PIC16F628A-I/ML [MICROCHIP]

FLASH-Based 8-Bit CMOS Microcontrollers; 基于闪存的8位CMOS微控制器
PIC16F628A-I/ML
型号: PIC16F628A-I/ML
厂家: MICROCHIP    MICROCHIP
描述:

FLASH-Based 8-Bit CMOS Microcontrollers
基于闪存的8位CMOS微控制器

闪存 微控制器和处理器 外围集成电路 时钟
文件: 总168页 (文件大小:3574K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F627A/628A/648A  
Data Sheet  
FLASH-Based  
8-Bit CMOS Microcontrollers  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-  
edge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, KEELOQ,  
MPLAB, PIC, PICmicro, PICSTART and PRO MATE are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,  
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,  
ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,  
MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select  
Mode and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
DS40044A - page ii  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
18-pin FLASH-Based 8-Bit CMOS Microcontrollers  
High Performance RISC CPU:  
Low Power Features:  
• Operating speeds from DC - 20 MHz  
• Interrupt capability  
• Standby Current:  
- ±00 nA @ 2.0V, typical  
• Operating Current:  
• 8-level deep hardware stack  
• Direct, Indirect and Relative Addressing modes  
• 35 single word instructions  
- ±2 µA @ 32 kHz, 2.0V, typical  
- ±20 µA @ ± MHz, 2.0V, typical  
• Watchdog Timer Current  
- ± µA @ 2.0V, typical  
- All instructions single cycle except branches  
Special Microcontroller Features:  
• Timer± oscillator current:  
- ±.2 µA @ 32 kHz, 2.0V, typical  
• Dual Speed Internal Oscillator:  
• Internal and external oscillator options  
- Precision Internal 4 MHz oscillator factory  
calibrated to ±±1  
- Run-time selectable between 4 MHz and  
37 kHz  
- Low Power Internal 37 kHz oscillator  
- External Oscillator support for crystals and  
resonators.  
- 4 µs wake-up from SLEEP, 3.0V, typical  
Peripheral Features:  
• Power saving SLEEP mode  
• Programmable weak pull-ups on PORTB  
• Multiplexed Master Clear/Input-pin  
• ±6 I/O pins with individual direction control  
• High current sink/source for direct LED drive  
• Analog comparator module with:  
• Watchdog Timer with independent oscillator for  
reliable operation  
- Two analog comparators  
• Low voltage programming  
- Programmable on-chip voltage reference  
(VREF) module  
• In-Circuit Serial Programming™ (via two pins)  
• Programmable code protection  
• Brown-out Reset  
- Selectable internal or external reference  
- Comparator outputs are externally accessible  
• Power-on Reset  
• Timer0: 8-bit timer/counter with 8-bit  
programmable prescaler  
• Power-up Timer and Oscillator Start-up Timer  
• Wide operating voltage range. (2.0 - 5.5V)  
• Industrial and extended temperature range  
• High Endurance FLASH/EEPROM Cell  
- ±00,000 write FLASH endurance  
- ±,000,000 write EEPROM endurance  
- ±00 year data retention  
• Timer±: ±6-bit timer/counter with external crystal/  
clock capability  
• Timer2: 8-bit timer/counter with 8-bit period regis-  
ter, prescaler and postscaler  
• Capture, Compare, PWM module  
- ±6-bit Capture/Compare  
- ±0-bit PWM  
• Addressable Universal Synchronous/Asynchro-  
nous Receiver/Transmitter USART/SCI  
Program  
Data Memory  
Memory  
CCP  
Timers  
8/16-bit  
Device  
I/O  
USART  
Comparators  
(PWM)  
FLASH  
(words)  
SRAM  
EEPROM  
(bytes)  
(bytes)  
PIC16F627A  
PIC16F628A  
PIC16F648A  
1024  
2048  
4096  
224  
224  
256  
128  
128  
256  
16  
16  
16  
1
1
1
Y
Y
Y
2
2
2
2/1  
2/1  
2/1  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 1  
PIC16F627A/628A/648A  
Pin Diagrams  
PDIP, SOIC  
1
18  
RA2/AN2/VREF  
RA3/AN3/CMP1  
RA4/TOCKI/CMP2  
RA5/MCLR/VPP  
VSS  
RA1/AN1  
RA0/AN0  
17  
16  
2
3
4
5
RA7/OSC1/CLKIN  
RA6/OSC2/CLKOUT  
15  
14  
13  
12  
VDD  
RB0/INT  
6
RB7/T1OSI/PGD  
RB1/RX/DT  
RB2/TX/CK  
RB3/CCP1  
RB6/T1OSO/T1CKI/PGC  
7
8
RB5  
11  
10  
9
RB4/PGM  
SSOP  
28-Pin QFN  
RA5/MCLR/VDD  
VSS  
1
21  
20  
19  
18  
17  
16  
15  
RA7/OSC1/CLKIN  
RA6/OSC2/CLKOUT  
VDD  
PIC16F627A/628A/648A  
NC  
NC  
2
3
PIC16F627A/628A  
PIC16F648A  
4
NC  
VSS  
VDD  
5
6
7
NC  
RB7/T1OSI/PGD  
RB6/T1OSO/T1CKI/PGC  
RB0/INT  
DS40044A-page 2  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
Table of Contents  
1.0 General Description...................................................................................................................................................................... 5  
2.0 PIC16F627A/628A/648A Device Varieties................................................................................................................................... 7  
3.0 Architectural Overview ................................................................................................................................................................. 9  
4.0 Memory Organization................................................................................................................................................................. 15  
5.0 I/O Ports ..................................................................................................................................................................................... 31  
6.0 Timer0 Module ........................................................................................................................................................................... 45  
7.0 Timer1 Module ........................................................................................................................................................................... 48  
8.0 Timer2 Module ........................................................................................................................................................................... 52  
9.0 Capture/Compare/PWM (CCP) Module ..................................................................................................................................... 55  
10.0 Comparator Module.................................................................................................................................................................... 61  
11.0 Voltage Reference Module......................................................................................................................................................... 67  
12.0 Universal Synchronous Asynchronous Receiver Transmitter (USART) Module........................................................................ 69  
13.0 Data EEPROM Memory ............................................................................................................................................................. 89  
14.0 Special Features of the CPU...................................................................................................................................................... 93  
15.0 Instruction Set Summary.......................................................................................................................................................... 111  
16.0 Development Support............................................................................................................................................................... 125  
17.0 Electrical Specifications............................................................................................................................................................ 131  
18.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 147  
19.0 Packaging Information.............................................................................................................................................................. 149  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Micro-  
chip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined  
and enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include lit-  
erature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 3  
PIC16F627A/628A/648A  
NOTES:  
DS40044A-page 4  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
HS is for High-Speed crystals. The EC mode is for an  
external clock source.  
1.0  
GENERAL DESCRIPTION  
The PIC±6F627A/628A/648A are ±8-Pin FLASH-  
based members of the versatile PIC±6CXX family of  
low cost, high performance, CMOS, fully-static, 8-bit  
microcontrollers.  
The SLEEP (Power-down) mode offers power savings.  
Users can wake-up the chip from SLEEP through sev-  
eral external interrupts, internal interrupts and  
RESETS.  
®
All PICmicro microcontrollers employ an advanced  
A highly reliable Watchdog Timer with its own on-chip  
RC oscillator provides protection against software lock-  
up.  
RISC architecture. The PIC±6F627A/628A/648A have  
enhanced core features, eight-level deep stack, and  
multiple internal and external interrupt sources. The  
separate instruction and data buses of the Harvard  
architecture allow a ±4-bit wide instruction word with  
the separate 8-bit wide data. The two-stage instruction  
pipeline allows all instructions to execute in a single-  
cycle, except for program branches (which require two  
cycles). A total of 35 instructions (reduced instruction  
set) are available, complemented by a large register  
set.  
Table ±-± shows the features of the PIC±6F627A/  
628A/648A mid-range microcontroller families.  
A simplified block diagram of the PIC±6F627A/628A/  
648A is shown in Figure 3-±.  
The PIC±6F627A/628A/648A series fits in applications  
ranging from battery chargers to low power remote  
sensors. The FLASH technology makes customizing  
application programs (detection levels, pulse genera-  
tion, timers, etc.) extremely fast and convenient. The  
small footprint packages makes this microcontroller  
series ideal for all applications with space limitations.  
Low cost, low power, high performance, ease of use  
and I/O flexibility make the PIC±6F627A/628A/648A  
very versatile.  
PIC±6F627A/628A/648A microcontrollers typically  
achieve a 2:± code compression and a 4:± speed  
improvement over other 8-bit microcontrollers in their  
class.  
PIC±6F627A/628A/648A devices have integrated fea-  
tures to reduce external components, thus reducing  
system cost, enhancing system reliability and reducing  
power consumption.  
1.1  
Development Support  
The PIC±6F627A/628A/648A has 8 oscillator configu-  
rations. The single-pin RC oscillator provides a low cost  
solution. The LP oscillator minimizes power consump-  
tion, XT is a standard crystal, and INTOSC is a self-  
contained precision two-speed internal oscillator. The  
The PIC±6F627A/628A/648A family is supported by a  
full-featured macro assembler, a software simulator, an  
in-circuit emulator, a low cost in-circuit debugger, a low  
cost development programmer and a full-featured pro-  
grammer. A Third Party “C” compiler support tool is  
also available.  
TABLE 1-1:  
PIC16F627A/628A/648A FAMILY OF DEVICES  
PIC16F627A  
PIC16F628A  
PIC16F648A  
PIC16LF627A  
4
PIC16LF628A  
4
PIC16LF648A  
4
Clock  
Maximum Frequency  
of Operation (MHz)  
20  
20  
20  
FLASH Program Mem-  
ory (words)  
1024  
224  
2048  
224  
4096  
256  
1024  
224  
2048  
224  
4096  
256  
Memory  
RAM Data Memory  
(bytes)  
EEPROM Data Mem-  
ory (bytes)  
128  
128  
256  
128  
128  
256  
Timer module(s)  
TMR0, TMR1,  
TMR2  
TMR0, TMR1,  
TMR2  
TMR0, TMR1,  
TMR2  
TMR0, TMR1,  
TMR2  
TMR0, TMR1,  
TMR2  
TMR0, TMR1,  
TMR2  
Comparator(s)  
2
1
2
1
2
1
2
1
2
1
2
1
Peripherals Capture/Compare/  
PWM modules  
Serial Communications  
USART  
Yes  
USART  
Yes  
USART  
Yes  
USART  
Yes  
USART  
Yes  
USART  
Yes  
Internal Voltage  
Reference  
Interrupt Sources  
I/O Pins  
10  
16  
10  
16  
10  
16  
10  
16  
10  
16  
10  
16  
Features  
Voltage Range (Volts)  
Brown-out Reset  
Packages  
3.0-5.5  
Yes  
3.0-5.5  
Yes  
3.0-5.5  
Yes  
2.0-5.5  
Yes  
2.0-5.5  
Yes  
2.0-5.5  
Yes  
18-pin DIP,  
SOIC, 20-pin  
SSOP,  
18-pin DIP,  
SOIC, 20-pin  
SSOP,  
18-pin DIP,  
SOIC, 20-pin  
SSOP,  
18-pin DIP,  
SOIC, 20-pin  
SSOP,  
18-pin DIP,  
SOIC, 20-pin  
SSOP,  
18-pin DIP,  
SOIC, 20-pin  
SSOP,  
28-pin QFN  
28-pin QFN  
28-pin QFN  
28-pin QFN  
28-pin QFN  
28-pin QFN  
All PICmicro® Family devices have Power-on Reset, selectable Watchdog Timer, selectable Code Protect and high I/O current capability.  
All PIC16F627A/628A/648A Family devices use serial programming with clock pin RB6 and data pin RB7.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 5  
PIC16F627A/628A/648A  
NOTES:  
DS40044A-page 6  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
2.0  
PIC16F627A/628A/648A  
DEVICE VARIETIES  
A variety of frequency ranges and packaging options  
are available. Depending on application and production  
requirements, the proper device option can be selected  
using the information in the PIC±6F627A/628A/648A  
Product Identification System, at the end of this data  
sheet. When placing orders, please use this page of  
the data sheet to specify the correct part number.  
2.1  
FLASH Devices  
FLASH devices can be erased and re-programmed  
electrically. This allows the same device to be used for  
prototype development, pilot programs and production.  
A further advantage of the electrically erasable FLASH  
is that it can be erased and reprogrammed in-circuit, or  
by device programmers, such as Microchip's  
®
®
PICSTART Plus, or PRO MATE II programmers.  
2.2  
Quick-Turnaround-Production  
(QTP) Devices  
Microchip offers a QTP Programming Service for  
factory production orders. This service is made  
available for users who chose not to program a medium  
to high quantity of units and whose code patterns have  
stabilized. The devices are standard FLASH devices  
but with all program locations and configuration options  
already programmed by the factory. Certain code and  
prototype verification procedures apply before  
production shipments are available. Please contact  
your Microchip Technology sales office for more  
details.  
2.3  
Serialized Quick-Turnaround-  
Production (SQTPSM) Devices  
Microchip offers a unique programming service where  
a few user-defined locations in each device are  
programmed with different serial numbers. The serial  
numbers may be random, pseudo-random or  
sequential.  
Serial programming allows each device to have a  
unique number, which can serve as an entry-code,  
password or ID number.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 7  
PIC16F627A/628A/648A  
NOTES:  
DS40044A-page 8  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
The ALU is 8-bit wide and capable of addition,  
subtraction, shift and logical operations. Unless  
otherwise mentioned, arithmetic operations are two's  
complement in nature. In two-operand instructions,  
typically one operand is the working register  
(W register). The other operand is a file register or an  
immediate constant. In single operand instructions, the  
operand is either the W register or a file register.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC±6F627A/628A/648A  
family can be attributed to a number of architectural  
features commonly found in RISC microprocessors. To  
begin with, the PIC±6F627A/628A/648A uses a Har-  
vard architecture, in which program and data are  
accessed from separate memories using separate bus-  
ses. This improves bandwidth over traditional von Neu-  
mann architecture where program and data are fetched  
from the same memory. Separating program and data  
memory further allows instructions to be sized differ-  
ently than 8-bit wide data word. Instruction opcodes are  
±4-bits wide making it possible to have all single word  
instructions. A ±4-bit wide program memory access  
bus fetches a ±4-bit instruction in a single cycle. A two-  
stage pipeline overlaps fetch and execution of instruc-  
tions. Consequently, all instructions (35) execute in a  
single-cycle (200 ns @ 20 MHz) except for program  
branches.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register. The C and DC bits  
operate as a Borrow and Digit Borrow out bit,  
respectively, bit in subtraction. See the SUBLW and  
SUBWFinstructions for examples.  
A simplified block diagram is shown in Figure 3-±, and  
a description of the device pins in Table 3-2.  
Two types of data memory are provided on the  
Non-volatile  
Table 3-± lists device memory sizes (FLASH, Data and  
EEPROM).  
PIC±6F627A/628A/648A  
devices.  
EEPROM data memory is provided for long term stor-  
age of data such as calibration values, look up table  
data, and any other data which may require periodic  
updating in the field. These data are not lost when  
power is removed. The other data memory provided is  
regular RAM data memory. Regular RAM data memory  
is provided for temporary storage of data during normal  
operation. Data are lost when power is removed.  
TABLE 3-1:  
DEVICE MEMORY LIST  
Memory  
Device  
FLASH  
RAM  
Data  
EEPROM  
Data  
Program  
PIC16F627A  
PIC16F628A  
PIC16F648A  
PIC16LF627A  
PIC16LF628A  
PIC16LF648A  
1024 x 14  
2048 x 14  
4096 x 14  
1024 x 14  
2048 x 14  
4096 x 14  
224 x 8  
224 x 8  
256 x 8  
224 x 8  
224 x 8  
256 x 8  
128 x 8  
128 x 8  
256 x 8  
128 x 8  
128 x 8  
256 x 8  
The PIC±6F627A/628A/648A can directly or indirectly  
address its register files or data memory. All Special  
Function Registers, including the program counter, are  
mapped in the data memory. The PIC±6F627A/628A/  
648A have an orthogonal (symmetrical) instruction set  
that makes it possible to carry out any operation, on  
any register, using any Addressing mode. This sym-  
metrical nature and lack of ‘special optimal situations’  
make programming with the PIC±6F627A/628A/648A  
simple yet efficient. In addition, the learning curve is  
reduced significantly.  
The PIC±6F627A/628A/648A devices contain an 8-bit  
ALU and working register. The ALU is a general pur-  
pose arithmetic unit. It performs arithmetic and Boolean  
functions between data in the working register and any  
register file.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 9  
PIC16F627A/628A/648A  
FIGURE 3-1:  
BLOCK DIAGRAM  
13  
8
Data Bus  
Program Counter  
FLASH  
Program  
Memory  
RAM  
8-Level Stack  
(13-bit)  
File  
Registers  
Program  
Bus  
14  
PORTA  
RAM Addr (1)  
9
Addr MUX  
RA0/AN0  
Instruction reg  
RA1/AN1  
Indirect  
Addr  
7
Direct Addr  
RA2/AN2/VREF  
RA3/AN3/CMP1  
RA4/T0CK1/CMP2  
RA5/MCLR/VPP  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
8
FSR reg  
STATUS reg  
8
3
PORTB  
MUX  
Power-up  
Timer  
RB0/INT  
RB1/RX/DT  
RB2/TX/CK  
RB3/CCP1  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
ALU  
Power-on  
Reset  
RB4/PGM  
RB5  
8
Timing  
Generation  
Watchdog  
Timer  
RB6/T1OSO/T1CKI/PGC  
RB7/T1OSI/PGD  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Detect  
Low-Voltage  
Programming  
MCLR VDD, VSS  
Timer0  
Timer1  
Timer2  
Comparator  
CCP1  
USART  
Data EEPROM  
VREF  
Note: Higher order bits are from the STATUS register.  
DS40044A-page 10  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
TABLE 3-2:  
Name  
PIC16F627A/628A/648A PINOUT DESCRIPTION  
Function Input Type Output Type  
Description  
Bi-directional I/O port  
RA0/AN0  
RA0  
AN0  
ST  
AN  
ST  
AN  
ST  
AN  
CMOS  
Analog comparator input  
Bi-directional I/O port  
Analog comparator input  
Bi-directional I/O port  
Analog comparator input  
VREF output  
RA±/AN±  
RA±  
CMOS  
AN±  
RA2/AN2/VREF  
RA2  
CMOS  
AN2  
VREF  
RA3  
AN  
RA3/AN3/CMP±  
ST  
AN  
CMOS  
Bi-directional I/O port  
Analog comparator input  
Comparator ± output  
Bi-directional I/O port  
Timer0 clock input  
AN3  
CMP±  
RA4  
CMOS  
OD  
RA4/T0CKI/CMP2  
ST  
ST  
T0CKI  
CMP2  
OD  
Comparator 2 output  
Input port  
ST  
RA5/MCLR/VPP  
RA5  
Master clear. When configured as MCLR, this  
pin is an active low RESET to the device.  
Voltage on MCLR/VPP must not exceed VDD  
during normal device operation.  
MCLR  
ST  
VPP  
RA6  
ST  
Programming voltage input.  
Bi-directional I/O port  
RA6/OSC2/CLKOUT  
CMOS  
XTAL  
OSC2  
Oscillator crystal output. Connects to crystal  
or resonator in Crystal Oscillator mode.  
CLKOUT  
CMOS  
In RC/INTOSC mode, OSC2 pin can output  
CLKOUT, which has ±/4 the frequency of  
OSC±  
RA7/OSC±/CLKIN  
RA7  
OSC±  
CLKIN  
RB0  
ST  
XTAL  
ST  
CMOS  
Bi-directional I/O port  
Oscillator crystal input  
External clock source input. RC biasing pin.  
RB0/INT  
TTL  
CMOS  
Bi-directional I/O port. Can be software pro-  
grammed for internal weak pull-up.  
INT  
ST  
External interrupt.  
RB±/RX/DT  
RB±  
TTL  
CMOS  
Bi-directional I/O port. Can be software pro-  
grammed for internal weak pull-up.  
RX  
DT  
ST  
ST  
USART receive pin  
CMOS  
CMOS  
Synchronous data I/O.  
RB2/TX/CK  
RB3/CCP±  
RB2  
TTL  
Bi-directional I/O port. Can be software pro-  
grammed for internal weak pull-up.  
TX  
CK  
ST  
CMOS  
CMOS  
CMOS  
USART transmit pin  
Synchronous clock I/O.  
RB3  
TTL  
Bi-directional I/O port. Can be software pro-  
grammed for internal weak pull-up.  
CCP±  
ST  
CMOS  
Capture/Compare/PWM I/O  
Legend:  
O = Output  
— = Not used  
TTL = TTL Input  
CMOS = CMOS Output  
P
= Power  
I
OD  
= Input  
= Open Drain Output  
ST = Schmitt Trigger Input  
AN = Analog  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 11  
PIC16F627A/628A/648A  
TABLE 3-2:  
Name  
PIC16F627A/628A/648A PINOUT DESCRIPTION  
Function Input Type Output Type  
Description  
RB4/PGM  
RB4  
TTL  
ST  
CMOS  
Bi-directional I/O port. Interrupt-on-pin  
change. Can be software programmed for  
internal weak pull-up.  
PGM  
Low voltage programming input pin. When  
low voltage programming is enabled, the  
interrupt-on-pin change and weak pull-up  
resistor are disabled.  
RB5  
RB5  
RB6  
TTL  
TTL  
CMOS  
CMOS  
Bi-directional I/O port. Interrupt-on-pin  
change. Can be software programmed for  
internal weak pull-up.  
Bi-directional I/O port. Interrupt-on-pin  
change. Can be software programmed for  
internal weak pull-up.  
RB6/T±OSO/T±CKI/PGC  
T±OSO  
T±CKI  
PGC  
ST  
XTAL  
Timer± oscillator output.  
Timer± clock input.  
ST  
ICSP Programming Clock.  
RB7/T±OSI/PGD  
RB7  
TTL  
CMOS  
Bi-directional I/O port. Interrupt-on-pin  
change. Can be software programmed for  
internal weak pull-up.  
T±OSI  
PGD  
VSS  
XTAL  
ST  
CMOS  
Timer± oscillator input.  
ICSP Data I/O  
VSS  
VDD  
Power  
Power  
Ground reference for logic and I/O pins  
Positive supply for logic and I/O pins  
VDD  
Legend:  
O = Output  
— = Not used  
TTL = TTL Input  
CMOS = CMOS Output  
P
= Power  
I
OD  
= Input  
= Open Drain Output  
ST = Schmitt Trigger Input  
AN = Analog  
DS40044A-page 12  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
3.1  
Clocking Scheme/Instruction  
Cycle  
3.2  
Instruction Flow/Pipelining  
An instruction cycle consists of four Q cycles (Q±, Q2,  
Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO)  
then two cycles are required to complete the instruction  
(Example 3-±).  
The clock input (OSC±/CLKIN/RA7 pin) is internally  
divided by four to generate four non-overlapping  
quadrature clocks namely Q±, Q2, Q3 and Q4. Inter-  
nally, the program counter (PC) is incremented every  
Q±, the instruction is fetched from the program memory  
and latched into the instruction register in Q4. The  
instruction is decoded and executed during the  
following Q± through Q4. The clocks and instruction  
execution flow is shown in Figure 3-2.  
A fetch cycle begins with the program counter (PC)  
incrementing in Q±.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register (IR) in cycle Q±. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 3-2:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
phase  
clock  
Q4  
PC  
PC  
PC+1  
PC+2  
CLKOUT  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1:  
INSTRUCTION PIPELINE FLOW  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, 3  
Flush  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction  
is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 13  
PIC16F627A/628A/648A  
NOTES:  
DS40044A-page 14  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
4.2  
Data Memory Organization  
4.0  
MEMORY ORGANIZATION  
The data memory (Figure 4-2 and Figure 4-3) is  
partitioned into four banks, which contain the general  
purpose registers and the Special Function Registers  
(SFR). The SFR’s are located in the first 32 locations of  
each Bank. There are general purpose registers imple-  
mented as static RAM in each Bank. Table 4-± lists the  
general purpose register available in each of the four  
banks.  
4.1  
Program Memory Organization  
The PIC±6F627A/628A/648A has a ±3-bit program  
counter capable of addressing an 8K x ±4 program  
memory space. Only the first ±K x ±4 (0000h - 03FFh)  
for the PIC±6F627A, 2K x ±4 (0000h - 07FFh) for the  
PIC±6F628A and 4K x ±4 (0000h - 0FFFh) for the  
PIC±6F648A are physically implemented. Accessing a  
location above these boundaries will cause a wrap-  
around within the first ±K x ±4 space (PIC±6F627A), 2K  
TABLE 4-1:  
GENERAL PURPOSE STATIC  
RAM REGISTERS  
x
±4 space (PIC±6F628A) or 4K x ±4 space  
(PIC±6F648A). The RESET vector is at 0000h and the  
interrupt vector is at 0004h (Figure 4-±).  
PIC16F627A/628A  
PIC16F648A  
Bank0  
Bank±  
Bank2  
Bank3  
20-7Fh  
A0h-FF  
20-7Fh  
A0h-FF  
FIGURE 4-1:  
PROGRAM MEMORY MAP  
AND STACK  
±20h-±4Fh, ±70h-±7Fh  
±F0h-±FFh  
±20h-±7Fh  
±F0h-±FFh  
PC<±2:0>  
±3  
CALL, RETURN  
RETFIE, RETLW  
Addresses F0h-FFh, ±70h-±7Fh and ±F0h-±FFh are  
implemented as common RAM and mapped back to  
addresses 70h-7Fh.  
Stack Level ±  
Stack Level 2  
Table 4-2 lists how to access the four banks of registers  
via the STATUS Register bits RP± and RP0.  
Stack Level 8  
RESET Vector  
TABLE 4-2:  
ACCESS TO BANKS OF  
REGISTERS  
000h  
RP1  
RP0  
Bank0  
Bank±  
Bank2  
Bank3  
0
0
1
1
0
1
0
1
Interrupt Vector  
0004  
0005  
On-chip Program  
Memory  
PIC±6F627A,  
PIC±6F628A and  
PIC±6F648A  
4.2.1  
GENERAL PURPOSE REGISTER  
FILE  
03FFh  
07FFh  
On-chip Program  
Memory  
The register file is organized as 224 x 8 in the  
PIC±6F627A/628A and 256 x 8 in the PIC±6F648A.  
Each is accessed either directly or indirectly through  
the File Select Register (FSR), See Section 4.4.  
PIC±6F628A and  
PIC±6F648A  
On-chip Program  
Memory  
PIC±6F648A only  
0FFFh  
±FFFh  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 15  
PIC16F627A/628A/648A  
FIGURE 4-2:  
DATA MEMORY MAP OF THE PIC16F627A AND PIC16F628A  
File  
Address  
Indirect addr.(1)  
Indirect addr.(1)  
OPTION  
PCL  
Indirect addr.(1)  
Indirect addr.(1)  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
TMR0  
PCL  
OPTION  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
TRISA  
TRISB  
TRISB  
PORTB  
PCLATH  
INTCON  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PCLATH  
INTCON  
PIE1  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
T2CON  
PR2  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
TXSTA  
SPBRG  
EEDATA  
EEADR  
EECON1  
EECON2(1)  
1Ch  
1Dh  
1Eh  
1Fh  
CMCON  
VRCON  
11Fh  
120h  
General  
Purpose  
Register  
48 Bytes  
20h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
14Fh  
150h  
80 Bytes  
1EFh  
1F0h  
6Fh  
70h  
EFh  
F0h  
16Fh  
170h  
accesses  
70h-7Fh  
accesses  
70h - 7Fh  
accesses  
70h-7Fh  
16 Bytes  
Bank 0  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Unimplemented data memory locations, read as '0'.  
Note 1: Not a physical register.  
DS40044A-page 16  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
FIGURE 4-3:  
DATA MEMORY MAP OF THE PIC16F648A  
File  
Address  
Indirect addr.(1)  
Indirect addr.(1)  
OPTION  
PCL  
Indirect addr.(1)  
Indirect addr.(1)  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
TMR0  
PCL  
OPTION  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
TRISA  
TRISB  
TRISB  
PORTB  
PCLATH  
INTCON  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PCLATH  
INTCON  
PIE1  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
T2CON  
PR2  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
TXSTA  
SPBRG  
EEDATA  
EEADR  
EECON1  
EECON2(1)  
1Ch  
1Dh  
1Eh  
1Fh  
CMCON  
VRCON  
11Fh  
120h  
20h  
A0h  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
80 Bytes  
1EFh  
1F0h  
6Fh  
70h  
EFh  
F0h  
16Fh  
170h  
accesses  
70h-7Fh  
accesses  
70h - 7Fh  
accesses  
70h-7Fh  
16 Bytes  
Bank 0  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Unimplemented data memory locations, read as '0'.  
Note 1: Not a physical register.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 17  
PIC16F627A/628A/648A  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The SFRs are registers used by the CPU and Periph-  
eral functions for controlling the desired operation of  
the device (Table 4-3). These registers are static RAM.  
The special registers can be classified into two sets  
(core and peripheral). The SFRs associated with the  
“core” functions are described in this section. Those  
related to the operation of the peripheral features are  
described in the section of that peripheral feature.  
TABLE 4-3:  
SPECIAL REGISTERS SUMMARY BANK0  
Value on Details  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
(1)  
Reset  
on  
Page  
Bank 0  
00h  
01h  
02h  
03h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s Register  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
28  
45  
28  
22  
TMR0  
PCL  
Program Counter's (PC) Least Significant Byte  
STATUS  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
FSR  
Indirect data memory address pointer  
xxxx xxxx  
xxxx 0000  
xxxx xxxx  
28  
31  
36  
28  
24  
26  
48  
48  
PORTA  
PORTB  
RA7  
RB7  
RA6  
RB6  
RA5  
RB5  
RA4  
RB4  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIR1  
Write buffer for upper 5 bits of program counter  
---0 0000  
0000 000x  
GIE  
EEIF  
PEIE  
CMIF  
T0IE  
RCIF  
INTE  
TXIF  
RBIE  
T0IF  
INTF  
RBIF  
CCP1IF  
TMR2IF  
TMR1IF 0000 -000  
Unimplemented  
TMR1L  
TMR1H  
Holding register for the Least Significant Byte of the 16-bit TMR1  
Holding register for the Most Significant Byte of the 16-bit TMR1  
xxxx xxxx  
xxxx xxxx  
10h  
T1CON  
TMR2  
T2CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000  
48  
52  
52  
55  
55  
55  
69  
76  
79  
61  
11h  
TMR2 module’s register  
0000 0000  
12h  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000  
13h  
Unimplemented  
14h  
Unimplemented  
15h  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
Capture/Compare/PWM register (LSB)  
Capture/Compare/PWM register (MSB)  
xxxx xxxx  
16h  
xxxx xxxx  
17h  
CCP1X  
SREN  
CCP1Y  
CREN  
CCP1M3 CCP1M2 CCP1M1  
ADEN FERR OERR  
CCP1M0 --00 0000  
18h  
SPEN  
RX9  
RX9D  
0000 000x  
19h  
USART Transmit data register  
USART Receive data register  
Unimplemented  
0000 0000  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
Legend:  
0000 0000  
Unimplemented  
Unimplemented  
Unimplemented  
CMCON  
C2OUT  
C1OUT  
C2INV  
C1INV  
CIS  
CM2  
CM1  
CM0  
0000 0000  
— = Unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition,  
shaded = unimplemented  
Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-6 and Table 14-7.  
DS40044A-page 18  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
TABLE 4-4:  
SPECIAL FUNCTION REGISTERS SUMMARY BANK1  
Value on Details  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
(1)  
Reset  
on  
Page  
Bank 1  
80h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical  
register)  
xxxx xxxx  
28  
81h  
82h  
OPTION  
PCL  
RBPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
C
1111 1111  
0000 0000  
23  
28  
Program Counter's (PC) Least Significant Byte  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
0001 1xxx  
xxxx xxxx  
22  
28  
31  
36  
28  
24  
25  
Indirect data memory address pointer  
TRISA  
TRISB  
TRISA7  
TRISB7  
TRISA6  
TRISB6  
TRISA5  
TRISB5  
TRISA4  
TRISB4  
TRISA3  
TRISB3  
TRISA2  
TRISB2  
TRISA1  
TRISB1  
TRISA0 1111 1111  
TRISB0 1111 1111  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIE1  
Write buffer for upper 5 bits of program counter  
---0 0000  
GIE  
PEIE  
CMIE  
T0IE  
RCIE  
INTE  
TXIE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
EEIE  
CCP1IE  
TMR2IE  
TMR1IE 0000 -000  
Unimplemented  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
PCON  
OSCF  
POR  
BOR  
---- 1-0x  
27  
52  
71  
71  
89  
90  
90  
90  
67  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
Timer2 Period Register  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
1111 1111  
TXSTA  
SPBRG  
EEDATA  
EEADR  
EECON1  
EECON2  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010  
0000 0000  
xxxx xxxx  
xxxx xxxx  
---- x000  
---- ----  
Baud Rate Generator Register  
EEPROM data register  
EEPROM address register  
WRERR  
WREN  
VR2  
WR  
RD  
EEPROM control register 2 (not a physical register)  
Unimplemented  
VRCON  
VREN  
VROE  
VRR  
VR3  
VR1  
VR0  
000- 0000  
Legend: — = Unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition, shaded =  
unimplemented  
Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-6 and Table 14-7.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 19  
PIC16F627A/628A/648A  
TABLE 4-5:  
SPECIAL FUNCTION REGISTERS SUMMARY BANK2  
Value on Details  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
(1)  
Reset  
on  
Page  
Bank 2  
100h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx  
28  
Timer0 module’s Register  
xxxx xxxx  
101h  
102h  
TMR0  
PCL  
45  
28  
22  
Program Counter's (PC) Least Significant Byte  
0000 0000  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
STATUS  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
0001 1xxx  
FSR  
Indirect data memory address pointer  
Unimplemented  
xxxx xxxx  
28  
36  
28  
24  
PORTB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
Write buffer for upper 5 bits of program counter  
INTE RBIE T0IF INTF RBIF  
---0 0000  
GIE  
PEIE  
T0IE  
0000 000x  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
Legend:  
— = Unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition, shaded =  
unimplemented.  
Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-6 and Table 14-7.  
DS40044A-page 20  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
TABLE 4-6:  
SPECIAL FUNCTION REGISTERS SUMMARY BANK3  
Value on Details  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
(1)  
Reset  
on  
Page  
Bank 3  
180h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx  
28  
181h  
182h  
OPTION  
PCL  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP RP1 RP0 TO  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111  
0000 0000  
23  
28  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
STATUS  
PD  
Z
DC  
C
0001 1xxx  
xxxx xxxx  
22  
28  
36  
28  
24  
FSR  
Indirect data memory address pointer  
Unimplemented  
TRISB  
TRISB7  
TRISB6  
TRISB5  
TRISB4  
TRISB3  
TRISB2  
TRISB1  
TRISB0 1111 1111  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
Write buffer for upper 5 bits of program counter  
INTE RBIE T0IF INTF  
---0 0000  
GIE  
PEIE  
T0IE  
RBIF  
0000 000x  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Legend: — = Unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition, shaded =  
unimplemented  
Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-6 and Table 14-7.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 21  
PIC16F627A/628A/648A  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the status register  
as “000uu1uu(where u= unchanged).  
4.2.2.1  
STATUS Register  
The STATUS register, shown in Register 4-±, contains  
the arithmetic status of the ALU; the RESET status and  
the bank select bits for data memory (SRAM).  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register because these instructions do not  
affect any STATUS bit. For other instructions, not  
affecting any STATUS bits, see the “Instruction Set  
Summary”.  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are non-  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction. See the SUBLW and SUBWF  
instructions for examples.  
REGISTER 4-1:  
STATUS REGISTER (ADDRESS: 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP±  
R/W-0  
RP0  
R-±  
TO  
R-±  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (±00h - ±FFh)  
0= Bank 0, ± (00h - FFh)  
bit 6-5  
RP1:RP0: Register Bank Select bits (used for direct addressing)  
00= Bank 0 (00h - 7Fh)  
01= Bank ± (80h - FFh)  
10= Bank 2 (±00h - ±7Fh)  
11= Bank 3 (±80h - ±FFh)  
bit 4  
bit 3  
bit 2  
bit ±  
TO: Time out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions) (for borrow the polarity  
is reversed)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
