PIC16F688T-E/STVAO [MICROCHIP]

RISC Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PDSO14;
PIC16F688T-E/STVAO
型号: PIC16F688T-E/STVAO
厂家: MICROCHIP    MICROCHIP
描述:

RISC Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PDSO14

时钟 微控制器 光电二极管 外围集成电路
文件: 总204页 (文件大小:3481K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F688  
Data Sheet  
14-Pin Flash-Based, 8-Bit  
CMOS Microcontrollers with  
nanoWatt Technology  
© 2009 Microchip Technology Inc.  
DS41203E  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
32  
PICtail, PIC logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS41203E-page ii  
© 2009 Microchip Technology Inc.  
PIC16F688  
14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology  
High-Performance RISC CPU:  
Low-Power Features:  
• Only 35 Instructions to Learn:  
- All single-cycle instructions except branches  
• Operating Speed:  
• Standby Current:  
- 50 nA @ 2.0V, typical  
• Operating Current:  
- DC – 20 MHz oscillator/clock input  
- DC – 200 ns instruction cycle  
- 11 μA @ 32 kHz, 2.0V, typical  
- 220 μA @ 4 MHz, 2.0V, typical  
• Watchdog Timer Current:  
- 1 μA @ 2.0V, typical  
• Interrupt Capability  
• 8-level Deep Hardware Stack  
• Direct, Indirect and Relative Addressing modes  
Peripheral Features:  
Special Microcontroller Features:  
• 12 I/O Pins with Individual Direction Control:  
- High-current source/sink for direct LED drive  
- Interrupt-on-change pin  
• Precision Internal Oscillator:  
- Factory calibrated to ±1%  
- Software selectable frequency range of  
8 MHz to 125 kHz  
- Individually programmable weak pull-ups  
- Ultra Low-Power Wake-up  
- Software tunable  
• Analog Comparator module with:  
- Two analog comparators  
- Two-Speed Start-Up mode  
- Crystal fail detect for critical applications  
- Clock mode switching during operation for  
power savings  
- Programmable On-chip Voltage Reference  
(CVREF) module (% of VDD)  
• Power-Saving Sleep mode  
- Comparator inputs and outputs externally  
accessible  
• Wide Operating Voltage Range (2.0V-5.5V)  
• Industrial and Extended Temperature Range  
• Power-on Reset (POR)  
• A/D Converter:  
- 10-bit resolution and 8 channels  
• Timer0: 8-bit Timer/Counter with 8-bit  
Programmable Prescaler  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
• Enhanced Timer1:  
• Brown-out Reset (BOR) with Software Control  
Option  
- 16-bit timer/counter with prescaler  
- External Timer1 Gate (count enable)  
• Enhanced Low-Current Watchdog Timer (WDT)  
with on-chip oscillator (software selectable nomi-  
nal 268 seconds with full prescaler) with software  
enable  
- Option to use OSC1 and OSC2 in LP mode as  
Timer1 oscillator if INTOSC mode selected  
• Enhanced USART Module:  
• Multiplexed Master Clear with Weak Pull-up or  
Input Only Pin  
- Supports RS-485, RS-232, LIN 2.0/2.1 and  
J2602  
• Programmable Code Protection  
- Auto-Baud Detect  
• High-Endurance Flash/EEPROM Cell:  
- Auto-wake-up on Start bit  
- 100,000 write Flash endurance  
- 1,000,000 write EEPROM endurance  
- Flash/Data EEPROM retention: > 40 years  
• In-Circuit Serial Programming™ (ICSP™) via two  
pins  
© 2009 Microchip Technology Inc.  
DS41203E-page 1  
PIC16F688  
Program  
Memory  
Data Memory  
10-bit A/D  
(ch)  
Timers  
8/16-bit  
Device  
I/O  
Comparators  
Flash  
(words)  
SRAM  
(bytes)  
EEPROM  
(bytes)  
PIC16F688  
4096  
256  
256  
12  
8
2
1/1  
Pin Diagram (PDIP, SOIC, TSSOP)  
14-pin PDIP, SOIC, TSSOP  
VDD  
RA5/T1CKI/OSC1/CLKIN  
RA4/AN3/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
VSS  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
RA1/AN1/C1IN-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RC0/AN4/C2IN+  
RC5/RX/DT  
RC4/C2OUT/TX/CK  
RC3/AN7  
RC1/AN5/C2IN-  
RC2/AN6  
8
TABLE 1:  
PIC16F688 14-PIN SUMMARY (PDIP, SOIC, TSSOP)  
I/O  
Pin  
Analog  
Comparators Timers  
EUSART Interrupt  
Pull-up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
13  
12  
11  
4
AN0/ULPWU  
C1IN+  
C1IN-  
C1OUT  
IOC  
IOC  
IOC/INT  
IOC  
IOC  
IOC  
Y
Y
ICSPDAT  
AN1  
AN2  
VREF/ICSPCLK  
T0CKI  
Y
Y(1)  
MCLR/VPP  
3
AN3  
T1G  
T1CKI  
Y
OSC2/CLKOUT  
2
Y
OSC1/CLKIN  
10  
9
AN4  
AN5  
AN6  
AN7  
C2IN+  
C2IN-  
8
7
6
C2OUT  
TX/CK  
RX/DT  
5
1
VDD  
VSS  
14  
Note 1: Pull-up activated only with external MCLR configuration.  
DS41203E-page 2  
© 2009 Microchip Technology Inc.  
PIC16F688  
Pin Diagram (QFN)  
16-pin QFN  
RA5/T1CKI/OSC1/CLKIN  
12  
11  
10  
9
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
RA1/AN1/C1IN-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RC0/AN4/C2IN+  
1
2
3
4
RA4/AN3/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
PIC16F688  
RC5/RX/DT  
TABLE 2:  
PIC16F688 16-PIN SUMMARY (QFN)  
I/O  
Pin  
Analog  
Comparators Timers  
EUSART Interrupt  
Pull-up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
12  
11  
10  
3
AN0/ULPWU  
C1IN+  
C1IN-  
C1OUT  
IOC  
IOC  
IOC/INT  
IOC  
IOC  
IOC  
Y
Y
ICSPDAT  
AN1  
AN2  
VREF/ICSPCLK  
T0CKI  
Y
Y(1)  
MCLR/VPP  
2
AN3  
T1G  
T1CKI  
Y
OSC2/CLKOUT  
1
Y
OSC1/CLKIN  
9
AN4  
AN5  
AN6  
AN7  
C2IN+  
C2IN-  
8
7
6
5
C2OUT  
TX/CK  
RX/DT  
4
16  
13  
14  
15  
VDD  
VSS  
NC  
NC  
Note 1: Pull-up activated only with external MCLR configuration.  
© 2009 Microchip Technology Inc.  
DS41203E-page 3  
PIC16F688  
Table of Contents  
1.0 Device Overview ......................................................................................................................................................................... 5  
2.0 Memory Organization.................................................................................................................................................................. 7  
3.0 Clock Sources ........................................................................................................................................................................... 21  
4.0 I/O Ports .................................................................................................................................................................................... 33  
5.0 Timer0 Module .......................................................................................................................................................................... 45  
6.0 Timer1 Module with Gate Control.............................................................................................................................................. 49  
7.0 Comparator Module................................................................................................................................................................... 55  
8.0 Analog-to-Digital Converter (A/D) Module................................................................................................................................. 65  
9.0 Data EEPROM and Flash Program Memory Control................................................................................................................ 77  
10.0 Enhanced Universal Asynchronous Receiver Transmitter (EUSART)...................................................................................... 83  
11.0 Special Features of the CPU................................................................................................................................................... 109  
12.0 Instruction Set Summary......................................................................................................................................................... 129  
13.0 Development Support .............................................................................................................................................................. 139  
14.0 Electrical Specifications........................................................................................................................................................... 143  
15.0 DC and AC Characteristics Graphs and Tables...................................................................................................................... 163  
16.0 Packaging Information............................................................................................................................................................. 185  
Appendix A: Data Sheet Revision History......................................................................................................................................... 193  
®
Appendix B: Migrating from other PIC Devices............................................................................................................................... 193  
Index ................................................................................................................................................................................................. 195  
On-line Support ................................................................................................................................................................................. 199  
Systems Information and Upgrade Hot Line ..................................................................................................................................... 199  
Reader Response ............................................................................................................................................................................. 200  
Product Identification System............................................................................................................................................................ 201  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS41203E-page 4  
© 2009 Microchip Technology Inc.  
PIC16F688  
1.0  
DEVICE OVERVIEW  
The PIC16F688 is covered by this data sheet. It is  
available in 14-pin PDIP, SOIC, TSSOP and QFN  
packages. Figure 1-1 shows a block diagram of the  
PIC16F688  
description.  
device. Table 1-1 shows the pinout  
FIGURE 1-1:  
PIC16F688 BLOCK DIAGRAM  
INT  
Configuration  
13  
8
PORTA  
Data Bus  
Program Counter  
Flash  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
4k x 14  
Program  
Memory  
RAM  
256 bytes  
File  
Registers  
8-Level Stack  
(13 bit)  
Program  
14  
RAM Addr  
Bus  
9
Addr MUX  
Instruction Reg  
PORTC  
Indirect  
Addr  
7
Direct Addr  
8
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
FSR Reg  
STATUS Reg  
8
3
MUX  
Power-up  
Timer  
Instruction  
Decode &  
Control  
Oscillator  
Start-up Timer  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
OSC1/CLKIN  
W Reg  
Brown-out  
Reset  
OSC2/CLKOUT  
Internal  
Oscillator  
Block  
RX/DT  
TX/CK  
T1G  
VDD  
VSS  
MCLR  
T1CKI  
Timer0  
Timer1  
EUSART  
T0CKI  
2
Analog-to-Digital Converter  
EEDAT  
Analog Comparators  
and Reference  
256 bytes  
DATA  
8
EEPROM  
EEADDR  
VREF  
C1IN- C1IN+ C1OUT C2IN- C2IN+ C2OUT  
AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7  
© 2009 Microchip Technology Inc.  
DS41203E-page 5  
PIC16F688  
TABLE 1-1:  
PIC16F688 PINOUT DESCRIPTION  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
RA1/AN1/C1IN-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RA0  
AN0  
TTL  
AN  
AN  
TTL  
AN  
TTL  
AN  
AN  
AN  
ST  
ST  
AN  
ST  
ST  
CMOS PORTA I/O w/prog pull-up and interrupt-on-change  
A/D Channel 0 input  
Comparator 1 input  
C1IN+  
ICSPDAT  
ULPWU  
RA1  
CMOS Serial Programming Data I/O  
Ultra Low-Power Wake-up input  
CMOS PORTA I/O w/prog pull-up and interrupt-on-change  
AN1  
A/D Channel 1 input  
C1IN-  
VREF  
Comparator 1 input  
External Voltage Reference for A/D  
Serial Programming Clock  
ICSPCLK  
RA2  
CMOS PORTA I/O w/prog pull-up and interrupt-on-change  
AN2  
A/D Channel 2 input  
Timer0 clock input  
External Interrupt  
T0CKI  
INT  
C1OUT  
RA3  
CMOS Comparator 1 output  
RA3/MCLR/VPP  
TTL  
ST  
HV  
TTL  
AN  
ST  
PORTA input with interrupt-on-change  
MCLR  
VPP  
Master Clear w/internal pull-up  
Programming voltage  
RA4/AN3/T1G/OSC2/CLKOUT  
RA4  
CMOS PORTA I/O w/prog pull-up and interrupt-on-change  
AN3  
A/D Channel 3 input  
Timer1 gate  
T1G  
OSC2  
CLKOUT  
XTAL  
Crystal/Resonator  
CMOS FOSC/4 output  
RA5/T1CKI/OSC1/CLKIN  
RA5  
T1CKI  
OSC1  
CLKIN  
RC0  
AN4  
C2IN+  
RC1  
AN5  
C2IN-  
RC2  
AN6  
RC3  
AN7  
RC4  
C2OUT  
TX  
TTL  
ST  
CMOS PORTA I/O w/prog pull-up and interrupt-on-change  
Timer1 clock  
XTAL  
ST  
Crystal/Resonator  
External clock input/RC oscillator connection  
RC0/AN4/C2IN+  
RC1/AN5/C2IN-  
TTL  
AN  
CMOS PORTC I/O  
A/D Channel 4 input  
Comparator 2 input  
CMOS PORTC I/O  
A/D Channel 5 input  
Comparator 2 input  
CMOS PORTC I/O  
AN  
TTL  
AN  
AN  
RC2/AN6  
TTL  
AN  
A/D Channel 6 input  
RC3/AN7  
TTL  
AN  
CMOS PORTC I/O  
A/D Channel 7 input  
RC4/C2OUT/TX/CK  
TTL  
CMOS PORTC I/O  
CMOS Comparator 2 output  
CMOS USART asynchronous output  
CMOS USART asynchronous clock  
CMOS Port C I/O  
CK  
ST  
RC5/RX/DT  
RC5  
RX  
TTL  
ST  
CMOS USART asynchronous input  
CMOS USART asynchronous data  
DT  
ST  
VSS  
VDD  
VSS  
Power  
Power  
Ground reference  
Positive supply  
VDD  
Legend:  
AN = Analog input or output  
TTL = TTL compatible input  
HV = High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
OC = Open collector output  
DS41203E-page 6  
© 2009 Microchip Technology Inc.  
PIC16F688  
2.2  
Data Memory Organization  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The data memory is partitioned into multiple banks,  
which contain the General Purpose Registers (GPR)  
and the Special Function Registers (SFR). Bits RP0  
and RP1 are bank select bits.  
The PIC16F688 has a 13-bit program counter capable  
of addressing a 4K x 14 program memory space. Only  
the first 4K x 14 (0000h-01FFF) for the PIC16F688 is  
physically implemented. Accessing a location above  
these boundaries will cause a wrap-around within the  
first 4K x 14 space. The Reset vector is at 0000h and  
the interrupt vector is at 0004h (see Figure 2-1).  
RP1  
0
RP0  
0
Bank 0 is selected  
Bank 1 is selected  
Bank 2 is selected  
Bank 3 is selected  
0
1
1
0
1
1
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F688  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are the General Purpose Registers, implemented  
as static RAM. All implemented banks contain Special  
Function Registers. Some frequently used Special  
Function Registers from one bank are mirrored in  
another bank for code reduction and quicker access.  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
Stack Level 1  
Stack Level 2  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
Stack Level 8  
The register file is organized as 256 x 8 in the  
PIC16F688. Each register is accessed, either directly  
or indirectly, through the File Select Register (FSR)  
(see Section 2.4 “Indirect Addressing, INDF and  
FSR Registers”).  
Reset Vector  
0000h  
2.2.2  
SPECIAL FUNCTION REGISTERS  
Interrupt Vector  
0004h  
0005h  
The Special Function Registers are registers used by  
the CPU and peripheral functions for controlling the  
desired operation of the device (see Tables 2-1, 2-2,  
2-3 and 2-4). These registers are static RAM.  
On-chip Program  
Memory  
01FFh  
The special registers can be classified into two sets:  
core and peripheral. The Special Function Registers  
associated with the “core” are described in this section.  
Those related to the operation of the peripheral  
features are described in the section of that peripheral  
feature.  
02000h  
Wraps to 0000h-07FFh  
1FFFh  
© 2009 Microchip Technology Inc.  
DS41203E-page 7  
PIC16F688  
FIGURE 2-2:  
PIC16F688 SPECIAL FUNCTION REGISTERS  
File  
File  
File  
File  
Address  
Indirect addr. (1) 00h  
Address  
Indirect addr. (1) 80h  
Address  
Indirect addr. (1) 100h  
Address  
Indirect addr. (1) 180h  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
OPTION_REG 81h  
TMR0  
PCL  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
OPTION_REG 181h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
PCL  
STATUS  
FSR  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
TRISA  
PORTA  
TRISA  
PORTC  
TRISC  
PORTC  
TRISC  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PCLATH  
INTCON  
TMR1L  
TMR1H  
PCON  
OSCCON  
OSCTUNE  
ANSEL  
T1CON  
BAUDCTL  
SPBRGH  
SPBRG  
RCREG  
TXREG  
WPUA  
IOCA  
TXSTA  
RCSTA  
EEDATH  
EEADRH  
VRCON  
EEDAT  
WDTCON  
CMCON0  
CMCON1  
EEADR  
EECON1  
EECON2(1)  
ADRESL  
ADCON1  
ADRESH  
ADCON0  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
80 Bytes  
96 Bytes  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
accesses  
Bank 0  
accesses  
Bank 0  
accesses  
Bank 0  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
DS41203E-page 8  
© 2009 Microchip Technology Inc.  
PIC16F688  
TABLE 2-1:  
PIC16F688 SPECIAL REGISTERS SUMMARY BANK 0  
Value on  
POR/BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module’s register  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--x0 x000  
20, 117  
45, 117  
19, 117  
TMR0  
PCL  
Program Counter’s (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
RA1  
RC1  
C
13, 117  
20, 117  
33, 117  
Indirect Data Memory Address Pointer  
PORTA  
RA5  
RC5  
RA4  
RC4  
RA3  
RC3  
RA2  
RC2  
RA0  
RC0  
Unimplemented  
42, 117  
PORTC  
--xx 0000  
Unimplemented  
Unimplemented  
19, 117  
PCLATH  
INTCON  
PIR1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000  
0000 000x  
0000 0000  
GIE  
EEIF  
PEIE  
ADIF  
T0IE  
RCIF  
INTE  
C2IF  
RAIE  
C1IF  
T0IF  
INTF  
TXIF  
RAIF(2)  
15, 117  
17, 117  
OSFIF  
TMR1IF  
Unimplemented  
48, 117  
48, 117  
TMR1L  
TMR1H  
T1CON  
BAUDCTL  
SPBRGH  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
WDTCON  
CMCON0  
CMCON1  
Holding Register for the Least Significant Byte of the 16-bit TMR1  
Holding Register for the Most Significant Byte of the 16-bit TMR1  
xxxx xxxx  
xxxx xxxx  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000  
51, 117  
94, 117  
95, 117  
95, 117  
87, 117  
87, 117  
92, 117  
93, 117  
124, 117  
61, 117  
62, 117  
ABDOVF  
RCIDL  
SCKP  
BRG16  
WUE  
ABDEN  
01-0 0-00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
USART Baud Rate High Generator  
USART Baud Rate Generator  
USART Receive Register  
USART Transmit Register  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
WDTPS3  
C1INV  
SENDB  
ADDEN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
WDTPS2 WDTPS1 WDTPS0 SWDTEN ---0 1000  
C2OUT  
C1OUT  
C2INV  
CIS  
CM2  
CM1  
CM0  
0000 0000  
T1GSS  
C2SYNC ---- --10  
Unimplemented  
Unimplemented  
Unimplemented  
72, 117  
71, 117  
ADRESH  
ADCON0  
Most Significant 8 bits of the left shifted A/D result or 2 bits of right shifted result  
ADFM VCFG CHS2 CHS1 CHS0 GO/DONE  
xxxx xxxx  
ADON  
00-0 0000  
Legend:  
Note 1:  
2:  
– = Unimplemented locations read as ‘0’, u = unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
MCLR and WDT Reset does not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the  
mismatched exists.  
© 2009 Microchip Technology Inc.  
DS41203E-page 9  
PIC16F688  
TABLE 2-2:  
PIC16F688 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1  
Value on  
POR/BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 1  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
xxxx xxxx  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
--11 1111  
20, 117  
14, 117  
19, 117  
13, 117  
20, 117  
33, 117  
OPTION_REG  
PCL  
RAPU  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect Data Memory Address Pointer  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
STATUS  
FSR  
PD  
Z
DC  
C
TRISA  
TRISA5  
TRISA4  
TRISA3  
TRISC3  
TRISA2  
TRISC2  
TRISA1  
TRISC1  
TRISA0  
TRISC0  
Unimplemented  
TRISC  
TRISC5  
TRISC4  
--11 1111  
42, 117  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIE1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000  
0000 000x  
19, 117  
15, 117  
16, 117  
GIE  
EEIE  
PEIE  
ADIE  
T0IE  
RCIE  
INTE  
C2IE  
RAIE  
C1IE  
T0IF  
INTF  
TXIE  
RAIF(3)  
OSFIE  
TMR1IE 0000 0000  
Unimplemented  
PCON  
OSCCON  
OSCTUNE  
ANSEL  
ULPWUE SBOREN  
POR  
LTS  
BOR  
SCS  
--01 --qq  
-110 x000  
---0 0000  
1111 1111  
18, 117  
22, 118  
26, 118  
34, 118  
IRCF2  
IRCF1  
IRCF0  
TUN4  
ANS4  
OSTS  
TUN3  
ANS3  
HTS  
TUN2  
ANS2  
TUN1  
ANS1  
TUN0  
ANS0  
ANS7  
ANS6  
ANS5  
Unimplemented  
Unimplemented  
Unimplemented  
WPUA(2)  
WPUA5  
IOCA5  
WPUA4  
IOCA4  
WPUA2  
IOCA2  
WPUA1  
IOCA1  
WPUA0  
IOCA0  
--11 -111  
--00 0000  
35, 118  
35, 118  
78, 118  
78, 118  
63, 118  
78, 118  
78, 118  
79, 118  
77, 118  
72, 118  
71, 118  
IOCA  
IOCA3  
EEDATH  
EEADRH  
VRCON  
EEDAT  
EEADR  
EECON1  
EECON2  
ADRESL  
ADCON1  
EEDATH5 EEDATH4 EEDATH3 EEDATH2 EEDATH1 EEDATH0 --00 0000  
EEADRH3 EEADRH2 EEADRH1 EEADRH0 ---- 0000  
VREN  
VRR  
VR3  
VR2  
VR1  
EEDAT1  
EEADR1  
WR  
VR0  
0-0- 0000  
EEDAT7 EEDAT6  
EEDAT5  
EEDAT4  
EEADR4  
EEDAT3  
EEADR3  
WRERR  
EEDAT2  
EEADR2  
WREN  
EEDAT0 0000 0000  
EEADR0 0000 0000  
EEADR7 EEADR6 EEADR5  
EEPGD  
RD  
x--- x000  
---- ----  
xxxx xxxx  
-000 ----  
EEPROM Control 2 Register (not a physical register)  
Least Significant 2 bits of the left shifted result or 8 bits of the right shifted result  
ADCS2 ADCS1 ADCS0 —  
Legend:  
Note 1:  
– = Unimplemented locations read as ‘0’, u = unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
RA3 pull-up is enabled when pin is configured as MCLR in the Configuration Word register.  
MCLR and WDT Reset does not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the  
mismatched exists.  
2:  
3:  
DS41203E-page 10  
© 2009 Microchip Technology Inc.  
PIC16F688  
TABLE 2-3:  
PIC16F688 SPECIAL REGISTERS SUMMARY BANK 2  
Value on  
POR/BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 2  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
INDF  
TMR0  
PCL  
STATUS  
FSR  
PORTA  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module’s register  
xxxx xxxx  
20, 117  
45, 117  
19, 117  
13, 117  
20, 117  
33, 117  
xxxx xxxx  
Program Counter’s (PC) Least Significant Byte  
0000 0000  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
RA1  
RC1  
C
0001 1xxx  
Indirect Data Memory Address Pointer  
xxxx xxxx  
RA5  
RC5  
RA4  
RC4  
RA3  
RC3  
RA2  
RC2  
RA0  
RC0  
--x0 x000  
Unimplemented  
42, 117  
PORTC  
--xx 0000  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
Write Buffer for upper 5 bits of Program Counter  
INTE RAIE T0IF INTF  
---0 0000  
19, 117  
15, 117  
GIE  
PEIE  
T0IE  
RAIF(2)  
0000 000x  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Legend:  
Note 1:  
2:  
– = Unimplemented locations read as ‘0’, u = unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
MCLR and WDT Reset does not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the  
mismatched exists.  
© 2009 Microchip Technology Inc.  
DS41203E-page 11  
PIC16F688  
TABLE 2-4:  
PIC16F688 SPECIAL FUNCTION REGISTERS SUMMARY BANK 3  
Value on  
POR/BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 3  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
19Ah  
19Bh  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx  
20, 117  
14, 117  
19, 117  
13, 117  
20, 117  
33, 117  
OPTION_REG  
RAPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111  
PCL  
STATUS  
FSR  
TRISA  
Program Counter’s (PC) Least Significant Byte  
0000 0000  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
0001 1xxx  
Indirect Data Memory Address Pointer  
xxxx xxxx  
TRISA5  
TRISC5  
TRISA4  
TRISC4  
TRISA3  
TRISC3  
TRISA2  
TRISC2  
TRISA1  
TRISC1  
TRISA0  
TRISC0  
--11 1111  
Unimplemented  
TRISC  
--11 1111  
42, 117  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
Write Buffer for upper 5 bits of Program Counter  
INTE RAIE T0IF INTF  
---0 0000  
19, 117  
15, 117  
GIE  
PEIE  
T0IE  
RAIF(2)  
0000 000x  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Legend:  
Note 1:  
2:  
– = Unimplemented locations read as ‘0’, u = unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
MCLR and WDT Reset does not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the  
mismatched exists.  
DS41203E-page 12  
© 2009 Microchip Technology Inc.  
PIC16F688  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu(where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not  
affecting any Status bits (see Section 12.0  
“Instruction Set Summary”).  
• the bank select bits for data memory (SRAM)  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction.  
REGISTER 2-1:  
STATUS: STATUS REGISTER  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
R/W-x  
(1)  
(1)  
DC  
C
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h-1FFh)  
0= Bank 0, 1 (00h-FFh)  
bit 6-5  
RP<1:0>: Register Bank Select bits (used for direct addressing)  
00= Bank 0 (00h-7Fh)  
01= Bank 1 (80h-FFh)  
10= Bank 2 (100h-17Fh)  
11= Bank 3 (180h-1FFh)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
(1)  
DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
(1)  
(1)  
C: Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the second operand.  
For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.  
© 2009 Microchip Technology Inc.  
DS41203E-page 13  
PIC16F688  
2.2.2.2  
OPTION Register  
Note:  
To achieve a 1:1 prescaler assignment for  
Timer0, assign the prescaler to the WDT  
by setting PSA bit of the OPTION register  
to ‘1’. See Section 5.1.3 “Software  
Programmable Prescaler”.  
The OPTION register is a readable and writable  
register, which contains various control bits to  
configure:  
• Timer0/WDT prescaler  
• External RA2/INT interrupt  
• Timer0  
• Weak pull-ups on PORTA  
REGISTER 2-2:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RAPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RAPU: PORTA Pull-up Enable bit  
1= PORTA pull-ups are disabled  
0= PORTA pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RA2/INT pin  
0= Interrupt on falling edge of RA2/INT pin  
T0CS: Timer0 Clock Source Select bit  
1= Transition on RA2/T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on RA2/T0CKI pin  
0= Increment on low-to-high transition on RA2/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
DS41203E-page 14  
© 2009 Microchip Technology Inc.  
PIC16F688  
2.2.2.3  
INTCON Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE of the INTCON register.  
User software should ensure the appropri-  
ate interrupt flag bits are clear prior to  
enabling an interrupt.  
The INTCON register is a readable and writable  
register, which contains the various enable and flag bits  
for TMR0 register overflow, PORTA change and  
external RA2/INT pin interrupts.  
REGISTER 2-3:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RAIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RAIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: RA2/INT External Interrupt Enable bit  
1= Enables the RA2/INT external interrupt  
0= Disables the RA2/INT external interrupt  
RAIE: PORTA Change Interrupt Enable bit(1)  
1= Enables the PORTA change interrupt  
0= Disables the PORTA change interrupt  
T0IF: Timer0 Overflow Interrupt Flag bit(2)  
1= Timer0 register has overflowed (must be cleared in software)  
0= Timer0 register did not overflow  
INTF: RA2/INT External Interrupt Flag bit  
1= The RA2/INT external interrupt occurred (must be cleared in software)  
0= The RA2/INT external interrupt did not occur  
RAIF: PORTA Change Interrupt Flag bit  
1= When at least one of the PORTA <5:0> pins changed state (must be cleared in software)  
0= None of the PORTA <5:0> pins have changed state  
Note 1: IOCA register must also be enabled.  
2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before  
clearing T0IF bit.  
© 2009 Microchip Technology Inc.  
DS41203E-page 15  
PIC16F688  
2.2.2.4  
PIE1 Register  
The PIE1 register contains the interrupt enable bits, as  
shown in Register 2-4.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 2-4:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
EEIE  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
C2IE  
R/W-0  
C1IE  
R/W-0  
OSFIE  
R/W-0  
TXIE  
R/W-0  
TMR1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
EEIE: EE Write Complete Interrupt Enable bit  
1= Enables the EE write complete interrupt  
0= Disables the EE write complete interrupt  
ADIE: A/D Converter (ADC) Interrupt Enable bit  
1= Enables the ADC interrupt  
0= Disables the ADC interrupt  
RCIE: EUSART Receive Interrupt Enable bit  
1= Enables the EUSART receive interrupt  
0= Disables the EUSART receive interrupt  
C2IE: Comparator 2 Interrupt Enable bit  
1= Enables the Comparator C2 interrupt  
0= Disables the Comparator C2 interrupt  
C1IE: Comparator 1 Interrupt Enable bit  
1= Enables the Comparator C1 interrupt  
0= Disables the Comparator C1 interrupt  
OSFIE: Oscillator Fail Interrupt Enable bit  
1= Enables the oscillator fail interrupt  
0= Disables the oscillator fail interrupt  
TXIE: EUSART Transmit Interrupt Enable bit  
1= Enables the EUSART transmit interrupt  
0= Disables the EUSART transmit interrupt  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
DS41203E-page 16  
© 2009 Microchip Technology Inc.  
PIC16F688  
2.2.2.5  
PIR1 Register  
The PIR1 register contains the interrupt flag bits, as  
shown in Register 2-5.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE bit of the INTCON register.  
User software should ensure the appropri-  
ate interrupt flag bits are clear prior to  
enabling an interrupt.  
REGISTER 2-5:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
R/W-0  
EEIF  
R/W-0  
ADIF  
R-0  
R/W-0  
C2IF  
R/W-0  
C1IF  
R/W-0  
OSFIF  
R-0  
R/W-0  
RCIF  
TXIF  
TMR1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1= The write operation completed (must be cleared in software)  
0= The write operation has not completed or has not been started  
ADIF: A/D Converter Interrupt Flag bit  
1= A/D conversion complete (must be cleared in software)  
0= A/D conversion has not completed or has not been started  
RCIF: EUSART Receive Interrupt Flag bit  
1= The EUSART receive buffer is full (cleared by reading RCREG)  
0= The EUSART receive buffer is not full  
C2IF: Comparator C2 Interrupt Flag bit  
1= Comparator output (C2OUT bit) has changed (must be cleared in software)  
0= Comparator output (C2OUT bit) has not changed  
C1IF: Comparator C1 Interrupt Flag bit  
1= Comparator output (C1OUT bit) has changed (must be cleared in software)  
0= Comparator output (C1OUT bit) has not changed  
OSFIF: Oscillator Fail Interrupt Flag bit  
1= System oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= System clock operating  
TXIF: EUSART Transmit Interrupt Flag bit  
1= The EUSART transmit buffer is empty (cleared by writing to TXREG)  
0= The EUSART transmit buffer is full  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= The TMR1 register overflowed (must be cleared in software)  
0= The TMR1 register did not overflow  
© 2009 Microchip Technology Inc.  
DS41203E-page 17  
PIC16F688  
2.2.2.6  
PCON Register  
The Power Control (PCON) register (see Register 2-6)  
contains flag bits to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Watchdog Timer Reset (WDT)  
• External MCLR Reset  
The PCON register also controls the Ultra Low-Power  
Wake-up and software enable of the BOR.  
REGISTER 2-6:  
PCON: POWER CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-1  
SBOREN(1)  
U-0  
U-0  
R/W-0  
POR  
R/W-x  
BOR  
ULPWUE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
ULPWUE: Ultra Low-Power Wake-up Enable bit  
1= Ultra low-power wake-up enabled  
0= Ultra low-power wake-up disabled  
bit 4  
SBOREN: Software BOR Enable bit(1)  
1= BOR enabled  
0= BOR disabled  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: BOREN<1:0> = 01in the Configuration Word register for this bit to control the BOR.  
DS41203E-page 18  
© 2009 Microchip Technology Inc.  
PIC16F688  
2.3.2  
STACK  
2.3  
PCL and PCLATH  
The PIC16F688 family has an 8-level x 13-bit wide  
hardware stack (see Figure 2-1). The stack space is  
not part of either program or data space and the Stack  
Pointer is not readable or writable. The PC is PUSHed  
onto the stack when a CALLinstruction is executed or  
an interrupt causes a branch. The stack is POPed in  
The Program Counter (PC) is 13 bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<12:8>) is not  
directly readable or writable and comes from PCLATH.  
On any Reset, the PC is cleared. Figure 2-3 shows the  
two situations for the loading of the PC. The upper  
example in Figure 2-3 shows how the PC is loaded on a  
write to PCL (PCLATH<4:0> PCH). The lower exam-  
ple in Figure 2-3 shows how the PC is loaded during a  
CALLor GOTOinstruction (PCLATH<4:3> PCH).  
the event of a RETURN,  
RETLW or a RETFIE  
instruction execution. PCLATH is not affected by a  
PUSH or POP operation.  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 2-3:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Instruction with  
Note 1: There are no Status bits to indicate Stack  
12  
8
7
0
PCL as  
Overflow or Stack Underflow conditions.  
Destination  
PC  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions or the vectoring to an  
interrupt address.  
8
PCLATH<4:0>  
PCLATH  
5
ALU Result  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO, CALL  
PCLATH<4:3>  
PCLATH  
11  
2
OPCODE<10:0>  
2.3.1  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When  
COMPUTED GOTO  
performing a table read using a computed GOTO  
method, care should be exercised if the table location  
crosses a PCL memory boundary (each 256-byte  
block). Refer to the Application Note AN556,  
“Implementing a Table Read” (DS00556).  
© 2009 Microchip Technology Inc.  
DS41203E-page 19  
PIC16F688  
A simple program to clear RAM location 20h-2Fh using  
indirect addressing is shown in Example 2-1.  
2.4  
Indirect Addressing, INDF and  
FSR Registers  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
EXAMPLE 2-1:  
INDIRECT ADDRESSING  
MOVLW 0x20  
MOVWF FSR  
;initialize pointer  
;to RAM  
;clear INDF register  
;inc pointer  
;all done?  
;no clear next  
;yes continue  
Indirect addressing is possible by using the INDF  
register. Any instruction using the INDF register  
actually accesses data pointed to by the File Select  
Register (FSR). Reading INDF itself indirectly will  
produce 00h. Writing to the INDF register indirectly  
results in a no operation (although Status bits may be  
affected). An effective 9-bit address is obtained by  
concatenating the 8-bit FSR register and the IRP bit of  
the STATUS register, as shown in Figure 2-4.  
NEXT CLRF  
INCF  
INDF  
FSR  
BTFSS FSR,4  
GOTO  
NEXT  
CONTINUE  
FIGURE 2-4:  
DIRECT/INDIRECT ADDRESSING PIC16F688  
Direct Addressing  
Indirect Addressing  
From Opcode  
7
RP1  
RP0  
6
0
0
IRP  
File Select Register  
Bank Select  
180h  
Location Select  
Bank Select  
Location Select  
00h  
00  
01  
10  
11  
Data  
Memory  
7Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note:  
For memory map detail, see Figure 2-2.  
DS41203E-page 20  
© 2009 Microchip Technology Inc.  
PIC16F688  
The oscillator module can be configured in one of eight  
clock modes.  
3.0  
3.1  
OSCILLATOR MODULE (WITH  
FAIL-SAFE CLOCK MONITOR)  
1. EC – External clock with I/O on OSC2/CLKOUT.  
2. LP – 32 kHz Low-Power Crystal mode.  
Overview  
3. XT  
– Medium Gain Crystal or Ceramic  
The oscillator module has a wide variety of clock  
sources and selection features that allow it to be used  
in a wide range of applications while maximizing perfor-  
mance and minimizing power consumption. Figure 3-1  
illustrates a block diagram of the oscillator module.  
Resonator Oscillator mode.  
4. HS – High Gain Crystal or Ceramic Resonator  
mode.  
5. RC – External Resistor-Capacitor (RC) with  
FOSC/4 output on OSC2/CLKOUT.  
Clock sources can be configured from external  
oscillators, quartz crystal resonators, ceramic resonators  
and Resistor-Capacitor (RC) circuits. In addition, the  
system clock source can be configured from one of two  
internal oscillators, with a choice of speeds selectable via  
software. Additional clock features include:  
6. RCIO – External Resistor-Capacitor (RC) with  
I/O on OSC2/CLKOUT.  
7. INTOSC – Internal oscillator with FOSC/4 output  
on OSC2 and I/O on OSC1/CLKIN.  
8. INTOSCIO – Internal oscillator with I/O on  
OSC1/CLKIN and OSC2/CLKOUT.  
• Selectable system clock source between external  
or internal via software.  
Clock source modes are configured by the FOSC<2:0>  
bits in the Configuration Word register (CONFIG). The  
internal clock can be generated from two internal  
oscillators. The HFINTOSC is a calibrated high-  
frequency oscillator. The LFINTOSC is an uncalibrated  
low-frequency oscillator.  
• Two-Speed Start-Up mode, which minimizes  
latency between external oscillator start-up and  
code execution.  
• Fail-Safe Clock Monitor (FSCM) designed to  
detect a failure of the external clock source (LP,  
XT, HS, EC or RC modes) and switch  
automatically to the internal oscillator.  
FIGURE 3-1:  
PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
FOSC<2:0>  
(Configuration Word Register)  
External Oscillator  
SCS<0>  
(OSCCON Register)  
OSC2  
OSC1  
Sleep  
LP, XT, HS, RC, RCIO, EC  
IRCF<2:0>  
(OSCCON Register)  
System Clock  
(CPU and Peripherals)  
8 MHz  
111  
110  
101  
INTOSC  
Internal Oscillator  
4 MHz  
2 MHz  
1 MHz  
HFINTOSC  
8 MHz  
100  
011  
010  
001  
000  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
LFINTOSC  
31 kHz  
Power-up Timer (PWRT)  
Watchdog Timer (WDT)  
Fail-Safe Clock Monitor (FSCM)  
© 2009 Microchip Technology Inc.  
DS41203E-page 21  
PIC16F688  
3.2  
Oscillator Control  
The Oscillator Control (OSCCON) register (Figure 3-1)  
controls the system clock and frequency selection  
options. The OSCCON register contains the following  
bits:  
• Frequency selection bits (IRCF)  
• Frequency Status bits (HTS, LTS)  
• System clock control bits (OSTS, SCS)  
REGISTER 3-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R/W-1  
IRCF2  
R/W-1  
IRCF1  
R/W-0  
IRCF0  
R-1  
OSTS(1)  
R-0  
R-0  
LTS  
R/W-0  
SCS  
HTS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IRCF<2:0>: Internal Oscillator Frequency Select bits  
111= 8 MHz  
110= 4 MHz (default)  
101= 2 MHz  
100= 1 MHz  
011= 500 kHz  
010= 250 kHz  
001= 125 kHz  
000= 31 kHz (LFINTOSC)  
bit 3  
bit 2  
bit 1  
bit 0  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Device is running from the external clock defined by FOSC<2:0> of the Configuration Word  
0= Device is running from the internal oscillator (HFINTOSC or LFINTOSC)  
HTS: HFINTOSC Status bit (High Frequency – 8 MHz to 125 kHz)  
1= HFINTOSC is stable  
0= HFINTOSC is not stable  
LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz)  
1= LFINTOSC is stable  
0= LFINTOSC is not stable  
SCS: System Clock Select bit  
1= Internal oscillator is used for system clock  
0= Clock source defined by FOSC<2:0> of the Configuration Word  
Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe  
mode is enabled.  
DS41203E-page 22  
© 2009 Microchip Technology Inc.  
PIC16F688  
3.3  
Clock Source Modes  
3.4  
External Clock Modes  
Clock source modes can be classified as external or  
internal.  
3.4.1 OSCILLATOR START-UP TIMER (OST)  
If the oscillator module is configured for LP, XT or HS  
modes, the Oscillator Start-up Timer (OST) counts  
1024 oscillations from OSC1. This occurs following a  
Power-on Reset (POR) and when the Power-up Timer  
(PWRT) has expired (if configured), or a wake-up from  
Sleep. During this time, the program counter does not  
increment and program execution is suspended. The  
OST ensures that the oscillator circuit, using a quartz  
crystal resonator or ceramic resonator, has started and  
is providing a stable system clock to the oscillator  
module. When switching between clock sources, a  
delay is required to allow the new clock to stabilize.  
These oscillator delays are shown in Table 3-1.  
• External Clock modes rely on external circuitry for  
the clock source. Examples are: oscillator mod-  
ules (EC mode), quartz crystal resonators or  
ceramic resonators (LP, XT and HS modes) and  
Resistor-Capacitor (RC) mode circuits.  
• Internal clock sources are contained internally  
within the oscillator module. The oscillator module  
has two internal oscillators: the 8 MHz High-  
Frequency Internal Oscillator (HFINTOSC) and  
the 31 kHz Low-Frequency Internal Oscillator  
(LFINTOSC).  
The system clock can be selected between external or  
internal clock sources via the System Clock Select  
(SCS) bit of the OSCCON register. See Section 3.6  
“Clock Switching” for additional information.  
In order to minimize latency between external oscillator  
start-up and code execution, the Two-Speed Clock  
Start-up mode can be selected (see Section 3.7 “Two-  
Speed Clock Start-up Mode”).  
TABLE 3-1:  
OSCILLATOR DELAY EXAMPLES  
Switch From  
Switch To  
Frequency  
Oscillator Delay  
LFINTOSC  
HFINTOSC  
31 kHz  
125 kHz to 8 MHz  
Sleep/POR  
Oscillator Warm-Up Delay (TWARM)  
Sleep/POR  
LFINTOSC (31 kHz)  
Sleep/POR  
EC, RC  
EC, RC  
DC – 20 MHz  
DC – 20 MHz  
2 instruction cycles  
1 cycle of each  
LP, XT, HS  
HFINTOSC  
32 kHz to 20 MHz  
125 kHz to 8 MHz  
1024 Clock Cycles (OST)  
1 μs (approx.)  
LFINTOSC (31 kHz)  
3.4.2  
EC MODE  
FIGURE 3-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source. When  
operating in this mode, an external clock source is  
connected to the OSC1 input and the OSC2 is available  
for general purpose I/O. Figure 3-2 shows the pin  
connections for EC mode.  
OSC1/CLKIN  
Clock from  
Ext. System  
PIC® MCU  
(1)  
I/O  
OSC2/CLKOUT  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC® MCU design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
Note 1: Alternate pin functions are listed in  
Section 1.0 “Device Overview”.  
© 2009 Microchip Technology Inc.  
DS41203E-page 23  
PIC16F688  
3.4.3  
LP, XT, HS MODES  
Note 1: Quartz crystal characteristics vary according  
to type, package and manufacturer. The  
user should consult the manufacturer data  
sheets for specifications and recommended  
application.  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
OSC1 and OSC2 (Figure 3-3). The mode selects a low,  
medium or high gain setting of the internal inverter-  
amplifier to support various resonator types and speed.  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
LP Oscillator mode selects the lowest gain setting of  
the internal inverter-amplifier. LP mode current  
consumption is the least of the three modes. This mode  
is best suited to drive resonators with a low drive level  
specification, for example, tuning fork type crystals.  
This mode is designed to drive only 32.768 kHz tuning  
fork type crystals (watch crystals).  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
• AN849, “Basic PIC® Oscillator Design”  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is best suited to drive resonators with a  
medium drive level specification.  
Analysis and Design” (DS00943)  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
HS Oscillator mode selects the highest gain setting of the  
internal inverter-amplifier. HS mode current consumption  
is the highest of the three modes. This mode is best  
suited for resonators that require a high drive setting.  
FIGURE 3-4:  
CERAMIC RESONATOR  
OPERATION  
Figure 3-3 and Figure 3-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
(XT OR HS MODE)  
PIC® MCU  
FIGURE 3-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
OSC1/CLKIN  
C1  
To Internal  
Logic  
PIC® MCU  
(3)  
(2)  
RP  
RF  
Sleep  
OSC1/CLKIN  
C1  
To Internal  
Logic  
OSC2/CLKOUT  
(1)  
C2  
RS  
Ceramic  
Resonator  
Quartz  
Crystal  
(2)  
Sleep  
RF  
Note 1: A series resistor (RS) may be required for  
ceramic resonators with low drive level.  
OSC2/CLKOUT  
(1)  
C2  
RS  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
Note 1: A series resistor (RS) may be required for  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation.  
quartz crystals with low drive level.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
DS41203E-page 24  
© 2009 Microchip Technology Inc.  
PIC16F688  
3.4.4  
EXTERNAL RC MODES  
3.5  
Internal Clock Modes  
The external Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required. There are two modes: RC and RCIO.  
The oscillator module has two independent, internal  
oscillators that can be configured or selected as the  
system clock source.  
1. The HFINTOSC (High-Frequency Internal  
Oscillator) is factory calibrated and operates at  
8 MHz. The frequency of the HFINTOSC can be  
user-adjusted via software using the OSCTUNE  
register (Register 3-2).  
In RC mode, the RC circuit connects to OSC1. OSC2/  
CLKOUT outputs the RC oscillator frequency divided  
by 4. This signal may be used to provide a clock for  
external circuitry, synchronization, calibration, test or  
other application requirements. Figure 3-5 shows the  
external RC mode connections.  
2. The LFINTOSC (Low-Frequency Internal  
Oscillator) is uncalibrated and operates at 31 kHz.  
The system clock speed can be selected via software  
using the Internal Oscillator Frequency Select bits  
IRCF<2:0> of the OSCCON register.  
FIGURE 3-5:  
EXTERNAL RC MODES  
The system clock can be selected between external or  
internal clock sources via the System Clock Selection  
(SCS) bit of the OSCCON register. See Section 3.6  
“Clock Switching” for more information.  
VDD  
PIC® MCU  
REXT  
OSC1/CLKIN  
Internal  
Clock  
3.5.1 INTOSC AND INTOSCIO MODES  
CEXT  
VSS  
The INTOSC and INTOSCIO modes configure the  
internal oscillators as the system clock source when  
the device is programmed using the oscillator selection  
or the FOSC<2:0> bits in the Configuration Word  
register (CONFIG). See Section 11.0 “Special  
Features of the CPU” for more information.  
(1)  
FOSC/4 or  
OSC2/CLKOUT  
(2)  
I/O  
Recommended values: 10 kΩ ≤ REXT 100 kΩ, <3V  
3 kΩ ≤ REXT 100 kΩ, 3-5V  
In INTOSC mode, OSC1/CLKIN is available for general  
purpose I/O. OSC2/CLKOUT outputs the selected  
internal oscillator frequency divided by 4. The CLKOUT  
signal may be used to provide a clock for external  
circuitry, synchronization, calibration, test or other  
application requirements.  
CEXT > 20 pF, 2-5V  
Note 1: Alternate pin functions are listed in  
Section 1.0 “Device Overview”.  
2: Output depends upon RC or RCIO clock mode.  
In RCIO mode, the RC circuit is connected to OSC1.  
OSC2 becomes an additional general purpose I/O pin.  
In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT  
are available for general purpose I/O.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) values  
and the operating temperature. Other factors affecting  
the oscillator frequency are:  
3.5.2  
HFINTOSC  
The High-Frequency Internal Oscillator (HFINTOSC) is  
a factory calibrated 8 MHz internal clock source. The  
frequency of the HFINTOSC can be altered via  
software using the OSCTUNE register (Register 3-2).  
• threshold voltage variation  
• component tolerances  
• packaging variations in capacitance  
The output of the HFINTOSC connects to a postscaler  
and multiplexer (see Figure 3-1). One of seven  
frequencies can be selected via software using the  
IRCF<2:0> bits of the OSCCON register. See  
Section 3.5.4 “Frequency Select Bits (IRCF)” for  
more information.  
The user also needs to take into account variation due  
to tolerance of external RC components used.  
The HFINTOSC is enabled by selecting any frequency  
between 8 MHz and 125 kHz by setting the IRCF<2:0>  
bits of the OSCCON register 000. Then, set the  
System Clock Source (SCS) bit of the OSCCON  
register to ‘1’ or enable Two-Speed Start-up by setting  
the IESO bit in the Configuration Word register  
(CONFIG) to ‘1’.  
The HF Internal Oscillator (HTS) bit of the OSCCON  
register indicates whether the HFINTOSC is stable or not.  
© 2009 Microchip Technology Inc.  
DS41203E-page 25  
PIC16F688  
When the OSCTUNE register is modified, the  
HFINTOSC frequency will begin shifting to the new  
frequency. Code execution continues during this shift.  
There is no indication that the shift has occurred.  
3.5.2.1  
OSCTUNE Register  
The HFINTOSC is factory calibrated but can be  
adjusted in software by writing to the OSCTUNE  
register (Register 3-2).  
OSCTUNE does not affect the LFINTOSC frequency.  
Operation of features that depend on the LFINTOSC  
clock source frequency, such as the Power-up Timer  
(PWRT), Watchdog Timer (WDT), Fail-Safe Clock  
Monitor (FSCM) and peripherals, are not affected by the  
change in frequency.  
The default value of the OSCTUNE register is ‘0’. The  
value is a 5-bit two’s complement number.  
REGISTER 3-2:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
TUN<4:0>: Frequency Tuning bits  
01111= Maximum frequency  
01110=  
00001=  
00000= Oscillator module is running at the calibrated frequency.  
11111=  
10000= Minimum frequency  
DS41203E-page 26  
© 2009 Microchip Technology Inc.  
PIC16F688  
3.5.3  
LFINTOSC  
3.5.5  
HF AND LF INTOSC CLOCK  
SWITCH TIMING  
The Low-Frequency Internal Oscillator (LFINTOSC) is  
an uncalibrated 31 kHz internal clock source.  
When switching between the LFINTOSC and the  
HFINTOSC, the new oscillator may already be shut  
down to save power (see Figure 3-6). If this is the case,  
there is a delay after the IRCF<2:0> bits of the  
OSCCON register are modified before the frequency  
selection takes place. The LTS and HTS bits of the  
OSCCON register will reflect the current active status  
of the LFINTOSC and HFINTOSC oscillators. The  
timing of a frequency selection is as follows:  
The output of the LFINTOSC connects to a postscaler  
and multiplexer (see Figure 3-1). Select 31 kHz, via  
software, using the IRCF<2:0> bits of the OSCCON  
register. See Section 3.5.4 “Frequency Select Bits  
(IRCF)” for more information. The LFINTOSC is also the  
frequency for the Power-up Timer (PWRT), Watchdog  
Timer (WDT) and Fail-Safe Clock Monitor (FSCM).  
The LFINTOSC is enabled by selecting 31 kHz  
(IRCF<2:0> bits of the OSCCON register = 000)as the  
system clock source (SCS bit of the OSCCON  
register = 1), or when any of the following are enabled:  
1. IRCF<2:0> bits of the OSCCON register are  
modified.  
2. If the new clock is shut down, a clock start-up  
delay is started.  
• Two-Speed Start-up IESO bit of the Configuration  
Word register = 1and IRCF<2:0> bits of the  
OSCCON register = 000  
3. Clock switch circuitry waits for a falling edge of  
the current clock.  
4. CLKOUT is held low and the clock switch  
circuitry waits for a rising edge in the new clock.  
• Power-up Timer (PWRT)  
• Watchdog Timer (WDT)  
5. CLKOUT is now connected with the new clock.  
LTS and HTS bits of the OSCCON register are  
updated as required.  
• Fail-Safe Clock Monitor (FSCM)  
The LF Internal Oscillator (LTS) bit of the OSCCON  
register indicates whether the LFINTOSC is stable or  
not.  
6. Clock switch is complete.  
See Figure 3-1 for more details.  
3.5.4  
FREQUENCY SELECT BITS (IRCF)  
If the internal oscillator speed selected is between  
8 MHz and 125 kHz, there is no start-up delay before  
the new frequency is selected. This is because the old  
and new frequencies are derived from the HFINTOSC  
via the postscaler and multiplexer.  
The output of the 8 MHz HFINTOSC and 31 kHz  
LFINTOSC connects to a postscaler and multiplexer  
(see Figure 3-1). The Internal Oscillator Frequency  
Select bits IRCF<2:0> of the OSCCON register select  
the frequency output of the internal oscillators. One of  
eight frequencies can be selected via software:  
Start-up delay specifications are located in the  
Section 14.0 “Electrical Specifications”, under the  
AC Specifications (Oscillator Module).  
• 8 MHz  
• 4 MHz (Default after Reset)  
• 2 MHz  
• 1 MHz  
• 500 kHz  
• 250 kHz  
• 125 kHz  
• 31 kHz (LFINTOSC)  
Note:  
Following any Reset, the IRCF<2:0> bits of  
the OSCCON register are set to ‘110’ and  
the frequency selection is set to 4 MHz.  
The user can modify the IRCF bits to  
select a different frequency.  
© 2009 Microchip Technology Inc.  
DS41203E-page 27  
PIC16F688  
FIGURE 3-6:  
INTERNAL OSCILLATOR SWITCH TIMING  
HF  
LF(1)  
HFINTOSC  
LFINTOSC (FSCM and WDT disabled)  
HFINTOSC  
Start-up Time  
2-cycle Sync  
Running  
LFINTOSC  
0  
= 0  
IRCF <2:0>  
System Clock  
Note 1: When going from LF to HF.  
HFINTOSC  
HFINTOSC  
LFINTOSC (Either FSCM or WDT enabled)  
2-cycle Sync  
Running  
LFINTOSC  
0  
= 0  
IRCF <2:0>  
System Clock  
LFINTOSC  
HFINTOSC  
LFINTOSC turns off unless WDT or FSCM is enabled  
Running  
LFINTOSC  
Start-up Time 2-cycle Sync  
HFINTOSC  
= 0  
0  
IRCF <2:0>  
System Clock  
DS41203E-page 28  
© 2009 Microchip Technology Inc.  
PIC16F688  
When the oscillator module is configured for LP, XT or  
HS modes, the Oscillator Start-up Timer (OST) is  
enabled (see Section 3.4.1 “Oscillator Start-up Timer  
(OST)”). The OST will suspend program execution until  
1024 oscillations are counted. Two-Speed Start-up  
mode minimizes the delay in code execution by  
operating from the internal oscillator as the OST is  
counting. When the OST count reaches 1024 and the  
OSTS bit of the OSCCON register is set, program  
execution switches to the external oscillator.  
3.6  
Clock Switching  
The system clock source can be switched between  
external and internal clock sources via software using  
the System Clock Select (SCS) bit of the OSCCON  
register.  
3.6.1  
SYSTEM CLOCK SELECT (SCS) BIT  
The System Clock Select (SCS) bit of the OSCCON  
register selects the system clock source that is used for  
the CPU and peripherals.  
3.7.1  
TWO-SPEED START-UP MODE  
CONFIGURATION  
• When the SCS bit of the OSCCON register = 0,  
the system clock source is determined by  
configuration of the FOSC<2:0> bits in the  
Configuration Word register (CONFIG).  
Two-Speed Start-up mode is configured by the  
following settings:  
• When the SCS bit of the OSCCON register = 1,  
the system clock source is chosen by the internal  
oscillator frequency selected by the IRCF<2:0>  
bits of the OSCCON register. After a Reset, the  
SCS bit of the OSCCON register is always  
cleared.  
• IESO (of the Configuration Word register) = 1;  
Internal/External Switchover bit (Two-Speed Start-  
up mode enabled).  
• SCS (of the OSCCON register) = 0.  
• FOSC<2:0> bits in the Configuration Word  
register (CONFIG) configured for LP, XT or HS  
mode.  
Note:  
Any automatic clock switch, which may  
occur from Two-Speed Start-up or Fail-Safe  
Clock Monitor, does not update the SCS bit  
of the OSCCON register. The user can  
monitor the OSTS bit of the OSCCON  
register to determine the current system  
clock source.  
Two-Speed Start-up mode is entered after:  
• Power-on Reset (POR) and, if enabled, after  
Power-up Timer (PWRT) has expired, or  
• Wake-up from Sleep.  
If the external clock oscillator is configured to be  
anything other than LP, XT or HS mode, then Two-  
Speed Start-up is disabled. This is because the external  
clock oscillator does not require any stabilization time  
after POR or an exit from Sleep.  
3.6.2  
OSCILLATOR START-UP TIME-OUT  
STATUS (OSTS) BIT  
The Oscillator Start-up Time-out Status (OSTS) bit of  
the OSCCON register indicates whether the system  
clock is running from the external clock source, as  
defined by the FOSC<2:0> bits in the Configuration  
Word register (CONFIG), or from the internal clock  
source. In particular, OSTS indicates that the Oscillator  
Start-up Timer (OST) has timed out for LP, XT or HS  
modes.  
3.7.2  
TWO-SPEED START-UP  
SEQUENCE  
1. Wake-up from Power-on Reset or Sleep.  
2. Instructions begin execution by the internal  
oscillator at the frequency set in the IRCF<2:0>  
bits of the OSCCON register.  
3. OST enabled to count 1024 clock cycles.  
3.7  
Two-Speed Clock Start-up Mode  
4. OST timed out, wait for falling edge of the  
internal oscillator.  
Two-Speed Start-up mode provides additional power  
savings by minimizing the latency between external  
oscillator start-up and code execution. In applications  
that make heavy use of the Sleep mode, Two-Speed  
Start-up will remove the external oscillator start-up  
time from the time spent awake and can reduce the  
overall power consumption of the device.  
5. OSTS is set.  
6. System clock held low until the next falling edge  
of new clock (LP, XT or HS mode).  
7. System clock is switched to external clock  
source.  
This mode allows the application to wake-up from  
Sleep, perform a few instructions using the INTOSC  
as the clock source and go back to Sleep without  
waiting for the primary oscillator to become stable.  
Note:  
Executing a SLEEP instruction will abort  
the oscillator start-up time and will cause  
the OSTS bit of the OSCCON register to  
remain clear.  
© 2009 Microchip Technology Inc.  
DS41203E-page 29  
PIC16F688  
3.7.3  
CHECKING TWO-SPEED CLOCK  
STATUS  
Checking the state of the OSTS bit of the OSCCON  
register will confirm if the microcontroller is running  
from the external clock source, as defined by the  
FOSC<2:0> bits in the Configuration Word register  
(CONFIG), or the internal oscillator.  
FIGURE 3-7:  
TWO-SPEED START-UP  
HFINTOSC  
TOST  
OSC1  
0
1
1022 1023  
OSC2  
PC - N  
PC + 1  
Program Counter  
PC  
System Clock  
DS41203E-page 30  
© 2009 Microchip Technology Inc.  
PIC16F688  
3.8.3  
FAIL-SAFE CONDITION CLEARING  
3.8  
Fail-Safe Clock Monitor  
The Fail-Safe condition is cleared after a Reset,  
executing a SLEEPinstruction or toggling the SCS bit  
of the OSCCON register. When the SCS bit is toggled,  
the OST is restarted. While the OST is running, the  
device continues to operate from the INTOSC selected  
in OSCCON. When the OST times out, the Fail-Safe  
condition is cleared and the device will be operating  
from the external clock source. The Fail-Safe condition  
must be cleared before the OSFIF flag can be cleared.  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue operating should the external oscillator fail.  
The FSCM can detect oscillator failure any time after  
the Oscillator Start-up Timer (OST) has expired. The  
FSCM is enabled by setting the FCMEN bit in the  
Configuration Word register (CONFIG). The FSCM is  
applicable to all external oscillator modes (LP, XT, HS,  
EC, RC and RCIO).  
FIGURE 3-8:  
FSCM BLOCK DIAGRAM  
3.8.4  
RESET OR WAKE-UP FROM SLEEP  
Clock Monitor  
Latch  
The FSCM is designed to detect an oscillator failure  
after the Oscillator Start-up Timer (OST) has expired.  
The OST is used after waking up from Sleep and after  
any type of Reset. The OST is not used with the EC or  
RC Clock modes so that the FSCM will be active as  
soon as the Reset or wake-up has completed. When  
the FSCM is enabled, the Two-Speed Start-up is also  
enabled. Therefore, the device will always be executing  
code while the OST is operating.  
External  
Clock  
S
Q
LFINTOSC  
Oscillator  
÷ 64  
R
Q
31 kHz  
(~32 μs)  
488 Hz  
(~2 ms)  
Note:  
Due to the wide range of oscillator start-up  
times, the Fail-Safe circuit is not active  
during oscillator start-up (i.e., after exiting  
Reset or Sleep). After an appropriate  
amount of time, the user should check the  
OSTS bit of the OSCCON register to verify  
the oscillator start-up and that the system  
Sample Clock  
Clock  
Failure  
Detected  
3.8.1  
FAIL-SAFE DETECTION  
The FSCM module detects a failed oscillator by  
comparing the external oscillator to the FSCM sample  
clock. The sample clock is generated by dividing the  
LFINTOSC by 64. See Figure 3-8. Inside the fail  
detector block is a latch. The external clock sets the  
latch on each falling edge of the external clock. The  
sample clock clears the latch on each rising edge of the  
sample clock. A failure is detected when an entire half-  
cycle of the sample clock elapses before the primary  
clock goes low.  
clock  
completed.  
switchover  
has  
successfully  
3.8.2  
FAIL-SAFE OPERATION  
When the external clock fails, the FSCM switches the  
device clock to an internal clock source and sets the bit  
flag OSFIF of the PIR2 register. Setting this flag will  
generate an interrupt if the OSFIE bit of the PIE2  
register is also set. The device firmware can then take  
steps to mitigate the problems that may arise from a  
failed clock. The system clock will continue to be  
sourced from the internal clock source until the device  
firmware successfully restarts the external oscillator  
and switches back to external operation.  
The internal clock source chosen by the FSCM is  
determined by the IRCF<2:0> bits of the OSCCON  
register. This allows the internal oscillator to be  
configured before a failure occurs.  
© 2009 Microchip Technology Inc.  
DS41203E-page 31  
PIC16F688  
FIGURE 3-9:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
Clock Monitor Output  
(Q)  
Failure  
Detected  
OSCFIF  
Test  
Test  
Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Value on  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
POR, BOR  
(1)  
Resets  
(2)  
CONFIG  
CPD  
GIE  
CP  
PEIE  
IRCF2  
MCLRE PWRTE  
WDTE  
RAIE  
OSTS  
TUN3  
C1IE  
FOSC2  
T0IF  
FOSC1  
INTF  
LTS  
FOSC0  
RAIF  
INTCON  
OSCCON  
OSCTUNE  
PIE1  
T0IE  
IRCF1  
INTE  
IRCF0  
TUN4  
C2IE  
0000 000x 0000 000x  
-110 x000 -110 x000  
---0 0000 ---u uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
HTS  
SCS  
TUN2  
OSFIE  
OSFIF  
TUN1  
TXIE  
TXIF  
TUN0  
EEIE  
EEIF  
ADIE  
ADIF  
RCIE  
RCIF  
TMR1IE  
TMR1IF  
PIR1  
C2IF  
C1IF  
Legend:  
x= unknown, u= unchanged, = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: See Configuration Word register (CONFIG) for operation of all register bits.  
DS41203E-page 32  
© 2009 Microchip Technology Inc.  
PIC16F688  
Therefore, a write to a port implies that the port pins are  
read, this value is modified and then written to the  
PORT data latch. RA3 reads ‘0’ when MCLRE = 1.  
4.0  
I/O PORTS  
There are as many as twelve general purpose I/O pins  
available. Depending on which peripherals are enabled,  
some or all of the pins may not be available as general  
purpose I/O. In general, when a peripheral is enabled,  
the associated pin may not be used as a general  
purpose I/O pin.  
The TRISA register controls the direction of the  
PORTA pins, even when they are being used as  
analog inputs. The user must ensure the bits in the  
TRISA register are maintained set when using them as  
analog inputs. I/O pins configured as analog input  
always read ‘0’.  
4.1  
PORTA and the TRISA Registers  
Note:  
The ANSEL and CMCON0 registers must  
be initialized to configure an analog  
channel as a digital input. Pins configured  
as analog inputs will read ‘0’.  
PORTA is a 6-bit wide, bidirectional port. The  
corresponding data direction register is TRISA. Setting  
a TRISA bit (= 1) will make the corresponding PORTA  
pin an input (i.e., put the corresponding output driver in  
a High-Impedance mode). Clearing a TRISA bit (= 0)  
will make the corresponding PORTA pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
The exception is RA3, which is input only and its TRISA  
bit will always read as ‘1’. Example 4-1 shows how to  
initialize PORTA.  
EXAMPLE 4-1:  
INITIALIZING PORTA  
BANKSELPORTA  
;
CLRF  
MOVLW  
MOVWF  
PORTA  
07h  
CMCON0  
;Init PORTA  
;Set RA<2:0> to  
;digital I/O  
;
BANKSELANSEL  
CLRF  
MOVLW  
MOVWF  
ANSEL  
0Ch  
TRISA  
;digital I/O  
;Set RA<3:2> as inputs  
;and set RA<5:4,1:0>  
;as outputs  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the PORT latch.  
All write operations are read-modify-write operations.  
REGISTER 4-1:  
PORTA: PORTA REGISTER  
U-0  
U-0  
R/W-x  
RA5  
R/W-0  
RA4  
R-x  
R/W-0  
RA2  
R/W-0  
RA1  
R/W-0  
RA0  
RA3  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RA<5:0>: PORTA I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 4-2:  
TRISA: PORTA TRI-STATE REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R-1  
R/W-1  
R/W-1  
R/W-1  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TRISA<5:0>: PORTA Tri-State Control bits  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
Note 1: TRISA<3> always reads ‘1’.  
2: TRISA<5:4> always reads ‘1’ in XT, HS and LP Oscillator modes.  
© 2009 Microchip Technology Inc.  
DS41203E-page 33  
PIC16F688  
4.2.3  
INTERRUPT-ON-CHANGE  
4.2  
Additional Pin Functions  
Each of the PORTA pins is individually configurable as  
an interrupt-on-change pin. Control bits IOCAx enable  
or disable the interrupt function for each pin. Refer to  
Register 4-5. The interrupt-on-change is disabled on a  
Power-on Reset.  
Every PORTA pin on the PIC16F688 has an interrupt-  
on-change option and a weak pull-up option. PORTA  
also provides an Ultra Low-Power Wake-up option. The  
next three sections describe these functions.  
4.2.1  
ANSEL REGISTER  
For enabled interrupt-on-change pins, the values are  
compared with the old value latched on the last read of  
PORTA. The ‘mismatch’ outputs of the last read are  
OR’d together to set the PORTA Change Interrupt Flag  
bit (RAIF) in the INTCON register.  
The ANSEL register is used to configure the Input  
mode of an I/O pin to analog. Refer to Register 4-3.  
Setting the appropriate ANSEL bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
This interrupt can wake the device from Sleep. The user,  
in the Interrupt Service Routine, clears the interrupt by:  
The state of the ANSEL bits has no affect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
a) Any read or write of PORTA. This will end the  
mismatch condition, then  
b) Clear the flag bit RAIF.  
A mismatch condition will continue to set flag bit RAIF.  
Reading PORTA will end the mismatch condition and  
allow flag bit RAIF to be cleared. The latch holding the  
last read value is not affected by a MCLR nor BOR  
Reset. After these Resets, the RAIF flag will continue  
to be set if a mismatch is present.  
4.2.2  
WEAK PULL-UPS  
Each of the PORTA pins, except RA3, has an  
individually configurable internal weak pull-up. Control  
bits WPUAx enable or disable each pull-up. Refer to  
Register 4-4. Each weak pull-up is automatically turned  
off when the port pin is configured as an output. The  
pull-ups are disabled on a Power-on Reset by the  
RAPU bit of the OPTION register. A weak pull-up is  
automatically enabled for RA3 when configured as  
MCLR and disabled when RA3 is an I/O. There is no  
software control of the MCLR pull-up.  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RAIF  
interrupt flag may not get set.  
REGISTER 4-3:  
ANSEL: ANALOG SELECT REGISTER  
R/W-1  
ANS7  
R/W-1  
ANS6  
R/W-1  
ANS5  
R/W-1  
ANS4  
R/W-1  
ANS3  
R/W-1  
ANS2  
R/W-1  
ANS1  
R/W-1  
ANS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ANS<7:0>: Analog Select bits  
Analog select between analog or digital function on pins AN<7:0>, respectively.  
1= Analog input. Pin is assigned as analog input(1)  
0= Digital I/O. Pin is assigned to port or special function.  
.
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and  
interrupt-on-change, if available. The corresponding TRIS bit must be set to Input mode in order to allow  
external control of the voltage on the pin.  
DS41203E-page 34  
© 2009 Microchip Technology Inc.  
PIC16F688  
REGISTER 4-4:  
WPUA: WEAK PULL-UP PORTA REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
U-0  
R/W-1  
R/W-1  
R/W-1  
WPUA5  
WPUA4  
WPUA2  
WPUA1  
WPUA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
WPUA<5:4>: Weak Pull-up Control bits  
1= Pull-up enabled  
0= Pull-up disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
WPUA<2:0>: Weak Pull-up Control bits  
1= Pull-up enabled  
0= Pull-up disabled  
Note 1: Global RAPU must be enabled for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISA = 0).  
3: The RA3 pull-up is enabled when configured as MCLR and disabled as an I/O in the Configuration Word.  
4: WPUA<5:4> always reads ‘1’ in XT, HS and LP OSC modes.  
REGISTER 4-5:  
IOCA: INTERRUPT-ON-CHANGE PORTA REGISTER  
U-0  
U-0  
R/W-0  
IOCA5  
R/W-0  
IOCA4  
R/W-0  
IOCA3  
R/W-0  
IOCA2  
R/W-0  
IOCA1  
R/W-0  
IOCA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IOCA<5:0>: Interrupt-on-change PORTA Control bits  
1= Interrupt-on-change enabled  
0= Interrupt-on-change disabled  
Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.  
2: IOCA<5:4> always reads ‘1’ in XT, HS and LP OSC modes.  
© 2009 Microchip Technology Inc.  
DS41203E-page 35  
PIC16F688  
4.2.4  
ULTRA LOW-POWER WAKE-UP  
EXAMPLE 4-2:  
ULTRA LOW-POWER  
WAKE-UP INITIALIZATION  
The Ultra Low-Power Wake-up (ULPWU) on RA0  
allows a slow falling voltage to generate an interrupt-  
on-change on RA0 without excess current consump-  
tion. The mode is selected by setting the ULPWUE bit  
of the PCON register. This enables a small current sink  
which can be used to discharge a capacitor on RA0.  
BANKSEL PORTA  
;
BSF  
PORTA,0  
;Set RA0 data latch  
;Turn off  
; comparators  
;
;RA0 to digital I/O  
;
;Output high to  
; charge capacitor  
MOVLW  
MOVWF  
H’7’  
CMCON0  
BANKSEL ANSEL  
BCF  
ANSEL,0  
To use this feature, the RA0 pin is configured to output  
1’ to charge the capacitor, interrupt-on-change for RA0  
is enabled, and RA0 is configured as an input. The  
ULPWUE bit is set to begin the discharge and a SLEEP  
instruction is performed. When the voltage on RA0  
drops below VIL, an interrupt will be generated which  
will cause the device to wake-up. Depending on the  
state of the GIE bit of the INTCON register, the device  
will either jump to the interrupt vector (0004h) or  
execute the next instruction when the interrupt event  
BANKSEL TRISA  
BCF  
CALL  
BSF  
TRISA,0  
CapDelay  
PCON,ULPWUE ;Enable ULP Wake-up  
BSF  
IOCA,0  
;Select RA0 IOC  
;RA0 to input  
B’10001000’ ;Enable interrupt  
BSF  
TRISA,0  
MOVLW  
MOVWF  
SLEEP  
NOP  
INTCON  
; and clear flag  
;Wait for IOC  
;
occurs.  
See  
Section 4.2.3  
“INTERRUPT-ON-  
CHANGE” and Section 11.3.3 “PORTA Interrupt” for  
more information.  
This feature provides a low-power technique for  
periodically waking up the device from Sleep. The  
time-out is dependent on the discharge time of the RC  
circuit on RA0. See Example 4-2 for initializing the  
Ultra Low-Power Wake-up module.  
The series resistor provides overcurrent protection for  
the RA0 pin and can allow for software calibration of the  
time-out. (see Figure 4-1). A timer can be used to  
measure the charge time and discharge time of the  
capacitor. The charge time can then be adjusted to  
provide the desired interrupt delay. This technique will  
compensate for the affects of temperature, voltage and  
component accuracy. The Ultra Low-Power Wake-up  
peripheral can also be configured as  
a simple  
programmable low voltage detect or temperature sensor.  
Note:  
For more information, refer to Application  
Note AN879, “Using the Microchip Ultra  
Low-Power  
Wake-up  
Module”  
(DS00879).  
DS41203E-page 36  
© 2009 Microchip Technology Inc.  
PIC16F688  
4.2.5  
PIN DESCRIPTIONS AND  
DIAGRAMS  
4.2.5.1  
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
Figure 4-1 shows the diagram for this pin. The RA0 pin  
is configurable to function as one of the following:  
Each PORTA pin is multiplexed with other functions.  
The pins and their combined functions are briefly  
described here. For specific information about individ-  
ual functions such as the comparator or the A/D, refer  
to the appropriate section in this data sheet.  
• a general purpose I/O  
• an analog input for the A/D  
• an analog input to the comparator  
• an analog input to the Ultra Low-Power Wake-up  
• In-Circuit Serial Programming™ data  
FIGURE 4-1:  
BLOCK DIAGRAM OF RA0  
Analog(1)  
Input Mode  
VDD  
Data Bus  
D
Q
Q
Weak  
CK  
WR  
WPUDA  
RAPU  
RD  
VDD  
WPUDA  
D
Q
Q
I/O PIN  
WR  
CK  
PORTA  
VSS  
-
+
VT  
D
Q
Q
WR  
TRISA  
CK  
IULP  
0
1
RD  
TRISA  
Analog(1)  
Input Mode  
Vss  
ULPWUE  
RD  
PORTA  
D
Q
Q
Q
D
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
Q
EN  
Interrupt-on-  
Change  
RD PORTA  
To Comparator  
To A/D Converter  
Note 1: Comparator mode and ANSEL determines analog Input mode.  
© 2009 Microchip Technology Inc.  
DS41203E-page 37  
PIC16F688  
4.2.5.2  
RA1/AN1/C1IN-/VREF/ICSPCLK  
4.2.5.3  
RA2/AN2/T0CKI/INT/C1OUT  
Figure 4-2 shows the diagram for this pin. The RA1 pin  
is configurable to function as one of the following:  
Figure 4-3 shows the diagram for this pin. The RA2 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input for the A/D  
• an analog input for the A/D  
• the clock input for Timer0  
• an analog input to the comparator  
• a voltage reference input for the A/D  
• In-Circuit Serial Programming™ clock  
• an external edge triggered interrupt  
• a digital output from the comparator  
FIGURE 4-2:  
BLOCK DIAGRAM OF RA1  
FIGURE 4-3:  
BLOCK DIAGRAM OF RA2  
Analog(1)  
Input Mode  
Analog(1)  
Input Mode  
Data Bus  
D
Data Bus  
D
Q
Q
VDD  
Q
Q
VDD  
WR  
CK  
WR  
CK  
Weak  
Weak  
WPUA  
WPUA  
RAPU  
RD  
WPUA  
RAPU  
RD  
WPUA  
C1OUT  
Enable  
VDD  
VDD  
D
Q
Q
D
Q
Q
WR  
PORTA  
WR  
PORTA  
CK  
CK  
C1OUT  
1
0
I/O pin  
I/O pin  
D
Q
Q
D
Q
Q
WR  
TRISA  
WR  
TRISA  
CK  
CK  
VSS  
VSS  
Analog(1)  
Analog(1)  
Input Mode  
Input Mode  
RD  
TRISA  
RD  
TRISA  
RD  
PORTA  
RD  
PORTA  
D
Q
Q
D
Q
Q
Q
Q
D
Q
Q
D
CK  
WR  
IOCA  
CK  
WR  
IOCA  
Q3  
EN  
Q3  
EN  
RD  
IOCA  
RD  
IOCA  
D
D
EN  
EN  
Interrupt-on-  
change  
Interrupt-on-  
change  
RD PORTA  
RD PORTA  
To Comparator  
To A/D Converter  
To Timer0  
To INT  
To A/D Converter  
Note 1: Comparator mode and ANSEL determines analog  
Input mode.  
Note 1: Analog Input mode is based upon ANSEL.  
DS41203E-page 38  
© 2009 Microchip Technology Inc.  
PIC16F688  
4.2.5.4  
RA3/MCLR/VPP  
4.2.5.5  
RA4/AN3/T1G/OSC2/CLKOUT  
Figure 4-4 shows the diagram for this pin. The RA3 pin  
is configurable to function as one of the following:  
Figure 4-5 shows the diagram for this pin. The RA4 pin  
is configurable to function as one of the following:  
• a general purpose input  
• a general purpose I/O  
• an analog input for the A/D  
• a Timer1 gate input  
• as Master Clear Reset with weak pull-up  
FIGURE 4-4:  
BLOCK DIAGRAM OF RA3  
• a crystal/resonator connection  
• a clock output  
VDD  
MCLRE  
Weak  
FIGURE 4-5:  
BLOCK DIAGRAM OF RA4  
Analog(3)  
Input Mode  
Data Bus  
MCLRE  
Reset  
Input  
pin  
CLK(1)  
Modes  
VDD  
Data Bus  
D
RD  
TRISA  
VSS  
Q
Q
MCLRE  
VSS  
WR  
CK  
Weak  
RD  
PORTA  
WPUA  
D
Q
Q
RAPU  
RD  
WPUA  
Q
Q
D
Oscillator  
Circuit  
CK  
WR  
IOCA  
OSC1  
Q3  
EN  
VDD  
CLKOUT  
Enable  
RD  
IOCA  
D
Fosc/4  
1
0
D
Q
Q
EN  
Interrupt-on-  
change  
I/O pin  
WR  
CK  
PORTA  
CLKOUT  
Enable  
RD PORTA  
VSS  
D
Q
Q
INTOSC/  
RC/EC(2)  
WR  
TRISA  
CK  
CLKOUT  
Enable  
RD  
Analog(3)  
TRISA  
Input Mode  
RD  
PORTA  
D
Q
Q
Q
D
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
Q
EN  
Interrupt-on-  
change  
RD PORTA  
To T1G  
To A/D Converter  
Note 1: CLK modes are XT, HS, LP, LPTMR1 and CLKOUT  
Enable.  
2: With CLKOUT option.  
3: Analog Input mode is ANSEL.  
© 2009 Microchip Technology Inc.  
DS41203E-page 39  
PIC16F688  
4.2.5.6  
RA5/T1CKI/OSC1/CLKIN  
FIGURE 4-6:  
BLOCK DIAGRAM OF RA5  
Figure 4-6 shows the diagram for this pin. The RA5 pin  
is configurable to function as one of the following:  
INTOSC  
Mode  
TMR1LPEN(1)  
VDD  
Data Bus  
D
• a general purpose I/O  
• a Timer1 clock input  
• a crystal/resonator connection  
• a clock input  
Q
Q
WR  
WPUA  
CK  
Weak  
RAPU  
RD  
WPUA  
Oscillator  
Circuit  
OSC2  
VDD  
D
Q
Q
WR  
PORTA  
CK  
D
Q
Q
I/O pin  
VSS  
WR  
TRISA  
CK  
INTOSC  
Mode  
RD  
TRISA  
RD  
PORTA  
(2)  
D
Q
Q
Q
Q
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
D
EN  
Interrupt-on-  
change  
RD PORTA  
To Timer1 or CLKGEN  
Note 1: Timer1 LP oscillator enabled.  
2: When using Timer1 with LP oscillator, the  
Schmitt Trigger is bypassed.  
DS41203E-page 40  
© 2009 Microchip Technology Inc.  
PIC16F688  
TABLE 4-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
POR, BOR  
Resets  
ANSEL  
CMCON0  
PCON  
ANS7  
C2OUT  
ANS6  
C1OUT  
ANS5  
ANS4  
ANS3  
CIS  
ANS2  
CM2  
ANS1  
CM1  
ANS0  
CM0  
1111 1111  
0000 0000  
--01 --qq  
0000 000x  
--00 0000  
1111 1111  
0000 0000  
--0u --uu  
0000 000x  
--00 0000  
C2INV  
C1INV  
ULPWUE SBOREN  
POR  
BOR  
INTCON  
IOCA  
GIE  
PEIE  
T0IE  
INTE  
RAIE  
IOCA3  
T0IF  
IOCA2  
INTF  
RAIF  
IOCA0  
IOCA5  
IOCA4  
IOCA1  
OPTION_REG  
PORTA  
RAPU  
INTEDG  
T0CS  
RA5  
T0SE  
RA4  
PSA  
RA3  
PS2  
RA2  
PS1  
RA1  
PS0  
RA0  
1111 1111  
--x0 x000  
--11 1111  
--11 -111  
1111 1111  
--x0 x000  
--11 1111  
--11 -111  
TRISA  
TRISA5  
WPUA5  
TRISA4  
WPUA4  
TRISA3  
TRISA2  
WPUA2  
TRISA1  
WPUA1  
TRISA0  
WPUA0  
WPUA  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
© 2009 Microchip Technology Inc.  
DS41203E-page 41  
PIC16F688  
EXAMPLE 4-3:  
INITIALIZING PORTC  
4.3  
PORTC  
BANKSELPORTC  
;
PORTC is a general purpose I/O port consisting of 6  
bidirectional pins. The pins can be configured for either  
digital I/O or analog input to A/D converter or compara-  
tor. For specific information about individual functions  
such as the EUSART or the A/D converter, refer to the  
appropriate section in this data sheet.  
CLRF  
MOVLW  
MOVWF  
PORTC  
07h  
CMCON0  
;Init PORTC  
;Set RC<4,1:0> to  
;digital I/O  
;
;digital I/O  
;Set RC<3:2> as inputs  
;and set RC<5:4,1:0>  
;as outputs  
BANKSELANSEL  
CLRF  
MOVLW  
MOVWF  
ANSEL  
0Ch  
TRISC  
Note:  
The ANSEL and CMCON0 registers must  
be initialized to configure an analog  
channel as a digital input. Pins configured  
as analog inputs will read ‘0’.  
REGISTER 4-6:  
PORTC: PORTC REGISTER  
U-0  
U-0  
R/W-x  
RC5  
R/W-x  
RC4  
R/W-0  
RC3  
R/W-0  
RC2  
R/W-0  
RC1  
R/W-0  
RC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RC<5:0>: PORTC I/O Pin bit  
1= PORTC pin is > VIH  
0= PORTC pin is < VIL  
REGISTER 4-7:  
TRISC: PORTC TRI-STATE REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TRISC<5:0>: PORTC Tri-State Control bits  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
DS41203E-page 42  
© 2009 Microchip Technology Inc.  
PIC16F688  
4.3.1  
RC0/AN4/C2IN+  
4.3.3  
RC2/AN6  
Figure 4-7 shows the diagram for this pin. The RC0 is  
configurable to function as one of the following:  
Figure 4-8 shows the diagram for this pin. The RC2 is  
configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input for the A/D Converter  
• an analog input to the comparator  
• an analog input for the A/D Converter  
4.3.4  
RC3/AN7  
4.3.2  
RC1/AN5/C2IN-  
Figure 4-8 shows the diagram for this pin. The RC3 is  
configurable to function as one of the following:  
Figure 4-7 shows the diagram for this pin. The RC1 is  
configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input for the A/D Converter  
• an analog input for the A/D Converter  
• an analog input to the comparator  
FIGURE 4-8:  
BLOCK DIAGRAM OF RC2  
AND RC3  
FIGURE 4-7:  
BLOCK DIAGRAM OF RC0  
AND RC1  
Data Bus  
VDD  
Data Bus  
D
CK  
Q
Q
WR  
PORTC  
VDD  
D
Q
Q
WR  
CK  
PORTC  
I/O Pin  
D
Q
Q
WR  
TRISC  
CK  
I/O Pin  
VSS  
Analog Input  
D
Q
Q
Mode(1)  
WR  
CK  
RD  
TRISC  
VSS  
Analog Input  
TRISC  
Mode(1)  
RD  
PORTC  
RD  
TRISC  
To A/D Converter  
RD  
PORTC  
To Comparators  
Note 1: Analog Input mode comes from ANSEL.  
To A/D Converter  
Note 1: Analog Input mode is based upon Comparator mode  
and ANSEL.  
© 2009 Microchip Technology Inc.  
DS41203E-page 43  
PIC16F688  
4.3.5  
RC4/C2OUT/TX/CK  
4.3.6  
RC5/RX/DT  
Figure 4-9 shows the diagram for this pin. The RC4 is  
configurable to function as one of the following:  
The RC5 is configurable to function as one of the  
following:  
• a general purpose I/O  
• a general purpose I/O  
• a digital output from the comparator  
• a digital I/O for the EUSART  
• a digital I/O for the EUSART  
FIGURE 4-10:  
BLOCK DIAGRAM OF RC5  
PIN  
FIGURE 4-9:  
BLOCK DIAGRAM OF RC4  
Data Bus  
USART Select(1)  
EUSART Out  
Enable  
C2OUT EN  
VDD  
D
Q
WR  
PORTC  
CK  
Q
VDD  
EUSART  
DT Out  
1
0
EUSART  
TX/CLKOUT  
0
1
I/O Pin  
Data Bus  
0
D
Q
Q
C2OUT  
Q
1
WR  
TRISC  
CK  
D
VSS  
I/O Pin  
WR  
PORTC  
CK  
Q
RD  
VSS  
TRISC  
D
Q
Q
RD  
PORTC  
WR  
CK  
TRISC  
To EUSART RX/DT In  
RD  
TRISC  
RD  
PORTC  
To EUSART CLK Input  
Note 1: USART Select signals selects between port  
data and peripheral output.  
TABLE 4-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSEL  
ANS7  
ANS6  
C1OUT  
ANS5  
C2INV  
RC5  
ANS4  
C1INV  
RC4  
ANS3  
CIS  
ANS2  
CM2  
RC2  
ANS1  
CM1  
ANS0  
CM0  
RC0  
1111 1111 1111 1111  
0000 0000 0000 0000  
--xx 0000 --xx 0000  
CMCON0 C2OUT  
PORTC  
TRISC  
RC3  
RC1  
TRISC5 TRISC4 TRISC3 TRISC2  
TRISC1  
TRISC0 --11 1111 --11 1111  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTC.  
DS41203E-page 44  
© 2009 Microchip Technology Inc.  
PIC16F688  
5.1  
Timer0 Operation  
5.0  
TIMER0 MODULE  
When used as a timer, the Timer0 module can be used  
as either an 8-bit timer or an 8-bit counter.  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
• 8-bit timer/counter register (TMR0)  
5.1.1  
8-BIT TIMER MODE  
• 8-bit prescaler (shared with Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
When used as a timer, the Timer0 module will  
increment every instruction cycle (without prescaler).  
Timer mode is selected by clearing the T0CS bit of the  
OPTION register to ‘0’.  
Figure 5-1 is a block diagram of the Timer0 module.  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
Note:  
The value written to the TMR0 register can  
be adjusted, in order to account for the two  
instruction cycle delay when TMR0 is  
written.  
5.1.2  
8-BIT COUNTER MODE  
When used as a counter, the Timer0 module will  
increment on every rising or falling edge of the T0CKI  
pin. The incrementing edge is determined by the T0SE  
bit of the OPTION register. Counter mode is selected by  
setting the T0CS bit of the OPTION register to ‘1’.  
FIGURE 5-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
FOSC/4  
Data Bus  
0
1
8
1
Sync  
TMR0  
2 Tcy  
T0CKI  
pin  
0
0
1
Set Flag bit T0IF  
on Overflow  
T0CS  
T0SE  
8-bit  
Prescaler  
PSA  
8
PSA  
WDTE  
SWDTEN  
1
PS<2:0>  
WDT  
Time-out  
16-bit  
Prescaler  
0
16  
31 kHz  
INTOSC  
Watchdog  
Timer  
PSA  
WDTPS<3:0>  
Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register.  
2: SWDTEN and WDTPS<3:0> are bits in the WDTCON register.  
3: WDTE bit is in the Configuration Word register.  
© 2009 Microchip Technology Inc.  
DS41203E-page 45  
PIC16F688  
When changing the prescaler assignment from the  
WDT to the Timer0 module, the following instruction  
sequence must be executed (see Example 5-2).  
5.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
A single software programmable prescaler is available  
for use with either Timer0 or the Watchdog Timer  
(WDT), but not both simultaneously. The prescaler  
assignment is controlled by the PSA bit of the OPTION  
register. To assign the prescaler to Timer0, the PSA bit  
must be cleared to a ‘0’.  
EXAMPLE 5-2:  
CHANGING PRESCALER  
(WDT TIMER0)  
CLRWDT  
;Clear WDT and  
;prescaler  
;
BANKSEL OPTION_REG  
There are 8 prescaler options for the Timer0 module  
ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION register.  
In order to have a 1:1 prescaler value for the Timer0  
module, the prescaler must be assigned to the WDT  
module.  
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11110000’ ;Mask TMR0 select and  
OPTION_REG,W ;prescaler bits  
b’00000011’ ;Set prescale to 1:16  
OPTION_REG  
;
5.1.4  
TIMER0 INTERRUPT  
The prescaler is not readable or writable. When  
assigned to the Timer0 module, all instructions writing to  
the TMR0 register will clear the prescaler.  
Timer0 will generate an interrupt when the TMR0  
register overflows from FFh to 00h. The T0IF interrupt  
flag bit of the INTCON register is set every time the  
TMR0 register overflows, regardless of whether or not  
the Timer0 interrupt is enabled. The T0IF bit must be  
cleared in software. The Timer0 interrupt enable is the  
T0IE bit of the INTCON register.  
When the prescaler is assigned to WDT, a CLRWDT  
instruction will clear the prescaler along with the WDT.  
5.1.3.1  
Switching Prescaler Between  
Timer0 and WDT Modules  
Note:  
The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
As a result of having the prescaler assigned to either  
Timer0 or the WDT, it is possible to generate an  
unintended device Reset when switching prescaler  
values. When changing the prescaler assignment from  
Timer0 to the WDT module, the instruction sequence  
shown in Example 5-1, must be executed.  
5.1.5  
USING TIMER0 WITH AN  
EXTERNAL CLOCK  
When Timer0 is in Counter mode, the synchronization  
of the T0CKI input and the Timer0 register is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, the  
high and low periods of the external clock source must  
meet the timing requirements as shown in  
Section 14.0 “Electrical Specifications”.  
EXAMPLE 5-1:  
CHANGING PRESCALER  
(TIMER0 WDT)  
BANKSEL TMR0  
CLRWDT  
;
;Clear WDT  
;Clear TMR0 and  
;prescaler  
CLRF  
TMR0  
BANKSEL OPTION_REG  
;
BSF  
OPTION_REG,PSA ;Select WDT  
CLRWDT  
;
;
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11111000’  
OPTION_REG,W  
b’00000101’  
OPTION_REG  
;Mask prescaler  
;bits  
;Set WDT prescaler  
;to 1:32  
DS41203E-page 46  
© 2009 Microchip Technology Inc.  
PIC16F688  
REGISTER 5-1:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RAPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RAPU: PORTA Pull-up Enable bit  
1= PORTA pull-ups are disabled  
0= PORTA pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
BIT VALUE TMR0 RATE  
WDT RATE  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 1  
1 : 4  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Note 1: A dedicated 16-bit WDT postscaler is available. See Section 11.5 “Watchdog Timer (WDT)” for more  
information.  
TABLE 5-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0  
Timer0 Module Register  
GIE PEIE T0IE  
xxxx xxxx uuuu uuuu  
INTCON  
INTE  
T0SE  
RAIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RAIF 0000 000x 0000 000x  
PS0 1111 1111 1111 1111  
OPTION_REG RAPU INTEDG T0CS  
TRISA  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 --11 1111 --11 1111  
Legend: – = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the  
Timer0 module.  
© 2009 Microchip Technology Inc.  
DS41203E-page 47  
PIC16F688  
6.1  
Timer1 Operation  
6.0  
TIMER1 MODULE WITH GATE  
CONTROL  
The Timer1 module is a 16-bit incrementing counter  
which is accessed through the TMR1H:TMR1L register  
pair. Writes to TMR1H or TMR1L directly update the  
counter.  
The Timer1 module is a 16-bit timer/counter with the  
following features:  
• 16-bit timer/counter register pair (TMR1H:TMR1L)  
• Programmable internal or external clock source  
• 3-bit prescaler  
When used with an internal clock source, the module is  
a timer. When used with an external clock source, the  
module can be used as either a timer or counter.  
• Optional LP oscillator  
• Synchronous or asynchronous operation  
6.2  
Clock Source Selection  
• Timer1 gate (count enable) via comparator or  
T1G pin  
The TMR1CS bit of the T1CON register is used to select  
the clock source. When TMR1CS = 0, the clock source  
is FOSC/4. When TMR1CS = 1, the clock source is  
supplied externally.  
• Interrupt on overflow  
• Wake-up on overflow (external clock,  
Asynchronous mode only)  
Clock Source  
TMR1CS  
Clock Source  
Figure 6-1 is a block diagram of the Timer1 module.  
FOSC/4  
0
1
FOSC/4  
T1CKI pin  
T1CKI pin  
FIGURE 6-1:  
TIMER1 BLOCK DIAGRAM  
TMR1GE  
T1GINV  
TMR1ON  
Set flag bit  
TMR1IF on  
Overflow  
To C2 Comparator Module  
Timer1 Clock  
(2)  
TMR1  
TMR1H  
Synchronized  
clock input  
0
EN  
TMR1L  
1
Oscillator  
(1)  
T1SYNC  
OSC1/T1CKI  
1
(3)  
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
0
OSC2/T1G  
2
T1CKPS<1:0>  
TMR1CS  
1
0
INTOSC  
Without CLKOUT  
C2OUT  
T1OSCEN  
T1GSS  
Note 1: ST Buffer is low power type when using LP oscillator, or high speed type when using T1CKI.  
2: Timer1 register increments on rising edge.  
3: Synchronize does not operate while in Sleep.  
DS41203E-page 48  
© 2009 Microchip Technology Inc.  
PIC16F688  
6.2.1  
INTERNAL CLOCK SOURCE  
6.5  
Timer1 Operation in  
Asynchronous Counter Mode  
When the internal clock source is selected the  
TMR1H:TMR1L register pair will increment on multiples  
of TCY as determined by the Timer1 prescaler.  
If control bit T1SYNC of the T1CON register is set, the  
external clock input is not synchronized. The timer  
continues to increment asynchronous to the internal  
phase clocks. The timer will continue to run during  
Sleep and can generate an interrupt on overflow,  
which will wake-up the processor. However, special  
precautions in software are needed to read/write the  
timer (see Section 6.5.1 “Reading and Writing  
Timer1 in Asynchronous Counter Mode”).  
6.2.2  
EXTERNAL CLOCK SOURCE  
When the external clock source is selected, the Timer1  
module may work as a timer or a counter.  
When counting, Timer1 is incremented on the rising  
edge of the external clock input T1CKI. In addition, the  
Counter mode clock can be synchronized to the  
microcontroller system clock or run asynchronously.  
Note:  
When switching from synchronous to  
asynchronous operation, it is possible to  
skip an increment. When switching from  
asynchronous to synchronous operation,  
it is possible to produce a single spurious  
increment.  
If an external clock oscillator is needed (and the  
microcontroller is using the INTOSC without CLKOUT),  
Timer1 can use the LP oscillator as a clock source.  
Note:  
In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge.  
6.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
6.3  
Timer1 Prescaler  
Timer1 has four prescaler options allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits of the  
T1CON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMR1H or TMR1L.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMR1H:TTMR1L register  
pair.  
6.4  
Timer1 Oscillator  
A low-power 32.768 kHz crystal oscillator is built-in  
between pins OSC1 (input) and OSC2 (amplifier  
output). The oscillator is enabled by setting the  
T1OSCEN control bit of the T1CON register. The  
oscillator will continue to run during Sleep.  
6.6  
Timer1 Gate  
The Timer1 oscillator is shared with the system LP  
oscillator. Thus, Timer1 can use this mode only when  
the primary system clock is derived from the internal  
oscillator or when in LP oscillator mode. The user must  
provide a software time delay to ensure proper oscilla-  
tor start-up.  
Timer1 gate source is software configurable to be the  
T1G pin or the output of Comparator 2. This allows the  
device to directly time external events using T1G or  
analog events using Comparator 2. See the CMCON1  
register (Register 7-2) for selecting the Timer1 gate  
source. This feature can simplify the software for a  
Delta-Sigma A/D converter and many other applications.  
For more information on Delta-Sigma A/D converters,  
see the Microchip web site (www.microchip.com).  
TRISA5 and TRISA4 bits are set when the Timer1  
oscillator is enabled. RA5 and RA4 bits read as ‘0’ and  
TRISA5 and TRISA4 bits read as ‘1’.  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to enabling Timer1.  
Note:  
TMR1GE bit of the T1CON register must  
be set to use either T1G or C2OUT as the  
Timer1 gate source. See Register 7-2 for  
more information on selecting the Timer1  
gate source.  
Timer1 gate can be inverted using the T1GINV bit of  
the T1CON register, whether it originates from the T1G  
pin or Comparator 2 output. This configures Timer1 to  
measure either the active-high or active-low time  
between events.  
© 2009 Microchip Technology Inc.  
DS41203E-page 49  
PIC16F688  
6.7  
Timer1 Interrupt  
6.8  
Timer1 Operation During Sleep  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit of the PIR1 register is  
set. To enable the interrupt on rollover, you must set  
these bits:  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
• TMR1ON bit of the T1CON register must be set  
• TMR1IE bit of the PIE1 register must be set  
• PEIE bit of the INTCON register must be set  
• Timer1 interrupt enable bit of the PIE1 register  
• PEIE bit of the INTCON register  
• GIE bit of the INTCON register  
The device will wake-up on an overflow and execute  
the next instruction. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine (0004h).  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
Note:  
The TMR1H:TTMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
FIGURE 6-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of  
the clock.  
DS41203E-page 50  
© 2009 Microchip Technology Inc.  
PIC16F688  
6.9  
Timer1 Control Register  
The Timer1 Control register (T1CON), shown in  
Register 6-1, is used to control Timer1 and select the  
various features of the Timer1 module.  
REGISTER 6-1:  
T1CON: TIMER 1 CONTROL REGISTER  
R/W-0  
T1GINV(1)  
R/W-0  
TMR1GE(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
T1GINV: Timer1 Gate Invert bit(1)  
1= Timer1 gate is active high (Timer1 counts when gate is high)  
0= Timer1 gate is active low (Timer1 counts when gate is low)  
TMR1GE: Timer1 Gate Enable bit(2)  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 is on if Timer1 gate is active  
0= Timer1 is on  
bit 5-4  
bit 3  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale Value  
10= 1:4 Prescale Value  
01= 1:2 Prescale Value  
00= 1:1 Prescale Value  
T1OSCEN: LP Oscillator Enable Control bit  
If INTOSC without CLKOUT oscillator is active:  
1= LP oscillator is enabled for Timer1 clock  
0= LP oscillator is off  
Else:  
This bit is ignored. LP oscillator is disabled.  
bit 2  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from T1CKI pin (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Note 1: T1GINV bit inverts the Timer1 gate logic, regardless of source.  
2: TMR1GE bit must be set to use either T1G pin or C2OUT, as selected by the T1GSS bit of the CM2CON1  
register, as a Timer1 gate source.  
© 2009 Microchip Technology Inc.  
DS41203E-page 51  
PIC16F688  
TABLE 6-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON1  
INTCON  
PIE1  
T1GSS  
INTF  
C2SYNC  
RAIF  
---- --10  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
00-- --10  
0000 000x  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
INTE  
C2IE  
C2IF  
RAIE  
C1IE  
C1IF  
T0IF  
EEIE  
EEIF  
OSFIE  
OSFIF  
TXIE  
TMR1IE  
TMR1IF  
PIR1  
TXIF  
TMR1H  
TMR1L  
T1CON  
Legend:  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS  
TMR1ON  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
DS41203E-page 52  
© 2009 Microchip Technology Inc.  
PIC16F688  
7.1  
Comparator Overview  
7.0  
COMPARATOR MODULE  
A comparator is shown in Figure 7-1 along with the  
relationship between the analog input levels and the  
digital output. When the analog voltage at VIN+ is less  
than the analog voltage at VIN-, the output of the  
comparator is a digital low level. When the analog  
voltage at VIN+ is greater than the analog voltage at  
VIN-, the output of the comparator is a digital high level.  
Comparators are used to interface analog circuits to a  
digital circuit by comparing two analog voltages and  
providing a digital indication of their relative magnitudes.  
The comparators are very useful mixed signal building  
blocks because they provide analog functionality  
independent of the program execution. The analog  
comparator module includes the following features:  
• Dual comparators  
FIGURE 7-1:  
SINGLE COMPARATOR  
• Multiple comparator configurations  
• Comparator outputs are available internally/exter-  
nally  
VIN+  
VIN-  
+
• Programmable output polarity  
• Interrupt-on-change  
Output  
• Wake-up from Sleep  
• Timer1 gate (count enable)  
• Output synchronization to Timer1 clock input  
• Programmable voltage reference  
VIN-  
VIN+  
Note:  
Only Comparator C2 can be linked to  
Timer1.  
Output  
Note:  
The black areas of the output of the  
comparator represents the uncertainty  
due to input offsets and response time.  
This device contains two comparators as shown in  
Figure 7-2 and Figure 7-3. The comparators are not  
independently configurable.  
© 2009 Microchip Technology Inc.  
DS41203E-page 53  
PIC16F688  
FIGURE 7-2:  
COMPARATOR C1 OUTPUT BLOCK DIAGRAM  
C1INV  
To C1OUT pin  
To Data Bus  
C1  
D
Q
Q
Q1  
EN  
RD CMCON0  
Set C1IF bit  
D
Q3*RD CMCON0  
EN  
CL  
Reset  
Note 1: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
2: Q1 is held high during Sleep mode.  
FIGURE 7-3:  
COMPARATOR C2 OUTPUT BLOCK DIAGRAM  
C2SYNC  
To Timer1 Gate  
To C2OUT pin  
C2INV  
0
1
C2  
D
Q
Timer1  
clock source  
(1)  
To Data Bus  
Set C2IF bit  
D
Q
Q
Q1  
EN  
RD CMCON0  
D
Q3*RD CMCON0  
EN  
CL  
Reset  
Note 1: Comparator output is latched on falling edge of Timer1 clock source.  
2: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
3: Q1 is held high during Sleep mode.  
DS41203E-page 54  
© 2009 Microchip Technology Inc.  
PIC16F688  
7.1.1  
ANALOG INPUT CONNECTION  
CONSIDERATIONS  
Note 1: When reading a PORT register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert as an analog input, according to  
the input specification.  
A simplified circuit for an analog input is shown in  
Figure 7-4. Since the analog input pins share their  
connection with a digital input, they have reverse  
biased ESD protection diodes to VDD and VSS. The  
analog input, therefore, must be between VSS and VDD.  
If the input voltage deviates from this range by more  
than 0.6V in either direction, one of the diodes is  
forward biased and a latch-up may occur.  
2: Analog levels on any pin defined as a  
digital input, may cause the input buffer to  
consume more current than is specified.  
A maximum source impedance of 10 kΩ is recommended  
for the analog sources. Also, any external component  
connected to an analog input pin, such as a capacitor or  
a Zener diode, should have very little leakage current to  
minimize inaccuracies introduced.  
FIGURE 7-4:  
ANALOG INPUT MODEL  
VDD  
VT 0.6V  
RIC  
Rs < 10K  
To ADC Input  
AIN  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT 0.6V  
Vss  
Legend: CPIN  
= Input Capacitance  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
VT  
= Threshold Voltage  
© 2009 Microchip Technology Inc.  
DS41203E-page 55  
PIC16F688  
7.2  
Comparator Configuration  
There are eight modes of operation for the comparator.  
The CM<2:0> bits of the CMCON0 register are used to  
select these modes as shown in Figure 7-5. I/O lines  
change as a function of the mode and are designated  
as follows:  
• Analog function (A): digital input buffer is disabled  
• Digital function (D): comparator digital output,  
overrides port function  
• Normal port function (I/O): independent of  
comparator  
The port pins denoted as “A” will read as a ‘0’  
regardless of the state of the I/O pin or the I/O control  
TRIS bit. Pins used as analog inputs should also have  
the corresponding TRIS bit set to ‘1’ to disable the  
digital output driver. Pins denoted as “D” should have  
the corresponding TRIS bit set to ‘0’ to enable the  
digital output driver.  
Note:  
Comparator interrupts should be disabled  
during a Comparator mode change to  
prevent unintended interrupts.  
DS41203E-page 56  
© 2009 Microchip Technology Inc.  
PIC16F688  
FIGURE 7-5:  
COMPARATOR I/O OPERATING MODES  
Comparators Reset (POR Default Value)  
CM<2:0> = 000  
Two Independent Comparators  
CM<2:0> = 100  
A
VIN-  
A
VIN-  
C1IN-  
C1IN-  
(1)  
Off  
Off  
C1  
C2  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
VIN+  
A
C1IN+  
C1IN+  
A
VIN-  
A
A
VIN-  
C2IN-  
C2IN-  
C2IN+  
(1)  
VIN+  
A
VIN+  
C2IN+  
Three Inputs Multiplexed to Two Comparators  
CM<2:0> = 001  
One Independent Comparator  
CM<2:0> = 101  
I/O  
A
C1IN-  
VIN-  
C1IN-  
CIS = 0 VIN-  
(1)  
Off  
C1  
VIN+  
I/O  
A
CIS = 1  
C1IN+  
C1IN+  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
A
VIN-  
A
A
VIN-  
C2IN-  
C2IN+  
C2IN-  
C2IN+  
C2OUT  
C2  
VIN+  
VIN+  
Four Inputs Multiplexed to Two Comparators  
CM<2:0> = 010  
Two Common Reference Comparators with Outputs  
CM<2:0> = 110  
A
A
VIN-  
C1IN-  
C1IN-  
CIS = 0  
CIS = 1  
VIN-  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
C1IN+  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
D
C1OUT(pin)  
A
A
C2IN-  
C2IN+  
VIN-  
CIS = 0  
CIS = 1  
A
A
VIN-  
C2IN-  
C2IN+  
VIN+  
VIN+  
D
C2OUT(pin)  
From CVREF Module  
Two Common Reference Comparators  
CM<2:0> = 011  
Comparators Off (Lowest Power)  
CM<2:0> = 111  
A
VIN-  
I/O  
VIN-  
C1IN-  
C1IN-  
C1OUT  
(1)  
C1  
C2  
VIN+  
I/O  
Off  
C1  
VIN+  
I/O  
C1IN+  
C1IN+  
A
A
VIN-  
I/O  
I/O  
VIN-  
C2IN-  
C2IN+  
C2IN-  
C2IN+  
(1)  
C2OUT  
Off  
C2  
VIN+  
VIN+  
Legend: A = Analog Input, ports always reads ‘0’  
CIS = Comparator Input Switch (CMCON0<3>)  
D = Comparator Digital Output  
I/O = Normal port I/O  
Note 1: Reads as ‘0’, unless CxINV = 1.  
© 2009 Microchip Technology Inc.  
DS41203E-page 57  
PIC16F688  
7.3  
Comparator Control  
The CMCON0 register (Register 7-1) provides access  
to the following comparator features:  
• Mode selection  
• Output state  
• Output polarity  
• Input switch  
7.3.1  
COMPARATOR OUTPUT STATE  
Each comparator state can always be read internally  
via the associated CxOUT bit of the CMCON0 register.  
The comparator outputs are directed to the CxOUT  
pins when CM<2:0> = 110. When this mode is  
selected, the TRIS bits for the associated CxOUT pins  
must be cleared to enable the output drivers.  
7.3.2  
COMPARATOR OUTPUT POLARITY  
Inverting the output of a comparator is functionally  
equivalent to swapping the comparator inputs. The  
polarity of a comparator output can be inverted by set-  
ting the CxINV bits of the CMCON0 register. Clearing  
CxINV results in a non-inverted output. A complete  
table showing the output state versus input conditions  
and the polarity bit is shown in Table 7-1.  
TABLE 7-1:  
OUTPUT STATE VS. INPUT  
CONDITIONS  
Input Conditions  
CxINV  
CxOUT  
VIN- > VIN+  
VIN- < VIN+  
VIN- > VIN+  
VIN- < VIN+  
0
0
1
1
0
1
1
0
Note:  
CxOUT refers to both the register bit and  
output pin.  
DS41203E-page 58  
© 2009 Microchip Technology Inc.  
PIC16F688  
7.3.3  
COMPARATOR INPUT SWITCH  
7.5  
Comparator Interrupt Operation  
The inverting input of the comparators may be switched  
between two analog pins in the following modes:  
The comparator interrupt flag is set whenever there is  
a change in the output value of the comparator.  
Changes are recognized by means of a mismatch  
circuit which consists of two latches and an exclusive-  
or gate (see Figure 7-2 and Figure 7-3). One latch is  
updated with the comparator output level when the  
CMCON0 register is read. This latch retains the value  
until the next read of the CMCON0 register or the  
occurrence of a Reset. The other latch of the mismatch  
circuit is updated on every Q1 system clock. A  
mismatch condition will occur when a comparator  
output change is clocked through the second latch on  
the Q1 clock cycle. The mismatch condition will persist,  
holding the CxIF bit of the PIR1 register true, until either  
the CMCON0 register is read or the comparator output  
returns to the previous state.  
• CM<2:0> = 001(Comparator C1 only)  
• CM<2:0> = 010(Comparators C1 and C2)  
In the above modes, both pins remain in analog mode  
regardless of which pin is selected as the input. The CIS  
bit of the CMCON0 register controls the comparator  
input switch.  
7.4  
Comparator Response Time  
The comparator output is indeterminate for a period of  
time after the change of an input source or the selection  
of a new reference voltage. This period is referred to as  
the response time. The response time of the  
comparator differs from the settling time of the voltage  
reference. Therefore, both of these times must be  
considered when determining the total response time  
to a comparator input change. See the Comparator and  
Voltage Reference specifications in Section 14.0  
“Electrical Specifications” for more details.  
Note:  
A write operation to the CMCON0 register  
will also clear the mismatch condition  
because all writes include  
a
read  
operation at the beginning of the write  
cycle.  
Software will need to maintain information about the  
status of the comparator output to determine the actual  
change that has occurred.  
The CxIF bit of the PIR1 register is the comparator  
interrupt flag. This bit must be reset in software by  
clearing it to ‘0’. Since it is also possible to write a ‘1’ to  
this register, a simulated interrupt may be initiated.  
The CxIE bit of the PIE1 register and the PEIE and GIE  
bits of the INTCON register must all be set to enable  
comparator interrupts. If any of these bits are cleared,  
the interrupt is not enabled, although the CxIF bit of the  
PIR1 register will still be set if an interrupt condition  
occurs.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON0. This will end the  
mismatch condition. See Figures 7-6 and 7-7  
b) Clear the CxIF interrupt flag.  
A persistent mismatch condition will preclude clearing  
the CxIF interrupt flag. Reading CMCON0 will end the  
mismatch condition and allow the CxIF bit to be  
cleared.  
© 2009 Microchip Technology Inc.  
DS41203E-page 59  
PIC16F688  
FIGURE 7-6:  
COMPARATOR  
7.6  
Operation During Sleep  
INTERRUPT TIMING W/O  
CMCON0 READ  
The comparator, if enabled before entering Sleep mode,  
remains active during Sleep. The additional current  
consumed by the comparator is shown separately in  
Section 14.0 “Electrical Specifications”. If the  
comparator is not used to wake the device, power  
consumption can be minimized while in Sleep mode by  
turning off the comparator. The comparator is turned off  
by selecting mode CM<2:0> = 000or CM<2:0> = 111  
of the CMCON0 register.  
Q1  
Q3  
CIN+  
TRT  
COUT  
Set CMIF (level)  
CMIF  
reset by software  
A change to the comparator output can wake-up the  
device from Sleep. To enable the comparator to wake  
the device from Sleep, the CxIE bit of the PIE1 register  
and the PEIE bit of the INTCON register must be set.  
The instruction following the Sleep instruction always  
executes following a wake from Sleep. If the GIE bit of  
the INTCON register is also set, the device will then  
execute the Interrupt Service Routine.  
FIGURE 7-7:  
COMPARATOR  
INTERRUPT TIMING WITH  
CMCON0 READ  
Q1  
Q3  
CIN+  
TRT  
COUT  
7.7  
Effects of a Reset  
Set CMIF (level)  
CMIF  
A device Reset forces the CMCON0 and CMCON1  
registers to their Reset states. This forces the  
comparator module to be in the Comparator Reset  
mode (CM<2:0> = 000). Thus, all comparator inputs  
are analog inputs with the comparator disabled to  
consume the smallest current possible.  
cleared by CMCON0 read  
reset by software  
Note 1: If a change in the CM1CON0 register  
(CxOUT) occurs when a read operation is  
being executed (start of the Q2 cycle),  
then the CxIF Interrupt Flag bit of the  
PIR1 register may not get set.  
2: When either comparator is first enabled,  
bias circuitry in the comparator module  
may cause an invalid output from the  
comparator until the bias circuitry is stable.  
Allow about 1 μs for bias settling then clear  
the mismatch condition and interrupt flags  
before enabling comparator interrupts.  
DS41203E-page 60  
© 2009 Microchip Technology Inc.  
PIC16F688  
REGISTER 7-1:  
CMCON0: COMPARATOR CONFIGURATION REGISTER  
R-0  
C2OUT  
bit 7  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
C1OUT  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 Output inverted  
0= C1 Output not inverted  
CIS: Comparator Input Switch bit  
When CM<2:0> = 010:  
1= C1IN+ connects to C1 VIN-  
C2IN+ connects to C2 VIN-  
0= C1IN- connects to C1 VIN-  
C2IN- connects to C2 VIN-  
When CM<2:0> = 001:  
1= C1IN+ connects to C1 VIN-  
0= C1IN- connects to C1 VIN-  
bit 2-0  
CM<2:0>: Comparator Mode bits (See Figure 7-5)  
000= Comparators off. CxIN pins are configured as analog  
001= Three inputs multiplexed to two comparators  
010= Four inputs multiplexed to two comparators  
011= Two common reference comparators  
100= Two independent comparators  
101= One independent comparator  
110= Two common reference comparators with outputs  
111= Comparators off. CxIN pins are configured as digital I/O  
© 2009 Microchip Technology Inc.  
DS41203E-page 61  
PIC16F688  
7.8  
Comparator C2 Gating Timer1  
7.9  
Synchronizing Comparator C2  
Output to Timer1  
This feature can be used to time the duration or interval  
of analog events. Clearing the T1GSS bit of the  
CMCON1 register will enable Timer1 to increment  
based on the output of Comparator C2. This requires  
that Timer1 is on and gating is enabled. See  
Section 6.0 “Timer1 Module with Gate Control” for  
details.  
The output of Comparator C2 can be synchronized with  
Timer1 by setting the C2SYNC bit of the CMCON1  
register. When enabled, the comparator output is  
latched on the falling edge of the Timer1 clock source.  
If a prescaler is used with Timer1, the comparator  
output is latched after the prescaling function. To  
prevent a race condition, the comparator output is  
latched on the falling edge of the Timer1 clock source  
and Timer1 increments on the rising edge of its clock  
source. Reference the comparator block diagrams  
(Figure 7-2 and Figure 7-3) and the Timer1 Block  
Diagram (Figure 6-1) for more information.  
It is recommended to synchronize Comparator C2 with  
Timer1 by setting the C2SYNC bit when the comparator  
is used as the Timer1 gate source. This ensures Timer1  
does not miss an increment if the comparator changes  
during an increment.  
REGISTER 7-2:  
CMCON1: COMPARATOR CONFIGURATION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
T1GSS  
C2SYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
T1GSS: Timer1 Gate Source Select bit(1)  
1= Timer1 gate source is T1G pin (pin should be configured as digital input)  
0= Timer1 gate source is Comparator C2 output  
bit 0  
C2SYNC: Comparator C2 Output Synchronization bit(2)  
1= Output is synchronized with falling edge of Timer1 clock  
0= Output is asynchronous  
Note 1: Refer to Section 6.6 “Timer1 Gate”.  
2: Refer to Figure 7-3.  
DS41203E-page 62  
© 2009 Microchip Technology Inc.  
PIC16F688  
EQUATION 7-1:  
CVREF OUTPUT VOLTAGE  
7.10 Comparator Voltage Reference  
VRR = 1 (low range):  
CVREF = (VR<3:0>/24) × VDD  
VRR = 0 (high range):  
CVREF = (VDD/4) +  
The Comparator Voltage Reference module provides  
an internally generated voltage reference for the  
comparators. The following features are available:  
• Independent from Comparator operation  
• Two 16-level voltage ranges  
• Output clamped to VSS  
(VR<3:0> × VDD/32)  
The full range of VSS to VDD cannot be realized due to  
the construction of the module. See Figure 7-8.  
• Ratiometric with VDD  
The VRCON register (Figure 7-3) controls the Voltage  
Reference module shown in Figure 7-8.  
7.10.3  
OUTPUT CLAMPED TO VSS  
The CVREF output voltage can be set to Vss with no  
power consumption by configuring VRCON as follows:  
7.10.1  
INDEPENDENT OPERATION  
• VREN = 0  
The comparator voltage reference is independent of  
the comparator configuration. Setting the VREN bit of  
the VRCON register will enable the voltage reference.  
• VRR = 1  
• VR<3:0> = 0000  
This allows the comparator to detect a zero-crossing  
while not consuming additional CVREF module current.  
7.10.2  
OUTPUT VOLTAGE SELECTION  
The CVREF voltage reference has 2 ranges with 16  
voltage levels in each range. Range selection is  
controlled by the VRR bit of the VRCON register. The  
16 levels are set with the VR<3:0> bits of the VRCON  
register.  
7.10.4  
OUTPUT RATIOMETRIC TO VDD  
The comparator voltage reference is VDD derived and  
therefore, the CVREF output changes with fluctuations in  
VDD. The tested absolute accuracy of the Comparator  
Voltage Reference can be found in Section 14.0  
“Electrical Specifications”.  
The CVREF output voltage is determined by the  
following equations:  
REGISTER 7-3:  
VRCON: VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
VREN  
U-0  
R/W-0  
VRR  
U-0  
R/W-0  
VR3  
R/W-0  
VR2  
R/W-0  
VR1  
R/W-0  
VR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
VREN: CVREF Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down, no IDD drain and CVREF = VSS.  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
VRR: CVREF Range Selection bit  
1= Low range  
0= High range  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
VR<3:0>: CVREF Value Selection bits (0 VR<3:0> 15)  
When VRR = 1: CVREF = (VR<3:0>/24) * VDD  
When VRR = 0: CVREF = VDD/4 + (VR<3:0>/32) * VDD  
© 2009 Microchip Technology Inc.  
DS41203E-page 63  
PIC16F688  
FIGURE 7-8:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
16 Stages  
8R  
R
R
R
R
VDD  
VRR  
8R  
16-1 Analog  
MUX  
VREN  
15  
14  
CVREF to  
Comparator  
Input  
2
1
0
(1)  
VR<3:0>  
VREN  
VR<3:0> = 0000  
VRR  
Note 1: Care should be taken to ensure VREF remains  
within the comparator common mode input  
range. See Section 14.0 “Electrical Specifica-  
tions” for more detail.  
TABLE 7-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND  
VOLTAGE REFERENCE MODULES  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSEL  
CMCON0  
CMCON1  
INTCON  
PIE1  
ANS7  
C2OUT  
ANS6  
C1OUT  
ANS5  
C2INV  
ANS4  
C1INV  
ANS3  
CIS  
ANS2  
CM2  
ANS1  
CM1  
ANS0  
CM0  
1111 1111 1111 1111  
0000 0000 0000 0000  
---- --10 ---- --10  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
--x0 x000 --x0 x000  
--xx 0000 --xx 0000  
--11 1111 --11 1111  
--11 1111 --11 1111  
0-0- 0000 0-0- 0000  
T1GSS  
INTF  
TXIE  
TXIF  
RA1  
C2SYNC  
RAIF  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
RA5  
INTE  
C2IE  
C2IF  
RA4  
RAIE  
C1IE  
C1IF  
RA3  
RC3  
T0IF  
OSFIE  
OSFIF  
RA2  
TMR1IE  
TMR1IF  
RA0  
PIR1  
PORTA  
PORTC  
TRISA  
RC5  
RC4  
RC2  
RC1  
RC0  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1  
TRISC5 TRISC4 TRISC3 TRISC2 TRISC1  
TRISA0  
TRISC0  
VR0  
TRISC  
VRCON  
VREN  
VRR  
VR3  
VR2  
VR1  
Legend:  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used for comparator.  
DS41203E-page 64  
© 2009 Microchip Technology Inc.  
PIC16F688  
8.0  
ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 10-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates a 10-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result registers (ADRESL and ADRESH).  
The ADC voltage reference is software selectable to  
either VDD or a voltage applied to the external reference  
pins.  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
Figure 8-1 shows the block diagram of the ADC.  
FIGURE 8-1:  
ADC BLOCK DIAGRAM  
VDD  
VCFG = 0  
VCFG = 1  
VREF  
000  
001  
010  
011  
100  
101  
110  
111  
RA0/AN0  
RA1/AN1/VREF  
RA2/AN2  
A/D  
10  
GO/DONE  
RA4/AN3  
RC0/AN4  
0= Left Justify  
1= Right Justify  
ADFM  
RC1/AN5  
RC2/AN6  
ADON  
10  
RC3/AN7  
ADRESH ADRESL  
VSS  
CHS  
© 2009 Microchip Technology Inc.  
DS41203E-page 65  
PIC16F688  
For correct conversion, the appropriate TAD specification  
must be met. See A/D conversion requirements in  
Section 14.0 “Electrical Specifications” for more  
information. Table 8-1 gives examples of appropriate  
ADC clock selections.  
8.1  
ADC Configuration  
When configuring and using the ADC the following  
functions must be considered:  
• Port configuration  
• Channel selection  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
• ADC voltage reference selection  
• ADC conversion clock source  
• Interrupt control  
• Results formatting  
8.1.1  
PORT CONFIGURATION  
The ADC can be used to convert both analog and digital  
signals. When converting analog signals, the I/O pin  
should be configured for analog by setting the associated  
TRIS and ANSEL bits. See the corresponding Port  
section for more information.  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input  
buffer to conduct excess current.  
8.1.2  
CHANNEL SELECTION  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
When changing channels, a delay is required before  
starting the next conversion. Refer to Section 8.2  
“ADC Operation” for more information.  
8.1.3  
ADC VOLTAGE REFERENCE  
The VCFG bit of the ADCON0 register provides control  
of the positive voltage reference. The positive voltage  
reference can be either VDD or an external voltage  
source. The negative voltage reference is always  
connected to the ground reference.  
8.1.4  
CONVERSION CLOCK  
The source of the conversion clock is software  
selectable via the ADCS bits of the ADCON1 register.  
There are seven possible clock options:  
• FOSC/2  
• FOSC/4  
• FOSC/8  
• FOSC/16  
• FOSC/32  
• FOSC/64  
• FRC (dedicated internal oscillator)  
The time to complete one bit conversion is defined as  
TAD. One full 10-bit conversion requires 11 TAD periods  
as shown in Figure 8-3.  
DS41203E-page 66  
© 2009 Microchip Technology Inc.  
PIC16F688  
TABLE 8-1:  
ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES (VDD > 3.0V)  
ADC Clock Period (TAD)  
Device Frequency (FOSC)  
ADC Clock Source  
ADCS<2:0>  
20 MHz  
8 MHz  
4 MHz  
1 MHz  
FOSC/2  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/32  
FOSC/64  
FRC  
000  
100  
001  
101  
010  
110  
x11  
100 ns(2)  
200 ns(2)  
400 ns(2)  
800 ns(2)  
1.6 μs  
250 ns(2)  
500 ns(2)  
1.0 μs(2)  
2.0 μs  
500 ns(2)  
1.0 μs(2)  
2.0 μs  
2.0 μs  
4.0 μs  
8.0 μs(3)  
16.0 μs(3)  
32.0 μs(3)  
64.0 μs(3)  
2-6 μs(1,4)  
4.0 μs  
4.0 μs  
8.0 μs(3)  
16.0 μs(3)  
2-6 μs(1,4)  
3.2 μs  
2-6 μs(1,4)  
8.0 μs(3)  
2-6 μs(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The FRC source has a typical TAD time of 4 μs for VDD > 3.0V.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the  
conversion will be performed during Sleep.  
FIGURE 8-2:  
ANALOG-TO-DIGITAL CONVERSION TAD CYCLES  
TCY to TAD  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
b9  
b8  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Conversion Starts  
Holding Capacitor is Disconnected from Analog Input (typically 100 ns)  
Set GO/DONE bit  
ADRESH and ADRESL registers are loaded,  
GO bit is cleared,  
ADIF bit is set,  
Holding capacitor is connected to analog input  
© 2009 Microchip Technology Inc.  
DS41203E-page 67  
PIC16F688  
8.1.5  
INTERRUPTS  
8.1.6  
RESULT FORMATTING  
The ADC module allows for the ability to generate an  
interrupt upon completion of an Analog-to-Digital  
Conversion. The ADC interrupt flag is the ADIF bit in  
the PIR1 register. The ADC interrupt enable is the ADIE  
bit in the PIE1 register. The ADIF bit must be cleared in  
software.  
The 10-bit A/D Conversion result can be supplied in  
two formats, left justified or right justified. The ADFM bit  
of the ADCON0 register controls the output format.  
Figure 8-4 shows the two output formats.  
Note:  
The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEP  
instruction is always executed. If the user is attempting  
to wake-up from Sleep and resume in-line code  
execution, the global interrupt must be disabled. If the  
global interrupt is enabled, execution will switch to the  
Interrupt Service Routine.  
Please see Section 8.1.5 “Interrupts” for more  
information.  
FIGURE 8-3:  
10-BIT A/D CONVERSION RESULT FORMAT  
ADRESH  
ADRESL  
LSB  
(ADFM = 0)  
MSB  
bit 7  
bit 0  
bit 0  
bit 7  
bit 7  
bit 0  
10-bit A/D Result  
Unimplemented: Read as ‘0’  
(ADFM = 1)  
MSB  
LSB  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
10-bit A/D Result  
DS41203E-page 68  
© 2009 Microchip Technology Inc.  
PIC16F688  
8.2.5  
A/D CONVERSION PROCEDURE  
8.2  
ADC Operation  
This is an example procedure for using the ADC to  
perform an Analog-to-Digital Conversion:  
8.2.1  
STARTING A CONVERSION  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the GO/  
DONE bit of the ADCON0 register to a ‘1’ will start the  
Analog-to-Digital Conversion.  
1. Configure Port:  
• Disable pin output driver (See TRIS register)  
• Configure pin as analog  
2. Configure the ADC module:  
• Select ADC conversion clock  
• Configure voltage reference  
• Select ADC input channel  
• Select result format  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 8.2.5 “A/D Conversion  
Procedure”.  
8.2.2  
COMPLETION OF A CONVERSION  
• Turn on ADC module  
When the conversion is complete, the ADC module will:  
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
• Clear the GO/DONE bit  
• Set the ADIF flag bit  
• Enable ADC interrupt  
• Enable peripheral interrupt  
• Enable global interrupt(1)  
• Update the ADRESH:ADRESL registers with new  
conversion result  
4. Wait the required acquisition time(2)  
.
8.2.3  
TERMINATING A CONVERSION  
5. Start conversion by setting the GO/DONE bit.  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared in software. The  
ADRESH:ADRESL registers will not be updated with  
the partially complete Analog-to-Digital Conversion  
sample. Instead, the ADRESH:ADRESL register pair  
will retain the value of the previous conversion. Addi-  
tionally, a 2 TAD delay is required before another acqui-  
sition can be initiated. Following this delay, an input  
acquisition is automatically started on the selected  
channel.  
6. Wait for ADC conversion to complete by one of  
the following:  
• Polling the GO/DONE bit  
• Waiting for the ADC interrupt (interrupts  
enabled)  
7. Read ADC Result  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: See Section 8.3 “A/D Acquisition  
Requirements”.  
8.2.4  
ADC OPERATION DURING SLEEP  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. When the FRC clock source is selected, the  
ADC waits one additional instruction before starting the  
conversion. This allows the SLEEP instruction to be  
executed, which can reduce system noise during the  
conversion. If the ADC interrupt is enabled, the device  
will wake-up from Sleep when the conversion  
completes. If the ADC interrupt is disabled, the ADC  
module is turned off after the conversion completes,  
although the ADON bit remains set.  
When the ADC clock source is something other than  
FRC, a SLEEP instruction causes the present conver-  
sion to be aborted and the ADC module is turned off,  
although the ADON bit remains set.  
© 2009 Microchip Technology Inc.  
DS41203E-page 69  
PIC16F688  
EXAMPLE 8-1:  
A/D CONVERSION  
;This code block configures the ADC  
;for polling, Vdd reference, Frc clock  
;and AN0 input.  
;
;Conversion start & polling for completion  
; are included.  
;
BANKSEL ADCON1  
;
MOVLW  
MOVWF  
B’01110000’ ;ADC Frc clock  
ADCON1  
;
BANKSEL TRISA  
;
BSF  
TRISA,0  
;Set RA0 to input  
BANKSEL ANSEL  
;
BSF  
ANSEL,0  
;Set RA0 to analog  
;
BANKSEL ADCON0  
MOVLW  
MOVWF  
CALL  
BSF  
BTFSC  
GOTO  
B’10000001’ ;Right justify,  
ADCON0  
;Vdd Vref, AN0, On  
;Acquisiton delay  
;Start conversion  
;Is conversion done?  
;No, test again  
;
SampleTime  
ADCON0,GO  
ADCON0,GO  
$-1  
BANKSEL ADRESH  
MOVF  
MOVWF  
BANKSEL ADRESL  
ADRESH,W  
RESULTHI  
;Read upper 2 bits  
;store in GPR space  
;
MOVF  
MOVWF  
ADRESL,W  
RESULTLO  
;Read lower 8 bits  
;Store in GPR space  
DS41203E-page 70  
© 2009 Microchip Technology Inc.  
PIC16F688  
8.2.6  
ADC REGISTER DEFINITIONS  
The following registers are used to control the operation of the ADC.  
REGISTER 8-1:  
ADCON0: A/D CONTROL REGISTER 0  
R/W-0  
ADFM  
R/W-0  
VCFG  
U-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
ADFM: A/D Conversion Result Format Select bit  
1= Right justified  
0= Left justified  
VCFG: Voltage Reference bit  
1= VREF pin  
0= VDD  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-2  
CHS<2:0>: Analog Channel Select bits  
000= AN0  
001= AN1  
010= AN2  
011= AN3  
100= AN4  
101= AN5  
110= AN6  
111= AN7  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D Conversion cycle in progress. Setting this bit starts an A/D Conversion cycle.  
This bit is automatically cleared by hardware when the A/D Conversion has completed.  
0= A/D Conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
REGISTER 8-2:  
ADCON1: A/D CONTROL REGISTER 1  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADCS<2:0>: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
x11= FRC (clock derived from a dedicated internal oscillator = 500 kHz max)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
bit 3-0  
Unimplemented: Read as ‘0’  
© 2009 Microchip Technology Inc.  
DS41203E-page 71  
PIC16F688  
REGISTER 8-3:  
ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0  
R/W-x  
ADRES9  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES8  
ADRES7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADRES<9:2>: ADC Result Register bits  
Upper 8 bits of 10-bit conversion result  
REGISTER 8-4:  
ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0  
R/W-x  
ADRES1  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
ADRES<1:0>: ADC Result Register bits  
Lower 2 bits of 10-bit conversion result  
Reserved: Do not use.  
REGISTER 8-5:  
ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES9  
ADRES8  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1-0  
Reserved: Do not use.  
ADRES<9:8>: ADC Result Register bits  
Upper 2 bits of 10-bit conversion result  
REGISTER 8-6:  
ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1  
R/W-x  
ADRES7  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
ADRES1  
ADRES0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
Lower 8 bits of 10-bit conversion result  
DS41203E-page 72  
© 2009 Microchip Technology Inc.  
PIC16F688  
can be started. To calculate the minimum acquisition  
time, Equation 8-1 may be used. This equation  
assumes that 1/2 LSb error is used (1024 steps for the  
ADC). The 1/2 LSb error is the maximum error allowed  
for the ADC to meet its specified resolution.  
8.3  
A/D Acquisition Requirements  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The Analog  
Input model is shown in Figure 8-4. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge the  
capacitor CHOLD. The sampling switch (RSS) impedance  
varies over the device voltage (VDD), see Figure 8-4.  
The maximum recommended impedance for analog  
sources is 10 kΩ. As the source impedance is  
decreased, the acquisition time may be decreased.  
After the analog input channel is selected (or changed),  
an A/D acquisition must be done before the conversion  
EQUATION 8-1:  
ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10kΩ 5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2µs + TC + [(Temperature - 25°C)(0.05µs/°C)]  
The value for TC can be approximated with the following equations:  
1
2047  
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED 1 ----------- = VCHOLD  
TC  
---------  
VAPPLIED 1 e RC = VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
Tc  
--------  
1
2047  
VAPPLIED 1 eRC = VAPPLIED 1 -----------  
;combining [1] and [2]  
Solving for TC:  
TC = CHOLD(RIC + RSS + RS) ln(1/2047)  
= 10pF(1kΩ + 7kΩ + 10kΩ) ln(0.0004885)  
= 1.37µs  
Therefore:  
TACQ = 2ΜS + 1.37ΜS + [(50°C- 25°C)(0.05ΜS/°C)]  
= 4.67ΜS  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin  
leakage specification.  
© 2009 Microchip Technology Inc.  
DS41203E-page 73  
PIC16F688  
FIGURE 8-4:  
ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
Sampling  
Switch  
ANx  
SS  
RIC 1k  
Rss  
Rs  
CPIN  
5 pF  
VA  
I LEAKAGE  
± 500 nA  
CHOLD = 10 pF  
VSS/VREF-  
VT = 0.6V  
6V  
5V  
RSS  
VDD 4V  
3V  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
2V  
I LEAKAGE = Leakage current at the pin due to  
various junctions  
RIC  
SS  
CHOLD  
= Interconnect Resistance  
= Sampling Switch  
= Sample/Hold Capacitance  
5 6 7 8 9 1011  
Sampling Switch  
(kΩ)  
FIGURE 8-5:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
3FFh  
3FEh  
3FDh  
3FCh  
3FBh  
1 LSB ideal  
Full-Scale  
Transition  
004h  
003h  
002h  
001h  
000h  
Analog Input Voltage  
1 LSB ideal  
Zero-Scale  
Transition  
VDD/VREF+  
VSS/VREF-  
DS41203E-page 74  
© 2009 Microchip Technology Inc.  
PIC16F688  
TABLE 8-2:  
SUMMARY OF ASSOCIATED ADC REGISTERS  
Value on  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
POR, BOR  
Resets  
ADCON0  
ADCON1  
ANSEL  
ADFM  
VCFG  
ADCS2  
ANS6  
CHS2  
ADCS0  
ANS4  
CHS1  
CHS0  
GO/DONE ADON  
00-0 0000 00-0 0000  
-000 ---- -000 ----  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 000x 0000 000x  
ADCS1  
ANS5  
ANS7  
ANS3  
ANS2  
ANS1  
ANS0  
ADRESH A/D Result Register High Byte  
ADRESL A/D Result Register Low Byte  
INTCON  
PIE1  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
RA5  
INTE  
C2IE  
C2IF  
RA4  
RC4  
RAIE  
C1IE  
C1IF  
RA3  
T0IF  
OSFIE  
OSFIF  
RA2  
INTF  
TXIE  
RAIF  
TMR1IE 0000 0000 0000 0000  
TMR1IF 0000 0000 0000 0000  
PIR1  
TXIF  
PORTA  
PORTC  
TRISA  
TRISC  
Legend:  
RA1  
RA0  
RC0  
--x0 x000 --x0 x000  
--xx 0000 --xx 0000  
RC5  
RC3  
RC2  
RC1  
TRISA5 TRISA4 TRISA3 TRISA2  
TRISC5 TRISC4 TRISC3 TRISC2  
TRISA1  
TRISC1  
TRISA0 --11 1111 --11 1111  
TRISC0 --11 1111 --11 1111  
x= unknown, u= unchanged, = unimplemented read as ‘0’. Shaded cells are not used for ADC module.  
© 2009 Microchip Technology Inc.  
DS41203E-page 75  
PIC16F688  
NOTES:  
DS41203E-page 76  
© 2009 Microchip Technology Inc.  
PIC16F688  
9.1  
EEADR and EEADRH Registers  
9.0  
DATA EEPROM AND FLASH  
PROGRAM MEMORY  
CONTROL  
The EEADR and EEADRH registers can address up to  
a maximum of 256 bytes of data EEPROM or up to a  
maximum of 4K words of program EEPROM.  
Data EEPROM memory is readable and writable and  
the Flash program memory is readable during normal  
operation (full VDD range). These memories are not  
directly mapped in the register file space. Instead, they  
are indirectly addressed through the Special Function  
Registers. There are six SFRs used to access these  
memories:  
When selecting a program address value, the MSB of  
the address is written to the EEADRH register and the  
LSB is written to the EEADR register. When selecting a  
data address value, only the LSB of the address is  
written to the EEADR register.  
9.1.1  
EECON1 AND EECON2 REGISTERS  
• EECON1  
• EECON2  
• EEDAT  
EECON1 is the control register for EE memory  
accesses.  
Control bit EEPGD determines if the access will be a  
program or data memory access. When clear, as it is  
when reset, any subsequent operations will operate on  
the data memory. When set, any subsequent  
operations will operate on the program memory.  
Program memory can only be read.  
• EEDATH  
• EEADR  
• EEADRH  
When interfacing the data memory block, EEDAT holds  
the 8-bit data for read/write, and EEADR holds the  
address of the EE data location being accessed. This  
device has 256 bytes of data EEPROM with an address  
range from 0h to 0FFh.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set, in  
software. They are cleared in hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
When interfacing the program memory block, the  
EEDAT and EEDATH registers form a 2-byte word that  
holds the 14-bit data for read/write, and the EEADR  
and EEADRH registers form a 2-byte word that holds  
the 12-bit address of the EEPROM location being  
accessed. This device has 4K words of program  
EEPROM with an address range from 0h to 0FFFh.  
The program memory allows one word reads.  
The WREN bit, when set, will allow a write operation to  
data EEPROM. On power-up, the WREN bit is clear.  
The WRERR bit is set when a write operation is inter-  
rupted by a MCLR or a WDT Time-out Reset during  
normal operation. In these situations, following Reset,  
the user can check the WRERR bit and rewrite the  
location. The data and address will be unchanged in  
the EEDAT and EEADR registers.  
The EEPROM data memory allows byte read and write.  
A byte write automatically erases the location and  
writes the new data (erase before write).  
Interrupt flag bit EEIF of the PIR1 register is set when  
write is complete. It must be cleared in the software.  
The write time is controlled by an on-chip timer. The  
write/erase voltages are generated by an on-chip  
charge pump rated to operate over the voltage range of  
the device for byte or word operations.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the data EEPROM write sequence.  
When the device is code-protected, the CPU may  
continue to read and write the data EEPROM memory  
and read the program memory. When code-protected,  
the device programmer can no longer access data or  
program memory.  
© 2009 Microchip Technology Inc.  
DS41203E-page 77  
PIC16F688  
REGISTER 9-1:  
EEDAT: EEPROM DATA REGISTER  
R/W-0  
EEDAT7  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDAT6  
EEDAT5  
EEDAT4  
EEDAT3  
EEDAT2  
EEDAT1  
EEDAT0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-0  
EEDATn: Byte Value to Write to or Read from Data EEPROM bits  
REGISTER 9-2:  
EEADR: EEPROM ADDRESS REGISTER  
R/W-0  
EEADR7  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEADR6  
EEADR5  
EEADR4  
EEADR3  
EEADR2  
EEADR1  
EEADR0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
(1)  
bit 7-0  
EEADR<7:0>: 8 Least Significant Address bits for EEPROM Read/Write Operation or Read from program memory  
REGISTER 9-3:  
EEDATH: EEPROM DATA HIGH BYTE REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDATH5  
EEDATH4  
EEDATH3  
EEDATH2  
EEDATH1  
EEDATH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
EEDATH<5:0>: 6 Most Significant Data bits from program memory  
REGISTER 9-4:  
EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEADRH3  
EEADRH2  
EEADRH1  
EEADRH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
EEADRH<3:0>: Specifies the 4 Most Significant Address bits or high bits for program memory reads  
DS41203E-page 78  
© 2009 Microchip Technology Inc.  
PIC16F688  
REGISTER 9-5:  
EECON1: EEPROM CONTROL REGISTER  
R/W-x  
EEPGD  
bit 7  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
WRERR  
bit 0  
Legend:  
S = Bit can only be set  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
EEPGD: Program/Data EEPROM Select bit  
1= Accesses program memory  
0= Accesses data memory  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during  
normal operation or BOR Reset)  
0= The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the data EEPROM  
WR: Write Control bit  
EEPGD = 1:  
This bit is ignored  
EEPGD = 0:  
1= Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only  
be set, not cleared, in software.)  
0= Write cycle to the data EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates a memory read (the RD is cleared in hardware and can only be set, not cleared, in  
software.)  
0= Does not initiate a memory read  
© 2009 Microchip Technology Inc.  
DS41203E-page 79  
PIC16F688  
9.1.2  
READING THE DATA EEPROM  
MEMORY  
9.1.3  
WRITING TO THE DATA EEPROM  
MEMORY  
To read a data memory location, the user must write  
the address to the EEADR register, clear the EEPGD  
control bit of the EECON1 register, and then set control  
bit RD of the EECON1 register. The data is available in  
the very next cycle, in the EEDAT register; therefore, it  
can be read in the next instruction. EEDAT will hold this  
value until another read or until it is written to by the  
user (during a write operation).  
To write an EEPROM data location, the user must first  
write the address to the EEADR register and the data  
to the EEDAT register. Then the user must follow a  
specific sequence to initiate the write for each byte.  
The write will not initiate if the above sequence is not  
followed exactly (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. Interrupts  
should be disabled during this code segment.  
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating EEPROM. The WREN bit is not cleared  
by hardware.  
EXAMPLE 9-1:  
DATA EEPROM READ  
BANKSELEEADR  
;
;
MOVLW  
MOVWF  
DATA_EE_ADDR  
EEADR  
;Data Memory  
;Address to read  
BCF  
EECON1, EEPGD ;Point to DATA  
;memory  
BSF  
MOVF  
EECON1, RD  
EEDAT, W  
;EE Read  
;W = EEDAT  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit will  
be inhibited from being set unless the WREN bit is set.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. EEIF must be  
cleared by software.  
EXAMPLE 9-2:  
DATA EEPROM WRITE  
BANKSEL EEADR  
;
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
DATA_EE_ADDR  
EEADR  
DATA_EE_DATA  
EEDAT  
;Data Memory Address to write  
;
;Data Memory Value to write  
;
BANKSEL EECON1  
BCF  
BSF  
EECON1, EEPGD  
EECON1, WREN  
;Point to DATA memory  
;Enable writes  
BCF  
INTCON, GIE  
INTCON, GIE  
$-2  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
;Disable INTs.  
;SEE AN576  
BTFSC  
GOTO  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
;
;Write 55h  
;
;Write AAh  
;Set WR bit to begin write  
;Enable INTs.  
BSF  
SLEEP  
BCF  
;Wait for interrupt to signal write complete  
;Disable writes  
EECON1, WREN  
DS41203E-page 80  
© 2009 Microchip Technology Inc.  
PIC16F688  
EEDAT and EEDATH registers will hold this value until  
another read or until it is written to by the user (during  
a write operation).  
9.1.4  
READING THE FLASH PROGRAM  
MEMORY  
To read a program memory location, the user must  
write two bytes of the address to the EEADR and  
EEADRH registers, set the EEPGD control bit of the  
EECON1 register, and then set control bit RD of the  
EECON1 register. Once the read control bit is set, the  
program memory Flash controller will use the second  
instruction cycle to read the data. This causes the sec-  
ond instruction immediately following the “BSF  
EECON1,RD” instruction to be ignored. The data is  
available in the very next cycle, in the EEDAT and  
EEDATH registers; therefore, it can be read as two  
bytes in the following instructions.  
Note 1: The two instructions following a program  
memory read are required to be NOP’s.  
This prevents the user from executing a  
two-cycle instruction on the next  
instruction after the RD bit is set.  
2: If the WR bit is set when EEPGD = 1, it  
will be immediately reset to ‘0’ and no  
operation will take place.  
EXAMPLE 9-3:  
FLASH PROGRAM READ  
BANKSEL  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BANKSEL  
BSF  
EEADR  
MS_PROG_EE_ADDR  
EEADRH  
LS_PROG_EE_ADDR  
EEADR  
EECON1  
;
;
;MS Byte of Program Address to read  
;
;LS Byte of Program Address to read  
;
;Point to PROGRAM memory  
;EE Read  
EECON1, EEPGD  
EECON1, RD  
BSF  
;
;First instruction after BSF EECON1,RD executes normally  
NOP  
NOP  
;Any instructions here are ignored as program  
;memory is read in second cycle after BSF EECON1,RD  
;
BANKSEL  
MOVF  
MOVWF  
MOVF  
MOVWF  
BCF  
EEDAT  
;
EEDAT, W  
LOWPMBYTE  
EEDATH, W  
HIGHPMBYTE  
STATUS, RP1  
;W = LS Byte of Program Memory  
;
;W = MS Byte of Program EEDAT  
;
;Bank 0  
© 2009 Microchip Technology Inc.  
DS41203E-page 81  
PIC16F688  
FIGURE 9-1:  
FLASH PROGRAM MEMORY READ CYCLE EXECUTION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
PC + 1  
EEADRH,EEADR  
PC + 3  
PC + 4  
PC + 5  
Flash ADDR  
Flash Data  
INSTR (PC)  
INSTR (PC + 1)  
EEDATH,EEDAT  
INSTR (PC + 3)  
INSTR (PC + 4)  
BSF EECON1,RD  
executed here  
INSTR(PC - 1)  
executed here  
INSTR(PC + 1)  
executed here  
Forced NOP  
executed here  
INSTR(PC + 3)  
executed here  
INSTR(PC + 4)  
executed here  
RD bit  
EEDATH  
EEDAT  
Register  
EERHLT  
TABLE 9-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EECON1  
EECON2  
EEADR  
EEADRH  
EEDAT  
EEPGD  
WRERR  
WREN  
WR  
RD  
x--- x000  
---- ----  
0000 0000  
---- 0000  
0000 0000  
--00 0000  
0000 000x  
0000 0000  
0--- q000  
---- ----  
0000 0000  
---- 0000  
0000 0000  
--00 0000  
0000 000x  
0000 0000  
EEPROM Control Register 2 (not a physical register)  
EEADR7 EEADR6 EEADR5  
EEADR4  
EEADR3  
EEADR2  
EEADR1  
EEADR0  
EEDAT7  
EEDAT6  
EEADRH3 EEADRH2 EEADRH1 EEADRH0  
EEDAT3 EEDAT2 EEDAT1 EEDAT0  
EEDAT5  
EEDAT4  
EEDATH  
INTCON  
PIE1  
EEDATH5 EEDATH4 EEDATH3 EEDATH2 EEDATH1 EEDATH0  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
INTE  
C2IE  
C2IF  
RABIE  
C1IE  
C1IF  
T0IF  
INTF  
TXIE  
TXIF  
RABIF  
EEIE  
EEIF  
OSFIE  
OSFIF  
TMR1IE  
TMR1IF  
PIR1  
0000 0000  
0000 0000  
Legend:  
x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by data EEPROM module.  
DS41203E-page 82  
© 2009 Microchip Technology Inc.  
PIC16F688  
The EUSART module includes the following capabilities:  
10.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
• Full-duplex asynchronous transmit and receive  
• Two-character input buffer  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
• One-character output buffer  
• Programmable 8-bit or 9-bit character length  
• Address detection in 9-bit mode  
The Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) module is a serial I/O  
communications peripheral. It contains all the clock  
generators, shift registers and data buffers necessary  
to perform an input or output serial data transfer  
independent of device program execution. The  
EUSART, also known as a Serial Communications  
Interface (SCI), can be configured as a full-duplex  
asynchronous system or half-duplex synchronous  
• Input buffer overrun error detection  
• Received character framing error detection  
• Half-duplex synchronous master  
• Half-duplex synchronous slave  
• Programmable clock polarity in synchronous  
modes  
The EUSART module implements the following  
additional features, making it ideally suited for use in  
Local Interconnect Network (LIN) bus systems:  
system.  
Full-Duplex  
mode  
is  
useful  
for  
communications with peripheral systems, such as CRT  
terminals and personal computers. Half-Duplex  
Synchronous mode is intended for communications  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs or other microcontrollers.  
These devices typically do not have internal clocks for  
baud rate generation and require the external clock  
signal provided by a master synchronous device.  
• Automatic detection and calibration of the baud rate  
• Wake-up on Break reception  
• 13-bit Break character transmit  
Block diagrams of the EUSART transmitter and  
receiver are shown in Figure 10-1 and Figure 10-2.  
FIGURE 10-1:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIE  
Interrupt  
TXIF  
TXREG Register  
8
TX/CK pin  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• • •  
Transmit Shift Register (TSR)  
TXEN  
TRMT  
SPEN  
Baud Rate Generator  
BRG16  
FOSC  
÷ n  
TX9  
n
+ 1  
Multiplier x4  
x16 x64  
TX9D  
SYNC  
BRGH  
BRG16  
1
X
X
X
1
1
0
1
0
0
0
1
0
0
0
SPBRGH  
SPBRG  
© 2009 Microchip Technology Inc.  
DS41203E-page 83  
PIC16F688  
FIGURE 10-2:  
EUSART RECEIVE BLOCK DIAGRAM  
SPEN  
CREN  
OERR  
RCIDL  
RX/DT pin  
RSR Register  
MSb  
Stop (8)  
LSb  
0
START  
Pin Buffer  
and Control  
Data  
Recovery  
7
1
• • •  
Baud Rate Generator  
FOSC  
RX9  
÷ n  
BRG16  
n
+ 1  
Multiplier  
x4  
x16 x64  
SYNC  
BRGH  
BRG16  
1
X
1
1
0
1
0
0
0
1
0
0
0
FIFO  
SPBRGH  
SPBRG  
X
X
RX9D  
FERR  
RCREG Register  
8
Data Bus  
RCIF  
RCIE  
Interrupt  
The operation of the EUSART module is controlled  
through three registers:  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
• Baud Rate Control (BAUDCTL)  
These registers are detailed in Register 10-1,  
Register 10-2 and Register 10-3, respectively.  
DS41203E-page 84  
© 2009 Microchip Technology Inc.  
PIC16F688  
10.1 EUSART Asynchronous Mode  
Note 1: When the SPEN bit is set, the RX/DT I/O  
pin is automatically configured as an input,  
regardless of the state of the corresponding  
TRIS bit and whether or not the EUSART  
receiver is enabled. The RX/DT pin data  
can be read via a normal PORT read but  
PORT latch data output is precluded.  
The EUSART transmits and receives data using the  
standard non-return-to-zero (NRZ) format. NRZ is  
implemented with two levels: a VOH mark state which  
represents a ‘1’ data bit, and a VOL space state which  
represents a ‘0’ data bit. NRZ refers to the fact that  
consecutively transmitted data bits of the same value  
stay at the output level of that bit without returning to a  
neutral level between each bit transmission. An NRZ  
transmission port idles in the mark state. Each character  
transmission consists of one Start bit followed by eight  
or nine data bits and is always terminated by one or  
more Stop bits. The Start bit is always a space and the  
Stop bits are always marks. The most common data  
format is 8 bits. Each transmitted bit persists for a period  
of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud  
Rate Generator is used to derive standard baud rate  
frequencies from the system oscillator. See Table 10-5  
for examples of baud rate configurations.  
2: The TXIF transmitter interrupt flag is set  
when the TXEN enable bit is set.  
10.1.1.2  
Transmitting Data  
A transmission is initiated by writing a character to the  
TXREG register. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately  
transferred to the TSR register. If the TSR still contains  
all or part of a previous character, the new character  
data is held in the TXREG until the Stop bit of the  
previous character has been transmitted. The pending  
character in the TXREG is then transferred to the TSR  
in one TCY immediately following the Stop bit  
transmission. The transmission of the Start bit, data bits  
and Stop bit sequence commences immediately  
following the transfer of the data to the TSR from the  
TXREG.  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent, but share the same data format and baud  
rate. Parity is not supported by the hardware, but can  
be implemented in software and stored as the ninth  
data bit.  
10.1.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
10.1.1.3  
Transmit Interrupt Flag  
The EUSART transmitter block diagram is shown in  
Figure 10-1. The heart of the transmitter is the serial  
Transmit Shift Register (TSR), which is not directly  
accessible by software. The TSR obtains its data from  
the transmit buffer, which is the TXREG register.  
The TXIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART transmitter is enabled and no  
character is being held for transmission in the TXREG.  
In other words, the TXIF bit is only clear when the TSR  
is busy with a character and a new character has been  
queued for transmission in the TXREG. The TXIF flag  
bit is not cleared immediately upon writing TXREG.  
TXIF becomes valid in the second instruction cycle  
following the write execution. Polling TXIF immediately  
following the TXREG write will return invalid results. The  
TXIF bit is read-only, it cannot be set or cleared by  
software.  
10.1.1.1  
Enabling the Transmitter  
The EUSART transmitter is enabled for asynchronous  
operations by configuring the following three control  
bits:  
• TXEN = 1  
• SYNC = 0  
• SPEN = 1  
The TXIF interrupt can be enabled by setting the TXIE  
interrupt enable bit of the PIE1 register. However, the  
TXIF flag bit will be set whenever the TXREG is empty,  
regardless of the state of TXIE enable bit.  
All other EUSART control bits are assumed to be in  
their default state.  
Setting the TXEN bit of the TXSTA register enables the  
transmitter circuitry of the EUSART. Clearing the SYNC  
bit of the TXSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the EUSART and  
automatically configures the TX/CK I/O pin as an output.  
If the TX/CK pin is shared with an analog peripheral the  
analog I/O function must be disabled by clearing the  
corresponding ANSEL bit.  
To use interrupts when transmitting data, set the TXIE  
bit only when there is more data to send. Clear the  
TXIE interrupt enable bit upon writing the last character  
of the transmission to the TXREG.  
© 2009 Microchip Technology Inc.  
DS41203E-page 85  
PIC16F688  
10.1.1.4  
TSR Status  
10.1.1.6  
Asynchronous Transmission Set-up:  
The TRMT bit of the TXSTA register indicates the  
status of the TSR register. This is a read-only bit. The  
TRMT bit is set when the TSR register is empty and is  
cleared when a character is transferred to the TSR  
register from the TXREG. The TRMT bit remains clear  
until all bits have been shifted out of the TSR register.  
No interrupt logic is tied to this bit, so the user has to  
poll this bit to determine the TSR status.  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the desired  
baud rate (see Section 10.3 “EUSART Baud  
Rate Generator (BRG)”).  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
3. If 9-bit transmission is desired, set the TX9 con-  
trol bit. A set ninth data bit will indicate that the 8  
Least Significant data bits are an address when  
the receiver is set for address detection.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
4. Enable the transmission by setting the TXEN  
control bit. This will cause the TXIF interrupt bit  
to be set.  
10.1.1.5  
Transmitting 9-Bit Characters  
The EUSART supports 9-bit character transmissions.  
When the TX9 bit of the TXSTA register is set the  
EUSART will shift 9 bits out for each character transmit-  
ted. The TX9D bit of the TXSTA register is the ninth,  
and Most Significant, data bit. When transmitting 9-bit  
data, the TX9D data bit must be written before writing  
the 8 Least Significant bits into the TXREG. All nine bits  
of data will be transferred to the TSR shift register  
immediately after the TXREG is written.  
5. If interrupts are desired, set the TXIE interrupt  
enable bit. An interrupt will occur immediately  
provided that the GIE and PEIE bits of the INT-  
CON register are also set.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded into the TX9D data bit.  
7. Load 8-bit data into the TXREG register. This  
will start the transmission.  
A special 9-bit Address mode is available for use with  
multiple receivers. See Section 10.1.2.7 “Address  
Detection” for more information on the Address mode.  
FIGURE 10-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC4/C2OUT/TX/CK  
pin  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 10-4:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
RC4/C2OUT/TX/CK  
pin  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
1 TCY  
Word 1  
TXIF bit  
(Interrupt Reg. Flag)  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note:  
This timing diagram shows two consecutive transmissions.  
DS41203E-page 86  
© 2009 Microchip Technology Inc.  
PIC16F688  
TABLE 10-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
C2IE  
BRG16  
RAIE  
WUE  
INTF  
TXIE  
TXIF  
ABDEN 01-0 0-00 01-0 0-00  
INTCON  
PIE1  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
RAIF  
C1IE  
OSFIE  
OSFIF  
TMR1IE  
TMR1IF  
PIR1  
C2IF  
C1IF  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
TRISC1  
RX9D  
BRG0  
BRG8  
TRISC0  
BRG13  
TRISC5  
BRG12  
TRISC4  
BRG11  
TRISC3  
BRG10  
TRISC2  
--11 1111  
--11 1111  
TXREG  
TXSTA  
Legend:  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 0010 0000 0010  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Asynchronous Transmission.  
© 2009 Microchip Technology Inc.  
DS41203E-page 87  
PIC16F688  
10.1.2  
EUSART ASYNCHRONOUS  
RECEIVER  
10.1.2.2  
Receiving Data  
The receiver data recovery circuit initiates character  
reception on the falling edge of the first bit. The first bit,  
also known as the Start bit, is always a zero. The data  
recovery circuit counts one-half bit time to the center of  
the Start bit and verifies that the bit is still a zero. If it is  
not a zero then the data recovery circuit aborts  
character reception, without generating an error, and  
resumes looking for the falling edge of the Start bit. If  
the Start bit zero verification succeeds then the data  
recovery circuit counts a full bit time to the center of the  
next bit. The bit is then sampled by a majority detect  
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.  
This repeats until all data bits have been sampled and  
shifted into the RSR. One final bit time is measured and  
the level sampled. This is the Stop bit, which is always  
a ‘1’. If the data recovery circuit samples a ‘0’ in the  
Stop bit position then a framing error is set for this  
character, otherwise the framing error is cleared for this  
character. See Section 10.1.2.4 “Receive Framing  
Error” for more information on framing errors.  
The Asynchronous mode would typically be used in  
RS-232 systems. The receiver block diagram is shown  
in Figure 10-2. The data is received on the RX/DT pin  
and drives the data recovery block. The data recovery  
block is actually a high-speed shifter operating at 16  
times the baud rate, whereas the serial Receive Shift  
Register (RSR) operates at the bit rate. When all 8 or 9  
bits of the character have been shifted in, they are  
immediately transferred to a two character First-In-  
First-Out (FIFO) memory. The FIFO buffering allows  
reception of two complete characters and the start of a  
third character before software must start servicing the  
EUSART receiver. The FIFO and RSR registers are not  
directly accessible by software. Access to the received  
data is via the RCREG register.  
10.1.2.1  
Enabling the Receiver  
The EUSART receiver is enabled for asynchronous  
operation by configuring the following three control bits:  
Immediately after all data bits and the Stop bit have  
been received, the character in the RSR is transferred  
to the EUSART receive FIFO and the RCIF interrupt  
flag bit of the PIR1 register is set. The top character in  
the FIFO is transferred out of the FIFO by reading the  
RCREG register.  
• CREN = 1  
• SYNC = 0  
• SPEN = 1  
All other EUSART control bits are assumed to be in  
their default state.  
Setting the CREN bit of the RCSTA register enables the  
receiver circuitry of the EUSART. Clearing the SYNC bit  
of the TXSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the EUSART and  
automatically configures the RX/DT I/O pin as an input.  
If the RX/DT pin is shared with an analog peripheral the  
analog I/O function must be disabled by clearing the  
corresponding ANSEL bit.  
Note:  
If the receive FIFO is overrun, no additional  
characters will be received until the overrun  
condition is cleared. See Section 10.1.2.5  
“Receive Overrun Error” for more  
information on overrun errors.  
10.1.2.3  
Receive Interrupts  
The RCIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART receiver is enabled and there is  
an unread character in the receive FIFO. The RCIF  
interrupt flag bit is read-only, it cannot be set or cleared  
by software.  
Note:  
When the SPEN bit is set the TX/CK I/O  
pin is automatically configured as an  
output, regardless of the state of the  
corresponding TRIS bit and whether or not  
the EUSART transmitter is enabled. The  
PORT latch is disconnected from the  
output driver so it is not possible to use the  
TX/CK pin as a general purpose output.  
RCIF interrupts are enabled by setting the following  
bits:  
• RCIE interrupt enable bit of the PIE1 register  
• PEIE peripheral interrupt enable bit of the INT-  
CON register  
• GIE global interrupt enable bit of the INTCON  
register  
The RCIF interrupt flag bit will be set when there is an  
unread character in the FIFO, regardless of the state of  
interrupt enable bits.  
DS41203E-page 88  
© 2009 Microchip Technology Inc.  
PIC16F688  
10.1.2.4  
Receive Framing Error  
10.1.2.7  
Address Detection  
Each character in the receive FIFO buffer has a  
corresponding framing error Status bit. A framing error  
indicates that a Stop bit was not seen at the expected  
time. The framing error status is accessed via the  
FERR bit of the RCSTA register. The FERR bit  
represents the status of the top unread character in the  
receive FIFO. Therefore, the FERR bit must be read  
before reading the RCREG.  
A special Address Detection mode is available for use  
when multiple receivers share the same transmission  
line, such as in RS-485 systems. Address detection is  
enabled by setting the ADDEN bit of the RCSTA  
register.  
Address detection requires 9-bit character reception.  
When address detection is enabled, only characters  
with the ninth data bit set will be transferred to the  
receive FIFO buffer, thereby setting the RCIF interrupt  
bit. All other characters will be ignored.  
The FERR bit is read-only and only applies to the top  
unread character in the receive FIFO. A framing error  
(FERR = 1) does not preclude reception of additional  
characters. It is not necessary to clear the FERR bit.  
Reading the next character from the FIFO buffer will  
advance the FIFO to the next character and the next  
corresponding framing error.  
Upon receiving an address character, user software  
determines if the address matches its own. Upon  
address match, user software must disable address  
detection by clearing the ADDEN bit before the next  
Stop bit occurs. When user software detects the end of  
the message, determined by the message protocol  
used, software places the receiver back into the  
Address Detection mode by setting the ADDEN bit.  
The FERR bit can be forced clear by clearing the SPEN  
bit of the RCSTA register which resets the EUSART.  
Clearing the CREN bit of the RCSTA register does not  
affect the FERR bit. A framing error by itself does not  
generate an interrupt.  
Note:  
If all receive characters in the receive  
FIFO have framing errors, repeated reads  
of the RCREG will not clear the FERR bit.  
10.1.2.5  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated If a third character, in its  
entirety, is received before the FIFO is accessed. When  
this happens the OERR bit of the RCSTA register is  
set. The characters already in the FIFO buffer can be  
read but no additional characters will be received until  
the error is cleared. The error must be cleared by either  
clearing the CREN bit of the RCSTA register or by  
resetting the EUSART by clearing the SPEN bit of the  
RCSTA register.  
10.1.2.6  
Receiving 9-bit Characters  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the EUSART  
will shift 9 bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth and Most Significant data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
© 2009 Microchip Technology Inc.  
DS41203E-page 89  
PIC16F688  
10.1.2.8  
Asynchronous Reception Set-up:  
10.1.2.9  
9-bit Address Detection Mode Set-up  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 10.3 “EUSART  
Baud Rate Generator (BRG)”).  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 10.3 “EUSART  
Baud Rate Generator (BRG)”).  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
3. If interrupts are desired, set the RCIE interrupt  
enable bit and set the GIE and PEIE bits of the  
INTCON register.  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
4. If 9-bit reception is desired, set the RX9 bit.  
5. Enable reception by setting the CREN bit.  
3. If interrupts are desired, set the RCIE interrupt  
enable bit and set the GIE and PEIE bits of the  
INTCON register.  
6. The RCIF interrupt flag bit will be set when a  
character is transferred from the RSR to the  
receive buffer. An interrupt will be generated if  
the RCIE interrupt enable bit was also set.  
4. Enable 9-bit reception by setting the RX9 bit.  
5. Enable address detection by setting the ADDEN  
bit.  
7. Read the RCSTA register to get the error flags  
and, if 9-bit data reception is enabled, the ninth  
data bit.  
6. Enable reception by setting the CREN bit.  
7. The RCIF interrupt flag bit will be set when a  
character with the ninth bit set is transferred  
from the RSR to the receive buffer. An interrupt  
will be generated if the RCIE interrupt enable bit  
was also set.  
8. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register.  
9. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
8. Read the RCSTA register to get the error flags.  
The ninth data bit will always be set.  
9. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register. Software determines if this is the  
device’s address.  
10. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and generate interrupts.  
FIGURE 10-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX/DT pin  
bit 7/8  
bit 7/8  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
RCIDL  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
DS41203E-page 90  
© 2009 Microchip Technology Inc.  
PIC16F688  
TABLE 10-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
C2IE  
BRG16  
RAIE  
WUE  
INTF  
TXIE  
TXIF  
ABDEN 01-0 0-00 01-0 0-00  
INTCON  
PIE1  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
RAIF  
C1IE  
OSFIE  
OSFIF  
TMR1IE  
TMR1IF  
PIR1  
C2IF  
C1IF  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
TRISC1  
RX9D  
BRG0  
BRG8  
TRISC0  
BRG13  
TRISC5  
BRG12  
TRISC4  
BRG11  
TRISC3  
BRG10  
TRISC2  
--11 1111  
--11 1111  
TXREG  
TXSTA  
Legend:  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 0010 0000 0010  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Asynchronous Reception.  
© 2009 Microchip Technology Inc.  
DS41203E-page 91  
PIC16F688  
The first (preferred) method uses the OSCTUNE  
register to adjust the INTOSC output. Adjusting the  
value in the OSCTUNE register allows for fine resolution  
changes to the system clock source. See Section 3.5  
“Internal Clock Modes” for more information.  
10.2 Clock Accuracy with  
Asynchronous Operation  
The factory calibrates the internal oscillator block  
output (INTOSC). However, the INTOSC frequency  
may drift as VDD or temperature changes, and this  
directly affects the asynchronous baud rate. Two  
methods may be used to adjust the baud rate clock, but  
both require a reference clock source of some kind.  
The other method adjusts the value in the Baud Rate  
Generator. This can be done automatically with the  
Auto-Baud Detect feature (see Section 10.3.1 “Auto-  
Baud Detect”). There may not be fine enough  
resolution when adjusting the Baud Rate Generator to  
compensate for a gradual change in the peripheral  
clock frequency.  
REGISTER 10-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
(1)  
TXEN  
SENDB  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
bit 3  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
(1)  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: Ninth bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
DS41203E-page 92  
© 2009 Microchip Technology Inc.  
PIC16F688  
REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER(1)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave  
Don’t care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: Ninth bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
© 2009 Microchip Technology Inc.  
DS41203E-page 93  
PIC16F688  
REGISTER 10-3: BAUDCTL: BAUD RATE CONTROL REGISTER  
R-0  
R-1  
U-0  
R/W-0  
SCKP  
R/W-0  
U-0  
R/W-0  
WUE  
R/W-0  
ABDOVF  
RCIDL  
BRG16  
ABDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
ABDOVF: Auto-Baud Detect Overflow bit  
Asynchronous mode:  
1= Auto-baud timer overflowed  
0= Auto-baud timer did not overflow  
Synchronous mode:  
Don’t care  
RCIDL: Receive Idle Flag bit  
Asynchronous mode:  
1= Receiver is Idle  
0= Start bit has been received and the receiver is receiving  
Synchronous mode:  
Don’t care  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
1= Transmit inverted data to the RB7/TX/CK pin  
0= Transmit non-inverted data to the RB7/TX/CK pin  
Synchronous mode:  
1= Data is clocked on rising edge of the clock  
0= Data is clocked on falling edge of the clock  
bit 3  
BRG16: 16-bit Baud Rate Generator bit  
1= 16-bit Baud Rate Generator is used  
0= 8-bit Baud Rate Generator is used  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1 = Receiver is waiting for a falling edge. No character will be received byte RCIF will be set. WUE will  
automatically clear after RCIF is set.  
0 = Receiver is operating normally  
Synchronous mode:  
Don’t care  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Auto-Baud Detect mode is enabled (clears when auto-baud is complete)  
0= Auto-Baud Detect mode is disabled  
Synchronous mode:  
Don’t care  
DS41203E-page 94  
© 2009 Microchip Technology Inc.  
PIC16F688  
If the system clock is changed during an active receive  
operation, a receive error or data loss may result. To  
avoid this problem, check the status of the RCIDL bit to  
make sure that the receive operation is Idle before  
changing the system clock.  
10.3 EUSART Baud Rate Generator  
(BRG)  
The Baud Rate Generator (BRG) is an 8-bit or 16-bit  
timer that is dedicated to the support of both the  
asynchronous and synchronous EUSART operation.  
By default, the BRG operates in 8-bit mode. Setting the  
BRG16 bit of the BAUDCTL register selects 16-bit  
mode.  
EXAMPLE 10-1:  
CALCULATING BAUD  
RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate  
of 9600, Asynchronous mode, 8-bit BRG:  
The SPBRGH, SPBRG register pair determines the  
period of the free running baud rate timer. In  
Asynchronous mode the multiplier of the baud rate  
period is determined by both the BRGH bit of the TXSTA  
register and the BRG16 bit of the BAUDCTL register. In  
Synchronous mode, the BRGH bit is ignored.  
FOSC  
Desired Baud Rate = --------------------------------------------------------------------  
64([SPBRGH:SPBRG] + 1)  
Solving for SPBRGH:SPBRG:  
FOSC  
---------------------------------------------  
Desired Baud Rate  
X = --------------------------------------------- 1  
64  
Table 10-3 contains the formulas for determining the  
baud rate. Example 10-1 provides a sample calculation  
for determining the baud rate and baud rate error.  
16000000  
-----------------------  
9600  
Typical baud rates and error values for various  
asynchronous modes have been computed for your  
convenience and are shown in Table 10-3. It may be  
advantageous to use the high baud rate (BRGH = 1),  
or the 16-bit BRG (BRG16 = 1) to reduce the baud rate  
error. The 16-bit BRG mode is used to achieve slow  
baud rates for fast oscillator frequencies.  
= ----------------------- 1  
64  
= [25.042] = 25  
16000000  
Calculated Baud Rate = --------------------------  
64(25 + 1)  
= 9615  
Writing a new value to the SPBRGH, SPBRG register  
pair causes the BRG timer to be reset (or cleared). This  
ensures that the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
Calc. Baud Rate Desired Baud Rate  
Error = --------------------------------------------------------------------------------------------  
Desired Baud Rate  
(9615 9600)  
= ---------------------------------- = 0 . 1 6 %  
9600  
TABLE 10-3: BAUD RATE FORMULAS  
Configuration Bits  
Baud Rate Formula  
BRG/EUSART Mode  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC/[64 (n+1)]  
FOSC/[16 (n+1)]  
FOSC/[4 (n+1)]  
Legend:  
x= Don’t care, n = value of SPBRGH, SPBRG register pair  
TABLE 10-4: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
CREN  
BRG4  
BRG12  
SYNC  
BRG16  
ADDEN  
BRG3  
WUE  
OERR  
BRG1  
BRG9  
TRMT  
ABDEN 01-0 0-00 01-0 0-00  
RCSTA  
SPBRG  
SPBRGH  
TXSTA  
SPEN  
BRG7  
BRG15  
CSRC  
RX9  
BRG6  
BRG14  
TX9  
SREN  
BRG5  
BRG13  
TXEN  
FERR  
BRG2  
BRG10  
BRGH  
RX9D  
BRG0  
BRG8  
TX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0010 0000 0010  
BRG11  
SENDB  
Legend:  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for the Baud Rate Generator.  
© 2009 Microchip Technology Inc.  
DS41203E-page 95  
PIC16F688  
TABLE 10-5: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 20.000 MHz  
FOSC = 18.432 MHz  
FOSC = 11.0592 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
255  
129  
32  
239  
119  
29  
143  
71  
17  
16  
8
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
1221  
2404  
9470  
10417  
19.53k  
1.73  
0.16  
-1.36  
0.00  
1.73  
1200  
2400  
9600  
10286  
19.20k  
0.00  
0.00  
0.00  
-1.26  
0.00  
0.00  
1200  
2400  
9600  
10165  
19.20k  
0.00  
0.00  
0.00  
-2.42  
0.00  
0.00  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
29  
27  
15  
14  
2
57.60k  
7
57.60k  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 3.6864 MHz FOSC = 2.000 MHz  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
0.00  
0.00  
0.00  
0.00  
300  
1200  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
300  
1200  
2400  
9600  
191  
47  
23  
5
300  
1202  
2404  
0.16  
0.16  
0.16  
103  
25  
12  
2
300  
1202  
0.16  
0.16  
51  
12  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
0.00  
2
10417  
0.00  
19.20k  
0.00  
0.00  
0
57.60k  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 18.432 MHz FOSC = 11.0592 MHz  
FOSC = 20.000 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
2404  
9615  
10417  
19231  
55556  
0.16  
0.16  
0.00  
0.16  
-3.55  
207  
51  
47  
25  
8
71  
65  
35  
11  
5
9615  
10417  
19.23k  
56.82k  
0.16  
0.00  
0.16  
-1.36  
129  
119  
64  
9600  
10378  
19.20k  
57.60k  
115.2k  
0.00  
-0.37  
0.00  
0.00  
0.00  
119  
110  
59  
19  
9
9600  
0.00  
0.53  
0.00  
0.00  
0.00  
10473  
19.20k  
57.60k  
115.2k  
21  
115.2k 113.64k -1.36  
10  
DS41203E-page 96  
© 2009 Microchip Technology Inc.  
PIC16F688  
TABLE 10-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 4.000 MHz  
FOSC = 3.6864 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
SPBRG  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
Error  
Error  
Error  
Error  
(decimal)  
300  
1200  
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
191  
95  
23  
21  
11  
3
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2400  
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10473  
19.2k  
57.60k  
115.2k  
10417  
0.00  
12  
1
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 18.432 MHz FOSC = 11.0592 MHz  
FOSC = 20.000 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
300.0  
1200  
-0.01  
-0.03  
-0.03  
0.16  
0.00  
0.16  
-1.36  
4166  
1041  
520  
129  
119  
64  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
-0.37  
0.00  
0.00  
0.00  
3839  
959  
479  
119  
110  
59  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2303  
575  
287  
71  
299.9  
1199  
2404  
9615  
10417  
19.23k  
55556  
-0.02  
-0.08  
0.16  
0.16  
0.00  
0.16  
-3.55  
1666  
416  
207  
51  
2399  
2400  
2400  
9615  
9600  
9600  
10417  
19.23k  
56.818  
10378  
19.20k  
57.60k  
115.2k  
10473  
19.20k  
57.60k  
115.2k  
65  
47  
35  
25  
21  
19  
11  
8
115.2k 113.636 -1.36  
10  
9
5
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 3.6864 MHz FOSC = 2.000 MHz  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
Error  
(decimal)  
(decimal)  
(decimal)  
300  
1200  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
767  
191  
95  
23  
21  
11  
3
299.8  
1202  
2404  
9615  
10417  
-0.108  
0.16  
0.16  
0.16  
0.00  
416  
103  
51  
12  
11  
300.5  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
2400  
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10473  
19.20k  
57.60k  
115.2k  
10417  
0.00  
12  
1
© 2009 Microchip Technology Inc.  
DS41203E-page 97  
PIC16F688  
TABLE 10-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 20.000 MHz  
FOSC = 18.432 MHz  
FOSC = 11.0592 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
300.0  
1200  
0.00  
-0.01  
0.02  
-0.03  
0.00  
0.16  
-0.22  
0.94  
16665  
4166  
2082  
520  
479  
259  
86  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.08  
0.00  
0.00  
0.00  
15359  
3839  
1919  
479  
441  
239  
79  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.16  
0.00  
0.00  
0.00  
9215  
2303  
1151  
287  
264  
143  
47  
300.0  
1200  
0.00  
-0.02  
0.04  
0.16  
0
6666  
1666  
832  
207  
191  
103  
34  
2400  
2400  
2400  
2400  
2401  
9600  
9597  
9600  
9600  
9615  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.23k  
57.47k  
116.3k  
10425  
19.20k  
57.60k  
115.2k  
10433  
19.20k  
57.60k  
115.2k  
10417  
19.23k  
57.14k  
117.6k  
0.16  
-0.79  
2.12  
42  
39  
23  
16  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 3.6864 MHz FOSC = 2.000 MHz  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
300.0  
1200  
0.01  
0.04  
0.08  
0.16  
0.00  
0.16  
2.12  
-3.55  
3332  
832  
416  
103  
95  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
3071  
767  
383  
95  
299.9  
1199  
-0.02  
-0.08  
0.16  
0.16  
0.00  
0.16  
-3.55  
1666  
416  
207  
51  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
2400  
2398  
2400  
2404  
9615  
10417  
19.23k  
55.56k  
9600  
9615  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.23k  
58.82k  
111.1k  
10473  
19.20k  
57.60k  
115.2k  
87  
47  
23  
51  
47  
25  
12  
16  
15  
8
8
7
DS41203E-page 98  
© 2009 Microchip Technology Inc.  
PIC16F688  
and SPBRG registers are clocked at 1/8th the BRG  
base clock rate. The resulting byte measurement is the  
average bit time when clocked at full speed.  
10.3.1  
AUTO-BAUD DETECT  
The EUSART module supports automatic detection  
and calibration of the baud rate.  
Note 1: If the WUE bit is set with the ABDEN bit,  
auto-baud detection will occur on the byte  
following the Break character (see  
In the Auto-Baud Detect (ABD) mode, the clock to the  
BRG is reversed. Rather than the BRG clocking the  
incoming RX signal, the RX signal is timing the BRG.  
The Baud Rate Generator is used to time the period of  
a received 55h (ASCII “U”) which is the Sync character  
for the LIN bus. The unique feature of this character is  
that it has five rising edges including the Stop bit edge.  
Section 10.3.3  
“Auto-Wake-up  
on  
Break”).  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible  
due to bit error rates. Overall system timing  
and communication baud rates must be  
taken into consideration when using the  
Auto-Baud Detect feature.  
Setting the ABDEN bit of the BAUDCTL register starts  
the auto-boot sequence (Figure 10-6). While the ABD  
sequence takes place, the EUSART state machine is  
held in Idle. On the first rising edge of the receive line,  
after the Start bit, the SPBRG begins counting up using  
the BRG counter clock as shown in Table 10-6. The  
fifth rising edge will occur on the RX pin at the end of  
the eighth bit period. At that time, an accumulated  
value totaling the proper BRG period is left in  
SPBRGH, SPBRG register pair, the ABDEN bit is  
automatically cleared and the RCIF interrupt flag is set.  
The value in the RCREG needs to be read to clear the  
RCIF interrupt. RCREG content should be discarded.  
When calibrating for modes that do not use the  
SPBRGH register the user can verify that the SPBRG  
register did not overflow by checking for 00h in the  
SPBRGH register.  
3: During the auto-baud process, the auto-  
baud counter starts counting at 1. Upon  
completion of the auto-baud sequence, to  
achieve maximum accuracy, subtract 1  
from the SPBRGH:SPBRG register pair.  
TABLE 10-6:  
BRG16 BRGH  
BRG COUNTER CLOCK RATES  
BRG Base  
Clock  
BRG ABD  
Clock  
0
0
0
1
FOSC/64  
FOSC/16  
FOSC/512  
FOSC/128  
The BRG auto-baud clock is determined by the BRG16  
and BRGH bits as shown in Table 10-6. During ABD,  
both the SPBRGH and SPBRG registers are used as a  
16-bit counter, independent of the BRG16 bit setting.  
While calibrating the baud rate period, the SPBRGH  
1
1
0
1
FOSC/16  
FOSC/4  
FOSC/128  
FOSC/32  
Note:  
During the ABD sequence, SPBRG and  
SPBRGH registers are both used as a 16-bit  
counter, independent of BRG16 setting.  
FIGURE 10-6:  
AUTOMATIC BAUD RATE CALCULATION  
XXXXh  
0000h  
001Ch  
BRG Value  
Edge #1  
bit 1  
Edge #2  
bit 3  
Edge #3  
bit 5  
Edge #4  
bit 7  
bit 6  
Edge #5  
Stop bit  
RX pin  
Start  
bit 0  
bit 2  
bit 4  
BRG Clock  
Auto Cleared  
Set by User  
ABDEN bit  
RCIDL  
RCIF bit  
(Interrupt)  
Read  
RCREG  
XXh  
XXh  
1Ch  
00h  
SPBRG  
SPBRGH  
Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.  
© 2009 Microchip Technology Inc.  
DS41203E-page 99  
PIC16F688  
The WUE bit is automatically cleared by the low-to-high  
transition on the RX line at the end of the Break. This  
signals to the user that the Break event is over. At this  
point, the EUSART module is in Idle mode waiting to  
receive the next character.  
10.3.2  
AUTO-BAUD OVERFLOW  
During the course of automatic baud detection, the  
ABDOVF bit of the BAUDCTL register will be set if the  
baud rate counter overflows before the fifth rising edge  
is detected on the RX pin. The ABDOVF bit indicates  
that the counter has exceeded the maximum count that  
can fit in the 16 bits of the SPBRGH:SPBRG register  
pair. After the ABDOVF has been set, the counter con-  
tinues to count until the fifth rising edge is detected on  
the RX pin. Upon detecting the fifth RX edge, the hard-  
ware will set the RCIF interrupt flag and clear the  
ABDEN bit of the BAUDCTL register. The RCIF flag  
can be subsequently cleared by reading the RCREG.  
The ABDOVF flag can be cleared by software directly.  
10.3.3.1  
Special Considerations  
Break Character  
To avoid character errors or character fragments  
during a wake-up event, the wake-up character must  
be all zeros.  
When the wake-up is enabled the function works  
independent of the low time on the data stream. If the  
WUE bit is set and a valid non-zero character is  
received, the low time from the Start bit to the first rising  
edge will be interpreted as the wake-up event. The  
remaining bits in the character will be received as a  
fragmented character and subsequent characters can  
result in framing or overrun errors.  
To terminate the auto-baud process before the RCIF  
flag is set, clear the ABDEN bit then clear the ABDOVF  
bit. The ABDOVF bit will remain set if the ABDEN bit is  
not cleared first.  
10.3.3  
AUTO-WAKE-UP ON BREAK  
Therefore, the initial character in the transmission must  
be all ‘0’s. This must be 10 or more bit times, 13-bit  
times recommended for LIN bus, or any number of bit  
times for standard RS-232 devices.  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper character reception cannot be  
performed. The Auto-Wake-up feature allows the  
controller to wake-up due to activity on the RX/DT line.  
This feature is available only in Asynchronous mode.  
Oscillator Start-up Time  
Oscillator start-up time must be considered, especially  
in applications using oscillators with longer start-up  
intervals (i.e., LP, XT or HS mode). The Sync Break (or  
wake-up signal) character must be of sufficient length,  
and be followed by a sufficient interval, to allow enough  
time for the selected oscillator to start and provide  
proper initialization of the EUSART.  
The Auto-Wake-up feature is enabled by setting the  
WUE bit of the BAUDCTL register. Once set, the normal  
receive sequence on RX/DT is disabled, and the  
EUSART remains in an Idle state, monitoring for a wake-  
up event independent of the CPU mode. A wake-up  
event consists of a high-to-low transition on the RX/DT  
line. (This coincides with the start of a Sync Break or a  
wake-up signal character for the LIN protocol.)  
WUE Bit  
The wake-up event causes a receive interrupt by  
setting the RCIF bit. The WUE bit is cleared in  
hardware by a rising edge on RX/DT. The interrupt  
condition is then cleared in software by reading the  
RCREG register and discarding its contents.  
The EUSART module generates an RCIF interrupt  
coincident with the wake-up event. The interrupt is  
generated synchronously to the Q clocks in normal CPU  
operating modes (Figure 10-7), and asynchronously if  
the device is in Sleep mode (Figure 10-8). The interrupt  
condition is cleared by reading the RCREG register.  
To ensure that no actual data is lost, check the RCIDL.  
FIGURE 10-7:  
AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3Q4  
OSC1  
Auto Cleared  
Bit set by user  
WUE bit  
RX/DT Line  
RCIF  
Cleared due to User Read of RCREG  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
DS41203E-page 100  
© 2009 Microchip Technology Inc.  
PIC16F688  
FIGURE 10-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q4  
Q1Q2Q3 Q4 Q1Q2 Q3Q4 Q1Q2Q3  
Q1  
Q2 Q3Q4 Q1Q2Q3 Q4 Q1Q2Q3Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4  
Auto Cleared  
OSC1  
Bit Set by User  
WUE bit  
RX/DT Line  
Note 1  
RCIF  
Cleared due to User Read of RCREG  
Sleep Command Executed  
Sleep Ends  
Note 1: If the wake-up event requires long oscillator warm-up time, the automatic clearing of the WUE bit can occur while the stposcsignal is  
still active. This sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
10.3.4  
BREAK CHARACTER SEQUENCE  
10.3.5  
RECEIVING A BREAK CHARACTER  
The EUSART module has the capability of sending the  
special Break character sequences that are required by  
the LIN bus standard. A Break character consists of a  
Start bit, followed by 12 ‘0’ bits and a Stop bit.  
The Enhanced EUSART module can receive a Break  
character in two ways.  
The first method to detect a Break character uses the  
FERR bit of the RCSTA register and the Received data  
as indicated by RCREG. The Baud Rate Generator is  
assumed to have been initialized to the expected baud  
rate.  
To send a Break character, set the SENDB and TXEN  
bits of the TXSTA register. The Break character trans-  
mission is then initiated by a write to the TXREG. The  
value of data written to TXREG will be ignored and all  
0’s will be transmitted.  
A Break character has been received when;  
• RCIF bit is set  
• FERR bit is set  
• RCREG = 00h  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
The second method uses the Auto-Wake-up feature  
described in Section 10.3.3 “Auto-Wake-up on  
Break”. By enabling this feature, the EUSART will  
sample the next two transitions on RX/DT, cause an  
RCIF interrupt, and receive the next data byte followed  
by another interrupt.  
The TRMT bit of the TXSTA register indicates when the  
transmit operation is active or Idle, just as it does during  
normal transmission. See Figure 10-9 for the timing of  
the Break character sequence.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Detect feature.  
For both methods, the user can set the ABDEN bit of  
the BAUDCTL register before placing the EUSART in  
Sleep mode.  
10.3.4.1  
Break and Sync Transmit Sequence  
The following sequence will start a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte. This sequence is typical of a LIN bus  
master.  
1. Configure the EUSART for the desired mode.  
2. Set the TXEN and SENDB bits to enable the  
Break sequence.  
3. Load the TXREG with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREG to load the Sync character  
into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware and the Sync character is  
then transmitted.  
When the TXREG becomes empty, as indicated by the  
TXIF, the next data byte can be written to TXREG.  
© 2009 Microchip Technology Inc.  
DS41203E-page 101  
PIC16F688  
FIGURE 10-9:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG  
Dummy Write  
BRG Output  
(Shift Clock)  
TX (pin)  
Start bit  
bit 0  
bit 1  
Break  
bit 11  
Stop bit  
TXIF bit  
(Transmit  
interrupt Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB Sampled Here  
Auto Cleared  
SENDB  
(send Break  
control bit)  
DS41203E-page 102  
© 2009 Microchip Technology Inc.  
PIC16F688  
the clock Idle state as high. When the SCKP bit is set,  
the data changes on the falling edge of each clock.  
Clearing the SCKP bit sets the Idle state as low. When  
the SCKP bit is cleared, the data changes on the rising  
edge of each clock.  
10.4 EUSART Synchronous Mode  
Synchronous serial communications are typically used  
in systems with a single master and one or more  
slaves. The master device contains the necessary  
circuitry for baud rate generation and supplies the clock  
for all devices in the system. Slave devices can take  
advantage of the master clock by eliminating the  
internal clock generation circuitry.  
10.4.1.3  
Synchronous Master Transmission  
Data is transferred out of the device on the RX/DT pin.  
The RX/DT and TX/CK pin output drivers are automat-  
ically enabled when the EUSART is configured for  
synchronous master transmit operation.  
There are two signal lines in Synchronous mode: a  
bidirectional data line and a clock line. Slaves use the  
external clock supplied by the master to shift the serial  
data into and out of their respective receive and trans-  
mit shift registers. Since the data line is bidirectional,  
synchronous operation is half-duplex only. Half-duplex  
refers to the fact that master and slave devices can  
receive and transmit data but not both simultaneously.  
The EUSART can operate as either a master or slave  
device.  
A transmission is initiated by writing a character to the  
TXREG register. If the TSR still contains all or part of a  
previous character, the new character data is held in  
the TXREG until the last bit of the previous character  
has been transmitted. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately trans-  
ferred to the TSR. The transmission of the character  
commences immediately following the transfer of the  
data to the TSR from the TXREG.  
Start and Stop bits are not used in synchronous  
transmissions.  
Each data bit changes on the leading edge of the  
master clock and remains valid until the subsequent  
leading clock edge.  
10.4.1  
SYNCHRONOUS MASTER MODE  
The following bits are used to configure the EUSART  
for Synchronous Master operation:  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
• SYNC = 1  
• CSRC = 1  
10.4.1.4  
Synchronous Master Transmission  
Set-up:  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 10.3 “EUSART  
Baud Rate Generator (BRG)”).  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Setting the CSRC  
bit of the TXSTA register configures the device as a  
master. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
EUSART. If the RX/DT or TX/CK pins are shared with an  
analog peripheral the analog I/O functions must be  
disabled by clearing the corresponding ANSEL bits.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Disable Receive mode by clearing bits SREN  
and CREN.  
4. Enable Transmit mode by setting the TXEN bit.  
5. If 9-bit transmission is desired, set the TX9 bit.  
6. If interrupts are desired, set the TXIE, GIE and  
PEIE interrupt enable bits.  
10.4.1.1  
Master Clock  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded in the TX9D bit.  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device  
configured as a master transmits the clock on the TX/  
CK line. The TX/CK pin is automatically configured as  
an output when the EUSART is configured for  
synchronous transmit operation. Serial data bits  
change on the leading edge to ensure they are valid at  
the trailing edge of each clock. One clock cycle is  
generated for each data bit. Only as many clock cycles  
are generated as there are data bits.  
8. Start transmission by loading data to the  
TXREG register.  
10.4.1.2  
Clock Polarity  
A clock polarity option is provided for Microwire  
compatibility. Clock polarity is selected with the SCKP  
bit of the BAUDCTL register. Setting the SCKP bit sets  
© 2009 Microchip Technology Inc.  
DS41203E-page 103  
PIC16F688  
FIGURE 10-10:  
SYNCHRONOUS TRANSMISSION  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
TX/CK pin  
(SCKP = 0)  
TX/CK pin  
(SCKP = 1)  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note:  
Sync Master mode, SPBRG = 0, continuous transmission of two 8-bit words.  
FIGURE 10-11:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RX/DT pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 10-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
C2IE  
BRG16  
RAIE  
WUE  
INTF  
TXIE  
TXIF  
ABDEN 01-0 0-00 01-0 0-00  
INTCON  
PIE1  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
RAIF  
C1IE  
OSFIE  
OSFIF  
TMR1IE  
TMR1IF  
PIR1  
C2IF  
C1IF  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
TRISC1  
RX9D  
BRG0  
BRG8  
TRISC0  
BRG13  
TRISC5  
BRG12  
TRISC4  
BRG11  
TRISC3  
BRG10  
TRISC2  
--11 1111  
--11 1111  
TXREG  
TXSTA  
Legend:  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 0010 0000 0010  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Synchronous Master Transmission.  
DS41203E-page 104  
© 2009 Microchip Technology Inc.  
PIC16F688  
10.4.1.5  
Synchronous Master Reception  
10.4.1.8  
Synchronous Master Reception Set-  
up:  
Data is received at the RX/DT pin. The RX/DT and TX/  
CK pin output drivers are automatically disabled when  
the EUSART is configured for synchronous master  
receive operation.  
1. Initialize the SPBRGH, SPBRG register pair for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
In Synchronous mode, reception is enabled by setting  
either the Single Receive Enable bit (SREN of the  
RCSTA register) or the Continuous Receive Enable bit  
(CREN of the RCSTA register).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If using interrupts, set the GIE and PEIE bits of  
the INTCON register and set RCIE.  
When SREN is set and CREN is clear, only as many  
clock cycles are generated as there are data bits in a  
single character. The SREN bit is automatically cleared  
at the completion of one character. When CREN is set,  
clocks are continuously generated until CREN is  
cleared. If CREN is cleared in the middle of a character  
the CK clock stops immediately and the partial charac-  
ter is discarded. If SREN and CREN are both set, then  
SREN is cleared at the completion of the first character  
and CREN takes precedence.  
5. If 9-bit reception is desired, set bit RX9.  
6. Start reception by setting the SREN bit or for  
continuous reception, set the CREN bit.  
7. Interrupt flag bit RCIF will be set when reception  
of a character is complete. An interrupt will be  
generated if the enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
To initiate reception, set either SREN or CREN. Data is  
sampled at the RX/DT pin on the trailing edge of the  
TX/CK clock pin and is shifted into the Receive Shift  
Register (RSR). When a complete character is  
received into the RSR, the RCIF bit is set and the char-  
acter is automatically transferred to the two character  
receive FIFO. The Least Significant eight bits of the top  
character in the receive FIFO are available in RCREG.  
The RCIF bit remains set as long as there are un-read  
characters in the receive FIFO.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
10.4.1.6  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before RCREG is read to access  
the FIFO. When this happens the OERR bit of the  
RCSTA register is set. Previous data in the FIFO will  
not be overwritten. The two characters in the FIFO  
buffer can be read, however, no additional characters  
will be received until the error is cleared. The OERR bit  
can only be cleared by clearing the overrun condition.  
If the overrun error occurred when the SREN bit is set  
and CREN is clear then the error is cleared by reading  
RCREG. If the overrun occurred when the CREN bit is  
set then the error condition is cleared by either clearing  
the CREN bit of the RCSTA register or by clearing the  
SPEN bit which resets the EUSART.  
10.4.1.7  
Receiving 9-bit Characters  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the EUSART  
will shift 9-bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth, and Most Significant, data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
© 2009 Microchip Technology Inc.  
DS41203E-page 105  
PIC16F688  
FIGURE 10-12:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
TX/CK pin  
(SCKP = 0)  
TX/CK pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
0’  
0’  
CREN bit  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note:  
Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 10-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
C2IE  
BRG16  
RAIE  
WUE  
INTF  
TXIE  
TXIF  
ABDEN 01-0 0-00 01-0 0-00  
INTCON  
PIE1  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
RAIF  
C1IE  
OSFIE  
OSFIF  
TMR1IE  
TMR1IF  
PIR1  
C2IF  
C1IF  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
TRISC1  
RX9D  
BRG0  
BRG8  
TRISC0  
BRG13  
TRISC5  
BRG12  
TRISC4  
BRG11  
TRISC3  
BRG10  
TRISC2  
--11 1111  
--11 1111  
TXREG  
TXSTA  
Legend:  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 0010 0000 0010  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Synchronous Master Reception.  
DS41203E-page 106  
© 2009 Microchip Technology Inc.  
PIC16F688  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
10.4.2  
SYNCHRONOUS SLAVE MODE  
The following bits are used to configure the EUSART  
for Synchronous slave operation:  
1. The first character will immediately transfer to  
the TSR register and transmit.  
• SYNC = 1  
2. The second word will remain in TXREG register.  
3. The TXIF bit will not be set.  
• CSRC = 0  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
4. After the first character has been shifted out of  
TSR, the TXREG register will transfer the second  
character to the TSR and the TXIF bit will now be  
set.  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Clearing the  
CSRC bit of the TXSTA register configures the device as  
a slave. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
EUSART. If the RX/DT or TX/CK pins are shared with an  
analog peripheral the analog I/O functions must be  
disabled by clearing the corresponding ANSEL bits.  
5. If the PEIE and TXIE bits are set, the interrupt  
will wake the device from Sleep and execute the  
next instruction. If the GIE bit is also set, the  
program will call the Interrupt Service Routine.  
10.4.2.2  
Synchronous Slave Transmission  
Set-up:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
2. Clear the CREN and SREN bits.  
10.4.2.1  
EUSART Synchronous Slave  
Transmit  
3. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
TXIE bit.  
The operation of the Synchronous Master and Slave  
modes are identical (see Section 10.4.1.3  
“Synchronous Master Transmission”), except in the  
4. If 9-bit transmission is desired, set the TX9 bit.  
5. Enable transmission by setting the TXEN bit.  
case of the Sleep mode.  
6. If 9-bit transmission is selected, insert the Most  
Significant bit into the TX9D bit.  
7. Start transmission by writing the Least  
Significant 8 bits to the TXREG register.  
TABLE 10-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
C2IE  
C2IF  
BRG16  
RAIE  
C1IE  
WUE  
INTF  
TXIE  
TXIF  
ABDEN 01-0 0-00 01-0 0-00  
INTCON  
PIE1  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
RAIF  
OSFIE  
OSFIF  
TMR1IE  
TMR1IF  
PIR1  
C1IF  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
BRG10  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
BRG13  
BRG12  
BRG11  
--11 1111  
0000 0000 0000 0000  
0000 0010 0000 0010  
TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 --11 1111  
TXREG  
TXSTA  
Legend:  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Synchronous Slave Transmission.  
© 2009 Microchip Technology Inc.  
DS41203E-page 107  
PIC16F688  
10.4.2.3  
EUSART Synchronous Slave  
Reception  
10.4.2.4  
Synchronous Slave Reception Set-  
up:  
The operation of the Synchronous Master and Slave  
modes is identical (Section 10.4.1.5 “Synchronous  
Master Reception”), with the following exceptions:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
2. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
RCIE bit.  
• Sleep  
• CREN bit is always set, therefore the receiver is  
never Idle  
3. If 9-bit reception is desired, set the RX9 bit.  
4. Set the CREN bit to enable reception.  
• SREN bit, which is a “don’t care” in Slave mode  
5. The RCIF bit will be set when reception is  
complete. An interrupt will be generated if the  
RCIE bit was set.  
A character may be received while in Sleep mode by  
setting the CREN bit prior to entering Sleep. Once the  
word is received, the RSR register will transfer the data  
to the RCREG register. If the RCIE enable bit is set, the  
interrupt generated will wake the device from Sleep  
and execute the next instruction. If the GIE bit is also  
set, the program will branch to the interrupt vector.  
6. If 9-bit mode is enabled, retrieve the Most  
Significant bit from the RX9D bit of the RCSTA  
register.  
7. Retrieve the 8 Least Significant bits from the  
receive FIFO by reading the RCREG register.  
8. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
TABLE 10-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
C2IE  
BRG16  
RAIE  
WUE  
INTF  
TXIE  
TXIF  
ABDEN 01-0 0-00 01-0 0-00  
INTCON  
PIE1  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
RAIF  
C1IE  
OSFIE  
OSFIF  
TMR1IE  
TMR1IF  
PIR1  
C2IF  
C1IF  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
TRISC1  
RX9D  
BRG0  
BRG8  
TRISC0  
BRG13  
TRISC5  
BRG12  
TRISC4  
BRG11  
TRISC3  
BRG10  
TRISC2  
--11 1111  
--11 1111  
TXREG  
TXSTA  
Legend:  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 0010 0000 0010  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Synchronous Slave Reception.  
DS41203E-page 108  
© 2009 Microchip Technology Inc.  
PIC16F688  
The PIC16F688 has two timers that offer necessary  
delays on power-up. One is the Oscillator Start-up  
Timer (OST), intended to keep the chip in Reset until  
the crystal oscillator is stable. The other is the  
Power-up Timer (PWRT), which provides a fixed  
delay of 64 ms (nominal) on power-up only, designed  
to keep the part in Reset while the power supply  
stabilizes. There is also circuitry to reset the device if  
a brown-out occurs, which can use the Power-up  
Timer to provide at least a 64 ms Reset. With these  
three functions-on-chip, most applications need no  
external Reset circuitry.  
11.0 SPECIAL FEATURES OF THE  
CPU  
The PIC16F688 has a host of features intended to  
maximize system reliability, minimize cost through  
elimination of external components, provide  
power-saving features and offer code protection.  
These features are:  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
The Sleep mode is designed to offer a very low-current  
Power-Down mode. The user can wake-up from Sleep  
through:  
• External Reset  
• Watchdog Timer (WDT)  
• Oscillator Selection  
• Sleep  
• Watchdog Timer Wake-up  
• An interrupt  
• Code Protection  
Several oscillator options are also made available to  
allow the part to fit the application. The INTOSC option  
saves system cost while the LP crystal option saves  
power. A set of Configuration bits are used to select  
various options (see Register 11-1).  
• ID Locations  
• In-Circuit Serial Programming™  
© 2009 Microchip Technology Inc.  
DS41203E-page 109  
PIC16F688  
11.1 Configuration Bits  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’) to select various  
device configurations as shown in Register 11-1.  
These bits are mapped in program memory location  
2007h.  
Note:  
Address 2007h is beyond the user program  
memory space. It belongs to the special  
configuration  
(2000h-3FFFh), which can be accessed  
only during programming. See  
memory  
space  
“PIC12F6XX/16F6XX Memory Program-  
ming Specification” (DS41204) for more  
information.  
DS41203E-page 110  
© 2009 Microchip Technology Inc.  
PIC16F688  
REGISTER 11-1: CONFIG: CONFIGURATION WORD REGISTER  
(1)  
(1)  
Reserved  
bit 15  
Reserved  
Reserved  
Reserved  
FCMEN  
IESO  
BOREN1  
BOREN0  
bit 8  
(2)  
(3)  
(4)  
CPD  
CP  
MCLRE  
PWRTE  
WDTE  
FOSC2  
FOSC1  
FOSC0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
P = Programmable’  
‘0’ = Bit is cleared  
U = Unimplemented bit, read  
as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 15-12  
bit 11  
Reserved: Reserved bits. Do Not Use.  
FCMEN: Fail-Safe Clock Monitor Enabled bit  
1= Fail-Safe Clock Monitor is enabled  
0= Fail-Safe Clock Monitor is disabled  
bit 10  
IESO: Internal External Switchover bit  
1= Internal External Switchover mode is enabled  
0= Internal External Switchover mode is disabled  
(1)  
bit 9-8  
BOREN<1:0>: Brown-out Reset Selection bits  
11= BOR enabled  
10= BOR enabled during operation and disabled in Sleep  
01= BOR controlled by SBOREN bit of the PCON register  
00= BOR disabled  
(2)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
CPD: Data Code Protection bit  
1= Data memory code protection is disabled  
0= Data memory code protection is enabled  
(2)  
CP: Code Protection bit  
1= Program memory code protection is disabled  
0= Program memory code protection is enabled  
(3)  
MCLRE: MCLR Pin Function Select bit  
1= MCLR pin function is MCLR  
0= MCLR pin function is digital input, MCLR internally tied to VDD  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
FOSC<2:0>: Oscillator Selection bits  
111= EXTRC oscillator: External RC on RA5/OSC1/CLKIN, CLKOUT function on RA4/OSC2/CLKOUT pin  
110= EXTRCIO oscillator: External RC on RA5/OSC1/CLKIN, I/O function on RA4/OSC2/CLKOUT pin  
101= INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on  
RA5/OSC1/CLKIN  
100= INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on  
RA5/OSC1/CLKIN  
011= EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN  
010= HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN  
001= XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN  
000= LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN  
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.  
2: The entire data EEPROM will be erased when the code protection is turned off.  
3: The entire program memory will be erased when the code protection is turned off.  
4: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  
© 2009 Microchip Technology Inc.  
DS41203E-page 111  
PIC16F688  
They are not affected by a WDT wake-up since this is  
viewed as the resumption of normal operation. TO and  
PD bits are set or cleared differently in different Reset  
situations, as indicated in Table 11-2. These bits are  
used in software to determine the nature of the Reset.  
See Table 11-4 for a full description of Reset states of  
all registers.  
11.2 Reset  
The PIC16F688 differentiates between various kinds of  
Reset:  
a) Power-on Reset (POR)  
b) WDT Reset during normal operation  
c) WDT Reset during Sleep  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 11-1.  
d) MCLR Reset during normal operation  
e) MCLR Reset during Sleep  
f) Brown-out Reset (BOR)  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Section 14.0 “Electrical  
Specifications” for pulse width specifications.  
Some registers are not affected in any Reset condition;  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
• Power-on Reset  
• MCLR Reset  
• MCLR Reset during Sleep  
• WDT Reset  
• Brown-out Reset (BOR)  
FIGURE 11-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR/VPP pin  
Sleep  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out(1)  
Reset  
BOREN  
SBOREN  
S
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
R
Q
OSC1/  
CLKI pin  
PWRT  
11-bit Ripple Counter  
LFINTOSC  
Enable PWRT  
Enable OST  
Note 1: Refer to the Configuration Word register (Register 11-1).  
DS41203E-page 112  
© 2009 Microchip Technology Inc.  
PIC16F688  
11.2.1  
POWER-ON RESET  
FIGURE 11-2:  
RECOMMENDED MCLR  
CIRCUIT  
The on-chip POR circuit holds the chip in Reset until  
VDD has reached a high enough level for proper  
operation. To take advantage of the POR, simply  
connect the MCLR pin through a resistor to VDD. This  
will eliminate external RC components usually needed  
to create Power-on Reset. A maximum rise time for  
VDD is required. See Section 14.0 “Electrical Specifi-  
cations” for details. If the BOR is enabled, the maxi-  
mum rise time specification does not apply. The BOR  
circuitry will keep the device in Reset until VDD reaches  
VBOD (see Section 11.2.4 “Brown-Out Reset  
(BOR)”).  
VDD  
R1  
PIC16F688  
1 kΩ (or greater)  
MCLR  
C1  
0.1 μF  
(optional, not critical)  
Note:  
The POR circuit does not produce an  
internal Reset when VDD declines. To  
re-enable the POR, VDD must reach Vss  
for a minimum of 100 μs.  
11.2.3  
POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 64 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates from the 31 kHz  
LFINTOSC oscillator. For more information, see  
Section 3.5 “Internal Clock Modes”. The chip is kept  
in Reset as long as PWRT is active. The PWRT delay  
allows the VDD to rise to an acceptable level. A Config-  
uration bit, PWRTE, can disable (if set) or enable (if  
cleared or programmed) the Power-up Timer. The  
Power-up Timer should be enabled when Brown-out  
Reset is enabled, although it is not required.  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (i.e.,  
voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
11.2.2  
MCLR  
The Power-up Timer delay will vary from chip-to-chip  
and vary due to:  
PIC16F688 has a noise filter in the MCLR Reset path.  
The filter will detect and ignore small pulses.  
• VDD variation  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
Temperature variation  
• Process variation  
The behavior of the ESD protection on the MCLR pin  
has been altered from early devices of this family.  
Voltages applied to the pin that exceed its specification  
can result in both MCLR Resets and excessive current  
beyond the device specification during the ESD event.  
For this reason, Microchip recommends that the MCLR  
pin no longer be tied directly to VDD. The use of an RC  
network, as shown in Figure 11-2, is suggested.  
See DC parameters for details (Section 14.0  
“Electrical Specifications”).  
Note:  
Voltage spikes below VSS at the MCLR  
pin, inducing currents greater than 80 mA,  
may cause latch-up. Thus, a series resis-  
tor of 50-100 Ω should be used when  
applying a “low” level to the MCLR pin,  
rather than pulling this pin directly to VSS.  
An internal MCLR option is enabled by clearing the  
MCLRE bit in the Configuration Word register. When  
MCLRE = 0, the Reset signal to the chip is generated  
internally. When the MCLRE = 1, the RA3/MCLR pin  
becomes an external Reset input. In this mode, the  
RA3/MCLR pin has a weak pull-up to VDD.  
© 2009 Microchip Technology Inc.  
DS41203E-page 113  
PIC16F688  
This will occur regardless of VDD slew rate. A Reset is  
not insured to occur if VDD falls below VBOD for less  
than parameter (TBOD).  
11.2.4  
BROWN-OUT RESET (BOR)  
The BOREN0 and BOREN1 bits in the Configuration  
Word register selects one of four BOR modes. Two  
modes have been added to allow software or hardware  
control of the BOR enable. When BOREN<1:0> = 01,  
the SBOREN bit of the PCON register enables/disables  
the BOR, allowing it to be controlled in software. By  
selecting BOREN<1:0>, the BOR is automatically  
disabled in Sleep to conserve power and enabled on  
wake-up. In this mode, the SBOREN bit is disabled.  
See Register 11-1 for the Configuration Word  
definition.  
On any Reset (Power-on, Brown-out Reset, Watchdog  
Timer, etc.), the chip will remain in Reset until VDD rises  
above VBOD (see Figure 11-3). The Power-up Timer  
will now be invoked, if enabled and will keep the chip in  
Reset an additional 64 ms.  
Note:  
The Power-up Timer is enabled by the  
PWRTE bit in the Configuration Word  
register.  
If VDD drops below VBOD while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOD, the Power-up Timer will execute a  
64 ms Reset.  
If VDD falls below VBOD for greater than parameter  
(TBOD) (see Section 14.0 “Electrical Specifica-  
tions”), the Brown-out situation will reset the device.  
FIGURE 11-3:  
BROWN-OUT SITUATIONS  
VDD  
VBOD  
Internal  
Reset  
(1)  
64 ms  
VDD  
VBOD  
Internal  
Reset  
< 64 ms  
(1)  
64 ms  
VDD  
VBOD  
Internal  
Reset  
(1)  
64 ms  
Note 1: 64 ms delay only if PWRTE bit is programmed to ‘0’.  
DS41203E-page 114  
© 2009 Microchip Technology Inc.  
PIC16F688  
11.2.5  
TIME-OUT SEQUENCE  
11.2.6  
POWER CONTROL (PCON)  
REGISTER  
On power-up, the time-out sequence is as follows: first,  
PWRT time-out is invoked after POR has expired, then  
OST is activated after the PWRT time-out has expired.  
The total time-out will vary based on oscillator configu-  
ration and PWRTE bit status. For example, in EC mode  
with PWRTE bit erased (PWRT disabled), there will be  
no time-out at all. Figure 11.2.1, Figure 11-5 and  
Figure 11-6 depict time-out sequences. The device can  
execute code from the INTOSC while OST is active by  
enabling Two-Speed Start-up or Fail-Safe Monitor (see  
Section 3.7.2 “Two-Speed Start-up Sequence” and  
Section 3.8 “Fail-Safe Clock Monitor”).  
The Power Control (PCON) register (address 8Eh) has  
two Status bits to indicate what type of Reset that last  
occurred.  
Bit 0 is BOR (Brown-out). BOR is unknown on  
Power-on Reset. It must then be set by the user and  
checked on subsequent Resets to see if BOR = 0,  
indicating that a Brown-out has occurred. The BOR  
Status bit is a “don’t care” and is not necessarily  
predictable if the brown-out circuit is disabled  
(BOREN<1:0>  
register).  
= 00 in the Configuration Word  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then,  
bringing MCLR high will begin execution immediately  
(see Figure 11-5). This is useful for testing purposes or  
to synchronize more than one PIC16F688 device  
operating in parallel.  
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
1’ to this bit following a Power-on Reset. On a  
subsequent Reset, if POR is ‘0’, it will indicate that a  
Power-on Reset has occurred (i.e., VDD may have  
gone too low).  
Table 11-5 shows the Reset conditions for some  
special registers, while Table 11-4 shows the Reset  
conditions for all the registers.  
For more information, see Section 4.2.4 “Ultra  
Low-Power  
Wake-up”  
and  
Section 11.2.4  
“Brown-Out Reset (BOR)”.  
TABLE 11-1: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Brown-out Reset  
Wake-up  
Oscillator Configuration  
from Sleep  
PWRTE = 0  
PWRTE = 1  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
TPWRT + 1024  
TOSC  
1024 • TOSC  
TPWRT + 1024  
TOSC  
1024 • TOSC  
1024 • TOSC  
RC, EC, INTOSC  
TPWRT  
TPWRT  
TABLE 11-2: PCON BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
Condition  
0
1
u
u
u
0
u
u
1
1
0
0
1
1
u
0
Power-on Reset  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
u
u
u
u
u
1
u
0
MCLR Reset during normal operation  
MCLR Reset during Sleep  
Legend: u= unchanged, x= unknown  
TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET  
Value on  
all other  
Value on  
POR, BOR  
Name  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Resets(1)  
CONFIG(2) BOREN1 BOREN0  
CPD  
CP  
MCLRE  
PWRTE  
WDTE FOSC2 FOSC1 FOSC0  
PCON  
ULPWUE SBOREN  
RP0 TO  
Z
POR  
DC  
BOR  
C
--01 --qq  
0001 1xxx  
--0u --uu  
000q quuu  
STATUS  
IRP  
RP1  
PD  
Legend:  
Note 1:  
2:  
u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition. Shaded cells are not used by BOR.  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
See Configuration Word register (Register 11-1) for operation of all register bits.  
© 2009 Microchip Technology Inc.  
DS41203E-page 115  
PIC16F688  
FIGURE 11-4:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 11-5:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 11-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
DS41203E-page 116  
© 2009 Microchip Technology Inc.  
PIC16F688  
TABLE 11-4: INITIALIZATION CONDITION FOR REGISTERS  
Wake-up from Sleep  
through Interrupt  
Wake-up from Sleep  
through WDT Time-out  
MCLR Reset  
Power-on  
Reset  
Register  
Address  
WDT Reset  
Brown-out Reset(1)  
W
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--x0 x000  
--xx 0000  
---0 0000  
0000 000x  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
01-0 0-00  
-000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
000x 000x  
---0 1000  
0000 0000  
---- --10  
xxxx xxxx  
00-0 0000  
1111 1111  
--11 1111  
--11 1111  
0000 0000  
--01 --0x  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
000q quuu(4)  
uuuu uuuu  
--00 0000  
--00 0000  
---0 0000  
0000 000x  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
01-0 0-00  
-000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
000x 000x  
---0 1000  
0000 0000  
---- --10  
uuuu uuuu  
00-0 0000  
1111 1111  
--11 1111  
--11 1111  
0000 0000  
--0u --uu(1,5)  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
PC + 1(3)  
INDF  
00h/80h/100h/180h  
TMR0  
01h/101h  
PCL  
02h/82h/102h/182h  
STATUS  
FSR  
03h/83h/103h/183h  
uuuq quuu(4)  
uuuu uuuu  
--uu uuuu  
--uu uuuu  
---u uuuu  
uuuu uuuu(2)  
uuuu uuuu(2)  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uu-u u-uu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uu-u uuuu  
uuuu uuuu  
--uu uuuu  
--uu uuuu  
uuuu uuuu  
--uu --uu  
04h/84h/104h/184h  
PORTA  
PORTC  
PCLATH  
INTCON  
PIR1  
05h/105h  
07h/107h  
0Ah/8Ah/10Ah/18Ah  
0Bh/8Bh/10Bh/18Bh  
0Ch  
0Eh  
TMR1L  
TMR1H  
T1CON  
BAUDCTL  
SPBRGH  
SPBRG  
RCREG  
TXREG  
TXSTA  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
RCSTA  
WDTCON  
CMCON0  
CMCON1  
ADRESH  
ADCON0  
OPTION_REG  
TRISA  
17h  
18h  
19h  
1Ah  
1Eh  
1Fh  
81h/181h  
85h/185h  
87h/187h  
8Ch  
TRISC  
PIE1  
PCON  
8Eh  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 11-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
© 2009 Microchip Technology Inc.  
DS41203E-page 117  
PIC16F688  
TABLE 11-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)  
MCLR Reset  
Wake-up from Sleep  
through interrupt  
Power-on  
Reset  
WDT Reset  
Brown-out Reset(1)  
Register  
Address  
Wake-up from Sleep  
through WDT time-out  
OSCCON  
OSCTUNE  
ANSEL  
8Fh  
90h  
91h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
-110 q000  
---0 0000  
1111 1111  
--11 -111  
--00 0000  
--00 0000  
---- 0000  
0-0- 0000  
0000 0000  
0000 0000  
x--- x000  
---- ----  
xxxx xxxx  
-000 ----  
-110 q000  
---u uuuu  
1111 1111  
--11 -111  
--00 0000  
--00 0000  
---- 0000  
0-0- 0000  
0000 0000  
0000 0000  
u--- q000  
---- ----  
uuuu uuuu  
-000 ----  
-uuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
--uu uuuu  
---- uuuu  
u-u- uuuu  
uuuu uuuu  
uuuu uuuu  
u--- uuuu  
---- ----  
uuuu uuuu  
-uuu ----  
WPUA  
IOCA  
EEDATH  
EEADRH  
VRCON  
EEDAT  
EEADR  
EECON1  
EECON2  
ADRESL  
ADCON1  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 11-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
TABLE 11-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
Status  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
--01 --0x  
--0u --uu  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
000h  
000h  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
--0u --uu  
--0u --uu  
--uu --uu  
--01 --10  
--uu --uu  
WDT Wake-up  
PC + 1  
Brown-out Reset  
000h  
PC + 1(1)  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with  
the interrupt vector (0004h) after execution of PC + 1.  
DS41203E-page 118  
© 2009 Microchip Technology Inc.  
PIC16F688  
For external interrupt events, such as the INT pin or  
PORTA change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends upon when the interrupt event occurs (see  
Figure 11-8). The latency is the same for one or  
two-cycle instructions. Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be  
determined by polling the interrupt flag bits. The  
interrupt flag bit(s) must be cleared in software before  
re-enabling interrupts to avoid multiple interrupt  
requests.  
11.3 Interrupts  
The PIC16F688 has multiple sources of interrupt:  
• External Interrupt RA2/INT  
• TMR0 Overflow Interrupt  
• PORTA Change Interrupts  
• 2 Comparator Interrupts  
• A/D Interrupt  
• Timer1 Overflow Interrupt  
• EEPROM Data Write Interrupt  
• Fail-Safe Clock Monitor Interrupt  
• EUSART Receive and Transmit interrupts  
Note 1: Individual interrupt flag bits are set,  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
The Interrupt Control (INTCON) register and Peripheral  
Interrupt Request 1 (PIR1) register record individual  
interrupt requests in flag bits. The INTCON register  
also has individual and global interrupt enable bits.  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The interrupts, which were  
ignored, are still pending to be serviced  
when the GIE bit is set again.  
A Global Interrupt Enable bit, GIE bit of the INTCON  
register, enables (if set) all unmasked interrupts, or dis-  
ables (if cleared) all interrupts. Individual interrupts can  
be disabled through their corresponding enable bits in  
the INTCON register and PIE1 register. GIE is cleared  
on Reset.  
For additional information on Timer1, A/D or data  
EEPROM modules, refer to the respective peripheral  
section.  
The Return from Interrupt instruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables unmasked interrupts.  
The following interrupt flags are contained in the  
INTCON register:  
• INT Pin Interrupt  
• PORTA Change Interrupt  
• TMR0 Overflow Interrupt  
The peripheral interrupt flags are contained in the  
special register, PIR1. The corresponding interrupt  
enable bit is contained in special register, PIE1.  
The following interrupt flags are contained in the PIR1  
register:  
• EEPROM Data Write Interrupt  
• A/D Interrupt  
• EUSART Receive and Transmit Interrupts  
• 2 Comparator Interrupts  
• Timer1 Overflow Interrupt  
• Fail-Safe Clock Monitor Interrupt  
When an interrupt is serviced:  
• The GIE is cleared to disable any further interrupt.  
• The return address is pushed onto the stack.  
• The PC is loaded with 0004h.  
© 2009 Microchip Technology Inc.  
DS41203E-page 119  
PIC16F688  
11.3.1  
RA2/INT INTERRUPT  
11.3.2  
TIMER0 INTERRUPT  
External interrupt on RA2/INT pin is edge-triggered;  
either rising if the INTEDG bit of the OPTION register is  
set, or falling if the INTEDG bit is clear. When a valid  
edge appears on the RA2/INT pin, the INTF bit of the  
INTCON register is set. This interrupt can be disabled  
by clearing the INTE control bit of the INTCON register.  
The INTF bit must be cleared in software in the Inter-  
rupt Service Routine before re-enabling this interrupt.  
The RA2/INT interrupt can wake-up the processor from  
Sleep if the INTE bit was set prior to going into Sleep.  
The status of the GIE bit decides whether or not the  
processor branches to the interrupt vector following  
wake-up (0004h). See Section 11.6 “Power-Down  
Mode (Sleep)” for details on Sleep and Figure 11-10  
for timing of wake-up from Sleep through RA2/INT  
interrupt.  
An overflow (FFh 00h) in the TMR0 register will set  
the T0IF of the INTCON register bit. The interrupt can  
be enabled/disabled by setting/clearing T0IE bit of the  
INTCON register. See Section 5.0 “Timer0 Module”  
for operation of the Timer0 module.  
11.3.3  
PORTA INTERRUPT  
An input change on PORTA change sets the RAIF bit  
of the INTCON register. The interrupt can be  
enabled/disabled by setting/clearing the RAIE bit of the  
INTCON register. Plus, individual pins can be  
configured through the IOCA register.  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RAIF  
interrupt flag may not get set.  
Note:  
The ANSEL (91h) and CMCON0 (19h)  
registers must be initialized to configure  
an analog channel as a digital input. Pins  
configured as analog inputs will read ‘0’.  
FIGURE 11-7:  
INTERRUPT LOGIC  
IOC-RA0  
IOCA0  
IOC-RA1  
IOCA1  
IOC-RA2  
IOCA2  
IOC-RA3  
IOCA3  
IOC-RA4  
IOCA4  
IOC-RA5  
IOCA5  
Wake-up (If in Sleep mode)  
Interrupt to CPU  
T0IF  
T0IE  
TXIF  
TXIE  
INTF  
INTE  
RAIF  
TMR1IF  
TMR1IE  
RAIE  
C1IF  
C1IE  
PEIE  
GIE  
C2IF  
C2IE  
ADIF  
ADIE  
EEIF  
EEIE  
OSFIF  
OSFIE  
RCIF  
RCIE  
DS41203E-page 120  
© 2009 Microchip Technology Inc.  
PIC16F688  
FIGURE 11-8:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(2)  
(5)  
Interrupt Latency  
INTF Flag  
(INTCON<1>)  
GIE bit  
(INTCON<7>)  
Instruction Flow  
PC  
0004h  
PC + 1  
PC + 1  
0005h  
PC  
Instruction  
Fetched  
Inst (PC)  
Inst (PC + 1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC - 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a two-cycle instruction.  
3: CLKOUT is available only in INTOSC and RC Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 14.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
TABLE 11-6: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
INTE  
C2IE  
C2IF  
RAIE  
C1IE  
C1IF  
T0IF  
INTF  
TXIE  
TXIF  
RAIF  
0000 000x 0000 000x  
OSFIE  
OSFIF  
TMR1IE 0000 0000 0000 0000  
TMR1IF 0000 0000 0000 0000  
PIR1  
Legend:  
x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by the Interrupt module.  
© 2009 Microchip Technology Inc.  
DS41203E-page 121  
PIC16F688  
11.4 Context Saving During Interrupts  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key  
registers during an interrupt (e.g., W and Status  
registers). This must be implemented in software.  
Since the lower 16 bytes of all banks are common in the  
PIC16F688 (see Figure 2-2), temporary holding  
registers, W_TEMP and STATUS_TEMP, should be  
placed in here. These 16 locations do not require  
banking and therefore, make it easier to context save  
and restore. The same code shown in Example 11-1  
can be used to:  
• Store the W register  
• Store the Status register  
• Execute the ISR code  
• Restore the Status (and Bank Select Bit register)  
• Restore the W register  
Note:  
The PIC16F688 normally does not require  
saving the PCLATH. However, if  
computed GOTO’s are used in the ISR and  
the main code, the PCLATH must be  
saved and restored in the ISR.  
EXAMPLE 11-1:  
SAVING STATUS AND W REGISTERS IN RAM  
MOVWF  
SWAPF  
W_TEMP  
STATUS,W  
;Copy W to TEMP register  
;Swap status to be saved into W  
;Swaps are used because they do not affect the status bits  
;Save status to bank zero STATUS_TEMP register  
MOVWF  
:
STATUS_TEMP  
:(ISR)  
:
;Insert user code here  
SWAPF  
STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
DS41203E-page 122  
© 2009 Microchip Technology Inc.  
PIC16F688  
A new prescaler has been added to the path between  
the INTRC and the multiplexers used to select the path  
for the WDT. This prescaler is 16 bits and can be  
programmed to divide the INTRC by 32 to 65536,  
giving the WDT a nominal range of 1 ms to 268s.  
11.5 Watchdog Timer (WDT)  
The WDT has the following features:  
• Operates from the LFINTOSC (31 kHz)  
• Contains a 16-bit prescaler  
• Shares an 8-bit prescaler with Timer0  
• Time-out period is from 1 ms to 268 seconds  
• Configuration bit and software controlled  
11.5.2  
WDT CONTROL  
The WDTE bit is located in the Configuration Word  
register. When set, the WDT runs continuously.  
WDT is cleared under certain conditions described in  
Table 11-7.  
When the WDTE bit in the Configuration Word register  
is set, the SWDTEN bit of the WDTCON register has no  
effect. If WDTE is clear, then the SWDTEN bit can be  
used to enable and disable the WDT. Setting the bit will  
enable it and clearing the bit will disable it.  
11.5.1  
WDT OSCILLATOR  
The WDT derives its time base from the 31 kHz  
LFINTOSC. The LTS bit does not reflect that the  
LFINTOSC is enabled.  
The PSA and PS<2:0> bits of the OPTION register  
have the same function as in previous versions of the  
PIC16F688 family of microcontrollers. See Section 5.0  
“Timer0 Module” for more information.  
The value of WDTCON is ‘---0 1000on all Resets.  
This gives a nominal time base of 16 ms, which is  
compatible with the time base generated with previous  
PIC16F688 microcontroller versions.  
Note:  
When the Oscillator Start-up Timer (OST)  
is invoked, the WDT is held in Reset,  
because the WDT Ripple Counter is used  
by the OST to perform the oscillator delay  
count. When the OST count has expired,  
the WDT will begin counting (if enabled).  
FIGURE 11-9:  
WATCHDOG TIMER BLOCK DIAGRAM  
0
1
From TMR0 Clock Source  
Prescaler(1)  
16-bit WDT Prescaler  
8
PSA  
PS<2:0>  
To TMR0  
31 kHz  
LFINTOSC Clock  
WDTPS<3:0>  
1
0
PSA  
WDTE from Configuration Word Register  
SWDTEN from WDTCON  
WDT Time-out  
Note 1: This is the shared Timer0/WDT prescaler. See Section 5.1.3 “Software Programmable Prescaler” for more information.  
TABLE 11-7: WDT STATUS  
Conditions  
WDT  
WDTE = 0  
CLRWDTCommand  
Oscillator Fail Detected  
Cleared  
Exit Sleep + System Clock = T1OSC, EXTRC, INTRC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
© 2009 Microchip Technology Inc.  
DS41203E-page 123  
PIC16F688  
REGISTER 11-2: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
SWDTEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-1  
Unimplemented: Read as ‘0’  
WDTPS<3:0>: Watchdog Timer Period Select bits  
Bit Value = Prescale Rate  
0000 = 1:32  
0001 = 1:64  
0010 = 1:128  
0011 = 1:256  
0100 = 1:512 (Reset value)  
0101 = 1:1024  
0110 = 1:2048  
0111 = 1:4096  
1000 = 1:8192  
1001 = 1:16384  
1010 = 1:32768  
1011 = 1:65536  
1100 = Reserved  
1101 = Reserved  
1110 = Reserved  
1111 = Reserved  
bit 0  
SWDTEN: Software Enable or Disable the Watchdog Timer(1)  
1= WDT is turned on  
0= WDT is turned off (Reset value)  
Note 1: If WDTE Configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTE  
Configuration bit = 0, then it is possible to turn WDT on/off with this control bit.  
TABLE 11-8: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WDTCON  
WDTPS3 WDTPS2 WSTPS1 WDTPS0 SWDTEN ---0 1000 ---0 1000  
OPTION_REG RAPU INTEDG T0CS  
T0SE  
MCLRE PWRTE WDTE  
Shaded cells are not used by the Watchdog Timer.  
PSA  
PS2  
PS1  
PS0  
1111 1111 1111 1111  
CONFIG  
CPD  
CP  
FOSC2 FOSC1  
FOSC0  
Legend:  
Note 1: See Register 11.0 for operation of all Configuration Word register bits.  
DS41203E-page 124  
© 2009 Microchip Technology Inc.  
PIC16F688  
Other peripherals cannot generate interrupts since  
during Sleep, no on-chip clocks are present.  
11.6 Power-Down Mode (Sleep)  
The Power-down mode is entered by executing a  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction, then branches to the interrupt  
address (0004h). In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
SLEEPinstruction.  
If the Watchdog Timer is enabled:  
• WDT will be cleared but keeps running.  
• PD bit in the Status register is cleared.  
• TO bit is set.  
• Oscillator driver is turned off.  
• I/O ports maintain the status they had before SLEEP  
was executed (driving high, low or high-impedance).  
For lowest current consumption in this mode, all I/O  
pins should be either at VDD or VSS, with no external  
circuitry drawing current from the I/O pin, and the  
comparators and CVREF should be disabled. I/O pins  
that are high-impedance inputs should be pulled high  
or low externally to avoid switching currents caused by  
floating inputs. The T0CKI input should also be at VDD  
or VSS for lowest current consumption. The  
contribution from on-chip pull-ups on PORTA should be  
considered.  
Note:  
If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the correspond-  
ing interrupt flag bits set, the device will  
immediately wake-up from Sleep. The  
SLEEPinstruction is completely executed.  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
The MCLR pin must be at a logic high level.  
11.6.2  
WAKE-UP USING INTERRUPTS  
Note:  
It should be noted that a Reset generated  
by a WDT time-out does not drive MCLR  
pin low.  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
11.6.1  
WAKE-UP FROM SLEEP  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP. Therefore, the WDT and WDT  
prescaler and postscaler (if enabled) will not be  
cleared, the TO bit will not be set and the PD bit  
will not be cleared.  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin.  
2. Watchdog Timer wake-up (if WDT was  
enabled).  
• If the interrupt occurs during or after the  
execution of a SLEEPinstruction, the device will  
immediately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT prescaler  
and postscaler (if enabled) will be cleared, the TO  
bit will be set and the PD bit will be cleared.  
3. Interrupt from RA2/INT pin, PORTA change or a  
peripheral interrupt.  
The first event will cause a device Reset. The two latter  
events are considered a continuation of program  
execution. The TO and PD bits in the Status register  
can be used to determine the cause of device Reset.  
The PD bit, which is set on power-up, is cleared when  
Sleep is invoked. TO bit is cleared if WDT wake-up  
occurred.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEP instruction completes.  
To determine whether a SLEEP instruction executed,  
test the PD bit. If the PD bit is set, the SLEEPinstruction  
was executed as a NOP.  
The following peripheral interrupts can wake the device  
from Sleep:  
1. Timer1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
To ensure that the WDT is cleared, a CLRWDTinstruction  
should be executed before a SLEEPinstruction.  
2. A/D conversion (when A/D clock source is FRC).  
3. EEPROM write operation completion.  
4. Comparator output changes state.  
5. Interrupt-on-change.  
6. External Interrupt from INT pin.  
7. EUSART Receive Interrupt.  
8. ULPWU Interrupt.  
© 2009 Microchip Technology Inc.  
DS41203E-page 125  
PIC16F688  
FIGURE 11-10:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTF flag  
(INTCON<1>)  
Interrupt Latency(3)  
GIE bit  
(INTCON<7>)  
Processor in  
Sleep  
Instruction Flow  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Sleep  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1:  
XT, HS or LP Oscillator mode assumed.  
TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC and RC Oscillator modes.  
GIE = 1assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.  
2:  
3:  
4:  
CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.  
11.7 Code Protection  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out using ICSP for verification purposes.  
Note:  
The entire data EEPROM and Flash  
program memory will be erased when the  
code protection is turned off. See the  
“PIC12F6XX/16F6XX Memory Program-  
ming Specification” (DS41204) for more  
information.  
11.8 ID Locations  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution but are  
readable and writable during Program/Verify mode.  
Only the Least Significant 7 bits of the ID locations are  
used.  
DS41203E-page 126  
© 2009 Microchip Technology Inc.  
PIC16F688  
11.9 In-Circuit Serial Programming  
11.10 In-Circuit Debugger  
This allows customers to manufacture boards with  
unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
Since in-circuit debugging requires access to the data  
and MCLR pins, MPLAB® ICD 2 development with an  
14-pin device is not practical. A special 20-pin  
PIC16F688 ICD device is used with MPLAB ICD 2 to  
provide separate clock, data and MCLR pins and frees  
all normally available pins to the user.  
The device is placed into a Program/Verify mode by  
holding the RA0 and RA1 pins low, while raising the  
MCLR (VPP) pin from VIL to VIHH. See the  
A special debugging adapter allows the ICD device to  
be used in place of a PIC16F688 device. The  
debugging adapter is the only source of the ICD device.  
“PIC12F6XX/16F6XX  
Memory  
Programming  
Specification” (DS41204) for more information. RA0  
becomes the programming data and RA1 becomes the  
programming clock. Both RA0 and RA1 are Schmitt  
Trigger inputs in Program/Verify mode.  
When the ICD pin on the PIC16F688 ICD device is held  
low, the In-Circuit Debugger functionality is enabled.  
This function allows simple debugging functions when  
used with MPLAB ICD 2. When the microcontroller has  
this feature enabled, some of the resources are not  
available for general use. Table 11-9 shows which  
features are consumed by the background debugger:  
A typical In-Circuit Serial Programming connection is  
shown in Figure 11-11.  
FIGURE 11-11:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
TABLE 11-9: DEBUGGER RESOURCES  
Resource  
Description  
I/O pins  
Stack  
ICDCLK, ICDDATA  
1 level  
To Normal  
Connections  
External  
Connector  
Signals  
Program Memory Address 0h must be NOP  
*
PIC16F688  
700h-7FFh  
+5V  
0V  
VDD  
For more information, see “MPLAB® ICD 2 In-Circuit  
Debugger User’s Guide” (DS51331), available on  
Microchip’s web site (www.microchip.com).  
VSS  
VPP  
MCLR/VPP/RA3  
RA1  
RA0  
CLK  
FIGURE 11-12:  
20-Pin PDIP  
20-PIN ICD PINOUT  
Data I/O  
In-Circuit Debug Device  
NC  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
ICDCLK  
ICDDATA  
ICDMCLR/VPP  
*
*
*
VDD  
RA5  
RA4  
3
Vss  
RA0  
RA1  
RA2  
4
5
To Normal  
Connections  
6
RA3  
RC5  
7
RC0  
RC1  
RC2  
NC  
RC4  
8
* Isolation devices (as required)  
9
RC3  
ICD  
10  
© 2009 Microchip Technology Inc.  
DS41203E-page 127  
PIC16F688  
NOTES:  
DS41203E-page 128  
© 2009 Microchip Technology Inc.  
PIC16F688  
TABLE 12-1: OPCODE FIELD  
12.0 INSTRUCTION SET SUMMARY  
DESCRIPTIONS  
The PIC16F688 instruction set is highly orthogonal and  
is comprised of three basic categories:  
Field  
Description  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
k
Each PIC16 instruction is a 14-bit word divided into an  
opcode, which specifies the instruction type and one or  
more operands, which further specify the operation of  
the instruction. The formats for each of the categories  
is presented in Figure 12-1, while the various opcode  
fields are summarized in Table 12-1.  
x
Don’t care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
Table 12-2 lists the instructions recognized by the  
MPASMTM assembler.  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
PC  
TO  
C
Program Counter  
Time-out bit  
Carry bit  
DC  
Z
Digit carry bit  
Zero bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
PD  
Power-down bit  
FIGURE 12-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ‘b’ represents a bit field  
designator, which selects the bit affected by the  
operation, while ‘f’ represents the address of the file in  
which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
For literal and control operations, ‘k’ represents an  
8-bit or 11-bit constant, or literal value.  
OPCODE  
d
f (FILE #)  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a  
nominal instruction execution time of 1 μs. All  
instructions are executed within a single instruction  
cycle, unless a conditional test is true, or the program  
counter is changed as a result of an instruction. When  
this occurs, the execution takes two instruction cycles,  
with the second cycle executed as a NOP.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
Literal and control operations  
General  
13  
8
7
0
0
12.1 Read-Modify-Write Operations  
OPCODE  
k (literal)  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion, or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
For example, a CLRF PORTA instruction will read  
PORTA, clear all the data bits, then write the result  
back to PORTA. This example would have the  
unintended consequence of clearing the condition that  
set the RAIF flag.  
© 2009 Microchip Technology Inc.  
DS41203E-page 129  
PIC16F688  
TABLE 12-2: PIC16F684 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Description  
Operands  
Status  
Affected  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
1, 2  
1, 2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1, 2  
1, 2  
1, 2, 3  
1, 2  
1, 2, 3  
1, 2  
1, 2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
Move W to f  
No Operation  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
00 0010 dfff ffff C, DC, Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1, 2  
1, 2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Call Subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C, DC, Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO, PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO, PD  
11 110x kkkk kkkk C, DC, Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
DS41203E-page 130  
© 2009 Microchip Technology Inc.  
PIC16F688  
12.2 Instruction Descriptions  
BCF  
Bit Clear f  
ADDLW  
Add literal and W  
Syntax:  
[ label ] BCF f,b  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) + k (W)  
C, DC, Z  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal ‘k’  
and the result is placed in the  
W register.  
Bit ‘b’ in register ‘f’ is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
1(f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit ‘b’ in register ‘f’ is set.  
Description:  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If  
‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
BTFSC  
Bit Test f, Skip if Clear  
ANDLW  
AND literal with W  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 0  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
If bit ‘b’, in register ‘f’, is ‘0’, the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a two-cycle instruction.  
ANDWF  
AND W with f  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
AND the W register with register  
‘f’. If ‘d’ is ‘0’, the result is stored in  
the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
© 2009 Microchip Technology Inc.  
DS41203E-page 131  
PIC16F688  
CLRWDT  
Clear Watchdog Timer  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[ label ] CLRWDT  
Syntax:  
[ label ] BTFSS f,b  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
0 b < 7  
00h WDT  
0WDT prescaler,  
1TO  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
1PD  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
Status Affected: TO, PD  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction.  
Status bits TO and PD are set.  
CALL  
Call Subroutine  
COMF  
Complement f  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in  
register ‘f’.  
Description:  
Call Subroutine. First, return  
address (PC + 1) is pushed onto  
the stack. The eleven-bit  
immediate address is loaded into  
PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two-cycle instruction.  
CLRF  
Clear f  
DECF  
Decrement f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are  
cleared and the Z bit is set.  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
DS41203E-page 132  
© 2009 Microchip Technology Inc.  
PIC16F688  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, then a NOPis  
executed instead, making it a  
two-cycle instruction.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, a NOPis executed  
instead, making it a two-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the  
W register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a  
two-cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
© 2009 Microchip Technology Inc.  
DS41203E-page 133  
PIC16F688  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
MOVF  
Move f  
Syntax:  
f
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
0 f 127  
d [0,1]  
Operation:  
(f) (dest)  
None  
Status Affected:  
Description:  
Z
Move data from W register to  
register ‘f’.  
The contents of register f is  
moved to a destination dependent  
upon the status of d. If d = 0,  
destination is W register. If d = 1,  
the destination is file register f  
itself. d = 1is useful to test a file  
register since status flag Z is  
affected.  
Words:  
1
1
Cycles:  
Example:  
MOVW  
F
OPTION  
Before Instruction  
OPTION = 0xFF  
Words:  
1
1
W
=
0x4F  
After Instruction  
Cycles:  
Example:  
OPTION = 0x4F  
W
MOVF  
FSR, 0  
=
0x4F  
After Instruction  
W
=
value in FSR  
register  
Z
=
1
MOVLW  
Syntax:  
Move literal to W  
NOP  
No Operation  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] NOP  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
k (W)  
No operation  
Status Affected: None  
None  
Description:  
The eight-bit literal ‘k’ is loaded into  
W register. The “don’t cares” will  
assemble as ‘0’s.  
No operation.  
1
Cycles:  
1
Words:  
1
1
NOP  
Example:  
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
DS41203E-page 134  
© 2009 Microchip Technology Inc.  
PIC16F688  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RETLW  
Return with literal in W  
Syntax:  
Syntax:  
[ label ] RETLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC,  
1GIE  
k (W);  
TOS PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
Return from Interrupt. Stack is  
POPed and Top-of-Stack (TOS) is  
loaded in the PC. Interrupts are  
enabled by setting Global  
Interrupt Enable bit, GIE  
The W register is loaded with the  
eight bit literal ‘k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
(INTCON<7>). This is a two-cycle  
instruction.  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
CALL TABLE;W contains  
table  
Cycles:  
Example:  
2
RETFIE  
;offset value  
;W now has table value  
TABLE  
After Interrupt  
PC = TOS  
GIE =  
1
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
RETLW k2  
;
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
RETURN  
Return from Subroutine  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
TOS PC  
Status Affected: None  
Description: Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
© 2009 Microchip Technology Inc.  
DS41203E-page 135  
PIC16F688  
RLF  
Rotate Left f through Carry  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0PD  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
C
Register f  
Words:  
1
1
Cycles:  
Example:  
RLF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
SUBLW  
Subtract W from literal  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Syntax:  
[ label ] RRF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
k - (W) → (W)  
Operation:  
See description below  
C
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Description: The W register is subtracted (2’s  
complement method) from the  
eight-bit literal ‘k’. The result is  
placed in the W register.  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is placed  
back in register ‘f’.  
C = 0  
W > k  
C = 1  
W k  
DC = 0  
DC = 1  
W<3:0> > k<3:0>  
W<3:0> k<3:0>  
C
Register f  
DS41203E-page 136  
© 2009 Microchip Technology Inc.  
PIC16F688  
SUBWF  
Subtract W from f  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k → (W)  
Z
Operation:  
(f) - (W) → (destination)  
Status Affected: C, DC, Z  
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
Description:  
Subtract (2’s complement method)  
W register from register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f.  
C = 0  
W > f  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> > f<3:0>  
W<3:0> f<3:0>  
SWAPF  
Swap Nibbles in f  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Operation:  
(W) .XOR. (f) → (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Description: The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in the W  
register. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
© 2009 Microchip Technology Inc.  
DS41203E-page 137  
PIC16F688  
NOTES:  
DS41203E-page 138  
© 2009 Microchip Technology Inc.  
PIC16F688  
13.1 MPLAB Integrated Development  
Environment Software  
13.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2009 Microchip Technology Inc.  
DS41203E-page 139  
PIC16F688  
13.2 MPASM Assembler  
13.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
13.6 MPLAB SIM Software Simulator  
13.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcon-  
trollers and the dsPIC30 and dsPIC33 family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
13.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS41203E-page 140  
© 2009 Microchip Technology Inc.  
PIC16F688  
13.7 MPLAB ICE 2000  
High-Performance  
13.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
13.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
13.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high-speed, noise tolerant, Low-  
Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2009 Microchip Technology Inc.  
DS41203E-page 141  
PIC16F688  
13.11 PICSTART Plus Development  
Programmer  
13.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
13.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families  
of Flash memory microcontrollers. The PICkit 2 Starter  
Kit includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS41203E-page 142  
© 2009 Microchip Technology Inc.  
PIC16F688  
14.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias..........................................................................................................-40° to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS ................................................................................................... -0.3V to +6.5V  
Voltage on MCLR with respect to Vss ............................................................................................... -0.3V to +13.5V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ...............................................................................................................................800 mW  
Maximum current out of VSS pin ...................................................................................................................... 95 mA  
Maximum current into VDD pin ......................................................................................................................... 95 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...............................................................................................................± 20 mA  
Output clamp current, IOK (Vo < 0 or Vo >VDD).........................................................................................................± 20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sunk by PORTA and PORTC (combined) ........................................................................... 90 mA  
Maximum current sourced PORTA and PORTC (combined)........................................................................... 90 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x  
IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for  
extended periods may affect device reliability.  
© 2009 Microchip Technology Inc.  
DS41203E-page 143  
PIC16F688  
FIGURE 14-1:  
PIC16F688 VOLTAGE-FREQUENCY GRAPH,  
-40°C TA +125°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
0
8
10  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 14-2:  
HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE  
125  
85  
60  
25  
0
± 5%  
± 2%  
± 1%  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
DS41203E-page 144  
© 2009 Microchip Technology Inc.  
PIC16F688  
14.1 DC Characteristics: PIC16F688 -I (Industrial)  
PIC16F688 -E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Min Typ† Max Units  
Conditions  
VDD  
Supply Voltage  
2.0  
2.0  
3.0  
4.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
FOSC < = 8 MHz: HFINTOSC, EC  
FOSC < = 4 MHz  
FOSC < = 10 MHz  
D001  
D001C  
D001D  
FOSC < = 20 MHz  
D002* VDR  
RAM Data Retention  
Voltage(1)  
1.5  
V
Device in Sleep mode  
D003 VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See Section 11.2.1 “Power-On Reset”  
for details.  
D004* SVDD  
VDD Rise Rate to ensure  
internal Power-on Reset  
signal  
0.05  
V/ms See Section 11.2.1 “Power-On Reset”  
for details.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
© 2009 Microchip Technology Inc.  
DS41203E-page 145  
PIC16F688  
14.2 DC Characteristics: PIC16F688 -I (Industrial)  
PIC16F688 -E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Units  
Device Characteristics  
Min  
Typ†  
Max  
No.  
VDD  
Note  
D010  
Supply Current (IDD)(1, 2)  
16  
27  
23  
38  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
mA  
μA  
μA  
mA  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32 kHz  
LP Oscillator mode  
47  
75  
D011*  
D012  
D013*  
D014  
D015  
D016*  
D017  
D018  
D019  
180  
290  
490  
280  
480  
0.9  
250  
400  
650  
380  
670  
1.4  
220  
360  
520  
340  
550  
1.0  
20  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
130  
215  
360  
220  
375  
0.65  
8
FOSC = 1 MHz  
EC Oscillator mode  
FOSC = 4 MHz  
EC Oscillator mode  
FOSC = 31 kHz  
LFINTOSC mode  
16  
40  
31  
65  
320  
490  
0.87  
0.5  
400  
640  
1.2  
0.7  
1
FOSC = 4 MHz  
HFINTOSC mode  
FOSC = 8 MHz  
HFINTOSC mode  
0.78  
1.43  
340  
550  
0.92  
2.9  
1.8  
580  
950  
1.6  
3.7  
3.8  
FOSC = 4 MHz  
EXTRC mode(3)  
FOSC = 20 MHz  
HS Oscillator mode  
3.1  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave,  
from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.  
DS41203E-page 146  
© 2009 Microchip Technology Inc.  
PIC16F688  
14.3 DC Characteristics: PIC16F688-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Conditions  
Note  
Param  
No.  
Device Characteristics  
Min  
Typ†  
Max  
Units  
VDD  
D020  
Power-down Base  
Current(IPD)(2)  
0.05  
0.15  
0.35  
150  
1.0  
2.0  
3.0  
42  
1.2  
1.5  
1.8  
500  
2.2  
4.0  
7.0  
60  
μA  
μA  
μA  
nA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
3.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOR, Comparators, VREF and  
T1OSC disabled  
-40°C TA +25°C  
WDT Current(1)  
D021  
D022  
D023  
BOR Current(1)  
85  
122  
45  
32  
Comparator Current(1), both  
comparators enabled  
60  
78  
120  
30  
160  
36  
D024  
D025*  
D026  
D027  
CVREF Current(1) (high range)  
CVREF Current(1) (low range)  
T1OSC Current(1), 32.768 kHz  
45  
55  
75  
95  
39  
47  
59  
72  
98  
124  
7.0  
8.0  
12  
4.5  
5.0  
6.0  
0.30  
0.36  
1.6  
1.9  
A/D Current(1), no conversion in  
progress  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
© 2009 Microchip Technology Inc.  
DS41203E-page 147  
PIC16F688  
14.4 DC Characteristics: PIC16F688-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C for extended  
Conditions  
Units  
Param  
No.  
Device Characteristics Min  
Typ†  
Max  
VDD  
Note  
D020E Power-down Base  
0.05  
0.15  
0.35  
1
9
11  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOR, Comparators, VREF and  
T1OSC disabled  
Current (IPD)(2)  
15  
D021E  
28  
WDT Current(1)  
BOR Current(1)  
2
30  
3
35  
D022E  
D023E  
42  
85  
32  
60  
120  
30  
45  
75  
39  
59  
98  
4.5  
5
65  
127  
45  
Comparator Current(1), both  
comparators enabled  
78  
160  
70  
D024E  
D025E*  
D026E  
D027E  
CVREF Current(1) (high range)  
CVREF Current(1) (low range)  
T1OSC Current(1), 32.768 kHz  
90  
120  
91  
117  
156  
25  
30  
6
40  
0.30  
0.36  
12  
A/D Current(1), no conversion in  
progress  
16  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41203E-page 148  
© 2009 Microchip Technology Inc.  
PIC16F688  
14.5 DC Characteristics: PIC16F688 -I (Industrial)  
PIC16F688 -E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O Port:  
D030  
D030A  
D031  
D032  
D033  
D033A  
with TTL buffer  
Vss  
Vss  
Vss  
VSS  
VSS  
VSS  
0.8  
V
V
V
V
V
V
4.5V VDD 5.5V  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3  
2.0V VDD 4.5V  
2.0V VDD 5.5V  
with Schmitt Trigger buffer  
(1)  
MCLR, OSC1 (RC mode)  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
Input High Voltage  
I/O ports:  
0.3 VDD  
VIH  
D040  
with TTL buffer  
2.0  
0.25 VDD + 0.8  
0.8 VDD  
0.8 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
4.5V VDD 5.5V  
2.0V VDD 4.5V  
2.0V VDD 5.5V  
D040A  
D041  
with Schmitt Trigger buffer  
MCLR  
D042  
D043  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
D043A  
D043B  
0.7 VDD  
0.9 VDD  
OSC1 (RC mode)  
(Note 1)  
(2)  
IIL  
Input Leakage Current  
D060  
I/O ports  
± 0.1  
± 1  
μA VSS VPIN VDD,  
Pin at high-impedance  
(3)  
D061  
D063  
MCLR  
± 0.1  
± 0.1  
± 5  
± 5  
μA VSS VPIN VDD  
OSC1  
μA VSS VPIN VDD, XT, HS and  
LP oscillator configuration  
D070* IPUR  
VOL  
PORTA Weak Pull-up Current  
50  
250  
400  
0.6  
μA VDD = 5.0V, VPIN = VSS  
(5)  
Output Low Voltage  
D080  
I/O ports  
V
V
IOL = 8.5 mA, VDD = 4.5V (Ind.)  
IOH = -3.0 mA, VDD = 4.5V (Ind.)  
(5)  
VOH  
Output High Voltage  
D090  
I/O ports  
VDD – 0.7  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 9.0 “Data EEPROM and Flash Program Memory Control” for additional information.  
5: Including OSC2 in CLKOUT mode.  
© 2009 Microchip Technology Inc.  
DS41203E-page 149  
PIC16F688  
14.5 DC Characteristics: PIC16F688 -I (Industrial)  
PIC16F688 -E (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
D100  
IULP  
Ultra Low-Power Wake-Up  
Current  
200  
nA See Application Note AN879,  
Using the Microchip Ultra  
Low-Power Wake-up Module”  
(DS00879)  
Capacitive Loading Specs on  
Output Pins  
D101* COSC2 OSC2 pin  
15  
50  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101A* CIO  
All I/O pins  
pF  
Data EEPROM Memory  
Byte Endurance  
Byte Endurance  
VDD for Read/Write  
D120  
ED  
100K  
10K  
1M  
100K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D120A ED  
D121  
VDRW  
VMIN  
5.5  
V
Using EECON1 to read/write  
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW  
Erase/Write Cycle Time  
Characteristic Retention  
5
6
ms  
TRETD  
40  
Year Provided no other specifications  
are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh  
1M  
10M  
E/W -40°C TA +85°C  
(4)  
Program Flash Memory  
Cell Endurance  
D130  
EP  
10K  
1K  
100K  
10K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D130A ED  
Cell Endurance  
D131  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
D134  
VPEW  
TPEW  
TRETD  
VDD for Erase/Write  
4.5  
2
5.5  
2.5  
V
Erase/Write cycle time  
Characteristic Retention  
ms  
40  
Year Provided no other specifications  
are violated  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 9.0 “Data EEPROM and Flash Program Memory Control” for additional information.  
5: Including OSC2 in CLKOUT mode.  
DS41203E-page 150  
© 2009 Microchip Technology Inc.  
PIC16F688  
14.6 Thermal Considerations  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Typ  
Units  
Conditions  
TH01  
θJA  
Thermal Resistance  
Junction to Ambient  
69.8  
85.0  
100.4  
46.3  
32.5  
31.0  
31.7  
2.6  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C
14-pin PDIP package  
14-pin SOIC package  
14-pin TSSOP package  
16-pin QFN 4x0.9mm package  
14-pin PDIP package  
TH02  
θJC  
Thermal Resistance  
Junction to Case  
14-pin SOIC package  
14-pin TSSOP package  
16-pin QFN 4x0.9mm package  
For derated power calculations  
PD = PINTERNAL + PI/O  
TH03  
TH04  
TH05  
TJ  
Junction Temperature  
Power Dissipation  
150  
PD  
W
PINTERNAL Internal Power Dissipation  
W
PINTERNAL = IDD x VDD  
(NOTE 1)  
TH06  
TH07  
PI/O  
I/O Power Dissipation  
Derated Power  
W
W
PI/O = Σ (IOL * VOL) + Σ (IOH * (VDD - VOH))  
PDER = (TJ - TA)/θJA  
PDER  
(NOTE 2, 3)  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient Temperature.  
3: Maximum allowable power dissipation is the lower value of either the absolute maximum total power  
dissipation or derated power (PDER).  
© 2009 Microchip Technology Inc.  
DS41203E-page 151  
PIC16F688  
14.7  
Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O PORT  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 14-3:  
LOAD CONDITIONS  
Load Condition  
Pin  
CL  
VSS  
Legend: CL = 50 pF for all pins  
15 pF for OSC2 output  
DS41203E-page 152  
© 2009 Microchip Technology Inc.  
PIC16F688  
14.8 AC Characteristics: PIC16F688 (Industrial, Extended)  
FIGURE 14-4:  
CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1/CLKIN  
OS02  
OS04  
OS04  
OS03  
OSC2/CLKOUT  
(LP, XT, HS Modes)  
OSC2/CLKOUT  
(CLKOUT Mode)  
TABLE 14-1: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
(1)  
OS01  
OS02  
OS03  
FOSC  
TOSC  
TCY  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
37  
kHz LP Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz EC Oscillator mode  
kHz LP Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz RC Oscillator mode  
4
20  
20  
(1)  
Oscillator Frequency  
32.768  
0.1  
1
4
20  
DC  
27  
250  
50  
50  
4
(1)  
External CLKIN Period  
μs  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
EC Oscillator mode  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
RC Oscillator mode  
TCY = 4/FOSC  
(1)  
Oscillator Period  
30.5  
250  
50  
250  
200  
2
10,000  
1,000  
DC  
(1)  
Instruction Cycle Time  
TCY  
OS04* TosH, External CLKIN High,  
TosL External CLKIN Low  
LP oscillator  
100  
20  
0
XT oscillator  
HS oscillator  
OS05* TosR, External CLKIN Rise,  
TosF External CLKIN Fall  
LP oscillator  
0
XT oscillator  
0
HS oscillator  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min” values with an external  
clock applied to OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for  
all devices.  
© 2009 Microchip Technology Inc.  
DS41203E-page 153  
PIC16F688  
TABLE 14-2: OSCILLATOR PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Freq  
Tolerance  
Characteristic  
Min  
Typ†  
Max  
Units  
TOSC Slowest clock  
ms LFINTOSC/64  
Conditions  
OS06  
OS07  
OS08  
TWARM  
Internal Oscillator Switch  
2
(3)  
when running  
TSC  
Fail-Safe Sample Clock  
21  
(1)  
Period  
HFOSC  
Internal Calibrated  
HFINTOSC Frequency  
±1%  
±2%  
7.92  
7.84  
8.0  
8.0  
8.08  
8.16  
MHz VDD = 3.5V, 25°C  
(2)  
MHz 2.5V VDD 5.5V,  
0°C TA +85°C  
±5%  
7.60  
15  
8.0  
31  
8.40  
45  
MHz 2.0V VDD 5.5V,  
-40°C TA +85°C (Ind.),  
-40°C TA +125°C (Ext.)  
OS09*  
OS10*  
LFOSC  
Internal Uncalibrated  
LFINTOSC Frequency  
kHz  
TIOSC  
ST  
HFINTOSC Oscillator  
Wake-up from Sleep  
Start-up Time  
5.5  
3.5  
3
12  
7
24  
14  
11  
μs  
μs  
μs  
VDD = 2.0V, -40°C to +85°C  
VDD = 3.0V, -40°C to +85°C  
VDD = 5.0V, -40°C to +85°C  
6
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min” values with an external  
clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock)  
for all devices.  
2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the  
device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
3: By design.  
DS41203E-page 154  
© 2009 Microchip Technology Inc.  
PIC16F688  
FIGURE 14-5:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
FOSC  
OS12  
OS18  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
TABLE 14-3: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
OS11  
OS12  
OS13  
OS14  
TOSH2CKL FOSCto CLKOUT(1)  
TOSH2CKH FOSCto CLKOUT(1)  
70  
72  
20  
70  
ns VDD = 5.0V  
50  
ns VDD = 5.0V  
ns  
TCKL2IOV  
TIOV2CKH Port input valid before CLKOUT(1)  
CLKOUTto Port out valid(1)  
TOSC + 200 ns  
ns  
OS15* TOSH2IOV FOSC(Q1 cycle) to Port out valid  
ns VDD = 5.0V  
ns VDD = 5.0V  
OS16  
OS17  
OS18  
OS19  
TOSH2IOI  
FOSC(Q2 cycle) to Port input invalid  
50  
(I/O in hold time)  
TIOV2OSH Port input valid to FOSC(Q2 cycle)  
20  
ns  
(I/O in setup time)  
TIOR  
TIOF  
Port output rise time(2)  
Port output fall time(2)  
15  
10  
72  
32  
ns VDD = 2.0V  
VDD = 5.0V  
28  
15  
55  
30  
ns VDD = 2.0V  
VDD = 5.0V  
OS20* TINP  
OS21* TRAP  
INT pin input high or low time  
25  
ns  
ns  
PORTA interrupt-on-change new input  
level time  
TCY  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
2: Includes OSC2 in CLKOUT mode.  
© 2009 Microchip Technology Inc.  
DS41203E-page 155  
PIC16F688  
FIGURE 14-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Start-Up Time  
(1)  
Internal Reset  
Watchdog Timer  
(1)  
Reset  
31  
34  
34  
I/O pins  
Note 1: Asserted low.  
FIGURE 14-7:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR + VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
37  
Reset  
(due to BOR)  
33*  
*
64 ms delay only if PWRTE bit in the Configuration Word register is programmed to ‘0’.  
DS41203E-page 156  
© 2009 Microchip Technology Inc.  
PIC16F688  
TABLE 14-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
TMCL  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
MCLR Pulse Width (low)  
2
5
μs VDD = 5V, -40°C to +85°C  
μs VDD = 5V  
31  
32  
TWDT  
TOST  
Watchdog Timer Time-out  
Period (No Prescaler)  
10  
10  
16  
16  
29  
31  
ms VDD = 5V, -40°C to +85°C  
ms VDD = 5V  
Oscillation Start-up Timer  
Period(1, 2)  
1024  
TOSC (NOTE 3)  
33*  
34*  
TPWRT Power-up Timer Period  
40  
65  
140  
2.0  
ms  
TIOZ  
I/O High-impedance from  
MCLR Low or Watchdog Timer  
Reset  
μs  
35  
VBOR  
VHYST  
TBOR  
Brown-out Reset Voltage  
2.0  
50  
2.2  
V
(NOTE 4)  
36*  
37*  
Brown-out Reset Hysteresis  
mV  
Brown-out Reset Minimum  
Detection Period  
100  
μs VDD VBOR  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator oper-  
ation and/or higher than expected current consumption. All devices are tested to operate at “min” values  
with an external clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time  
limit is “DC” (no clock) for all devices.  
2: By design.  
3: Period of the slower clock.  
4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
© 2009 Microchip Technology Inc.  
DS41203E-page 157  
PIC16F688  
FIGURE 14-8:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
TABLE 14-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
40*  
41*  
42*  
TT0H  
TT0L  
TT0P  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45*  
46*  
47*  
TT1H  
TT1L  
T1CKI High Synchronous, No Prescaler  
0.5 TCY + 20  
15  
ns  
ns  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
0.5 TCY + 20  
15  
ns  
ns  
ns  
T1CKI Low Synchronous, No Prescaler  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
ns  
TT1P  
FT1  
T1CKI Input Synchronous  
Period  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
ns  
48  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
32.768  
kHz  
49*  
TCKEZTMR1 Delay from External Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
Timers in Sync  
mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS41203E-page 158  
© 2009 Microchip Technology Inc.  
PIC16F688  
TABLE 14-6: COMPARATOR SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristics  
Min Typ†  
Max  
Units  
Comments  
CM01 VOS  
CM02 VCM  
CM03* CMRR  
CM04* TRT  
Input Offset Voltage  
0
± 5.0  
± 10  
VDD – 1.5  
mV (VDD - 1.5)/2  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time  
V
+55  
dB  
Falling  
Rising  
150  
200  
600  
ns  
ns  
μs  
(NOTE 1)  
1000  
10  
CM05* TMC2COV Comparator Mode Change to  
Output Valid  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.  
TABLE 14-7: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristics  
Min  
Typ†  
Max  
Units  
Comments  
CV01* CLSB  
Step Size(2)  
Absolute Accuracy  
VDD/24  
VDD/32  
V
V
Low Range (VRR = 1)  
High Range (VRR = 0)  
CV02* CACC  
± 1/2  
± 1/2  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
CV03* CR  
CV04* CST  
Unit Resistor Value (R)  
Settling Time(1)  
2k  
Ω
10  
μs  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from ‘0000’ to ‘1111’.  
2: See Section 7.10 “Comparator Voltage Reference” for more information.  
© 2009 Microchip Technology Inc.  
DS41203E-page 159  
PIC16F688  
TABLE 14-8: PIC16F688 A/D CONVERTER (ADC) CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
AD01 NR  
AD02 EIL  
AD03 EDL  
Resolution  
10 bits  
±1  
bit  
Integral Error  
LSb VREF = 5.12V  
Differential Error  
±1  
LSb No missing codes to 10 bits  
VREF = 5.12V  
AD04 EOFF Offset Error  
AD07 EGN Gain Error  
AD06 VREF Reference Voltage(1)  
±1  
±1  
LSb VREF = 5.12V  
LSb VREF = 5.12V  
2.2  
2.7  
VDD  
V
AD06A  
Absolute minimum to ensure 1 LSb  
accuracy  
AD07 VAIN Full-Scale Range  
VSS  
VREF  
10  
V
AD08 ZAIN Recommended  
Impedance of Analog  
Voltage Source  
kΩ  
AD09* IREF  
VREF Input Current(1)  
10  
1000  
50  
μA During VAIN acquisition.  
Based on differential of VHOLD to VAIN.  
μA During A/D conversion cycle.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.  
DS41203E-page 160  
© 2009 Microchip Technology Inc.  
PIC16F688  
TABLE 14-9: PIC16F688 A/D CONVERSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
A/D Clock Period  
Min  
Typ†  
Max Units  
Conditions  
AD130* TAD  
1.6  
3.0  
9.0  
9.0  
μs TOSC-based, VREF 3.0V  
μs TOSC-based, VREF full range  
ADCS<1:0> = 11(ADRC mode)  
μs At VDD = 2.5V  
A/D Internal RC  
Oscillator Period  
3.0  
1.6  
6.0  
4.0  
11  
9.0  
6.0  
μs At VDD = 5.0V  
AD131 TCNV Conversion Time  
(not including  
TAD Set GO/DONE bit to new data in A/D  
Result register  
Acquisition Time)(1)  
AD132* TACQ Acquisition Time  
11.5  
5
μs  
μs  
AD133* TAMP Amplifier Settling Time  
AD134 TGO Q4 to A/D Clock Start  
TOSC/2  
TOSC/2 + TCY  
If the A/D clock source is selected as  
RC, a time of TCY is added before the  
A/D clock starts. This allows the SLEEP  
instruction to be executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.  
2: See Section 8.3 “A/D Acquisition Requirements” for minimum conditions.  
© 2009 Microchip Technology Inc.  
DS41203E-page 161  
PIC16F688  
FIGURE 14-9:  
PIC16F688 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
1 TCY  
(1)  
(TOSC/2  
AD134  
Q4  
)
AD131  
AD130  
A/D CLK  
9
8
7
6
3
2
1
0
A/D Data  
ADRES  
NEW_DATA  
1 TCY  
OLD_DATA  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
FIGURE 14-10:  
PIC16F688 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
AD134  
Q4  
(1)  
(TOSC/2 + TCY  
)
1 TCY  
AD131  
AD130  
A/D CLK  
A/D Data  
9
8
7
3
2
1
0
6
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
DS41203E-page 162  
© 2009 Microchip Technology Inc.  
PIC16F688  
15.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
The graphs and tables provided in this section are for design guidance and are not tested.  
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are ensured to operate properly only within the specified range.  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents  
(mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.  
FIGURE 15-1:  
TYPICAL IDD vs. FOSC OVER VDD (EC MODE)  
3.5  
Typical: Statistical Mean @25°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
4.0V  
3.0V  
2.0V  
1 MHz  
2 MHz  
4 MHz  
6 MHz  
8 MHz  
10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz  
FOSC  
© 2009 Microchip Technology Inc.  
DS41203E-page 163  
PIC16F688  
FIGURE 15-2:  
MAXIMUM IDD vs. FOSC OVER VDD (EC MODE)  
4.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0V  
3.0V  
2.0V  
1 MHz  
2 MHz  
4 MHz  
6 MHz  
8 MHz  
10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz  
FOSC  
FIGURE 15-3:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
4.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5,0V  
4.5V  
4.0V  
3.5V  
3.0V  
4 MHz  
10 MHz  
16 MHz  
20 MHz  
FOSC  
© 2009 Microchip Technology Inc.  
DS41203E-page 164  
PIC16F688  
FIGURE 15-4:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Typical: Statistical Mean @25°C  
5.5V  
5.0V  
4.5V  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
4.0V  
3.5V  
3.0V  
4 MHz  
10 MHz  
16 MHz  
20 MHz  
FOSC  
FIGURE 15-5:  
TYPICAL IDD vs. VDD OVER FOSC (XT MODE)  
1200  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
1000  
800  
600  
400  
200  
0
4 MHz  
1 MHz  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 165  
PIC16F688  
FIGURE 15-6:  
MAXIMUM IDD vs. VDD OVER FOSC (XT MODE)  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
4 MHz  
1 MHz  
600  
400  
200  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
FIGURE 15-7:  
TYPICAL IDD vs. VDD OVER FOSC (EXTRC MODE)  
1,200  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
1,000  
800  
600  
400  
200  
0
(-40°C to 125°C)  
4 MHz  
1 MHz  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 166  
PIC16F688  
FIGURE 15-8:  
MAXIMUM IDD vs. VDD (EXTRC MODE)  
2,000  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3s  
(-40°C to 125°C)  
4 MHz  
1 MHz  
600  
400  
200  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
FIGURE 15-9:  
IDD vs. VDD OVER FOSC (LFINTOSC MODE, 31 kHz)  
LFINTOSC Mode, 31KHZ  
80  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
70  
60  
50  
40  
30  
20  
10  
0
Maximum  
Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 167  
PIC16F688  
FIGURE 15-10:  
IDD vs. VDD (LP MODE)  
90  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
80  
70  
60  
50  
40  
30  
20  
10  
0
32 kHz Maximum  
32 kHz Typical  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
FIGURE 15-11:  
TYPICAL IDD vs. FOSC OVER VDD (HFINTOSC MODE)  
1,800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
1,600  
1,400  
1,200  
1,000  
800  
5.0V  
4.0V  
3.0V  
600  
2.0V  
400  
200  
0
125 kHz  
250 kHz  
500 kHz  
1 MHz  
2 MHz  
4 MHz  
8 MHz  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 168  
PIC16F688  
FIGURE 15-12:  
MAXIMUM IDD vs. FOSC OVER VDD (HFINTOSC MODE)  
2,500  
Typical: Statistical Mean @ 25°C  
Maximum: Mean (Worst-case Temp) +3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
2,000  
1,500  
1,000  
500  
4.0V  
3.0V  
2.0V  
0
125 kHz  
250 kHz  
500 kHz  
1 MHz  
2 MHz  
4 MHz  
8 MHz  
VDD (V)  
FIGURE 15-13:  
TYPICAL IPD vs. VDD (SLETEyPpiMcaOl DE, ALL PERIPHERALS DISABLED)  
0.45  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 169  
PIC16F688  
FIGURE 15-14:  
MAXIMUM IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
18.0  
Typical: Statistical Mean @25°C  
16.0  
14.0  
12.0  
10.0  
8.0  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
6.0  
4.0  
Max. 85°C  
3.5  
2.0  
0.0  
2.0  
2.5  
3.0  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-15:  
COMPARATOR IPD vs. VDD (BOTH COMPARATORS ENABLED)  
180  
160  
140  
120  
100  
80  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
Maximum  
Typical  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 170  
PIC16F688  
FIGURE 15-16:  
BOR IPD vs. VDD OVER TEMPERATURE  
160  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
140  
120  
100  
80  
Maximum  
Typical  
60  
40  
20  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-17:  
TYPICAL WDT IPD vs. VDD (25°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0V  
2.5V  
3.0V  
3.5V  
4.0V  
4.5V  
5.0V  
5.5V  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 171  
PIC16F688  
FIGURE 15-18:  
MAXIMUM WDT IPD vs. VDD OVER TEMPERATURE  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
Max. 125°C  
Max. 85°C  
0.0  
2.0V  
2.5V  
3.0V  
3.5V  
4.0V  
4.5V  
5.0V  
5.5V  
VDD (V)  
FIGURE 15-19:  
WDT PERIOD vs. VDD OVER TEMPERATURE  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean + 3σ (-40°C to 125°C)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
Max. (125°C)  
Max. (85°C)  
Typical  
Minimum  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 172  
PIC16F688  
FIGURE 15-20:  
WDT PERIOD vs. TEMPERVAdTdU=R5EV  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean + 3σ  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
Maximum  
Typical  
Minimum  
-40°C  
25°C  
85°C  
125°C  
Temperature (°C)  
FIGURE 15-21:  
CVREF IPD vs. VDD OVERHTigEhMRPaEngReATURE (HIGH RANGE)  
140  
Typical: Statistical Mean @25°C  
Maximum: Mean + 3σ (-40°C to 125°C)  
120  
100  
80  
60  
40  
20  
0
Max. 125°C  
Max. 85°C  
Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 173  
PIC16F688  
FIGURE 15-22:  
CVREF IPD vs. VDD OVER TEMPERATURE (LOW RANGE)  
180  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
160  
140  
120  
100  
80  
Max. 125°C  
Max. 85°C  
Typical  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-23:  
VOL vs. IOL OVER TEMPERATURE (VDD = 3.0V)  
(VDD = 3V, -40×C TO 125×C)  
0.8  
Typical: Statistical Mean @25°C  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Maximum: Mean + 3σ  
Max. 125°C  
Max. 85°C  
Typical 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
© 2009 Microchip Technology Inc.  
DS41203E-page 174  
PIC16F688  
FIGURE 15-24:  
VOL vs. IOL OVER TEMPERATURE (VDD = 5.0V)  
0.45  
Typical: Statistical Mean @25°C  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Maximum: Mean + 3σ  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
FIGURE 15-25:  
VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V)  
3.5  
3.0  
2.5  
2.0  
1.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
1.0  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
IOH (mA)  
© 2009 Microchip Technology Inc.  
DS41203E-page 175  
PIC16F688  
FIGURE 15-26:  
VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V)  
5.5  
5.0  
4.5  
4.0  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
3.5  
3.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-4.5  
-5.0  
IOH (mA)  
FIGURE 15-27:  
TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
1.7  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 176  
PIC16F688  
FIGURE 15-28:  
SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VIH Max. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
VIH Min. -40°C  
VIL Max. -40°C  
VIL Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-29:  
T1OSC IPD vs. VDD OVER TEMPERATURE (32 kHz)  
45.0  
Typical: Statistical Mean @25°C  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 177  
PIC16F688  
FIGURE 15-30:  
COMPARATOR RESPONSE TIME (RISING EDGE)  
531  
806  
1000  
900  
800  
700  
Max. 125°C  
Max. 85°C  
VCM = VDD - 1.5V)/2  
V+ input = VCM  
V- input = Transition from VCM + 100MV to VCM - 20MV  
Note:  
600  
500  
400  
300  
200  
100  
Typ. 25°C  
Min. -40°C  
0
2.0  
2.5  
4.0  
5.5  
VDD (V)  
FIGURE 15-31:  
COMPARATOR RESPONSE TIME (FALLING EDGE)  
1000  
900  
800  
700  
Max. 125°C  
Max. 85°C  
VCM = VDD - 1.5V)/2  
600  
500  
400  
300  
200  
100  
0
Note:  
V+ input = VCM  
V- input = Transition from VCM - 100MV to VCM + 20MV  
Typ. 25°C  
Min. -40°C  
2.0  
2.5  
4.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 178  
PIC16F688  
FIGURE 15-32:  
LFINTOSC FREQUENCY vs. VDD OVER TEMPERATURE (31 kHz)  
LFINTOSC 31Khz  
45,000  
40,000  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5,000  
Max. -40°C  
Typ. 25°C  
Min. 85°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-33:  
ADC CLOCK PERIOD vs. VDD OVER TEMPERATURE  
8
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
125°C  
85°C  
6
4
2
0
25°C  
-40°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 179  
PIC16F688  
FIGURE 15-34:  
TYPICAL HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
16  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
14  
85°C  
12  
25°C  
10  
-40°C  
8
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-35:  
MAXIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
-40C to +85C  
25  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
20  
15  
10  
5
85°C  
25°C  
-40°C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 180  
PIC16F688  
FIGURE 15-36:  
MINIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
10  
9
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
8
7
85°C  
6
25°C  
5
-40°C  
4
3
2
1
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-37:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 181  
PIC16F688  
FIGURE 15-38:  
TYPICAL HFINTOSC FREQUENCY CHANGE OVER DEVICE VDD (85°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-39:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (125°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 182  
PIC16F688  
FIGURE 15-40:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (-40°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41203E-page 183  
PIC16F688  
NOTES:  
© 2009 Microchip Technology Inc.  
DS41203E-page 184  
PIC16F688  
16.0 PACKAGING INFORMATION  
16.1 Package Marking Information  
14-Lead PDIP (Skinny DIP)  
Example  
-I/P  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
PIC16F688  
e
3
YYWWNNN  
0610017  
14-Lead SOIC (3.90 mm)  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16C688  
-I/SL  
e
3
YYWWNNN  
0610017  
14-Lead TSSOP  
Example  
XXXXXXXX  
YYWW  
688/ST  
e3  
0610  
017  
NNN  
16-Lead QFN  
Example  
XXXXXX  
XXXXXX  
YWWNNN  
16F688  
-I/ML  
610017  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
*
Standard PIC® device marking consists of Microchip part number, year code, week code, and traceability  
code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip  
Sales Office. For QTP devices, any special marking adders are included in QTP price.  
© 2009 Microchip Technology Inc.  
DS41203E-page 185  
PIC16F688  
16.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢓꢇMꢇꢔꢕꢕꢇꢖꢌꢉꢇꢗꢘꢆꢙꢇꢚꢈꢎꢐꢈꢛ  
ꢜꢘꢋꢄ  3ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢔꢇꢍ4ꢇꢒꢉꢅ"ꢊꢇ)ꢃꢄꢒ 'ꢅꢔꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢕꢃꢍꢊꢌꢍꢎꢃꢔꢅꢂꢇꢍ4ꢇꢒꢃꢄꢒꢅꢑꢔꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢔ255)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢔꢁꢍꢌ&5ꢔꢇꢍ4ꢇꢒꢃꢄꢒ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
6ꢄꢃ%  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ9ꢃ&ꢃ%  
ꢚ7+8-ꢑ  
7:ꢕ  
ꢀꢗ  
ꢁꢀꢖꢖꢅ1ꢑ+  
M
ꢕꢚ7  
ꢕꢘ;  
7!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7
ꢔꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
M
ꢁꢏꢀꢖ  
ꢁꢀꢛ0  
M
ꢕꢌꢈ"ꢉ"ꢅꢂꢇꢍ4ꢇꢒꢉꢅꢙꢎꢃꢍ4ꢄꢉ    
1ꢇ ꢉꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
ꢑꢎꢌ!ꢈ"ꢉꢊꢅ%ꢌꢅꢑꢎꢌ!ꢈ"ꢉꢊꢅ=ꢃ"%ꢎ  
ꢕꢌꢈ"ꢉ"ꢅꢂꢇꢍ4ꢇꢒꢉꢅ=ꢃ"%ꢎ  
:ꢆꢉꢊꢇꢈꢈꢅ9ꢉꢄꢒ%ꢎ  
ꢙꢃꢔꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
9ꢉꢇ"ꢅꢙꢎꢃꢍ4ꢄꢉ    
6ꢔꢔꢉꢊꢅ9ꢉꢇ"ꢅ=ꢃ"%ꢎ  
ꢘꢏ  
ꢘꢀ  
-
-ꢀ  
9
(ꢀ  
(
ꢉ1  
ꢁꢀꢀ0  
ꢁꢖꢀ0  
ꢁꢏꢛꢖ  
ꢁꢏꢗꢖ  
ꢁꢜ,0  
ꢁꢀꢀ0  
ꢁꢖꢖ>  
ꢁꢖꢗ0  
ꢁꢖꢀꢗ  
M
ꢁꢀ,ꢖ  
M
ꢁ,ꢀꢖ  
ꢁꢏ0ꢖ  
ꢁꢜ0ꢖ  
ꢁꢀ,ꢖ  
ꢁꢖꢀꢖ  
ꢁꢖ?ꢖ  
ꢁꢖꢀ>  
M
ꢁ,ꢏ0  
ꢁꢏ>ꢖ  
ꢁꢜꢜ0  
ꢁꢀ0ꢖ  
ꢁꢖꢀ0  
ꢁꢖꢜꢖ  
ꢁꢖꢏꢏ  
ꢁꢗ,ꢖ  
9ꢌ)ꢉꢊꢅ9ꢉꢇ"ꢅ=ꢃ"%ꢎ  
:ꢆꢉꢊꢇꢈꢈꢅꢝꢌ)ꢅꢑꢔꢇꢍꢃꢄꢒꢅꢅꢐ  
ꢜꢘꢋꢄꢊ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢅꢑꢃꢒꢄꢃ$ꢃꢍꢇꢄ%ꢅ+ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ-ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢕꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢁꢖꢀꢖ.ꢅꢔꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢒꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢒꢅꢔꢉꢊꢅꢘꢑꢕ-ꢅ/ꢀꢗꢁ0ꢕꢁ  
1ꢑ+2ꢅ1ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢙꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢕꢃꢍꢊꢌꢍꢎꢃꢔ ꢍꢎꢄꢌꢈꢌꢒꢋ ꢓꢊꢇ)ꢃꢄꢒ +ꢖꢗꢞꢖꢖ01  
DS41203E-page 186  
© 2009 Microchip Technology Inc.  
PIC16F688  
14-Lead Plastic Small Outline (SL) – Narrow, 3.90 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
Units  
MILLMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
14  
1.27 BSC  
Overall Height  
Molded Package Thickness  
Standoff §  
A
1.25  
0.10  
1.75  
0.25  
A2  
A1  
E
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
Chamfer (optional)  
Foot Length  
E1  
D
h
3.90 BSC  
8.65 BSC  
0.25  
0.40  
0.50  
1.27  
L
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
L1  
φ
c
b
α
1.04 REF  
0°  
0.17  
0.31  
5°  
8°  
0.25  
0.51  
15°  
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-065B  
© 2009 Microchip Technology Inc.  
DS41203E-page 187  
PIC16F688  
ꢜꢘꢋꢄ  3ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢔꢇꢍ4ꢇꢒꢉꢅ"ꢊꢇ)ꢃꢄꢒ 'ꢅꢔꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢕꢃꢍꢊꢌꢍꢎꢃꢔꢅꢂꢇꢍ4ꢇꢒꢃꢄꢒꢅꢑꢔꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢔ255)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢔꢁꢍꢌ&5ꢔꢇꢍ4ꢇꢒꢃꢄꢒ  
DS41203E-page 188  
© 2009 Microchip Technology Inc.  
PIC16F688  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
14  
0.65 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
A
0.80  
0.05  
1.00  
6.40 BSC  
4.40  
5.00  
0.60  
1.20  
1.05  
0.15  
A2  
A1  
E
E1  
D
4.30  
4.90  
0.45  
4.50  
5.10  
0.75  
L
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
L1  
φ
c
1.00 REF  
0°  
0.09  
0.19  
8°  
0.20  
0.30  
b
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-087B  
© 2009 Microchip Technology Inc.  
DS41203E-page 189  
PIC16F688  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS41203E-page 190  
© 2009 Microchip Technology Inc.  
PIC16F688  
16-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D2  
EXPOSED  
PAD  
e
E
E2  
2
1
2
b
1
K
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A3  
A
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
16  
0.65 BSC  
0.90  
MAX  
Number of Pins  
Pitch  
Overall Height  
Standoff  
Contact Thickness  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
N
e
A
A1  
A3  
E
E2  
D
0.80  
0.00  
1.00  
0.05  
0.02  
0.20 REF  
4.00 BSC  
2.65  
4.00 BSC  
2.65  
0.30  
0.40  
2.50  
2.80  
D2  
b
L
2.50  
0.25  
0.30  
0.20  
2.80  
0.35  
0.50  
Contact-to-Exposed Pad  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-127B  
© 2009 Microchip Technology Inc.  
DS41203E-page 191  
PIC16F688  
ꢜꢘꢋꢄ  3ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢔꢇꢍ4ꢇꢒꢉꢅ"ꢊꢇ)ꢃꢄꢒ 'ꢅꢔꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢕꢃꢍꢊꢌꢍꢎꢃꢔꢅꢂꢇꢍ4ꢇꢒꢃꢄꢒꢅꢑꢔꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢔ255)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢔꢁꢍꢌ&5ꢔꢇꢍ4ꢇꢒꢃꢄꢒ  
DS41203E-page 192  
© 2009 Microchip Technology Inc.  
PIC16F688  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: MIGRATING FROM  
OTHER PIC®  
DEVICES  
Revision A  
This discusses some of the issues in migrating from  
other PIC devices to the PIC16F6XX family of devices.  
This is a new data sheet.  
Revision B  
B.1  
TABLE B-1:  
Feature  
PIC16F676 to PIC16F688  
FEATURE COMPARISON  
Rewrites of the Oscillator and Special Features of the  
CPU Sections. General corrections to Figures and  
formatting.  
PIC16F676  
PIC16F688  
Max Operating Speed  
20 MHz  
1024  
20 MHz  
4K  
Max Program Memory  
(Words)  
Revision C  
Revised Electrical Section and added Char Data.  
Added Golden Chapters.  
SRAM (Bytes)  
64  
10-bit  
128  
1/1  
8
256  
10-bit  
256  
1/1  
8
A/D Resolution  
Data EEPROM (bytes)  
Timers (8/16-bit)  
Oscillator Modes  
Brown-out Reset  
Internal Pull-ups  
Revision D  
Replaced Package Drawings; Revised Product ID (SL  
Package to 3.90 mm); Replaced PICmicro with PIC;  
Replaced Dev. Tool Section.  
Y
Y
RA0/1/2/4/5 RA0/1/2/4/5,  
MCLR  
Revision E  
Interrupt-on-change  
RA0/1/2/3 RA0/1/2/3/4/5  
/4/5  
Updated Peripheral Features, page 1; Deleted Note 1,  
page 13; Updated the Typical Info. in Param. OS18,  
Table 14-3; Added sub-section 10.3.2 (Auto-Baud  
Overflow, page 100) to Chapter 10; Added SOIC,  
TSSOP, QFN Package Land Patterns.  
Comparator  
EUSART  
1
N
N
2
Y
Y
Ultra Low-Power  
Wake-up  
Extended WDT  
N
N
Y
Y
Software Control  
Option of WDT/BOR  
INTOSC Frequencies  
4 MHz  
N
32 kHz -  
8 MHz  
Clock Switching  
Y
Note: This device has been designed to perform  
to the parameters of its data sheet. It has  
been tested to an electrical specification  
designed to determine its conformance  
with these parameters. Due to process  
differences in the manufacture of this  
device, this device may have different  
performance characteristics than its earlier  
version. These differences may cause this  
device to perform differently in your  
application than the earlier version of this  
device.  
© 2009 Microchip Technology Inc.  
DS41203E-page 193  
PIC16F688  
NOTES:  
DS41203E-page 194  
© 2009 Microchip Technology Inc.  
PIC16F688  
INDEX  
RA5 Pin ...................................................................... 40  
RC0 and RC1 Pins ..................................................... 43  
RC2 and RC3 Pins ..................................................... 43  
RC4 Pin ...................................................................... 44  
RC5 Pin ...................................................................... 44  
Resonator Operation .................................................. 24  
Timer1 ........................................................................ 48  
TMR0/WDT Prescaler ................................................ 45  
Watchdog Timer (WDT)............................................ 123  
Break Character (12-bit) Transmit and Receive ............... 101  
Brown-out Reset (BOR).................................................... 114  
Associated................................................................ 115  
Specifications ........................................................... 157  
Timing and Characteristics....................................... 156  
A
A/D  
Specifications.................................................... 160, 161  
Absolute Maximum Ratings .............................................. 143  
AC Characteristics  
Industrial and Extended ............................................ 153  
Load Conditions........................................................ 152  
ADC .................................................................................... 65  
Acquisition Requirements ........................................... 73  
Associated registers.................................................... 75  
Block Diagram............................................................. 65  
Calculating Acquisition Time....................................... 73  
Channel Selection....................................................... 66  
Configuration............................................................... 66  
Configuring Interrupt ................................................... 69  
Conversion Clock........................................................ 66  
Conversion Procedure ................................................ 69  
Internal Sampling Switch (RSS) Impedance................ 73  
Interrupts..................................................................... 68  
Operation .................................................................... 69  
Operation During Sleep .............................................. 69  
Port Configuration....................................................... 66  
Reference Voltage (VREF)........................................... 66  
Result Formatting........................................................ 68  
Source Impedance...................................................... 73  
Starting an A/D Conversion ........................................ 68  
ADCON0 Register............................................................... 71  
ADCON1 Register............................................................... 71  
ADRESH Register (ADFM = 0)........................................... 72  
ADRESH Register (ADFM = 1)........................................... 72  
ADRESL Register (ADFM = 0)............................................ 72  
ADRESL Register (ADFM = 1)............................................ 72  
Analog Front-end (AFE)  
C
C Compilers  
MPLAB C18.............................................................. 140  
MPLAB C30.............................................................. 140  
Clock Accuracy with Asynchronous Operation................... 92  
Clock Sources  
External Modes........................................................... 23  
EC ...................................................................... 23  
HS ...................................................................... 24  
LP....................................................................... 24  
OST .................................................................... 23  
RC ...................................................................... 25  
XT....................................................................... 24  
Internal Modes............................................................ 25  
Frequency Selection........................................... 27  
HFINTOSC ......................................................... 25  
INTOSC.............................................................. 25  
INTOSCIO .......................................................... 25  
LFINTOSC.......................................................... 27  
Clock Switching .................................................................. 29  
CMCON0 Register.............................................................. 61  
CMCON1 Register.............................................................. 62  
Code Examples  
Power-On Reset ....................................................... 113  
Analog Input Connection Considerations............................ 55  
Analog-to-Digital Converter. See ADC  
ANSEL Register.................................................................. 34  
Assembler  
A/D Conversion .......................................................... 70  
Assigning Prescaler to Timer0.................................... 46  
Assigning Prescaler to WDT....................................... 46  
Indirect Addressing..................................................... 20  
Initializing PORTA ...................................................... 33  
Initializing PORTC ...................................................... 42  
Saving Status and W Registers in RAM................... 122  
Ultra Low-Power Wake-up Initialization...................... 36  
Code Protection................................................................ 126  
Comparator......................................................................... 53  
C2OUT as T1 Gate..................................................... 62  
Configurations ............................................................ 56  
Interrupts .................................................................... 59  
Operation.............................................................. 53, 58  
Operation During Sleep.............................................. 60  
Response Time .......................................................... 59  
Synchronizing COUT w/Timer1.................................. 62  
Comparator Module  
MPASM Assembler................................................... 140  
B
BAUDCTL Register............................................................. 94  
Block Diagrams  
ADC ............................................................................ 65  
ADC Transfer Function ............................................... 74  
Analog Input Model............................................... 55, 74  
Clock Source............................................................... 21  
Comparator 1.............................................................. 54  
Comparator 2.............................................................. 54  
Comparator Modes ..................................................... 57  
Crystal Operation........................................................ 24  
EUSART Receive ....................................................... 84  
EUSART Transmit ...................................................... 83  
External RC Mode....................................................... 25  
Fail-Safe Clock Monitor (FSCM)................................. 31  
In-Circuit Serial Programming Connections.............. 127  
Interrupt Logic........................................................... 120  
MCLR Circuit............................................................. 113  
On-Chip Reset Circuit............................................... 112  
PIC16F688.................................................................... 5  
RA1 Pins..................................................................... 38  
RA2 Pin....................................................................... 38  
RA3 Pin....................................................................... 39  
RA4 Pin....................................................................... 39  
Associated registers ................................................... 64  
Comparator Voltage Reference (CVREF)............................ 63  
Effects of a Reset ....................................................... 60  
Response Time .......................................................... 59  
Specifications ........................................................... 159  
Comparators  
C2OUT as T1 Gate..................................................... 49  
Effects of a Reset ....................................................... 60  
© 2009 Microchip Technology Inc.  
DS41203E-page 195  
PIC16F688  
Specifications............................................................159  
CONFIG Register..............................................................111  
Configuration Bits..............................................................110  
CPU Features ...................................................................109  
Customer Change Notification Service .............................199  
Customer Notification Service...........................................199  
Customer Support.............................................................199  
Transmission .................................................... 107  
F
Fail-Safe Clock Monitor ...................................................... 31  
Fail-Safe Condition Clearing....................................... 31  
Fail-Safe Detection ..................................................... 31  
Fail-Safe Operation..................................................... 31  
Reset or Wake-up from Sleep .................................... 31  
Firmware Instructions ....................................................... 129  
Flash Program Memory ...................................................... 77  
Fuses. See Configuration Bits  
D
Data EEPROM Memory......................................................77  
Associated Registers ..................................................82  
Reading.......................................................................80  
Writing.........................................................................80  
Data Memory.........................................................................7  
DC and AC Characteristics  
G
General Purpose Register File ............................................. 7  
I
Graphs and Tables ...................................................163  
DC Characteristics  
I/O Ports.............................................................................. 33  
ID Locations...................................................................... 126  
In-Circuit Debugger........................................................... 127  
In-Circuit Serial Programming (ICSP)............................... 127  
Indirect Addressing, INDF and FSR Registers ................... 20  
Instruction Format............................................................. 129  
Instruction Set................................................................... 129  
ADDLW..................................................................... 131  
ADDWF..................................................................... 131  
ANDLW..................................................................... 131  
ANDWF..................................................................... 131  
MOVF ....................................................................... 134  
BCF .......................................................................... 131  
BSF........................................................................... 131  
BTFSC...................................................................... 131  
BTFSS ...................................................................... 132  
CALL......................................................................... 132  
CLRF ........................................................................ 132  
CLRW ....................................................................... 132  
CLRWDT .................................................................. 132  
COMF ....................................................................... 132  
DECF........................................................................ 132  
DECFSZ ................................................................... 133  
GOTO ....................................................................... 133  
INCF ......................................................................... 133  
INCFSZ..................................................................... 133  
IORLW...................................................................... 133  
IORWF...................................................................... 133  
MOVLW .................................................................... 134  
MOVWF.................................................................... 134  
NOP.......................................................................... 134  
RETFIE..................................................................... 135  
RETLW ..................................................................... 135  
RETURN................................................................... 135  
RLF........................................................................... 136  
RRF .......................................................................... 136  
SLEEP ...................................................................... 136  
SUBLW..................................................................... 136  
SUBWF..................................................................... 137  
SWAPF..................................................................... 137  
XORLW .................................................................... 137  
XORWF .................................................................... 137  
Summary Table ........................................................ 130  
INTCON Register................................................................ 15  
Internal Oscillator Block  
Extended and Industrial ............................................149  
Industrial and Extended ............................................145  
Development Support .......................................................139  
Device Overview ...................................................................5  
E
EEADR Register .................................................................78  
EEADR Registers................................................................77  
EEADRH Registers.............................................................77  
EECON1 Register......................................................... 77, 79  
EECON2 Register...............................................................77  
EEDAT Register..................................................................78  
EEDATH Register ...............................................................78  
Electrical Specifications ....................................................143  
Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART).................................83  
Errata ....................................................................................4  
EUSART..............................................................................83  
Associated Registers  
Baud Rate Generator..........................................95  
Asynchronous Mode ...................................................85  
12-bit Break Transmit and Receive...................101  
Associated Registers  
Receive.......................................................91  
Transmit......................................................87  
Auto-Baud Overflow..........................................100  
Auto-Wake-up on Break....................................100  
Baud Rate Generator (BRG)...............................95  
Clock Accuracy ...................................................92  
Receiver..............................................................88  
Setting up 9-bit Mode with Address Detect.........90  
Transmitter..........................................................85  
Baud Rate Generator (BRG)  
Auto Baud Rate Detect .......................................99  
Baud Rate Error, Calculating ..............................95  
Baud Rates, Asynchronous Modes.....................96  
Formulas.............................................................95  
High Baud Rate Select (BRGH Bit).....................95  
Synchronous Master Mode ............................... 103, 107  
Associated Registers  
Receive.....................................................106  
Transmit....................................................104  
Reception..........................................................105  
Transmission.....................................................103  
Synchronous Slave Mode  
INTOSC  
Specifications ........................................... 154, 155  
Internal Sampling Switch (RSS) Impedance........................ 73  
Internet Address ............................................................... 199  
Interrupts........................................................................... 119  
Associated Registers  
Receive.....................................................108  
Transmit....................................................107  
Reception..........................................................108  
DS41203E-page 196  
© 2009 Microchip Technology Inc.  
PIC16F688  
ADC ............................................................................ 69  
Associated Registers ................................................ 121  
Comparator................................................................. 59  
Context Saving.......................................................... 122  
Interrupt-on-Change.................................................... 34  
PORTA Interrupt-on-Change .................................... 120  
RA2/INT .................................................................... 120  
Timer0....................................................................... 120  
TMR1 .......................................................................... 50  
INTOSC Specifications ............................................. 154, 155  
IOCA Register..................................................................... 35  
ANSEL Register ................................................. 34  
Interrupt-on-Change ........................................... 34  
Ultra Low-Power Wake-up............................ 34, 36  
Weak Pull-up ...................................................... 34  
Associated registers ................................................... 41  
Pin Descriptions and Diagrams .................................. 37  
RA0............................................................................. 37  
RA1............................................................................. 38  
RA2............................................................................. 38  
RA4............................................................................. 39  
RA5............................................................................. 40  
Specifications ........................................................... 155  
PORTA Register................................................................. 33  
PORTC ............................................................................... 42  
Associated registers ................................................... 44  
PA/PB/PC/PD.See Enhanced Universal Asynchronous  
Receiver Transmitter (EUSART) ........................ 42  
Specifications ........................................................... 155  
PORTC Register................................................................. 42  
Power-Down Mode (Sleep)............................................... 125  
Power-up Timer (PWRT).................................................. 113  
Specifications ........................................................... 157  
Precision Internal Oscillator Parameters .......................... 155  
Prescaler  
L
Load Conditions................................................................ 152  
M
MCLR................................................................................ 113  
Internal...................................................................... 113  
.............................................................................................. 7  
Data .............................................................................. 7  
Program ........................................................................ 7  
.......................................... 199, 193, 140, 141, 139, 141, 140  
O
OPCODE Field Descriptions............................................. 129  
OPTION Register................................................................ 14  
OPTION_REG Register ...................................................... 47  
OSCCON Register........................................................ 10, 22  
Oscillator  
Shared WDT/Timer0................................................... 46  
Switching Prescaler Assignment ................................ 46  
Program Memory.................................................................. 7  
Map and Stack.............................................................. 7  
Programming, Device Instructions.................................... 129  
Associated registers.............................................. 32, 52  
Oscillator Module ................................................................ 21  
EC............................................................................... 21  
HFINTOSC.................................................................. 21  
HS............................................................................... 21  
INTOSC ...................................................................... 21  
INTOSCIO................................................................... 21  
LFINTOSC .................................................................. 21  
LP................................................................................ 21  
RC............................................................................... 21  
RCIO........................................................................... 21  
XT ............................................................................... 21  
Oscillator Parameters ....................................................... 154  
Oscillator Specifications.................................................... 153  
Oscillator Start-up Timer (OST)  
R
RA3/MCLR/VPP .................................................................. 39  
RCREG............................................................................... 90  
RCSTA Register ................................................................. 93  
Reader Response............................................................. 200  
Read-Modify-Write Operations ......................................... 129  
Register  
RCREG Register ........................................................ 99  
Registers  
ADCON0 (ADC Control 0).......................................... 71  
ADCON1 (ADC Control 1).......................................... 71  
ADRESH (ADC Result High) with ADFM = 0) ............ 72  
ADRESH (ADC Result High) with ADFM = 1) ............ 72  
ADRESL (ADC Result Low) with ADFM = 0).............. 72  
ADRESL (ADC Result Low) with ADFM = 1).............. 72  
ANSEL (Analog Select) .............................................. 34  
BAUDCTL (Baud Rate Control).................................. 94  
CMCON0 (Comparator Control 0).............................. 61  
CMCON1 (Comparator Control 1).............................. 62  
CONFIG (Configuration Word) ................................. 111  
EEADR (EEPROM Address)...................................... 78  
EECON1 (EEPROM Control 1) .................................. 79  
EEDAT (EEPROM Data)............................................ 78  
EEDATH (EEPROM Data High Byte)......................... 78  
INTCON (Interrupt Control) ........................................ 15  
IOCA (Interrupt-on-Change PORTA).......................... 35  
OPTION_REG (OPTION)........................................... 14  
OPTION_REG (Option).............................................. 47  
OSCCON (Oscillator Control)..................................... 22  
OSCTUNE (Oscillator Tuning).................................... 26  
PCON (Power Control Register)................................. 18  
PCON (Power Control)............................................. 115  
PIE1 (Peripheral Interrupt Enable 1) .......................... 16  
PIR1 (Peripheral Interrupt Register 1)........................ 17  
PORTA ....................................................................... 33  
PORTC....................................................................... 42  
Specifications............................................................ 157  
Oscillator Switching  
Fail-Safe Clock Monitor............................................... 31  
Two-Speed Clock Start-up.......................................... 29  
OSCTUNE Register ............................................................ 26  
P
Packaging ......................................................................... 185  
Marking ..................................................................... 185  
PDIP Details.............................................................. 186  
PCL and PCLATH............................................................... 19  
Computed GOTO........................................................ 19  
Stack........................................................................... 19  
PCON Register ........................................................... 18, 115  
PICSTART Plus Development Programmer ..................... 142  
PIE1 Register...................................................................... 16  
Pin Diagram ...................................................................... 2, 3  
Pinout Description  
PIC16F688.................................................................... 6  
PIR1 Register...................................................................... 17  
PORTA................................................................................ 33  
Additional Pin Functions ............................................. 34  
© 2009 Microchip Technology Inc.  
DS41203E-page 197  
PIC16F688  
RCSTA (Receive Status and Control).........................93  
Reset Values.............................................................117  
Reset Values (Special Registers) .............................118  
Special Function Register Map .....................................8  
Special Register Summary ...........................................9  
STATUS......................................................................13  
T1CON........................................................................51  
TRISA (Tri-State PORTA)...........................................33  
TRISC (Tri-State PORTC) ..........................................42  
TXSTA (Transmit Status and Control) ........................92  
VRCON (Voltage Reference Control) .........................63  
WDTCON (Watchdog Timer Control)........................124  
WPUA (Weak Pull-Up PORTA) ..................................35  
Reset.................................................................................112  
Revision History ................................................................193  
Comparator Output..................................................... 53  
Fail-Safe Clock Monitor (FSCM)................................. 32  
INT Pin Interrupt ....................................................... 121  
Internal Oscillator Switch Timing ................................ 28  
Reset, WDT, OST and Power-up Timer................... 156  
Send Break Character Sequence............................. 102  
Synchronous Reception (Master Mode, SREN) ....... 106  
Synchronous Transmission ...................................... 104  
Synchronous Transmission (Through TXEN)........... 104  
Time-out Sequence .................................................. 116  
Case 3 .............................................................. 116  
Timer0 and Timer1 External Clock ........................... 158  
Timer1 Incrementing Edge ......................................... 50  
Two Speed Start-up.................................................... 30  
Wake-up from Interrupt............................................. 126  
Timing Parameter Symbology .......................................... 152  
TRISA ................................................................................. 33  
TRISA Register................................................................... 33  
TRISC Register................................................................... 42  
Two-Speed Clock Start-up Mode........................................ 29  
TXREG ............................................................................... 85  
TXSTA Register.................................................................. 92  
BRGH Bit .................................................................... 95  
S
Software Simulator (MPLAB SIM).....................................140  
SPBRG................................................................................95  
SPBRGH.............................................................................95  
Special Function Registers ...................................................7  
STATUS Register................................................................13  
T
U
T1CON Register..................................................................51  
Thermal Considerations....................................................151  
Time-out Sequence...........................................................115  
Timer0.................................................................................45  
Associated Registers ..................................................47  
External Clock.............................................................46  
Interrupt.......................................................................47  
Operation .............................................................. 45, 48  
Specifications............................................................158  
T0CKI..........................................................................46  
Timer1.................................................................................48  
Associated registers....................................................52  
Asynchronous Counter Mode .....................................49  
Reading and Writing ...........................................49  
Interrupt.......................................................................50  
Modes of Operation ....................................................48  
Operation During Sleep ..............................................50  
Oscillator.....................................................................49  
Prescaler.....................................................................49  
Specifications............................................................158  
Timer1 Gate  
Ultra Low-Power Wake-up........................................ 6, 34, 36  
V
Voltage Reference. See Comparator Voltage  
Reference (CVREF)  
Voltage References  
Associated registers ................................................... 64  
VREF. SEE ADC Reference Voltage  
W
Wake-up on Break............................................................ 100  
Wake-up Using Interrupts................................................. 125  
Watchdog Timer (WDT).................................................... 123  
Associated Registers................................................ 124  
Clock Source ............................................................ 123  
Modes....................................................................... 123  
Period ....................................................................... 123  
Specifications ........................................................... 157  
WDTCON Register ....................................................... 9, 124  
WPUA Register................................................................... 35  
WWW Address ................................................................. 199  
WWW, On-Line Support ....................................................... 4  
Inverting Gate .....................................................49  
Selecting Source...........................................49, 62  
Synchronizing COUT w/Timer1 ..........................62  
TMR1H Register .........................................................48  
TMR1L Register..........................................................48  
Timers  
Timer1  
T1CON................................................................51  
Timing Diagrams  
A/D Conversion.........................................................162  
A/D Conversion (Sleep Mode) ..................................162  
Asynchronous Reception ............................................90  
Asynchronous Transmission.......................................86  
Asynchronous Transmission (Back to Back) ..............86  
Auto Wake-up Bit (WUE) During Normal Operation .100  
Auto Wake-up Bit (WUE) During Sleep ....................101  
Automatic Baud Rate Calculator.................................99  
Brown-out Reset (BOR)............................................156  
Brown-out Reset Situations ......................................114  
CLKOUT and I/O.......................................................155  
Clock Timing .............................................................153  
DS41203E-page 198  
© 2009 Microchip Technology Inc.  
PIC16F688  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2009 Microchip Technology Inc.  
DS41203E-page 199  
PIC16F688  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC16F688  
DS41203E  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41203E-page 200  
© 2009 Microchip Technology Inc.  
PIC16F688  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
PIC16F688-E/P 301 = Extended Temp., PDIP  
package, 20 MHz, QTP pattern #301  
b)  
PIC16F688-I/SO = Industrial Temp., SOIC  
package, 20 MHz.  
Device  
PIC16F688, PIC16F688T(1)  
VDD range 2.0V to 5.5V  
Temperature Range  
Package  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
ML  
P
SL  
ST  
=
Quad Flat No Leads (QFN)  
Plastic DIP  
16-lead Small Outline (3.90 mm)  
Thin Shrink Small Outline (4.4 mm)  
=
=
=
Note 1: T=In tape and reel TSSOP, SOIC and  
Pattern  
QTP, SQTPSM or ROM Code; Special Requirements  
(blank otherwise)  
QFN packages only.  
© 2009 Microchip Technology Inc.  
DS41203E-page 201  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS41203E-page 202  
© 2009 Microchip Technology Inc.  

相关型号:

PIC16F688T-EST

8-BIT, FLASH, 20 MHz, RISC MICROCONTROLLER, PDSO14, 4.40 MM, PLASTIC, MO-153AB-1, TSSOP-14
MICROCHIP

PIC16F688T-I/ML

14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16F688T-I/MLQTP

14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16F688T-I/MLSQTP

14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16F688T-I/MLVAO

RISC Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PQCC16
MICROCHIP

PIC16F688T-I/P

14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16F688T-I/PQTP

14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16F688T-I/PSQTP

14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16F688T-I/SL

14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16F688T-I/SLGV01

RISC Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PDSO14
MICROCHIP

PIC16F688T-I/SLGVAO

RISC Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PDSO14
MICROCHIP

PIC16F688T-I/SLQTP

14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP