PIC16CR54A-20I/PG [MICROCHIP]

8-BIT, MROM, 20 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18;
PIC16CR54A-20I/PG
型号: PIC16CR54A-20I/PG
厂家: MICROCHIP    MICROCHIP
描述:

8-BIT, MROM, 20 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18

微控制器和处理器 外围集成电路 光电二极管 时钟
文件: 总84页 (文件大小:641K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16CR54C  
M
ROM-Based 8-Bit CMOS Microcontroller Series  
Pin Diagrams  
Devices Included in this Data Sheet:  
• PIC16CR54C  
PDIP and SOIC  
18  
17  
16  
15  
14  
RA1  
RA0  
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
1  
RA2  
RA3  
T0CKI  
MCLRVPP  
VSS  
High-Performance RISC CPU:  
• Only 33 single word instructions to learn  
2
3
4
5
6
7
8
9
• All instructions are single cycle (200 ns) except for  
program branches which are two-cycle  
RB7  
RB6  
RB5  
RB4  
13  
12  
RB0  
RB1  
RB2  
RB3  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
11  
10  
Device  
Pins I/O  
18 12  
ROM  
RAM  
PIC16CR54C  
512  
25  
• 12-bit wide instructions  
• 8-bit wide data path  
• Seven or eight special function hardware registers  
Two-level deep hardware stack  
• Direct, indirect and relative addressing modes for  
data and instructions  
SSOP  
Peripheral Features:  
• 8-bit real time clock/counter (TMR0) with 8-bit  
programmable prescaler  
RA2  
RA3  
T0CKI  
MCLRVPP  
VSS  
1  
2
3
4
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
RA1  
RA0  
OSC1/CLKIN  
OSC2/CLKOUT  
• Power-On Reset (POR)  
5
6
7
8
VDD  
VDD  
RB7  
RB6  
RB5  
RB4  
VSS  
RB0  
RB1  
• Device Reset Timer (DRT)  
• Watchdog Timer (WDT) with its own on-chip  
RC oscillator for reliable operation  
RB2  
RB3  
9
10  
• Programmable code-protection  
• Power saving SLEEP mode  
• Selectable oscillator options:  
- RC:  
- XT:  
- HS:  
- LP:  
Low-cost RC oscillator  
Standard crystal/resonator  
High-speed crystal/resonator  
Power saving, low-frequency crystal  
CMOS Technology:  
• Low-power, high-speed CMOS ROM technology  
• Fully static design  
• Wide-operating voltage and temperature range:  
- ROM Commercial/Industrial 3.0V to 5.5V  
• Low-power consumption  
- < 2 mA typical @ 5V, 4 MHz  
- 15 µA typical @ 3V, 32 kHz  
- < 0.6 µA typical standby current  
(with WDT disabled) @ 3V, 0°C to 70°C  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 1  
PIC16CR54C  
Device Differences  
Oscillator  
Selection  
(Program)  
Process  
Technology  
(Microns)  
Voltage  
ROM  
Equivalent  
MCLR  
Filter  
Device  
Range  
Oscillator  
PIC16C52  
PIC16C54  
PIC16C54A  
PIC16C54B  
3.0-6.25  
2.5-6.25  
2.0-6.25  
3.0-5.5  
User  
Factory  
User  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
0.9  
1.2  
0.9  
0.7  
PIC16CR54A  
No  
No  
No  
Yes  
User  
PIC16CR54B  
or  
PIC16CR54C  
PIC16C55  
2.5-6.25  
3.0-5.5  
2.5-6.25  
3.0-5.5  
2.5-6.25  
3.0-5.5  
2.5-5.5  
2.0-6.25  
Factory  
User  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
1.7  
0.7  
1.7  
0.7  
1.2  
0.7  
0.7  
0.9  
No  
Yes  
No  
PIC16C55A  
PIC16C56  
Factory  
User  
PIC16C56A  
PIC16C57  
PIC16CR56A  
Yes  
No  
Factory  
User  
PIC16C57C  
PIC16CR57C  
PIC16C58A  
PIC16CR57C  
NA  
Yes  
Yes  
Factory  
User  
(2)  
PIC16CR58A  
No  
PIC16C58B  
3.0-5.5  
2.5-6.25  
2.5-5.5  
3.0-5.5  
2.5-5.5  
2.5-6.25  
2.5-6.25  
2.5-5.5  
User  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
0.7  
1.2  
0.7  
0.7  
0.7  
0.9  
0.9  
0.7  
PIC16CR58B  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PIC16CR54A  
PIC16CR54B  
PIC16CR54C  
PIC16CR56A  
PIC16CR57B  
PIC16CR58A  
PIC16CR58B  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.  
Note 2: In PIC16LV58A, MCLR Filter = Yes  
DS40191A-page 2  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
Table of Contents  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
General Description............................................................................................................................................. 5  
PIC16C5X Device Varieties................................................................................................................................. 7  
Architectural Overview......................................................................................................................................... 9  
Memory Organization ........................................................................................................................................ 13  
I/O Ports ............................................................................................................................................................ 19  
Timer0 Module and TMR0 Register ..................................................................................................................21  
Special Features of the CPU.............................................................................................................................25  
Instruction Set Summary ................................................................................................................................... 37  
Development Support........................................................................................................................................ 49  
10.0 Electrical Characteristics - PIC16CR54C ..........................................................................................................53  
11.0 DC and AC Characteristics - PIC16CR54C.......................................................................................................63  
12.0 Packaging Information....................................................................................................................................... 73  
Appendix A: Compatibility ............................................................................................................................................. 77  
Index ............................................................................................................................................................................ 79  
On-Line Support............................................................................................................................................................ 81  
Reader Response ......................................................................................................................................................... 82  
PIC16CR54C Product Identification System.................................................................................................................83  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 3  
PIC16CR54C  
NOTES:  
DS40191A-page 4  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
1.1  
Applications  
1.0  
GENERAL DESCRIPTION  
The PIC16C5X from Microchip Technology is a family  
of low-cost, high performance, 8-bit, fully static,  
EPROM/ ROM-based CMOS microcontrollers. It  
employs a RISC architecture with only 33 single  
word/single cycle instructions. All instructions are sin-  
gle cycle (200 ns) except for program branches which  
take two cycles. The PIC16C5X delivers performance  
an order of magnitude higher than its competitors in the  
same price category. The 12-bit wide instructions are  
highly symmetrical resulting in 2:1 code compression  
over other 8-bit microcontrollers in its class. The easy  
to use and easy to remember instruction set reduces  
development time significantly.  
The PIC16C5X series fits perfectly in applications rang-  
ing from high-speed automotive and appliance motor  
control to low-power remote transmitters/receivers,  
pointing devices and telecom processors.The EPROM  
technology makes customizing application programs  
(transmitter codes, motor speeds, receiver frequen-  
cies, etc.) extremely fast and convenient. The small  
footprint packages, for through hole or surface mount-  
ing, make this microcontroller series perfect for applica-  
tions with space limitations. Low-cost, low-power, high  
performance, ease of use and I/O flexibility make the  
PIC16C5X series very versatile even in areas where no  
microcontroller use has been considered before (e.g.,  
timer functions, replacement of “glue” logic in larger  
systems, coprocessor applications).  
The PIC16C5X products are equipped with special fea-  
tures that reduce system cost and power requirements.  
The Power-On Reset (POR) and Device Reset Timer  
(DRT) eliminate the need for external reset circuitry.  
There are four oscillator configurations to choose from,  
including the power-saving LP (Low Power) oscillator  
and cost saving RC oscillator. Power saving SLEEP  
mode, Watchdog Timer and code protection features  
improve system cost, power and reliability.  
The UV erasable CERDIP packaged versions are ideal  
for code development, while the cost-effective One  
Time Programmable (OTP) versions are suitable for  
production in any volume. The customer can take full  
advantage of Microchip’s price leadership in OTP  
microcontrollers while benefiting from the OTP’s  
flexibility.  
The PIC16C5X products are supported by  
a
full-featured macro assembler, a software simulator, an  
in-circuit emulator, a ‘C’ compiler, fuzzy logic support  
tools, a low-cost development programmer, and a full  
featured programmer. All the tools are supported on  
IBM PC and compatible machines.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 5  
PIC16CR54C  
TABLE 1-1:  
PIC16C5X FAMILY OF DEVICES  
PIC16C52  
PIC16C54s  
20  
PIC16CR54s  
20  
PIC16C55s  
20  
PIC16C56s  
20  
Maximum Frequency  
of Operation (MHz)  
4
Clock  
EPROM Program Memory  
(x12 words)  
384  
512  
512  
1K  
Memory  
ROM Program Memory  
(x12 words)  
512  
RAM Data Memory (bytes)  
Timer Module(s)  
I/O Pins  
25  
25  
25  
24  
25  
Peripherals  
Features  
TMR0  
12  
TMR0  
12  
TMR0  
12  
TMR0  
20  
TMR0  
12  
Number of Instructions  
Packages  
33  
33  
33  
33  
33  
18-pin DIP,  
SOIC  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
28-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
20-pin SSOP  
20-pin SSOP  
28-pin SSOP  
20-pin SSOP  
All PICmicro™ Family devices have Power-on Reset, selectable Watchdog Timer (except PIC16C52), selectable code  
protect and high I/O current capability.  
PIC16CR56s  
20  
PIC16C57s  
20  
PIC16CR57s  
20  
PIC16C58s  
20  
PIC16CR58s  
20  
Maximum Frequency  
of Operation (MHz)  
Clock  
EPROM Program Memory  
(x12 words)  
2K  
2K  
Memory  
ROM Program Memory  
(x12 words)  
1K  
2K  
2K  
RAM Data Memory (bytes)  
25  
72  
72  
73  
73  
Peripherals Timer Module(s)  
TMR0  
12  
TMR0  
20  
TMR0  
20  
TMR0  
12  
TMR0  
12  
I/O Pins  
Number of Instructions  
Packages  
33  
33  
33  
33  
33  
Features  
18-pin DIP,  
SOIC;  
28-pin DIP,  
SOIC;  
28-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
20-pin SSOP  
28-pin SSOP 28-pin SSOP  
20-pin SSOP 20-pin SSOP  
All PICmicro™ Family devices have Power-on Reset, selectable Watchdog Timer (except PIC16C52), selectable code  
protect and high I/O current capability.  
DS40191A-page 6  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
2.3  
Quick-Turnaround-Production (QTP)  
Devices  
2.0  
PIC16C5X DEVICE VARIETIES  
A variety of frequency ranges and packaging options  
are available. Depending on application and  
production requirements, the proper device option can  
be selected using the information in this section. When  
placing orders, please use the PIC16CR54C Product  
Identification System at the back of this data sheet to  
specify the correct part number.  
Microchip offers a QTP Programming Service for  
factory production orders. This service is made  
available for users who choose not to program a  
medium to high quantity of units and whose code  
patterns have stabilized. The devices are identical to  
the OTP devices but with all EPROM locations and  
configuration bit options already programmed by the  
factory. Certain code and prototype verification  
procedures apply before production shipments are  
available. Please contact your Microchip Technology  
sales office for more details.  
For the PIC16C5X family of devices, there are four  
device types, as indicated in the device number:  
1. C, as in PIC16C54. These devices have  
EPROM program memory and operate over the  
standard voltage range.  
2. LC, as in PIC16LC54A. These devices have  
EPROM program memory and operate over an  
extended voltage range.  
2.4  
Serialized  
Quick-Turnaround-Production  
(SQTPSM) Devices  
3. LV, as in PIC16LV54A. These devices have  
EPROM program memory and operate over a  
2.0V to 3.8V range.  
Microchip offers the unique programming service  
where a few user-defined locations in each device are  
programmed with different serial numbers. The serial  
numbers may be random, pseudo-random or  
sequential. The devices are identical to the OTP  
devices but with all EPROM locations and  
configuration bit options already programmed by the  
factory.  
4. CR, as in PIC16CR54A. These devices have  
ROM program memory and operate over the  
standard voltage range.  
5. LCR, as in PIC16LCR54B. These devices have  
ROM program memory and operate over an  
extended voltage range.  
Serial programming allows each device to have a  
unique number which can serve as an entry code,  
password or ID number.  
2.1  
UV Erasable Devices (EPROM)  
The UV erasable versions, offered in CERDIP  
packages, are optimal for prototype development and  
pilot programs  
2.5  
Read Only Memory (ROM) Devices  
Microchip offers masked ROM versions of several of  
the highest volume parts, giving the customer a low  
cost option for high volume, mature products.  
UV erasable devices can be programmed for any of  
the four oscillator configurations. Microchip's  
PICSTART and PRO MATE programmers both  
support programming of the PIC16CR54C. Third party  
programmers also are available; refer to the Third  
Party Guide for a list of sources.  
2.2  
One-Time-Programmable (OTP)  
Devices  
The availability of OTP devices is especially useful for  
customers expecting frequent code changes and  
updates.  
The OTP devices, packaged in plastic packages,  
permit the user to program them once. In addition to  
the program memory, the configuration bits must be  
programmed.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 7  
PIC16CR54C  
NOTES:  
DS40191A-page 8  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
The PIC16CR54C device contains an 8-bit ALU and  
3.0  
ARCHITECTURAL OVERVIEW  
working register. The ALU is  
a general purpose  
The high performance of the PIC16CR54C can be  
attributed to number of architectural features  
arithmetic unit. It performs arithmetic and Boolean  
functions between data in the working register and any  
register file.  
a
commonly found in RISC microprocessors. To begin  
with, the PIC16CR54C uses a Harvard architecture in  
which program and data are accessed on separate  
buses. This improves bandwidth over traditional von  
Neumann architecture where program and data are  
fetched on the same bus. Separating program and data  
memory further allows instructions to be sized  
differently than the 8-bit wide data word. Instruction  
opcodes are 12-bits wide making it possible to have all  
The ALU is 8-bits wide and capable of addition,  
subtraction, shift and logical operations. Unless  
otherwise mentioned, arithmetic operations are two's  
complement in nature. In two-operand instructions,  
typically one operand is the W (working) register. The  
other operand is either a file register or an immediate  
constant. In single operand instructions, the operand  
is either the W register or a file register.  
single word instructions.  
A 12-bit wide program  
memory access bus fetches a 12-bit instruction in a  
single cycle. A two-stage pipeline overlaps fetch and  
execution of instructions. Consequently, all instructions  
(33) execute in a single cycle (200ns @ 20MHz) except  
for program branches.  
The W register is an 8-bit working register used for  
ALU operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC),  
and Zero (Z) bits in the STATUS register. The C and  
DC bits operate as a borrow and digit borrow out bit,  
respectively, in subtraction. See the SUBWFand ADDWF  
instructions for examples.  
The PIC16CR54C address 512 x 12 of program  
memory. All program memory is internal.  
The PIC16CR54C can directly or indirectly address its  
register files and data memory. All special function  
registers including the program counter are mapped in  
the data memory. The PIC16CR54C has a highly  
orthogonal (symmetrical) instruction set that makes it  
possible to carry out any operation on any register  
using any addressing mode. This symmetrical nature  
and lack of ‘special optimal situations’ make  
programming with the PIC16CR54C simple yet  
efficient. In addition, the learning curve is reduced  
significantly.  
A simplified block diagram is shown in Figure 3-1, with  
the corresponding device pins described in Table 3-1.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 9  
PIC16CR54C  
FIGURE 3-1: PIC16CR54C SERIES BLOCK DIAGRAM  
9-11  
T0CKI  
PIN  
OSC1 OSC2 MCLR  
CONFIGURATION WORD  
9-11  
STACK 1  
STACK2  
ROM  
512 X 12  
“DISABLE” “OSC  
PC  
SELECT”  
WATCHDOG  
TIMER  
12  
2
“CODE  
OSCILLATOR/  
TIMING &  
CONTROL  
PROTECT”  
INSTRUCTION  
REGISTER  
WDT TIME  
OUT  
CLKOUT  
WDT/TMR0  
PRESCALER  
9
12  
8
“SLEEP”  
INSTRUCTION  
DECODER  
6
“OPTION”  
OPTION REG.  
FROM W  
DIRECT ADDRESS  
DIRECT RAM  
ADDRESS  
GENERAL  
PURPOSE  
REGISTER  
FILE  
5
8
(SRAM)  
25 Bytes  
STATUS  
TMR0  
FSR  
8
DATA BUS  
8
W
ALU  
FROM W  
8
FROM W  
4
8
4
“TRIS 5”  
“TRIS 6”  
TRISB PORTB  
TRISA PORTA  
4
8
RA3:RA0  
RB7:RB0  
DS40191A-page 10  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
TABLE 3-1:  
Name  
PINOUT DESCRIPTION - PIC16CR54C  
DIP, SOIC SSOP I/O/P Input  
Description  
No.  
No. Type Levels  
RA0  
RA1  
RA2  
RA3  
17  
18  
1
19  
20  
1
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
Bi-directional I/O port  
2
2
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
6
7
8
7
8
9
10  
11  
12  
13  
14  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
Bi-directional I/O port  
9
10  
11  
12  
13  
T0CKI  
3
3
I
ST  
Clock input to Timer0. Must be tied to VSS or VDD, if not in  
use, to reduce current consumption.  
MCLR/VPP  
4
4
I
ST  
Master clear (reset) input/verify voltage input. This pin is an  
active low reset to the device.  
(1)  
OSC1/CLKIN  
16  
15  
18  
17  
I
ST  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and denotes  
the instruction cycle rate.  
VDD  
VSS  
14  
5
15,16  
5,6  
P
P
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Legend: I = input, O = output, I/O = input/output,  
P = power, — = Not Used, TTL = TTL input,  
ST = Schmitt Trigger input  
Note 1: Schmitt Trigger input only when in RC mode.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 11  
PIC16CR54C  
3.1  
Clocking Scheme/Instruction Cycle  
3.2  
Instruction Flow/Pipelining  
The clock input (OSC1/CLKIN pin) is internally divided  
by four to generate four non-overlapping quadrature  
clocks namely Q1, Q2, Q3 and Q4. Internally, the  
program counter is incremented every Q1, and the  
instruction is fetched from program memory and  
latched into instruction register in Q4. It is decoded  
and executed during the following Q1 through Q4. The  
clocks and instruction execution flow is shown in  
Figure 3-2 and Example 3-1.  
An Instruction Cycle consists of four Q cycles (Q1, Q2,  
Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO)  
then two cycles are required to complete the  
instruction (Example 3-1).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is  
latched into the Instruction Register (IR) in cycle Q1.  
This instruction is then decoded and executed during  
the Q2, Q3, and Q4 cycles. Data memory is read  
during Q2 (operand read) and written during Q4  
(destination write).  
FIGURE 3-2: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Q4  
PC  
Internal  
phase  
clock  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW  
1. MOVLW 55H  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3  
Flush  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
DS40191A-page 12  
Preliminary  
1998 Microchip Technology Inc.  
 
 
PIC16CR54C  
4.2.1  
GENERAL PURPOSE REGISTER FILE  
4.0  
MEMORY ORGANIZATION  
PIC16CR54C memory is organized into program  
memory and data memory. For devices with more than  
512 bytes of program memory, a paging scheme is  
used. Program memory pages are accessed using  
one or two STATUS register bits. For devices with a  
data memory register file of more than 32 registers, a  
banking scheme is used. Data memory banks are  
accessed using the File Selection Register (FSR).  
The register file is accessed either directly or indirectly  
through the file select register FSR (Section 4.7).  
FIGURE 4-2:  
PIC16CR54C REGISTER FILE  
MAP  
File Address  
INDF(1)  
TMR0  
PCL  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
4.1  
Program Memory Organization  
The PIC16CR54C has a 9-bit Program Counter (PC)  
capable of addressing a 512 x 12 program memory  
space (Figure 4-1). Accessing a location above the  
STATUS  
FSR  
physically implemented address will cause  
wraparound.  
a
PORTA  
PORTB  
The reset vector for the PIC16CR54C is at 1FFh. A  
NOP at the reset vector location will cause a restart at  
location 000h.  
FIGURE 4-1: PIC16CR54C PROGRAM  
MEMORY MAP AND STACK  
General  
Purpose  
Registers  
0Fh  
10h  
PC<8:0>  
9
CALL, RETLW  
Stack Level 1  
Stack Level 2  
1Fh  
Note 1: Not a physical register. See Section 4.7  
000h  
On-chip  
Program  
Memory  
0FFh  
100h  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral functions to control the  
operation of the device (Table 4-1).  
Reset Vector  
1FFh  
The special registers can be classified into two sets.  
The special function registers associated with the  
“core” functions are described in this section. Those  
related to the operation of the peripheral features are  
described in the section for each peripheral feature.  
4.2  
Data Memory Organization  
Data memory is composed of registers, or bytes of  
RAM. Therefore, data memory for a device is specified  
by its register file. The register file is divided into two  
functional groups: special function registers and  
general purpose registers.  
The special function registers include the TMR0  
register, the Program Counter (PC), the Status  
Register, the I/O registers (ports), and the File Select  
Register (FSR). In addition, special purpose registers  
are used to control the I/O port configuration and  
prescaler options.  
The general purpose registers are used for data and  
control information under command of the instructions.  
For the PIC16CR54C, the register file is composed of  
7 special function registers and 25 general purpose  
registers (Figure 4-2).  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 13  
 
 
PIC16CR54C  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Address  
Name  
TRIS  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
N/A  
N/A  
00h  
01h  
I/O control registers (TRISA, TRISB)  
1111 1111 1111 1111  
--11 1111 --11 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
OPTION  
INDF  
Contains control bits to configure Timer0 and Timer0/WDT prescaler  
Uses contents of FSR to address data memory (not a physical register)  
8-bit real-time clock/counter  
TMR0  
(1)  
02h  
PCL  
Low order 8 bits of PC  
1111 1111 1111 1111  
0001 1xxx 000q quuu  
1xxx xxxx 1uuu uuuu  
---- xxxx ---- uuuu  
xxxx xxxx uuuu uuuu  
03h  
04h  
05h  
06h  
STATUS  
FSR  
PA2  
PA1  
PA0  
TO  
PD  
Z
DC  
C
Indirect data memory address pointer  
PORTA  
PORTB  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
RB7  
RB6  
RB5  
RB4  
Legend: Shaded boxes = unimplemented or unused, = unimplemented, read as '0' (if applicable)  
x= unknown, u= unchanged, q= see the tables in Section 7.7 for possible values.  
Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.5  
for an explanation of how to access these bits.  
DS40191A-page 14  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
4.3  
STATUS Register  
This register contains the arithmetic status of the ALU,  
the RESET status, and the page preselect bits for  
program memories larger than 512 words.  
It is recommended, therefore, that only BCF, BSF and  
MOVWF instructions be used to alter the STATUS  
register because these instructions do not affect the Z,  
DC or C bits from the STATUS register. For other  
instructions, which do affect STATUS bits, see  
Section 8.0, Instruction Set Summary.  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to  
the device logic. Furthermore, the TO and PD bits are  
not writable. Therefore, the result of an instruction with  
the STATUS register as destination may be different  
than intended.  
FIGURE 4-3: STATUS REGISTER (ADDRESS:03h)  
R/W-0  
PA2  
R/W-0  
PA1  
R/W-0  
PA0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
- n = Value at POR reset  
bit7  
6
5
4
3
2
1
bit0  
bit 7:  
PA2: This bit unused at this time.  
Use of the PA2 bit as a general purpose read/write bit is not recommended, since this may affect upward  
compatibility with future products.  
bit 6-5: Not Applicable  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
TO: Time-out bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
Z: Zero bit  
1 = The result of an arithmetic or logic operation is zero  
0 = The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (for ADDWFand SUBWFinstructions)  
ADDWF  
1 = A carry from the 4th low order bit of the result occurred  
0 = A carry from the 4th low order bit of the result did not occur  
SUBWF  
1 = A borrow from the 4th low order bit of the result did not occur  
0 = A borrow from the 4th low order bit of the result occurred  
bit 0:  
C: Carry/borrow bit (for ADDWF, SUBWFand RRF, RLFinstructions)  
ADDWF  
SUBWF  
RRF or RLF  
1 = A carry occurred  
0 = A carry did not occur  
1 = A borrow did not occur  
0 = A borrow occurred  
Load bit with LSb or MSb, respectively  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 15  
PIC16CR54C  
By executing the OPTION instruction, the contents of  
the W register will be transferred to the OPTION  
register. A RESET sets the OPTION<5:0> bits.  
4.4  
OPTION Register  
The OPTION register is  
register which contains various control bits to  
configure the Timer0/WDT prescaler and Timer0.  
a
6-bit wide, write-only  
FIGURE 4-4: OPTION REGISTER  
U-0  
U-0  
6
W-1  
T0CS  
5
W-1  
T0SE  
4
W-1  
PSA  
3
W-1  
PS2  
2
W-1  
PS1  
1
W-1  
PS0  
W
U
= Writable bit  
= Unimplemented bit  
bit7  
bit0  
- n = Value at POR reset  
bit 7-6: Unimplemented.  
bit 5:  
bit 4:  
bit 3:  
T0CS: Timer0 clock source select bit  
1 = Transition on T0CKI pin  
0 = Internal instruction cycle clock (CLKOUT)  
T0SE: Timer0 source edge select bit  
1 = Increment on high-to-low transition on T0CKI pin  
0 = Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler assignment bit  
1 = Prescaler assigned to the WDT (not implemented on PIC16C52)  
0 = Prescaler assigned to Timer0  
bit 2-0: PS2:PS0: Prescaler rate select bits  
Bit Value  
Timer0 Rate WDT Rate (not implemented on PIC16C52)  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
DS40191A-page 16  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
4.5  
Program Counter  
FIGURE 4-5: LOADING OF PC  
BRANCH INSTRUCTIONS -  
PIC16CR54C  
As a program instruction is executed, the Program  
Counter (PC) will contain the address of the next  
program instruction to be executed. The PC value is  
increased by one every instruction cycle, unless an  
instruction changes the PC.  
GOTO Instruction  
8
7
0
PCL  
PC  
For a GOTOinstruction, bits 8:0 of the PC are provided  
by the GOTO instruction word. The PC Latch (PCL) is  
mapped to PC<7:0> (Figure 4-5 and Figure 4-6).  
Instruction Word  
For a CALL instruction, or any instruction where the  
PCL is the destination, bits 7:0 of the PC again are  
provided by the instruction word. However, PC<8>  
does not come from the instruction word, but is always  
cleared (Figure 4-10 and Figure 4-11)/  
CALL or Modify PCL Instruction  
8
7
0
PCL  
PC  
Instructions where the PCL is the destination, or  
Modify PCL instructions, include MOVWF PC, ADDWF  
PC, and BSF PC, 5.  
Reset to '0'  
Instruction Word  
4.5.1  
EFFECTS OF RESET  
.
Note: Because PC<8> is cleared in the CALL  
instruction, or any Modify PCL instruction,  
all subroutine calls or computed jumps are  
limited to the first 256 locations of any pro-  
gram memory page (512 words long).  
The Program Counter is set upon a RESET, which  
means that the PC addresses the last location in the  
last page i.e., the reset vector.  
The STATUS register page preselect bits are cleared  
upon  
a RESET, which means that page 0 is  
pre-selected.  
Therefore, upon a RESET, a GOTO instruction at the  
reset vector location will automatically cause the  
program to jump to page 0.  
4.6  
Stack  
PIC16CR54C device has a 9-bit, two-level hardware  
push/pop stack (Figure 4-1).  
A CALLinstruction will push the current value of stack  
1 into stack 2 and then push the current program  
counter value, incremented by one, into stack level 1. If  
more than two sequential CALL’s are executed, only  
the most recent two return addresses are stored.  
A RETLWinstruction will pop the contents of stack level  
1 into the program counter and then copy stack level 2  
contents into level 1. If more than two sequential  
RETLW’s are executed, the stack will be filled with the  
address previously stored in level 2. Note that the  
W register will be loaded with the literal value specified  
in the instruction. This is particularly useful for the  
implementation of data look-up tables within the  
program memory.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 17  
 
PIC16CR54C  
4.7  
Indirect Data Addressing; INDF and  
FSR Registers  
EXAMPLE 4-2: HOW TO CLEAR RAM  
USING INDIRECT  
ADDRESSING  
The INDF register is not  
a physical register.  
movlw 0x10  
;initialize pointer  
Addressing INDF actually addresses the register  
whose address is contained in the FSR register (FSR  
is a pointer). This is indirect addressing.  
movwf FSR  
; to RAM  
;clear INDF register  
NEXT  
clrf  
incf  
INDF  
FSR,F ;inc pointer  
btfsc FSR,4 ;all done?  
goto  
NEXT  
;NO, clear next  
EXAMPLE 4-1: INDIRECT ADDRESSING  
• Register file 05 contains the value 10h  
• Register file 06 contains the value 0Ah  
• Load the value 05 into the FSR register  
• A read of the INDF register will return the value  
of 10h  
CONTINUE  
:
;YES, continue  
The FSR is a 5-bit ( PIC16CR54C) wide register. It is  
used in conjunction with the INDF register to indirectly  
address the data memory area.  
• Increment the value of the FSR register by one  
(FSR = 06)  
• A read of the INDR register now will return the  
value of 0Ah.  
The FSR<4:0> bits are used to select data memory  
addresses 00h to 1Fh.  
PIC16CR54C: Do not use banking. FSR<6:5> are  
unimplemented and read as '1's.  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF register indirectly results in a  
no-operation (although STATUS bits may be affected).  
A simple program to clear RAM locations 10h-1Fh  
using indirect addressing is shown in Example 4-2.  
FIGURE 4-6: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
(FSR)  
5
(FSR)  
0
6
4
4
(opcode)  
0
5
6
location select  
location select  
bank select  
bank  
00  
00h  
Data  
Memory  
0Fh  
10h  
(1)  
1Fh  
Bank 0  
Note 1: For register map detail see Section 4.2.  
DS40191A-page 18  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR54C  
outputs are latched and remain unchanged until the  
output latch is rewritten. To use a port pin as output,  
the corresponding direction control bit (in TRISA,  
TRISB) must be cleared (= 0). For use as an input, the  
corresponding TRIS bit must be set. Any I/O pin can  
be programmed individually as input or output.  
5.0  
I/O PORTS  
As with any other register, the I/O registers can be  
written and read under program control. However, read  
instructions (e.g., MOVF PORTB,W) always read the I/O  
pins independent of the pin’s input/output modes. On  
RESET, all I/O ports are defined as input (inputs are at  
hi-impedance) since the I/O control registers (TRISA,  
TRISB, TRISC) are all set.  
FIGURE 5-1: EQUIVALENT CIRCUIT  
FOR A SINGLE I/O PIN  
Data  
Bus  
5.1  
PORTA  
D
Q
Q
PORTA is a 4-bit I/O register. Only the low order 4 bits  
are used (RA3:RA0). Bits 7-4 are unimplemented and  
read as '0's.  
Data  
Latch  
VDD  
P
WR  
Port  
CK  
5.2  
PORTB  
N
I/O  
pin(1)  
PORTB is an 8-bit I/O register (PORTB<7:0>).  
W
Reg  
D
Q
Q
5.3  
TRIS Registers  
TRIS  
Latch  
VSS  
The output driver control registers are loaded with the  
contents of the W register by executing the TRIS f  
instruction. A '1' from a TRIS register bit puts the  
corresponding output driver in a hi-impedance mode.  
A '0' puts the contents of the output data latch on the  
selected pins, enabling the output buffer.  
TRIS ‘f’  
CK  
Reset  
Note:  
A read of the ports reads the pins, not the  
output data latches. That is, if an output  
driver on a pin is enabled and driven high,  
but the external system is holding it low, a  
read of the port will indicate that the pin is  
low.  
RD Port  
Note 1: I/O pins have protection diodes to VDD and VSS.  
The TRIS registers are “write-only” and are set (output  
drivers disabled) upon RESET.  
5.4  
I/O Interfacing  
The equivalent circuit for an I/O port pin is shown in  
Figure 5-1. All ports may be used for both input and  
output operation. For input operations these ports are  
non-latching. Any input must be present until read by  
an input instruction (e.g., MOVF PORTB, W). The  
TABLE 5-1:  
SUMMARY OF PORT REGISTERS  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Address  
Name  
TRIS  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
N/A  
05h  
06h  
I/O control registers (TRISA, TRISB)  
1111 1111 1111 1111  
---- xxxx ---- uuuu  
xxxx xxxx uuuu uuuu  
PORTA  
PORTB  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
RB7  
RB6  
RB5  
RB4  
Legend: Shaded boxes = unimplemented, read as ‘0’,  
= unimplemented, read as '0', x= unknown, u= unchanged  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 19  
 
PIC16CR54C  
5.5  
I/O Programming Considerations  
BI-DIRECTIONAL I/O PORTS  
EXAMPLE 5-1: READ-MODIFY-WRITE  
INSTRUCTIONS ON AN  
I/O PORT  
;Initial PORT Settings  
; PORTB<7:4> Inputs  
5.5.1  
Some instructions operate internally as read followed  
by write operations. The BCFand BSFinstructions, for  
example, read the entire port into the CPU, execute  
the bit operation and re-write the result. Caution must  
be used when these instructions are applied to a port  
where one or more pins are used as input/outputs. For  
example, a BSFoperation on bit5 of PORTB will cause  
all eight bits of PORTB to be read into the CPU, bit5 to  
be set and the PORTB value to be written to the output  
; PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-ups and are  
;not connected to other circuitry  
;
;
;
PORT latch PORT pins  
---------- ----------  
BCF  
BCF  
MOVLW 03Fh  
TRIS PORTB  
PORTB, 7  
PORTB, 6  
;01pp pppp  
;10pp pppp  
;
11pp pppp  
11pp pppp  
latches. If another bit of PORTB is used as  
a
;10pp pppp  
10pp pppp  
bi-directional I/O pin (say bit0) and it is defined as an  
input at this time, the input signal present on the pin  
itself would be read into the CPU and rewritten to the  
data latch of this particular pin, overwriting the  
previous content. As long as the pin stays in the input  
mode, no problem occurs. However, if bit0 is switched  
into output mode later on, the content of the data latch  
may now be unknown.  
;
;Note that the user may have expected the pin  
;values to be 00pp pppp. The 2nd BCF caused  
;RB7 to be latched as the pin value (High).  
5.5.2  
SUCCESSIVE OPERATIONS ON I/O  
PORTS  
The actual write to an I/O port happens at the end of  
an instruction cycle, whereas for reading, the data  
must be valid at the beginning of the instruction cycle  
(Figure 5-2). Therefore, care must be exercised if a  
write followed by a read operation is carried out on the  
same I/O port. The sequence of instructions should  
allow the pin voltage to stabilize (load dependent)  
before the next instruction, which causes that file to be  
read into the CPU, is executed. Otherwise, the  
previous state of that pin may be read into the CPU  
rather than the new state. When in doubt, it is better to  
separate these instructions with a NOP or another  
instruction not accessing this I/O port.  
Example 5-1 shows the effect of two sequential  
read-modify-write instructions (e.g., BCF, BSF, etc.) on  
an I/O port.  
A pin actively outputting a high or a low should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”, “wired-and”).  
The resulting high output currents may damage the  
chip.  
FIGURE 5-2: SUCCESSIVE I/O OPERATION  
Q4  
Q4  
Q4  
Q1 Q2  
Q4  
Q3  
Q3  
Q3  
Q3  
Q1 Q2  
PC  
Q1 Q2  
Q1 Q2  
PC + 3  
NOP  
PC + 1  
PC + 2  
NOP  
Instruction  
fetched  
MOVWF PORTB MOVF PORTB,W  
This example shows a write  
to PORTB followed by a read  
from PORTB.  
RB7:RB0  
Port pin  
written here  
Port pin  
sampled here  
Instruction  
executed  
MOVWF PORTB MOVF PORTB,W  
NOP  
(Write to  
PORTB)  
(Read  
PORTB)  
DS40191A-page 20  
Preliminary  
1998 Microchip Technology Inc.  
 
 
PIC16CR54C  
Counter mode is selected by setting the T0CS bit  
(OPTION<5>). In this mode, Timer0 will increment  
either on every rising or falling edge of pin T0CKI. The  
incrementing edge is determined by the source edge  
select bit T0SE (OPTION<4>). Clearing the T0SE bit  
selects the rising edge. Restrictions on the external  
clock input are discussed in detail in Section 6.1.  
6.0  
TIMER0 MODULE AND  
TMR0 REGISTER  
The Timer0 module has the following features:  
• 8-bit timer/counter register, TMR0  
- Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
- Edge select for external clock  
The prescaler may be used by either the Timer0  
module or the Watchdog Timer, but not both. The  
prescaler assignment is controlled in software by the  
control bit PSA (OPTION<3>). Clearing the PSA bit  
will assign the prescaler to Timer0. The prescaler is  
not readable or writable. When the prescaler is  
assigned to the Timer0 module, prescale values of 1:2,  
1:4,..., 1:256 are selectable. Section 6.2 details the  
operation of the prescaler.  
Figure 6-1 is a simplified block diagram of the Timer0  
module, while Figure 6-2 shows the electrical structure  
of the Timer0 input.  
Timer mode is selected by clearing the T0CS bit  
(OPTION<5>). In timer mode, the Timer0 module will  
increment every instruction cycle (without prescaler). If  
TMR0 register is written, the increment is inhibited for  
the following two cycles (Figure 6-3 and Figure 6-4).  
The user can work around this by writing an adjusted  
value to the TMR0 register.  
A summary of registers associated with the Timer0  
module is found in Table 6-1.  
FIGURE 6-1: TIMER0 BLOCK DIAGRAM  
Data bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
Clocks  
TMR0 reg  
T0CKI  
pin  
Programmable  
PSout  
Sync  
(2)  
Prescaler  
(1)  
(2 cycle delay)  
T0SE  
3
(1)  
(1)  
PS2, PS1, PS0  
PSA  
(1)  
T0CS  
Note 1: Bits T0CS, T0SE, PSA, PS2, PS1 and PS0 are located in the OPTION register.  
2: The prescaler is shared with the Watchdog Timer (Figure 6-6).  
FIGURE 6-2: ELECTRICAL STRUCTURE OF T0CKI PIN  
RIN  
T0CKI  
pin  
(1)  
Schmitt Trigger  
Input Buffer  
N
(1)  
VSS  
VSS  
Note 1: ESD protection circuits  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 21  
 
 
PIC16CR54C  
FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetch  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
T0  
T0+1  
T0+2  
NT0  
NT0  
NT0  
NT0+1  
NT0+2  
Timer0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
FIGURE 6-4: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
NT0  
Timer0  
Instruction  
Execute  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
TABLE 6-1:  
Address  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Name  
Bit 7  
Timer0 - 8-bit real-time clock/counter  
T0CS T0SE PSA  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
N/A  
TMR0  
xxxx xxxx uuuu uuuu  
OPTION  
PS2  
PS1  
PS0 --11 1111 --11 1111  
Legend: Shaded cells: Unimplemented bits,  
-= unimplemented, x = unknown, u= unchanged,  
DS40191A-page 22  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple counter-type  
prescaler so that the prescaler output is symmetrical.  
For the external clock to meet the sampling  
requirement, the ripple counter must be taken into  
account. Therefore, it is necessary for T0CKI to have a  
period of at least 4TOSC (and a small RC delay of  
40 ns) divided by the prescaler value. The only  
requirement on T0CKI high and low time is that they  
do not violate the minimum pulse width requirement of  
10 ns. Refer to parameters 40, 41 and 42 in the  
electrical specification of the desired device.  
6.1  
Using Timer0 with an External Clock  
When an external clock input is used for Timer0, it  
must meet certain requirements. The external clock  
requirement is due to internal phase clock (TOSC)  
synchronization. Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
6.1.1  
EXTERNAL CLOCK SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is  
accomplished by sampling the prescaler output on the  
Q2 and Q4 cycles of the internal phase clocks  
(Figure 6-5). Therefore, it is necessary for T0CKI to be  
high for at least 2TOSC (and a small RC delay of 20 ns)  
and low for at least 2TOSC (and a small RC delay of  
20 ns). Refer to the electrical specification of the  
desired device.  
6.1.2  
TIMER0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the Timer0  
module is actually incremented. Figure 6-5 shows the  
delay from the external clock edge to the timer  
incrementing.  
FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
External Clock Input or  
misses sampling  
Prescaler Output (2)  
(1)  
External Clock/Prescaler  
Output After Sampling  
(3)  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc).  
Therefore, the error in measuring the interval between two edges on Timer0 input = ± 4Tosc max.  
2: External clock if no prescaler selected, Prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 23  
 
PIC16CR54C  
following instruction sequence (Example 6-1) must be  
executed when changing the prescaler assignment from  
Timer0 to the WDT.  
6.2  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer (WDT) (WDT postscaler not implemented on  
PIC16C52), respectively (Section 6.1.2). For simplicity,  
this counter is being referred to as “prescaler”  
throughout this data sheet. Note that the prescaler  
may be used by either the Timer0 module or the WDT,  
but not both. Thus, a prescaler assignment for the  
Timer0 module means that there is no prescaler for  
the WDT, and vice-versa.  
EXAMPLE 6-1: CHANGING PRESCALER  
(TIMER0WDT)  
1.CLRWDT  
2.CLRF  
;Clear WDT  
TMR0  
;Clear TMR0 & Prescaler  
3.MOVLW '00xx1111’b ;These 3 lines (5, 6, 7)  
4.OPTION  
; are required only if  
; desired  
5.CLRWDT  
;PS<2:0> are 000 or 001  
6.MOVLW '00xx1xxx’b ;Set Postscaler to  
7.OPTION ; desired WDT rate  
The PSA and PS2:PS0 bits (OPTION<3:0>) determine  
prescaler assignment and prescale ratio.  
To change prescaler from the WDT to the Timer0  
module, use the sequence shown in Example 6-2. This  
sequence must be used even if the WDT is disabled. A  
CLRWDTinstruction should be executed before switching  
the prescaler.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF 1, MOVWF 1,  
BSF 1,x,etc.) will clear the prescaler. When assigned  
to WDT, a CLRWDT instruction will clear the prescaler  
along with the WDT. The prescaler is neither readable  
nor writable. On a RESET, the prescaler contains all  
'0's.  
EXAMPLE 6-2: CHANGING PRESCALER  
(WDTTIMER0)  
CLRWDT  
;Clear WDT and  
6.2.1  
SWITCHING PRESCALER ASSIGNMENT  
;prescaler  
MOVLW 'xxxx0xxx'  
;Select TMR0, new  
;prescale value and  
;clock source  
The prescaler assignment is fully under software control  
(i.e., it can be changed “on the fly” during program  
execution). To avoid an unintended device RESET, the  
OPTION  
FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
TCY ( = Fosc/4)  
Data Bus  
8
0
M
U
X
1
M
U
X
T0CKI  
pin  
1
Sync  
2
Cycles  
TMR0 reg  
0
T0SE  
T0CS  
PSA  
0
1
8-bit Prescaler  
M
U
X
8
Watchdog  
Timer  
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
MUX  
PSA  
WDT  
Time-Out  
Note: T0CS, T0SE, PSA, PS2:PS0 are bits in the OPTION register.  
DS40191A-page 24  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR54C  
The SLEEP mode is designed to offer a very low  
current power-down mode. The user can wake up from  
SLEEP through external reset or through a Watchdog  
Timer time-out. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
7.0  
SPECIAL FEATURES OF THE  
CPU  
What sets  
a
microcontroller apart from other  
processors are special circuits that deal with the  
needs of real-time applications. The PIC16C5X family  
of microcontrollers has  
intended to maximize system reliability, minimize cost  
through elimination of external components, provide  
power saving operating modes and offer code  
protection. These features are:  
a host of such features  
7.1  
Configuration Bits  
Configuration bits can be programmed to select  
various device configurations. Two bits are for the  
selection of the oscillator type and one bit is the  
Watchdog Timer enable bit. Nine bits are code  
protection bits (Figure 7-1 and Figure 7-2) for the  
PIC16CR54C devices.  
• Oscillator selection  
• Reset  
• Power-On Reset (POR)  
• Device Reset Timer (DRT)  
• Watchdog Timer (WDT)  
• SLEEP  
ROM devices have the oscillator configuration  
programmed at the factory and these parts are tested  
accordingly (see "Product Identification System"  
diagrams in the back of this data sheet).  
• Code protection  
The PIC16CR54C Family has a Watchdog Timer  
which can be shut off only through configuration bit  
WDTE. It runs off of its own RC oscillator for added  
reliability. There is an 18 ms delay provided by the  
Device Reset Timer (DRT), intended to keep the chip  
in reset until the crystal oscillator is stable. With this  
timer on-chip, most applications need no external  
reset circuitry.  
FIGURE 7-1: CONFIGURATION WORD FOR PIC16CR54C  
CP  
CP  
10  
CP  
9
CP  
8
CP  
7
CP  
6
CP  
5
CP  
4
CP  
3
WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
(1)  
Address  
:
0FFFh  
bit11  
2
1
bit 11-3: CP: Code protection bits  
1 = Code protection off  
0 = Code protection on  
bit 2:  
WDTE: Watchdog timer enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator selection bits  
11 = RC oscillator  
10 = HS oscillator  
01 = XT oscillator  
00 = LP oscillator  
Note 1: Refer to the PIC16C5X Programming Specification (Literature number DS30190) to determine how to  
access the configuration word.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 25  
 
 
PIC16CR54C  
7.2  
Oscillator Configurations  
OSCILLATOR TYPES  
FIGURE 7-3: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
7.2.1  
OSC CONFIGURATION)  
PIC16CR54Cs can be operated in four different  
oscillator modes. The user can program two  
configuration bits (FOSC1:FOSC0) to select one of  
these four modes:  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16CR54C  
Open  
• LP:  
• XT:  
• HS:  
• RC:  
Low Power Crystal  
Crystal/Resonator  
High Speed Crystal/Resonator  
Resistor/Capacitor  
TABLE 7-1:  
CAPACITOR SELECTION  
FOR CERAMIC RESONATORS  
- PIC16CR54C  
7.2.2  
CRYSTAL OSCILLATOR / CERAMIC  
RESONATORS  
Osc  
Resonator Cap. Range Cap. Range  
Type  
Freq  
C1  
C2  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 7-2). The  
PIC16CR54C oscillator design requires the use of a  
parallel cut crystal. Use of a series cut crystal may  
give a frequency out of the crystal manufacturers  
specifications. When in XT, LP or HS modes, the  
device can have an external clock source drive the  
OSC1/CLKIN pin (Figure 7-3).  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68-100 pF  
15-33 pF  
10-22 pF  
68-100 pF  
15-33 pF  
10-22 pF  
HS  
8.0 MHz  
16.0 MHz  
10-22 pF  
10 pF  
10-22 pF  
10 pF  
These values are for design guidance only. Since  
each resonator has its own characteristics, the user  
should consult the resonator manufacturer for  
appropriate values of external components.  
FIGURE 7-2: CRYSTAL OPERATION  
(OR CERAMIC RESONATOR)  
(HS, XT OR LP OSC  
TABLE 7-2:  
CAPACITOR SELECTION  
FOR CRYSTAL OSCILLATOR  
- PIC16CR54C  
CONFIGURATION)  
Osc  
Type  
Resonator Cap.Range Cap. Range  
(1)  
C1  
OSC1  
Freq  
C1  
C2  
PIC16CR54C  
(1)  
LP  
XT  
32 kHz  
15 pF  
15 pF  
SLEEP  
100 kHz  
200 kHz  
455 kHz  
1 MHz  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
15 pF  
200-300 pF  
100-200 pF  
15-100 pF  
15-30 pF  
15 pF  
XTAL  
(3)  
RF  
To internal  
logic  
OSC2  
(2)  
RS  
(1)  
C2  
2 MHz  
4 MHz  
15 pF  
15 pF  
Note 1: See Capacitor Selection tables for  
recommended values of C1 and C2.  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
HS  
4 MHz  
8 MHz  
20 MHz  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
3: RF varies with the crystal chosen (approx.  
value = 10 M).  
Note 1: For VDD > 4.5V, C1 = C2 30 pF is  
recommended.  
These values are for design guidance only. Rs may  
be required in HS mode as well as XT mode to avoid  
overdriving crystals with low drive level specification.  
Since each crystal has its own characteristics, the  
user should consult the crystal manufacturer for  
appropriate values of external components.  
Note:  
If you change from this device to  
another device, please verify oscillator  
characteristics in your application.  
DS40191A-page 26  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR54C  
7.2.3  
EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
FIGURE 7-5: EXTERNAL SERIES  
RESONANT CRYSTAL  
OSCILLATOR CIRCUIT  
(USING XT, HS OR LP  
OSCILLATOR MODE)  
Either a prepackaged oscillator or a simple oscillator  
circuit with TTL gates can be used as an external  
crystal oscillator circuit. Prepackaged oscillators  
provide a wide operating range and better stability. A  
well-designed crystal oscillator will provide good  
performance with TTL gates. Two types of crystal  
oscillator circuits can be used: one with parallel  
resonance, or one with series resonance.  
To Other  
Devices  
330  
330  
PIC16CR54C  
74AS04  
74AS04  
74AS04  
CLKIN  
0.1 µF  
Figure 7-4 shows implementation of  
a
parallel  
OSC2  
XTAL  
resonant oscillator circuit. The circuit is designed to  
use the fundamental frequency of the crystal. The  
74AS04 inverter performs the 180-degree phase shift  
that a parallel oscillator requires. The 4.7 kresistor  
provides the negative feedback for stability. The 10 kΩ  
potentiometers bias the 74AS04 in the linear region.  
This circuit could be used for external oscillator  
designs.  
100k  
Note:  
If you change from this device to  
another device, please verify oscillator  
characteristics in your application.  
FIGURE 7-4: EXTERNAL PARALLEL  
RESONANT CRYSTAL  
7.2.4  
RC OSCILLATOR  
For timing insensitive applications, the RC device option  
offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the  
resistor (Rext) and capacitor (Cext) values, and the  
operating temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal  
process parameter variation. Furthermore, the  
difference in lead frame capacitance between package  
types will also affect the oscillation frequency, especially  
for low Cext values. The user also needs to take into  
account variation due to tolerance of external R and C  
components used.  
OSCILLATOR CIRCUIT  
(USING XT, HS OR LP  
OSCILLATOR MODE)  
+5V  
To Other  
Devices  
10k  
74AS04  
PIC16CR54C  
4.7k  
CLKIN  
74AS04  
OSC2  
10k  
100k  
XTAL  
Figure 7-6 shows how the R/C combination is  
connected to the PIC16CR54C. For Rext values below  
2.2 k, the oscillator operation may become unstable,  
or stop completely. For very high Rext values  
(e.g., 1 M) the oscillator becomes sensitive to noise,  
humidity and leakage. Thus, we recommend keeping  
Rext between 3 kand 100 k.  
10k  
20 pF  
20 pF  
Although the oscillator will operate with no external  
capacitor (Cext = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or  
package lead frame capacitance.  
Note:  
If you change from this device to  
another device, please verify oscillator  
characteristics in your application.  
Figure 7-5 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental  
frequency of the crystal. The inverter performs a  
180-degree phase shift in a series resonant oscillator  
circuit. The 330 resistors provide the negative  
feedback to bias the inverters in their linear region.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 27  
 
 
PIC16CR54C  
The Electrical Specifications sections show RC  
frequency variation from part to part due to normal  
process variation. The variation is larger for larger R  
(since leakage current variation will affect RC  
frequency more for large R) and for smaller C (since  
variation of input capacitance will affect RC frequency  
more).  
7.3  
Reset  
PIC16CR54C devices may be reset in one of the  
following ways:  
• Power-On Reset (POR)  
• MCLR reset (normal operation)  
• MCLR wake-up reset (from SLEEP)  
• WDT reset (normal operation)  
• WDT wake-up reset (from SLEEP)  
Also, see the Electrical Specifications sections for  
variation of oscillator frequency due to VDD for given  
Rext/Cext values as well as frequency variation due to  
operating temperature for given R, C, and VDD values.  
Table 7-3 shows these reset conditions for the PCL  
and STATUS registers.  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin, and can be used for test  
purposes or to synchronize other logic.  
Some registers are not affected in any reset condition.  
Their status is unknown on POR and unchanged in  
any other reset. Most other registers are reset to a  
“reset state” on Power-On Reset (POR), MCLR or  
WDT reset. A MCLR or WDT wake-up from SLEEP  
also results in a device reset, and not a continuation of  
operation before SLEEP.  
FIGURE 7-6: RC OSCILLATOR MODE  
VDD  
Rext  
Internal  
clock  
OSC1  
N
The TO and PD bits (STATUS <4:3>) are set or  
cleared depending on the different reset conditions  
(Section 7.7). These bits may be used to determine  
the nature of the reset.  
Cext  
VSS  
PIC16CR54C  
Table 7-4 lists a full description of reset states of all  
registers. Figure 7-7 shows a simplified block diagram  
of the on-chip reset circuit.  
Fosc/4  
OSC2/CLKOUT  
Note:  
If you change from this device to  
another device, please verify oscillator  
characteristics in your application.  
DS40191A-page 28  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
TABLE 7-3:  
RESET CONDITIONS FOR SPECIAL REGISTERS  
PCL  
Addr: 02h  
STATUS  
Addr: 03h  
Condition  
Power-On Reset  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
0001 1xxx  
(1)  
MCLR reset (normal operation)  
MCLR wake-up (from SLEEP)  
WDT reset (normal operation)  
WDT wake-up (from SLEEP)  
000u uuuu  
0001 0uuu  
(2)  
0000 1uuu  
0000 0uuu  
Legend: u= unchanged, x= unknown, -= unimplemented read as '0'.  
Note 1: TO and PD bits retain their last value until one of the other reset conditions occur.  
2: The CLRWDTinstruction will set the TO and PD bits.  
TABLE 7-4:  
Register  
RESET CONDITIONS FOR ALL REGISTERS  
Address  
Power-On Reset  
MCLR or WDT Reset  
W
N/A  
N/A  
xxxx xxxx  
1111 1111  
--11 1111  
xxxx xxxx  
xxxx xxxx  
1111 1111  
0001 1xxx  
111x xxxx  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
1111 1111  
--11 1111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
000q quuu  
111u uuuu  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
TRIS  
OPTION  
INDF  
TMR0  
N/A  
00h  
01h  
(1)  
PCL  
02h  
(1)  
STATUS  
03h  
FSR  
04h  
PORTA  
05h  
PORTB  
06h  
General Purpose Register Files  
07-1Fh  
Legend: u= unchanged, x= unknown, -= unimplemented, read as '0',  
q= see tables in Section 7.7 for possible values.  
Note 1: See Table 7-3 for reset value for specific conditions.  
FIGURE 7-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
Power-Up  
Detect  
POR (Power-On Reset)  
VDD  
MCLR/VPP pin  
WDT Time-out  
RESET  
8-bit Asynch  
S
R
Q
WDT  
On-Chip  
RC OSC  
Ripple Counter  
Q
(Start-Up Timer)  
CHIP RESET  
DS40191A-page 29  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR54C  
7.4  
Power-On Reset (POR)  
FIGURE 7-8: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
The PIC16CR54C incorporates on-chip Power-On  
Reset (POR) circuitry which provides an internal chip  
reset for most power-up situations. To use this feature,  
the user merely ties the MCLR/VPP pin to VDD. A  
simplified block diagram of the on-chip Power-On  
Reset circuit is shown in Figure 7-7.  
VDD  
VDD  
D
R
R1  
MCLR  
The Power-On Reset circuit and the Device Reset  
Timer (Section 7.5) circuit are closely related. On  
power-up, the reset latch is set and the DRT is reset.  
The DRT timer begins counting once it detects MCLR  
to be high. After the time-out period, which is typically  
18 ms, it will reset the reset latch and thus end the  
on-chip reset signal.  
PIC16CR54C  
C
• External Power-On Reset circuit is required  
only if VDD power-up is too slow. The diode D  
helps discharge the capacitor quickly when  
VDD powers down.  
A power-up example where MCLR is not tied to VDD is  
shown in Figure 7-9. VDD is allowed to rise and  
stabilize before bringing MCLR high. The chip will  
actually come out of reset TDRT msec after MCLR  
goes high.  
• R < 40 kis recommended to make sure that  
voltage drop across R does not violate the  
device electrical specification.  
• R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor C  
in the event of MCLR pin breakdown due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
In Figure 7-10, the on-chip Power-On Reset feature is  
being used (MCLR and VDD are tied together). The  
VDD is stable before the start-up timer times out and  
there is no problem in getting a proper reset. However,  
Figure 7-11 depicts a problem situation where VDD  
rises too slowly. The time between when the DRT  
senses a high on the MCLR/VPP pin, and when the  
MCLR/VPP pin (and VDD) actually reach their full value,  
is too long. In this situation, when the start-up timer  
times out, VDD has not reached the VDD (min) value  
and the chip is, therefore, not guaranteed to function  
correctly. For such situations, we recommend that  
external RC circuits be used to achieve longer POR  
delay times (Figure 7-8).  
Note: When the device starts normal operation  
(exits the reset condition), device operat-  
ing parameters (voltage, frequency, tem-  
perature, etc.) must be meet to ensure  
operation. If these conditions are not met,  
the device must be held in reset until the  
operating conditions are met.  
For more information on PIC16CR54C POR, see  
Power-Up Considerations - AN522 in the Embedded  
Control Handbook.  
The POR circuit does not produce an internal reset  
when VDD declines.  
DS40191A-page 30  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR54C  
FIGURE 7-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
FIGURE 7-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
FIGURE 7-11: TIME-OUT SEQUENCE ON POWER-UP (MCLRTIED TO VDD): SLOW VDD RISETIME  
V1  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
When VDD rises slowly, the TDRT time-out expires long before VDD has reached its final value. In  
this example, the chip will reset properly if, and only if, V1 VDD min  
DS40191A-page 31  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
7.5  
Device Reset Timer (DRT)  
7.6  
Watchdog Timer (WDT)  
The Device Reset Timer (DRT) provides a fixed 18 ms  
nominal time-out on reset. The DRT operates on an  
internal RC oscillator. The processor is kept in RESET  
as long as the DRT is active. The DRT delay allows  
VDD to rise above VDD min., and for the oscillator to  
stabilize.  
The Watchdog Timer (WDT) is a free running on-chip  
RC oscillator which does not require any external  
components. This RC oscillator is separate from the RC  
oscillator of the OSC1/CLKIN pin. That means that the  
WDT will run even if the clock on the OSC1/CLKIN and  
OSC2/CLKOUT pins have been stopped, for example,  
by execution of a SLEEP instruction. During normal  
operation or SLEEP, a WDT reset or wake-up reset  
generates a device RESET.  
Oscillator circuits based on crystals or ceramic  
resonators require a certain time after power-up to  
establish a stable oscillation. The on-chip DRT keeps  
the device in a RESET condition for approximately 18  
ms after the voltage on the MCLR/VPP pin has  
reached a logic high (VIH) level. Thus, external RC  
networks connected to the MCLR input are not  
required in most cases, allowing for savings in  
cost-sensitive and/or space restricted applications.  
The TO bit (STATUS<4>) will be cleared upon  
Watchdog Timer reset.  
a
The WDT can be permanently disabled by programming  
the configuration bit WDTE as a '0' (Section 7.1). Refer  
to the PIC16C5X Programming Specifications  
(Literature Number DS30190) to determine how to  
access the configuration word.  
The Device Reset time delay will vary from chip to chip  
due to VDD, temperature, and process variation. See  
AC parameters for details.  
7.6.1  
WDT PERIOD  
The DRT will also be triggered upon a Watchdog Timer  
time-out. This is particularly important for applications  
using the WDT to wake the PIC16CR54C from SLEEP  
mode automatically.  
The WDT has a nominal time-out period of 18 ms, (with  
no prescaler). If a longer time-out period is desired, a  
prescaler with a division ratio of up to 1:128 can be  
assigned to the WDT (under software control) by writing  
to the OPTION register. Thus, time-out a period of a  
nominal 2.3 seconds can be realized. These periods  
vary with temperature, VDD and part-to-part process  
variations (see DC specs).  
Under worst case conditions (VDD = Min., Temperature  
= Max., max. WDT prescaler), it may take several  
seconds before a WDT time-out occurs.  
7.6.2  
WDT PROGRAMMING CONSIDERATIONS  
The CLRWDT instruction clears the WDT and the  
postscaler, if assigned to the WDT, and prevents it from  
timing out and generating a device RESET.  
The SLEEP instruction resets the WDT and the  
postscaler, if assigned to the WDT. This gives the  
maximum SLEEP time before a WDT wake-up reset.  
DS40191A-page 32  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
FIGURE 7-12: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
0
M
Postscaler  
1
Watchdog  
Timer  
U
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT Enable  
EPROM Bit  
To TMR0  
1
0
PSA  
MUX  
Note: T0CS, T0SE, PSA, PS2:PS0  
are bits in the OPTION register.  
WDT  
Time-out  
TABLE 7-5:  
SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Address  
Name  
OPTION  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
N/A  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
--11 1111 --11 1111  
Legend: Shaded boxes = Not used by Watchdog Timer,  
= unimplemented, read as '0', u= unchanged  
DS40191A-page 33  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
7.7  
Time-Out Sequence and Power Down  
Status Bits (TO/PD)  
7.8  
Reset on Brown-Out  
A brown-out is a condition where device power (VDD)  
dips below its minimum value, but not to zero, and then  
recovers. The device should be reset in the event of a  
brown-out.  
The TO and PD bits in the STATUS register can be  
tested to determine if a RESET condition has been  
caused by a power-up condition, a MCLR or Watchdog  
Timer (WDT) reset, or a MCLR or WDT wake-up reset.  
To reset PIC16CR54C devices when a brown-out  
occurs, external brown-out protection circuits may be  
built, as shown in Figure 7-13 and Figure 7-14.  
TABLE 7-6:  
TO/PD STATUS AFTER  
RESET  
FIGURE 7-13: BROWN-OUT PROTECTION  
CIRCUIT 1  
TO  
PD  
RESET was caused by  
Power-up (POR)  
1
u
1
u
(1)  
VDD  
MCLR reset (normal operation)  
1
0
0
0
1
0
MCLR wake-up reset (from SLEEP)  
WDT reset (normal operation)  
VDD  
33k  
WDT wake-up reset (from SLEEP)  
Q1  
Legend: u= unchanged  
10k  
MCLR  
Note 1: The TO and PD bits maintain their status (u) until  
a reset occurs. A low-pulse on the MCLR input  
does not change the TO and PD status bits.  
40k  
PIC16CR54C  
These STATUS bits are only affected by events listed  
in Table 7-7.  
This circuit will activate reset when VDD goes below Vz +  
0.7V (where Vz = Zener voltage).  
TABLE 7-7:  
EVENTS AFFECTING TO/PD  
STATUS BITS  
Event  
TO PD  
Remarks  
1
0
1
1
1
u
0
1
Power-up  
FIGURE 7-14: BROWN-OUT PROTECTION  
CIRCUIT 2  
WDT Time-out  
No effect on PD  
SLEEPinstruction  
CLRWDTinstruction  
Legend: u= unchanged  
VDD  
VDD  
A WDT time-out will occur regardless of the status of the TO  
bit. A SLEEPinstruction will be executed, regardless of the  
status of the PD bit. Table 7-6 reflects the status of TO and  
PD after the corresponding event.  
R1  
Q1  
MCLR  
R2  
Table 7-3 lists the reset conditions for the special  
function registers, while Table 7-4 lists the reset  
conditions for all the registers.  
40k  
PIC16CR54C  
This brown-out circuit is less expensive, although  
less accurate. Transistor Q1 turns off when VDD  
is below a certain level such that:  
R1  
= 0.7V  
VDD •  
R1 + R2  
DS40191A-page 34  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR54C  
7.9  
Power-Down Mode (SLEEP)  
7.10  
Program Verification/Code Protection  
A device may be powered down (SLEEP) and later  
powered up (Wake-up from SLEEP).  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out for verification purposes.  
7.9.1  
SLEEP  
Note: Microchip does not recommend code pro-  
The Power-Down mode is entered by executing a  
tecting windowed devices.  
SLEEPinstruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the TO bit (STATUS<4>) is set, the PD  
bit (STATUS<3>) is cleared and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, driving low, or hi-impedance).  
It should be noted that a RESET generated by a WDT  
time-out does not drive the MCLR/VPP pin low.  
For lowest current consumption while powered down,  
the T0CKI input should be at VDD or VSS and the  
MCLR/VPP pin must be at a logic high level  
(VIH MCLR).  
7.9.2  
WAKE-UP FROM SLEEP  
The device can wake up from SLEEP through one of  
the following events:  
1. An external reset input on MCLR/VPP pin.  
2. A Watchdog Timer time-out reset (if WDT was  
enabled).  
Both of these events cause a device reset.The TO and  
PD bits can be used to determine the cause of device  
reset.  
The TO bit is cleared if a WDT time-out  
occurred (and caused wake-up). The PD bit, which is  
set on power-up, is cleared when SLEEPis invoked.  
The WDT is cleared when the device wakes from  
sleep, regardless of the wake-up source.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 35  
PIC16CR54C  
NOTES:  
DS40191A-page 36  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
All instructions are executed within one single  
instruction cycle, unless a conditional test is true or the  
8.0  
INSTRUCTION SET SUMMARY  
Each PIC16CR54C instruction is a 12-bit word divided into  
an OPCODE, which specifies the instruction type, and one  
or more operands which further specify the operation of  
the instruction.The PIC16CR54C instruction set summary  
in Table 8-2 groups the instructions into byte-oriented,  
bit-oriented, and literal and control operations. Table 8-1  
shows the opcode field descriptions.  
program counter is changed as  
a result of an  
instruction. In this case, the execution takes two  
instruction cycles. One instruction cycle consists of  
four oscillator periods. Thus, for an oscillator frequency  
of 4 MHz, the normal instruction execution time is 1 µs.  
If a conditional test is true or the program counter is  
changed as a result of an instruction, the instruction  
execution time is 2 µs.  
For byte-oriented instructions, 'f' represents a file register  
designator and 'd' represents a destination designator.The  
file register designator is used to specify which one of the  
32 file registers is to be used by the instruction.  
Figure 8-1 shows the three general formats that the  
instructions can have. All examples in the figure use the  
following format to represent a hexadecimal number:  
The destination designator specifies where the result  
of the operation is to be placed. If 'd' is '0', the result is  
placed in the W register. If 'd' is '1', the result is placed  
in the file register specified in the instruction.  
0xhhh  
where 'h' signifies a hexadecimal digit.  
FIGURE 8-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the number of the  
file in which the bit is located.  
Byte-oriented file register operations  
11  
6
5
4
0
OPCODE  
d
f (FILE #)  
For literal and control operations, 'k' represents an  
8 or 9-bit constant or literal value.  
d = 0 for destination W  
d = 1 for destination f  
f = 5-bit file register address  
Bit-oriented file register operations  
11 8 7  
b (BIT #)  
TABLE 8-1:  
OPCODE FIELD  
DESCRIPTIONS  
5
4
0
Field  
Description  
OPCODE  
f (FILE #)  
f
W
b
k
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
b = 3-bit bit address  
f = 5-bit file register address  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Literal and control operations (except GOTO)  
11  
Don't care location (= 0 or 1)  
8
7
0
The assembler will generate code with x = 0. It is  
the recommended form of use for compatibility  
with all Microchip software tools.  
x
d
OPCODE  
k (literal)  
k = 8-bit immediate value  
Literal and control operations - GOTOinstruction  
11 0  
Destination select;  
d = 0 (store result in W)  
d = 1 (store result in file register 'f')  
Default is d = 1  
9
8
OPCODE  
k (literal)  
label Label name  
TOS  
PC  
Top of Stack  
k = 9-bit immediate value  
Program Counter  
Watchdog Timer Counter  
Time-Out bit  
WDT  
TO  
PD  
Power-Down bit  
Destination, either the W register or the specified  
register file location  
dest  
[ ]  
( )  
Options  
Contents  
Assigned to  
< >  
Register bit field  
In the set of  
italics  
User defined term (font is courier)  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 37  
 
PIC16CR54C  
TABLE 8-2:  
INSTRUCTION SET SUMMARY  
12-Bit Opcode  
Mnemonic,  
Operands  
Status  
Description  
Cycles MSb  
LSb Affected Notes  
1
1
1
1
1
1
0001 11df ffff  
C,DC,Z 1,2,4  
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
Move W to f  
No Operation  
Rotate left f through Carry  
Rotate right f through Carry  
Subtract W from f  
Swap f  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f,d  
f,d  
f
0001 01df ffff  
0000 011f ffff  
0000 0100 0000  
0010 01df ffff  
0000 11df ffff  
Z
Z
Z
2,4  
4
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
Z
None  
Z
None  
Z
Z
None  
None  
C
2,4  
2,4  
2,4  
2,4  
2,4  
2,4  
1,4  
1(2) 0010 11df ffff  
0010 10df ffff  
1(2) 0011 11df ffff  
1
1
1
1
1
1
1
1
1
1
0001 00df ffff  
0010 00df ffff  
0000 001f ffff  
0000 0000 0000  
0011 01df ffff  
0011 00df ffff  
0000 10df ffff  
0011 10df ffff  
0001 10df ffff  
2,4  
2,4  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
C
C,DC,Z 1,2,4  
None  
Z
2,4  
2,4  
Exclusive OR W with f  
BIT-ORIENTED FILE REGISTER OPERATIONS  
1
1
0100 bbbf ffff  
0101 bbbf ffff  
None  
None  
None  
None  
2,4  
2,4  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
1 (2) 0110 bbbf ffff  
1 (2) 0111 bbbf ffff  
LITERAL AND CONTROL OPERATIONS  
1
2
1
2
1
1
1
2
1
1
1
1110 kkkk kkkk  
1001 kkkk kkkk  
0000 0000 0100  
101k kkkk kkkk  
1101 kkkk kkkk  
1100 kkkk kkkk  
0000 0000 0010  
1000 kkkk kkkk  
0000 0000 0011  
0000 0000 0fff  
1111 kkkk kkkk  
Z
None  
AND literal with W  
Call subroutine  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
OPTION  
RETLW  
SLEEP  
TRIS  
k
k
k
k
k
k
k
k
f
1
3
T
Clear Watchdog Timer  
Unconditional branch  
Inclusive OR Literal with W  
Move Literal to W  
Load OPTION register  
Return, place Literal in W  
Go into standby mode  
Load TRIS register  
O, PD  
None  
Z
None  
None  
None  
TO, PD  
None  
Z
Exclusive OR Literal to W  
XORLW  
k
Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO.  
(See individual device data sheets, Memory Section/Indirect Data Addressing, INDF and FSR Registers)  
2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that value  
present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven  
low by an external device, the data will be written back with a '0'.  
3: The instruction TRIS f, where f = 5 or 6 causes the contents of the W register to be written to the tristate  
latches of PORTA or B respectively. A '1' forces the pin to a hi-impedance state and disables the output buff-  
ers.  
4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared  
(if assigned to TMR0).  
DS40191A-page 38  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
ADDWF  
Syntax:  
Add W and f  
[ label ] ADDWF f,d  
0 f 31  
ANDWF  
Syntax:  
AND W with f  
[ label ] ANDWF f,d  
0 f 31  
Operands:  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(W) + (f) (dest)  
Operation:  
(W) .AND. (f) (dest)  
Status Affected: C, DC, Z  
Status Affected:  
Encoding:  
Z
0001  
11df  
ffff  
0001  
01df  
ffff  
Encoding:  
Add the contents of the W register and  
register 'f'. If 'd' is 0 the result is stored  
in the W register. If 'd' is '1' the result is  
stored back in register 'f'.  
The contents of the W register are  
AND’ed with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
'1' the result is stored back in register 'f'.  
Description:  
Description:  
Words:  
1
Words:  
1
1
Cycles:  
Example:  
1
Cycles:  
Example:  
ADDWF FSR, 0  
ANDWF FSR,  
1
Before Instruction  
Before Instruction  
0x17  
W
=
0x17  
W
=
FSR = 0xC2  
FSR = 0xC2  
After Instruction  
After Instruction  
W
=
0xD9  
W
=
0x17  
FSR = 0xC2  
FSR = 0x02  
ANDLW  
And literal with W  
BCF  
Bit Clear f  
Syntax:  
[ label ] ANDLW  
k
Syntax:  
Operands:  
[ label ] BCF f,b  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
0 f 31  
0 b 7  
(W).AND. (k) (W)  
Operation:  
0 (f<b>)  
Z
Status Affected: None  
1110  
kkkk  
kkkk  
0100  
bbbf  
ffff  
Encoding:  
Description:  
Words:  
The contents of the W register are  
AND’ed with the eight-bit literal 'k'. The  
result is placed in the W register.  
Bit 'b' in register 'f' is cleared.  
1
1
Words:  
1
Cycles:  
Cycles:  
Example:  
1
BCF  
FLAG_REG,  
7
Example:  
ANDLW 0x5F  
Before Instruction  
FLAG_REG = 0xC7  
Before Instruction  
0xA3  
W
=
After Instruction  
FLAG_REG = 0x47  
After Instruction  
0x03  
W
=
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 39  
PIC16CR54C  
BSF  
Bit Set f  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
Operands:  
[ label ] BSF f,b  
Syntax:  
[ label ] BTFSS f,b  
0 f 31  
0 b 7  
Operands:  
0 f 31  
0 b < 7  
Operation:  
1 (f<b>)  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
Status Affected: None  
0101  
bbbf  
ffff  
0111  
bbbf  
ffff  
Encoding:  
Description:  
Words:  
Encoding:  
Bit 'b' in register 'f' is set.  
If bit 'b' in register 'f' is '1' then the next  
instruction is skipped.  
Description:  
1
1
If bit 'b' is '1', then the next instruction  
fetched during the current instruction  
execution, is discarded and an NOP is  
executed instead, making this a 2 cycle  
instruction.  
Cycles:  
BSF  
FLAG_REG,  
7
Example:  
Before Instruction  
FLAG_REG = 0x0A  
Words:  
1
After Instruction  
FLAG_REG = 0x8A  
Cycles:  
Example:  
1(2)  
HERE  
FALSE GOTO  
TRUE  
BTFSS FLAG,1  
PROCESS_CODE  
BTFSC  
Bit Test f, Skip if Clear  
Syntax:  
[ label ] BTFSC f,b  
Operands:  
0 f 31  
0 b 7  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If FLAG<1>  
PC  
Operation:  
skip if (f<b>) = 0  
=
=
=
=
0,  
Status Affected: None  
address (FALSE);  
1,  
address (TRUE)  
bbbf  
ffff  
if FLAG<1>  
PC  
Encoding:  
0110  
If bit 'b' in register 'f' is 0 then the next  
instruction is skipped.  
Description:  
If bit 'b' is 0 then the next instruction  
fetched during the current instruction  
execution is discarded, and an NOP is  
executed instead, making this a 2 cycle  
instruction.  
Words:  
1
Cycles:  
Example:  
1(2)  
HERE  
FALSE GOTO  
TRUE  
BTFSC  
FLAG,1  
PROCESS_CODE  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
if FLAG<1>  
PC  
=
=
=
=
0,  
address (TRUE);  
1,  
address(FALSE)  
if FLAG<1>  
PC  
DS40191A-page 40  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
CALL  
Subroutine Call  
[ label ] CALL  
0 k 255  
CLRW  
Clear W  
Syntax:  
k
Syntax:  
[ label ] CLRW  
None  
Operands:  
Operation:  
Operands:  
Operation:  
(PC) + 1Top of Stack;  
k PC<7:0>;  
00h (W);  
1 Z  
(STATUS<6:5>) PC<10:9>;  
0 PC<8>  
Status Affected:  
Encoding:  
Z
0000  
0100  
0000  
Status Affected: None  
The W register is cleared. Zero bit (Z)  
is set.  
Description:  
1001  
kkkk  
kkkk  
Encoding:  
Subroutine call. First, return address  
(PC+1) is pushed onto the stack. The  
eight bit immediate address is loaded  
into PC bits <7:0>. The upper bits  
PC<10:9> are loaded from STA-  
TUS<6:5>, PC<8> is cleared. CALLis  
a two cycle instruction.  
Description:  
Words:  
1
Cycles:  
Example:  
1
CLRW  
Before Instruction  
0x5A  
W
=
After Instruction  
Words:  
1
2
W
=
0x00  
Cycles:  
Example:  
Z
=
1
HERE  
CALL  
THERE  
Before Instruction  
PC address (HERE)  
CLRWDT  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
=
Syntax:  
After Instruction  
PC address (THERE)  
TOS =  
=
Operands:  
Operation:  
address (HERE + 1)  
00h WDT;  
0 WDT prescaler (if assigned);  
1 TO;  
1 PD  
CLRF  
Clear f  
Syntax:  
[ label ] CLRF  
f
Status Affected: TO, PD  
Operands:  
Operation:  
0 f 31  
0000  
0000  
0100  
Encoding:  
00h (f);  
1 Z  
The CLRWDTinstruction resets the  
WDT. It also resets the prescaler, if the  
prescaler is assigned to the WDT and  
not Timer0. Status bits TO and PD are  
set.  
Description:  
Status Affected:  
Encoding:  
Z
0000  
011f  
ffff  
The contents of register 'f' are cleared  
and the Z bit is set.  
Description:  
Words:  
1
Cycles:  
Example:  
1
Words:  
1
1
CLRWDT  
Cycles:  
Example:  
Before Instruction  
CLRF  
FLAG_REG  
WDT counter  
=
=
?
Before Instruction  
FLAG_REG  
After Instruction  
WDT counter  
=
0x5A  
0x00  
After Instruction  
WDT prescale =  
0
1
1
FLAG_REG  
Z
=
=
0x00  
1
TO  
PD  
=
=
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 41  
PIC16CR54C  
COMF  
Complement f  
[ label ] COMF f,d  
0 f 31  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 31  
Syntax:  
Operands:  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(f) (dest)  
Operation:  
(f) – 1 d; skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected: None  
0010  
01df  
ffff  
0010  
11df  
ffff  
Encoding:  
The contents of register 'f' are comple-  
mented. If 'd' is 0 the result is stored in  
the W register. If 'd' is 1 the result is  
stored back in register 'f'.  
The contents of register 'f' are decre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Description:  
If the result is 0, the next instruction,  
which is already fetched, is discarded  
and an NOP is executed instead mak-  
ing it a two cycle instruction.  
Words:  
1
1
Cycles:  
Example:  
COMF  
REG1,0  
Words:  
1
Before Instruction  
REG1  
=
0x13  
0x13  
Cycles:  
Example:  
1(2)  
After Instruction  
HERE  
DECFSZ  
GOTO  
CONTINUE •  
CNT, 1  
LOOP  
REG1  
=
W
=
0xEC  
DECF  
Decrement f  
[ label ] DECF f,d  
0 f 31  
Before Instruction  
PC  
=
address (HERE)  
Syntax:  
After Instruction  
Operands:  
CNT  
if CNT  
PC  
if CNT  
PC  
=
=
=
=
CNT - 1;  
0,  
address (CONTINUE);  
0,  
d
[0,1]  
Operation:  
(f) – 1 (dest)  
Status Affected:  
Encoding:  
Z
address (HERE+1)  
0000  
11df  
ffff  
Decrement register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
GOTO  
Unconditional Branch  
Syntax:  
[ label ] GOTO  
0 k 511  
k
Words:  
1
1
Operands:  
Cycles:  
Example:  
Operation:  
k PC<8:0>;  
STATUS<6:5> PC<10:9>  
DECF  
CNT,  
1
Before Instruction  
Status Affected: None  
CNT  
=
0x01  
0
101k  
kkkk  
kkkk  
Encoding:  
Z
=
GOTOis an unconditional branch. The  
9-bit immediate value is loaded into PC  
bits <8:0>. The upper bits of PC are  
loaded from STATUS<6:5>. GOTOis a  
two cycle instruction.  
Description:  
After Instruction  
CNT  
=
0x00  
1
Z
=
Words:  
1
Cycles:  
Example:  
2
GOTO THERE  
After Instruction  
PC  
=
address (THERE)  
DS40191A-page 42  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
INCF  
Increment f  
IORLW  
Inclusive OR literal with W  
Syntax:  
Operands:  
[ label ] INCF f,d  
Syntax:  
[ label ] IORLW k  
0 f 31  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
d
[0,1]  
(W) .OR. (k) (W)  
Operation:  
(f) + 1 (dest)  
Z
Status Affected:  
Encoding:  
Z
1101  
kkkk  
kkkk  
0010  
10df  
ffff  
The contents of the W register are  
OR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Words:  
1
Cycles:  
Example:  
1
Words:  
1
1
IORLW 0x35  
Cycles:  
Example:  
Before Instruction  
0x9A  
INCF  
CNT,  
1
W
=
Before Instruction  
After Instruction  
CNT  
=
0xFF  
0
W
=
0xBF  
Z
=
Z
=
0
After Instruction  
CNT  
Z
=
=
0x00  
1
IORWF  
Inclusive OR W with f  
[ label ] IORWF f,d  
0 f 31  
Syntax:  
Operands:  
INCFSZ  
Increment f, Skip if 0  
[ label ] INCFSZ f,d  
0 f 31  
d
[0,1]  
Syntax:  
Operation:  
(W).OR. (f) (dest)  
Operands:  
Status Affected:  
Encoding:  
Z
d
[0,1]  
0001  
00df  
ffff  
Operation:  
(f) + 1 (dest), skip if result = 0  
Inclusive OR the W register with regis-  
ter 'f'. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Status Affected: None  
0011  
11df  
ffff  
Encoding:  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Words:  
1
1
Cycles:  
Example:  
If the result is 0, then the next instruc-  
tion, which is already fetched, is dis-  
carded and an NOP is executed  
instead making it a two cycle instruc-  
tion.  
IORWF  
RESULT, 0  
Before Instruction  
RESULT  
W
=
0x13  
=
0x91  
After Instruction  
Words:  
1
RESULT  
=
=
=
0x13  
0x93  
0
Cycles:  
Example:  
1(2)  
W
Z
HERE  
INCFSZ  
GOTO  
CNT,  
LOOP  
1
CONTINUE •  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
CNT  
if CNT  
PC  
if CNT  
PC  
=
=
=
=
CNT + 1;  
0,  
address (CONTINUE);  
0,  
address (HERE +1)  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 43  
PIC16CR54C  
MOVF  
Move f  
MOVWF  
Syntax:  
Move W to f  
[ label ] MOVWF  
0 f 31  
Syntax:  
Operands:  
[ label ] MOVF f,d  
f
0 f 31  
Operands:  
Operation:  
d
[0,1]  
(W) (f)  
Operation:  
(f) (dest)  
Status Affected: None  
Status Affected:  
Encoding:  
Z
0000  
001f  
ffff  
Encoding:  
0010  
00df  
ffff  
Move data from the W register to regis-  
ter 'f'.  
Description:  
The contents of register 'f' is moved to  
destination 'd'. If 'd' is 0, destination is  
the W register. If 'd' is 1, the destination  
is file register 'f'. 'd' is 1 is useful to test  
a file register since status flag Z is  
affected.  
Description:  
Words:  
1
Cycles:  
Example:  
1
MOVWF TEMP_REG  
Before Instruction  
Words:  
1
1
TEMP_REG  
W
=
=
0xFF  
0x4F  
Cycles:  
Example:  
MOVF  
FSR,  
0
After Instruction  
TEMP_REG  
W
=
=
0x4F  
0x4F  
After Instruction  
W
=
value in FSR register  
NOP  
No Operation  
[ label ] NOP  
None  
MOVLW  
Move Literal to W  
[ label ] MOVLW  
0 k 255  
Syntax:  
Syntax:  
k
Operands:  
Operation:  
Operands:  
Operation:  
No operation  
k (W)  
Status Affected: None  
0000  
0000  
0000  
Status Affected: None  
Encoding:  
Description:  
Words:  
1100  
kkkk  
kkkk  
Encoding:  
No operation.  
The eight bit literal 'k' is loaded into the  
W register. The don’t cares will assem-  
ble as 0s.  
Description:  
1
Cycles:  
1
NOP  
Example:  
Words:  
1
Cycles:  
Example:  
1
MOVLW 0x5A  
After Instruction  
W
=
0x5A  
DS40191A-page 44  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
OPTION  
Syntax:  
Load OPTION Register  
[ label ] OPTION  
None  
RLF  
Rotate Left f through Carry  
[ label ] RLF f,d  
0 f 31  
Syntax:  
Operands:  
Operands:  
Operation:  
d
[0,1]  
(W) OPTION  
Status Affected: None  
Operation:  
See description below  
C
0000  
0000  
0010  
Encoding:  
Status Affected:  
Encoding:  
The content of the W register is loaded  
into the OPTION register.  
Description:  
0011  
01df  
ffff  
The contents of register 'f' are rotated  
one bit to the left through the Carry  
Flag. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is stored  
back in register 'f'.  
Description:  
Words:  
Cycles:  
Example  
1
1
OPTION  
Before Instruction  
register 'f'  
C
W
=
0x07  
0x07  
After Instruction  
OPTION  
Words:  
1
=
Cycles:  
Example:  
1
RLF  
REG1,0  
RETLW  
Return with Literal in W  
Before Instruction  
Syntax:  
[ label ] RETLW  
k
REG1  
C
=
=
1110 0110  
0
Operands:  
Operation:  
0 k 255  
After Instruction  
k (W);  
TOS PC  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
Status Affected: None  
1000  
kkkk  
kkkk  
Encoding:  
The W register is loaded with the eight  
bit literal 'k'. The program counter is  
loaded from the top of the stack (the  
return address). This is a two cycle  
instruction.  
Description:  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 31  
Syntax:  
Operands:  
d
[0,1]  
Words:  
1
2
Operation:  
See description below  
C
Cycles:  
Example:  
Status Affected:  
Encoding:  
CALL TABLE ;W contains  
;table offset  
;value.  
0011  
00df  
ffff  
The contents of register 'f' are rotated  
one bit to the right through the Carry  
Flag. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is placed  
back in register 'f'.  
Description:  
;W now has table  
;value.  
TABLE  
ADDWF PC  
RETLW k1  
RETLW k2  
;W = offset  
;Begin table  
;
register 'f'  
C
Words:  
1
Cycles:  
Example:  
1
RETLW kn  
; End of table  
RRF  
REG1,0  
Before Instruction  
W
=
0x07  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
value of k8  
W
=
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 45  
PIC16CR54C  
SLEEP  
Enter SLEEP Mode  
SUBWF  
Subtract W from f  
Syntax:  
Syntax:  
[label]  
[label] SUBWF f,d  
SLEEP  
Operands:  
0 f 31  
Operands:  
Operation:  
None  
d
[0,1]  
00h WDT;  
0 WDT prescaler;  
1 TO;  
Operation:  
(f) – (W) → (dest)  
Status Affected: C, DC, Z  
0 PD  
0000  
10df  
ffff  
Encoding:  
Status Affected: TO, PD  
Subtract (2’s complement method) the  
W register from register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
0000  
0000  
0011  
Encoding:  
Time-out status bit (TO) is set. The  
power down status bit (PD) is cleared.  
The WDT and its prescaler are  
cleared.  
Description:  
Words:  
1
1
Cycles:  
The processor is put into SLEEP mode  
with the oscillator stopped. See sec-  
tion on SLEEP for more details.  
SUBWF  
REG1, 1  
Example 1:  
Before Instruction  
Words:  
1
REG1  
W
C
=
=
=
3
2
?
Cycles:  
Example:  
1
SLEEP  
After Instruction  
REG1  
W
C
=
=
=
1
2
1
; result is positive  
Example 2:  
Before Instruction  
REG1  
W
C
=
=
=
2
2
?
After Instruction  
REG1  
W
C
=
=
=
0
2
1
; result is zero  
Example 3:  
Before Instruction  
REG1  
W
C
=
=
=
1
2
?
After Instruction  
REG1  
W
C
=
=
=
FF  
2
0
; result is negative  
DS40191A-page 46  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ] SWAPF f,d  
0 f 31  
XORLW  
Exclusive OR literal with W  
Syntax:  
[label] XORLW  
0 k 255  
k
Operands:  
Operands:  
d
[0,1]  
Operation:  
(W) .XOR. k → (W)  
Z
Operation:  
(f<3:0>) (dest<7:4>);  
(f<7:4>) (dest<3:0>)  
Status Affected:  
Encoding:  
1111  
kkkk  
kkkk  
Status Affected: None  
The contents of the W register are  
XOR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
Description:  
0011  
10df  
ffff  
Encoding:  
The upper and lower nibbles of register  
'f' are exchanged. If 'd' is 0 the result is  
placed in W register. If 'd' is 1 the result  
is placed in register 'f'.  
Description:  
Words:  
1
Cycles:  
Example:  
1
Words:  
Cycles:  
Example  
1
1
XORLW 0xAF  
Before Instruction  
0xB5  
W
=
SWAPF  
REG1,  
0
After Instruction  
Before Instruction  
REG1  
W
=
0x1A  
=
0xA5  
After Instruction  
REG1  
W
=
=
0xA5  
0X5A  
XORWF  
Exclusive OR W with f  
[ label ] XORWF f,d  
0 f 31  
Syntax:  
Operands:  
TRIS  
Load TRIS Register  
d
[0,1]  
Syntax:  
[ label ] TRIS  
f = 5, 6 or 7  
f
Operation:  
(W) .XOR. (f) → (dest)  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Z
(W) TRIS register f  
0001  
10df  
ffff  
Status Affected: None  
Exclusive OR the contents of the W  
register with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
0000  
0000  
0fff  
Encoding:  
TRIS register 'f' (f = 5, 6, or 7) is loaded  
with the contents of the W register  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
TRIS  
PORTA  
REG,1  
XORWF  
Before Instruction  
Before Instruction  
W
=
0XA5  
0XA5  
REG  
=
0xAF  
0xB5  
W
=
After Instruction  
TRISA  
=
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 47  
PIC16CR54C  
NOTES:  
DS40191A-page 48  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
9.3  
ICEPIC: Low-Cost PICmicro™  
In-Circuit Emulator  
9.0  
DEVELOPMENT SUPPORT  
9.1  
Development Tools  
ICEPIC is a low-cost in-circuit emulator solution for the  
Microchip PIC12CXXX, PIC16C5X and PIC16CXXX  
families of 8-bit OTP microcontrollers.  
The PICmicrο microcontrollers are supported with a  
full range of hardware and software development  
tools:  
ICEPIC is designed to operate on PC-compatible  
machines ranging from 286-AT through Pentium  
based machines under Windows 3.x environment.  
ICEPIC features real time, non-intrusive emulation.  
• PICMASTER /PICMASTER CE Real-Time  
In-Circuit Emulator  
• ICEPIC Low-Cost PIC16C5X and PIC16CXXX  
In-Circuit Emulator  
9.4  
PRO MATE II: Universal Programmer  
• PRO MATE II Universal Programmer  
• PICSTART Plus Entry-Level Prototype  
Programmer  
The PRO MATE II Universal Programmer is  
a
full-featured programmer capable of operating in  
stand-alone mode as well as PC-hosted mode. PRO  
MATE II is CE compliant.  
• PICDEM-1 Low-Cost Demonstration Board  
• PICDEM-2 Low-Cost Demonstration Board  
• PICDEM-3 Low-Cost Demonstration Board  
• MPASM Assembler  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for displaying error messages, keys to  
enter commands and a modular detachable socket  
assembly to support various package types. In stand-  
alone mode the PRO MATE II can read, verify or  
program PIC12CXXX, PIC14C000, PIC16C5X,  
PIC16CXXX and PIC17CXX devices. It can also set  
configuration and code-protect bits in this mode.  
• MPLAB SIM Software Simulator  
• MPLAB-C17 (C Compiler)  
• Fuzzy Logic Development System  
(fuzzyTECH MP)  
9.2  
PICMASTER: High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
9.5  
PICSTART Plus Entry Level  
Development System  
The PICMASTER Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for all  
microcontrollers in the PIC14C000, PIC12CXXX,  
PIC16C5X, PIC16CXXX and PIC17CXX families.  
PICMASTER is supplied with the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
“make” and download, and source debugging from a  
single environment.  
The PICSTART programmer is an easy-to-use,  
low-cost prototype programmer. It connects to the PC  
via one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient. PICSTART Plus is  
not recommended for production programming.  
PICSTART  
Plus  
supports  
all  
PIC12CXXX,  
Interchangeable target probes allow the system to be  
easily reconfigured for emulation of different  
processors. The universal architecture of the  
PICMASTER allows expansion to support all new  
Microchip microcontrollers.  
PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX  
devices with up to 40 pins. Larger pin count devices  
such as the PIC16C923, PIC16C924 and PIC17C756  
may be supported with an adapter socket. PICSTART  
Plus is CE compliant.  
The PICMASTER Emulator System has been  
9.6  
PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
designed as  
a real-time emulation system with  
advanced features that are generally found on more  
expensive development tools. The PC compatible 386  
(and higher) machine platform and Microsoft Windows  
3.x environment were chosen to best make these  
features available to you, the end user.  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s  
microcontrollers. The microcontrollers supported are:  
PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61,  
PIC16C62X, PIC16C71, PIC16C8X, PIC17C42,  
PIC17C43 and PIC17C44. All necessary hardware  
and software is included to run basic demo programs.  
The users can program the sample microcontrollers  
A CE compliant version of PICMASTER is available for  
European Union (EU) countries.  
provided with the PICDEM-1 board, on  
a
PRO MATE II or PICSTART-Plus programmer, and  
easily test firmware. The user can also connect the  
PICDEM-1 board to the PICMASTER emulator and  
download the firmware to the emulator for testing.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 49  
PIC16CR54C  
Additional prototype area is available for the user to  
build some additional hardware and connect it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, a potentiometer for simulated  
analog input, push-button switches and eight LEDs  
connected to PORTB.  
9.9  
MPLAB™ Integrated Development  
Environment Software  
The MPLAB IDE Software brings an ease of software  
development previously unseen in the 8-bit  
microcontroller market. MPLAB is a windows based  
application which contains:  
9.7  
PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
• A full featured editor  
• Three operating modes  
- editor  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II  
programmer or PICSTART-Plus, and easily test  
firmware. The PICMASTER emulator may also be  
used with the PICDEM-2 board to test firmware.  
Additional prototype area has been provided to the  
user for adding additional hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push-button switches, a  
potentiometer for simulated analog input, a Serial  
- emulator  
- simulator  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar with project information  
• Extensive on-line help  
MPLAB allows you to:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Debug using:  
- source files  
- absolute listing file  
Transfer data dynamically via DDE (soon to be  
replaced by OLE)  
2
EEPROM to demonstrate usage of the I C bus and  
separate headers for connection to an LCD module  
and a keypad.  
• Run up to four emulators on the same PC  
The ability to use MPLAB with Microchip’s simulator  
allows a consistent platform and the ability to easily  
switch from the low cost simulator to the full featured  
emulator with minimal retraining due to development  
tools.  
9.8  
PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
9.10  
Assembler (MPASM)  
microcontrollers with  
a LCD Module. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-3 board, on a PRO MATE II  
programmer or PICSTART Plus with an adapter  
socket, and easily test firmware. The PICMASTER  
emulator may also be used with the PICDEM-3 board  
to test firmware. Additional prototype area has been  
provided to the user for adding hardware and  
connecting it to the microcontroller socket(s). Some  
of the features include an RS-232 interface,  
push-button switches, a potentiometer for simulated  
analog input, a thermistor and separate headers for  
connection to an external LCD module and a keypad.  
Also provided on the PICDEM-3 board is an LCD  
panel, with 4 commons and 12 segments, that is  
capable of displaying time, temperature and day of the  
week. The PICDEM-3 provides an additional RS-232  
interface and Windows 3.1 software for showing the  
demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
The MPASM Universal Macro Assembler is  
a
PC-hosted symbolic assembler. It supports all  
microcontroller series including the PIC12C5XX,  
PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX  
families.  
MPASM offers full featured Macro capabilities,  
conditional assembly, and several source and listing  
formats. It generates various object code formats to  
support Microchip's development tools as well as third  
party programmers.  
MPASM allows full symbolic debugging from  
PICMASTER, Microchip’s Universal Emulator System.  
MPASM has the following features to assist in  
developing software for specific use applications.  
• Provides translation of Assembler source code to  
object code for all Microchip microcontrollers.  
• Macro assembly capability.  
• Produces all the files (Object, Listing, Symbol,  
and special) required for symbolic debug with  
Microchip’s emulator systems.  
• Supports Hex (default), Decimal and Octal source  
and listing formats.  
DS40191A-page 50  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
MPASM provides a rich directive language to support  
programming of the PICmicro. Directives are helpful in  
making the development of your assemble source  
code shorter and more maintainable.  
own code. MP-DriveWay is intelligent enough to  
maintain your code through subsequent code  
generation.  
9.15  
SEEVAL Evaluation and  
Programming System  
9.11  
Software Simulator (MPLAB-SIM)  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment. It allows the  
user to simulate the PICmicro series microcontrollers  
on an instruction level. On any given instruction, the  
user may examine or modify any of the data areas or  
provide external stimulus to any of the pins. The  
input/output radix can be set by the user and the  
execution can be performed in; single step, execute  
until break, or in a trace mode.  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance  
Disk is included to aid in  
trade-off analysis and reliability calculations. The total  
kit can significantly reduce time-to-market and result in  
an optimized system.  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C and MPASM. The Software Simulator offers  
the low cost flexibility to develop and debug code  
outside of the laboratory environment making it an  
excellent multi-project software development tool.  
9.16  
KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS  
evaluation kit includes an LCD display to show  
changing codes, a decoder to decode transmissions,  
9.12  
C Compiler (MPLAB-C17)  
and  
transmitters.  
a programming interface to program test  
The MPLAB-C Code Development System is  
a
complete ‘C’ compiler and integrated development  
environment for Microchip’s PIC17CXXX family of  
microcontrollers. The compiler provides powerful  
integration capabilities and ease of use not found with  
other compilers.  
For easier source level debugging, the compiler  
provides symbol information that is compatible with the  
MPLAB IDE memory display.  
9.13  
Fuzzy Logic Development System  
(fuzzyTECH-MP)  
fuzzyTECH-MP fuzzy logic development tool is  
available in two versions - a low cost introductory  
version, MP Explorer, for designers to gain  
comprehensive working knowledge of fuzzy logic  
system design; and full-featured version,  
a
a
fuzzyTECH-MP, Edition for implementing more  
complex systems.  
Both versions include Microchip’s fuzzyLAB  
demonstration board for hands-on experience with  
fuzzy logic systems implementation.  
9.14  
MP-DriveWay – Application Code  
Generator  
MP-DriveWay is an easy-to-use Windows-based  
Application Code Generator. With MP-DriveWay you  
can visually configure all the peripherals in a PICmicro  
device and, with a click of the mouse, generate all the  
initialization and many functional code modules in C  
language. The output is fully compatible with  
Microchip’s MPLAB-C C compiler. The code produced  
is highly modular and allows easy integration of your  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 51  
24CXX HCS200  
PIC12C5XX PIC14000 PIC16C5X PIC16CXXX PIC16C6X PIC16C7XX PIC16C8X PIC16C9XX PIC17C4X PIC17C75X 25CXX HCS300  
93CXX HCS301  
EMULATOR PRODUCTS  
PICMASTER  
/
PICMASTER-CE  
In-Circuit Emulator  
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ICEPIC Low-Cost  
In-Circuit Emulator  
SOFTWARE PRODUCTS  
MPLAB  
Integrated  
Development  
Environment  
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
MPLAB C17  
Compiler  
fuzzyTECH -MP  
Explorer/Edition  
Fuzzy Logic Dev. Tool  
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
MP-DriveWay  
Applications  
Code Generator  
Total Endurance  
Software Model  
ü
PROGRAMMERS  
PICSTART Plus  
Low-Cost  
Universal Dev. Kit  
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
PRO MATE II  
Universal Programmer  
ü
ü
ü
ü
KEELOQ Programmer  
DEMO BOARDS  
SEEVAL Designers Kit  
PICDEM-1  
ü
ü
ü
ü
PICDEM-2  
ü
ü
PICDEM-3  
ü
KEELOQ Evaluation Kit  
ü
PIC16CR54C  
10.0 ELECTRICAL CHARACTERISTICS - PIC16CR54C  
Absolute Maximum Ratings  
Ambient temperature under bias............................................................................................................55°C to +125°C  
Storage temperature ............................................................................................................................. –65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V  
Voltage on MCLR with respect to VSS................................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ................................................................................. –0.6V to (VDD + 0.6V)  
(1)  
Total power dissipation .....................................................................................................................................800 mW  
Max. current out of VSS pin....................................................................................................................................150 mA  
Max. current into VDD pin ......................................................................................................................................100 mA  
Max. current into an input pin (T0CKI only)......................................................................................................................±500 µA  
Input clamp current, IIK (VI < 0 or VI > VDD)....................................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ..............................................................................................................±20 mA  
Max. output current sunk by any I/O pin..................................................................................................................15 mA  
Max. output current sourced by any I/O pin ............................................................................................................15 mA  
Max. output current sourced by a single I/O port A ................................................................................................45 mA  
Max. output current sourced by a single I/O port B ................................................................................................45 mA  
Max. output current sunk by a single I/O port A......................................................................................................45 mA  
Max. output current sunk by a single I/O port B .....................................................................................................45 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 53  
PIC16CR54C  
10.1  
DC Characteristics:PIC16CR54C-04, 20 (Commercial)  
PIC16CR54C-04I, 20I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym Min Typ  
Max Units  
Conditions  
Supply Voltage  
XT, RC and LP options  
HS option  
VDD  
3.0  
4.5  
5.5  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-On Reset  
SVDD  
IDD  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
XT and RC options  
1.8  
4.5  
14  
2.4 mA FOSC = 4.0 MHz, VDD = 5.5V  
HS option  
LP option, Commercial  
LP option, Industrial  
16  
32  
40  
mA FOSC = 20 MHz, VDD = 5.5V  
µA FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
µA FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
17  
(5)  
Power Down Current  
IPD  
Commercial  
4.0  
12  
µA VDD = 3.0V, WDT enabled  
µA VDD = 3.0V, WDT disabled  
µA VDD = 3.0V, WDT enabled  
µA VDD = 3.0V, WDT disabled  
0.25 4.0  
4.0 14  
0.25 5.0  
Industrial  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS40191A-page 54  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR54C  
10.2  
DC Characteristics:PIC16CR54C-04, 20, PIC16CR54C-04I, 20I (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
All Pins Except  
Power Supply Pins  
Operating Voltage VDD range is described in Section 10.1  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O Ports  
I/O Ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.8 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance 4.5V , VDD 5.5V  
Pin at hi-impedance 2.5V , VDD 4.5V  
(4)  
RC option only  
XT, HS and LP options  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.25 VDD+0.8V  
2.0  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
For all VDD  
(5)  
4.5V < VDD 5.5V  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
(4)  
RC option only  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS  
IIL  
0.15VDD*  
V
(3)  
Input Leakage Current  
For VDD 5.5V  
I/O ports  
-1.0  
-5.0  
0.5  
+1.0  
µA VSS VPIN VDD,  
Pin at hi-impedance  
(2)  
MCLR  
+5.0  
+3.0  
+3.0  
µA VPIN = VSS +0.25V  
(2)  
0.5  
0.5  
0.5  
µA VPIN = VDD  
T0CKI  
OSC1  
-3.0  
-3.0  
µA VSS VPIN VDD  
µA VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
VOH  
0.6  
0.6  
V
V
IOL = 5.0 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC option only  
Output High Voltage  
(3)  
I/O ports  
VDD-0.7  
VDD-0.7  
V
V
IOH = -3.0 mA, VDD = 4.5V  
IOH = -1.0 mA, VDD = 4.5V,  
RC option only  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified lev-  
els represent normal operating conditions. Higher leakage current may be measured at different input voltage.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16CR54C  
be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 55  
PIC16CR54C  
10.3  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
oscillator  
OSC1  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 10-1: LOAD CONDITIONS - PIC16CR54C  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
options when external clock  
is used to drive OSC1  
VSS  
DS40191A-page 56  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR54C  
10.4  
Timing Diagrams and Specifications  
FIGURE 10-2: EXTERNAL CLOCK TIMING - PIC16CR54C  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 10-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54C  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Operating Voltage VDD range is described in Section 10.1  
Parameter  
(1)  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
(2)  
FOSC  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
0.455  
4
4.0  
4.0  
20  
MHz XT osc mode  
MHz HS osc mode (04)  
MHz HS osc mode (20)  
kHz LP osc mode  
200  
4.0  
4.0  
4.0  
20  
(2)  
Oscillator Frequency  
MHz RC osc mode  
MHz XT osc mode  
MHz HS osc mode (04)  
MHz HS osc mode (20)  
kHz LP osc mode  
4
5
200  
(2)  
1
TOSC  
External CLKIN Period  
250  
250  
50  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
µs  
XT osc mode  
HS osc mode (04)  
HS osc mode (20)  
LP osc mode  
5.0  
250  
250  
250  
50  
(2)  
Oscillator Period  
RC osc mode  
2,200  
250  
250  
200  
XT osc mode  
HS osc mode (04)  
HS osc mode (20)  
LP osc mode  
5.0  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating condi-  
tions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 57  
PIC16CR54C  
TABLE 10-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54C (CONTINUED)  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Operating Voltage VDD range is described in Section 10.1  
Parameter  
(1)  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
(3)  
2
3
TCY  
Instruction Cycle Time  
50*  
20*  
2.0*  
4/FOSC  
ns  
ns  
µs  
ns  
ns  
ns  
TosL, TosH Clock in (OSC1) Low or High Time  
XT oscillator  
HS oscillator  
LP oscillator  
XT oscillator  
HS oscillator  
LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating condi-  
tions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS40191A-page 58  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
FIGURE 10-3: CLKOUT AND I/O TIMING - PIC16CR54C  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
13  
12  
16  
18  
14  
19  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.  
TABLE 10-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16CR54C  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Operating Voltage VDD range is described in Section 10.1  
Parameter  
(1)  
Typ  
No.  
Sym  
Characteristic  
(2)  
Min  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
OSC1to CLKOUT↓  
15  
15  
5.0  
5.0  
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
OSC1to CLKOUT↑  
(2)  
CLKOUT rise time  
(2)  
TckF  
CLKOUT fall time  
(2)  
CLKOUTto Port out valid  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
(2)  
Port in valid before CLKOUT↑  
(2)  
0.25 TCY+30*  
Port in hold after CLKOUT↑  
OSC1(Q1 cycle) to Port out valid  
0*  
(3)  
100*  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
(3)  
20  
21  
TioR  
TioF  
Port output rise time  
10  
10  
25**  
25**  
ns  
ns  
(3)  
Port output fall time  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 10-1 for loading conditions.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 59  
PIC16CR54C  
FIGURE 10-4: RESET, WATCHDOG TIMER, AND  
DEVICE RESET TIMER TIMING - PIC16CR54C  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 10-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16CR54C  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Operating Voltage VDD range is described in Section 10.1  
Parameter  
No.  
(1)  
Sym Characteristic  
Min Typ  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
1000*  
9.0*  
ns VDD = 5.0V  
Twdt Watchdog Timer Time-out Period  
(No Prescaler)  
18*  
30*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
9.0*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
ns  
TioZ I/O Hi-impedance from MCLR Low 100* 300* 1000*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS40191A-page 60  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
FIGURE 10-5: TIMER0 CLOCK TIMINGS - PIC16CR54C  
T0CKI  
40  
41  
42  
TABLE 10-4: TIMER0 CLOCK REQUIREMENTS - PIC16CR54C  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Operating Voltage VDD range is described in Section 10.1  
Parameter  
(1)  
Sym Characteristic  
Min  
Typ  
Max Units Conditions  
No.  
40  
Tt0H T0CKI High Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 61  
PIC16CR54C  
NOTES:  
DS40191A-page 62  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
PIC16CR54C  
11.0 DC AND AC CHARACTERISTICS - PIC16CR54C  
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed. In some  
graphs or tables the data presented are outside specified operating range (e.g., outside specified VDD range). This is  
for information only and devices will operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period of  
time. “Typical” represents the mean of the distribution while “max” or “min” represents (mean + 3σ) and (mean – 3σ)  
respectively, where σ is standard deviation.  
FIGURE 11-1: TYPICAL RC OSCILLATOR FREQUENCY vs.TEMPERATURE  
FOSC  
Frequency normalized to +25°C  
FOSC (25°C)  
1.10  
Rext 10 kΩ  
Cext = 100 pF  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
VDD = 5.5 V  
VDD = 3.5 V  
0.92  
0.90  
0.88  
0
10  
20  
25  
30  
40  
50  
60  
70  
T(°C)  
TABLE 11-1: RC OSCILLATOR FREQUENCIES  
Average  
Fosc @ 5 V, 25°C  
Cext  
Rext  
20 pF  
3.3 k  
5 k  
4.973 MHz  
3.82 MHz  
2.22 MHz  
262.15 kHz  
1.63 MHz  
1.19 MHz  
684.64 kHz  
71.56 kHz  
660 kHz  
± 27%  
± 21%  
± 21%  
± 31%  
± 13%  
± 13%  
± 18%  
± 25%  
± 10%  
± 14%  
± 15%  
± 19%  
10 k  
100 k  
3.3 k  
5 k  
100 pF  
300 pF  
10 k  
100 k  
3.3 k  
5.0 k  
10 k  
160 k  
484.1 kHz  
267.63 kHz  
29.44 kHz  
The frequencies are measured on DIP packages.  
The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation  
indicated is ±3 standard deviation from average value for VDD = 5 V.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 63  
PIC16CR54C  
PIC16CR54C  
FIGURE 11-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF  
6.00  
R=3.3K  
5.00  
R=5.0K  
4.00  
3.00  
R=10K  
2.00  
Cext=20pF, T=25C  
1.00  
R=100K  
0.00  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD(Volts)  
FIGURE 11-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 100 PF  
1.80  
R=3.3K  
1.60  
1.40  
R=5.0K  
1.20  
1.00  
0.80  
0.60  
R=10K  
Cext=100pF, T=25C  
0.40  
0.20  
R=100K  
0.00  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD(Volts)  
DS40191A-page 64  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
PIC16CR54C  
FIGURE 11-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF  
700.00  
R=3.3K  
600.00  
500.00  
R=5.0K  
400.00  
300.00  
R=10K  
200.00  
Cext=300pF, T=25C  
100.00  
R=100K  
0.00  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD(Volts)  
FIGURE 11-5: TYPICAL IPD vs. VDD, WATCHDOG DISABLED (25°C)  
2.5  
2
1.5  
1
0.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD(Volts)  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 65  
PIC16CR54C  
PIC16CR54C  
FIGURE 11-6: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (25°C)  
25  
20  
15  
10  
5
0
2.5  
3
3.5  
5
5.5  
6
4
4.5  
VDD (Volts)  
FIGURE 11-7: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (40°C, 85°C)  
35  
30  
25  
20  
15  
10  
5
0
2.5  
3
3.5  
5
5.5  
6
4
4.5  
VDD (Volts)  
DS40191A-page 66  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
PIC16CR54C  
FIGURE 11-8: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF I/O PINS vs. VDD  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 11-9: VIH, VIL OF MCLR,T0CKI AND OSC1 (IN RC MODE) vs. VDD  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
Note: These input pins have Schmitt Trigger input buffers.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 67  
PIC16CR54C  
PIC16CR54C  
FIGURE 11-10: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT  
(IN XT, HS, AND LP MODES) vs. VDD  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 11-11: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 20 PF, 25°C)  
10000  
1000  
5.5V  
100  
4.5V  
3.5V  
2.5V  
10  
100000  
1000000  
10000000  
Freq(Hz)  
DS40191A-page 68  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
PIC16CR54C  
FIGURE 11-12: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 100 PF, 25°C)  
10000  
1000  
5.5V  
100  
4.5V  
3.5V  
2.5V  
10  
10000  
100000  
1000000  
10000000  
Freq(Hz)  
FIGURE 11-13: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 300 PF, 25°C)  
10000  
1000  
100  
5.5V  
4.5V  
3.5V  
2.5V  
10  
10000  
100000  
1000000  
Freq(Hz)  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 69  
PIC16CR54C  
PIC16CR54C  
FIGURE 11-14: WDT TIMER TIME-OUT  
PERIOD vs. VDD  
50  
45  
40  
35  
30  
Typ +125°C  
25  
Typ +85°C  
20  
15  
Typ +25°C  
Typ –40°C  
10  
5
2
3
4
5
6
7
VDD (Volts)  
DS40191A-page 70  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
PIC16CR54C  
FIGURE 11-15: IOH vs. VOH, VDD = 3 V  
FIGURE 11-17: IOL vs. VOL, VDD = 3 V  
0
45  
40  
35  
Max –40°C  
–5  
Min +85°C  
30  
25  
–10  
Typ +25°C  
Typ +25°C  
Min +85°C  
–15  
20  
Max –40°C  
15  
10  
–20  
5
0
–25  
0
0.5 1.0 1.5 2.0 2.5 3.0  
VOH (Volts)  
0.0  
0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
FIGURE 11-16: IOH vs. VOH, VDD = 5 V  
FIGURE 11-18: IOL vs. VOL, VDD = 5 V  
90  
0
Max –40°C  
80  
70  
–10  
60  
50  
Typ +125°C  
Typ +25°C  
–20  
Typ +85°C  
40  
Typ +25°C  
Min +85°C  
Typ –40°C  
30  
20  
–30  
–40  
10  
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOH (Volts)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 71  
PIC16CR54C  
PIC16CR54C  
NOTES:  
DS40191A-page 72  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
12.0 PACKAGING INFORMATION  
12.1  
Package Marking Information  
18-Lead PDIP  
Example  
Example  
MMMMMMMMMMMMXXX  
MMMMMMMMXXXXXXX  
PIC16CR54C-  
04/P123  
9813 HBA  
AABB CDE  
18-Lead SOIC  
MMMMMMMMM  
XXXXXXXXX  
PIC16CR54C-  
04I/S0218  
AABB CDE  
9810 HDK  
20-Lead SSOP  
Example  
MMMMMMMM  
XXXXXXXX  
AABB CDE  
PIC16CR54C  
04I/218  
9810 HBP  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
AA  
BB  
C
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
O = Outside Vendor  
C = 5” Line  
S = 6” Line  
H = 8” Line  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line,  
it will be carried over to the next line thus limiting the number of available  
characters for customer specific information.  
*
Standard ROM marking consists of Microchip part number, year code, week  
code, facility code, mask rev#, and assembly code. For ROM marking  
beyond this, certain price adders apply. Please check with your Microchip  
Sales Office.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 73  
PIC16CR54C  
Package Type: K04-007 18-Lead Plastic Dual In-line (P) – 300 mil  
E
D
2
α
n
1
E1  
A1  
L
A
R
c
A2  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
0.300  
18  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
7.62  
18  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
α
0.100  
0.018  
0.060  
0.005  
0.010  
0.155  
0.095  
0.020  
0.130  
0.895  
0.255  
0.250  
0.349  
10  
2.54  
0.013  
0.023  
0.33  
1.40  
0.46  
1.52  
0.13  
0.25  
3.94  
2.41  
0.51  
3.30  
22.73  
6.48  
6.35  
8.85  
10  
0.58  
0.055  
0.000  
0.005  
0.110  
0.075  
0.000  
0.125  
0.890  
0.245  
0.230  
0.310  
5
0.065  
0.010  
0.015  
0.155  
0.115  
0.020  
0.135  
0.900  
0.265  
0.270  
0.387  
15  
1.65  
0.25  
0.38  
3.94  
2.92  
0.51  
3.43  
22.86  
6.73  
6.86  
9.83  
15  
0.00  
0.13  
2.79  
1.91  
0.00  
3.18  
22.61  
6.22  
5.84  
7.87  
5
β
5
10  
15  
5
10  
15  
*
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS40191A-page 74  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
Package Type: K04-051 18-Lead Plastic Small Outline (SO) – Wide, 300 mil  
E1  
E
p
D
2
1
B
n
X
α
45°  
L
R2  
c
A
A1  
R1  
φ
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES*  
NOM  
0.050  
18  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
1.27  
18  
MAX  
p
n
A
A1  
A2  
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Chamfer Distance  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
0.093  
0.099  
0.058  
0.008  
0.456  
0.296  
0.407  
0.020  
0.005  
0.005  
0.016  
4
0.104  
2.36  
1.22  
2.50  
1.47  
0.19  
11.58  
7.51  
10.33  
0.50  
0.13  
0.13  
0.41  
4
2.64  
1.73  
0.28  
11.73  
7.59  
10.64  
0.74  
0.25  
0.25  
0.53  
8
0.048  
0.004  
0.450  
0.292  
0.394  
0.010  
0.005  
0.005  
0.011  
0
0.068  
0.011  
0.462  
0.299  
0.419  
0.029  
0.010  
0.010  
0.021  
8
0.10  
11.43  
7.42  
10.01  
0.25  
0.13  
0.13  
0.28  
0
D
E
E1  
X
R1  
R2  
L
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.010  
0.009  
0.014  
0
0.015  
0.011  
0.017  
12  
0.020  
0.012  
0.019  
15  
0.25  
0.23  
0.36  
0
0.38  
0.27  
0.42  
12  
0.51  
0.30  
0.48  
15  
0
12  
15  
0
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 75  
PIC16CR54C  
Package Type: K04-072 20-Lead Plastic Shrink Small Outine (SS) – 5.30 mm  
E1  
E
p
D
B
2
n
1
α
L
R2  
c
A
A1  
R1  
φ
L1  
A2  
β
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.026  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.65  
20  
MAX  
p
n
A
A1  
A2  
D
E
E1  
R1  
R2  
L
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
20  
0.073  
0.036  
0.005  
0.283  
0.208  
0.306  
0.005  
0.005  
0.020  
4
0.068  
0.078  
1.73  
0.66  
1.86  
0.91  
0.13  
7.20  
5.29  
7.78  
0.13  
0.13  
0.51  
4
1.99  
0.026  
0.002  
0.278  
0.205  
0.301  
0.005  
0.005  
0.015  
0
0.046  
0.008  
0.289  
0.212  
0.311  
0.010  
0.010  
0.025  
8
1.17  
0.21  
7.33  
5.38  
7.90  
0.25  
0.25  
0.64  
8
0.05  
7.07  
5.20  
7.65  
0.13  
0.13  
0.38  
0
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
L1  
c
B
α
β
0.000  
0.005  
0.010  
0
0.005  
0.007  
0.012  
5
0.010  
0.009  
0.015  
10  
0.00  
0.13  
0.25  
0
0.13  
0.18  
0.32  
5
0.25  
0.22  
0.38  
10  
Mold Draft Angle Bottom  
*
0
5
10  
0
5
10  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS40191A-page 76  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
APPENDIX A: COMPATIBILITY  
To convert code written for PIC16CXX to PIC16C5X,  
the user should take the following steps:  
1. Check any CALL, GOTO or instructions that  
modify the PC to determine if any program  
memory page select operations (PA2, PA1, PA0  
bits) need to be made.  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
3. Eliminate any special function register page  
switching. Redefine data variables to reallocate  
them.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
5. Change reset vector to proper value for  
processor used.  
6. Remove any use of the ADDLW and SUBLW  
instructions.  
7. Rewrite any code segments that use interrupts.  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 77  
PIC16CR54C  
NOTES:  
DS40191A-page 78  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54C  
INDEX  
A
M
MCLR ................................................................................ 29  
Memory Map ...................................................................... 13  
PIC16C54s/CR54s/C55s ................................................... 13  
Memory Organization ........................................................ 13  
Data Memory ..................................................................... 13  
Program Memory ............................................................... 13  
MP-DriveWay™ - Application Code Generator ................. 51  
MPLAB C ........................................................................... 51  
MPLAB Integrated Development Environment Software ... 50  
Absolute Maximum Ratings ............................................... 53  
ALU ...................................................................................... 9  
Applications .......................................................................... 5  
Architectural Overview ......................................................... 9  
Assembler  
MPASM Assembler ............................................................ 50  
B
Block Diagram  
O
On-Chip Reset Circuit ........................................................ 29  
PIC16CR54C Series Block Diagram .................................. 10  
Timer0 ................................................................................ 21  
TMR0/WDT Prescaler ........................................................ 24  
Watchdog Timer ................................................................. 33  
Brown-Out Protection Circuit ............................................. 34  
One-Time-Programmable (OTP) Devices ............................7  
OPTION Register .............................................................. 16  
OSC selection .................................................................... 25  
Oscillator Configurations ................................................... 26  
Oscillator Types  
HS ...................................................................................... 26  
LP ...................................................................................... 26  
RC ..................................................................................... 26  
XT ...................................................................................... 26  
C
Carry bit ............................................................................... 9  
Clocking Scheme ............................................................... 12  
Code Protection ........................................................... 25, 35  
Configuration Bits ............................................................... 25  
Configuration Word ............................................................ 25  
PIC16CR54C ..................................................................... 25  
P
Package Marking Information ............................................ 73  
Packaging Information ....................................................... 73  
PC ................................................................................ 17, 29  
PIC16CR54C Product Identification System ..................... 83  
PICDEM-1 Low-Cost PICmicro Demo Board .................... 49  
PICDEM-2 Low-Cost PIC16CXX Demo Board .................. 50  
PICDEM-3 Low-Cost PIC16CXXX Demo Board ............... 50  
PICMASTER In-Circuit Emulator .................................... 49  
PICSTART Plus Entry Level Development System ........ 49  
Pin Configurations ................................................................1  
Pinout Description - PIC16CR54C .................................... 11  
POR  
D
DC and AC Characteristics - PIC16CR54C ....................... 63  
DC Characteristics ............................................................. 54  
Development Support ........................................................ 49  
Development Tools ............................................................ 49  
Device Varieties ................................................................... 7  
Digit Carry bit ....................................................................... 9  
E
Device Reset Timer (DRT) .......................................... 25, 32  
PD ................................................................................ 28, 34  
Power-On Reset (POR) ......................................... 25, 29, 30  
TO ................................................................................ 28, 34  
PORTA ........................................................................ 19, 29  
PORTB ........................................................................ 19, 29  
Power-Down Mode ............................................................ 35  
Prescaler ........................................................................... 24  
PRO MATE II Universal Programmer ............................. 49  
Program Counter ............................................................... 17  
Electrical Characteristics  
PIC16CR54C ..................................................................... 53  
External Power-On Reset Circuit ....................................... 30  
F
Family of Devices  
PIC16C5X ............................................................................ 6  
Features ............................................................................... 1  
FSR .................................................................................... 29  
FSR Register ..................................................................... 18  
Fuzzy Logic Dev. System (fuzzyTECH -MP) ................... 51  
Q
Q cycles ............................................................................. 12  
Quick-Turnaround-Production (QTP) Devices ......................7  
I
I/O Interfacing .................................................................... 19  
I/O Ports ............................................................................. 19  
I/O Programming Considerations ....................................... 20  
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator ........... 49  
INDF ................................................................................... 29  
INDF Register .................................................................... 18  
Indirect Data Addressing .................................................... 18  
Instruction Cycle ................................................................ 12  
Instruction Flow/Pipelining ................................................. 12  
Instruction Set Summary .................................................... 37  
R
RC Oscillator ..................................................................... 27  
Read Only Memory (ROM) Devices .....................................7  
Read-Modify-Write ............................................................. 20  
Register File Map .............................................................. 13  
Registers  
Special Function ................................................................ 13  
Reset ........................................................................... 25, 28  
Reset on Brown-Out .......................................................... 34  
K
S
KeeLoq Evaluation and Programming Tools ................... 51  
SEEVAL Evaluation and Programming System ............. 51  
Serialized Quick-Turnaround-Production (SQTP) Devices ..7  
SLEEP ......................................................................... 25, 35  
Software Simulator (MPLAB-SIM) ..................................... 51  
Special Features of the CPU ............................................. 25  
L
Loading of PC .................................................................... 17  
1998 Microchip Technology Inc.  
DS40191A-page 79  
PIC16CR54C  
Special Function Registers ................................................13  
Stack ..................................................................................17  
STATUS .............................................................................29  
STATUS Register ...........................................................9, 15  
T
Timer0  
Switching Prescaler Assignment ........................................24  
Timer0 (TMR0) Module ......................................................21  
TMR0 with External Clock ..................................................23  
Timing Diagrams and Specifications ..................................57  
Timing Parameter Symbology and Load Conditions ..........56  
TRIS Registers ...................................................................19  
U
UV Erasable Devices ...........................................................7  
W
W ........................................................................................29  
Wake-up from SLEEP ........................................................35  
Watchdog Timer (WDT) ...............................................25, 32  
Period .................................................................................32  
Programming Considerations .............................................32  
Z
Zero bit .................................................................................9  
DS40191A-page 80  
1998 Microchip Technology Inc.  
PIC16CR54C  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-602-786-7302 for the rest of the world.  
980106  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.futureone.com/pub/microchip  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICSTART,  
PICMASTER and PRO MATE are registered trademarks  
of Microchip Technology Incorporated in the U.S.A. and  
other countries. PICmicro, FlexROM, MPLAB and fuzzy-  
LAB are trademarks and SQTP is a service mark of Micro-  
chip in the U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
fuzzyTECH is a registered trademark of Inform Software  
Corporation. IBM, IBM PC-AT are registered trademarks  
of International Business Machines Corp. Pentium is a  
trademark of Intel Corporation. Windows is a trademark  
and MS-DOS, Microsoft Windows are registered trade-  
marks of Microsoft Corporation. CompuServe is a regis-  
tered trademark of CompuServe Incorporated.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Listing of seminars and events  
1998 Microchip Technology Inc.  
DS40191A-page 81  
PIC16CR54C  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS40191A  
Device:  
PIC16CR54C  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS40191A-page 82  
1998 Microchip Technology Inc.  
PIC16CR54C  
PIC16CR54C PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
-XX  
Examples:  
Frequency Temperature Package  
Pattern  
a) PIC16CR54C -04/P 301 = Commercial  
temp., PDIP package, 4MHz, normalVDD  
limitis, pattern #301.  
Range  
Range  
(2)  
(3)  
Device  
PIC16CR54C , PIC16CR54CT  
b) PIC16CR54C - 20I/P355 = ROM pro-  
gram memory, Industrial temp., PDIP  
package, 20MHz, normal VDD limits.  
Frequency  
Range  
04  
20  
C
= 4 MHz  
= 20 MHz  
(1)  
Temperature  
Range  
b
I
=
0°C to +70°C (Commercial)  
= -40°C to +85°C (Industrial)  
Note 1: b = blank  
2: CR = ROM Version, Standard VDD  
range  
3: T = in tape and reel - SOIC, SSOP  
packages only.  
Package  
Pattern  
P
SO  
SS  
= PDIP  
= SOIC (Gull Wing, 300 mil body)  
= SSOP (209 mil body)  
3-digit Pattern Code for ROM (blank otherwise)  
1998 Microchip Technology Inc.  
Preliminary  
DS40191A-page 83  
M
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC (continued)  
Corporate Office  
Microchip Technology Inc.  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Hong Kong  
Microchip Asia Pacific  
RM 3801B, Tower Two  
Metroplaza  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Tel: 602-786-7200 Fax: 602-786-7277  
Technical Support: 602 786-7627  
Web: http://www.microchip.com  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Taipei, Taiwan, ROC  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
EUROPE  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
India  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-1189-21-5858 Fax: 44-1189-21-5835  
Boston  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Japan  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
France  
Arizona Microchip Technology SARL  
Zone Industrielle de la Bonde  
2 Rue du Buisson aux Fraises  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Korea  
Tel: 630-285-0071 Fax: 630-285-0075  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 Müchen, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Dallas  
Microchip Technology Inc.  
14651 Dallas Parkway, Suite 816  
Dallas, TX 75240-8809  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Tel: 972-991-7177 Fax: 972-991-8588  
Italy  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
Tel: 39-39-6899939 Fax: 39-39-6899883  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Tel: 86-21-6275-5700  
Fax: 86 21-6275-5060  
Los Angeles  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore 188980  
4/3/98  
Tel: 714-263-1888 Fax: 714-263-1338  
NewYork  
Tel: 65-334-8870 Fax: 65-334-8850  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 516-273-5305 Fax: 516-273-5335  
Microchip received ISO 9001 Quality  
System certification for its worldwide  
headquarters, design, and wafer  
fabrication facilities in January, 1997.  
Our field-programmable PICmicro™  
8-bit MCUs, Serial EEPROMs,  
related specialty memory products  
and development systems conform  
to the stringent quality standards of  
the International Standard  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Microchip Technology Inc.  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
Organization (ISO).  
All rights reserved. © 1998, Microchip Technology Incorporated, USA. 4/98  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no  
liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use  
or otherwise. Use of Microchips products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or  
otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other  
trademarks mentioned herein are the property of their respective companies.  
DS40191A-page 84  
1998 Microchip Technology Inc.  

相关型号:

PIC16CR54A-20I/PXXX

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,DIP,18PIN,PLASTIC
MICROCHIP

PIC16CR54A-20I/SO

ROM-Based 8-Bit CMOS Microcontroller Series
MICROCHIP

PIC16CR54A-20I/SOXXX

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SOP,18PIN,PLASTIC
MICROCHIP

PIC16CR54A-20I/SS

ROM-Based 8-Bit CMOS Microcontroller Series
MICROCHIP

PIC16CR54A-HS/P

8-Bit Microcontroller
ETC

PIC16CR54A-HS/SO

8-Bit Microcontroller
ETC

PIC16CR54A-HS/SS

8-Bit Microcontroller
ETC

PIC16CR54A-HSE/P

8-Bit Microcontroller
ETC

PIC16CR54A-HSE/SO

8-Bit Microcontroller
ETC

PIC16CR54A-HSE/SS

8-Bit Microcontroller
ETC

PIC16CR54A-HSI/P

8-Bit Microcontroller
ETC

PIC16CR54A-HSI/SO

8-Bit Microcontroller
ETC