bit 0  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high or low order bit of the source register.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
DS40044A-page 22  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
4.2.2.2  
OPTION Register  
Note: To achieve a ±:± prescaler assignment for  
TMR0, assign the prescaler to the WDT  
(PSA = ±). See Section 6.3.±.  
The OPTION register is a readable and writable  
register, which contains various control bits to configure  
the TMR0/WDT prescaler, the external RB0/INT  
interrupt, TMR0 and the weak pull-ups on PORTB.  
REGISTER 4-2:  
OPTION REGISTER (ADDRESS: 81h, 181h)  
R/W-±  
RBPU  
R/W-±  
R/W-±  
T0CS  
R/W-±  
T0SE  
R/W-±  
PSA  
R/W-±  
PS2  
R/W-±  
PS±  
R/W-±  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 1  
1 : 2  
1 : 8  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 23  
PIC16F627A/628A/648A  
4.2.2.3  
INTCON Register  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
The INTCON register is a readable and writable  
register, which contains the various enable and flag bits  
for all interrupt sources except the comparator module.  
See Section 4.2.2.4 and Section 4.2.2.5 for  
description of the comparator enable and flag bits.  
a
REGISTER 4-3:  
INTCON REGISTER (ADDRESS: 0Bh, 8Bh, 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit ±  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all un-masked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all un-masked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= When at least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
DS40044A-page 24  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
4.2.2.4  
PIE1 Register  
This register contains interrupt enable bits.  
REGISTER 4-4:  
PIE1 REGISTER (ADDRESS: 8Ch)  
R/W-0  
EEIE  
R/W-0  
CMIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
U-0  
R/W-0  
R/W-0  
R/W-0  
CCP±IE TMR2IE TMR±IE  
bit 0  
bit 7  
bit 7  
bit 6  
bit 5  
bit 4  
EEIE: EE Write Complete Interrupt Enable Bit  
1= Enables the EE write complete interrupt  
0= Disables the EE write complete interrupt  
CMIE: Comparator Interrupt Enable bit  
1= Enables the comparator interrupt  
0= Disables the comparator interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CCP1IE: CCP± Interrupt Enable bit  
1= Enables the CCP± interrupt  
0= Disables the CCP± interrupt  
bit ±  
bit 0  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR± Overflow Interrupt Enable bit  
1= Enables the TMR± overflow interrupt  
0= Disables the TMR± overflow interrupt  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 25  
PIC16F627A/628A/648A  
4.2.2.5  
PIR1 Register  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User  
software should ensure the appropriate  
interrupt flag bits are clear prior to enabling  
an interrupt.  
This register contains interrupt flag bits.  
REGISTER 4-5:  
PIR1 REGISTER (ADDRESS: 0Ch)  
R/W-0  
EEIF  
R/W-0  
CMIF  
R-0  
R-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP±IF TMR2IF TMR±IF  
bit 0  
bit 7  
bit 7  
bit 6  
bit 5  
bit 4  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1= The write operation completed (must be cleared in software)  
0= The write operation has not completed or has not been started  
CMIF: Comparator Interrupt Flag bit  
1= Comparator output has changed  
0= Comparator output has not changed  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer is full  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer is empty  
0= The USART transmit buffer is full  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CCP1IF: CCP± Interrupt Flag bit  
Capture Mode  
1= A TMR± register capture occurred (must be cleared in software)  
0= No TMR± register capture occurred  
Compare Mode  
1= A TMR± register compare match occurred (must be cleared in software)  
0= No TMR± register compare match occurred  
PWM Mode  
Unused in this mode  
bit ±  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR± Overflow Interrupt Flag bit  
1= TMR± register overflowed (must be cleared in software)  
0= TMR± register did not overflow  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
DS40044A-page 26  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
4.2.2.6  
PCON Register  
The PCON register contains flag bits to differentiate  
between a Power-on Reset, an external MCLR Reset,  
WDT Reset or a Brown-out Reset.  
Note: BOR is unknown on Power-on Reset. It  
must then be set by the user and checked  
on subsequent RESETS to see if BOR is  
cleared, indicating  
a
brown-out has  
occurred. The BOR STATUS bit is a “don't  
care” and is not necessarily predictable if  
the brown-out circuit is disabled (by  
clearing the BOREN bit in the  
Configuration word).  
REGISTER 4-6:  
PCON REGISTER (ADDRESS: 8Eh)  
U-0  
U-0  
U-0  
U-0  
R/W-±  
OSCF  
U-0  
R/W-0  
POR  
R/W-x  
BOR  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as '0'  
OSCF: INTOSC oscillator frequency  
1= 4 MHz typical  
0= 37 kHz typical  
bit 2  
bit ±  
Unimplemented: Read as '0'  
POR: Power-on Reset STATUS bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset STATUS bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 27  
PIC16F627A/628A/648A  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
4.3  
PCL and PCLATH  
The program counter (PC) is ±3-bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<±2:8>) is not  
directly readable or writable and comes from PCLATH.  
On any RESET, the PC is cleared. Figure 4-4 shows  
the two situations for loading the PC. The upper exam-  
ple in Figure 4-4 shows how the PC is loaded on a write  
to PCL (PCLATH<4:0> PCH). The lower example in  
Figure 4-4 shows how the PC is loaded during a CALL  
or GOTOinstruction (PCLATH<4:3> PCH).  
Note 1: There are no STATUS bits to indicate  
stack overflow or stack underflow  
conditions.  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions, or the vectoring to an  
interrupt address.  
FIGURE 4-4:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
4.4  
Indirect Addressing, INDF and  
FSR Registers  
PCH  
PCL  
12  
8
7
0
Instruction with  
PCL as  
Destination  
PC  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
8
PCLATH<4:0>  
PCLATH  
5
ALU result  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses data pointed to by the file select register  
(FSR). Reading INDF itself indirectly will produce 00h.  
Writing to the INDF register indirectly results in a no-  
operation (although STATUS bits may be affected). An  
effective 9-bit address is obtained by concatenating the  
8-bit FSR register and the IRP bit (STATUS<7>), as  
shown in Figure 4-5.  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO, CALL  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
A simple program to clear RAM location 20h-2Fh using  
indirect addressing is shown in Example 4-±.  
EXAMPLE 4-1:  
Indirect Addressing  
4.3.1  
COMPUTED GOTO  
MOVLW  
MOVWF  
0x20  
FSR  
;initialize pointer  
;to RAM  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256-byte block). Refer to the  
application note “Implementing a Table Read” (AN556).  
NEXT  
CLRF  
INCF  
BTFSS  
GOTO  
INDF  
FSR  
;clear INDF register  
;inc pointer  
;all done?  
FSR,4  
NEXT  
;no clear next  
;yes continue  
4.3.2  
STACK  
The PIC±6F627A/628A/648A family has an 8-level  
deep x ±3-bit wide hardware stack (Figure 4-±). The  
stack space is not part of either program or data space  
and the stack pointer is not readable or writable. The  
PC is PUSHed onto the stack when a CALLinstruction  
is executed or an interrupt causes a branch. The stack  
is POPed in the event of a RETURN, RETLWor a RET-  
FIEinstruction execution. PCLATH is not affected by a  
PUSH or POP operation.  
DS40044A-page 28  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
FIGURE 4-5:  
DIRECT/INDIRECT ADDRESSING PIC16F627A/628A/648A  
STATUS  
Register  
STATUS  
Register  
Direct Addressing  
from opcode  
Indirect Addressing  
7
RP1 RP0  
bank select  
6
0
0
IRP  
FSR Register  
bank select  
180h  
location select  
location select  
00  
01  
10  
11  
00h  
RAM  
File  
Registers  
7Fh  
1FFh  
Bank 0  
Bank ± Bank 2  
Bank 3  
Note: For memory map detail see Figure 4-3, Figure 4-2 and Figure 4-±.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 29  
PIC16F627A/628A/648A  
NOTES:  
DS40044A-page 30  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
The RA2 pin will also function as the output for the  
voltage reference. When in this mode, the VREF pin is a  
very high-impedance output. The user must configure  
TRISA<2> bit as an input and use high-impedance  
loads.  
5.0  
I/O PORTS  
The PIC±6F627A/628A/648A have two ports, PORTA  
and PORTB. Some pins for these I/O ports are multi-  
plexed with alternate functions for the peripheral fea-  
tures on the device. In general, when a peripheral is  
enabled, that pin may not be used as a general pur-  
pose I/O pin.  
In one of the Comparator modes defined by the  
CMCON register, pins RA3 and RA4 become outputs  
of the comparators. The TRISA<4:3> bits must be  
cleared to enable outputs to use this function.  
5.1  
IPORTA and TRISA Registers  
PORTA is an 8-bit wide latch. RA4 is a Schmitt Trigger  
input and an open drain output. Port RA4 is multiplexed  
EXAMPLE 5-1:  
PORTA  
Initializing PORTA  
;Initialize PORTA by  
;setting  
CLRF  
(1)  
with the T0CKI clock input. RA5 is a Schmitt Trigger  
input only and has no output drivers. All other RA port  
pins have Schmitt Trigger input levels and full CMOS  
output drivers. All pins have data direction bits (TRIS  
registers) which can configure these pins as input or  
output.  
;output data latches  
;Turn comparators off and  
;enable pins for I/O  
;functions  
MOVLW  
MOVWF  
0x07  
CMCON  
BCF  
BSF  
STATUS, RP1  
STATUS, RP0;Select Bank1  
A '±' in the TRISA register puts the corresponding out-  
put driver in a High-impedance mode. A '0' in the  
TRISA register puts the contents of the output latch on  
the selected pin(s).  
MOVLW  
0x1F  
;Value used to initialize  
;data direction  
;Set RA<4:0> as inputs  
;TRISA<5> always  
;read as ‘1’.  
MOVWF  
TRISA  
Reading the PORTA register reads the status of the  
pins whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations. So a  
write to a port implies that the port pins are first read,  
then this value is modified and written to the port data  
latch.  
;TRISA<7:6>  
;depend on oscillator  
;mode  
FIGURE 5-1:  
BLOCK DIAGRAM OF  
RA0/AN0:RA1/AN1 PINS  
The PORTA pins are multiplexed with comparator and  
voltage reference functions. The operation of these  
pins are selected by control bits in the CMCON  
(comparator control register) register and the VRCON  
(voltage reference control register) register. When  
selected as a comparator input, these pins will read  
as '0's.  
Data  
Bus  
D
Q
Q
VDD  
WR  
PORTA  
CK  
Data Latch  
D
Q
I/O Pin  
WR  
TRISA  
Note 1: RA5 shares function with VPP. When VPP  
voltage levels are applied to RA5, the  
device will enter Programming mode.  
CK  
Q
Analog  
Input Mode  
TRIS Latch  
VSS  
(CMCON Reg.)  
2: On RESET, the TRISA register is set to all  
inputs. The digital inputs (RA<3:0>) are  
disabled and the comparator inputs are  
forced to ground to reduce current con-  
sumption.  
RD  
TRISA  
Schmitt Trigger  
Input Buffer  
3: TRISA<6:7> is overridden by oscillator  
configuration. When PORTA<6:7> is  
overridden, the data reads ‘0’ and the  
TRISA<6:7> bits are ignored.  
Q
D
EN  
TRISA controls the direction of the RA pins, even when  
they are being used as comparator inputs. The user  
must make sure to keep the pins configured as inputs  
when using them as comparator inputs.  
RD PORTA  
To Comparator  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 31  
PIC16F627A/628A/648A  
FIGURE 5-2:  
BLOCK DIAGRAM OF  
RA2/VREF PIN  
Data  
Bus  
D
Q
Q
VDD  
WR  
PORTA  
CK  
Data Latch  
D
Q
RA2 Pin  
WR  
TRISA  
Analog  
Input Mode  
(CMCON Reg.)  
CK  
TRIS Latch  
Q
VSS  
RD  
TRISA  
Schmitt Trigger  
Input Buffer  
Q
D
EN  
RD PORTA  
To Comparator  
VROE  
VREF  
FIGURE 5-3:  
BLOCK DIAGRAM OF THE RA3/AN3 PIN  
Data  
Bus  
(CMCON Reg.)  
Comparator Mode = 110  
Comparator Output  
VDD  
D
Q
Q
WR  
PORTA  
1
0
CK  
Data Latch  
D
Q
RA3 Pin  
WR  
TRISA  
Analog  
Input Mode  
(CMCON Reg.)  
CK  
TRIS Latch  
Q
VSS  
RD  
TRISA  
Schmitt Trigger  
Input Buffer  
Q
D
EN  
RD PORTA  
To Comparator  
DS40044A-page 32  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
FIGURE 5-4:  
BLOCK DIAGRAM OF RA4/T0CKI PIN  
Data  
Bus  
Comparator Mode = 110  
(CMCON Reg.)  
D
Q
Q
Comparator Output  
VDD  
WR  
PORTA  
1
0
CK  
Data Latch  
D
Q
RA4 Pin  
WR  
TRISA  
N
CK  
Q
Vss  
Vss  
TRIS Latch  
Schmitt Trigger  
Input Buffer  
RD TRISA  
Q
D
EN  
RD PORTA  
TMR0 Clock Input  
FIGURE 5-5:  
BLOCK DIAGRAM OF THE  
FIGURE 5-6:  
BLOCK DIAGRAM OF  
RA6/OSC2/CLKOUT PIN  
RA5/MCLR/VPP PIN  
From OSC1  
OSC  
Circuit  
VDD  
CLKOUT(FOSC/4)  
1
0
(Configuration Bit)  
MCLRE  
MCLR  
circuit  
D
Q
Q
WR  
MCLR Filter  
PORTA  
CK  
VSS  
Schmitt Trigger  
Input Buffer  
Program  
mode  
(FOSC =  
Data Latch  
101, 111) (2)  
HV Detect  
RA5/MCLR/VPP  
D
Q
Q
WR  
TRISA  
Data  
Bus  
CK  
TRIS Latch  
VSS  
RD  
TRISA  
Schmitt  
Trigger  
Input Buffer  
FOSC =  
011, 100, 110  
(1)  
RD  
TRISA  
VSS  
Q
D
Q
D
EN  
RD PORTA  
EN  
RD  
PORTA  
Note 1: INTOSC with RA6 = I/O or RC with RA6 = I/O.  
2: INTOSC with RA6 = CLKOUT or RC with RA6 =  
CLKOUT.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 33  
PIC16F627A/628A/648A  
FIGURE 5-7:  
BLOCK DIAGRAM OF RA7/OSC1/CLKIN PIN  
To Clock Circuits  
VDD  
Data Bus  
D
Q
Q
RA7/OSC1/CLKIN Pin  
WR PORTA  
CK  
Data Latch  
D
VSS  
Q
WR TRISA  
CK  
Q
TRIS Latch  
RD TRISA  
FOSC = 100, 101(1)  
Q
D
Schmitt Trigger  
Input Buffer  
EN  
RD PORTA  
Note 1: INTOSC with CLKOUT, and INTOSC with I/O.  
DS40044A-page 34  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
TABLE 5-1:  
Name  
PORTA FUNCTIONS  
Input  
Function  
Output  
Type  
Description  
Type  
RA0/AN0  
RA0  
AN0  
ST  
AN  
ST  
AN  
ST  
AN  
CMOS Bi-directional I/O port  
Analog comparator input  
CMOS Bi-directional I/O port  
Analog comparator input  
CMOS Bi-directional I/O port  
RA±/AN±  
RA±  
AN±  
RA2/AN2/VREF  
RA2  
AN2  
Analog comparator input  
VREF  
RA3  
AN  
VREF output  
RA3/AN3/CMP±  
ST  
AN  
CMOS Bi-directional I/O port  
Analog comparator input  
CMOS Comparator ± output  
AN3  
CMP±  
RA4  
RA4/T0CKI/CMP2  
ST  
ST  
OD  
Bi-directional I/O port. Output is open drain type.  
T0CKI  
CMP2  
External clock input for TMR0 or comparator output  
Comparator 2 output  
OD  
Input port  
RA5/MCLR/VPP  
RA5  
ST  
ST  
Master clear. When configured as MCLR, this pin is an  
active low RESET to the device. Voltage on MCLR/VPP  
must not exceed VDD during normal device operation.  
MCLR  
Programming voltage input.  
VPP  
RA6  
HV  
ST  
RA6/OSC2/CLKOUT  
RA7/OSC±/CLKIN  
CMOS Bi-directional I/O port  
XTAL Oscillator crystal output. Connects to crystal resonator in  
Crystal Oscillator mode.  
OSC2  
CLKOUT  
CMOS In RC or INTOSC mode. OSC2 pin can output CLKOUT,  
which has ±/4 the frequency of OSC±  
RA7  
ST  
CMOS Bi-directional I/O port  
OSC±  
XTAL  
Oscillator crystal input. Connects to crystal resonator in  
Crystal Oscillator mode.  
CLKIN  
ST  
External clock source input. RC biasing pin.  
Legend:  
O = Output  
— = Not used  
TTL = TTL Input  
CMOS = CMOS Output  
P
= Power  
I
OD  
= Input  
= Open Drain Output  
ST = Schmitt Trigger Input  
AN = Analog  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 35  
PIC16F627A/628A/648A  
(1)  
TABLE 5-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
All Other  
RESETS  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RA5(2)  
05h  
85h  
1Fh  
9Fh  
PORTA  
TRISA  
RA7  
RA6  
RA4  
RA3  
RA2  
RA1  
RA0  
xxxx 0000  
1111 1111  
0000 0000  
000- 0000  
qqqu 0000  
1111 1111  
0000 0000  
000- 0000  
TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0  
CMCON  
VRCON  
C2OUT  
VREN  
C1OUT  
VROE  
C2INV  
VRR  
C1INV  
CIS  
CM2  
VR2  
CM1  
VR1  
CM0  
VR0  
VR3  
Legend: — = Unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition,  
shaded = unimplemented  
Note 1: Shaded bits are not used by PORTA.  
2: MCLRE Configuration Bit sets RA5 functionality.  
This interrupt on mismatch feature, together with  
5.2  
PORTB and TRISB Registers  
software configurable pull-ups on these four pins allow  
easy interface to a key pad and make it possible for  
wake-up on key-depression. (See AN552)  
PORTB is an 8-bit wide bi-directional port. The  
corresponding data direction register is TRISB. A '±' in  
the TRISB register puts the corresponding output driver  
in a High-impedance mode. A '0' in the TRISB register  
puts the contents of the output latch on the selected  
pin(s).  
Note: If a change on the I/O pin should occur  
when a read operation is being executed  
(start of the Q2 cycle), then the RBIF inter-  
rupt flag may not get set.  
PORTB is multiplexed with the external interrupt,  
USART, CCP module and the TMR± clock input/output.  
The standard port functions and the alternate port func-  
tions are shown in Table 5-3. Alternate port functions  
may override TRIS setting when enabled.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
Reading PORTB register reads the status of the pins,  
whereas writing to it will write to the port latch. All write  
operations are read-modify-write operations. So a write  
to a port implies that the port pins are first read, then  
this value is modified and written to the port data latch.  
Each of the PORTB pins has a weak internal pull-up  
(200 µA typical). A single control bit can turn on all the  
pull-ups. This is done by clearing the RBPU  
(OPTION<7>) bit. The weak pull-up is automatically  
turned off when the port pin is configured as an output.  
The pull-ups are disabled on Power-on Reset.  
Four of PORTB’s pins, RB<7:4>, have an interrupt-on-  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB<7:4> pin con-  
figured as an output is excluded from the interrupt-on-  
change comparison). The input pins (of RB7:RB4) are  
compared with the old value latched on the last read of  
PORTB. The “mismatch” outputs of RB7:RB4 are  
OR’ed together to generate the RBIF interrupt (flag  
latched in INTCON<0>).  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the  
interrupt in the following manner:  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
DS40044A-page 36  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
FIGURE 5-8:  
BLOCK DIAGRAM OF  
RB0/INT PIN  
VDD  
FIGURE 5-9:  
BLOCK DIAGRAM OF  
RB1/RX/DT PIN  
VDD  
RBPU  
RBPU  
SPEN  
Weak  
Pull-up  
P Weak Pull-up  
VDD  
P
VDD  
USART Data Output  
1
0
Data Bus  
Data Bus  
D
RB1/  
Q
Q
D
Q
Q
RX/DT  
WR PORTB  
RB0/INT  
WR PORTB  
CK  
CK  
Data Latch  
VSS  
VSS  
Data Latch  
D
Q
Q
D
Q
Q
WR TRISB  
CK  
WR TRISB  
CK  
TRIS Latch  
Peripheral OE(1)  
RD TRISB  
TRIS Latch  
TTL  
Input  
Buffer  
TTL  
Input  
Buffer  
RD TRISB  
Q
D
Q
D
EN  
RD PORTB  
EN  
USART Receive Input  
RD PORTB  
INT  
Schmitt  
Trigger  
Note 1: Peripheral OE (output enable) is only active if  
peripheral select is active.  
Schmitt  
Trigger  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 37  
PIC16F627A/628A/648A  
FIGURE 5-10:  
BLOCK DIAGRAM OF  
RB2/TX/CK PIN  
VDD  
FIGURE 5-11:  
BLOCK DIAGRAM OF  
RB3/CCP1 PIN  
VDD  
RBPU  
SPEN  
RBPU  
Weak  
Pull-up  
Weak  
Pull-up  
P
P
CCP1CON  
VDD  
VDD  
USART TX/CK Output  
CCP output  
1
0
0
1
Data Bus  
Data Bus  
RB2/  
TX/CK  
RB3/  
CCP1  
D
D
Q
Q
Q
Q
WR PORTB  
WR PORTB  
CK  
CK  
Data Latch  
Data Latch  
VSS  
VSS  
D
D
Q
Q
Q
Q
WR TRISB  
WR TRISB  
CK  
CK  
TRIS Latch  
TRIS Latch  
Peripheral OE(1)  
RD TRISB  
Peripheral OE(2)  
RD TRISB  
TTL  
Input  
Buffer  
TTL  
Input  
Buffer  
Q
D
Q
D
EN  
EN  
RD PORTB  
RD PORTB  
CCP In  
USART Slave Clock In  
Schmitt  
Trigger  
Schmitt  
Trigger  
Note 1: Peripheral OE (output enable) is only active if  
peripheral select is active.  
Note 1: Peripheral OE (output enable) is only active if  
peripheral select is active.  
DS40044A-page 38  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
FIGURE 5-12:  
BLOCK DIAGRAM OF RB4/PGM PIN  
VDD  
RBPU  
P
weak pull-up  
Data Bus  
D
Q
Q
VDD  
WR PORTB  
CK  
Data Latch  
RB4/PGM  
D
Q
Q
WR TRISB  
RD TRISB  
CK  
VSS  
TRIS Latch  
LVP (Configuration Bit)  
RD PORTB  
PGM input  
TTL  
input  
buffer  
Schmitt  
Trigger  
Q
D
Q1  
EN  
Set RBIF  
Q
D
From other  
RB<7:4> pins  
Q3  
EN  
Note:  
The low voltage programming disables the interrupt-on-change and the weak pull-ups on RB4.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 39  
PIC16F627A/628A/648A  
FIGURE 5-13:  
BLOCK DIAGRAM OF RB5 PIN  
VDD  
RBPU  
VDD  
weak  
pull-up  
P
Data Bus  
D
Q
Q
RB5 pin  
WR PORTB  
CK  
Data Latch  
VSS  
D
Q
Q
WR TRISB  
CK  
TRIS Latch  
TTL  
input  
buffer  
RD TRISB  
Q
D
RD PORTB  
Q1  
EN  
Set RBIF  
Q
D
From other  
RB<7:4> pins  
Q3  
EN  
DS40044A-page 40  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
FIGURE 5-14:  
BLOCK DIAGRAM OF RB6/T1OSO/T1CKI PIN  
VDD  
RBPU  
P
weak pull-up  
Data Bus  
D
Q
Q
VDD  
WR PORTB  
CK  
Data Latch  
RB6/  
D
Q
Q
T1OSO/  
T1CKI  
pin  
WR TRISB  
CK  
VSS  
TRIS Latch  
RD TRISB  
T1OSCEN  
TTL  
input  
buffer  
RD PORTB  
TMR1 Clock  
Schmitt  
Trigger  
From RB7  
TMR1 oscillator  
Serial programming clock  
Q
D
Q1  
EN  
Set RBIF  
Q
D
From other  
RB<7:4> pins  
Q3  
EN  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 41  
PIC16F627A/628A/648A  
FIGURE 5-15:  
BLOCK DIAGRAM OF THE RB7/T1OSI PIN  
VDD  
weak pull-up  
RBPU  
P
TMR1 oscillator  
To RB6  
VDD  
Data Bus  
D
Q
Q
WR PORTB  
RB7/T1OSI  
pin  
CK  
Data Latch  
D
Q
Q
VSS  
WR TRISB  
CK  
TRIS Latch  
RD TRISB  
T10SCEN  
TTL  
input  
buffer  
RD PORTB  
Serial programming input  
Schmitt  
Trigger  
Q
D
Q1  
EN  
Set RBIF  
Q
D
From other  
RB<7:4> pins  
Q3  
EN  
DS40044A-page 42  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
TABLE 5-3:  
PORTB FUNCTIONS  
Output  
Type  
Name  
Function Input Type  
Description  
RB0/INT  
RB0  
TTL  
CMOS  
Bi-directional I/O port. Can be software programmed for  
internal weak pull-up.  
INT  
ST  
External interrupt.  
RB±/RX/DT  
RB±  
TTL  
CMOS  
Bi-directional I/O port. Can be software programmed for  
internal weak pull-up.  
RX  
DT  
ST  
ST  
TTL  
USART Receive Pin  
Synchronous data I/O  
Bi-directional I/O port  
USART Transmit Pin  
CMOS  
CMOS  
CMOS  
CMOS  
RB2/TX/CK  
RB2  
TX  
CK  
ST  
Synchronous Clock I/O. Can be software programmed  
for internal weak pull-up.  
RB3/CCP±  
RB4/PGM  
RB3  
TTL  
CMOS  
Bi-directional I/O port. Can be software programmed for  
internal weak pull-up.  
CCP±  
RB4  
ST  
CMOS  
CMOS  
Capture/Compare/PWM/I/O  
TTL  
Bi-directional I/O port. Interrupt-on-pin change. Can be  
software programmed for internal weak pull-up.  
PGM  
ST  
Low voltage programming input pin. When low voltage  
programming is enabled, the interrupt-on-pin change  
and weak pull-up resistor are disabled.  
RB5  
RB5  
RB6  
TTL  
TTL  
CMOS  
CMOS  
Bi-directional I/O port. Interrupt-on-pin change. Can be  
software programmed for internal weak pull-up.  
RB6/T±OSO/T±CKI/  
PGC  
Bi-directional I/O port. Interrupt-on-pin change. Can be  
software programmed for internal weak pull-up.  
T±OSO  
T±CKI  
PGC  
ST  
XTAL  
Timer± Oscillator Output  
Timer± Clock Input  
ST  
ICSP Programming Clock  
RB7/T±OSI/PGD  
RB7  
TTL  
CMOS  
Bi-directional I/O port. Interrupt-on-pin change. Can be  
software programmed for internal weak pull-up.  
T±OSI  
PGD  
XTAL  
ST  
Timer± Oscillator Input  
ICSP Data I/O  
CMOS  
Legend:  
O = Output  
— = Not used  
TTL = TTL Input  
CMOS = CMOS Output  
P
= Power  
I
OD  
= Input  
= Open Drain Output  
ST = Schmitt Trigger Input  
AN = Analog  
(1)  
TABLE 5-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
All Other  
RESETS  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
06h, 106h PORTB  
RB7  
RB6  
RB5  
RB4(2)  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx uuuu uuuu  
86h, 186h TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 1111 1111 1111 1111  
81h, 181h OPTION RBPU INTEDG  
Legend: u = unchanged, x = unknown  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111 1111 1111  
Note 1: Shaded bits are not used by PORTB.  
2: LVP Configuration Bit sets RB4 functionality.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 43  
PIC16F627A/628A/648A  
EXAMPLE 5-2:  
READ-MODIFY-WRITE  
INSTRUCTIONS ON AN  
I/O PORT  
5.3  
I/O Programming Considerations  
5.3.1  
BI-DIRECTIONAL I/O PORTS  
;Initial PORT settings:PORTB<7:4> Inputs  
PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-up and are  
Any instruction that writes, operates internally as a read  
followed by a write operation. The BCFand BSFinstruc-  
tions, for example, read the register into the CPU, exe-  
cute the bit operation and write the result back to the  
register. Caution must be used when these instructions  
are applied to a port with both inputs and outputs  
defined. For example, a BSF operation on bit5 of  
PORTB will cause all eight bits of PORTB to be read  
into the CPU. Then the BSFoperation takes place on  
bit5 and PORTB is written to the output latches. If  
another bit of PORTB is used as a bi-directional I/O pin  
(e.g., bit0) and is defined as an input at this time, the  
input signal present on the pin itself would be read into  
the CPU and rewritten to the data latch of this particular  
pin, overwriting the previous content. As long as the pin  
stays in the Input mode, no problem occurs. However,  
if bit0 is switched into Output mode later on, the content  
of the data latch may now be unknown.  
;
;not connected to other circuitry  
;
;
PORT latchPORT Pins  
---------- ----------  
;
BCF STATUS, RP0  
BCF PORTB, 7  
;01pp pppp 11pp pppp  
;
BSF STATUS, RP0  
BCF TRISB, 7  
BCF TRISB, 6  
;10pp pppp 11pp pppp  
;10pp pppp 10pp pppp  
;
;Note that the user may have expected the  
;pin values to be 00pp pppp. The 2nd BCF  
;caused RB7 to be latched as the pin value  
;(High).  
5.3.2  
SUCCESSIVE OPERATIONS ON I/O  
PORTS  
Reading a port register reads the values of the port  
pins. Writing to the port register writes the value to the  
port latch. When using read-modify-write instructions  
(ex. BCF, BSF, etc.) on a port, the value of the port pins  
is read, the desired operation is done to this value, and  
this value is then written to the port latch.  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle (Figure 5-  
±6). Therefore, care must be exercised if a write fol-  
lowed by a read operation is carried out on the same I/  
O port. The sequence of instructions should be such to  
allow the pin voltage to stabilize (load dependent)  
before the next instruction, which causes that file to be  
read into the CPU, is executed. Otherwise, the previ-  
ous state of that pin may be read into the CPU rather  
than the new state. When in doubt, it is better to sepa-  
rate these instructions with a NOPor another instruction  
not accessing this I/O port.  
Example 5-2 shows the effect of two sequential read-  
modify-write instructions (ex., BCF, BSF, etc.) on an  
I/O port.  
A pin actively outputting a Low or High should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”, “wired-and”).  
The resulting high output currents may damage the  
chip.  
FIGURE 5-16:  
SUCCESSIVE I/O OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
Instruction  
fetched  
PC  
PC + 1  
PC + 2  
PC + 3  
MOVFPORTB, W  
Read to PORTB  
NOP  
NOP  
MOVWFPORTB  
Write to PORTB  
Port pin  
sampled here  
TPD  
Execute  
MOVWF  
Execute  
MOVF  
PORTB, W  
Execute  
NOP  
PORTB  
Note 1: This example shows write to PORTB followed by a read from PORTB.  
2: Data setup time = (0.25 TCY - TPD) where TCY = instruction cycle and TPD = propagation delay of Q1 cycle to output valid.  
Therefore, at higher clock frequencies, a write followed by a read may be problematic.  
DS40044A-page 44  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
6.2  
Using Timer0 with External Clock  
6.0  
TIMER0 MODULE  
When an external clock input is used for Timer0, it must  
meet certain requirements. The external clock  
requirement is due to internal phase clock (TOSC)  
synchronization. Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
The Timer0 module timer/counter has the following  
features:  
• 8-bit timer/counter  
• Read/Write capabilities  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
6.2.1  
EXTERNAL CLOCK  
SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is  
accomplished by sampling the prescaler output on the  
Q2 and Q4 cycles of the internal phase clocks  
(Figure 6-±). Therefore, it is necessary for T0CKI to be  
high for at least 2TOSC (and a small RC delay of 20 ns)  
and low for at least 2TOSC (and a small RC delay of  
20 ns). Refer to the electrical specification of the  
desired device.  
Figure 6-± is a simplified block diagram of the Timer0  
module. Additional information is available in the  
PICmicro™ Mid-Range MCU Family Reference Man-  
ual, DS33023.  
Timer mode is selected by clearing the T0CS bit  
(OPTION<5>). In Timer mode, the TMR0 register value  
will increment every instruction cycle (without pres-  
caler). If the TMR0 register is written to, the increment  
is inhibited for the following two cycles. The user can  
work around this by writing an adjusted value to the  
TMR0 register.  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple-counter type  
prescaler so that the prescaler output is symmetrical.  
For the external clock to meet the sampling  
requirement, the ripple-counter must be taken into  
account. Therefore, it is necessary for T0CKI to have a  
period of at least 4TOSC (and a small RC delay of 40 ns)  
divided by the prescaler value. The only requirement  
on T0CKI high and low time is that they do not violate  
the minimum pulse width requirement of ±0 ns. Refer to  
parameters 40, 4± and 42 in the electrical specification  
of the desired device. See Table ±7-9.  
Counter mode is selected by setting the T0CS bit. In  
this mode the TMR0 register value will increment either  
on every rising or falling edge of pin RA4/T0CKI. The  
incrementing edge is determined by the source edge  
(T0SE) control bit (OPTION<4>). Clearing the T0SE bit  
selects the rising edge. Restrictions on the external  
clock input are discussed in detail in Section 6.2.  
The prescaler is shared between the Timer0 module  
and the Watchdog Timer. The prescaler assignment is  
controlled in software by the control bit PSA  
(OPTION<3>). Clearing the PSA bit will assign the  
prescaler to Timer0. The prescaler is not readable or  
writable. When the prescaler is assigned to the Timer0  
module, prescale value of ±:2, ±:4,..., ±:256 are  
selectable. Section 6.3 details the operation of the  
prescaler.  
6.1  
Timer0 Interrupt  
Timer0 interrupt is generated when the TMR0 register  
timer/counter overflows from FFh to 00h. This overflow  
sets the T0IF bit. The interrupt can be masked by clear-  
ing the T0IE bit (INTCON<5>). The T0IF bit  
(INTCON<2>) must be cleared in software by the  
Timer0 module interrupt service routine before re-  
enabling this interrupt. The Timer0 interrupt cannot  
wake the processor from SLEEP since the timer is shut  
off during SLEEP.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 45  
PIC16F627A/628A/648A  
The PSA and PS2:PS0 bits (OPTION<3:0>) determine  
the prescaler assignment and prescale ratio.  
6.3  
Timer0 Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer. A prescaler assignment for the Timer0 module  
means that there is no postscaler for the Watchdog  
Timer, and vice-versa.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF 1,  
MOVWF 1, BSF 1, x....etc.) will clear the pres-  
caler. When assigned to WDT, a CLRWDT instruction  
will clear the prescaler along with the Watchdog Timer.  
The prescaler is not readable or writable.  
FIGURE 6-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT  
DATA BUS  
FOSC/4  
8
0
1
T0CKI  
PIN  
1
0
SYNC  
2
CYCLES  
TMR0 REG  
T0SE  
T0CS  
SET FLAG BIT T0IF  
ON OVERFLOW  
PSA  
TMR1 Clock Source  
0
1
WDT POSTSCALER/  
TMR0 PRESCALER  
WATCHDOG  
TIMER  
8
PSA  
8-TO-1MUX  
PS0 - PS2  
WDT ENABLE BIT  
1
0
WDT  
TIME OUT  
PSA  
Note: T0SE, T0CS, PSA, PS0-PS2 are bits in the Option Register.  
.
DS40044A-page 46  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
To change prescaler from the WDT to the Timer0  
module, use the sequence shown in Example 6-2. This  
precaution must be taken even if the WDT is disabled.  
6.3.1  
SWITCHING PRESCALER  
ASSIGNMENT  
The prescaler assignment is fully under software  
control (i.e., it can be changed “on the fly” during  
program execution). Use the instruction sequences  
shown in Example 6-± when changing the prescaler  
assignment from Timer0 to WDT, to avoid an unin-  
tended device RESET.  
EXAMPLE 6-2:  
CHANGING PRESCALER  
(WDTTIMER0)  
CLRWDT  
;Clear WDT and  
;prescaler  
BSF  
MOVLW  
STATUS, RP0  
b'xxxx0xxx'  
;Select TMR0, new  
;prescale value and  
;clock source  
EXAMPLE 6-1:  
CHANGING PRESCALER  
(TIMER0WDT)  
MOVWF  
BCF  
OPTION_REG  
STATUS, RP0  
BCF  
STATUS, RP0  
;Skip if already in  
;Bank 0  
;Clear WDT  
CLRWDT  
CLRF  
TMR0  
;Clear TMR0 and  
;Prescaler  
;Bank 1  
BSF  
MOVLW  
STATUS, RP0  
'00101111’b  
;These 3 lines  
;(5, 6, 7)  
MOVWF  
OPTION_REG  
;are required only  
;if desired PS<2:0>  
;are  
CLRWDT  
MOVLW  
MOVWF  
BCF  
;000 or 001  
'00101xxx’b  
OPTION_REG  
STATUS, RP0  
;Set Postscaler to  
;desired WDT rate  
;Return to Bank 0  
TABLE 6-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
All Other  
RESETS  
Value on  
POR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h, 101h  
TMR0  
Timer0 module register  
GIE PEIE T0IE  
RBPU INTEDG T0CS  
TRISA7 TRISA6  
xxxx xxxx uuuu uuuu  
RBIF 0000 000x 0000 000u  
PS0 1111 1111 1111 1111  
0Bh, 8Bh,  
INTCON  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
10Bh, 18Bh  
OPTION(2)  
TRISA  
81h, 181h  
85h  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 1111 1111  
TRISA5  
Legend:  
— = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown  
Note 1: Shaded bits are not used by Timer0 module.  
2: Option is referred by OPTION_REGin MPLAB®.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 47  
PIC16F627A/628A/648A  
The Operating mode is determined by the clock select  
bit, TMR±CS (T±CON<±>).  
7.0  
TIMER1 MODULE  
The Timer± module is a ±6-bit timer/counter consisting  
of two 8-bit registers (TMR±H and TMR±L) which are  
readable and writable. The TMR± register pair  
(TMR±H:TMR±L) increments from 0000h to FFFFh  
and rolls over to 0000h. The Timer± Interrupt, if  
enabled, is generated on overflow of the TMR± register  
pair which latches the interrupt flag bit TMR±IF  
(PIR±<0>). This interrupt can be enabled/disabled by  
setting/clearing the Timer± interrupt enable bit TMR±IE  
(PIE±<0>).  
In Timer mode, the TMR± register pair value incre-  
ments every instruction cycle. In Counter mode, it  
increments on every rising edge of the external clock  
input.  
Timer± can be enabled/disabled by setting/clearing  
control bit TMR±ON (T±CON<0>).  
Timer± also has an internal “RESET input”. This  
RESET can be generated by the CCP module  
(Section 9.0). Register 7-± shows the Timer± control  
register.  
Timer± can operate in one of two modes:  
For the PIC±6F627A/628A/648A, when the Timer±  
oscillator is enabled (T±OSCEN is set), the RB7/T±OSI  
and RB6/T±OSO/T±CKI pins become inputs. That is,  
the TRISB<7:6> value is ignored.  
• As a timer  
• As a counter  
REGISTER 7-1:  
T1CON: TIMER1 CONTROL REGISTER (ADDRESS: 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T±CKPS± T±CKPS0 T±OSCEN T±SYNC TMR±CS TMR±ON  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as '0'  
T1CKPS1:T1CKPS0: Timer± Input Clock Prescale Select bits  
11= ±:8 Prescale value  
10= ±:4 Prescale value  
01= ±:2 Prescale value  
00= ±:± Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer± Oscillator Enable Control bit  
1= Oscillator is enabled  
(1)  
0= Oscillator is shut off  
T1SYNC: Timer± External Clock Input Synchronization Control bit  
TMR±CS = ±  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR±CS = 0  
This bit is ignored. Timer± uses the internal clock when TMR±CS = 0.  
bit ±  
bit 0  
TMR1CS: Timer± Clock Source Select bit  
1= External clock from pin RB6/T±OSO/T±CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer± On bit  
1= Disables Timer±  
0= Stops Timer±  
Note 1: The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
DS40044A-page 48  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
7.2.1  
EXTERNAL CLOCK INPUT TIMING  
FOR SYNCHRONIZED COUNTER  
MODE  
7.1  
Timer1 Operation in Timer Mode  
Timer mode is selected by clearing the TMR±CS  
(T±CON<±>) bit. In this mode, the input clock to the  
timer is FOSC/4. The synchronize control bit T±SYNC  
(T±CON<2>) has no effect since the internal clock is  
always in sync.  
When an external clock input is used for Timer± in syn-  
chronized Counter mode, it must meet certain require-  
ments. The external clock requirement is due to  
internal phase clock (Tosc) synchronization. Also, there  
is a delay in the actual incrementing of the TMR± reg-  
ister pair value after synchronization.  
7.2  
Timer1 Operation in Synchronized  
Counter Mode  
When the prescaler is ±:±, the external clock input is  
the same as the prescaler output. The synchronization  
of T±CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T±CKI to be high for at least 2Tosc (and  
a small RC delay of 20 ns) and low for at least 2Tosc  
(and a small RC delay of 20 ns). Refer to the appropri-  
ate electrical specifications, parameters 45, 46, and 47.  
Counter mode is selected by setting bit TMR±CS. In  
this mode the TMR± register pair value increments on  
every rising edge of clock input on pin RB7/T±OSI  
when bit T±OSCEN is set or pin RB6/T±OSO/T±CKI  
when bit T±OSCEN is cleared.  
If T±SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The pres-  
caler stage is an asynchronous ripple-counter.  
When a prescaler other than ±:± is used, the external  
clock input is divided by the asynchronous ripple-  
counter type prescaler so that the prescaler output is  
symmetrical. In order for the external clock to meet the  
sampling requirement, the ripple-counter must be  
taken into account. Therefore, it is necessary for T±CKI  
to have a period of at least 4Tosc (and a small RC delay  
of 40 ns) divided by the prescaler value. The only  
requirement on T±CKI high and low time is that they do  
not violate the minimum pulse width requirements of ±0  
ns). Refer to the appropriate electrical specifications,  
parameters 45, 46, and 47.  
In this configuration, during SLEEP mode, the TMR±  
register pair value will not increment even if the exter-  
nal clock is present, since the synchronization circuit is  
shut off. The prescaler however will continue to incre-  
ment.  
FIGURE 7-1:  
TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
Clock Input  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
T1SYNC  
RB6/T1OSO/T1CKI  
1
0
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator(1)  
FOSC/4  
Internal  
RB7/T1OSI  
Clock  
2
SLEEP Input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 49  
PIC16F627A/628A/648A  
EXAMPLE 7-1:  
READING A 16-BIT FREE-  
RUNNING TIMER  
7.3  
Timer1 Operation in  
Asynchronous Counter Mode  
; All interrupts are disabled  
TMR1H, W  
TMPH  
If control bit T±SYNC (T±CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during SLEEP and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in soft-  
ware are needed to read/write the timer (Section 7.3.2).  
MOVF  
MOVWF  
MOVF  
;Read high byte  
;
TMR1L, W  
TMPL  
;Read low byte  
;
MOVWF  
MOVF  
SUBWF  
TMR1H, W  
TMPH, W  
;Read high byte  
;Sub 1st read with  
;2nd read  
BTFSC  
GOTO  
STATUS,Z  
CONTINUE  
;Is result = 0  
;Good 16-bit read  
Note: In Asynchronous Counter mode, Timer±  
cannot be used as a time-base for capture  
or compare operations.  
;
; TMR1L may have rolled over between the  
; read of the high and low bytes. Reading  
; the high and low bytes now will read a good  
7.3.1  
EXTERNAL CLOCK INPUT TIMING  
WITH UNSYNCHRONIZED CLOCK  
; value.  
;
MOVF  
TMR1H, W  
TMPH  
;Read high byte  
;
If control bit T±SYNC is set, the timer will increment  
completely asynchronously. The input clock must meet  
certain minimum high and low time requirements. Refer  
to Table ±7-9 in the Electrical Specifications Section,  
timing parameters 45, 46, and 47.  
MOVWF  
MOVF  
MOVWF  
TMR1L, W  
TMPL  
;Read low byte  
;
; Re-enable the Interrupts (if required)  
;Continue with your  
;code  
CONTINUE  
7.3.2  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
Reading the TMR±H or TMR±L register while the timer  
is running, from an external asynchronous clock, will  
produce a valid read (taken care of in hardware). How-  
ever, the user should keep in mind that reading the ±6-  
bit timer in two 8-bit values itself poses certain prob-  
lems since the timer may overflow between the reads.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers while the  
register is incrementing. This may produce an unpre-  
dictable value in the timer register.  
Reading the ±6-bit value requires some care.  
Example 7-± is an example routine to read the ±6-bit  
timer value. This is useful if the timer cannot be  
stopped.  
DS40044A-page 50  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
7.4  
Timer1 Oscillator  
7.5  
Resetting Timer1 Using a CCP  
Trigger Output  
A crystal oscillator circuit is built in between pins T±OSI  
(input) and T±OSO (amplifier output). It is enabled by  
setting control bit T±OSCEN (T±CON<3>). It will con-  
tinue to run during SLEEP. It is primarily intended for a  
32.768 kHz watch crystal. Table 7-± shows the capaci-  
tor selection for the Timer± oscillator.  
If the CCP± module is configured in Compare mode to  
generate a “special event trigger” (CCP±M3:CCP±M0  
= 1011), this signal will RESET Timer±.  
Note: The special event triggers from the CCP±  
module will not set interrupt flag bit  
TMR±IF (PIR±<0>).  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
Timer± must be configured for either timer or synchro-  
nized Counter mode to take advantage of this feature.  
If Timer± is running in Asynchronous Counter mode,  
this RESET operation may not work.  
TABLE 7-1:  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
In the event that a write to Timer± coincides with a spe-  
cial event trigger from CCP±, the write will take prece-  
dence.  
Freq  
C1  
C2  
32.768 kHz  
±5 pF  
±5 pF  
These values are for design guidance only.  
Consult AN826 (DS00826) for further information  
on Crystal/Capacitor Selection.  
In this mode of operation, the CCPRxH:CCPRxL regis-  
ters pair effectively becomes the period register for  
Timer±.  
7.6  
Resetting Timer1 Register Pair  
(TMR1H, TMR1L)  
TMR±H and TMR±L registers are not reset to 00h on a  
POR or any other RESET except by the CCP± special  
event triggers.  
T±CON register is reset to 00h on a Power-on Reset or  
a Brown-out Reset, which shuts off the timer and  
leaves a ±:± prescale. In all other RESETS, the register  
is unaffected.  
7.7  
Timer1 Prescaler  
The prescaler counter is cleared on writes to the  
TMR±H or TMR±L registers.  
TABLE 7-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
Value on  
POR  
Address Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS  
0Bh, 8Bh,  
10Bh, 18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
PIR1  
PIE1  
EEIF  
EEIE  
CMIF  
CMIE  
RCIF  
RCIE  
TXIF  
TXIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
0000 -000 0000 -000  
0000 -000 0000 -000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0Eh  
TMR1L  
TMR1H  
T1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
0Fh  
10h  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer1 module.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 51  
PIC16F627A/628A/648A  
8.1  
Timer2 Prescaler and Postscaler  
8.0  
TIMER2 MODULE  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 is an 8-bit timer with a prescaler and a  
postscaler. It can be used as the PWM time-base for  
PWM mode of the CCP module. The TMR2 register is  
readable and writable, and is cleared on any device  
RESET.  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device RESET (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset, or Brown-out  
Reset)  
The input clock (FOSC/4) has a prescale option of ±:±,  
control  
±:4  
or  
±:±6,  
selected  
by  
T2CKPS±:T2CKPS0 (T2CON<±:0>).  
bits  
The TMR2 register is not cleared when T2CON is writ-  
ten.  
The Timer2 module has an 8-bit period register PR2.  
The TMR2 register value increments from 00h until it  
matches the PR2 register value and then resets to 00h  
on the next increment cycle. The PR2 register is a  
readable and writable register. The PR2 register is ini-  
tialized to FFh upon RESET.  
8.2  
TMR2 Output  
The TMR2 output (before the postscaler) is fed to the  
Synchronous Serial Port module which optionally uses  
it to generate shift clock.  
The match output of Timer2 goes through a 4-bit  
postscaler (which gives a ±:± to ±:±6 scaling inclusive)  
to generate a Timer2 interrupt (latched in flag bit  
TMR2IF, (PIR±<±>)).  
FIGURE 8-1:  
TIMER2 BLOCK DIAGRAM  
Sets flag  
bit TMR2IF  
TMR2  
output  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
RESET  
Prescaler  
Register 8-± shows the Timer2 control register.  
TMR2 reg  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
2
Comparator  
1:1 to 1:16  
EQ  
T2CKPS<1:0>  
4
PR2 reg  
TOUTPS<3:0>  
DS40044A-page 52  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
REGISTER 8-1:  
T2CON: TIMER2 CONTROL REGISTER (ADDRESS: 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS±  
TOUTPS0 TMR2ON T2CKPS± T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as '0'  
bit 6-3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= ±:± Postscale Value  
0001= ±:2 Postscale Value  
1111= ±:±6 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit ±-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= ±:± Prescaler Value  
01= ±:4 Prescaler Value  
1x= ±:±6 Prescaler Value  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
TABLE 8-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh, 8Bh,  
10Bh, 18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 -000 0000 -000  
0000 -000 0000 -000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Ch  
8Ch  
11h  
12h  
92h  
PIR1  
EEIF  
EEIE  
CMIF  
CMIE  
RCIF  
RCIE  
TXIF  
TXIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
PIE1  
TMR2  
T2CON  
PR2  
Timer2 module’s register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer2 module.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 53  
PIC16F627A/628A/648A  
NOTES:  
DS40044A-page 54  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
TABLE 9-1:  
CCP MODE - TIMER  
RESOURCE  
9.0  
CAPTURE/COMPARE/PWM  
(CCP) MODULE  
CCP Mode  
Timer Resource  
The CCP (Capture/Compare/PWM) module contains a  
±6-bit register which can operate as a ±6-bit capture  
register, as a ±6-bit compare register or as a PWM  
master/slave Duty Cycle register. Table 9-± shows the  
timer resources of the CCP module modes.  
Capture  
Compare  
PWM  
Timer±  
Timer±  
Timer2  
CCP± Module  
Capture/Compare/PWM Register± (CCPR±) is com-  
prised of two 8-bit registers: CCPR±L (low byte) and  
CCPR±H (high byte). The CCP±CON register controls  
the operation of CCP±. All are readable and writable.  
Additional information on the CCP module is available  
in the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
REGISTER 9-1:  
CCP1CON REGISTER (ADDRESS: 17h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCP±X  
CCP±Y  
CCP±M3  
CCP±M2 CCP±M± CCP±M0  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as '0'  
CCP1X:CCP1Y: PWM Least Significant bits  
Capture Mode: Unused  
Compare Mode: Unused  
PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in  
CCPRxL.  
bit 3-0  
CCP1M3:CCP1M0: CCPx Mode Select bits  
0000= Capture/Compare/PWM off (resets CCP± module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every ±6th rising edge  
1000= Compare mode, set output on match (CCP±IF bit is set)  
1001= Compare mode, clear output on match (CCP±IF bit is set)  
1010= Compare mode, generate software interrupt on match (CCP±IF bit is set, CCP± pin is  
unaffected)  
1011= Compare mode, trigger special event (CCP±IF bit is set; CCP± resets TMR±  
11xx= PWM mode  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 55  
PIC16F627A/628A/648A  
9.1.4  
CCP PRESCALER  
9.1  
Capture Mode  
There are four prescaler settings, specified by bits  
CCP±M3:CCP±M0. Whenever the CCP module is  
turned off, or the CCP module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
RESET will clear the prescaler counter.  
In Capture mode, CCPR±H:CCPR±L captures the  
±6-bit value of the TMR± register when an event occurs  
on pin RB3/CCP±. An event is defined as:  
• Every falling edge  
• Every rising edge  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore the first capture may be from  
a non-zero prescaler. Example 9-± shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
• Every 4th rising edge  
• Every ±6th rising edge  
An event is selected by control bits CCP±M3:CCP±M0  
(CCP±CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP±IF (PIR±<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR± is read, the old captured  
value will be lost.  
EXAMPLE 9-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
;Turn CCP module off  
9.1.1  
CCP PIN CONFIGURATION  
CLRF  
MOVLW  
CCP1CON  
NEW_CAPT_PS;Load the W reg with  
; the new prescaler  
; mode value and CCP ON  
In Capture mode, the RB3/CCP± pin should be config-  
ured as an input by setting the TRISB<3> bit.  
Note: If the RB3/CCP± is configured as an out-  
put, a write to the port can cause a capture  
condition.  
MOVWF  
CCP1CON  
;Load CCP1CON with this  
; value  
9.2  
Compare Mode  
FIGURE 9-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
In Compare mode, the ±6-bit CCPR± register value is  
constantly compared against the TMR± register pair  
value. When a match occurs, the RB3/CCP± pin is:  
Set flag bit CCP1IF  
(PIR1<2>)  
• Driven High  
Prescaler  
• Driven Low  
³ 1, 4, 16  
• Remains Unchanged  
RB3/CCP1  
Pin  
CCPR1H  
CCPR1L  
The action on the pin is based on the value of control  
bits CCP±M3:CCP±M0 (CCP±CON<3:0>). At the  
same time, interrupt flag bit CCP±IF is set.  
Capture  
Enable  
and  
edge detect  
TMR1H  
TMR1L  
CCP1CON<3:0>  
FIGURE 9-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
Q’s  
9.1.2  
TIMER1 MODE SELECTION  
Set flag bit CCP1IF  
(PIR1<2>)  
Timer± must be running in Timer mode or synchronized  
Counter mode for the CCP module to use the capture  
feature. In Asynchronous Counter mode, the capture  
operation may not work.  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
Comparator  
match  
RB3/CCP1  
Pin  
TRISB<3>  
Output Enable  
9.1.3  
SOFTWARE INTERRUPT  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP±IE (PIE±<2>) clear to avoid false interrupts and  
should clear the flag bit CCP±IF following any such  
change in Operating mode.  
Note:  
Special event trigger will reset Timer1, but not  
set interrupt flag bit TMR1IF (PIR1<0>)  
DS40044A-page 56  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
9.2.1  
CCP PIN CONFIGURATION  
9.2.3  
SOFTWARE INTERRUPT MODE  
The user must configure the RB3/CCP± pin as an out-  
put by clearing the TRISB<3> bit.  
When generate software interrupt is chosen the CCP±  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
Note: Clearing the CCP±CON register will force  
the RB3/CCP± compare output latch to the  
default low level. This is not the data latch.  
9.2.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
9.2.2  
TIMER1 MODE SELECTION  
The special event trigger output of CCP± resets the  
TMR± register pair. This allows the CCPR± register to  
effectively be a ±6-bit programmable period register for  
Timer±.  
Timer± must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
TABLE 9-2:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on  
Value on  
POR  
Address  
Name Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS  
0Bh, 8Bh, INTCON  
10Bh, 18Bh  
0000 000x 0000 000u  
GIE PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0Ch  
8Ch  
PIR1  
PIE1  
0000 -000 0000 -000  
0000 -000 0000 -000  
EEIF CMIF  
EEIE CMIE  
RCIF  
RCIE  
TXIF  
TXIE  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
86h, 186h TRISB  
PORTB Data Direction Register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
0Eh  
0Fh  
10h  
TMR1L  
TMR1H  
T1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1register  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
15h  
16h  
17h  
CCPR1L  
Capture/Compare/PWM register1 (LSB)  
xxxx xxxx uuuu uuuu  
CCPR1H Capture/Compare/PWM register1 (MSB) xxxx xxxx uuuu uuuu  
CCP1CON --00 0000 --00 0000  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
CCP1X  
CCP1Y  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 57  
PIC16F627A/628A/648A  
A PWM output (Figure 9-4) has a time base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period (fre-  
quency = ±/period).  
9.3  
PWM Mode  
In Pulse Width Modulation (PWM) mode, the CCP± pin  
produces up to a ±0-bit resolution PWM output. Since  
the CCP± pin is multiplexed with the PORTB data latch,  
the TRISB<3> bit must be cleared to make the CCP±  
pin an output.  
FIGURE 9-4:  
PWM OUTPUT  
Note: Clearing the CCP±CON register will force  
the CCP± PWM output latch to the default  
low level. This is not the PORTB I/O data  
latch.  
Period  
Duty Cycle  
Figure 9-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
TMR2 = PR2  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 9.3.3.  
TMR2 = Duty Cycle  
TMR2 = PR2  
FIGURE 9-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
9.3.1  
PWM PERIOD  
CCP1CON<5:4>  
Duty cycle registers  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
CCPR1L  
PWM period = [(PR2) + 1] ⋅ 4 Tosc TMR2 prescale  
value  
CCPR1H (Slave)  
Comparator  
PWM frequency is defined as ± / [PWM period].  
Q
R
S
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
RB3/CCP1  
(1)  
• TMR2 is cleared  
TMR2  
• The CCP± pin is set (exception: if PWM duty  
cycle = 01, the CCP± pin will not be set)  
TRISB<3>  
Comparator  
PR2  
• The PWM duty cycle is latched from CCPR±L into  
CCPR±H  
Clear Timer,  
CCP1 pin and  
latch D.C.  
Note: The Timer2 postscaler (see Section 8.0) is  
not used in the determination of the PWM  
frequency. The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
Note 1: 8-bit timer is concatenated with 2-bit internal Q  
clock or 2 bits of the prescaler to create 10-bit  
time-base.  
DS40044A-page 58  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
Maximum PWM resolution (bits) for a given PWM  
frequency:  
9.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR±L register and to the CCP±CON<5:4> bits. Up  
to ±0-bit resolution is available: the CCPR±L contains  
the eight MSbs and the CCP±CON<5:4> contains the  
two LSbs. This ±0-bit value is represented by  
CCPR±L:CCP±CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
Fosc  
-------------------------------------------------------------  
log  
PWM  
Resolution =  
Fpwm × TMR2 Prescaler  
log(2)  
---------------------------------------------------------------------------  
bits  
Note: If the PWM duty cycle value is longer than  
the PWM period the CCP± pin will not be  
cleared.  
PWM duty cycle =  
(CCPR1L:CCP1CON<5:4>) Tosc TMR2 prescale  
value  
For an example PWM period and duty cycle calcula-  
tion, see the PICmicro™ Mid-Range Reference Man-  
ual (DS33023).  
CCPR±L and CCP±CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR±H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR±H is a read-only register.  
9.3.3  
SET-UP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
The CCPR±H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitch less PWM operation.  
±. Set the PWM period by writing to the PR2 regis-  
ter.  
2. Set the PWM duty cycle by writing to the  
CCPR±L register and CCP±CON<5:4> bits.  
When the CCPR±H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP± pin is cleared.  
3. Make the CCP± pin an output by clearing the  
TRISB<3> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP± module for PWM operation.  
TABLE 9-3:  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz  
Timer Prescaler (±, 4, ±6)  
PR2 Value  
±6  
0xFF  
±0  
4
±
±
0x3F  
8
±
0x±F  
7
±
0xFF  
±0  
0xFF  
±0  
0x±7  
6.5  
Maximum Resolution (bits)  
TABLE 9-4:  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
all other  
RESETS  
Value on  
POR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
10Bh, 18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
PIR1  
EEIF  
EEIE  
CMIF  
CMIE  
RCIF  
RCIE  
TXIF  
TXIE  
CCP1IF  
CCP1IE  
TMR2IF TMR1IF 0000 -000 0000 -000  
TMR2IE TMR1IE 0000 -000 0000 -000  
1111 1111 1111 1111  
8Ch  
PIE1  
86h, 186h  
11h  
TRISB  
TMR2  
PORTB Data Direction Register  
Timer2 module’s register  
0000 0000 0000 0000  
92h  
PR2  
Timer2 module’s period register  
1111 1111 1111 1111  
12h  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 uuuu uuuu  
15h  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
17h  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 59  
PIC16F627A/628A/648A  
NOTES:  
DS40044A-page 60  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
The CMCON register, shown in Register ±0-±, controls  
the comparator input and output multiplexers. A block  
diagram of the comparator is shown in Figure ±0-±.  
10.0 COMPARATOR MODULE  
The Comparator module contains two analog  
comparators. The inputs to the comparators are  
multiplexed with the RA0 through RA3 pins. The on-  
chip Voltage Reference (Section ±±.0) can also be an  
input to the comparators.  
REGISTER 10-1: CMCON REGISTER (ADDRESS: 01Fh)  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C±INV  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM±  
R/W-0  
CM0  
C2OUT  
C±OUT  
bit 7  
bit 0  
bit 7  
C2OUT: Comparator 2 Output  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = ±:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator ± Output  
When C±INV = 0:  
1= C± VIN+ > C± VIN-  
0= C± VIN+ < C± VIN-  
When C±INV = ±:  
1= C± VIN+ < C± VIN-  
0= C± VIN+ > C± VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion  
1= C2 Output inverted  
0= C2 Output not inverted  
C1INV: Comparator ± Output Inversion  
1= C± Output inverted  
0= C± Output not inverted  
CIS: Comparator Input Switch  
When CM2:CM0: = 00±  
Then:  
1= C± VIN- connects to RA3  
0= C± VIN- connects to RA0  
When CM2:CM0 = 0±0  
Then:  
1= C± VIN- connects to RA3  
C2 VIN- connects to RA2  
0= C± VIN- connects to RA0  
C2 VIN- connects to RA±  
bit 2-0  
CM2:CM0: Comparator Mode  
Figure ±0-± shows the Comparator modes and CM2:CM0 bit settings  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 61  
PIC16F627A/628A/648A  
tor mode is changed, the comparator output level may  
not be valid for the specified mode change delay  
shown in Table ±7-2.  
10.1 Comparator Configuration  
There are eight modes of operation for the  
comparators. The CMCON register is used to select  
the mode. Figure ±0-± shows the eight possible  
modes. The TRISA register controls the data direction  
of the comparator pins for each mode. If the Compara-  
Note 1: Comparator interrupts should be disabled  
during a Comparator mode change, other-  
wise a false interrupt may occur.  
2: Comparators can have an inverted out-  
put. See Figure ±0-3.  
FIGURE 10-1:  
COMPARATOR I/O OPERATING MODES  
Comparators Off  
CM2:CM0 = 111  
Comparators Reset (POR Default Value)  
CM2:CM0 = 000  
D
D
VIN-  
RA0/AN0  
A
A
VIN-  
RA0/AN0  
Off (Read as '0')  
Off (Read as '0')  
C1  
C2  
VIN+  
RA3/AN3/CMP1  
Off (Read as '0')  
Off (Read as '0')  
C1  
C2  
VIN+  
RA3/AN3/CMP1  
D
D
VIN-  
A
A
VIN-  
RA1/AN1  
RA1/AN1  
VIN+  
RA2/AN2/VREF  
VIN+  
RA2/AN2/VREF  
VSS  
Four Inputs Multiplexed to Two Comparators  
CM2:CM0 = 010  
Two Independent Comparators  
CM2:CM0 = 100  
A
RA0/AN0  
CIS = 0  
CIS = 1  
VIN-  
A
A
VIN-  
RA0/AN0  
A
RA3/AN3/CMP1  
C1VOUT  
C1VOUT  
C2VOUT  
C1  
C1  
VIN+  
VIN+  
RA3/AN3/CMP1  
A
A
RA1/AN1  
VIN-  
CIS = 0  
CIS = 1  
A
A
VIN-  
RA2/AN2/VREF  
RA1/AN1  
C2VOUT  
C2  
VIN+  
C2  
VIN+  
RA2/AN2/VREF  
From VREF  
Module  
Two Common Reference Comparators  
CM2:CM0 = 011  
Two Common Reference Comparators with Outputs  
CM2:CM0 = 110  
A
D
VIN-  
RA0/AN0  
A
D
VIN-  
RA0/AN0  
C1VOUT  
C2VOUT  
C1  
VIN+  
C1VOUT  
C2VOUT  
C1  
C2  
RA3/AN3/CMP1  
VIN+  
RA3/AN3/CMP1  
A
A
VIN-  
RA1/AN1  
A
A
VIN-  
RA1/AN1  
C2  
VIN+  
RA2/AN2/VREF  
VIN+  
RA2/AN2/VREF  
Open Drain  
RA4/T0CKI/CMP2  
Three Inputs Multiplexed to Two Comparators  
CM2:CM0 = 001  
One Independent Comparator  
CM2:CM0 = 101  
D
D
VIN-  
A
RA0/AN0  
RA0/AN0  
CIS = 0  
CIS = 1  
VIN-  
Off (Read as '0')  
C1  
VIN+  
A
RA3/AN3/CMP1  
RA3/AN3/CMP1  
C1VOUT  
C1  
C2  
VIN+  
VSS  
A
A
VIN-  
A
A
VIN-  
RA1/AN1  
RA1/AN1  
C2VOUT  
C2VOUT  
C2  
VIN+  
VIN+  
RA2/AN2/VREF  
RA2/AN2/VREF  
D = Digital Input.  
A = Analog Input, port reads zeros always.  
CIS (CMCON<3>) is the Comparator Input Switch.  
DS40044A-page 62  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
The code example in Example ±0-± depicts the steps  
required to configure the Comparator module. RA3 and  
RA4 are configured as digital output. RA0 and RA± are  
configured as the V- inputs and RA2 as the V+ input to  
both comparators.  
FIGURE 10-2:  
SINGLE COMPARATOR  
Vin+  
Vin-  
+
Result  
EXAMPLE 10-1:  
INITIALIZING  
COMPARATOR MODULE  
FLAG_REG  
EQU  
0X20  
;Init flag register  
;Init PORTA  
VIN-  
CLRF  
CLRF  
MOVF  
ANDLW  
IORWF  
MOVLW  
MOVWF  
BSF  
FLAG_REG  
PORTA  
CMCON, W ;Load comparator bits  
0xC0 ;Mask comparator bits  
FLAG_REG,F ;Store bits in flag register  
VIN+  
0x03  
CMCON  
STATUS,RP0 ;Select Bank1  
;Init comparator mode  
;CM<2:0> = 011  
MOVLW  
MOVWF  
0x07  
TRISA  
;Initialize data direction  
;Set RA<2:0> as inputs  
;RA<4:3> as outputs  
;TRISA<7:5> always read ‘0’  
Result  
BCF  
CALL  
MOVF  
STATUS,RP0 ;Select Bank 0  
;10µs delay  
;Read CMCONto end change  
;condition  
PIR1,CMIF ;Clear pending interrupts  
STATUS,RP0 ;Select Bank 1  
PIE1,CMIE ;Enable comparator interrupts  
STATUS,RP0 ;Select Bank 0  
INTCON,PEIE;Enable peripheral interrupts  
INTCON,GIE ;Global interrupt enable  
10.3.1  
EXTERNAL REFERENCE SIGNAL  
DELAY10  
CMCON,F  
When external voltage references are used, the  
Comparator module can be configured to have the  
comparators operate from the same or different  
reference sources. However, threshold detector  
applications may require the same reference. The  
reference signal must be between VSS and VDD, and  
can be applied to either pin of the comparator(s).  
BCF  
BSF  
BSF  
BCF  
BSF  
BSF  
10.2 Comparator Operation  
10.3.2  
INTERNAL REFERENCE SIGNAL  
A single comparator is shown in Figure ±0-2 along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure ±0-2 represent  
the uncertainty due to input offsets and response time.  
See Table ±7-2 for Common Mode Voltage.  
The Comparator module also allows the selection of an  
internally generated voltage reference for the  
comparators. Section ±±.0, Voltage Reference Manual,  
contains a detailed description of the Voltage Refer-  
ence Module that provides this signal. The internal ref-  
erence signal is used when the comparators are in  
mode CM<2:0>=0±0 (Figure ±0-±). In this mode, the  
internal voltage reference is applied to the VIN+ pin of  
both comparators.  
10.3 Comparator Reference  
10.4 Comparator Response Time  
An external or internal reference signal may be used  
depending on the comparator Operating mode. The  
analog signal that is present at VIN- is compared to the  
signal at VIN+, and the digital output of the comparator  
is adjusted accordingly (Figure ±0-2).  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output is to have a valid level. If the internal  
reference is changed, the maximum delay of the inter-  
nal voltage reference must be considered when using  
the comparator outputs. Otherwise, the maximum  
delay of the comparators should be used (Table ±7-2).  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 63  
PIC16F627A/628A/648A  
10.5 Comparator Outputs  
The comparator outputs are read through the CMCON  
register. These bits are read only. The comparator  
outputs may also be directly output to the RA3 and RA4  
I/O pins. When the CM<2:0> = ±±0 or 00±, multiplexors  
in the output path of the RA3 and RA4/T0CK± pins will  
switch and the output of each pin will be the unsynchro-  
nized output of the comparator. The uncertainty of each  
of the comparators is related to the input offset voltage  
and the response time given in the specifications.  
Figure ±0-3 shows the comparator output block  
diagram.  
The TRISA bits will still function as an output enable/  
disable for the RA3 and RA4/T0CK± pins while in this  
mode.  
Note 1: When reading the PORT register, all pins  
configured as analog inputs will read as a  
‘0’. Pins configured as digital inputs will  
convert an analog input, according to the  
Schmitt Trigger input specification.  
2: Analog levels on any pin that is defined as  
a digital input may cause the input buffer  
to consume more current than is speci-  
fied.  
FIGURE 10-3:  
MODIFIED COMPARATOR OUTPUT BLOCK DIAGRAM  
CnINV  
To RA3 or RA4/T0CK1 pin  
CnVOUT  
To Data Bus  
Q
D
CMCON<7:6>  
Q3  
EN  
RD CMCON  
Set CMIF bit  
Q
D
EN  
CL  
Q1  
From other Comparator  
RESET  
DS40044A-page 64  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
10.6 Comparator Interrupts  
10.7 Comparator Operation During  
SLEEP  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that has occurred. The  
CMIF bit, PIR±<6>, is the comparator interrupt flag.  
The CMIF bit must be RESET by clearing ‘0’. Since it is  
also possible to write a '±' to this register, a simulated  
interrupt may be initiated.  
When a comparator is active and the device is placed  
in SLEEP mode, the comparator remains active and  
the interrupt is functional if enabled. This interrupt will  
wake-up the device from SLEEP mode when enabled.  
While the comparator is powered-up, higher SLEEP  
currents than shown in the power-down current  
specification will occur. Each comparator that is  
operational will consume additional current as shown in  
the comparator specifications. To minimize power  
consumption while in SLEEP mode, turn off the  
comparators, CM<2:0> = ±±±, before entering SLEEP.  
If the device wakes up from SLEEP, the contents of the  
CMCON register are not affected.  
The CMIE bit (PIE±<6>) and the PEIE bit  
(INTCON<6>) must be set to enable the interrupt. In  
addition, the GIE bit must also be set. If any of these  
bits are clear, the interrupt is not enabled, though the  
CMIF bit will still be set if an interrupt condition occurs.  
Note: If  
a change in the CMCON register  
10.8 Effects of a RESET  
(C±OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR±<6>)  
interrupt flag may not get set.  
A device RESET forces the CMCON register to its  
RESET state. This forces the Comparator module to be  
in the comparator RESET mode, CM2:CM0 = 000.  
This ensures that all potential inputs are analog inputs.  
Device current is minimized when analog inputs are  
present at RESET time. The comparators will be  
powered-down during the RESET interval.  
The user, in the interrupt service routine, can clear the  
interrupt in the following manner:  
a) Any write or read of CMCON. This will end the  
mismatch condition.  
10.9 Analog Input Connection  
Considerations  
b) Clear flag bit CMIF.  
A mismatch condition will continue to set flag bit CMIF.  
Reading CMCON will end the mismatch condition and  
allow flag bit CMIF to be cleared.  
A simplified circuit for an analog input is shown in  
Figure ±0-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up may occur. A  
maximum  
source  
impedance  
of  
±0 kΩ  
is  
recommended for the analog sources. Any external  
component connected to an analog input pin, such as  
a capacitor or a Zener diode, should have very little  
leakage current.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 65  
PIC16F627A/628A/648A  
FIGURE 10-4:  
ANALOG INPUT MODE  
VDD  
VT = 0.6 V  
RIC  
RS < ±0 K  
AIN  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT = 0.6 V  
VSS  
Legend  
CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
ILEAKAGE  
RIC  
RS  
= Leakage Current At The Pin  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
VA  
TABLE 10-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Value on  
All Other  
RESETS  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1Fh  
CMCON C2OUT C1OUT C2INV  
C1NV  
INTE  
CIS  
CM2  
T0IF  
CM1  
INTF  
CM0  
RBIF  
0000 0000 0000 0000  
0000 000x 0000 000u  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
RBIE  
10Bh, 18Bh  
0Ch  
PIR1  
PIE1  
EEIF  
EEIE  
CMIF  
CMIE  
RCIF  
RCIE  
TXIF  
TXIE  
CCP1IF TMR2IF TMR1IF 0000 -000 0000 -000  
CCP1IE TMR2IE TMR1IE 0000 -000 0000 -000  
8Ch  
85h  
TRISA  
TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 1111 1111  
Legend:  
x = Unknown, u = Unchanged, - = Unimplemented, read as ‘0’  
DS40044A-page 66  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
The equations used to calculate the output of the  
Voltage Reference are as follows:  
11.0 VOLTAGE REFERENCE  
MODULE  
if VRR = ±:  
The Voltage Reference is a ±6-tap resistor ladder  
network that provides a selectable voltage reference.  
The resistor ladder is segmented to provide two ranges  
of VREF values and has a power-down function to  
conserve power when the reference is not being used.  
The VRCON register controls the operation of the  
reference as shown in Figure ±±-±. The block diagram  
is given in Figure ±±-±.  
VR<3:0>  
---------------------  
24  
VREF =  
× VDD  
if VRR = 0:  
1
--  
VR<3:0>  
---------------------  
× VDD  
VREF = VDD ×  
+
4
32  
The setting time of the Voltage Reference must be  
considered when changing the VREF output  
(Table ±7-3). Example ±±-± demonstrates how Voltage  
Reference is configured for an output voltage of ±.25V  
with VDD = 5.0V.  
11.1 Voltage Reference Configuration  
The Voltage Reference can output ±6 distinct voltage  
levels for each range.  
REGISTER 11-1: VRCON REGISTER (ADDRESS: 9Fh)  
R/W-0  
VREN  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VROE  
VRR  
VR3  
VR2  
VR±  
VR0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
VREN: VREF Enable  
1= VREF circuit powered on  
0= VREF circuit powered down, no IDD drain  
VROE: VREF Output Enable  
1= VREF is output on RA2 pin  
0= VREF is disconnected from RA2 pin  
VRR: VREF Range selection  
1= Low Range  
0= High Range  
bit 4  
Unimplemented: Read as '0'  
bit 3-0  
VR<3:0>: VREF value selection 0 VR [3:0] ±5  
When VRR = ±: VREF = (VR<3:0>/ 24) * VDD  
When VRR = 0: VREF = ±/4 * VDD + (VR<3:0>/ 32) * VDD  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared  
x = Bit is unknown  
FIGURE 11-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
VDD  
16 Stages  
VREN  
R
R
R
R
8R  
8R  
VRR  
VSS  
VSS  
VR3  
(From VRCON<3:0>)  
VREF  
16-1 Analog Mux  
VR0  
Note:  
R is defined in Table 17-3.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 67  
PIC16F627A/628A/648A  
EXAMPLE 11-1:  
VOLTAGE REFERENCE  
CONFIGURATION  
11.4 Effects of a RESET  
A device RESET disables the Voltage Reference by  
clearing bit VREN (VRCON<7>). This RESET also  
disconnects the reference from the RA2 pin by clearing  
bit VROE (VRCON<6>) and selects the high voltage  
range by clearing bit VRR (VRCON<5>). The VREF  
value select bits, VRCON<3:0>, are also cleared.  
MOVLW  
MOVWF  
BSF  
0x02  
;4 Inputs Muxed  
;to 2 comps.  
STATUS,RP0 ;go to Bank 1  
CMCON  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
0x07  
;RA3-RA0 are  
;outputs  
TRISA  
0xA6  
VRCON  
;enable VREF  
;low range set VR<3:0>=6  
STATUS,RP0 ;go to Bank 0  
DELAY10 ;10µs delay  
11.5 Connection Considerations  
CALL  
The  
Voltage  
Reference  
Module  
operates  
independently of the comparator module. The output of  
the reference generator may be connected to the RA2  
pin if the TRISA<2> bit is set and the VROE bit,  
VRCON<6>, is set. Enabling the Voltage Reference  
output onto the RA2 pin with an input signal present will  
increase current consumption. Connecting RA2 as a  
digital output with VREF enabled will also increase  
current consumption.  
11.2 Voltage Reference Accuracy/Error  
The full range of VSS to VDD cannot be realized due to  
the construction of the module. The transistors on the  
top and bottom of the resistor ladder network  
(Figure ±±-±) keep VREF from approaching VSS or VDD.  
The Voltage Reference is VDD derived and therefore,  
the VREF output changes with fluctuations in VDD. The  
tested absolute accuracy of the Voltage Reference can  
be found in Table ±7-3.  
The RA2 pin can be used as a simple D/A output with  
limited drive capability. Due to the limited drive  
capability, a buffer must be used in conjunction with the  
Voltage Reference output for external connections to  
VREF. Figure ±±-2 shows an example buffering  
technique.  
11.3 Operation During SLEEP  
When the device wakes up from SLEEP through an  
interrupt or a Watchdog Timer time out, the contents of  
the VRCON register are not affected. To minimize  
current consumption in SLEEP mode, the Voltage  
Reference should be disabled.  
FIGURE 11-2:  
VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
Opamp  
R(1)  
RA2  
VREF  
Module  
+
VREF Output  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the Voltage Reference Configuration VRCON<3:0> and VRCON<5>.  
TABLE 11-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE  
Value On  
All Other  
RESETS  
Value On  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
9Fh  
1Fh  
85h  
VRCON VREN  
VROE  
VRR  
VR3  
CIS  
VR2  
CM2  
VR1  
CM1  
VR0  
CM0  
000- 0000 000- 0000  
0000 0000 0000 0000  
CMCON C2OUT C1OUT C2INV  
TRISA  
C1INV  
TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 1111 1111  
Note: — = Unimplemented, read as ‘0’.  
DS40044A-page 68  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
The USART can be configured in the following modes:  
12.0 UNIVERSAL SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
MODULE  
• Asynchronous (full-duplex)  
• Synchronous - Master (half-duplex)  
• Synchronous - Slave (half-duplex)  
Bit SPEN (RCSTA<7>), and bits TRISB<2:±>, have to  
be set in order to configure pins RB2/TX/CK and RB±/  
RX/DT as the Universal Synchronous Asynchronous  
Receiver Transmitter.  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) is also known as a Serial Com-  
munications Interface or SCI. The USART can be con-  
figured as a full-duplex asynchronous system that can  
communicate with peripheral devices such as CRT ter-  
minals and personal computers, or it can be configured  
as a half-duplex synchronous system that can commu-  
nicate with peripheral devices such as A/D or D/A inte-  
grated circuits, Serial EEPROMs, etc.  
Register ±2-± shows the Transmit Status and Control  
Register (TXSTA) and Register ±2-2 shows the  
Receive Status and Control Register (RCSTA).  
REGISTER 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS: 98h)  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-±  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode  
Don’t care  
Synchronous mode  
1= Master mode (Clock generated internally from BRG)  
0= Slave mode (Clock from external source)  
bit 6  
bit 5  
bit 4  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
(1)  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode  
1= High speed  
0= Low speed  
Synchronous mode  
Unused in this mode  
bit ±  
bit 0  
TRMT: Transmit Shift Register STATUS bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of transmit data. Can be parity bit.  
Note: SREN/CREN overrides TXEN in SYNC mode.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared  
x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 69  
PIC16F627A/628A/648A  
REGISTER 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS: 18h)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
ADEN  
R-0  
R-0  
R-x  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
SPEN: Serial Port Enable bit  
(Configures RB±/RX/DT and RB2/TX/CK pins as serial port pins when bits TRISB<2:±> are set)  
1= Serial port enabled  
0= Serial port disabled  
bit 6  
bit 5  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode - master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - slave:  
Unused in this mode  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = ±):  
1= Enables address detection, enable interrupt and load of the receive buffer when RSR<8>  
is set  
0= Disables address detection, all bytes are received, and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9=0):  
Unused in this mode  
Synchronous mode  
Unused in this mode  
bit 2  
bit ±  
bit 0  
FERR: Framing Error bit  
1= Framing error (Can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (Can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of received data (Can be parity bit)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
DS40044A-page 70  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
EXAMPLE 12-1:  
CALCULATING BAUD  
RATE ERROR  
12.1 USART Baud Rate Generator  
(BRG)  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In Asynchronous  
mode bit BRGH (TXSTA<2>) also controls the baud  
rate. In Synchronous mode bit BRGH is ignored.  
Table ±2-± shows the formula for computation of the  
baud rate for different USART modes, which only apply  
in Master mode (internal clock).  
Fosc  
----------------------  
Desired Baud Rate =  
64(x + 1)  
16000000  
-----------------------  
64(x + 1)  
9600 =  
x = 25.042  
16000000  
--------------------------  
64(25 + 1)  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRG register can be calculated  
using the formula in Table ±2-±. From this, the error in  
baud rate can be determined.  
Calculated Baud Rate =  
= 9615  
(Calculated Baud Rate - Desired Baud Rate)  
----------------------------------------------------------------------------------------------------------  
Desired Baud Rate  
Example ±2-± shows the calculation of the baud rate  
error for the following conditions:  
Error =  
FOSC = ±6 MHz  
Desired Baud Rate = 9600  
BRGH = 0  
9615 – 9600  
-----------------------------  
9600  
=
= 0.16%  
SYNC = 0  
It may be advantageous to use the high baud rate  
(BRGH = ±) even for slower baud clocks. This is  
because the FOSC/(±6(X + ±)) equation can reduce the  
baud rate error in some cases.  
Writing a new value to the SPBRG register, causes the  
BRG timer to be RESET (or cleared), this ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
TABLE 12-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+±))  
(Synchronous) Baud Rate = FOSC/(4(X+±))  
Baud Rate= FOSC/(±6(X+±))  
NA  
Legend: X = value in SPBRG (0 to 255)  
TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on all  
other  
RESETS  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
98h  
18h  
99h  
TXSTA  
RCSTA  
SPBRG  
CSRC  
SPEN  
TX9  
RX9  
TXEN SYNC  
SREN CREN  
BRGH  
FERR  
TRMT TX9D 0000 -010  
OERR RX9D 0000 000x  
0000 0000  
0000 -010  
0000 000x  
0000 0000  
ADEN  
Baud Rate Generator Register  
Legend: x = unknown, -= unimplemented read as '0'.  
Shaded cells are not used by the BRG.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 71  
PIC16F627A/628A/648A  
TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE  
FOSC = 20 MHz  
SPBRG 16 MHz  
value  
SPBRG 10 MHz  
value  
SPBRG  
value  
BAUD  
RATE (K)  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
NA  
NA  
NA  
NA  
NA  
2.4  
NA  
NA  
NA  
9.6  
NA  
NA  
9.766  
19.23  
75.76  
96.15  
312.5  
500  
+1.73%  
+0.16%  
-1.36%  
+0.16%  
+4.17%  
0
255  
129  
32  
25  
7
19.2  
76.8  
96  
19.53  
76.92  
96.15  
294.1  
500  
+1.73%  
+0.16%  
+0.16%  
-1.96  
0
255  
64  
51  
16  
9
19.23  
76.92  
95.24  
307.69  
500  
+0.16%  
+0.16%  
-0.79%  
+2.56%  
0
207  
51  
41  
12  
7
300  
500  
HIGH  
LOW  
4
5000  
19.53  
0
4000  
15.625  
0
2500  
9.766  
0
255  
255  
255  
FOSC = 7.15909 MHz  
SPBRG 5.0688 MHz  
value  
KBAUD  
SPBRG 4 MHz  
value  
SPBRG  
value  
BAUD  
RATE (K)  
KBAUD  
ERROR  
ERROR  
KBAUD  
ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
NA  
NA  
NA  
NA  
103  
51  
12  
9
NA  
2.4  
NA  
NA  
NA  
9.6  
9.622  
19.24  
77.82  
94.20  
298.3  
+0.23%  
+0.23%  
+1.32  
-1.88  
-0.57  
185  
92  
22  
18  
5
9.6  
0
131  
65  
15  
12  
3
9.615  
19.231  
75.923  
1000  
NA  
+0.16%  
+0.16%  
+0.16%  
+4.17%  
19.2  
76.8  
96  
19.2  
79.2  
97.48  
316.8  
0
+3.13%  
+1.54%  
5.60%  
300  
500  
NA  
NA  
NA  
HIGH  
LOW  
1789.8  
6.991  
0
1267  
0
100  
0
255  
4.950  
255  
3.906  
255  
FOSC = 3.579545 MHz  
SPBRG 1 MHz  
value  
SPBRG 32.768 kHz  
value  
KBAUD  
SPBRG  
value  
BAUD  
RATE (K)  
KBAUD  
ERROR  
KBAUD  
ERROR  
ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
2.4  
NA  
NA  
NA  
NA  
0.303  
1.170  
NA  
+1.14%  
-2.48%  
26  
6
1.202  
2.404  
+0.16%  
+0.16%  
207  
103  
9.6  
9.622  
19.04  
74.57  
+0.23%  
-0.83%  
-2.90%  
92  
46  
11  
9.615  
19.24  
83.34  
+0.16%  
+0.16%  
+8.51%  
25  
12  
2
NA  
NA  
NA  
19.2  
76.8  
96  
99.43  
+3.57%  
0.57%  
8
NA  
NA  
NA  
300  
500  
298.3  
NA  
2
NA  
NA  
HIGH  
LOW  
894.9  
3.496  
0
250  
0
8.192  
0.032  
0
255  
0.9766  
255  
255  
DS40044A-page 72  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 20 MHz  
SPBRG 16 MHz  
value  
SPBRG 10 MHz  
value  
SPBRG  
value  
BAUD  
RATE (K)  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
255  
129  
32  
15  
3
NA  
1.202  
2.404  
9.615  
19.23  
83.33  
NA  
+0.16%  
+0.16%  
+0.16%  
+0.16%  
+8.51%  
207  
103  
25  
12  
2
NA  
1.202  
2.404  
9.766  
19.53  
78.13  
NA  
+0.16%  
+0.16%  
+1.73%  
+1.73V  
+1.73%  
129  
64  
15  
7
1.221  
2.404  
9.469  
19.53  
78.13  
104.2  
312.5  
NA  
+1.73%  
+0.16%  
-1.36%  
+1.73%  
+1.73%  
+8.51%  
+4.17%  
2.4  
9.6  
19.2  
76.8  
96  
1
2
0
300  
500  
HIGH  
LOW  
0
NA  
NA  
0
NA  
NA  
312.5  
1.221  
250  
0
156.3  
0.6104  
255  
0.977  
255  
255  
FOSC = 7.15909 MHz  
SPBRG 5.0688 MHz  
value  
KBAUD  
SPBRG 4 MHz  
value  
SPBRG  
value  
BAUD  
RATE (K)  
KBAUD  
ERROR  
ERROR  
KBAUD  
ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
1.203  
2.380  
9.322  
18.64  
NA  
+0.23%  
-0.83%  
-2.90%  
-2.90%  
92  
46  
11  
5
0.31  
1.2  
+3.13%  
255  
65  
32  
7
0.3005  
1.202  
2.404  
NA  
-0.17%  
+1.67%  
+1.67%  
207  
51  
25  
0
0
2.4  
2.4  
9.6  
9.9  
+3.13%  
+3.13%  
+3.13%  
19.2  
76.8  
96  
19.8  
79.2  
NA  
3
NA  
0
0
NA  
NA  
0
NA  
300  
500  
HIGH  
LOW  
NA  
NA  
NA  
NA  
NA  
NA  
111.9  
0.437  
79.2  
0.3094  
62.500  
3.906  
0
255  
255  
255  
FOSC = 3.579545 MHz  
SPBRG 1 MHz  
value  
SPBRG 32.768 kHz  
value  
KBAUD  
SPBRG  
value  
BAUD  
RATE (K)  
KBAUD  
ERROR  
KBAUD  
ERROR  
ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
0.301  
1.190  
2.432  
9.322  
18.64  
NA  
+0.23%  
-0.83%  
+1.32%  
-2.90%  
-2.90%  
185  
46  
22  
5
0.300  
1.202  
2.232  
NA  
+0.16%  
+0.16%  
-6.99%  
51  
12  
6
0.256  
NA  
-14.67%  
1
0
2.4  
NA  
9.6  
0
NA  
19.2  
76.8  
96  
2
NA  
NA  
0
NA  
NA  
NA  
NA  
NA  
300  
500  
HIGH  
LOW  
NA  
NA  
NA  
NA  
NA  
NA  
55.93  
0.2185  
15.63  
0.0610  
0.512  
0.0020  
255  
255  
255  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 73  
PIC16F627A/628A/648A  
TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 20 MHz  
SPBRG 16 MHz  
value  
SPBRG 10 MHz  
value  
SPBRG  
value  
BAUD  
RATE (K)  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
(decimal)  
(decimal)  
(decimal)  
9600  
9.615  
19.230  
37.878  
56.818  
113.636  
250  
+0.16%  
+0.16%  
-1.36%  
-1.36%  
-1.36%  
0
129  
64  
32  
21  
10  
4
9.615  
19.230  
38.461  
58.823  
111.111  
250  
+0.16%  
+0.16%  
+0.16%  
+2.12%  
-3.55%  
0
103  
51  
25  
16  
8
9.615  
18.939  
39.062  
56.818  
125  
+0.16%  
-1.36%  
+1.7%  
-1.36%  
+8.51%  
64  
32  
15  
10  
4
19200  
38400  
57600  
115200  
250000  
625000  
1250000  
3
NA  
0
625  
0
1
NA  
625  
0
1250  
0
0
NA  
NA  
FOSC = 7.16 MHz  
SPBRG 5.068 MHz  
value  
KBAUD  
SPBRG 4 MHz  
value  
SPBRG  
value  
BAUD  
RATE (K)  
KBAUD  
ERROR  
ERROR  
KBAUD  
ERROR  
(decimal)  
(decimal)  
(decimal)  
9600  
9.520  
19.454  
37.286  
55.930  
111.860  
NA  
-0.83%  
+1.32%  
-2.90%  
-2.90%  
-2.90%  
46  
22  
11  
7
9598.485  
18632.35  
39593.75  
52791.67  
105583.3  
316750  
NA  
0.016%  
-2.956%  
3.109%  
-8.348%  
-8.348%  
26.700%  
32  
16  
7
9615.385  
19230.77  
35714.29  
62500  
0.160%  
0.160%  
-6.994%  
8.507%  
8.507%  
0.000%  
25  
12  
6
19200  
38400  
57600  
115200  
250000  
625000  
1250000  
5
3
3
2
125000  
250000  
NA  
1
0
0
NA  
NA  
NA  
NA  
FOSC = 3.579 MHz  
SPBRG 1 MHz  
value  
SPBRG 32.768 kHz  
value  
KBAUD  
SPBRG  
value  
BAUD  
RATE (K)  
KBAUD  
ERROR  
KBAUD  
ERROR  
ERROR  
(decimal)  
(decimal)  
(decimal)  
9600  
9725.543  
18640.63  
37281.25  
55921.88  
111243.8  
223687.5  
NA  
1.308%  
-2.913%  
-2.913%  
-2.913%  
-2.913%  
-10.525%  
22  
11  
5
8.928  
20833.3  
31250  
62500  
NA  
-6.994%  
8.507%  
-18.620%  
+8.507  
6
2
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
19200  
38400  
57600  
115200  
250000  
625000  
1250000  
1
3
0
1
0
NA  
NA  
NA  
NA  
DS40044A-page 74  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
The data on the RB±/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin. If bit BRGH  
(TXSTA<2>) is clear (i.e., at the low baud rates), the  
sampling is done on the seventh, eighth and ninth fall-  
ing edges of a x±6 clock (Figure ±2-3). If bit BRGH is  
set (i.e., at the high baud rates), the sampling is done  
on the 3 clock edges preceding the second rising edge  
after the first falling edge of a x4 clock (Figure ±2-4 and  
Figure ±2-5).  
FIGURE 12-1:  
RX PIN SAMPLING SCHEME. BRGH = 0  
RX  
(RB1/RX/DT pin)  
START bit  
bit0  
Baud CLK for all but START bit  
Baud CLK  
x16 CLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
Samples  
FIGURE 12-2:  
RX PIN SAMPLING SCHEME, BRGH = 1  
RX pin  
bit0  
bit1  
START Bit  
Baud CLK  
First falling edge after RX pin goes low  
Second rising edge  
x4 CLK  
1
2
3
4
1
2
3
4
1
2
Q2, Q4 CLK  
Samples  
Samples  
Samples  
FIGURE 12-3:  
RX PIN SAMPLING SCHEME, BRGH = 1  
RX pin  
START Bit  
bit0  
Baud CLK for all but START bit  
Baud CLK  
First falling edge after RX pin goes low  
Second rising edge  
x4 CLK  
1
2
3
4
Q2, Q4 CLK  
Samples  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 75  
PIC16F627A/628A/648A  
FIGURE 12-4:  
RX PIN SAMPLING SCHEME, BRGH = 0 OR BRGH = 1  
RX  
(RB1/RX/DT pin)  
START bit  
bit0  
Baud CLK for all but START bit  
Baud CLK  
x16 CLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
Samples  
ware. It will RESET only when new data is loaded into  
the TXREG register. While flag bit TXIF indicated the  
status of the TXREG register, another bit TRMT  
(TXSTA<±>) shows the status of the TSR register.  
STATUS bit TRMT is a read only bit which is set when  
the TSR register is empty. No interrupt logic is tied to  
this bit, so the user has to poll this bit in order to deter-  
mine if the TSR register is empty.  
12.2 USART Asynchronous Mode  
In this mode, the USART uses standard non-return-to-  
zero (NRZ) format (one START bit, eight or nine data  
bits and one STOP bit). The most common data format  
is 8-bit. A dedicated 8-bit baud rate generator is used  
to derive baud rate frequencies from the oscillator. The  
USART transmits and receives the LSb first. The  
USART’s transmitter and receiver are functionally inde-  
pendent but use the same data format and baud rate.  
The baud rate generator produces a clock either x±6 or  
x64 of the bit shift rate, depending on bit BRGH  
(TXSTA<2>). Parity is not supported by the hardware,  
but can be implemented in software (and stored as the  
ninth data bit). Asynchronous mode is stopped during  
SLEEP.  
Note 1: The TSR register is not mapped in data  
memory so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
is set.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data  
and the baud rate generator (BRG) has produced a  
shift clock (Figure ±2-5). The transmission can also be  
started by first loading the TXREG register and then  
setting enable bit TXEN. Normally when transmission  
is first started, the TSR register is empty, so a transfer  
to the TXREG register will result in an immediate trans-  
fer to TSR resulting in an empty TXREG. A back-to-  
back transfer is thus possible (Figure ±2-7). Clearing  
enable bit TXEN during a transmission will cause the  
transmission to be aborted and will RESET the trans-  
mitter. As a result the RB2/TX/CK pin will revert to hi-  
impedance.  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
• Baud Rate Generator  
• Sampling Circuit  
• Asynchronous Transmitter  
• Asynchronous Receiver  
12.2.1  
USART ASYNCHRONOUS  
TRANSMITTER  
In order to select 9-bit transmission, transmit bit TX9  
(TXSTA<6>) should be set and the ninth bit should be  
written to TX9D (TXSTA<0>). The ninth bit must be  
written before writing the 8-bit data to the TXREG reg-  
ister. This is because a data write to the TXREG regis-  
ter can result in an immediate transfer of the data to the  
TSR register (if the TSR is empty). In such a case, an  
incorrect ninth data bit maybe loaded in the TSR regis-  
ter.  
The USART transmitter block diagram is shown in  
Figure ±2-5. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG register is empty and  
flag bit TXIF (PIR±<4>) is set. This interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
( PIE±<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
DS40044A-page 76  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
FIGURE 12-5:  
USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG register  
8
TXIE  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
²
² ²  
TSR register  
RB2/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
SPBRG  
TRMT  
SPEN  
TX9  
TX9D  
Baud Rate Generator  
Follow these steps when setting up an Asynchronous  
Transmission:  
±. TRISB<±> bit needs to be set and TRISB<2> bit  
cleared in order to configure pins RB2/TX/CK  
and RB±/RX/DT as the Universal Synchronous  
Asynchronous Receiver Transmitter pins.  
2. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit BRGH. (Section ±2.±)  
3. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
4. If interrupts are desired, then set enable bit  
TXIE.  
5. If 9-bit transmission is desired, then set transmit  
bit TX9.  
6. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
8. Load data to the TXREG register (starts trans-  
mission).  
FIGURE 12-6:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG output  
(shift clock)  
RB2/TX/CK (pin)  
START Bit  
Bit 0  
Bit 1  
WORD 1  
Bit 7/8  
STOP Bit  
TXIF bit  
(Transmit buffer  
reg. empty flag)  
WORD 1  
Transmit Shift Reg  
TRMT bit  
(Transmit shift  
reg. empty flag)  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 77  
PIC16F627A/628A/648A  
FIGURE 12-7:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG output  
(shift clock)  
RB2/TX/CK (pin)  
START Bit  
START Bit  
WORD 2  
Bit 0  
Bit 1  
Bit 7/8  
Bit 0  
STOP Bit  
TXIF bit  
(interrupt reg. flag)  
WORD 1  
TRMT bit  
(Transmit shift  
reg. empty flag)  
WORD 1  
Transmit Shift Reg.  
WORD 2  
Transmit Shift Reg.  
.
This timing diagram shows two consecutive transmissions.  
Note:  
TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
RESETS  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
EEIF  
CMIF  
RX9  
RCIF  
TXIF  
CCP1IF TMR2IF TMR1IF 0000 -000 0000 -000  
RCSTA  
SPEN  
SREN CREN ADEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
TXREG USART Transmit data register  
PIE1  
EEIE  
CMIE  
TX9  
RCIE  
TXIE  
CCP1IE TMR2IE TMR1IE 0000 -000 0000 -000  
TXSTA  
CSRC  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'.  
Shaded cells are not used for Asynchronous Transmission.  
DS40044A-page 78  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
double buffered register, (i.e., it is a two deep FIFO). It  
is possible for two bytes of data to be received and  
transferred to the RCREG FIFO and a third byte begin  
shifting to the RSR register. On the detection of the  
STOP bit of the third byte, if the RCREG register is still  
full then overrun error bit OERR (RCSTA<±>) will be  
set. The word in the RSR will be lost. The RCREG reg-  
ister can be read twice to retrieve the two bytes in the  
FIFO. Overrun bit OERR has to be cleared in software.  
This is done by resetting the receive logic (CREN is  
cleared and then set). If bit OERR is set, transfers from  
the RSR register to the RCREG register are inhibited,  
so it is essential to clear error bit OERR if it is set. Fram-  
ing error bit FERR (RCSTA<2>) is set if a STOP bit is  
detected as clear. Bit FERR and the 9th receive bit are  
buffered the same way as the receive data. Reading  
the RCREG, will load bits RX9D and FERR with new  
values, therefore it is essential for the user to read the  
RCSTA register before reading RCREG register in  
order not to lose the old FERR and RX9D information.  
12.2.2  
USART ASYNCHRONOUS  
RECEIVER  
The receiver block diagram is shown in Figure ±2-8.  
The data is received on the RB±/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high-speed shifter operating at x±6 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate or at FOSC.  
When Asynchronous mode is selected, reception is  
enabled by setting bit CREN (RCSTA<4>).  
The heart of the receiver is the receive (serial) shift reg-  
ister (RSR). After sampling the STOP bit, the received  
data in the RSR is transferred to the RCREG register (if  
it is empty). If the transfer is complete, flag bit RCIF  
(PIR±<5>) is set. The actual interrupt can be enabled/  
disabled by setting/clearing enable bit RCIE  
(PIE±<5>). Flag bit RCIF is a read-only bit, which is  
cleared by the hardware. It is cleared when the RCREG  
register has been read and is empty. The RCREG is a  
FIGURE 12-8:  
USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
³ 64  
or  
³ 16  
SPBRG  
RSR register  
LSb  
MSb  
0
Baud Rate Generator  
1
7
Stop (8)  
Start  
² ² ²  
RB1/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
8
SPEN  
RX9  
Enable  
Load of  
ADEN  
Receive  
Buffer  
RX9  
ADEN  
RSR<8>  
8
RX9D  
RX9D  
RCREG register  
RCREG register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 79  
PIC16F627A/628A/648A  
FIGURE 12-9:  
ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT  
START  
BIT  
START  
BIT8 STOP BIT BIT0  
BIT  
RB1/RX/DT (PIN)  
BIT0 BIT1  
STOP  
BIT  
BIT8  
RCV SHIFT REG  
RCV BUFFER REG  
WORD 1  
RCREG  
BIT8 = 0, DATA BYTE  
BIT8 = 1, ADDRESS BYTE  
READ RCV  
BUFFER REG  
RCREG  
RCIF  
(INTERRUPT FLAG)  
'1'  
'1'  
ADEN = 1  
(ADDRESS MATCH  
ENABLE)  
Note:  
This timing diagram shows a data byte followed by an address byte. The data byte is not read into the RCREG  
(Receive Buffer) because ADEN = 1 and Bit 8 = 0.  
FIGURE 12-10:  
ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST  
START  
BIT  
START  
BIT8 STOP BIT BIT0  
BIT  
RB1/RX/DT (PIN)  
BIT0 BIT1  
STOP  
BIT  
BIT8  
RCV SHIFT  
REG  
RCV BUFFER REG  
WORD 1  
RCREG  
BIT8 = 1, ADDRESS BYTE  
BIT8 = 0, DATA BYTE  
READ RCV  
BUFFER REG  
RCREG  
RCIF  
(INTERRUPT FLAG)  
'1'  
'1'  
ADEN = 1  
(ADDRESS MATCH  
ENABLE)  
Note:  
This timing diagram shows an address byte followed by an data byte. The data byte is not read into the RCREG  
(receive buffer) because ADEN was not updated (still = 1) and Bit 8 = 0.  
FIGURE 12-11:  
ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST FOLLOWED BY  
VALID DATA BYTE  
START  
BIT  
START  
BIT8 STOP BIT BIT0  
BIT  
RB1/RX/DT (PIN)  
BIT0 BIT1  
STOP  
BIT  
BIT8  
RCV SHIFT  
REG  
RCV BUFFER REG  
WORD 1  
RCREG  
WORD 2  
RCREG  
BIT8 = 1, ADDRESS BYTE  
BIT8 = 0, DATA BYTE  
READ RCV  
BUFFER REG  
RCREG  
RCIF  
(INTERRUPT FLAG)  
ADEN  
(ADDRESS MATCH  
ENABLE)  
Note:  
This timing diagram shows an address byte followed by an data byte. The data byte is read into the RCREG  
(Receive Buffer) because ADEN was updated after an address match, and was cleared to a ‘0’, so the contents  
of the Receive Shift Register (RSR) are read into the Receive Buffer regardless of the value of Bit 8.  
DS40044A-page 80  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
Follow these steps when setting up an Asynchronous  
Reception:  
±. TRISB<±> bit needs to be set and TRISB<2> bit  
cleared in order to configure pins RB2/TX/CK  
and RB±/RX/DT as the Universal Synchronous  
Asynchronous Receiver Transmitter pins.  
2. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit BRGH. (Section ±2.±).  
3. Enable the asynchronous serial port by clearing  
bit SYNC, and setting bit SPEN.  
4. If interrupts are desired, then set enable bit  
RCIE.  
5. If 9-bit reception is desired, then set bit RX9.  
6. Enable the reception by setting bit CREN.  
7. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
±0. If any error occurred, clear the error by clearing  
enable bit CREN.  
TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
RESETS  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
RCSTA  
RCREG  
PIE1  
EEIF  
CMIF RCIF  
TXIF  
CCP1IF TMR2IF TMR1IF 0000 -000 0000 -000  
SPEN  
RX9 SREN CREN ADEN FERR  
OERR  
RX9D 0000 000x 0000 000x  
USART Receive data register  
0000 0000 0000 0000  
EEIE  
CMIE RCIE  
TXIE  
CCP1IE TMR2IE TMR1IE 0000 -000 0000 -000  
TXSTA  
CSRC  
TX9 TXEN SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 81  
PIC16F627A/628A/648A  
The ADEN bit will only take effect when the receiver is  
configured in 9-bit mode (RX9 = '±'). When ADEN is  
disabled (='0'), all data bytes are received and the 9th  
bit can be used as the parity bit.  
12.3 USART Address Detect Function  
12.3.1  
USART 9-BIT RECEIVER WITH  
ADDRESS DETECT  
The receive block diagram is shown in Figure ±2-8.  
When the RX9 bit is set in the RCSTA register, 9 bits  
are received and the ninth bit is placed in the RX9D bit  
of the RCSTA register. The USART module has a spe-  
cial provision for multi-processor communication. Mul-  
tiprocessor communication is enabled by setting the  
ADEN bit (RCSTA<3>) along with the RX9 bit. The port  
is now programmed such that when the last bit is  
received, the contents of the receive shift register  
(RSR) are transferred to the receive buffer, the ninth bit  
of the RSR (RSR<8>) is transferred to RX9D, and the  
receive interrupt is set if and only if RSR<8> = ±. This  
feature can be used in a multi-processor system as fol-  
lows:  
Reception is enabled by setting bit CREN  
(RCSTA<4>).  
12.3.1.1  
Setting up 9-bit mode with Address  
Detect  
Follow these steps when setting up Asynchronous  
Reception with Address Detect Enabled:  
±. TRISB<±> bit needs to be set and TRISB<2> bit  
cleared in order to configure pins RB2/TX/CK  
and RB±/RX/DT as the Universal Synchronous  
Asynchronous Receiver Transmitter pins.  
2. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit BRGH.  
A master processor intends to transmit a block of data  
to one of many slaves. It must first send out an address  
byte that identifies the target slave. An address byte is  
identified by setting the ninth bit (RSR<8>) to a '±'  
(instead of a '0' for a data byte). If the ADEN and RX9  
bits are set in the slave’s RCSTA register, enabling mul-  
tiprocessor communication, all data bytes will be  
ignored. However, if the ninth received bit is equal to a  
‘±’, indicating that the received byte is an address, the  
slave will be interrupted and the contents of the RSR  
register will be transferred into the receive buffer. This  
allows the slave to be interrupted only by addresses, so  
that the slave can examine the received byte to see if it  
is being addressed. The addressed slave will then clear  
its ADEN bit and prepare to receive data bytes from the  
master.  
3. Enable asynchronous communication by setting  
or clearing bit SYNC and setting bit SPEN.  
4. If interrupts are desired, then set enable bit  
RCIE.  
5. Set bit RX9 to enable 9-bit reception.  
6. Set ADEN to enable address detect.  
7. Enable the reception by setting enable bit CREN  
or SREN.  
8. Flag bit RCIF will be set when reception is com-  
plete, and an interrupt will be generated if  
enable bit RCIE was set.  
9. Read the 8-bit received data by reading the  
RCREG register to determine if the device is  
being addressed.  
When ADEN is enabled (='±'), all data bytes are  
ignored. Following the STOP bit, the data will not be  
loaded into the receive buffer, and no interrupt will  
occur. If another byte is shifted into the RSR register,  
the previous data byte will be lost.  
±0. If any error occurred, clear the error by clearing  
enable bit CREN if it was already set.  
±±. If the device has been addressed (RSR<8> = ‘±’  
with address match enabled), clear the ADEN  
and RCIF bits to allow data bytes and address  
bytes to be read into the receive buffer and inter-  
rupt the CPU.  
TABLE 12-8: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
RESETS  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
RCSTA SPEN RX9  
RCREG USART Receive data register  
EEIF CMIF  
RCIF  
TXIF  
CCP1IF TMR2IF TMR1IF 0000 -000 0000 -000  
SREN CREN ADEN FERR  
OERR  
RX9D 0000 000x 0000 000x  
0000 0000 0000 0000  
PIE1  
EEIE CMIE  
RCIE  
TXIE  
CCP1IE TMR2IE TMR1IE 0000 -000 0000 -000  
TXSTA CSRC TX9  
SPBRG  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.  
DS40044A-page 82  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
Clearing enable bit TXEN, during a transmission, will  
cause the transmission to be aborted and will RESET  
the transmitter. The DT and CK pins will revert to hi-  
impedance. If either bit CREN or bit SREN is set, dur-  
ing a transmission, the transmission is aborted and the  
DT pin reverts to a hi-impedance state (for a reception).  
The CK pin will remain an output if bit CSRC is set  
(internal clock). The transmitter logic however is not  
RESET although it is disconnected from the pins. In  
order to RESET the transmitter, the user has to clear bit  
TXEN. If bit SREN is set (to interrupt an on-going trans-  
mission and receive a single word), then after the sin-  
gle word is received, bit SREN will be cleared and the  
serial port will revert back to transmitting since bit  
TXEN is still set. The DT line will immediately switch  
from hi-impedance Receive mode to transmit and start  
driving. To avoid this, bit TXEN should be cleared.  
12.4 USART Synchronous Master  
Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner, (i.e., transmission and reception  
do not occur at the same time). When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA<4>). In  
addition enable bit SPEN (RCSTA<7>) is set in order to  
configure the RB2/TX/CK and RB±/RX/DT I/O pins to  
CK (clock) and DT (data) lines respectively. The Master  
mode indicates that the processor transmits the master  
clock on the CK line. The Master mode is entered by  
setting bit CSRC (TXSTA<7>).  
12.4.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
In order to select 9-bit transmission, the TX9  
(TXSTA<6>) bit should be set and the ninth bit should  
be written to bit TX9D (TXSTA<0>). The ninth bit must  
be written before writing the 8-bit data to the TXREG  
register. This is because a data write to the TXREG can  
result in an immediate transfer of the data to the TSR  
register (if the TSR is empty). If the TSR was empty and  
the TXREG was written before writing the “new” TX9D,  
the “present” value of bit TX9D is loaded.  
The USART transmitter block diagram is shown in  
Figure ±2-5. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer register  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one Tcycle), the TXREG is empty and inter-  
rupt bit, TXIF (PIR±<4>) is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE±<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will RESET only when new data is loaded into  
the TXREG register. While flag bit TXIF indicates the  
status of the TXREG register, another bit TRMT  
(TXSTA<±>) shows the status of the TSR register.  
TRMT is a read only bit which is set when the TSR is  
empty. No interrupt logic is tied to this bit, so the user  
has to poll this bit in order to determine if the TSR reg-  
ister is empty. The TSR is not mapped in data memory  
so it is not available to the user.  
Follow these steps when setting up a Synchronous  
Master Transmission:  
±. TRISB<±> bit needs to be set and TRISB<2> bit  
cleared in order to configure pins RB2/TX/CK  
and RB±/RX/DT as the Universal Synchronous  
Asynchronous Receiver Transmitter pins.  
2. Initialize the SPBRG register for the appropriate  
baud rate (Section ±2.±).  
3. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
4. If interrupts are desired, then set enable bit  
TXIE.  
5. If 9-bit transmission is desired, then set bit TX9.  
6. Enable the transmission by setting bit TXEN.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data.  
The first data bit will be shifted out on the next available  
rising edge of the clock on the CK line. Data out is sta-  
ble around the falling edge of the synchronous clock  
(Figure ±2-±2). The transmission can also be started  
by first loading the TXREG register and then setting bit  
TXEN (Figure ±2-±3). This is advantageous when slow  
baud rates are selected, since the BRG is kept in  
RESET when bits TXEN, CREN, and SREN are clear.  
Setting enable bit TXEN will start the BRG, creating a  
shift clock immediately. Normally when transmission is  
first started, the TSR register is empty, so a transfer to  
the TXREG register will result in an immediate transfer  
to TSR resulting in an empty TXREG. Back-to-back  
transfers are possible.  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
8. Start transmission by loading data to the TXREG  
register.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 83  
PIC16F627A/628A/648A  
TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on all  
other  
RESETS  
Value on  
POR  
Address Name  
Bit 7  
Bit 6 Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
EEIF  
CMIF RCIF TXIF  
CCP1IF TMR2IF TMR1IF 0000 -000 0000 -000  
RCSTA SPEN  
RX9 SREN CREN ADEN  
FERR  
OERR  
RX9D 0000 000x 0000 000x  
TXREG USART Transmit data register  
0000 0000 0000 0000  
PIE1  
EEIE  
CMIE RCIE TXIE  
TX9 TXEN SYNC  
CCP1IE TMR2IE TMR1IE 0000 -000 0000 -000  
TXSTA CSRC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.  
FIGURE 12-12:  
SYNCHRONOUS TRANSMISSION  
Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4  
Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1 Q2Q3Q4Q1Q2Q3Q4  
BIT 0  
BIT 1  
BIT 2  
BIT 7  
BIT 0  
BIT 1  
BIT 7  
RB1/RX/DT PIN  
RB2/TX/CK PIN  
WORD 2  
WORD 1  
WRITE TO  
TXREG REG  
WRITE WORD1  
WRITE WORD2  
TXIF BIT  
(INTERRUPT FLAG)  
T  
TRMT BIT  
'1'  
'1'  
TXEN BIT  
Note:  
Sync Master Mode; SPBRG = ‘0’. Continuous transmission of two 8-bit words.  
FIGURE 12-13:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RB1/RX/DT PIN  
BIT0  
BIT2  
BIT1  
BIT6  
BIT7  
RB2/TX/CK PIN  
WRITE TO  
TXREG REG  
TXIF BIT  
TRMT BIT  
TXEN BIT  
DS40044A-page 84  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
with a new value, therefore it is essential for the user to  
read the RCSTA register before reading RCREG in  
order not to lose the old RX9D information.  
12.4.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
Once Synchronous mode is selected, reception is  
enabled by setting either enable bit SREN  
(RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is  
sampled on the RB±/RX/DT pin on the falling edge of  
the clock. If enable bit SREN is set, then only a single  
word is received. If enable bit CREN is set, the recep-  
tion is continuous until CREN is cleared. If both bits are  
set then CREN takes precedence. After clocking the  
last bit, the received data in the Receive Shift Register  
(RSR) is transferred to the RCREG register (if it is  
empty). When the transfer is complete, interrupt flag bit  
RCIF (PIR±<5>) is set. The actual interrupt can be  
enabled/disabled by setting/clearing enable bit RCIE  
(PIE±<5>). Flag bit RCIF is a read only bit which is  
RESET by the hardware. In this case it is RESET when  
the RCREG register has been read and is empty. The  
RCREG is a double buffered register, (i.e., it is a two  
deep FIFO). It is possible for two bytes of data to be  
received and transferred to the RCREG FIFO and a  
third byte to begin shifting into the RSR register. On the  
clocking of the last bit of the third byte, if the RCREG  
register is still full then overrun error bit OERR  
(RCSTA<±>) is set. The word in the RSR will be lost.  
The RCREG register can be read twice to retrieve the  
two bytes in the FIFO. Bit OERR has to be cleared in  
software (by clearing bit CREN). If bit OERR is set,  
transfers from the RSR to the RCREG are inhibited, so  
it is essential to clear bit OERR if it is set. The 9th  
receive bit is buffered the same way as the receive  
data. Reading the RCREG register, will load bit RX9D  
Follow these steps when setting up a Synchronous  
Master Reception:  
±. TRISB<±> bit needs to be set and TRISB<2> bit  
cleared in order to configure pins RB2/TX/CK  
and RB±/RX/DT as the Universal Synchronous  
Asynchronous Receiver Transmitter pins.  
2. Initialize the SPBRG register for the appropriate  
baud rate. (Section ±2.±)  
3. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
4. Ensure bits CREN and SREN are clear.  
5. If interrupts are desired, then set enable bit  
RCIE.  
6. If 9-bit reception is desired, then set bit RX9.  
7. If a single reception is required, set bit SREN.  
For continuous reception set bit CREN.  
8. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
enable bit RCIE was set.  
9. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
±0. Read the 8-bit received data by reading the  
RCREG register.  
±±. If any error occurred, clear the error by clearing  
bit CREN.  
TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on all  
other  
Value on:  
Address Name  
Bit 7  
Bit 6 Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
RESETS  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
EEIF  
CMIF RCIF TXIF  
CCP1IF TMR2IF TMR1IF 0000 -000 0000 -000  
RCSTA SPEN  
RCREG USART Receive data register  
PIE1 EEPIE CMIE RCIE TXIE  
TXSTA CSRC TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
RX9 SREN CREN ADEN  
FERR  
OERR  
RX9D 0000 000x 0000 000x  
0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE -000 0000 -000 -000  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 85  
PIC16F627A/628A/648A  
FIGURE 12-14:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4 Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4  
BIT0  
BIT1  
BIT2  
BIT3  
BIT4  
BIT5  
BIT6  
BIT7  
RB1/RX/DT PIN  
RB2/TX/CK PIN  
WRITE TO  
BIT SREN  
SREN BIT  
'0'  
'0'  
CREN BIT  
RCIF BIT  
(INTERRUPT)  
READ  
RXREG  
Note:  
Timing diagram demonstrates Sync Master Mode with bit SREN = ‘1’ and bit BRG = ‘0’.  
Follow these steps when setting up a Synchronous  
Slave Transmission:  
12.5 USART Synchronous Slave Mode  
Synchronous Slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the RB2/TX/CK pin (instead of being supplied internally  
in Master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA<7>).  
±. TRISB<±> bit needs to be set and TRISB<2> bit  
cleared in order to configure pins RB2/TX/CK  
and RB±/RX/DT as the Universal Synchronous  
Asynchronous Receiver Transmitter pins.  
2. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
12.5.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
3. Clear bits CREN and SREN.  
4. If interrupts are desired, then set enable bit  
TXIE.  
The operation of the synchronous Master and Slave  
modes are identical except in the case of the SLEEP  
mode.  
5. If 9-bit transmission is desired, then set bit TX9.  
6. Enable the transmission by setting enable bit  
TXEN.  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
8. Start transmission by loading data to the TXREG  
register.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will now be  
set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP and if the global interrupt  
is enabled, the program will branch to the inter-  
rupt vector (0004h).  
DS40044A-page 86  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
2. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
12.5.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
The operation of the Synchronous Master and Mlave  
modes is identical except in the case of the SLEEP  
mode. Also, bit SREN is a don't care in Slave mode.  
3. If interrupts are desired, then set enable bit  
RCIE.  
4. If 9-bit reception is desired, then set bit RX9.  
5. To enable reception, set enable bit CREN.  
If receive is enabled, by setting bit CREN, prior to the  
SLEEPinstruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector  
(0004h).  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated, if  
enable bit RCIE was set.  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
8. Read the 8-bit received data by reading the  
RCREG register.  
Follow these steps when setting up a Synchronous  
Slave Reception:  
9. If any error occurred, clear the error by clearing  
bit CREN.  
±. TRISB<±> bit needs to be set and TRISB<2> bit  
cleared in order to configure pins RB2/TX/CK  
and RB±/RX/DT as the Universal Synchronous  
Asynchronous Receiver Transmitter pins.  
TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on all  
other  
RESETS  
Value on  
POR  
Address Name  
Bit 7  
Bit 6 Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
EEIF  
CMIF RCIF TXIF  
CCP1IF TMR2IF TMR1IF 0000 -000 0000 -000  
RCSTA SPEN  
RX9 SREN CREN ADEN  
FERR  
OERR  
RX9D 0000 000x 0000 000x  
TXREG USART Transmit data register  
0000 0000 0000 0000  
PIE1  
EEIE  
CMIE RCIE TXIE  
TX9 TXEN SYNC  
CCP1IE TMR2IE TMR1IE 0000 -000 0000 -000  
TXSTA CSRC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.  
TABLE 12-12: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on all  
Value on  
other  
Address Name  
Bit 7  
Bit 6 Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
RESETS  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
EEIF  
CMIF RCIF TXIF  
CCP1IF TMR2IF TMR1IF 0000 -000 0000 -000  
RCSTA SPEN  
RCREG USART Receive data register  
RX9 SREN CREN ADEN  
FERR  
OERR  
RX9D 0000 000x 0000 000x  
0000 0000 0000 0000  
PIE1  
EEIE  
CMIE RCIE TXIE  
TX9 TXEN SYNC  
CCP1IE TMR2IE TMR1IE 0000 -000 0000 -000  
TXSTA CSRC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 87  
PIC16F627A/628A/648A  
NOTES:  
DS40044A-page 88  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
The EEPROM data memory allows byte read and write.  
A byte write automatically erases the location and  
writes the new data (erase before write). The EEPROM  
data memory is rated for high erase/write cycles. The  
write time is controlled by an on-chip timer. The write-  
time will vary with voltage and temperature as well as  
from chip to chip. Please refer to AC specifications for  
exact limits.  
13.0 DATA EEPROM MEMORY  
The EEPROM data memory is readable and writable  
during normal operation (full VDD range). This memory  
is not directly mapped in the register file space. Instead  
it is indirectly addressed through the Special Function  
Registers (SFRs). There are four SFRs used to read  
and write this memory. These registers are:  
• EECON±  
When the device is code protected, the CPU can  
continue to read and write the data EEPROM memory.  
• EECON2 (Not a physically implemented register)  
A device programmer can no longer access  
this memory.  
• EEDATA  
• EEADR  
Additional information on the Data EEPROM is avail-  
able in the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
EEDATA holds the 8-bit data for read/write, and  
EEADR holds the address of the EEPROM location  
being accessed. PIC±6F627A/628A devices have ±28  
bytes of data EEPROM with an address range from 0h  
to 7Fh. PIC±6F648A device has 256 bytes of data  
EEPROM with an address range from 0h to FFh.  
REGISTER 13-1: EEDATA REGISTER (ADDRESS: 9Ah)  
R/W-x R/W-x R/W-x R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
EEDAT7 EEDAT6 EEDAT5 EEDAT4  
bit 7  
EEDAT3  
EEDAT2 EEDAT± EEDAT0  
bit 0  
bit 7-0  
EEDATn: Byte value to write to or read from Data EEPROM memory location.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
REGISTER 13-2: EEADR REGISTER (ADDRESS: 9Bh)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
EADR7  
EADR6  
EADR5  
EADR4  
EADR3  
EADR2 EADR±  
EADR0  
bit 7  
bit 0  
bit 7  
PIC16F627A/628A - Unimplemented Address: Must be set to ‘0’  
PIC16F648A - EEADR: Set to ‘±’ specifies top ±28 locations (±28-256) of EEPROM Read/Write  
Operation  
bit 6-0  
EEADR: Specifies one of ±28 locations of EEPROM Read/Write Operation  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 89  
PIC16F627A/628A/648A  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set, in  
software. They are cleared in hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
13.1 EEADR  
The PIC±6F648A EEADR register addresses 256  
bytes of data EEPROM. All eight bits in the register  
(EEADR<7:0>) are required.  
The PIC±6F627A/628A EEADR register addresses  
only the first ±28 bytes of data EEPROM so only seven  
of the eight bits in the register (EEADR<6:0>) are  
required. The upper bit is address decoded. This  
means that this bit should always be '0' to ensure that  
the address is in the ±28 byte memory space.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset or a WDT Time out Reset during normal opera-  
tion. In these situations, following RESET, the user can  
check the WRERR bit and rewrite the location. The  
data and address will be unchanged in the EEDATA  
and EEADR registers.  
13.2 EECON1 AND EECON2  
REGISTERS  
Interrupt flag bit EEIF in the PIR± register is set when  
write is complete. This bit must be cleared in software.  
EECON± is the control register with four low order bits  
physically implemented. The upper-four bits are non-  
existent and read as '0's.  
EECON2 is not a physical register. Reading EECON2  
will read all '0's. The EECON2 register is used  
exclusively in the Data EEPROM write sequence.  
REGISTER 13-3: EECON1 REGISTER (ADDRESS: 9Ch) DEVICES  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
WRERR  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as '0'  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during nor-  
mal operation or BOR Reset)  
0= The write operation completed  
bit 2  
bit ±  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the data EEPROM  
WR: Write Control bit  
1= initiates a write cycle. (The bit is cleared by hardware once write is complete. The WR bit  
can only be set (not cleared) in software.  
0= Write cycle to the data EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read (read takes one cycle. RD is cleared in hardware. The RD bit  
can only be set (not cleared) in software).  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
’±’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
DS40044A-page 90  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. The EEIF bit in the  
PIR± registers must be cleared by software.  
13.3 READING THE EEPROM DATA  
MEMORY  
To read a data memory location, the user must write the  
address to the EEADR register and then set control bit  
RD (EECON±<0>). The data is available, in the very  
next cycle, in the EEDATA register; therefore it can be  
read in the next instruction. EEDATA will hold this value  
until another read or until it is written to by the user  
(during a write operation).  
13.5 WRITE VERIFY  
Depending on the application, good programming  
practice may dictate that the value written to the Data  
EEPROM should be verified (Example ±3-3) to the  
desired value to be written. This should be used in  
applications where an EEPROM bit will be stressed  
near the specification limit.  
EXAMPLE 13-1:  
BSF  
DATA EEPROM READ  
;Bank 1  
STATUS, RP0  
CONFIG_ADDR  
EEADR  
MOVLW  
MOVWF  
BSF  
;
;Address to read  
;EE Read  
;W = EEDATA  
;Bank 0  
EXAMPLE 13-3:  
WRITE VERIFY  
EECON1, RD  
EEDATA, W  
STATUS, RP0  
MOVF  
BCF  
BSF STATUS, RP0;Bank 1  
MOVF EEDATA, W  
BSF  
EECON1, RD ;Read the  
;value written  
;
;Is the value written (in W reg) and  
13.4 WRITING TO THE EEPROM DATA  
MEMORY  
;read (in EEDATA) the same?  
;
To write an EEPROM data location, the user must first  
write the address to the EEADR register and the data  
to the EEDATA register. Then the user must follow a  
specific sequence to initiate the write for each byte.  
SUBWF EEDATA, W  
;
BTFSS STATUS, Z ;Is difference 0?  
GOTO WRITE_ERR ;NO, Write error  
:
:
;YES, Good write  
;Continue program  
EXAMPLE 13-2:  
DATA EEPROM WRITE  
BSF  
BSF  
STATUS, RP0  
EECON1, WREN  
;Bank 1  
;Enable write  
;Disable INTs.  
;
13.6 PROTECTION AGAINST  
SPURIOUS WRITE  
BCF  
INTCON, GIE  
55h  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON2  
AAh  
;Write 55h  
;
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built in. On power-up, WREN is cleared. Also  
when enabled, the Power-up Timer (72 ms duration)  
prevents EEPROM write.  
EECON2  
EECON1,WR  
;Write AAh  
;Set WR bit  
;begin write  
;Enable INTs.  
BSF INTCON, GIE  
The write will not initiate if the above sequence is not  
exactly followed (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. We strongly  
recommend that interrupts be disabled during this  
code segment. A cycle count is executed during the  
required sequence. Any number what is not equal to  
the required cycles to execute the required sequence  
will cause the data not to be written into the EEPROM.  
The write initiate sequence, and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch, or software malfunction.  
Additionally, the WREN bit in EECON± must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating EEPROM. The WREN bit is not cleared  
by hardware.  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit will  
be inhibited from being set unless the WREN bit is set.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 91  
PIC16F627A/628A/648A  
that change infrequently (such as constants, IDs, cali-  
bration, etc.) should be stored in FLASH program  
memory.  
13.7 Using the Data EEPROM  
The data EEPROM is a high endurance, byte address-  
able array that has been optimized for the storage of  
frequently changing information (e.g., program vari-  
ables or other data that are updated often). Frequently  
changing values will typically be updated more often  
than specification D±24. If this is not the case, an array  
refresh must be performed. For this reason, variables  
A simple data EEPROM refresh routine is shown in  
Example ±3-4.  
Note: If data EEPROM is only used to store con-  
stants and/or data that changes rarely, an  
array refresh is likely not required. See  
specification D±24.  
EXAMPLE 13-4:  
DATA EEPROM REFRESH ROUTINE  
clrf  
bcf  
bcf  
EEADR  
; Start at address 0  
; Set for memory  
; Set for Data EEPROM  
; Disable interrupts  
; Enable writes  
EECON1,CFGS  
EECON1,EEPGD  
INTCON,GIE  
EECON1,WREN  
bcf  
bsf  
Loop  
bsf  
; Loop to refresh array  
; Read current address  
;
EECON1,RD  
55h  
movlw  
movwf  
movlw  
movwf  
bsf  
EECON2  
AAh  
; Write 55h  
;
; Write AAh  
EECON2  
EECON1,WR  
EECON1,WR  
$-2  
; Set WR bit to begin write  
; Wait for write to complete  
btfsc  
bra  
incfsz EEADR,F  
Loop  
; Increment address  
; Not zero, do it again  
bra  
bcf  
bsf  
EECON1,WREN  
INTCON,GIE  
; Disable writes  
; Enable interrupts  
13.8 DATA EEPROM OPERATION  
DURING CODE PROTECT  
When the device is code protected, the CPU is able to  
read and write data to the Data EEPROM.  
TABLE 13-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM  
Value on  
Power-on  
Reset  
Value on all  
other  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RESETS  
9Ah  
EEDATA  
EEADR  
EEPROM data register  
xxxx xxxx  
xxxx xxxx  
---- x000  
---- ----  
uuuu uuuu  
uuuu uuuu  
---- q000  
---- ----  
9Bh  
9Ch  
9Dh  
EEPROM address register  
EECON1  
WRERR WREN  
WR  
RD  
EECON2(1) EEPROM control register 2  
Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition.  
Shaded cells are not used by data EEPROM.  
Note 1: EECON2 is not a physical register  
DS40044A-page 92  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
14.1 Configuration Bits  
14.0 SPECIAL FEATURES OF THE  
CPU  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '±') to select various  
device configurations. These bits are mapped in  
program memory location 2007h.  
Special circuits to deal with the needs of real-time  
applications are what sets a microcontroller apart from  
other processors. The PIC±6F627A/628A/648A family  
has a host of such features intended to maximize sys-  
tem reliability, minimize cost through elimination of  
external components, provide power saving Operating  
modes and offer code protection.  
The user will note that address 2007h is beyond  
the user program memory space. In fact, it belongs  
to the special configuration memory space (2000h –  
3FFFh), which can be accessed only during program-  
ming. See Programming Specification (DS4±±96) for  
additional information.  
These are:  
±. OSC selection  
2. RESET  
3. Power-on Reset (POR)  
4. Power-up Timer (PWRT)  
5. Oscillator Start-Up Timer (OST)  
6. Brown-out Reset (BOR)  
7. Interrupts  
8. Watchdog Timer (WDT)  
9. SLEEP  
±0. Code protection  
±±. ID Locations  
±2. In-Circuit Serial Programming™ (ICSP™)  
The PIC±6F627A/628A/648A has a Watchdog Timer  
which is controlled by configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in RESET until the crystal oscillator is stable.  
The other is the Power-up Timer (PWRT), which pro-  
vides a fixed delay of 72 ms (nominal) on power-up  
only, designed to keep the part in RESET while the  
power supply stabilizes. There is also circuitry to  
RESET the device if a Brown-out occurs. With these  
three functions on-chip, most applications need no  
external RESET circuitry.  
The SLEEP mode is designed to offer a very low  
current Power-down mode. The user can wake-up from  
SLEEP through external RESET, Watchdog Timer  
wake-up or through an interrupt. Several oscillator  
options are also made available to allow the part to fit  
the application. The RC oscillator option saves system  
cost while the LP crystal option saves power. A set of  
configuration bits are used to select various options.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 93  
PIC16F627A/628A/648A  
REGISTER 14-1: CONFIGURATION WORD  
CP  
CPD  
LVP  
BOREN MCLRE FOSC2 PWRTE  
WDTE  
F0SC1  
F0SC0  
bit 13  
bit 0  
bit 13:  
CP: FLASH Program Memory Code Protection bit(2)  
(PIC16F648A)  
1= Code protection off  
0= 0000h to 0FFFh code protected  
(PIC16F628A)  
1= Code protection off  
0= 0000h to 07FFh code protected  
(PIC16F627A)  
1= Code protection off  
0= 0000h to 03FFh code protected  
bit 12-9:  
bit 8:  
Unimplemented: Read as ‘0’  
CPD: Data Code Protection bit(3)  
1 = Data memory code protection off  
0 = Data memory code protected  
bit 7:  
LVP: Low Voltage Programming Enable  
1 = RB4/PGM pin has PGM function, low voltage programming enabled  
0 = RB4/PGM is digital I/O, HV on MCLR must be used for programming  
bit 6:  
BOREN: Brown-out Reset Enable bit (1)  
1 = BOR Reset enabled  
0 = BOR Reset disabled  
bit 5:  
MCLRE: RA5/MCLR pin function select  
1 = RA5/MCLR pin function is MCLR  
0 = RA5/MCLR pin function is digital Input, MCLR internally tied to VDD  
bit 3:  
PWRTEN: Power-up Timer Enable bit (1)  
1 = PWRT disabled  
0 = PWRT enabled  
bit 2:  
WDTEN: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 4, 1-0:  
FOSC2:FOSC0: Oscillator Selection bits(4)  
111 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN  
110 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN  
101 = INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
100 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
011 = EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN  
010 = HS oscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
001 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
000 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
Note 1: Enabling Brown-out Reset does not automatically enable the Power-up Timer (PWRT) the way it did in the PIC16F627/628.  
2: The code protection scheme has changed from the code protection scheme used in the PIC16F627/628. The entire FLASH program  
memory needs to be bulk erased to set the CP bit, turning the code protection off. See Programming Specification DS41196 for details.  
3: The entire data EEPROM needs to be bulk erased to set the CPD bit, turning the code protection off. See Programming Specification  
DS41196 for details.  
4: When MCLR is asserted in INTOSC mode, the internal clock oscillator is disabled.  
Legend  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
1 = bit is set  
U = Unimplemented bit, read as ‘0’  
0 = bit is cleared  
x = bit is unknown  
DS40044A-page 94  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
TABLE 14-1: CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
14.2 Oscillator Configurations  
14.2.1  
OSCILLATOR TYPES  
Mode  
Freq  
OSC1(C1)  
OSC2(C2)  
The PIC±6F627A/628A/648A can be operated in eight  
different oscillator options. The user can program three  
configuration bits (FOSC2 through FOSC0) to select  
one of these eight modes:  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
22 - 100 pF  
15 - 68 pF  
15 - 68 pF  
22 - 100 pF  
15 - 68 pF  
15 - 68 pF  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
Note:  
Higher capacitance increases the stability of the oscil-  
lator but also increases the start-up time. These values  
are for design guidance only. Since each resonator has  
its own characteristics, the user should consult the res-  
onator manufacturer for appropriate values of external  
components.  
Crystal/Resonator  
High Speed Crystal/Resonator  
External Resistor/Capacitor (2 modes)  
• INTOSC Internal Precision Oscillator (2 modes)  
• EC  
External Clock In  
TABLE 14-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
14.2.2  
CRYSTAL OSCILLATOR / CERAMIC  
RESONATORS  
Mode  
Freq  
OSC1(C1)  
OSC2(C2)  
LP  
32 kHz  
200 kHz  
15 - 30 pF  
0 - 15 pF  
15 - 30 pF  
0 - 15 pF  
In XT, LP or HS modes a crystal or ceramic resonator  
is connected to the OSC± and OSC2 pins to establish  
oscillation (Figure ±4-±). The PIC±6F627A/628A/648A  
oscillator design requires the use of a parallel cut crys-  
tal. Use of a series cut crystal may give a frequency out  
of the crystal manufacturers specifications. When in  
XT, LP or HS modes, the device can have an external  
clock source to drive the OSC± pin (Figure ±4-4).  
XT  
HS  
100 kHz  
2 MHz  
4 MHz  
68 - 150 pF  
15 - 30 pF  
15 - 30 pF  
150 - 200 pF  
15 - 30 pF  
15 - 30 pF  
8 MHz  
10 MHz  
20 MHz  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
Note:  
Higher capacitance increases the stability of the oscil-  
lator but also increases the start-up time. These values  
are for design guidance only. A series resistor (RS)  
may be required in HS mode as well as XT mode to  
avoid overdriving crystals with low drive level specifica-  
tion. Since each crystal has its own characteristics, the  
user should consult the crystal manufacturer for appro-  
priate values of external components.  
FIGURE 14-1:  
CRYSTAL OPERATION  
(OR CERAMIC  
RESONATOR) (HS, XT OR  
LP OSC  
CONFIGURATION)  
14.2.3  
EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
OSC1  
Either a prepackaged oscillator can be used or a simple  
oscillator circuit with TTL gates can be built.  
Prepackaged oscillators provide a wide operating  
range and better stability. A well-designed crystal  
oscillator will provide good performance with TTL  
gates. Two types of crystal oscillator circuits can be  
used; one with series resonance, or one with parallel  
resonance.  
C1  
XTAL  
SLEEP  
RF  
OSC2  
RS(1)  
FOSC  
C2  
PIC16F627A/628A/648A  
Note 1: A series resistor may be required for AT strip cut  
crystals.  
Figure ±4-2 shows implementation of a parallel reso-  
nant oscillator circuit. The circuit is designed to use the  
fundamental frequency of the crystal. The 74AS04  
inverter performs the ±80° phase shift that a parallel  
oscillator requires. The 4.7 kresistor provides the  
negative feedback for stability. The ±0 kΩ  
potentiometers bias the 74AS04 in the linear region.  
This could be used for external oscillator designs.  
2: See Table 14-1 and Table 14-2 for recommended  
values of C1 and C2.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 95  
PIC16F627A/628A/648A  
FIGURE 14-2:  
EXTERNAL PARALLEL  
RESONANT CRYSTAL  
OSCILLATOR CIRCUIT  
FIGURE 14-4:  
EXTERNAL CLOCK INPUT  
OPERATION (EC, HS, XT  
OR LP OSC  
CONFIGURATION)  
+5V  
TO OTHER  
DEVICES  
Clock From  
ext. system  
RA7/OSC1/CLKIN  
10K  
4.7K  
74AS04  
PIC16F627A/628A/648A  
PIC16F627A/628A/648A  
RA6/OSC2/CLKOUT  
CLKIN  
74AS04  
RA6  
10K  
14.2.6  
RC OSCILLATOR  
XTAL  
For applications where precise timing is not a require-  
ment, the RC oscillator option is available. The opera-  
tion and functionality of the RC oscillator is dependent  
upon a number of variables. The RC oscillator fre-  
quency is a function of:  
10K  
C1  
C2  
• Supply voltage  
Figure ±4-3 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental  
frequency of the crystal. The inverter performs a ±80°  
phase shift in a series resonant oscillator circuit. The  
330 kresistors provide the negative feedback to bias  
the inverters in their linear region.  
• Resistor (REXT) and capacitor (CEXT) values  
• Operating temperature.  
The oscillator frequency will vary from unit to unit due  
to normal process parameter variation. The difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to account for the  
tolerance of the external R and C components.  
Figure ±4-5 shows how the R/C combination is con-  
nected.  
FIGURE 14-3:  
EXTERNAL SERIES  
RESONANT CRYSTAL  
OSCILLATOR CIRCUIT  
TO OTHER  
DEVICES  
330 K  
330 KΩ  
74AS04  
FIGURE 14-5:  
RC OSCILLATOR MODE  
74AS04  
74AS04  
CLKIN  
VDD  
PIC16F627A/628A/648A  
0.1 PF  
PIC16F627A/  
628A/648A  
REXT  
RA7/OSC1/  
CLKIN  
Internal  
Clock  
XTAL  
CEXT  
VSS  
14.2.4  
PRECISION INTERNAL 4 MHZ  
OSCILLATOR  
FOSC/4  
RA6/OSC2/CLKOUT  
The internal precision oscillator provides a fixed 4 MHz  
(nominal) system clock at VDD = 5 V and 25°C. See  
Section ±7.0, Electrical Specifications, for information  
on variation over voltage and temperature.  
The RC Oscillator mode has two options that control  
the unused OSC2 pin. The first allows it to be used as  
a general purpose I/O port. The other configures the  
pin as an output providing the Fosc signal (internal  
clock divided by 4) for test or external synchronization  
purposes.  
14.2.5  
EXTERNAL CLOCK IN  
For applications where a clock is already available  
elsewhere, users may directly drive the PIC±6F627A/  
628A/648A provided that this external clock source  
meets the AC/DC timing requirements listed in  
Section ±7.6. Figure ±4-4 below shows how an exter-  
nal clock circuit should be configured.  
14.2.7  
CLKOUT  
The PIC±6F627A/628A/648A can be configured to pro-  
vide a clock out signal by programming the configura-  
tion word. The oscillator frequency, divided by 4 can be  
used for test purposes or to synchronize other logic.  
DS40044A-page 96  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
14.2.8  
SPECIAL FEATURE: DUAL SPEED  
OSCILLATOR MODES  
14.3 RESET  
The PIC±6F627A/628A/648A differentiates between  
various kinds of RESET:  
A software programmable dual speed Oscillator mode  
is provided when the PIC±6F627A/628A/648A is con-  
figured in the INTOSC Oscillator mode. This feature  
allows users to dynamically toggle the oscillator speed  
between 4 MHz and 37 kHz nominal in the INTOSC  
mode. Applications that require low current power sav-  
ings, but cannot tolerate putting the part into SLEEP,  
may use this mode.  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during SLEEP  
d) WDT Reset (normal operation)  
e) WDT wake-up (SLEEP)  
f) Brown-out Reset (BOR)  
There is a time delay associated with the transition  
between Fast and Slow oscillator speeds. This Oscilla-  
tor Speed Transition delay consists of two existing  
clock pulses and eight new speed clock pulses. During  
this Clock Speed Transition Delay the System Clock is  
halted causing the processor to be frozen in time. Dur-  
ing this delay the Program Counter and the Clock Out  
stop.  
Some registers are not affected in any RESET condi-  
tion; their status is unknown on POR and unchanged in  
any other RESET. Most other registers are reset to a  
“RESET state” on Power-on Reset, Brown-out Reset,  
MCLR Reset, WDT Reset and MCLR Reset during  
SLEEP. They are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal oper-  
ation. TO and PD bits are set or cleared differently in  
different RESET situations as indicated in Table ±4-4.  
These bits are used in software to determine the nature  
of the RESET. See Table ±4-7 for a full description of  
RESET states of all registers.  
The OSCF bit in the PCON register is used to control  
Dual Speed mode. See Section 4.2.2.6, Register 4-6.  
A simplified block diagram of the on-chip RESET circuit  
is shown in Figure ±4-6.  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Table ±7-7 for pulse width  
specification.  
FIGURE 14-6:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
RESET  
Schmitt Trigger Input  
SLEEP  
MCLR/  
VPP Pin  
WDT  
WDT  
Module  
Time out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
Brown-out  
detect Reset  
S
Q
BOREN  
OST/PWRT  
OST  
Chip_Reset  
10-bit Ripple-counter  
R
Q
OSC1/  
CLKIN  
Pin  
PWRT  
10-bit Ripple-counter  
On-chip(1)  
OSC  
See Table 14-3 for time out situations.  
Enable PWRT  
Enable OST  
Note 1: This is a separate oscillator from the INTOSC/RC oscillator.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 97  
PIC16F627A/628A/648A  
The Power-Up Time delay will vary from chip to chip  
and due to VDD, temperature and process variation.  
See DC parameters Table ±7-7 for details.  
14.4 Power-on Reset (POR), Power-up  
Timer (PWRT), Oscillator Start-up  
Timer (OST) and Brown-out Reset  
(BOR)  
14.4.3  
OSCILLATOR START-UP TIMER  
(OST)  
14.4.1  
POWER-ON RESET (POR)  
The OST provides a ±024 oscillator cycle (from OSC±  
input) delay after the PWRT delay is over. Program  
execution will not start until the OST time out is com-  
plete. This ensures that the crystal oscillator or resona-  
tor has started and stabilized.  
The on-chip POR circuit holds the chip in RESET until  
VDD has reached a high enough level for proper oper-  
ation. To take advantage of the POR, just tie the MCLR  
pin through a resistor to VDD. This will eliminate exter-  
nal RC components usually needed to create Power-on  
Reset. A maximum rise time for VDD is required. See  
Electrical Specifications for details.  
The OST time out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP. See Table ±7-7.  
The POR circuit does not produce an internal RESET  
when VDD declines.  
14.4.4  
BROWN-OUT RESET (BOR)  
When the device starts normal operation (exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in RESET until the operating con-  
ditions are met.  
The PIC±6F627A/628A/648A have on-chip BOR cir-  
cuitry. A configuration bit, BOREN, can disable (if clear/  
programmed) or enable (if set) the BOR Reset circuitry.  
If VDD falls below VBOR for longer than TBOR, the  
brown-out situation will RESET the chip. A RESET is  
not guaranteed to occur if VDD falls below VBOR for  
shorter than TBOR. VBOR and TBOR are defined in  
Table ±7-2 and Table ±7-7, respectively.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting”.  
On any RESET (Power-on, Brown-out, Watchdog,  
etc.), the chip will remain in RESET until VDD rises  
above BVDD (see Figure ±4-7). The Power-up Timer  
will now be invoked, if enabled, and will keep the chip  
in RESET an additional 72 ms.  
14.4.2  
POWER-UP TIMER (PWRT)  
The PWRT provides a fixed 72 ms (nominal) time out  
on power-up (POR) or if enabled from a Brown-out  
Reset. The PWRT operates on an internal RC oscilla-  
tor. The chip is kept in RESET as long as PWRT is  
active. The PWRT delay allows the VDD to rise to an  
acceptable level. A configuration bit, PWRTE can  
disable (if set) or enable (if cleared or programmed) the  
PWRT. It is recommended that the PWRT be enabled  
when Brown-out Reset is enabled.  
If VDD drops below VBOR while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOR, the Power-Up Timer will execute a  
72 ms RESET. Figure ±4-7 shows typical Brown-out  
situations.  
FIGURE 14-7:  
BROWN-OUT SITUATIONS WITH PWRT ENABLED  
VDD  
VBOR  
TBOR  
INTERNAL  
RESET  
72 ms  
VDD  
VBOR  
INTERNAL  
RESET  
<72 ms  
72 ms  
VDD  
VBOR  
INTERNAL  
RESET  
72 ms  
Note: 72 ms delay only if PWRTE bit is programmed to ‘0’.  
DS40044A-page 98  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
14.4.5  
TIME OUT SEQUENCE  
14.4.6  
POWER CONTROL (PCON) STATUS  
REGISTER  
On power-up the time out sequence is as follows: First  
PWRT time out is invoked after POR has expired. Then  
OST is activated. The total time out will vary based on  
oscillator configuration and PWRTE bit STATUS. For  
example, in RC mode with PWRTE bit set (PWRT dis-  
abled), there will be no time out at all. Figure ±4-8,  
Figure ±4-9 and Figure ±4-±0 depict time out  
sequences.  
The power control/STATUS register, PCON (address  
8Eh) has two bits.  
Bit0 is BOR (Brown-out Reset). BOR is unknown on  
Power-on-Reset. It must then be set by the user and  
checked on subsequent RESETS to see if BOR = 0  
indicating that a brown-out has occurred. The BOR  
STATUS bit is a don’t care and is not necessarily  
predictable if the brown-out circuit is disabled (by  
setting BOREN bit = 0 in the Configuration word).  
Since the time outs occur from the POR pulse, if MCLR  
is kept low long enough, the time outs will expire. Then  
bringing MCLR high will begin execution immediately  
(see Figure ±4-9). This is useful for testing purposes or  
to synchronize more than one PIC±6F627A/628A/  
648A device operating in parallel.  
Bit± is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
‘±’ to this bit following a Power-on Reset. On a subse-  
quent RESET if POR is ‘0’, it will indicate that a Power-  
on Reset must have occurred (VDD may have gone too  
low).  
Table ±4-6 shows the RESET conditions for some spe-  
cial registers, while Table ±4-7 shows the RESET con-  
ditions for all the registers.  
TABLE 14-3: TIME OUT IN VARIOUS SITUATIONS  
Power-up  
Brown-out Reset  
Wake-up  
from SLEEP  
Oscillator Configuration  
PWRTEN = 0  
PWRTEN = 1  
PWRTEN = 0  
PWRTEN = 1  
XT, HS, LP  
72 ms +  
±024•TOSC  
±024•TOSC  
72 ms +  
±024•TOSC  
±024•TOSC  
±024•TOSC  
RC, EC  
72 ms  
72 ms  
72 ms  
72 ms  
INTOSC  
6 µs  
TABLE 14-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
1
PD  
1
Condition  
0
0
X
X
Power-on Reset  
0
X
Illegal, TO is set on POR  
0
1
1
1
X
0
1
1
X
X
0
0
0
X
u
0
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
1
1
1
1
u
1
u
0
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
Legend: u = unchanged, x = unknown.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 99  
PIC16F627A/628A/648A  
TABLE 14-5: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET  
Value on all  
other  
RESETS(1)  
Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR Reset  
03h, 83h, STATUS  
103h, 183h  
IRP  
RP1  
RPO  
TO  
PD  
Z
DC  
C
0001 1xxx 000q quuu  
---- 1-0x ---- u-uq  
8Eh  
PCON  
OSCF  
POR  
BOR  
Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition.  
Shaded cells are not used by Brown-out Reset.  
Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.  
TABLE 14-6: INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Condition  
Register  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
---- 1-0x  
---- 1-uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
000x xuuu  
uuu1 0uuu  
---- 1-uu  
---- 1-uu  
---- u-uu  
---- 1-u0  
---- u-uu  
WDT Wake-up  
PC + 1  
000h  
Brown-out Reset  
Interrupt Wake-up from SLEEP  
PC + 1(1)  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector  
(0004h) after execution of PC+1.  
DS40044A-page 100  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
TABLE 14-7: INITIALIZATION CONDITION FOR REGISTERS  
MCLR Reset during normal  
operation  
Wake-up from SLEEP(7)  
through interrupt  
Wake-up from SLEEP(7)  
Power-on  
Reset  
Register  
Address  
MCLR Reset during SLEEP  
through WDT time out  
WDT Reset  
Brown-out Reset (1)  
W
00h  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
INDF  
TMR0  
PCL  
01h, 101h  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
PC + 1(3)  
02h, 82h,  
102h, 182h  
STATUS  
FSR  
03h, 83h,  
0001 1xxx  
xxxx xxxx  
000q quuu(4)  
uuuu uuuu  
uuuq 0uuu(4)  
uuuu uuuu  
103h, 183h  
04h, 84h,  
104h, 184h  
PORTA  
PORTB  
PCLATH  
05h  
xxxx 0000  
xxxx xxxx  
---0 0000  
xxxx 0000  
uuuu uuuu  
---0 0000  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
06h, 106h  
0Ah, 8Ah,  
10Ah, 18Ah  
INTCON  
0Bh, 8Bh,  
0000 000x  
0000 000u  
uuuu uqqq(2)  
10Bh,18Bh  
PIR1  
0Ch  
0Eh  
0000 -000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
1111 1111  
0000 -000  
---- 1-0x  
1111 1111  
0000 -010  
0000 0000  
xxxx xxxx  
xxxx xxxx  
---- x000  
0000 -000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu(6)  
0000 0000  
-000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
1111 1111  
0000 -000  
---- 1-uq(1,5)  
1111 1111  
0000 -010  
0000 0000  
uuuu uuuu  
uuuu uuuu  
---- q000  
qqqq -qqq(2)  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu-- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
---- u-uu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
TMR1L  
TMR1H  
T1CON  
TMR2  
0Fh  
10h  
11h  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CMCON  
OPTION  
TRISA  
12h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Fh  
81h,181h  
85h  
TRISB  
86h, 186h  
8Ch  
8Eh  
PIE1  
PCON  
PR2  
92h  
TXSTA  
SPBRG  
EEDATA  
EEADR  
EECON1  
EECON2  
VRCON  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Fh  
000- 0000  
000- 0000  
uuu- uuuu  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
4: See Table 14-6 for RESET value for specific condition.  
5: If RESET was due to brown-out, then bit 0 = 0. All other RESETS will cause bit 0 = u.  
6: Reset to ‘--00 0000’ on a Brown-out Reset (BOR).  
7: Peripherals generating interrupts for wake-up from SLEEP will change the resulting bits in the associated registers.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 101  
PIC16F627A/628A/648A  
FIGURE 14-8:  
TIME OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE  
VDD  
MCLR  
INTERNAL POR  
Tpwrt  
PWRT TIME OUT  
OST TIME OUT  
Tost  
INTERNAL RESET  
FIGURE 14-9:  
TIME OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
Tpwrt  
PWRT TIME OUT  
OST TIME OUT  
Tost  
INTERNAL RESET  
FIGURE 14-10:  
TIME OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
Tpwrt  
PWRT TIME OUT  
OST TIME OUT  
Tost  
INTERNAL RESET  
DS40044A-page 102  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
FIGURE 14-11:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
FIGURE 14-13:  
EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 2  
VDD  
VDD  
VDD  
VDD  
R1  
Q1  
D
MCLR  
R
PIC16F627A/628A/648A  
R2  
R1  
40k  
PIC16F627A/628A/648A  
MCLR  
C
Note 1: This Brown-out Circuit is less expensive,  
albeit less accurate. Transistor Q1 turns off  
when VDD is below a certain level such that:  
Note 1: External Power-on Reset circuit is required  
only if VDD power-up slope is too slow. The  
diode D helps discharge the capacitor  
quickly when VDD powers down.  
R1  
VDD x  
= 0.7 V  
R1 + R2  
2: R < 40 kis recommended to make sure  
that voltage drop across R does not violate  
the device’s electrical specification.  
2: Internal Brown-out Reset should be dis-  
abled when using this circuit.  
3: Resistors should be adjusted for the charac-  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin breakdown  
due to Electrostatic Discharge (ESD) or  
Electrical Overstress (EOS).  
teristics of the transistor.  
FIGURE 14-12:  
EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 1  
VDD  
VDD  
33k  
10k  
MCLR  
40k  
PIC16F627A/628A/648A  
Note 1: This circuit will activate RESET when VDD  
goes below (Vz + 0.7V) where Vz = Zener  
voltage.  
2: Internal Brown-out Reset circuitry should  
be disabled when using this circuit.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 103  
PIC16F627A/628A/648A  
When an interrupt is responded to, the GIE is cleared  
to disable any further interrupt, the return address is  
pushed into the stack and the PC is loaded with 0004h.  
Once in the interrupt service routine the source(s) of  
the interrupt can be determined by polling the interrupt  
flag bits. The interrupt flag bit(s) must be cleared in soft-  
ware before re-enabling interrupts to avoid RB0/INT  
recursive interrupts.  
14.5 Interrupts  
The PIC±6F627A/628A/648A has ±0 sources of inter-  
rupt:  
• External Interrupt RB0/INT  
• TMR0 Overflow Interrupt  
• PORTB Change Interrupts (pins RB7:RB4)  
• Comparator Interrupt  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs (Figure ±4-  
±5). The latency is the same for one or two cycle  
instructions. Once in the interrupt service routine the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid multiple interrupt requests. Individual interrupt  
flag bits are set regardless of the status of their  
corresponding mask bit or the GIE bit.  
• USART Interrupt TX  
• USART Interrupt RX  
• CCP Interrupt  
• TMR± Overflow Interrupt  
• TMR2 Match Interrupt  
• Data EEPROM Interrupt  
The interrupt control register (INTCON) records  
individual interrupt requests in flag bits. It also has  
individual and global interrupt enable bits.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. Individual interrupts can be  
disabled through their corresponding enable bits in  
INTCON register. GIE is cleared on RESET.  
Note 1: Individual interrupt flag bits are set  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The CPU will execute a NOP  
in the cycle immediately following the  
instruction which clears the GIE bit. The  
interrupts which were ignored are still  
pending to be serviced when the GIE bit  
is set again.  
The “return from interrupt” instruction, RETFIE, exits  
interrupt routine as well as sets the GIE bit, which re-  
enable RB0/INT interrupts.  
The INT pin interrupt, the RB port change interrupt and  
the TMR0 overflow interrupt flags are contained in the  
INTCON register.  
The peripheral interrupt flag is contained in the special  
register PIR±. The corresponding interrupt enable bit is  
contained in special registers PIE±.  
FIGURE 14-14:  
INTERRUPT LOGIC  
TMR1IF  
TMR1IE  
T0IF  
T0IE  
Wake-up (If in SLEEP mode)  
Interrupt to CPU  
TMR2IF  
TMR2IE  
INTF  
INTE  
CCP1IF  
CCP1IE  
CMIF  
RBIF  
RBIE  
CMIE  
PEIE  
TXIF  
TXIE  
RCIF  
RCIE  
GIE  
EEIF  
EEIE  
DS40044A-page 104  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
14.5.1  
RB0/INT INTERRUPT  
14.5.3  
PORTB INTERRUPT  
External interrupt on RB0/INT pin is edge triggered:  
either rising if INTEDG bit (OPTION<6>) is set, or fall-  
ing, if INTEDG bit is clear. When a valid edge appears  
on the RB0/INT pin, the INTF bit (INTCON<±>) is set.  
This interrupt can be disabled by clearing the INTE  
control bit (INTCON<4>). The INTF bit must be cleared  
in software in the interrupt service routine before re-  
enabling this interrupt. The RB0/INT interrupt can  
wake-up the processor from SLEEP, if the INTE bit was  
set prior to going into SLEEP. The status of the GIE bit  
decides whether or not the processor branches to the  
interrupt vector following wake-up. See Section ±4.8  
for details on SLEEP, and Figure ±4-±7 for timing of  
wake-up from SLEEP through RB0/INT interrupt.  
An input change on PORTB <7:4> sets the RBIF  
(INTCON<0>) bit. The interrupt can be enabled/dis-  
abled by setting/clearing the RBIE (INTCON<4>) bit.  
For operation of PORTB (Section 5.2).  
Note: If a change on the I/O pin should occur  
when the read operation is being executed  
(starts during the Q2 cycle and ends before  
the start of the Q3 cycle), then the RBIF  
interrupt flag may not get set.  
14.5.4  
COMPARATOR INTERRUPT  
See Section ±0.6 for complete description of compara-  
tor interrupts.  
14.5.2  
TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will  
set the T0IF (INTCON<2>) bit. The interrupt can  
be enabled/disabled by setting/clearing T0IE  
(INTCON<5>) bit. For operation of the Timer0 module,  
see Section 6.0.  
FIGURE 14-15:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(5)  
Interrupt Latency  
INTF flag  
(INTCON<1>)  
(2)  
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
0004h  
PC+1  
PC+1  
0005h  
PC  
Instruction  
Fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC-1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 Tcy. Synchronous latency = 3 Tcy, where Tcy = instruction cycle time. Latency  
is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available in RC and INTOSC Oscillator mode.  
4: For minimum width of INT pulse, refer to AC specs.  
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 105  
PIC16F627A/628A/648A  
TABLE 14-8: SUMMARY OF INTERRUPT REGISTERS  
Value on all  
other  
RESETS(1)  
Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR Reset  
0Bh, 8Bh, INTCON  
10Bh, 18Bh  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
PIR1  
PIE1  
EEIF  
EEIE  
CMIF  
CMIE  
RCIF  
RCIE  
TXIF  
TXIE  
CCP1IF TMR2IF TMR1IF 0000 -000 0000 -000  
CCP1IE TMR2IE TMR1IE 0000 -000 0000 -000  
Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal oper-  
ation.  
14.6 Context Saving During Interrupts  
14.7 Watchdog Timer (WDT)  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt (e.g., W register and STATUS  
register). This must be implemented in software.  
The watchdog timer is a free running on-chip RC oscil-  
lator which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the CLKIN pin. That means that the WDT will run, even  
if the clock on the OSC± and OSC2 pins of the device  
has been stopped, for example, by execution of a  
SLEEP instruction. During normal operation, a WDT  
time out generates a device RESET. If the device is in  
SLEEP mode, a WDT time out causes the device to  
wake-up and continue with normal operation. The WDT  
can be permanently disabled by programming the con-  
figuration bit WDTE as clear (Section ±4.±).  
Example ±4-2 stores and restores the STATUS and W  
registers. The user register, W_TEMP, must be defined  
in a common memory location (i.e., W_TEMP is  
defined at 0x70 in Bank 0 and is therefore, accessible  
at 0xF0, 0x±70 and 0x±F0). The Example ±4-2:  
• Stores the W register  
• Stores the STATUS register  
• Executes the ISR code  
14.7.1  
WDT PERIOD  
• Restores the STATUS (and bank select bit regis-  
ter)  
The WDT has a nominal time out period of ±8 ms (with  
no prescaler). The time out periods vary with tempera-  
• Restores the W register  
DD  
ture, V and process variations from part to part (see  
DC Specifications, Table ±7-7). If longer time out peri-  
ods are desired, a postscaler with a division ratio of up  
to ±:±28 can be assigned to the WDT under software  
control by writing to the OPTION register. Thus, time  
out periods up to 2.3 seconds can be realized.  
EXAMPLE 14-2:  
SAVING THE STATUS  
AND W REGISTERS IN  
RAM  
MOVWF W_TEMP  
;copy W to temp register,  
;could be in any bank  
;swap status to be saved  
;into W  
SWAPF STATUS,W  
The CLRWDTand SLEEPinstructions clear the WDT  
and the postscaler, if assigned to the WDT, and prevent  
it from timing out and generating a device RESET.  
BCF  
STATUS,RP0 ;change to bank 0  
;regardless of current  
;bank  
The TO bit in the STATUS register will be cleared upon  
a Watchdog Timer time out.  
MOVWF STATUS_TEMP ;save status to bank 0  
;register  
:
14.7.2  
WDT PROGRAMMING  
CONSIDERATIONS  
:(ISR)  
:
It should also be taken in account that under worst case  
conditions (VDD = Min., Temperature = Max., max.  
WDT prescaler) it may take several seconds before a  
WDT time out occurs.  
SWAPFSTATUS_TEMP,W;swap STATUS_TEMP register  
;into W, sets bank to original  
;state  
MOVWF STATUS  
;move W into STATUS register  
;swap W_TEMP  
SWAPF W_TEMP,F  
SWAPF W_TEMP,W  
;swap W_TEMP into W  
DS40044A-page 106  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
FIGURE 14-16:  
WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 6-1)  
0
M
WDT POSTSCALER/  
TMR0 PRESCALER  
U
X
Watchdog  
Timer  
1
8
8 to 1 MUX  
PS<2:0>  
To TMR0  
PSA  
3
WDT  
Enable Bit  
(Figure 6-1)  
0
1
PSA  
MUX  
WDT  
Time out  
Note:  
T0SE, T0CS, PSA, PS0-PS2 are bits in the OPTION register.  
TABLE 14-9: SUMMARY OF WATCHDOG TIMER REGISTERS  
Value on all  
other  
Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR Reset  
RESETS  
2007h  
Config.  
bits  
LVP  
BOREN MCLRE FOSC2 PWRTE  
WDTE  
PS2  
FOSC1  
PS1  
FOSC0 uuuu uuuu uuuu uuuu  
81h, 181h  
OPTION  
RBPU INTEDG  
T0CS  
T0SE  
PSA  
PS0  
1111 1111 1111 1111  
Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition.  
Note: Shaded cells are not used by the Watchdog Timer.  
For lowest current consumption in this mode, all I/O  
pins should be either at VDD, or VSS, with no external  
circuitry drawing current from the I/O pin and the com-  
parators, and VREF should be disabled. I/O pins that  
are hi-impedance inputs should be pulled high or low  
externally to avoid switching currents caused by float-  
ing inputs. The T0CKI input should also be at VDD or  
VSS for lowest current consumption. The contribution  
from on chip pull-ups on PORTB should be considered.  
14.8 Power-Down Mode (SLEEP)  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit in the STATUS register is  
cleared, the TO bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before SLEEPwas executed (driving high, low, or hi-  
impedance).  
The MCLR pin must be at a logic high level (VIHMC).  
Note: It should be noted that a RESET generated  
by a WDT time out does not drive MCLR  
pin low.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 107  
PIC16F627A/628A/648A  
ing interrupt enable bit must be set (enabled). Wake-up  
is regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEPinstruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have an NOPafter the SLEEPinstruction.  
14.8.1  
WAKE-UP FROM SLEEP  
The device can wake-up from SLEEP through one of  
the following events:  
±. External RESET input on MCLR pin  
2. Watchdog Timer wake-up (if WDT was enabled)  
3. Interrupt from RB0/INT pin, RB Port change, or  
any Peripheral Interrupt.  
The first event will cause a device RESET. The two lat-  
ter events are considered a continuation of program  
execution. The TO and PD bits in the STATUS register  
can be used to determine the cause of device RESET.  
PD bit, which is set on power-up is cleared when  
SLEEP is invoked. TO bit is cleared if WDT wake-up  
occurred.  
Note: If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the correspond-  
ing interrupt flag bits set, the device will not  
enter SLEEP. The SLEEP instruction is  
executed as a NOPinstruction.  
The WDT is cleared when the device wakes up from  
SLEEP, regardless of the source of wake-up.  
When the SLEEP instruction is being executed, the  
next instruction (PC + ±) is pre-fetched. For the device  
to wake-up through an interrupt event, the correspond-  
FIGURE 14-17:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
Tost(2)  
CLKOUT(4)  
INT pin  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Instruction  
Executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale). Approximately 1 µs delay will be there for RC Osc mode.  
3: GIE = '1' assumed. In this case after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue  
in-line.  
4: CLKOUT is not available in these Osc modes, but shown here for timing reference.  
14.9 Code Protection  
14.10 User ID Locations  
With the Code Protect bit is cleared (Code Protect  
enabled) the contents of the program memory locations  
are read out as “00”. See Programing Specification,  
DS4±±96, for details.  
Four memory locations (2000h-2003h) are designated  
as user ID locations where the user can store check-  
sum or other code-identification numbers. These loca-  
tions are not accessible during normal execution but  
are readable and writable during program/verify. Only  
the Least Significant 4 bits of the user ID locations are  
used.  
Note: Only a Bulk Erase function can set the CP  
and CPD bits by turning off the code pro-  
tection. The entire data EEPROM and  
FLASH program memory will be erased to  
turn the code protection off.  
DS40044A-page 108  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
14.11 In-Circuit Serial Programming  
14.12 Low Voltage Programming  
The PIC±6F627A/628A/648A microcontrollers can be  
serially programmed while in the end application circuit.  
This is simply done with two lines for clock and data,  
and three other lines for power, ground, and the pro-  
gramming voltage. This allows customers to manufac-  
ture boards with unprogrammed devices and then  
program the microcontroller just before shipping the  
product. This also allows the most recent firmware, or  
a custom firmware to be programmed.  
The LVP bit of the configuration word, enables the low  
voltage programming. This mode allows the microcon-  
troller to be programmed via ICSP using only a 5V  
source. This mode removes the requirement of VIHH to  
be placed on the MCLR pin. The LVP bit is normally  
erased to '±' which enables the low voltage program-  
ming. In this mode, the RB4/PGM pin is dedicated to  
the programming function and ceases to be a general  
purpose I/O pin. The device will enter Programming  
mode when a '±' is placed on the RB4/PGM pin. The  
HV Programming mode is still available by placing VIHH  
on the MCLR pin.  
The device is placed into a Program/Verify mode by  
holding the RB6 and RB7 pins low while raising the  
MCLR (VPP) pin from VIL to VIHH (see programming  
specification). RB6 becomes the programming clock  
and RB7 becomes the programming data. Both RB6  
and RB7 are Schmitt Trigger inputs in this mode.  
Note 1: While in this mode the RB4 pin can no  
longer be used as a general purpose I/O  
pin.  
After RESET, to place the device into Programming/  
Verify mode, the program counter (PC) is at location  
00h. A 6-bit command is then supplied to the device.  
Depending on the command, ±4 bits of program data  
are then supplied to or from the device, depending if  
the command was a load or a read. For complete  
details of serial programming, please refer to the Pro-  
gramming Specifications (DS4±±96).  
2: VDD must be 5.0V +±01 during erase  
operations.  
If Low-voltage Programming mode is not used, the LVP  
bit should be programmed to a '0' so that RB4/PGM  
becomes a digital I/O pin. To program the device, VIHH  
must be placed onto MCLR during programming. The  
LVP bit may only be programmed when programming  
is entered with VIHH on MCLR. The LVP bit cannot be  
programmed when programming is entered with RB4/  
PGM.  
A typical In-Circuit Serial Programming connection is  
shown in Figure ±4-±8.  
It should be noted, that once the LVP bit is programmed  
to 0, only high voltage Programming mode can be used  
to program the device.  
FIGURE 14-18:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
To Normal  
Connections  
External  
Connector  
Signals  
PIC16F627A/628A/648A  
+5V  
0V  
VDD  
VSS  
VPP  
RA5/MCLR/VPP  
RB6/PGC  
RB7/PGD  
CLK  
Data I/O  
VDD  
To Normal  
Connections  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 109  
PIC16F627A/628A/648A  
NOTES:  
DS40044A-page 110  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
15.0 INSTRUCTION SET SUMMARY  
Each PIC±6F627A/628A/648A instruction is a ±4-bit  
word divided into an OPCODE which specifies the  
instruction type and one or more operands which fur-  
ther specify the operation of the instruction. The  
PIC±6F627A/628A/648A instruction set summary in  
Table ±5-2 lists byte-oriented, bit-oriented, and lit-  
eral and control operations. Table ±5-± shows the  
opcode field descriptions.  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of an  
instruction. In this case, the execution takes two  
instruction cycles with the second cycle executed as a  
NOP. One instruction cycle consists of four oscillator  
periods. Thus, for an oscillator frequency of 4 MHz, the  
For byte-oriented instructions, 'f' represents a file  
register designator and 'd' represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
normal instruction execution time is ± µs. If  
a
conditional test is true or the program counter is  
changed as a result of an instruction, the instruction  
execution time is 2 µs.  
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the W register. If 'd' is one, the result is placed  
in the file register specified in the instruction.  
Table ±5-2 lists the instructions recognized by the  
MPASM™ assembler.  
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the number of the  
file in which the bit is located.  
Figure ±5-± shows the three general formats that the  
instructions can have.  
Note 1: Any unused opcode is reserved. Use of  
any reserved opcode may cause unex-  
pected operation.  
For literal and control operations, 'k' represents an  
eight or eleven bit constant or literal value.  
2: To maintain upward compatibility with  
future PICmicro products, do not use the  
OPTIONand TRISinstructions.  
TABLE 15-1: OPCODE FIELD  
DESCRIPTIONS  
Field  
Description  
All examples use the following format to represent a  
hexadecimal number:  
f
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
W
b
0xhh  
Bit address within an 8-bit file register  
Literal field, constant data or label  
where h signifies a hexadecimal digit.  
k
x
Don't care location (= 0 or 1)  
FIGURE 15-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
Byte-oriented file register operations  
13  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
8
7
6
0
OPCODE  
d
f (FILE #)  
label  
TOS  
PC  
Label name  
d = 0 for destination W  
d = 1 for destination f  
Top of Stack  
f = 7-bit file register address  
Program Counter  
PCLATH Program Counter High Latch  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7 6  
0
GIE  
WDT  
TO  
Global Interrupt Enable bit  
Watchdog Timer/Counter  
Time out bit  
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
PD  
Power-down bit  
dest  
Destination either the W register or the specified regis-  
ter file location  
Literal and control operations  
General  
13  
[ ]  
Options  
8 7  
0
0
( )  
Contents  
OPCODE  
k (literal)  
Assigned to  
k = 8-bit immediate value  
< >  
Register bit field  
In the set of  
CALLand GOTOinstructions only  
13  
11 10  
italics  
User defined term (font is courier)  
OPCODE  
k (literal)  
k = 11-bit immediate value  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 111  
PIC16F627A/628A/648A  
TABLE 15-2: PIC16F627A/628A/648A INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Status  
Description  
Cycles  
Notes  
Operands  
Affected  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
f, d  
f, d  
f
Add W and f  
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
AND W with f  
0101 dfff ffff  
0001 lfff ffff  
0001 0000 0011  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
Clear f  
1
CLRW  
COMF  
DECF  
Clear W  
1
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
Complement f  
1
1,2  
1,2  
Decrement f  
1
1(2)  
DECFSZ  
INCF  
Decrement f, Skip if 0  
Increment f  
1,2,3  
1,2  
1
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1(2)  
1
1,2,3  
1,2  
Z
Z
1
1,2  
Move W to f  
1
No Operation  
1
RLF  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
1
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
RRF  
1
SUBWF  
SWAPF  
XORWF  
1
0010 dfff ffff C,DC,Z  
1
1110 dfff ffff  
1
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
1
01  
01  
01  
01  
00bb bfff ffff  
01bb bfff ffff  
10bb bfff ffff  
11bb bfff ffff  
1,2  
1,2  
3
BSF  
Bit Set f  
1
BTFSC  
BTFSS  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1(2)  
1(2)  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
k
k
Add literal and W  
1
1
2
1
2
1
1
2
2
2
1
1
1
11  
11  
10  
00  
10  
11  
11  
00  
11  
00  
00  
11  
11  
111x kkkk kkkk C,DC,Z  
AND literal with W  
1001 kkkk kkkk  
0kkk kkkk kkkk  
Z
k
Call subroutine  
CLRWDT  
GOTO  
k
Clear Watchdog Timer  
Go to address  
0000 0110 0100 TO,PD  
1kkk kkkk kkkk  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
Inclusive OR literal with W  
Move literal to W  
1000 kkkk kkkk  
00xx kkkk kkkk  
0000 0000 1001  
01xx kkkk kkkk  
0000 0000 1000  
Z
k
k
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
k
0000 0110 0011 TO,PD  
110x kkkk kkkk C,DC,Z  
k
1010 kkkk kkkk Z  
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present on the  
pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data  
will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the  
Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed  
as a NOP.  
DS40044A-page 112  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
15.1 Instruction Descriptions  
ADDLW  
Add Literal and W  
ANDLW  
AND Literal with W  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(W) + k (W)  
C, DC, Z  
(W) .AND. (k) (W)  
Z
11  
111x  
kkkk  
kkkk  
11  
1001  
kkkk  
kkkk  
Description:  
The contents of the W register are  
added to the eight bit literal 'k' and  
the result is placed in the W register.  
Description:  
The contents of W register are  
AND’ed with the eight bit literal 'k'.  
The result is placed in the W regis-  
ter.  
Words:  
Cycles:  
Example  
±
±
Words:  
Cycles:  
Example  
±
±
ADDLW  
0x15  
ANDLW  
0x5F  
Before Instruction  
W = 0x±0  
Before Instruction  
W = 0xA3  
After Instruction  
W = 0x25  
After Instruction  
W = 0x03  
ANDWF  
AND W with f  
ADDWF  
Add W and f  
Syntax:  
[ label ] ANDWF f,d  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f ±27  
d ∈ [0,1]  
Operands:  
0 f ±27  
d ∈ [0,1]  
Operation:  
(W) .AND. (f) (dest)  
Operation:  
(W) + (f) (dest)  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
C, DC, Z  
00  
0101  
dfff  
ffff  
00  
0111  
dfff  
ffff  
Description:  
AND the W register with register 'f'.  
If 'd' is 0 the result is stored in the W  
register. If 'd' is 1 the result is stored  
back in register 'f'.  
Description:  
Add the contents of the W register  
with register 'f'. If 'd' is 0 the result is  
stored in the W register. If 'd' is 1 the  
result is stored back in register 'f'.  
Words:  
Cycles:  
Example  
±
±
Words:  
Cycles:  
Example  
±
±
ANDWF  
REG1, 1  
ADDWF  
REG1, 0  
Before Instruction  
Before Instruction  
W = 0x±7  
REG± = 0xC2  
W = 0x±7  
REG± = 0xC2  
After Instruction  
= 0x±7  
REG± = 0x02  
After Instruction  
= 0xD9  
REG± = 0xC2  
W
W
Z
= 0  
= 0  
= 0  
C
DC  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 113  
PIC16F627A/628A/648A  
BCF  
Bit Clear f  
BTFSC  
Bit Test f, Skip if Clear  
Syntax:  
[ label ] BCF f,b  
Syntax:  
[ label ] BTFSC f,b  
Operands:  
0 f ±27  
0 b 7  
Operands:  
0 f ±27  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
0 (f<b>)  
Operation:  
skip if (f<b>) = 0  
None  
None  
Status Affected:  
Encoding:  
01  
00bb  
bfff  
ffff  
01  
10bb  
bfff  
ffff  
Bit 'b' in register 'f' is cleared.  
Description:  
If bit 'b' in register 'f' is '0' then the  
next instruction is skipped.  
±
±
If bit 'b' is '0' then the next instruction  
fetched during the current instruction  
execution is discarded, and a NOPis  
executed instead, making this a two-  
cycle instruction.  
Cycles:  
BCF  
Before Instruction  
REG± = 0xC7  
After Instruction  
REG± = 0x47  
REG1, 7  
Example  
Words:  
Cycles:  
Example  
±
±(2)  
HERE  
FALSE  
TRUE  
BTFSC  
REG1  
GOTO  
PROCESS_CODE  
BSF  
Bit Set f  
Syntax:  
[ label ] BSF f,b  
Operands:  
0 f ±27  
0 b 7  
Before Instruction  
PC = address HERE  
After Instruction  
if REG<±> = 0,  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
± (f<b>)  
None  
PC = address TRUE  
if REG<±>=±,  
PC = address FALSE  
01  
01bb  
bfff  
ffff  
Bit 'b' in register 'f' is set.  
±
±
Cycles:  
BSF  
Before Instruction  
REG± = 0x0A  
After Instruction  
REG± = 0x8A  
REG1, 7  
Example  
DS40044A-page 114  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
BTFSS  
Bit Test f, Skip if Set  
CALL  
Call Subroutine  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
[ label ] CALL  
0 k 2047  
k
Operands:  
0 f ±27  
0 b < 7  
Operands:  
Operation:  
(PC)+ ±TOS,  
k PC<±0:0>,  
(PCLATH<4:3>) PC<±2:±±>  
Operation:  
skip if (f<b>) = ±  
None  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
None  
01  
11bb  
bfff  
ffff  
10  
0kkk  
kkkk  
kkkk  
Description:  
If bit 'b' in register 'f' is '±' then the  
next instruction is skipped.  
If bit 'b' is '±', then the next instruc-  
tion fetched during the current  
instruction execution, is discarded  
and a NOPis executed instead,  
making this a two-cycle instruc-  
tion.  
Description:  
Call Subroutine. First, return  
address (PC+±) is pushed onto  
the stack. The eleven bit imme-  
diate address is loaded into PC  
bits <±0:0>. The upper bits of  
the PC are loaded from  
PCLATH. CALLis a two-cycle  
instruction.  
Words:  
Cycles:  
Example  
±
Words:  
Cycles:  
Example  
±
2
±(2)  
HERE  
FALSE  
TRUE  
BTFSS  
REG1  
GOTO  
PROCESS_CODE  
HERE  
Before Instruction  
PC Address HERE  
After Instruction  
PC Address THERE  
TOS = Address HERE+1  
CALL  
THERE  
=
Before Instruction  
PC = address HERE  
After Instruction  
=
if FLAG<±> = 0,  
PC = address FALSE  
CLRF  
Clear f  
if FLAG<±> = ±,  
PC = address TRUE  
Syntax:  
[ label ] CLRF  
0 f ±27  
f
Operands:  
Operation:  
00h (f)  
± Z  
Status Affected:  
Encoding:  
Z
00  
0001  
1fff  
ffff  
Description:  
The contents of register 'f' are  
cleared and the Z bit is set.  
Words:  
Cycles:  
Example  
±
±
CLRF  
Before Instruction  
REG±  
After Instruction  
REG1  
=
0x5A  
REG±  
Z
=
0x00  
±
=
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 115  
PIC16F627A/628A/648A  
CLRW  
Clear W  
COMF  
Complement f  
Syntax:  
[ label ] CLRW  
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
None  
Operands:  
0 f ±27  
d [0,±]  
00h (W)  
± Z  
Operation:  
(f) (dest)  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
Z
00  
0001  
0000  
0011  
00  
1001  
dfff  
ffff  
Description:  
W register is cleared. Zero bit  
(Z) is set.  
Description:  
The contents of register 'f' are  
complemented. If 'd' is 0 the  
result is stored in W. If 'd' is ± the  
result is stored back in register  
'f'.  
Words:  
Cycles:  
Example  
±
±
CLRW  
Words:  
Cycles:  
Example  
±
±
Before Instruction  
W = 0x5A  
COMF  
Before Instruction  
REG± = 0x±3  
After Instruction  
REG± = 0x±3  
REG1, 0  
After Instruction  
W = 0x00  
Z
= ±  
W
= 0xEC  
CLRWDT  
Clear Watchdog Timer  
DECF  
Decrement f  
Syntax:  
[ label ] CLRWDT  
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
None  
Operands:  
0 f ±27  
d [0,±]  
00h WDT  
0 WDT prescaler,  
± TO  
Operation:  
(f) - ± (dest)  
Status Affected:  
Encoding:  
Z
± PD  
00  
0011  
dfff  
ffff  
Status Affected:  
Encoding:  
TO, PD  
Description:  
Decrement register 'f'. If 'd' is 0  
the result is stored in the W reg-  
ister. If 'd' is ± the result is stored  
back in register 'f'.  
00  
0000  
0110  
0100  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets  
the prescaler of the WDT. Status  
bits TO and PD are set.  
Words:  
Cycles:  
Example  
±
±
Words:  
Cycles:  
Example  
±
DECF  
Before Instruction  
CNT = 0x0±  
= 0  
After Instruction  
CNT = 0x00  
= ±  
CNT, 1  
±
CLRWDT  
Before Instruction  
WDT counter = ?  
After Instruction  
Z
WDT counter = 0x00  
WDT prescaler = 0  
Z
TO  
PD  
= ±  
= ±  
DS40044A-page 116  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
GOTO  
Unconditional Branch  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Operands:  
0 f ±27  
d [0,±]  
Operands:  
Operation:  
k PC<±0:0>  
PCLATH<4:3> PC<±2:±±>  
Operation:  
(f) - ± (dest); skip if result =  
0
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
10  
1kkk  
kkkk  
kkkk  
00  
1011  
dfff  
ffff  
Description:  
GOTOis an unconditional  
Description:  
The contents of register 'f' are  
decremented. If 'd' is 0 the result  
is placed in the W register. If 'd'  
is ± the result is placed back in  
register 'f'.  
branch. The eleven-bit immedi-  
ate value is loaded into PC bits  
<±0:0>. The upper bits of PC  
are loaded from PCLATH<4:3>.  
GOTOis a two-cycle instruction.  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded. A NOPis executed  
instead making it a two-cycle  
instruction.  
Words:  
Cycles:  
Example  
±
2
GOTO THERE  
After Instruction  
Words:  
Cycles:  
Example  
±
PC = Address THERE  
±(2)  
HERE  
DECFSZ  
GOTO  
REG1, 1  
LOOP  
CONTINUE •  
Before Instruction  
PC  
After Instruction  
REG± = REG± - ±  
= address HERE  
if REG± = 0,  
PC = address CONTINUE  
if REG± 0,  
PC  
= address HERE+1  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 117  
PIC16F627A/628A/648A  
INCF  
Increment f  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] INCF f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f ±27  
d [0,±]  
Operands:  
0 f ±27  
d [0,±]  
Operation:  
(f) + ± (dest)  
Operation:  
(f) + ± (dest), skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
1010  
dfff  
ffff  
00  
1111  
dfff  
ffff  
Description:  
The contents of register 'f' are  
incremented. If 'd' is 0 the result  
is placed in the W register. If 'd'  
is ± the result is placed back in  
register 'f'.  
Description:  
The contents of register 'f' are  
incremented. If 'd' is 0 the result  
is placed in the W register. If 'd'  
is ± the result is placed back in  
register 'f'.  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded. A NOPis executed  
instead making it a two-cycle  
instruction.  
Words:  
Cycles:  
Example  
±
±
INCF  
Before Instruction  
REG± = 0xFF  
REG1, 1  
Words:  
Cycles:  
Example  
±
Z
= 0  
±(2)  
After Instruction  
REG± = 0x00  
HERE  
INCFSZ  
GOTO  
REG1, 1  
LOOP  
Z
= ±  
CONTINUE •  
Before Instruction  
PC = address HERE  
After Instruction  
REG± = REG± + ±  
if CNT = 0,  
PC = address CONTINUE  
if REG±0,  
PC  
= address HERE +1  
DS40044A-page 118  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
IORLW  
Inclusive OR Literal with W  
MOVLW  
Move Literal to W  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
[ label ] MOVLW k  
0 k 255  
k (W)  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(W) .OR. k (W)  
Z
None  
11  
1000  
kkkk  
kkkk  
11  
00xx  
kkkk  
kkkk  
Description:  
The contents of the W register is  
OR’ed with the eight bit literal 'k'.  
The result is placed in the W  
register.  
Description:  
The eight bit literal 'k' is loaded  
into W register. The don’t cares  
will assemble as 0’s.  
Words:  
Cycles:  
Example  
±
±
Words:  
Cycles:  
Example  
±
±
MOVLW  
0x5A  
IORLW  
0x35  
After Instruction  
W = 0x5A  
Before Instruction  
W = 0x9A  
After Instruction  
W = 0xBF  
Z = 0  
IORWF  
Inclusive OR W with f  
MOVF  
Move f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] MOVF f,d  
Operands:  
0 f ±27  
d [0,±]  
Operands:  
0 f ±27  
d [0,±]  
Operation:  
(W) .OR. (f) (dest)  
Operation:  
(f) (dest)  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
Z
00  
0100  
dfff  
ffff  
00  
1000  
dfff  
ffff  
Description:  
Inclusive OR the W register with  
register 'f'. If 'd' is 0 the result is  
placed in the W register. If 'd' is  
± the result is placed back in  
register 'f'.  
Description:  
The contents of register f is  
moved to a destination depen-  
dent upon the status of d. If d =  
0, destination is W register. If d  
= ±, the destination is file regis-  
ter f itself. d = ± is useful to test  
a file register since status flag Z  
is affected.  
Words:  
Cycles:  
Example  
±
±
IORWF  
REG1, 0  
Words:  
Cycles:  
Example  
±
±
Before Instruction  
REG± = 0x±3  
MOVF  
After Instruction  
W= value in REG± register  
Z =  
REG1, 0  
W
= 0x9±  
After Instruction  
REG± = 0x±3  
W
Z
= 0x93  
= ±  
±
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 119  
PIC16F627A/628A/648A  
MOVWF  
Move W to f  
OPTION  
Load Option Register  
Syntax:  
[ label ] OPTION  
None  
Syntax:  
[ label ] MOVWF  
0 f ±27  
(W) (f)  
f
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(W) OPTION  
None  
None  
00  
0000  
0110  
0010  
00  
0000  
1fff  
ffff  
Description:  
The contents of the W register are  
loaded in the OPTION register.  
This instruction is supported for  
code compatibility with PIC±6C5X  
products. Since OPTION is a  
readable/writable register, the  
user can directly address it. Using  
only register instruction such as  
MOVWF.  
Description:  
Move data from W register to regis-  
ter 'f'.  
Words:  
Cycles:  
Example  
±
±
MOVWF  
REG1  
Before Instruction  
REG± = 0xFF  
W
= 0x4F  
Words:  
Cycles:  
Example  
±
±
After Instruction  
REG± = 0x4F  
W
= 0x4F  
To maintain upward compatibil-  
®
ity with future PICmicro prod-  
ucts, do not use this  
instruction.  
RETFIE  
Return from Interrupt  
NOP  
No Operation  
Syntax:  
[ label ] RETFIE  
Syntax:  
[ label ] NOP  
None  
Operands:  
Operation:  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
TOS PC,  
± GIE  
No operation  
None  
Status Affected:  
Encoding:  
None  
00  
0000  
0xx0  
0000  
00  
0000  
0000  
1001  
No operation.  
Description:  
Return from Interrupt. Stack is  
POPed and Top of Stack (TOS)  
is loaded in the PC. Interrupts  
are enabled by setting Global  
Interrupt Enable bit, GIE  
±
Cycles:  
±
NOP  
Example  
(INTCON<7>). This is a two-  
cycle instruction.  
Words:  
Cycles:  
Example  
±
2
RETFIE  
After Interrupt  
PC = TOS  
GIE =  
±
DS40044A-page 120  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
RETLW  
Return with Literal in W  
RLF  
Rotate Left f through Carry  
Syntax:  
[ label ] RETLW  
0 k 255  
k
Syntax:  
[ label ] RLF f,d  
Operands:  
Operation:  
Operands:  
0 f ±27  
d [0,±]  
k (W);  
TOS PC  
Operation:  
See description below  
C
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
11  
01xx  
kkkk  
kkkk  
00  
1101  
dfff  
ffff  
Description:  
The W register is loaded with  
the eight bit literal 'k'. The pro-  
gram counter is loaded from the  
top of the stack (the return  
address). This is a two-cycle  
instruction.  
Description:  
The contents of register 'f' are  
rotated one bit to the left through  
the Carry Flag. If 'd' is 0 the result  
is placed in the W register. If 'd' is  
± the result is stored back in reg-  
ister 'f'.  
C
REGISTER F  
Words:  
Cycles:  
Example  
±
2
Words:  
Cycles:  
Example  
±
CALL TABLE;W contains table  
;offset value  
±
;W now has table value  
RLF  
REG1, 0  
Before Instruction  
REG1=1110 0110  
TABLE  
ADDWF PC;W = offset  
C
= 0  
After Instruction  
REG1=1110 0110  
RETLW k1;Begin table  
RETLW k2;  
W
C
= 1100 1100  
= 1  
RETLW kn; End of table  
Before Instruction  
W = 0x07  
After Instruction  
W = value of k8  
RETURN  
Return from Subroutine  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
TOS PC  
None  
00  
0000  
0000  
1000  
Description:  
Return from subroutine. The  
stack is POPed and the top of  
the stack (TOS) is loaded into  
the program counter. This is a  
two-cycle instruction.  
Words:  
Cycles:  
Example  
±
2
RETURN  
After Interrupt  
PC = TOS  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 121  
PIC16F627A/628A/648A  
RRF  
Rotate Right f through Carry  
SUBLW  
Subtract W from Literal  
Syntax:  
[ label ] RRF f,d  
Syntax:  
[ label ]  
SUBLW  
k
Operands:  
0 f ±27  
d [0,±]  
Operands:  
Operation:  
0 k 255  
k - (W) → (W)  
Operation:  
See description below  
C
Status  
Affected:  
C, DC, Z  
Status Affected:  
Encoding:  
00  
1100  
dfff  
ffff  
11  
110x  
kkkk  
kkkk  
Encoding:  
Description:  
The contents of register 'f' are  
rotated one bit to the right  
Description:  
The W register is subtracted (2’s  
complement method) from the eight  
bit literal 'k'. The result is placed in  
the W register.  
through the Carry Flag. If 'd' is 0  
the result is placed in the W reg-  
ister. If 'd' is ± the result is  
Words:  
±
±
placed back in register 'f'.  
Cycles:  
C
REGISTER F  
SUBLW  
0x02  
Example ±:  
Before Instruction  
W = ±  
Words:  
Cycles:  
Example  
±
±
C
= ?  
RRF  
REG1, 0  
After Instruction  
W = ±  
Before Instruction  
REG± = 1110 0110  
= 0  
After Instruction  
REG± = 1110 0110  
C
= ±; result is positive  
C
Example 2:  
Before Instruction  
W =  
C =  
2
?
W
C
= 0111 0011  
= 0  
After Instruction  
W =  
C = ±; result is zero  
Before Instruction  
W =  
C =  
0
SLEEP  
Example 3:  
Syntax:  
[ label ] SLEEP  
3
Operands:  
Operation:  
None  
?
00h WDT,  
0 WDT prescaler,  
± TO,  
After Instruction  
W = 0xFF  
0 PD  
C = 0; result is negative  
Status Affected:  
Encoding:  
TO, PD  
00  
0000  
0110  
0011  
Description:  
The power-down STATUS bit,  
PD is cleared. Time out STA-  
TUS bit, TO is set. Watchdog  
Timer and its prescaler are  
cleared.  
The processor is put into  
SLEEP mode with the oscilla-  
tor stopped. See Section ±4.8  
for more details.  
Words:  
±
Cycles:  
Example:  
±
SLEEP  
DS40044A-page 122  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
SUBWF  
Subtract W from f  
SWAPF  
Swap Nibbles in f  
Syntax:  
[ label ]  
SUBWF f,d  
Syntax:  
[ label ]  
SWAPF f,d  
Operands:  
0 f ±27  
d [0,±]  
Operands:  
0 f ±27  
d [0,±]  
Operation:  
(f) - (W) → (dest)  
Operation:  
(f<3:0>) (dest<7:4>),  
(f<7:4>) (dest<3:0>)  
Status  
Affected:  
C, DC, Z  
Status Affected:  
Encoding:  
None  
00  
0010  
dfff  
ffff  
00  
1110  
dfff  
ffff  
Encoding:  
Description:  
Subtract (2’s complement method)  
W register from register 'f'. If 'd' is 0  
the result is stored in the W register.  
If 'd' is ± the result is stored back in  
register 'f'.  
Description:  
The upper and lower nibbles of  
register 'f' are exchanged. If 'd' is  
0 the result is placed in W regis-  
ter. If 'd' is ± the result is placed in  
register 'f'.  
Words:  
±
±
Words:  
Cycles:  
Example  
±
±
Cycles:  
SUBWF  
REG1, 1  
SWAPF  
Before Instruction  
REG± = 0xA5  
After Instruction  
REG± = 0xA5  
0x5A  
REG1, 0  
Example ±:  
Before Instruction  
REG± = 3  
W
C
= 2  
= ?  
After Instruction  
REG± = ±  
W
=
W
C
Z
= 2  
= ±; result is positive  
= DC = ±  
TRIS  
Load TRIS Register  
Syntax:  
[ label ] TRIS  
5 f 7  
f
Example 2:  
Before Instruction  
REG± = 2  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) TRIS register f;  
W
C
= 2  
= ?  
None  
00  
0000  
0110  
0fff  
After Instruction  
REG± = 0  
The instruction is supported for  
code compatibility with the  
PIC±6C5X products. Since TRIS  
registers are readable and writ-  
able, the user can directly  
address them.  
W
C
Z
= 2  
= ±; result is zero  
= DC = ±  
Example 3:  
Before Instruction  
Words:  
Cycles:  
Example  
±
±
REG± = ±  
W
C
= 2  
= ?  
After Instruction  
REG± = 0xFF  
To maintain upward compatibil-  
®
ity with future PICmicro prod-  
ucts, do not use this  
instruction.  
W
C
Z
= 2  
= 0; result is negative  
= DC = 0  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 123  
PIC16F627A/628A/648A  
XORLW  
Exclusive OR Literal with W  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] XORLW k  
0 k 255  
Syntax:  
[ label ]  
XORWF f,d  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f ±27  
d [0,±]  
(W) .XOR. k → (W)  
Z
Operation:  
(W) .XOR. (f) → (dest)  
Status Affected:  
Encoding:  
Z
11  
1010  
kkkk  
kkkk  
00  
0110  
dfff  
ffff  
Description:  
The contents of the W register  
are XOR’ed with the eight bit lit-  
eral 'k'. The result is placed in  
the W register.  
Description:  
Exclusive OR the contents of the  
W register with register 'f'. If 'd' is  
0 the result is stored in the W reg-  
ister. If 'd' is ± the result is stored  
back in register 'f'.  
Words:  
±
Cycles:  
Example:  
±
Words:  
Cycles:  
Example  
±
±
XORLW 0xAF  
Before Instruction  
W = 0xB5  
XORWF  
Before Instruction  
REG± = 0xAF  
0xB5  
REG1, 1  
After Instruction  
W = 0x±A  
W
=
After Instruction  
REG± = 0x±A  
0xB5  
W
=
DS40044A-page 124  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
The MPLAB IDE allows you to:  
16.0 DEVELOPMENT SUPPORT  
• Edit your source files (either assembly or ‘C’)  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
• One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools (auto-  
matically updates all project information)  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Debug using:  
- source files  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- absolute listing file  
- machine code  
- MPLAB C±7 and MPLAB C±8 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
The ability to use MPLAB IDE with multiple debugging  
tools allows users to easily switch from the cost-  
effective simulator to a full-featured emulator with  
minimal retraining.  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
16.2 MPASM Assembler  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPIC™ In-Circuit Emulator  
• In-Circuit Debugger  
The MPASM assembler is a full-featured universal  
macro assembler for all PICmicro MCU’s.  
- MPLAB ICD  
The MPASM assembler has a command line interface  
and a Windows shell. It can be used as a stand-alone  
application on a Windows 3.x or greater system, or it  
can be used through MPLAB IDE. The MPASM assem-  
bler generates relocatable object files for the MPLINK  
object linker, Intel® standard HEX files, MAP files to  
detail memory usage and symbol reference, an abso-  
lute LST file that contains source lines and generated  
machine code, and a COD file for debugging.  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
Programmer  
• Low Cost Demonstration Boards  
- PICDEMTM ± Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM ±7 Demonstration Board  
- KEELOQ® Demonstration Board  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects.  
• User-defined macros to streamline assembly  
code.  
16.1 MPLAB Integrated Development  
Environment Software  
• Conditional assembly for multi-purpose source  
files.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application that contains:  
• Directives that allow complete control over the  
assembly process.  
16.3 MPLAB C17 and MPLAB C18  
C Compilers  
• An interface to debugging tools  
- simulator  
The MPLAB C±7 and MPLAB C±8 Code Development  
Systems are complete ANSI ‘C’ compilers for  
Microchip’s PIC±7CXXX and PIC±8CXXX family of  
microcontrollers, respectively. These compilers provide  
powerful integration capabilities and ease of use not  
found with other compilers.  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor  
• A project manager  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
• Customizable toolbar and key mapping  
• A status bar  
• On-line help  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 125  
PIC16F627A/628A/648A  
16.4 MPLINK Object Linker/  
MPLIB Object Librarian  
16.6 MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C±7 and MPLAB C±8 C compilers. It can also  
link relocatable objects from pre-compiled libraries,  
using directives from a linker script.  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers (MCUs). Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLINK object linker features include:  
• Integration with MPASM assembler and MPLAB  
C±7 and MPLAB C±8 C compilers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows environment were chosen to best  
make these features available to you, the end user.  
• Allows all memory areas to be defined as sections  
to provide link-time flexibility.  
The MPLIB object librarian features include:  
• Easier linking because single libraries can be  
included instead of many smaller files.  
• Helps keep code maintainable by grouping  
related modules together.  
16.7 ICEPIC In-Circuit Emulator  
• Allows libraries to be created and modules to be  
added, listed, replaced, deleted or extracted.  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC±6C5X, PIC±6C6X,  
PIC±6C7X and PIC±6CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC±6C5X  
or PIC±6CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
16.5 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC-hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user-defined key press, to any of the pins. The  
execution can be performed in single step, execute  
until break, or Trace mode.  
The MPLAB SIM simulator fully supports symbolic debug-  
ging using the MPLAB C±7 and the MPLAB C±8 C com-  
pilers and the MPASM assembler. The software simulator  
offers the flexibility to develop and debug code outside of  
the laboratory environment, making it an excellent multi-  
project software development tool.  
DS40044A-page 126  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
16.8 MPLAB ICD In-Circuit Debugger  
16.11 PICDEM 1 Low Cost PICmicro  
Demonstration Board  
Microchip's In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PICmicro MCUs and can be used  
to develop for this and other PICmicro microcontrollers.  
The MPLAB ICD utilizes the in-circuit debugging capa-  
bility built into the FLASH devices. This feature, along  
with Microchip's In-Circuit Serial ProgrammingTM proto-  
col, offers cost-effective in-circuit FLASH debugging  
from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by watch-  
ing variables, single-stepping and setting break points.  
Running at full speed enables testing hardware in real-  
time.  
The PICDEM ± demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchip’s microcontrollers. The microcontrollers sup-  
ported are: PIC±6C5X (PIC±6C54 to PIC±6C58A),  
PIC±6C6±, PIC±6C62X, PIC±6C7±, PIC±6C8X,  
PIC±7C42, PIC±7C43 and PIC±7C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM ± demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM ± demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
16.9 PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a  
full-featured programmer, capable of operating in  
Stand-alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for max-  
imum reliability. It has an LCD display for instructions  
and error messages, keys to enter commands and a  
modular detachable socket assembly to support various  
package types. In Stand-alone mode, the PRO MATE II  
device programmer can read, verify, or program  
PICmicro devices. It can also set code protection in this  
mode.  
16.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC±6C62,  
PIC±6C64, PIC±6C65, PIC±6C73 and PIC±6C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
16.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient.  
2
serial EEPROM to demonstrate usage of the I CTM bus  
The PICSTART Plus development programmer sup-  
ports all PICmicro devices with up to 40 pins. Larger pin  
count devices, such as the PIC±6C92X and  
PIC±7C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
and separate headers for connection to an LCD  
module and a keypad.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 127  
PIC16F627A/628A/648A  
16.13 PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board  
16.14 PICDEM 17 Demonstration Board  
The PICDEM ±7 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC±7C752,  
PIC±7C756A, PIC±7C762 and PIC±7C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM ±7 dem-  
onstration board supports downloading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM ±7 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC±6C923 and  
PIC±6C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is a LCD panel, with 4  
commons and ±2 segments, that is capable of display-  
ing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows software for showing  
the demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
16.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchip’s HCS Secure Data Products. The HCS eval-  
uation kit includes a LCD display to show changing  
codes, a decoder to decode transmissions and a pro-  
gramming interface to program test transmitters.  
DS40044A-page 128  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP  
M C P 2 5 1 0  
M C R F X X X  
S X X H X C  
9 3 C X X  
2 5 C X X /  
2 4 C X X /  
P I C 1 8 F X X X  
P I C 1 8 C X X 2  
P I C 1 7 C 7 X X  
P I C 1 7 C 4 X  
P I C 1 6 C 9 X X  
P I C 1 6 F 8 X X  
P I C 1 6 C 8 X  
P I C 1 6 C 7 X X  
P I C 1 6 C 7 X  
P I C 1 6 F 6 2 X  
P I C 1 6 C X X X  
P I C 1 6 C 6 X  
P I C 1 6 C 5 X  
P I C 1 4 0 0 0  
P I C 1 2 C X X X  
S o E
P
D e m o B o a r d s a n d E v a l K i t s  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 129  
PIC16F627A/628A/648A  
NOTES:  
DS40044A-page 130  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
17.0 ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings†  
Ambient temperature under bias.................................................................................................................-40 to +±25°C  
Storage temperature .............................................................................................................................. -65°C to +±50°C  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +6.5V  
Voltage on MCLR and RA4 with respect to VSS ............................................................................................-0.3 to +±4V  
Voltage on all other pins with respect to VSS ....................................................................................-0.3V to VDD + 0.3V  
(1)  
Total power dissipation .....................................................................................................................................800 mW  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..................................................................................................................... 20 mA  
Output clamp current, IOK (Vo < 0 or Vo >VDD)............................................................................................................... 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA and PORTB (Combined)................................................................................200 mA  
Maximum current sourced by PORTA and PORTB (Combined)...........................................................................200 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latchup. Thus,  
a series resistor of 50-±00 should be used when applying a “low” level to the MCLR pin rather than pulling  
this pin directly to VSS.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 131  
PIC16F627A/628A/648A  
FIGURE 17-1:  
PIC16F627A/628A/648A VOLTAGE-FREQUENCY GRAPH, -40°C TA +125°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
VDD  
(VOLTS)  
0
4
±0  
20  
25  
FREQUENCY (MHz)  
Note: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 17-2:  
6.0  
PIC16LF627A/628A/648A VOLTAGE-FREQUENCY GRAPH, -40°C TA +85°C  
5.5  
5.0  
4.5  
VDD  
(VOLTS)  
4.0  
3.5  
3.0  
2.5  
2.0  
20  
0
4
±0  
25  
FREQUENCY (MHz)  
Note: The shaded region indicates the permissible combinations of voltage and frequency.  
DS40044A-page 132  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
17.1 DC Characteristics: PIC16F627A/628A/648A (Industrial, Extended)  
PIC16LF627A/628A/648A (Industrial)  
PIC16LF627A/628A/648A  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C Ta +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC16F627A/628A/648A  
Operating temperature  
-40°C Ta +85°C for industrial and  
-40°C Ta +125°C for extended  
(Industrial, Extended)  
Param  
Sym  
Characteristic/Device  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
VDD  
Supply Voltage  
PIC16LF627A/628A/648A  
PIC16F627A/628A/648A  
RAM Data Retention  
Voltage(1)  
D001  
2.0  
3.0  
5.5  
5.5  
V
V
V
D002  
D003  
D004  
D005  
VDR  
1.5*  
Device in SLEEP mode  
VPOR VDD Start Voltage  
to ensure Power-on Reset  
SVDD VDD Rise Rate  
to ensure Power-on Reset  
VBOR Brown-out Reset Voltage  
VSS  
V
See Section 14.4 on Power-on  
Reset for details  
0.05*  
V/ms  
See Section 14.4 on Power-on  
Reset for details  
3.65  
3.65  
4.0  
4.0  
4.35  
4.4  
V
V
BOREN configuration bit is set  
BOREN configuration bit is set,  
Extended  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0 V, 25°C, unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 133  
PIC16F627A/628A/648A  
17.2 DC Characteristics: PIC16F627A/628A/648A (Industrial)  
PIC16LF627A/628A/648A (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C Ta +85°C for industrial  
Conditions  
Param  
No.  
LF and F Device  
Characteristics  
Min†  
Typ  
Max  
Units  
VDD  
Note  
Supply Voltage (VDD)  
2.0  
3.0  
5.5  
5.5  
V
V
LF  
D001  
LF/F  
Power-down Base Current (IPD)  
0.1  
0.1  
0.2  
0.80  
0.85  
0.95  
µA  
µA  
µA  
2.0  
3.0  
5.0  
WDT, BOR, Comparators, VREF, and  
LF  
T1OSC: disabled  
D020  
LF/F  
Peripheral Module Current (IMOD)(1)  
1
2.0  
3.4  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
2.0  
3.0  
5.0  
4.5  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
WDT Current  
LF  
D021  
2
LF/F  
9
12.5  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
2.0  
32  
33  
15  
27  
49  
34  
50  
80  
1.2  
1.3  
1.8  
BOR Current  
D022  
D023  
LF/F  
LF  
Comparator Current  
LF/F  
LF  
VREF Current  
D024  
LF/F  
LF  
T1OSC Current  
D025  
2.2  
LF/F  
2.9  
Supply Current (IDD)  
12  
21  
15  
25  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32 kHz  
LF  
LF/F  
LF  
LP Oscillator Mode  
D010  
38  
48  
120  
180  
290  
240  
370  
670  
2.6  
3
160  
250  
370  
300  
470  
780  
2.9  
3.3  
FOSC = 1 MHz  
XT Oscillator Mode  
D011  
LF/F  
LF  
FOSC = 4 MHz  
XT Oscillator Mode  
D012  
D013  
LF/F  
FOSC = 20 MHz  
LF/F  
HS Oscillator Mode  
Note 1: The ““ current is the additional current consumed when this peripheral is enabled. This current should be added to the  
base IDD or IPD measurement. Max values should be used when calculating total current consumption.  
DS40044A-page 134  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
17.3  
DC Characteristics: PIC16F627A/628A/648A (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C Ta +125°C for extended  
Conditions  
Param  
No.  
Device Characteristics  
Min†  
Typ  
Max  
Units  
VDD  
Note  
Supply Voltage (VDD)  
D001  
3.0  
5.5  
V
Power-down Base Current (IPD)  
D020E  
Peripheral Module Current (IMOD)(1)  
0.1  
0.2  
TBD  
TBD  
µA  
µA  
3.0  
5.0  
WDT, BOR, Comparators, VREF, and  
T1OSC: disabled  
2
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
3.0  
5.0  
4.5  
5.0  
3.0  
5.0  
3.0  
5.0  
3.0  
5.0  
WDT Current  
D021E  
D022E  
D023E  
D024E  
9
32  
33  
27  
49  
50  
83  
1.3  
1.8  
BOR Current  
Comparator Current  
VREF Current  
T1OSC Current  
D025E  
Supply Current (IDD)  
D010E  
21  
38  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
3.0  
5.0  
3.0  
5.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32 kHz  
LP Oscillator Mode  
182  
293  
371  
668  
2.6  
3
FOSC = 1 MHz  
D011E  
D012E  
D013E  
XT Oscillator Mode  
FOSC = 4 MHz  
XT Oscillator Mode  
FOSC = 20 MHz  
HS Oscillator Mode  
Note 1: The ““ current is the additional current consumed when this peripheral is enabled. This current should be added to the  
base IDD or IPD measurement. Max values should be used when calculating total current consumption.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 135  
PIC16F627A/628A/648A  
17.4 DC Characteristics: PIC16F627A/628A/648A (Industrial, Extended)  
PIC16LF627A/628A/648A (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial and  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Table 17-2 and Table 17-3  
Param.  
Sym  
Characteristic/Device  
Min  
Typ†  
Max  
Unit  
Conditions  
No.  
VIL  
Input Low Voltage  
I/O ports  
D030  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
0.8  
V
V
V
V
VDD = 4.5V to 5.5V  
0.15 VDD  
0.2 VDD  
0.2 VDD  
otherwise  
D031  
D032  
with Schmitt Trigger input(4)  
MCLR, RA4/T0CKI,OSC1  
(in RC mode)  
(Note1)  
D033  
OSC1 (in HS)  
VSS  
VSS  
0.3 VDD  
V
V
OSC1 (in LP and XT)  
0.8  
VIH  
Input High Voltage  
I/O ports  
D040  
with TTL buffer  
2.0 V  
.25 VDD + 0.8 V  
0.8 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
VDD = 4.5V to 5.5V  
otherwise  
D041  
D042  
D043  
D043A  
with Schmitt Trigger input(4)  
MCLR RA4/T0CKI  
0.8 VDD  
OSC1 (XT, HS and LP)  
OSC1 (in RC mode)  
0.7 VDD  
0.9 VDD  
(Note1)  
D070  
IPURB  
PORTB weak pull-up  
current  
50  
200  
400  
µA VDD = 5.0V, VPIN = VSS  
IIL  
Input Leakage Current(2), (3)  
I/O ports (Except PORTA)  
PORTA(4)  
1.0  
0.5  
1.0  
5.0  
µA VSS VPIN VDD, pin at hi-impedance  
µA VSS VPIN VDD, pin at hi-impedance  
µA VSS VPIN VDD  
D060  
D061  
D063  
RA4/T0CKI  
OSC1, MCLR  
µA VSS VPIN VDD, XT, HS and LP osc  
configuration  
VOL  
Output Low Voltage  
0.6  
0.6  
V
V
IOL=8.5 mA, VDD=4.5 V, -40° to +85°C  
IOL=7.0 mA, VDD=4.5 V, +85° to +125°C  
D080  
D090  
I/O ports(4)  
VOH  
Output High Voltage(3)  
I/O ports (Except RA4(4)  
VDD-0.7  
V
V
IOH=-3.0 mA, VDD=4.5 V, -40° to +85°C  
IOH=-2.5 mA, VDD=4.5 V, +85° to  
+125°C  
VDD-0.7  
D150  
VOD  
Open-Drain High Voltage  
8.5*  
V
RA4 pin PIC16F627A/628A/648A,  
PIC16LF627A/628A/648A  
Capacitive Loading Specs on Output Pins  
D100*  
D101*  
COSC2 OSC2 pin  
15  
50  
pF In XT, HS and LP modes when external  
clock used to drive OSC1.  
pF  
Cio All I/O pins/OSC2 (in RC mode)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16F627A/628A/648A be  
driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating  
conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
4: Includes OSC1 and OSC2 when configured as I/O pins, CLKIN, or CLKOUT.  
DS40044A-page 136  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
TABLE 17-1: DC Characteristics: PIC16F627A/628A/648A (Industrial, Extended)  
PIC16LF627A/628A/648A (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC Characteristics  
Operating temperature  
-40°C TA +85°C for industrial and  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC spec Table 17-2 and Table 17-3  
Parameter  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
No.  
Data EEPROM Memory  
Endurance  
Endurance  
D120  
D120A  
D121  
ED  
ED  
100K  
10K  
1M  
100K  
E/W -40°C TA 85°C  
E/W 85°C TA 125°C  
VDRW VDD for read/write  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW Erase/Write cycle time  
TRETD Characteristic Retention  
100  
4
8*  
ms  
Year Provided no other  
specifications are violated  
D124  
TREF Number of Total Erase/Write  
(1)  
Cycles before Refresh  
1M  
10M  
E/W -40°C to +85°C  
Program FLASH Memory  
D130  
D130A  
D131  
EP  
Endurance  
Endurance  
VDD for read  
10K  
1000  
VMIN  
100K  
10K  
E/W -40°C TA 85°C  
E/W 85°C TA 125°C  
EP  
VPR  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D132A  
VIE  
VDD for Block erase  
4.5  
5.5  
5.5  
V
V
VPEW VDD for write  
VMIN  
VMIN = Minimum operating  
voltage  
D133  
D133A  
D134  
TIE  
Block Erase cycle time  
TPEW Write cycle time  
TRETP Characteristic Retention  
4
2
8*  
4*  
ms VDD > 4.5V  
ms  
year Provided no other  
100  
specifications are violated  
* These parameters are characterized but not tested.  
† Data in “Typ” column is at 5.0 V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Refer to Section 13.7 for a more detailed discussion on data EEPROM endurance.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 137  
PIC16F627A/628A/648A  
TABLE 17-2: COMPARATOR SPECIFICATIONS  
Operating Conditions: 2.0V < VDD <5.5V, -40°C < TA < +125°C, unless otherwise stated.  
Param  
No.  
Characteristics  
Sym  
Min  
Typ  
Max  
Units  
Comments  
D300  
Input Offset Voltage  
VIOFF  
VICM  
0
5.0  
10  
VDD - 1.5*  
mV  
V
D301  
D302  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
CMRR  
55*  
db  
(1)  
D303  
Response Time  
TRESP  
300  
400  
400  
400*  
600*  
600*  
ns  
ns  
ns  
VDD = 3.0V to 5.5V  
-40° to +85°C  
VDD = 3.0V to 5.5V  
-85° to +125°C  
VDD = 2.0V to 3.0V  
-40° to +85°C  
D304  
Comparator Mode Change to  
Output Valid  
TMC2OV  
300  
10*  
µs  
* These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from  
VSS to VDD.  
TABLE 17-3: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: 2.0V < VDD < 5.5V, -40°C < TA < +125°C, unless otherwise stated.  
Spec  
No.  
Characteristics  
Resolution  
Sym  
Min  
Typ  
Max  
Units  
Comments  
D310  
VRES  
VDD/24  
VDD/32  
(2)  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
D311  
Absolute Accuracy  
VRAA  
1/4  
1/2  
*
*
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
(2)  
D312  
D313  
Unit Resistor Value (R)  
VRUR  
TSET  
2k*  
(1)  
Settling Time  
10*  
µs  
*
These parameters are characterized but not tested.  
Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.  
2: When VDD is between 2.0V and 3.0V the VREF output voltage levels on RA2 descirbed by the equa-  
tion:[VDD/2 ± (3-VDD)/2] may cause the Absolute Accuracy (VRAA) of the VREF output signal on RA2 to be  
greater than the stated max.  
DS40044A-page 138  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
17.5 Timing Parameter Symbology  
The timing parameter symbols have been created with one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
T
Time  
Lowercase subscripts (pp) and their meanings:  
pp  
ck  
io  
CLKOUT  
I/O port  
MCLR  
osc  
t0  
OSC1  
T0CKI  
mc  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-Impedance  
FIGURE 17-3:  
LOAD CONDITIONS  
LOAD CONDITION 1  
VDD/2  
LOAD CONDITION 2  
RL  
CL  
CL  
PIN  
PIN  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 139  
PIC16F627A/628A/648A  
17.6 Timing Diagrams and Specifications  
FIGURE 17-4:  
EXTERNAL CLOCK TIMING  
Q4  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
4
2
CLKOUT  
TABLE 17-4: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
(1)  
Fosc External CLKIN Frequency  
DC  
4
MHz XT and RC Osc mode,  
VDD = 5.0 V  
DC  
DC  
20  
200  
4
MHz HS Osc mode  
kHz LP Osc mode  
(1)  
Oscillator Frequency  
MHz RC Osc mode, VDD = 5.0V  
MHz XT Osc mode  
0.1  
4
1
20  
200  
MHz HS Osc mode  
kHz LP Osc mode  
4
37  
MHz INTOSC mode (fast)  
kHz INTOSC mode (slow)  
ns XT and RC Osc mode  
ns HS Osc mode  
(1)  
1
Tosc External CLKIN Period  
250  
50  
5
µs LP Osc mode  
(1)  
Oscillator Period  
250  
250  
50  
ns RC Osc mode  
10,000  
1,000  
ns XT Osc mode  
ns HS Osc mode  
5
µs LP Osc mode  
250  
27  
TCY  
ns INTOSC mode (fast)  
µs INTOSC mode (slow)  
ns TCY = 4/FOSC  
2
3
Tcy  
Instruction Cycle Time  
1.0  
100*  
DC  
TosL, External CLKIN (OSC1) High  
TosH External CLKIN Low  
ns XT oscillator, TOSC L/H duty  
cycle  
4
RC  
External Biased RC Fre-  
quency  
10 kHz*  
4 MHz  
VDD = 5.0V  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note: Instruction cycle period (Tcy) equals four times the input oscillator time-based period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator oper-  
ation and/or higher than expected current consumption. All devices are tested to operate at “Min” values  
with an external clock applied to the OSC1 pin. When an external clock input is used, the “Max” cycle time  
limit is “DC” (no clock) for all devices.  
DS40044A-page 140  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
TABLE 17-5:  
PRECISION INTERNAL OSCILLATOR PARAMETERS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
4
MHz  
F10  
F13  
FIOSC Oscillator Center frequency  
IOSC Oscillator Stability (jitter)  
1
%
%
VDD = 3.5 V, 25°C  
2
2.0 V VDD 5.5V  
0°C TA +85°C  
5
%
2.0 V VDD 5.5V  
-40°C TA +85°C (IND)  
-40°C TA +125°C (EXT)  
6
4
3
TBD  
TBD  
TBD  
µs VDD = 2.0V, -40°C to +85°C  
µs VDD = 3.0V, -40°C to +85°C  
µs VDD = 5.0V, -40°C to +85°C  
TIOSCST  
F14  
Oscillator Wake-up from  
SLEEP start-up time  
FIGURE 17-5:  
OSC1  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
11  
10  
22  
23  
CLKOUT  
13  
12  
16  
19  
18  
14  
I/O PIN  
(INPUT)  
15  
17  
I/O PIN  
(OUTPUT)  
NEW VALUE  
OLD VALUE  
20, 21  
TABLE 17-6: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
10  
10A  
11  
11A  
12  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
PIC16F62X  
75  
75  
35  
35  
200*  
400*  
200*  
400*  
100*  
200*  
100*  
200*  
20*  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16LF62X  
PIC16F62X  
PIC16LF62X  
PIC16F62X  
PIC16LF62X  
PIC16F62X  
PIC16LF62X  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
12A  
13  
13A  
14  
TckL2ioV CLKOUT to Port out valid  
15  
TioV2ckH Port in valid before  
PIC16F62X Tosc+200 ns*  
18  
TosH2ioI OSC1(Q2 cycle) to Port input invalid  
(I/O in hold time)  
100*  
200*  
* These parameters are characterized but not tested.  
† Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 141  
PIC16F627A/628A/648A  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
CLKOUT ↑  
PIC16LF62X Tosc+400 ns*  
0
50  
ns  
ns  
ns  
ns  
ns  
16  
17  
TckH2ioI Port in hold after CLKOUT ↑  
TosH2ioV OSC1(Q1 cycle) to  
Port out valid  
PIC16F62X  
150*  
300*  
PIC16LF62X  
18  
TosH2ioI OSC1(Q2 cycle) to Port input invalid  
(I/O in hold time)  
100*  
200*  
* These parameters are characterized but not tested.  
† Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 17-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time out  
32  
OST  
Time out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
FIGURE 17-7:  
BROWN-OUT DETECT TIMING  
VBOR  
VDD  
35  
DS40044A-page 142  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
TABLE 17-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
2000  
TBD  
ns  
VDD = 5V, -40°C to +85°C  
TBD  
TBD  
ms Extended temperature  
31  
Twdt  
Tost  
Watchdog Timer Time out Period  
7*  
18  
33*  
ms VDD = 5V, -40°C to +85°C  
ms Extended temperature  
(No Prescaler)  
TBD  
TBD  
TBD  
32  
33  
Oscillation Start-up Timer Period  
1024TOSC  
TOSC = OSC1 period  
Tpwrt Power-up Timer Period  
28*  
72  
132*  
TBD  
ms VDD = 5V, -40°C to +85°C  
ms Extended temperature  
TBD  
TBD  
34  
TIOZ  
TBOR  
I/O Hi-impedance from MCLR Low  
2.0*  
µs  
or Watchdog Timer Reset  
35  
*
Brown-out Reset pulse width  
100*  
µs  
VDD VBOR (D005)  
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 17-8:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RB6/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 OR  
TMR1  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 143  
PIC16F627A/628A/648A  
TABLE 17-9: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40  
Tt0H T0CKI High Pulse Width  
Tt0L T0CKI Low Pulse Width  
Tt0P T0CKI Period  
No Prescaler 0.5TCY + 20*  
ns  
ns  
ns  
ns  
ns  
With Prescaler  
10*  
41  
42  
No Prescaler 0.5TCY + 20*  
With Prescaler  
10*  
Greater of:  
TCY + 40*  
N
N = prescale  
value (2, 4, ...,  
256)  
45  
46  
47  
Tt1H T1CKI High  
Time  
Synchronous, No Prescaler  
Synchronous, PIC16F62X  
with Prescaler  
0.5TCY + 20*  
15*  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16LF62X  
25*  
Asynchronous PIC16F62X  
PIC16LF62X  
30*  
50*  
Tt1L T1CKI Low  
Time  
Synchronous, No Prescaler  
Synchronous, PIC16F62X  
with Prescaler  
0.5TCY + 20*  
15*  
PIC16LF62X  
25*  
Asynchronous PIC16F62X  
PIC16LF62X  
30*  
50*  
Tt1P T1CKI input  
period  
Synchronous PIC16F62X  
Greater of:  
TCY + 40*  
N
N = prescale  
value (1, 2, 4, 8)  
PIC16LF62X  
Greater of:  
TCY + 40*  
N
Asynchronous PIC16F62X  
PIC16LF62X  
60*  
ns  
ns  
100*  
(1)  
Ft1 Timer1 oscillator input frequency range  
(oscillator enabled by setting bit T1OSCEN)  
32.7  
kHz  
48 TCKEZt Delay from external clock edge to timer  
mr1 increment  
2Tosc  
7Tosc  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This oscillator is intended to work only with 32.768 kHz watch crystals and their manufactured tolerances.  
Higher value crystal frequencies may not be compatible with this crystal driver.  
DS40044A-page 144  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
FIGURE 17-10:  
CAPTURE/COMPARE/PWM TIMINGS  
RB3/CCP1  
(CAPTURE MODE)  
50  
51  
52  
RB3/CCP1  
(COMPARE OR PWM MODE)  
53  
54  
TABLE 17-8: CAPTURE/COMPARE/PWM REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
50  
TccL CCP  
No Prescaler  
0.5TCY + 20*  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
input low time  
PIC16F62X  
10*  
20*  
With Prescaler  
No Prescaler  
PIC16LF62X  
51 TccH CCP  
input high time  
0.5TCY + 20*  
10*  
PIC16F62X  
With Prescaler  
PIC16LF62X  
20*  
52  
53  
TccP CCP input period  
3TCY + 40*  
N
N = prescale  
value (1,4 or 16)  
TccR CCP output rise time  
TccF CCP output fall time  
PIC16F62X  
PIC16LF62X  
PIC16F62X  
PIC16LF62X  
10 25*  
25 45*  
10 25*  
25 45*  
ns  
ns  
ns  
ns  
54  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 145  
PIC16F627A/628A/648A  
FIGURE 17-11:  
RA4/T0CKI  
TIMER0 CLOCK TIMING  
41  
40  
42  
TMR0  
TABLE 17-9: TIMER0 CLOCK REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
40  
Tt0H T0CKI High Pulse Width  
Tt0L T0CKI Low Pulse Width  
Tt0P T0CKI Period  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
ns  
41  
42  
0.5 TCY + 20*  
10*  
TCY + 40*  
N
N = prescale value  
(1, 2, 4, ..., 256)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS40044A-page 146  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
Not Available at this time.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 147  
PIC16F627A/628A/648A  
NOTES:  
DS40044A-page 148  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
19.0 PACKAGING INFORMATION  
19.1 Package Marking Information  
18-LEAD PDIP (.300")  
EXAMPLE  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
PIC16F627A-I/P  
0210017  
YYWWNNN  
18-LEAD SOIC (.300")  
EXAMPLE  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16F628A  
-E/SO  
0210017  
YYWWNNN  
20-LEAD SSOP  
EXAMPLE  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16F648A  
-I/SS  
YYWWNNN  
0210017  
28-LEAD QFN  
EXAMPLE  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
16F628A  
-I/ML  
0210017  
*
Legend: XX...X  
YY  
Customer specific information  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried  
over to the next line thus limiting the number of available characters for customer specific  
information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code.  
For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 149  
PIC16F627A/628A/648A  
18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
A
L
c
A1  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.890  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
22.61  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.898  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.905  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
22.80  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
22.99  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-007  
DS40044A-page 150  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
18-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
p
E1  
D
2
1
B
n
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.050  
.099  
.091  
.008  
.407  
.295  
.454  
.020  
.033  
4
1.27  
Overall Height  
A
.093  
.104  
2.36  
2.24  
2.50  
2.31  
0.20  
10.34  
7.49  
11.53  
0.50  
0.84  
4
2.64  
2.39  
0.30  
10.67  
7.59  
11.73  
0.74  
1.27  
8
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.291  
.446  
.010  
.016  
0
.094  
.012  
.420  
.299  
.462  
.029  
.050  
8
§
0.10  
10.01  
7.39  
11.33  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.012  
.020  
15  
0.23  
0.36  
0
0.27  
0.42  
12  
0.30  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-051  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 151  
PIC16F627A/628A/648A  
20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
n
1
α
c
A2  
A
φ
L
A1  
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
Number of Pins  
Pitch  
20  
.026  
.073  
.068  
.006  
.309  
.207  
.284  
.030  
.007  
4
0.65  
Overall Height  
A
.068  
.078  
1.73  
1.63  
1.85  
1.73  
0.15  
7.85  
5.25  
7.20  
0.75  
0.18  
101.60  
0.32  
5
1.98  
1.83  
0.25  
8.18  
5.38  
7.34  
0.94  
0.25  
203.20  
0.38  
10  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.064  
.002  
.299  
.201  
.278  
.022  
.004  
0
.072  
.010  
.322  
.212  
.289  
.037  
.010  
8
§
0.05  
7.59  
5.11  
7.06  
0.56  
0.10  
0.00  
0.25  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
β
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-150  
Drawing No. C04-072  
DS40044A-page 152  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
28-Lead Plastic Quad Flat No Lead Package (ML) 6x6 mm Body (QFN)  
EXPOSED  
METAL  
PADS  
E
E1  
Q
D1  
D
D2  
p
2
1
B
n
R
E2  
BOTTOM VIEW  
CH x 45  
L
TOP VIEW  
α
A2  
A
A1  
A3  
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
NOM  
MIN  
MAX  
MIN  
MAX  
n
Number of Pins  
Pitch  
28  
28  
p
.026 BSC  
.033  
0.65 BSC  
0.85  
Overall Height  
A
A2  
A1  
A3  
E
.039  
1.00  
Molded Package Thickness  
Standoff  
.026  
.0004  
.031  
.002  
0.65  
0.80  
0.05  
.000  
.140  
0.00  
0.01  
0.20 REF.  
Base Thickness  
Overall Width  
.008 REF.  
.236 BSC  
.226 BSC  
.146  
6.00 BSC  
5.75 BSC  
Molded Package Width  
Exposed Pad Width  
Overall Length  
E1  
E2  
D
.152  
3.55  
3.70  
3.85  
.236 BSC  
.226 BSC  
.146  
6.00 BSC  
5.75 BSC  
Molded Package Length  
Exposed Pad Length  
Lead Width  
D1  
D2  
B
.140  
.009  
.020  
.005  
.012  
.009  
.152  
.014  
.030  
.010  
.026  
.024  
12  
3.55  
0.23  
0.50  
0.13  
0.30  
0.24  
3.70  
3.85  
0.35  
0.75  
0.23  
0.65  
0.60  
12  
.011  
0.28  
0.60  
0.17  
0.40  
0.42  
Lead Length  
L
.024  
Tie Bar Width  
R
.007  
Q
Tie Bar Length  
.016  
Chamfer  
CH  
.017  
α
Mold Draft Angle Top  
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC equivalent: M0-220  
Drawing No. C04-114  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 153  
PIC16F627A/628A/648A  
NOTES:  
DS40044A-page 154  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
The differences between the PIC16F627A/628A/648A  
devices listed in this data sheet are shown in Table B-1.  
Revision A  
This is a new data sheet.  
TABLE B-1:  
DEVICE DIFFERENCES  
Memory  
Device  
FLASH  
Program  
RAM  
Data  
EEPROM  
Data  
PIC16F627A  
PIC16F628A  
PIC16F648A  
1024 x 14 224 x 8  
2048 x 14 224 x 8  
4096 x 14 256 x 8  
128 x 8  
128 x 8  
256 x 8  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 155  
PIC16F627A/628A/648A  
APPENDIX C: DEVICE MIGRATIONS  
APPENDIX D: MIGRATING FROM  
OTHER PICmicro  
DEVICES  
This section describes the functional and electrical  
specification differences when migrating between func-  
tionally similar devices. (such as from a PIC16F627 to  
a PIC16F627A).  
This discusses some of the issues in migrating from  
other PICmicro devices to the PIC16F627A/628A/648A  
family of devices.  
C.1  
PIC16F627/628 to a PIC16F627A/628A  
1. ER mode is now RC mode.  
D.1  
PIC16C62X/CE62X to PIC16F627A/628A/  
648A Migration  
2. Code Protection for the Program Memory has  
changed from Code Protect sections of memory  
to Code Protect of the whole memory. The Con-  
figuration bits CP0 and CP1 in the PIC16F627/  
628 do not exist in the PIC16F627A/628A. They  
have been replaced with one Configuration  
bit<13> CP.  
See  
(www.microchip.com).  
Microchip  
web  
site  
for  
availability  
D.2  
PIC16C622A to PIC16F627A/628A/648A  
Migration  
See  
(www.microchip.com).  
Microchip  
web  
site  
for  
availability  
3. “Brown-out Detect (BOD)” terminology has  
changed to “Brown-out Reset (BOR)” to better  
represent the function of the Brown-out circuitry.  
4. Enabling Brown-out Reset (BOR) does not auto-  
matically enable the Power-up Timer (PWRT)  
the way it did in the PIC16F627/628.  
Note: This device has been designed to perform  
to the parameters of its data sheet. It has  
been tested to an electrical specification  
designed to determine its conformance  
with these parameters. Due to process  
differences in the manufacture of this  
device, this device may have different  
performance characteristics than its earlier  
version. These differences may cause this  
device to perform differently in your  
application than the earlier version of this  
device.  
5. INTRC is now called INTOSC.  
6. Timer1 Oscillator is now designed for  
32.768 kHz operation. In the PIC16F627/628  
the Timer1 Oscillator was designed to run up to  
200 kHz.  
7. The Dual Speed Oscillator mode only works in  
the INTOSC Oscillator mode. In the PIC16F627/  
628 the Dual Speed Oscillator mode worked in  
both the INTRC and ER Oscillator modes.  
DS40044A-page 156  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
APPENDIX E: DEVELOPMENT  
TOOL VERSION  
REQUIREMENTS  
This lists the minimum requirements (software/  
firmware) of the specified development tool to support  
the devices listed in this data sheet.  
MPLAB® IDE:  
TBD  
TBD  
MPLAB® SIMULATOR:  
MPLAB® ICE 3000:  
PIC16F627A/628A/648A Processor Module:  
Part Number - TBD  
PIC16F627A/628A/648A Device Adapter:  
Socket  
Part Number  
TBD  
TBD  
18-pin PDIP  
18-pin SOIC  
20-pin SSOP  
28-pin QFN  
TBD  
TBD  
MPLAB® ICD:  
TBD  
TBD  
TBD  
TBD  
PRO MATE® II:  
PICSTART® Plus:  
TM  
MPASM Assembler:  
MPLAB® C18 C Compiler: TBD  
Note: Please read all associated README.TXT  
files that are supplied with the develop-  
ment tools. These "read me" files will dis-  
cuss product support and any known  
limitations.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 157  
PIC16F627A/628A/648A  
NOTES:  
DS40044A-page 158  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
ON-LINE SUPPORT  
SYSTEMS INFORMATION AND  
UPGRADE HOT LINE  
Microchip provides on-line support on the Microchip  
World Wide Web site.  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive the most current upgrade kits.The Hot Line  
Numbers are:  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
®
®
and a web browser, such as Netscape or Microsoft  
Internet Explorer. Files are also available for FTP  
download from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available at the following  
URL:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 159  
PIC16F627A/628A/648A  
organization, clarity, subject matter, and ways in which  
our documentation can better serve you, please FAX  
your comments to the Technical Publications Manager  
at (480) 792-4150.  
READER RESPONSE  
It is our intention to provide you with the best documen-  
tation possible to ensure successful use of your Micro-  
chip product. If you wish to provide your comments on  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS40044A  
Device:  
PIC16F627A/628A/648A  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS40044A-page 160  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
Clocking Scheme/Instruction Cycle .................................... 13  
CLRF Instruction............................................................... 115  
CLRW Instruction.............................................................. 116  
CLRWDT Instruction......................................................... 116  
Code Examples  
INDEX  
A
A/D  
Special Event Trigger (CCP)....................................... 57  
Data EEPROM Refresh Routine ................................ 92  
Code Protection................................................................ 108  
COMF Instruction.............................................................. 116  
Comparator  
Absolute Maximum Ratings .............................................. 131  
ADDLW Instruction ........................................................... 113  
ADDWF Instruction ........................................................... 113  
ANDLW Instruction ........................................................... 113  
ANDWF Instruction ........................................................... 113  
Architectural Overview.......................................................... 9  
Assembler  
Block Diagrams  
I/O Operating Modes .......................................... 62  
Modified Comparator Output .............................. 64  
Comparator Module.................................................... 61  
Configuration .............................................................. 62  
Interrupts .................................................................... 65  
Operation.................................................................... 63  
Reference................................................................... 63  
Compare (CCP Module) ..................................................... 56  
Block Diagram ............................................................ 56  
CCP Pin Configuration ............................................... 57  
CCPR1H:CCPR1L Registers ..................................... 56  
Software Interrupt....................................................... 57  
Special Event Trigger ................................................. 57  
Timer1 Mode Selection............................................... 57  
Configuration Bits ............................................................... 93  
Crystal Operation................................................................ 95  
MPASM Assembler................................................... 125  
B
Baud Rate Error.................................................................. 71  
Baud Rate Formula............................................................. 71  
BCF Instruction ................................................................. 114  
Block Diagrams  
Comparator  
I/O Operating Modes .......................................... 62  
Modified Comparator Output .............................. 64  
I/O Ports  
RB0/INT Pin........................................................ 37  
RB1/RX/DT Pin................................................... 37  
RB2/TX/CK Pin................................................... 38  
RB3/CCP1 Pin.................................................... 38  
RB4/PGM Pin ..................................................... 39  
RB5 Pin............................................................... 40  
RB6/T1OSO/T1CKI Pin ...................................... 41  
RB7/T1OSI Pin ................................................... 42  
RC Oscillator Mode..................................................... 96  
USART Receive.......................................................... 79  
USART Transmit......................................................... 77  
BRGH bit............................................................................. 71  
Brown-Out Reset (BOR) ..................................................... 98  
BSF Instruction ................................................................. 114  
BTFSC Instruction............................................................. 114  
BTFSS Instruction............................................................. 115  
D
Data EEPROM Memory...................................................... 89  
EECON1 Register ...................................................... 89  
EECON2 Register ...................................................... 89  
Operation During Code Protection ............................. 92  
Reading ...................................................................... 91  
Spurious Write Protection........................................... 91  
Using .......................................................................... 92  
Write Verify ................................................................. 91  
Writing to .................................................................... 91  
Data Memory Organization................................................. 15  
DECF Instruction .............................................................. 116  
DECFSZ Instruction.......................................................... 117  
Development Support....................................................... 125  
Development Tool Version Requirements........................ 157  
Device Differences............................................................ 155  
Device Migrations ............................................................. 156  
Dual-speed Oscillator Modes.............................................. 97  
C
CALL Instruction ............................................................... 115  
Capture (CCP Module) ....................................................... 56  
Block Diagram............................................................. 56  
CCP Pin Configuration................................................ 56  
CCPR1H:CCPR1L Registers...................................... 56  
Changing Between Capture Prescalers...................... 56  
Prescaler..................................................................... 56  
Software Interrupt ....................................................... 56  
Timer1 Mode Selection ............................................... 56  
Capture/Compare/PWM (CCP)........................................... 55  
Capture Mode. See Capture  
E
EECON1 register................................................................ 90  
EECON2 register................................................................ 90  
Errata.................................................................................... 3  
External Crystal Oscillator Circuit ....................................... 95  
G
CCP1 .......................................................................... 55  
CCPR1H Register............................................... 55  
CCPR1L Register ............................................... 55  
CCP2 .......................................................................... 55  
Compare Mode. See Compare  
General-Purpose Register File ........................................... 15  
GOTO Instruction.............................................................. 117  
I
I/O Ports ............................................................................. 31  
Bi-Directional .............................................................. 44  
Block Diagrams  
PWM Mode. See PWM  
Timer Resources......................................................... 55  
CCP1CON Register  
RB0/INT Pin........................................................ 37  
RB1/RX/DT Pin................................................... 37  
RB2/TX/CK Pin................................................... 38  
RB3/CCP1 Pin.................................................... 38  
RB4/PGM Pin ..................................................... 39  
CCP1M3:CCP1M0 Bits............................................... 55  
CCP1X:CCP1Y Bits.................................................... 55  
CCP2CON Register  
CCP2M3:CCP2M0 Bits............................................... 55  
CCP2X:CCP2Y Bits.................................................... 55  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 161  
PIC16F627A/628A/648A  
RB5 Pin...............................................................40  
RB6/T1OSO/T1CKI Pin ......................................41  
RB7/T1OSI Pin ...................................................42  
PORTA........................................................................31  
PORTB........................................................................36  
Programming Considerations .....................................44  
Successive Operations ...............................................44  
TRISA .........................................................................31  
TRISB .........................................................................36  
ICEPIC In-Circuit Emulator ...............................................126  
ID Locations ......................................................................108  
INCF Instruction ................................................................118  
INCFSZ Instruction............................................................118  
In-Circuit Serial Programming...........................................109  
Indirect Addressing, INDF and FSR Registers....................28  
Instruction Flow/Pipelining ..................................................13  
Instruction Set  
CCP1 Flag (CCP1IF Bit)............................................. 56  
IORLW Instruction ............................................................ 119  
IORWF Instruction ............................................................ 119  
K
KeeLoq Evaluation and Programming Tools .................... 128  
M
Memory Organization  
Data EEPROM Memory.................................. 89, 91, 92  
Migrating from other PICmicro Devices............................ 156  
MOVF Instruction.............................................................. 119  
MOVLW Instruction........................................................... 119  
MOVWF Instruction .......................................................... 120  
MPLAB C17 and MPLAB C18 C Compilers ..................... 125  
MPLAB ICD In-Circuit Debugger ...................................... 127  
MPLAB ICE High Performance Universal In-Circuit Emulator  
with MPLAB IDE ............................................................... 126  
MPLAB Integrated Development Environment Software.. 125  
MPLINK Object Linker/MPLIB Object Librarian................ 126  
ADDLW .....................................................................113  
ADDWF.....................................................................113  
ANDLW .....................................................................113  
ANDWF.....................................................................113  
BCF...........................................................................114  
BSF...........................................................................114  
BTFSC ......................................................................114  
BTFSS ......................................................................115  
CALL.........................................................................115  
CLRF.........................................................................115  
CLRW........................................................................116  
CLRWDT...................................................................116  
COMF .......................................................................116  
DECF ........................................................................116  
DECFSZ....................................................................117  
GOTO........................................................................117  
INCF..........................................................................118  
INCFSZ.....................................................................118  
IORLW.......................................................................119  
IORWF ......................................................................119  
MOVF........................................................................119  
MOVLW.....................................................................119  
MOVWF ....................................................................120  
NOP ..........................................................................120  
OPTION ....................................................................120  
RETFIE .....................................................................120  
RETLW......................................................................121  
RETURN...................................................................121  
RLF ...........................................................................121  
RRF...........................................................................122  
SLEEP ......................................................................122  
SUBLW......................................................................122  
SUBWF.....................................................................123  
SWAPF .....................................................................123  
TRIS..........................................................................123  
XORLW .....................................................................124  
XORWF.....................................................................124  
Instruction Set Summary...................................................111  
INT Interrupt......................................................................105  
INTCON Register................................................................24  
Interrupt Sources  
N
NOP Instruction ................................................................ 120  
O
OPTION Instruction .......................................................... 120  
OPTION Register................................................................ 23  
Oscillator Configurations..................................................... 95  
Oscillator Start-up Timer (OST).......................................... 98  
P
Package Marking Information........................................... 149  
Packaging Information...................................................... 149  
PCL and PCLATH............................................................... 28  
Stack........................................................................... 28  
PCON Register................................................................... 27  
PICDEM 1 Low Cost PICmicro Demonstration Board...... 127  
PICDEM 17 Demonstration Board.................................... 128  
PICDEM 2 Low Cost PIC16CXX Demonstration Board ... 127  
PICDEM 3 Low Cost PIC16CXXX Demonstration Board. 128  
PICSTART Plus Entry Level Development Programmer.. 127  
PIE1 Register...................................................................... 25  
Pin Functions  
RC6/TX/CK........................................................... 69–86  
RC7/RX/DT........................................................... 69–86  
PIR1 Register ..................................................................... 26  
Port RB Interrupt............................................................... 105  
PORTA ............................................................................... 31  
PORTB ............................................................................... 36  
Power Control/Status Register (PCON).............................. 99  
Power-Down Mode (SLEEP) ............................................ 107  
Power-On Reset (POR)...................................................... 98  
Power-up Timer (PWRT) .................................................... 98  
PR2 Register ................................................................ 52, 58  
PRO MATE II Universal Device Programmer................... 127  
Program Memory Organization........................................... 15  
PWM (CCP Module) ........................................................... 58  
Block Diagram ............................................................ 58  
Simplified PWM .................................................. 58  
Capture Complete (CCP)............................................56  
Compare Complete (CCP)..........................................57  
TMR2 to PR2 Match (PWM) .......................................58  
Interrupts...........................................................................104  
Interrupts, Enable Bits  
CCPR1H:CCPR1L Registers...................................... 58  
Duty Cycle .................................................................. 59  
Example Frequencies/Resolutions ............................. 59  
Period ......................................................................... 58  
Set-Up for PWM Operation......................................... 59  
TMR2 to PR2 Match ................................................... 58  
CCP1 Enable (CCP1IE Bit).........................................56  
Interrupts, Flag Bits  
DS40044A-page 162  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
PR2 register................................................................ 52  
Prescaler .............................................................. 52, 59  
Timer2 Module............................................................ 52  
TMR2 output............................................................... 52  
TMR2 to PR2 Match Interrupt..................................... 58  
Timing Diagrams  
Q
Q-Clock............................................................................... 59  
Quick-Turnaround-Production (QTP) Devices ...................... 7  
R
RC Oscillator....................................................................... 96  
RC Oscillator Mode  
Timer0....................................................................... 143  
Timer1....................................................................... 143  
USART  
Block Diagram............................................................. 96  
Registers  
Asynchronous Receiver...................................... 80  
USART Asynchronous Master Transmission ............. 77  
USART Asynchronous Reception .............................. 80  
USART RX Pin Sampling ..................................... 75, 76  
USART Synchronous Reception ................................ 86  
USART Synchronous Transmission ........................... 84  
Timing Diagrams and Specifications ................................ 140  
TMR0 Interrupt.................................................................. 105  
TMR1CS bit ........................................................................ 48  
TMR1ON bit........................................................................ 48  
TMR2ON bit........................................................................ 53  
TOUTPS0 bit ...................................................................... 53  
TOUTPS1 bit ...................................................................... 53  
TOUTPS2 bit ...................................................................... 53  
TOUTPS3 bit ...................................................................... 53  
TRIS Instruction................................................................ 123  
TRISA................................................................................. 31  
TRISB................................................................................. 36  
Maps  
PIC16F627A ................................................. 16, 17  
PIC16F628A ................................................. 16, 17  
Reset................................................................................... 97  
RETFIE Instruction............................................................ 120  
RETLW Instruction............................................................ 121  
RETURN Instruction ......................................................... 121  
Revision History................................................................ 155  
RLF Instruction.................................................................. 121  
RRF Instruction................................................................. 122  
S
Serial Communication Interface (SCI) Module, See USART  
Serialized Quick-Turnaround-Production (SQTP) Devices... 7  
SLEEP Instruction............................................................. 122  
Software Simulator (MPLAB SIM)..................................... 126  
Special Event Trigger. See Compare  
Special Features of the CPU .............................................. 93  
Special Function Registers ................................................. 18  
Status Register ................................................................... 22  
SUBLW Instruction............................................................ 122  
SUBWF Instruction ........................................................... 123  
SWAPF Instruction............................................................ 123  
U
Universal Synchronous Asynchronous Receiver Transmitter  
(USART)............................................................................. 69  
Asynchronous Receiver  
Setting Up Reception.......................................... 82  
Asynchronous Receiver Mode  
T
Address Detect................................................... 82  
Block Diagram.................................................... 82  
USART  
T1CKPS0 bit ....................................................................... 48  
T1CKPS1 bit ....................................................................... 48  
T1OSCEN bit ...................................................................... 48  
T1SYNC bit......................................................................... 48  
T2CKPS0 bit ....................................................................... 53  
T2CKPS1 bit ....................................................................... 53  
Timer0  
Asynchronous Mode................................................... 76  
Asynchronous Receiver.............................................. 79  
Asynchronous Reception............................................ 81  
Asynchronous Transmission....................................... 77  
Asynchronous Transmitter.......................................... 76  
Baud Rate Generator (BRG) ...................................... 71  
Block Diagrams  
Block Diagrams  
Timer0/WDT ....................................................... 46  
External Clock Input.................................................... 45  
Interrupt....................................................................... 45  
Prescaler..................................................................... 46  
Switching Prescaler Assignment................................. 47  
Timer0 Module ............................................................ 45  
Timer1  
Transmit.............................................................. 77  
USART Receive ................................................. 79  
BRGH bit .................................................................... 71  
Sampling......................................................... 72, 73, 74  
Synchronous Master Mode......................................... 83  
Synchronous Master Reception ................................. 85  
Synchronous Master Transmission ............................ 83  
Synchronous Slave Mode........................................... 86  
Synchronous Slave Reception ................................... 87  
Synchronous Slave Transmit...................................... 86  
Asynchronous Counter Mode ..................................... 50  
Capacitor Selection..................................................... 51  
External Clock Input.................................................... 49  
External Clock Input Timing ........................................ 50  
Oscillator..................................................................... 51  
Prescaler............................................................... 49, 51  
Resetting Timer1......................................................... 51  
Resetting Timer1 Registers......................................... 51  
Special Event Trigger (CCP)....................................... 57  
Synchronized Counter Mode ...................................... 49  
Timer Mode................................................................. 49  
TMR1H........................................................................ 50  
TMR1L ........................................................................ 50  
Timer2  
V
Voltage Reference  
Configuration .............................................................. 67  
Voltage Reference Module ......................................... 67  
W
Watchdog Timer (WDT).................................................... 106  
WWW, On-Line Support ....................................................... 3  
Block Diagram............................................................. 52  
Postscaler ................................................................... 52  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 163  
PIC16F627A/628A/648A  
X
XORLW Instruction ...........................................................124  
XORWF Instruction ...........................................................124  
DS40044A-page 164  
Preliminary  
2002 Microchip Technology Inc.  
PIC16F627A/628A/648A  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
-X  
/XX  
XXX  
Examples:  
Temperature Package  
Range  
Pattern  
a)  
PIC16F627A - E/P 301 = Extended Temp.,  
PDIP package, 20 MHz, normal VDD limits,  
QTP pattern #301.  
b)  
PIC16LF627A - I/SO = Industrial Temp.,  
Device  
PIC16F627A/628A/648A:Standard VDD range 3.0V to 5.5V  
PIC16F627A/628A/648ATVDD range 3.0V to 5.5V (Tape  
and Reel)  
SOIC package, 20 MHz, extended VDD limits.  
PIC16LF627A/628A/648A:VDD range 2.0V to 5.5V  
PIC16LF627A/628A/648AT:VDD range 2.0V to 5.5V (Tape  
and Reel)  
Temperature Range  
Package  
I
E
=
=
-40°C to  
-40°C to  
+85°C  
+125°C  
P
=
=
=
=
PDIP  
SO  
SS  
ML  
SOIC (Gull Wing, 300 mil body)  
SSOP (209 mil)  
QFN (28 Lead)  
Pattern  
3-Digit Pattern Code for QTP (blank otherwise).  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
Preliminary  
DS40044A-page 165  
WORLDWIDE SALES AND SERVICE  
Japan  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
AMERICAS  
ASIA/PACIFIC  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
China - Beijing  
Rocky Mountain  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-4338  
Bei Hai Wan Tai Bldg.  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Atlanta  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034 Fax: 770-640-0307  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
China - Chengdu  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Taiwan  
Microchip Technology (Barbados) Inc.,  
Taiwan Branch  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
Chengdu 610016, China  
Tel: 86-28-86766200 Fax: 86-28-86766599  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
China - Fuzhou  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506 Fax: 86-591-7503521  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
EUROPE  
Austria  
Microchip Technology Austria GmbH  
Durisolstrasse 2  
A-4600 Wels  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Kokomo  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
China - Shenzhen  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Los Angeles  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 15-16, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-82350361 Fax: 86-755-82366086  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
France  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
China - Hong Kong SAR  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Tel: 408-436-7950 Fax: 408-436-7955  
Germany  
Microchip Technology GmbH  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Toronto  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Microchip Technology Inc.  
India Liaison Office  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Italy  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
United Kingdom  
Microchip Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
11/15/02  
DS40044A-page 166  
Preliminary  
2002 Microchip Technology Inc.  

相关型号:

PIC16F628A-I/P

FLASH-Based 8-Bit CMOS Microcontrollers
MICROCHIP

PIC16F628A-I/SO

FLASH-Based 8-Bit CMOS Microcontrollers
MICROCHIP

PIC16F628A-I/SOG

8-BIT, FLASH, 20 MHz, RISC MICROCONTROLLER, PDSO18, 7.50 MM HEIGHT, LEAD FREE, PLASTIC, SOIC-18
MICROCHIP

PIC16F628A-I/SS

FLASH-Based 8-Bit CMOS Microcontrollers
MICROCHIP

PIC16F628A-I/SSG

FLASH-Based 8-Bit CMOS Microcontroller, -40C to +85C, 20-SSOP 208mil, TUBE
MICROCHIP

PIC16F628A-I/SSVAO

RISC Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PDSO20
MICROCHIP

PIC16F628A-IP

Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16F628AEML

Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16F628AEP

Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16F628AESO

Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16F628AESS

Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16F628AIML

Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP