Indicator  
Area  
D
S
S1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A2  
A1  
D1  
Package Group: Plastic Dual In-Line (PLA)  
Millimeters  
Inches  
Symbol  
Min  
Max  
Notes  
Min  
Max  
Notes  
α
0°  
10°  
4.064  
0°  
10°  
0.160  
A
A1  
A2  
B
0.381  
3.048  
0.355  
1.524  
0.203  
22.479  
20.320  
7.620  
6.096  
2.489  
7.620  
7.874  
3.048  
18  
0.015  
0.120  
0.014  
0.060  
0.008  
0.885  
0.800  
0.300  
0.240  
0.098  
0.300  
0.310  
0.120  
18  
3.810  
0.559  
1.524  
0.381  
23.495  
20.320  
8.255  
7.112  
2.591  
7.620  
9.906  
3.556  
18  
0.150  
0.022  
0.060  
0.015  
0.925  
0.800  
0.325  
0.280  
0.102  
0.300  
0.390  
0.140  
18  
B1  
C
Reference  
Typical  
Reference  
Typical  
D
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Typical  
Typical  
Reference  
Reference  
N
S
0.889  
0.127  
0.035  
0.005  
S1  
DS30015M-page 104  
1995 Microchip Technology Inc.  
PIC16C5X  
14.3  
28-Lead Plastic Dual In-Line (PDIP) - 300 mil  
N
α
E1  
E
C
eA  
eB  
Pin No. 1  
Indicator  
Area  
B2  
B1  
D
S
Base  
Plane  
Seating  
Plane  
L
Detail A  
B
Detail A  
B3  
A
A2  
A1  
e1  
D1  
Package Group: Plastic Dual In-Line (PLA)  
Millimeters  
Inches  
Max  
Symbol  
Min  
Max  
Notes  
Min  
Notes  
α
0°  
10°  
4.572  
0°  
10°  
A
3.632  
0.381  
3.175  
0.406  
1.016  
0.762  
0.203  
0.203  
0.143  
0.015  
0.125  
0.016  
0.040  
0.030  
0.008  
0.008  
1.385  
1.300  
0.310  
0.280  
0.100  
0.310  
0.320  
0.125  
28  
0.180  
A1  
A2  
B
3.556  
0.559  
1.651  
1.016  
0.508  
0.331  
35.179  
33.020  
8.382  
7.493  
2.540  
7.874  
9.652  
3.683  
-
0.140  
0.022  
0.065  
0.040  
0.020  
0.013  
1.395  
1.300  
0.330  
0.295  
0.100  
0.310  
0.380  
0.145  
-
B1  
B2  
B3  
C
Typical  
4 places  
4 places  
Typical  
Typical  
4 places  
4 places  
Typical  
D
34.163  
33.020  
7.874  
7.112  
2.540  
7.874  
8.128  
3.175  
28  
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Typical  
Typical  
Reference  
Reference  
N
S
0.584  
1.220  
0.023  
0.048  
1995 Microchip Technology Inc.  
DS30015M-page 105  
PIC16C5X  
14.4  
28-Lead Plastic Dual In-Line (PDIP) - 600 mil  
N
α
E1  
E
C
eA  
eB  
Pin No. 1  
Indicator  
Area  
D
S
S1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A2  
A1  
D1  
Package Group: Plastic Dual In-Line (PLA)  
Millimeters  
Inches  
Symbol  
Min  
Max  
Notes  
Min  
Max  
Notes  
α
0°  
10°  
5.080  
0°  
10°  
0.200  
A
A1  
A2  
B
0.508  
3.175  
0.355  
1.270  
0.203  
0.020  
0.125  
0.014  
0.050  
0.008  
1.380  
1.300  
0.600  
0.505  
0.098  
0.600  
0.600  
0.115  
28  
4.064  
0.559  
1.778  
0.381  
37.084  
33.020  
15.875  
13.970  
2.591  
15.240  
17.272  
3.683  
28  
0.160  
0.022  
0.070  
0.015  
1.460  
1.300  
0.625  
0.550  
0.102  
0.600  
0.680  
0.145  
28  
B1  
C
Typical  
Typical  
Typical  
Typical  
D
35.052  
33.020  
15.240  
12.827  
2.489  
15.240  
15.240  
2.921  
28  
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Typical  
Typical  
Reference  
Reference  
N
S
0.889  
0.508  
0.035  
0.020  
S1  
DS30015M-page 106  
1995 Microchip Technology Inc.  
PIC16C5X  
14.5  
18-Lead Plastic Surface Mount (SOIC) - 300 mil  
e
B
h x 45°  
N
Index  
Area  
E
H
α
C
Chamfer  
h x 45°  
L
1
2
3
D
Base  
Plane  
CP  
Seating  
Plane  
A1  
A
Package Group: Plastic SOIC (SO)  
Millimeters  
Max  
Inches  
Symbol  
Min  
0°  
Notes  
Min  
Max  
Notes  
α
A
8°  
0°  
8°  
2.362  
0.101  
0.355  
0.241  
11.353  
7.416  
1.270  
10.007  
0.381  
0.406  
18  
2.642  
0.300  
0.483  
0.318  
11.735  
7.595  
1.270  
10.643  
0.762  
1.143  
18  
0.093  
0.004  
0.014  
0.009  
0.447  
0.292  
0.050  
0.394  
0.015  
0.016  
18  
0.104  
0.012  
0.019  
0.013  
0.462  
0.299  
0.050  
0.419  
0.030  
0.045  
18  
A1  
B
C
D
E
e
Reference  
Reference  
H
h
L
N
CP  
0.102  
0.004  
1995 Microchip Technology Inc.  
DS30015M-page 107  
PIC16C5X  
14.6  
28-Lead Plastic Surface Mount (SOIC) - 300 mil  
e
B
N
h x 45°  
Index  
Area  
E
H
α
C
Chamfer  
h x 45°  
L
1
2
3
D
Base  
Plane  
CP  
Seating  
Plane  
A1  
A
Package Group: Plastic SOIC (SO)  
Millimeters  
Max  
Inches  
Symbol  
Min  
0°  
Notes  
Min  
Max  
Notes  
α
A
8°  
0°  
8°  
2.362  
0.101  
0.355  
0.241  
17.703  
7.416  
1.270  
10.007  
0.381  
0.406  
28  
2.642  
0.300  
0.483  
0.318  
18.085  
7.595  
1.270  
10.643  
0.762  
1.143  
28  
0.093  
0.004  
0.014  
0.009  
0.697  
0.292  
0.050  
0.394  
0.015  
0.016  
28  
0.104  
0.012  
0.019  
0.013  
0.712  
0.299  
0.050  
0.419  
0.030  
0.045  
28  
A1  
B
C
D
E
e
Typical  
Typical  
H
h
L
N
CP  
0.102  
0.004  
DS30015M-page 108  
1995 Microchip Technology Inc.  
PIC16C5X  
14.7  
20-Lead Plastic Surface Mount (SSOP) - 209 mil  
N
Index  
area  
E
H
α
C
L
1 2 3  
e
B
A
Base plane  
CP  
Seating plane  
D
A1  
Package Group: Plastic SSOP  
Millimeters  
Max  
Inches  
Symbol  
Min  
Notes  
Min  
Max  
Notes  
α
A
0°  
8°  
0°  
8°  
1.730  
0.050  
0.250  
0.130  
7.070  
5.200  
0.650  
7.650  
0.550  
20  
1.990  
0.210  
0.380  
0.220  
7.330  
5.380  
0.650  
7.900  
0.950  
20  
0.068  
0.002  
0.010  
0.005  
0.278  
0.205  
0.026  
0.301  
0.022  
20  
0.078  
0.008  
0.015  
0.009  
0.289  
0.212  
0.026  
0.311  
0.037  
20  
A1  
B
C
D
E
e
Reference  
Reference  
H
L
N
CP  
-
0.102  
-
0.004  
1995 Microchip Technology Inc.  
DS30015M-page 109  
PIC16C5X  
14.8  
28-Lead Plastic Surface Mount (SSOP) - 209 mil  
N
Index  
area  
E
H
α
C
L
1 2 3  
e
B
A
Base plane  
CP  
Seating plane  
D
A1  
Package Group: Plastic SSOP  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
Notes  
Min  
Notes  
α
A
0°  
8°  
0°  
8°  
1.730  
0.050  
0.250  
0.130  
10.070  
5.200  
0.650  
7.650  
0.550  
28  
1.990  
0.210  
0.380  
0.220  
10.330  
5.380  
0.650  
7.900  
0.950  
28  
0.068  
0.002  
0.010  
0.005  
0.396  
0.205  
0.026  
0.301  
0.022  
28  
0.078  
0.008  
0.015  
0.009  
0.407  
0.212  
0.026  
0.311  
0.037  
28  
A1  
B
C
D
E
e
Reference  
Reference  
H
L
N
CP  
-
0.102  
-
0.004  
DS30015M-page 110  
1995 Microchip Technology Inc.  
PIC16C5X  
14.9  
18-Lead Ceramic Dual In-Line (CERDIP) with Window - 300 mil  
N
α
C
E1  
E
eA  
eB  
Pin No. 1  
Indicator  
Area  
D
S
S1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A3  
A2  
A1  
D1  
Package Group: Ceramic Dual In-Line (CDP)  
Millimeters  
Inches  
Max  
Symbol  
Min  
Max  
Notes  
Min  
Notes  
α
0°  
10°  
0°  
10°  
A
5.080  
1.7780  
4.699  
4.445  
0.585  
1.651  
0.381  
23.622  
20.320  
8.382  
7.874  
2.540  
8.128  
10.160  
3.810  
18  
0.200  
0.070  
0.185  
0.175  
0.023  
0.065  
0.015  
0.930  
0.800  
0.330  
0.310  
0.100  
0.320  
0.400  
0.150  
18  
A1  
A2  
A3  
B
0.381  
3.810  
3.810  
0.355  
1.270  
0.203  
22.352  
20.320  
7.620  
5.588  
2.540  
7.366  
7.620  
3.175  
18  
0.015  
0.150  
0.150  
0.014  
0.050  
0.008  
0.880  
0.800  
0.300  
0.220  
0.100  
0.290  
0.300  
0.125  
18  
B1  
C
Typical  
Typical  
Typical  
Typical  
D
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Reference  
Typical  
Reference  
Typical  
N
S
0.508  
0.381  
1.397  
1.270  
0.020  
0.015  
0.055  
0.050  
S1  
1995 Microchip Technology Inc.  
DS30015M-page 111  
PIC16C5X  
14.10 28-Lead Ceramic Dual In-Line (CERDIP) withWindow - 300 mil)  
N
E1  
E
α
C
Pin No. 1  
Indicator  
Area  
eA  
eB  
D
D1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A2  
A1  
D2  
Package Group: Ceramic Dual In-Line (CDP)  
Millimeters  
Inches  
Max  
Symbol  
Min  
Max  
Notes  
Min  
Notes  
α
0°  
3.30  
0.38  
2.92  
0.35  
1.14  
0.20  
34.54  
32.97  
7.62  
6.10  
2.54  
7.62  
10°  
5.84  
0°  
10°  
A
.130  
0.230  
A1  
A2  
B
0.015  
0.115  
0.014  
0.045  
0.008  
1.360  
1.298  
0.300  
0.240  
0.100  
0.300  
4.95  
0.58  
1.78  
0.38  
37.72  
33.07  
8.25  
7.87  
2.54  
7.62  
11.43  
5.08  
28  
0.195  
0.023  
0.070  
0.015  
1.485  
1.302  
0.325  
0.310  
0.100  
0.300  
0.450  
0.200  
28  
B1  
C
Typical  
Typical  
Typical  
Typical  
D
D2  
E
Reference  
Reference  
E1  
e
Typical  
Typical  
eA  
eB  
L
Reference  
Reference  
2.92  
28  
0.115  
28  
N
D1  
0.13  
0.005  
DS30015M-page 112  
1995 Microchip Technology Inc.  
PIC16C5X  
14.11 28-Lead Ceramic Dual In-Line (CERDIP) with Window - 600 mil  
N
E1  
E
α
C
Pin No. 1  
Indicator  
Area  
eA  
eB  
D
S
S1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A3  
A2  
A1  
D1  
Package Group: Ceramic Dual In-Line (CDP)  
Millimeters  
Inches  
Max  
Symbol  
Min  
Max  
Notes  
Min  
Notes  
α
0°  
10°  
0°  
10°  
A
5.461  
1.524  
4.699  
4.445  
0.585  
1.651  
0.381  
37.465  
33.020  
15.875  
15.240  
2.540  
15.748  
18.034  
3.810  
28  
0.215  
0.060  
0.185  
0.175  
0.023  
0.065  
0.015  
1.475  
1.300  
0.625  
0.600  
0.100  
0.620  
0.710  
0.150  
28  
A1  
A2  
A3  
B
0.381  
3.810  
3.810  
0.355  
1.270  
0.203  
0.015  
0.150  
0.150  
0.014  
0.050  
0.008  
1.425  
1.300  
0.600  
0.510  
0.100  
0.590  
0.600  
0.125  
28  
B1  
C
Typical  
Typical  
Typical  
Typical  
D
36.195  
33.020  
15.240  
12.954  
2.540  
14.986  
15.240  
3.175  
28  
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Typical  
Typical  
Reference  
Reference  
N
S
1.016  
0.381  
2.286  
1.778  
0.040  
0.015  
0.090  
0.070  
S1  
1995 Microchip Technology Inc.  
DS30015M-page 113  
PIC16C5X  
NOTES:  
DS30015M-page 114  
1995 Microchip Technology Inc.  
PIC16C5X  
APPENDIX A: COMPATIBILITY  
APPENDIX B: WHAT’S NEW  
To convert code written for PIC16CXX to PIC16C5X,  
the user should take the following steps:  
B.1  
Format  
The format of this data sheet has been changed to be  
consistent with other product families. This ensures  
that important topics are covered across all PIC16/17  
families. Here is an overview list of new features:  
1. Check any CALL, GOTO or instructions that  
modify the PC to determine if any program  
memory page select operations (PA2, PA1, PA0  
bits) need to be made.  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
• Data Sheet Structure / Outline  
• Consistent Figures and Tables  
B.2  
Additions  
3. Eliminate any special function register page  
switching. Redefine data variables to reallocate  
them.  
Items that have been added to this data sheet are:  
• PIC16CR54 data  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
• PIC16C5X-10 data  
• PIC16C5X/JW package information  
5. Change reset vector to proper value for  
processor used.  
6. Remove any use of the ADDLW and SUBLW  
instructions.  
7. Rewrite any code segments that use interrupts.  
1995 Microchip Technology Inc.  
DS30015M-page 115  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
APPENDIX C: WHAT’S CHANGED  
Changes to this version of the PIC16C5X data  
sheet are:  
• Correction of the 28-lead SSOP package pin-out  
• Inclusion of errata sheet information  
DS30015M-page 116  
1995 Microchip Technology Inc.  
PIC16C7X  
APPENDIX D:PIC16/17 MICROCONTROLLERS  
TABLE D-1:  
PIC16C5X FAMILY OF DEVICES  
1995 Microchip Technology Inc.  
DS30390B-page 117  
This document was created with FrameMaker 4 0 4  
PIC16C7X  
TABLE D-2:  
PIC16C62X FAMILY OF DEVICES  
DS30390B-page 118  
1995 Microchip Technology Inc.  
PIC16C7X  
TABLE D-3:  
PIC16C6X FAMILY OF DEVICES  
1995 Microchip Technology Inc.  
DS30390B-page 119  
PIC16C7X  
TABLE D-4:  
PIC16C7X FAMILY OF DEVICES  
DS30390B-page 120  
1995 Microchip Technology Inc.  
PIC16C7X  
TABLE D-5:  
PIC16C8X FAMILY OF DEVICES  
1995 Microchip Technology Inc.  
DS30390B-page 121  
PIC16C7X  
TABLE D-6:  
PIC17CXX FAMILY OF DEVICES  
DS30390B-page 122  
1995 Microchip Technology Inc.  
PIC16C7X  
D.1  
Pin Compatibility  
Devices that have the same package type and VDD,  
VSS and MCLR pin locations are said to be pin  
compatible. This allows these different devices to  
operate in the same socket. Compatible devices may  
only requires minor software modification to allow  
proper operation in the application socket  
(ex., PIC16C56 and PIC16C61 devices). Not all  
devices in the same package size are pin compatible;  
for example, the PIC16C62 is compatible with the  
PIC16C63, but not the PIC16C55.  
Pin compatibility does not mean that the devices offer  
the same features. As an example, the PIC16C54 is  
pin compatible with the PIC16C71, but does not have  
an A/D converter, weak pull-ups on PORTB, or  
interrupts.  
TABLE D-7:  
PIN COMPATIBLE DEVICES  
Pin Compatible Devices  
Package  
PIC16C54, PIC16C54A,  
18 pin  
PIC16CR54, PIC16CR54A, PIC16CR54B,  
PIC16C56, PIC16CR56,  
(20 pin)  
PIC16C58A, PIC16CR58A, PIC16CR58B,  
PIC16C61,  
PIC16C620, PIC16C621, PIC16C622,  
PIC16C70, PIC16C71, PIC16C71A  
PIC16C83, PIC16CR83,  
PIC16C84, PIC16C84A, PIC16CR84  
PIC16C55, PIC16CR55,  
PIC16C57, PIC16CR57A, PIC16CR57B  
28 pin  
28 pin  
40 pin  
PIC16C62, PIC16CR62, PIC16C62A, PIC16C63,  
PIC16C72, PIC16C73, PIC16C73A  
PIC16C64, PIC16CR64, PIC16C64A,  
PIC16C65, PIC16C65A,  
PIC16C74, PIC16C74A  
PIC17C42, PIC17C43, PIC17C44  
40 pin  
1995 Microchip Technology Inc.  
DS30390B-page 123  
PIC16C7X  
NOTES:  
DS30390B-page 124  
1995 Microchip Technology Inc.  
PIC16C5X  
I
INDEX  
I/O Interfacing .................................................................... 21  
I/O Ports ............................................................................ 21  
I/O Programming Considerations ...................................... 22  
ID Locations ....................................................................... 37  
ID locations ........................................................................ 27  
INDF ............................................................................ 20, 31  
Indirect Data Addressing ................................................... 20  
Instruction Cycle ................................................................ 11  
Instruction Flow/Pipelining ................................................. 11  
Instruction Set Summary ................................................... 40  
Integrated .......................................................................... 54  
A
Absolute Maximum Ratings ............................................... 57  
ALU ...................................................................................... 7  
Applications .......................................................................... 3  
Architectural Overview ......................................................... 7  
Assembler .......................................................................... 54  
B
Block Diagram  
On-Chip Reset Circuit ................................................ 31  
PIC16C5X Series ......................................................... 8  
Timer0 ........................................................................ 23  
TMR0/WDT Prescaler ................................................ 26  
Watchdog Timer ......................................................... 35  
Brown-Out Protection Circuit ............................................. 36  
L
Loading of PC .................................................................... 18  
Loading of PC Branch Instructions .................................... 18  
M
C
MCLR ................................................................................ 31  
Memory Organization ........................................................ 13  
Data Memory ............................................................. 13  
Program Memory ....................................................... 13  
MPASM Assembler ..................................................... 51, 54  
MP-C C Compiler .............................................................. 55  
MPSIM Software Simulator ......................................... 51, 55  
C Compiler (MP-C) ...................................................... 51, 55  
Carry .................................................................................... 7  
Clocking Scheme ............................................................... 11  
Code Protection ........................................................... 27, 37  
Configuration Bits ............................................................... 27  
Configuration Word  
PIC16C54/CR54/C55/C56/C57 ................................. 27  
O
D
One-Time-Programmable (OTP) Devices ............................5  
OPTION Register .............................................................. 17  
OSC selection .................................................................... 27  
Oscillator Configurations ................................................... 28  
Oscillator Types  
DC Characteristics ..................................... 59, 60, 61, 62, 63  
Development Support ........................................................ 51  
Development Systems ....................................................... 55  
Development Tools ............................................................ 51  
Device Drawings  
HS .............................................................................. 28  
LP .............................................................................. 28  
RC ............................................................................. 28  
XT .............................................................................. 28  
18-Lead Ceramic Dual In-Line (CERDIP)  
with Window - 300 mil .............................................. 111  
18-Lead Plastic Dual In-Line (PDIP) - 300 mil ......... 104  
18-Lead Plastic Surface Mount (SOIC) - 300 mil ..... 107  
20-Lead Plastic Surface Mount (SSOP) - 209 mil .... 109  
28-Lead Ceramic CERDIP Dual In-line  
P
Packaging Information ..................................................... 101  
PCL .................................................................................... 31  
PIC16C5X DC and AC Characteristics .............................. 71  
PICDEM-1 Low-Cost PIC16/17 Demo Board .............. 51, 53  
PICDEM-2 Low-Cost PIC16CXX Demo Board ............ 51, 53  
PICMASTER Probes ......................................................... 52  
PICMASTER System Configuration .................................. 51  
PICMASTER RT In-Circuit Emulator .............................. 51  
PICSTART Low-Cost Development System ............. 51, 53  
Pin Compatible Devices .................................................. 123  
Pinout Description ......................................................... 9, 10  
POR  
Oscillator Start-Up Timer (OST) .................... 27, 32, 34  
PD ........................................................................ 30, 36  
Power-On Reset (POR) ................................. 27, 31, 32  
TO ........................................................................ 30, 36  
PORTA ........................................................................ 21, 31  
PORTB ........................................................................ 21, 31  
PORTC ........................................................................ 21, 31  
Power-Down Mode ............................................................ 37  
Prescaler ........................................................................... 26  
PRO MATE Universal Programmer .......................... 51, 53  
with Window (300 mil)) ............................................. 112  
28-Lead Ceramic Dual In-Line (CERDIP)  
with Window - 600 mil .............................................. 113  
28-Lead Plastic Dual In-Line (PDIP) - 300 mil ......... 105  
28-Lead Plastic Dual In-Line (PDIP) - 600 mil ......... 106  
28-Lead Plastic Surface Mount (SOIC) - 300 mil ..... 108  
28-Lead Plastic Surface Mount (SSOP) - 209 mil .... 110  
Device Varieties ................................................................... 5  
Digit Carry ............................................................................ 7  
Dynamic Data Exchange (DDE) ........................................ 51  
E
Electrical Characteristics .................................................... 57  
External Power-On Reset Circuit ....................................... 32  
F
Family of Devices ................................................................. 4  
PIC16C5X ................................................................ 117  
PIC17CXX ................................................................ 122  
Features ............................................................................... 1  
FSR .............................................................................. 20, 31  
Fuzzy Logic Dev. System (fuzzyTECH -MP) ............. 51, 55  
Q
Quick-Turnaround-Production (QTP) Devices ......................5  
1995 Microchip Technology Inc.  
DS30015M-page 125  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
R
LIST OF EXAMPLES  
RC Oscillator ......................................................................30  
Read Modify Write ..............................................................22  
Reset ............................................................................27, 30  
Reset on Brown-Out ...........................................................36  
Example 3-1: Instruction Pipeline Flow ............................ 11  
Example 4-1: Indirect Addressing..................................... 20  
Example 4-2: How To Clear RAM Using Indirect  
Addressing ................................................. 20  
S
Example 5-1: Read-Modify-Write Instructions on an  
I/O Port....................................................... 22  
Example 6-1: Changing Prescaler (Timer0WDT).......... 26  
Example 6-2: Changing Prescaler (WDTTimer0).......... 26  
Serialized Quick-Turnaround-Production (SQTP) Devices ..5  
SLEEP ..........................................................................27, 37  
Software Simulator (MPSIM) ..............................................55  
Special Features of the CPU ..............................................27  
STATUS .........................................................................7, 31  
STATUS Word Register .....................................................16  
Summary of Port Registers ................................................21  
LIST OF FIGURES  
Figure 3-1: PIC16C5X Series Block Diagram .................... 8  
Figure 3-2: Clock/Instruction Cycle .................................. 11  
Figure 4-1: PIC16C54/CR54/C55 Program Memory Map  
and Stack....................................................... 13  
Figure 4-2: PIC16C56 Program Memory Map  
and Stack....................................................... 13  
Figure 4-3: PIC16C57 Program Memory Map  
and Stack....................................................... 13  
Figure 4-4: PIC16C54/CR54/C56 Register File Map ....... 14  
Figure 4-5: PIC16C55 Register File Map......................... 14  
Figure 4-6: PIC16C57 Register File Map......................... 14  
Figure 4-7: STATUS Register (Address:03h)................... 16  
Figure 4-8: OPTION Register........................................... 17  
Figure 4-9: Loading of PC  
T
Timer0  
Switching Prescaler Assignment ................................26  
Timer0 ........................................................................23  
Timer0 (TMR0) Module ..............................................23  
TMR0 with External Clock ..........................................25  
Timing Diagrams and Specifications ............................65, 86  
Timing Parameter Symbology and Load Conditions ....64, 85  
TRIS Registers ...................................................................21  
U
UV Erasable Devices ...........................................................5  
Branch Instructions -  
PIC16C54/CR54/C55 .................................... 18  
Figure 4-10: Loading of PC  
Branch Instructions -  
PIC16C56 ...................................................... 18  
Figure 4-11: Loading of PC  
W
W ........................................................................................31  
Wake-up from SLEEP ........................................................37  
Watchdog Timer (WDT) ...............................................27, 34  
Period .........................................................................34  
Programming Considerations ....................................34  
Branch Instructions -  
PIC16C57 ...................................................... 18  
Figure 4-12: Direct/Indirect Addressing.............................. 20  
Figure 5-1: Equivalent Circuit for a Single I/O Pin............ 21  
Figure 5-2: Successive I/O Operation.............................. 22  
Figure 6-1: Timer0 Block Diagram ................................... 23  
Figure 6-2: Electrical Structure of T0CKI Pin ................... 23  
Figure 6-3: Timer0 Timing:  
Z
Zero bit .................................................................................7  
Internal Clock/No Prescale ............................ 24  
Figure 6-4: Timer0 Timing:  
Internal Clock/Prescale 1:2............................ 24  
Figure 6-5: Timer0 Timing With External Clock ............... 25  
Figure 6-6: Block Diagram of the Timer0/WDT Prescaler 26  
Figure 7-1: Configuration Word for  
PIC16C54/CR54/C55/C56/C57 ..................... 27  
Figure 7-2: Crystal Operation or Ceramic Resonator  
(HS, XT or LP OSC Configuration)................ 28  
Figure 7-3: External Clock Input Operation  
(HS, XT or LP OSC Configuration)................ 28  
Figure 7-4: External Parallel Resonant Crystal  
Oscillator Circuit............................................. 29  
Figure 7-5: External Series Resonant Crystal  
Oscillator Circuit............................................. 29  
Figure 7-6: RC Oscillator Mode........................................ 30  
Figure 7-7: Simplified Block Diagram of  
On-Chip Reset Circuit.................................... 31  
Figure 7-8: ElectriCal Structure of MCLR/VPP Pin........... 32  
Figure 7-9: External Power-On Reset Circuit  
(For Slow VDD Power-Up).............................. 32  
Figure 7-10: Time-Out Sequence on Power-Up  
(MCLR Not Tied to VDD)................................ 33  
Figure 7-11: Time-Out Sequence on Power-Up  
(MCLR Tied to VDD): Fast VDD Rise Time..... 33  
DS30015M-page 126  
1995 Microchip Technology Inc.  
PIC16C5X  
Figure 7-12: Time-Out Sequence on Power-Up  
(MCLR Tied to VDD): Slow VDD Rise Time .... 33  
Figure 13-4: Typical RC Oscillator Frequency vs.  
VDD, CEXT = 300 PF....................................... 93  
Figure 13-5: Typical IPD vs. VDD,  
Watchdog Enabled ........................................ 93  
Figure 13-6: Maximum IPD vs. VDD,  
Watchdog Enabled ........................................ 93  
Figure 13-7: VTH (Input Threshold Voltage) of I/O Pins vs.  
VDD ................................................................ 94  
Figure 7-13: Watchdog Timer Block Diagram .................... 35  
Figure 7-14: Brown-Out Protection Circuit 1 ...................... 36  
Figure 7-15: Brown-Out Protection Circuit 2 ...................... 36  
Figure 8-1: General Format for Instructions ..................... 39  
Figure 9-1: PICMASTER System Configuration............... 51  
Figure 10-1: Load Conditions - PIC16C54/55/56/57 .......... 64  
Figure 10-2: External Clock Timing - PIC16C54/55/56/57 . 65  
Figure 10-3: CLKOUT and I/O Timing -  
Figure 13-8: VIH, VIL of MCLR, T0CKI and OSC1  
(in RC Mode) vs. VDD .................................... 94  
PIC16C54/55/56/57 ....................................... 67  
Figure 10-4: Reset, Watchdog Timer, and Device Reset  
Timer Timing - PIC16C54/55/56/57 ............... 68  
Figure 10-5: Timer0 Clock Timings - PIC16C54/55/56/57 . 69  
Figure 11-1: Typical RC Oscillator Frequency vs.  
Temperature .................................................. 71  
Figure 11-2: Typical RC Oscillator Frequency vs.  
VDD, CEXT = 20PF.......................................... 72  
Figure 11-3: Typical RC Oscillator Frequency vs.  
VDD, CEXT = 100 PF....................................... 72  
Figure 11-4: Typical RC Oscillator Frequency vs.  
VDD, CEXT = 300 PF....................................... 72  
Figure 11-5: Typical IPD vs. VDD,  
Figure 13-9: VTH (Input Threshold Voltage) of OSC1 Input  
(in XT, HS, and LP modes) vs. VDD .............. 94  
Figure 13-10:Typical IDD vs. Frequency  
(External Clock 25°C).................................... 95  
Figure 13-11:Maximum IDD vs. Frequency  
(External Clock –40°C to +85°C)................... 96  
Figure 13-12:WDT Timer Time-out Period vs. VDD ............ 97  
Figure 13-13:Transconductance (gm) OF HS Oscillator vs.  
VDD ................................................................ 97  
Figure 13-14:Transconductance (gm) of LP Oscillator vs.  
VDD ................................................................ 98  
Figure 13-15:Transconductance (gm) of XT Oscillator vs.  
VDD ................................................................ 98  
Watchdog Disabled........................................ 73  
Figure 11-6: Maximum IPD vs. VDD,  
Watchdog Disabled........................................ 73  
Figure 11-7: Typical IPD vs. VDD,  
Figure 13-16:IOH vs. VOH, VDD = 3 V.................................. 98  
Figure 13-17:IOH vs. VOH, VDD = 5 V.................................. 98  
Figure 13-18:IOL vs. VOL, VDD = 3 V................................... 99  
Figure 13-19:IOL vs. VOL, VDD = 5 V................................... 99  
Watchdog Enabled......................................... 73  
Figure 11-8: Maximum IPD vs. VDD,  
LIST OF TABLES  
Watchdog Enabled......................................... 73  
Figure 11-9: VTH (Input Threshold Voltage) of I/O Pins vs.  
VDD ................................................................ 74  
Figure 11-10:VIH, VIL of MCLR, T0CKI and OSC1  
(in RC Mode) vs. VDD .................................... 74  
Figure 11-11:VTH (Input Threshold Voltage) of OSC1 Input  
(in XT, HS, and LP modes) vs. VDD............... 74  
Figure 11-12:Typical IDD vs. Frequency  
Table 1-1: PIC16C5X Family of Devices ...........................4  
Table 3-1: PIC16C54/CR54/C56 Pinout Description.........9  
Table 3-2: PIC16C55/C57 Pinout Description ................ 10  
Table 4-1: Special Function Register Summary ............. 15  
Table 5-1: Summary of Port Registers ........................... 21  
Table 6-1: Registers Associated With Timer0 ................ 24  
Table 7-1: Capacitor Selection  
For Ceramic Resonators -  
PIC16C54/55/56/57....................................... 28  
Table 7-2: Capacitor Selection  
For Crystal Oscillator - PIC16C54/55/56/57 .. 28  
Table 7-3: Capacitor Selection  
(External Clock, 25°C) ................................... 75  
Figure 11-13:Maximum IDD vs. Frequency  
(External Clock, –40°C to +85°C) .................. 75  
Figure 11-14:Maximum IDD vs. Frequency  
(External Clock –55°C to +125°C) ................. 76  
Figure 11-15:WDT Timer Time-out Period vs. VDD ............ 76  
Figure 11-16:Transconductance (gm) OF HS Oscillator vs.  
VDD ................................................................ 76  
Figure 11-17:Transconductance (gm) of LP Oscillator vs.  
VDD ................................................................ 77  
Figure 11-18:IOH vs. VOH, VDD = 3 V.................................. 77  
Figure 11-19:Transconductance (gm) of XT Oscillator vs.  
VDD ................................................................ 77  
Figure 11-20:IOH vs. VOH, VDD = 5 V.................................. 77  
Figure 11-21:IOL vs. VOL, VDD = 3 V................................... 78  
Figure 11-22:IOL vs. VOL, VDD = 5 V................................... 78  
Figure 12-1: Load Conditions............................................. 85  
Figure 12-2: External Clock Timing - PIC16CR54.............. 86  
Figure 12-3: CLKOUT and I/O Timing - PIC16CR54 ......... 88  
Figure 12-4: Reset, Watchdog Timer, and Device Reset  
Timer Timing - PIC16CR54............................ 89  
Figure 12-5: Timer0 Clock Timings - PIC16CR54.............. 90  
Figure 13-1: Typical RC Oscillator Frequency vs.  
Temperature .................................................. 91  
Figure 13-2: Typical RC Oscillator Frequency vs.  
VDD, CEXT = 20 PF......................................... 92  
Figure 13-3: Typical RC Oscillator Frequency vs.  
VDD, CEXT = 100 PF....................................... 92  
For Ceramic Resonators - PIC16CR54......... 29  
Table 7-4: Capacitor Selection  
For Crystal Oscillator - PIC16CR54............... 29  
Table 7-5: Reset Conditions for Special Registers......... 31  
Table 7-6: Reset Conditions for All Registers................. 31  
Table 7-7: Summary of Registers Associated with the  
Watchdog Timer ............................................ 35  
Table 7-8: TO/PD Status After Reset ............................. 36  
Table 7-9: Events Affecting TO/PD Status Bits .............. 36  
Table 8-1: OPCODE Field Descriptions ......................... 39  
Table 8-2: Instruction Set Summary ............................... 40  
Table 9-1: PICMASTER Probe Specification.................. 52  
Table 9-2: Development System Packages.................... 55  
Table 10-1: Cross Reference of Device Specs for Oscillator  
Configurations (RC, XT & 10) and Frequencies  
of Operation (Commercial Devices) .............. 58  
Table 10-2: Cross Reference of Device Specs for Oscillator  
Configurations (HS, LP & JW) and Frequencies  
of Operation (Commercial Devices) .............. 58  
Table 10-3: External Clock Timing Requirements -  
PIC16C54/55/56/57....................................... 65  
Table 10-4: CLKOUT and I/O Timing Requirements -  
PIC16C54/55/56/57....................................... 67  
1995 Microchip Technology Inc.  
DS30015M-page 127  
PIC16C5X  
Table 10-5: Reset, Watchdog Timer, and Device Reset  
Timer - PIC16C54/55/56/57...........................68  
Table 10-6: Timer0 Clock Requirements -  
PIC16C54/55/56/57 .......................................69  
Table 11-1: RC Oscillator Frequencies.............................71  
Table 11-2: Input Capacitance for PIC16C54/56 ..............78  
Table 11-3: Input Capacitance for PIC16C55/57 ..............78  
Table 12-1: Cross Reference of Device Specs for Oscillator  
Configurations and Frequencies of Operation  
(Commercial Devices)....................................80  
Table 12-2: External Clock Timing Requirements -  
PIC16CR54....................................................86  
Table 12-3: CLKOUT and I/O Timing Requirements -  
PIC16CR54....................................................88  
Table 12-4: Reset, Watchdog Timer, and Device Reset  
Timer - PIC16CR54 .......................................89  
Table 12-5: Timer0 Clock Requirements - PIC16CR54....90  
Table 13-1: RC Oscillator Frequencies.............................91  
Table 13-2: Input Capacitance for PIC16CR54.................99  
Table D-1: PIC16C5X Family of Devices.......................117  
Table D-2: PIC16C62X Family of Devices.....................118  
Table D-3: PIC16C6X Family of Devices.......................119  
Table D-4: PIC16C7X Family of Devices.......................120  
Table D-5: PIC16C8X Family of Devices.......................121  
Table D-6: PIC17CXX Family of Devices ......................122  
Table D-7: Pin Compatible Devices...............................123  
DS30015M-page 128  
1995 Microchip Technology Inc.  
PIC16C5X  
CONNECTING TO MICROCHIP BBS  
Trademarks:  
Connect worldwide to the Microchip BBS using the  
CompuServe communications network. In most  
cases a local call is your only expense. The Microchip  
BBS connection does not use CompuServe  
membership services, therefore, you do not need  
CompuServe membership to join Microchip's BBS.  
PICMASTER and PICSTART are trademarks of  
Microchip Technology Inc. PIC is a registered  
trademark of Microchip Technology Incorporated  
in the U.S.A.  
PRO MATE, fuzzyLAB, the Microchip logo and  
name are trademarks of Microchip Technology  
Incorporated.  
There is no charge for connecting to the BBS, except  
toll charge to CompuServe access number, where  
applicable. You do not need to be a CompuServe  
member to take advantage of this connection (you  
never actually log in to CompuServe).  
fuzzyTECH is a registered trademark of Inform  
Software Corporation.  
2
I C is a trademark of Philips Corporation.  
The procedure to connect will vary slightly from  
country to country. Please check with your local  
CompuServe agent for details if you have a problem.  
CompuServe service allows multiple users at baud  
rates up to 14,400 bps.  
IBM, IBM PC-AT are registered trademarks of  
International Business Machines Corp.  
Pentium is a trademark of Intel Corporation.  
MS-DOS and Microsoft Windows are registered  
trademarks of Microsoft Corporation. Windows is  
a trademark of Microsoft Corporation.  
The following connect procedure applies in most  
locations:  
CompuServe is a registered trademark of  
CompuServe Incorporated.  
1. Set your modem to 8 bit, No parity, and One stop  
(8N1). This is not the normal CompuServe  
setting which is 7E1.  
All other trademarks mentioned herein are the  
property of their respective companies.  
2. Dial your local CompuServe access number.  
3. Depress <ENTER > and a garbage string will  
appear because CompuServe is expecting a  
7E1 setting.  
4. Type +, depress <ENTER > and Host Name:  
will appear.  
5. Type MCHIPBBS, depress < ENTER > and  
you will be connected to the Microchip BBS.  
In the United States, to find CompuServe's phone  
number closest to you, set your modem to 7E1 and  
dial (800) 848-4480 for 300-2400 baud or (800)  
331-7166 for 9600-14400 baud connection. After the  
system responds with Host Name:  
Type, NETWORK, depress < ENTER > and follow  
CompuServe's directions.  
For voice information (or calling from overseas), you  
may call (614) 457-1550 for your local CompuServe  
number.  
ACCESS TO THE INTERNET  
Microchip’s current WWW address is listed on the  
back page of this data sheet under Worldwide Sales &  
Service - Americas - Corporate Office.  
1995 Microchip Technology Inc.  
DS30015M-page 129  
This document was created with FrameMaker 4 0 4  
PIC16C5X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product.  
If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can  
better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Device:  
Literature Number:  
PIC16C5X  
Questions:  
1. What are the best features of this document?  
DS30015M  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30015M-page 130  
1995 Microchip Technology Inc.  
PIC16C5X  
PIC16C54/55/56/57 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information (e.g., on pricing or delivery) refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
-XX  
Oscillator Temperature Package  
Type Range  
Pattern  
Examples:  
a) PIC16C54 - XT/PXXX = "XT" oscillator,  
commercial temp., PDIP, QTP pattern.  
(2)  
(2)  
(2)  
(2)  
Device  
PIC16C54, PIC16C54T  
PIC16C55, PIC16C55T  
PIC16C56, PIC16C56T  
PIC16C57, PIC16C57T  
b) PIC16C55 - XTI/SO = "XT" oscillator,  
industrial temp., SOIC (OTP device)  
c) PIC16C55 /JW  
= Commercial temp.  
CERDIP with window.  
Oscillator Type  
RC  
LP  
XT  
HS  
10  
= Resistor Capacitor  
= Low Power Crystal  
= Standard Crystal/Resonator  
= High Speed Crystal  
= 10 MHz Crystal  
d) PIC16C57 - RC/S = "RC" oscillator, com-  
mercial temp., dice in waffle pack.  
(1)  
(3)  
b
= No type for JW devices  
Note 1: b = blank  
(1)  
Temperature  
Range  
b
I
=
0°C to +70°C (Commercial)  
2: T = in tape and reel - SOIC, SSOP  
packages only.  
= -40°C to +85°C (Industrial)  
= -40°C to +125°C (Automotive)  
E
3: UV erasable devices are tested to all  
available voltage/frequency options.  
Erased devices are oscillator type RC.  
The user can select RC, LP, XT or HS  
oscillators by programming the appro-  
priate configuration bits.  
Package  
JW  
P
S
SO  
SP  
SS  
= Windowed CERDIP  
= PDIP  
= Die in Waffle Pack  
= SOIC (Gull Wing, 300 mil body)  
= Skinny PDIP (28 pin, 300 mil body)  
= SSOP (209 mil body)  
Pattern  
3-digit Pattern Code for QTP (blank otherwise)  
PIC16CR54 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information (e.g., on pricing or delivery) refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
-XX  
Oscillator Temperature Package  
Type Range  
Pattern  
Examples:  
a)  
PIC16CR54 - XT/P169 = "XT" oscillator,  
commercial temp., PDIP with ROM pattern  
169.  
(2)  
Device  
PIC16CR54, PIC16CR54T  
Oscillator Type  
RC  
LP  
XT  
HS  
10  
= Resistor Capacitor  
= Low Power Crystal  
= Standard Crystal/Resonator  
= High Speed Crystal  
= 10 MHz Crystal  
b)  
PIC16CR54 - LP I/SO592 = "LP" oscillator,  
industrial temp., SOIC device with ROM  
code 592.  
(1)  
Temperature  
Range  
b
I
=
0°C to +70°C (Commercial)  
= -40°C to +85°C (Industrial)  
= -40°C to +125°C (Automotive)  
Note 1: b = blank  
2: T = in tape and reel - SOIC, SSOP  
packages only.  
E
Package  
P
S
SO  
SS  
= PDIP  
= Die in Waffle Pack  
= SOIC (Gull Wing, 300 mil body)  
= SSOP (209 mil body)  
Pattern  
3-digit Pattern Code for ROM (blank otherwise)  
Sales and Support  
Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office (see below)  
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277  
3. The Microchip’s Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.  
1995 Microchip Technology Inc.  
DS30015M-page 131  
This document was created with FrameMaker 4 0 4  
WORLDWIDE SALES & SERVICE  
AMERICAS  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Hong Kong  
United Kingdom  
Microchip Technology Inc.  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 602 786-7200 Fax: 602 786-7277  
Technical Support: 602 786-7627  
Web: http://www.mchip.com/microchip  
Microchip Technology  
Unit No. 3002-3004, Tower 1  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T. Hong Kong  
Tel: 852 2 401 1200 Fax: 852 2 401 3431  
Arizona Microchip Technology Ltd.  
Unit 6, The Courtyard  
Meadow Bank, Furlong Road  
Bourne End, Buckinghamshire SL8 5AJ  
Tel: 44 0 1628 851077 Fax: 44 0 1628 850259  
France  
Korea  
Arizona Microchip Technology SARL  
2 Rue du Buisson aux Fraises  
91300 Massy - France  
Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 Muenchen, Germany  
Tel: 49 89 627 144 0 Fax: 49 89 627 144 44  
Atlanta  
Microchip Technology  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku,  
Seoul, Korea  
Tel: 82 2 554 7200 Fax: 82 2 558 5934  
Singapore  
Microchip Technology  
200 Middle Road  
#10-03 Prime Centre  
Singapore 188980  
Tel: 65 334 8870 Fax: 65 334 8850  
Taiwan  
Microchip Technology  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
Tel: 886 2 717 7175 Fax: 886 2 545 0139  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770 640-0034 Fax: 770 640-0307  
Boston  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508 480-9990  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 708 285-0071 Fax: 708 285-0075  
Dallas  
Microchip Technology Inc.  
14651 Dallas Parkway, Suite 816  
Dallas, TX 75240-8809  
Tel: 214 991-7177 Fax: 214 991-8588  
Dayton  
Microchip Technology Inc.  
Suite 150  
Italy  
Fax: 508 480-8575  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Pegaso Ingresso No. 2  
Via Paracelso 23, 20041  
Agrate Brianza (MI) Italy  
Tel: 39 039 689 9939 Fax: 39 039 689 9883  
JAPAN  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
3-18-20, Shin Yokohama  
Kohoku-Ku, Yokohama  
Kanagawa 222 Japan  
Tel: 81 45 471 6166 Fax: 81 45 471 6122  
Two Prestige Place  
Miamisburg, OH 45342  
Tel: 513 291-1654 Fax: 513 291-9175  
12/04/95  
Los Angeles  
Microchip Technology Inc.  
18201 Von Karman, Suite 455  
Irvine, CA 92715  
Tel: 714 263-1888 Fax: 714 263-1338  
NewYork  
Microchip Technology Inc.  
150 Motor Parkway, Suite 416  
Hauppauge, NY 11788  
Tel: 516 273-5305 Fax: 516 273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408 436-7950 Fax: 408 436-7955  
All rights reserved. 1995, Microchip Technology Incorporated, USA.  
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty  
is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property  
rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip.  
No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. All rights  
reserved. All other trademarks mentioned herein are the property of their respective companies.  
1995 Microchip Technology Inc.  
DS30015M-page 132  

相关型号:

PIC16CR54-HSISS

8-BIT, MROM, 20 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, SSOP-20
MICROCHIP

PIC16CR54-HSP

8-BIT, MROM, 20 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18
MICROCHIP

PIC16CR54-HSSO

8-BIT, MROM, 20 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SOIC-18
MICROCHIP

PIC16CR54-HSSP

8-BIT, MROM, 20 MHz, RISC MICROCONTROLLER, PDIP18, SKINNY, DIP-18
MICROCHIP

PIC16CR54-HSSS

8-BIT, MROM, 20 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, SSOP-20
MICROCHIP

PIC16CR54-I/JW

8-BIT, UVPROM, 4 MHz, RISC MICROCONTROLLER, CDIP18, 0.300 INCH, WINDOWED, CERDIP-18
MICROCHIP

PIC16CR54-IJW

8-BIT, MROM, 10 MHz, RISC MICROCONTROLLER, CDIP18, 0.300 INCH, WINDOWED, CERDIP-18
MICROCHIP

PIC16CR54-LP/P

8-Bit Microcontroller
ETC

PIC16CR54-LP/SO

8-BIT, OTPROM, 0.25 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SOIC-18
MICROCHIP

PIC16CR54-LP/SS

8-BIT, OTPROM, 0.25 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, SSOP-20
MICROCHIP

PIC16CR54-LPE/P

8-BIT, OTPROM, 0.25 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18
MICROCHIP

PIC16CR54-LPE/SO

8-BIT, OTPROM, 0.25 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SOIC-18
MICROCHIP