PIC16F785-I/P [MICROCHIP]

20-Pin Flash-Based, 8-Bit CMOS Microcontroller with Two-Phase Asynchronous Feedback PWM Dual High-Speed Comparators and Dual Operational Amplifiers; 20引脚基于闪存的8位CMOS微控制器,带有两相异步反馈PWM双高速比较器和双通道运算放大器
PIC16F785-I/P
型号: PIC16F785-I/P
厂家: MICROCHIP    MICROCHIP
描述:

20-Pin Flash-Based, 8-Bit CMOS Microcontroller with Two-Phase Asynchronous Feedback PWM Dual High-Speed Comparators and Dual Operational Amplifiers
20引脚基于闪存的8位CMOS微控制器,带有两相异步反馈PWM双高速比较器和双通道运算放大器

闪存 比较器 微控制器和处理器 外围集成电路 运算放大器 光电二极管 PC 时钟
文件: 总184页 (文件大小:3445K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F785  
Data Sheet  
20-Pin Flash-Based, 8-Bit  
CMOS Microcontroller with  
Two-Phase Asynchronous Feedback PWM  
Dual High-Speed Comparators and  
Dual Operational Amplifiers  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Linear Active Thermistor,  
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,  
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,  
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,  
Smart Serial, SmartTel, Total Endurance and WiperLock are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS41249B-page ii  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
20-Pin Flash-Based 8-Bit CMOS Microcontroller  
High-Performance RISC CPU:  
Peripheral Features:  
• Only 35 instructions to learn:  
- All single-cycle instructions except branches  
• Operating speed:  
- DC – 20 MHz oscillator/clock input  
- DC – 200 ns instruction cycle  
• Interrupt capability  
• High-speed Comparator module with:  
- Two independent analog comparators  
- Programmable on-chip voltage reference  
(CVREF) module (% of VDD)  
- 1.2V band gap voltage reference  
- Comparator inputs and outputs externally  
accessible  
• 8-level deep hardware stack  
• Direct, Indirect and Relative Addressing modes  
- < 40 ns propagation delay  
- 2 mv offset, typical  
• Operational Amplifier module with 2 independent  
op amps:  
Special Microcontroller Features:  
• Precision Internal Oscillator:  
- Factory calibrated to ±1%  
- Software selectable frequency range of  
8 MHz to 32 kHz  
- Software tunable  
- 3 MHz GBWP, typical  
- All I/O pins externally accessible  
• Two-Phase Asynchronous Feedback PWM  
module:  
- Complementary output with programmable  
dead band delay  
- Infinite resolution analog duty cycle  
- Sync Output/Input for multi-phase PWM  
- FOSC/2 maximum PWM frequency  
• A/D Converter:  
- 10-bit resolution and 14 channels (2 internal)  
• 17 I/O pins and 1 input-only pin:  
- High-current source/sink for direct LED drive  
- Interrupt-on-pin change  
- Individually programmable weak pull-ups  
• Timer0: 8-bit timer/counter with 8-bit  
programmable prescaler  
• Enhanced Timer1:  
- 16-bit timer/counter with prescaler  
- External gate Input mode  
- Two-Speed Start-up mode  
- Crystal fail detect for critical applications  
- Clock mode switching during operation for  
power savings  
• Power-saving Sleep mode  
• Wide operating voltage range (2.0V-5.5V)  
• Industrial and Extended temperature range  
• Power-on Reset (POR)  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
• Brown-out Reset (BOR) with software control  
option  
• Enhanced Low-Current Watchdog Timer (WDT)  
with on-chip oscillator (software selectable  
nominal 268 seconds with full prescaler) with  
software enable  
• Multiplexed Master Clear with pull-up/input pin  
• Programmable code protection  
• High-Endurance Flash/EEPROM cell:  
- 100,000 write Flash endurance  
- 1,000,000 write EEPROM endurance  
- Flash/Data EEPROM retention: > 40 years  
- Option to use OSC1 and OSC2 in LP mode  
as Timer1 oscillator, if INTOSC mode  
selected  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Capture, Compare, PWM module:  
- 16-bit Capture, max resolution 12.5 ns  
- Compare, max resolution 200 ns  
- 10-bit PWM with 1 output channel, max  
frequency 20 kHz  
Low-Power Features:  
• Standby Current:  
- 30 nA @ 2.0V, typical  
• Operating Current:  
- 8.5 μA @ 32 kHz, 2.0V, typical  
- 100 μA @ 1 MHz, 2.0V, typical  
• Watchdog Timer Current:  
- 1 μA @ 2.0V, typical  
• In-Circuit Serial ProgrammingTM (ICSPTM) via two  
pins  
• Timer1 Oscillator Current:  
- 2 μA @ 32 kHz, 2.0V, typical  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 1  
PIC16F785  
Program  
Memory  
Data Memory  
SRAM EEPROM  
Two-  
Comparators CCP Phase  
PWM  
10-bitA/D Operational  
Timers  
8/16-bit  
Device  
I/O  
(ch)  
Amplifiers  
Flash  
(words) (bytes) (bytes)  
PIC16F785  
2048 128 256  
17+1  
12+2  
2
2
1
1
2/1  
Pin Diagram  
20-pin PDIP, SOIC, SSOP  
VDD  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VSS  
RA5/T1CKI/OSC1/CLKIN  
RA4/AN3/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
RA0/AN0/C1IN+/ICSPDAT  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RC0/AN4/C2IN+  
RC1/AN5/C12IN1-/PH1  
RC2/AN6/C12IN2-/OP2  
RB4/AN10/OP2-  
RC5/CCP1  
RC4/C2OUT/PH2  
RC3/AN7/C12IN3-/OP1  
RC6/AN8/OP1-  
RC7/AN9/OP1+  
RB5/AN11/OP2+  
RB6  
RB7/SYNC  
10  
DS41249B-page 2  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 5  
2.0 Memory Organization................................................................................................................................................................... 9  
3.0 Clock Sources ............................................................................................................................................................................ 23  
4.0 I/O Ports ..................................................................................................................................................................................... 35  
5.0 Timer0 Module ........................................................................................................................................................................... 49  
6.0 Timer1 Module with Gate Control............................................................................................................................................... 51  
7.0 Timer2 Module ........................................................................................................................................................................... 55  
8.0 Capture/Compare/PWM (CCP) Module ..................................................................................................................................... 57  
9.0 Comparator Module.................................................................................................................................................................... 63  
10.0 Voltage References.................................................................................................................................................................... 71  
11.0 Operational Amplifier (OPA) Module.......................................................................................................................................... 75  
12.0 Analog-to-Digital Converter (A/D) Module.................................................................................................................................. 79  
13.0 Two-Phase PWM ....................................................................................................................................................................... 91  
14.0 Data EEPROM Memory ........................................................................................................................................................... 103  
15.0 Special Features of the CPU.................................................................................................................................................... 107  
16.0 Instruction Set Summary.......................................................................................................................................................... 127  
17.0 Development Support............................................................................................................................................................... 137  
18.0 Electrical Specifications............................................................................................................................................................ 143  
19.0 AC and DC Characterization.................................................................................................................................................... 165  
20.0 Packaging Information.............................................................................................................................................................. 167  
Appendix A: Data Sheet Revision History.......................................................................................................................................... 171  
Appendix B: Migrating from other PICmicro® DeviceS...................................................................................................................... 171  
Index .................................................................................................................................................................................................. 173  
On-Line Support................................................................................................................................................................................. 179  
Systems Information and Upgrade Hot Line ...................................................................................................................................... 179  
Reader Response.............................................................................................................................................................................. 180  
Product Identification System ............................................................................................................................................................ 181  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 3  
PIC16F785  
NOTES:  
DS41249B-page 4  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
this Data Sheet and is highly recommended reading for  
a better understanding of the device architecture and  
operation of the peripheral modules.  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the PIC16F785. Additional information may be found in  
the “PICmicro® Mid-Range MCU Family Reference  
Manual” (DS33023), which may be obtained from your  
local Microchip Sales Representative or downloaded  
from the Microchip web site. The Reference Manual  
should be considered a complementary document to  
The PIC16F785 is covered by this Data Sheet. It is  
available in 20-pin PDIP, SOIC and SSOP packages.  
Figure 1-1 shows a block diagram of the PIC16F785  
device. Table 1-1 shows the pinout description.  
FIGURE 1-1:  
PIC16F785 Block Diagram  
INT  
Configuration  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0  
RA1  
Flash  
2k X 14  
Program  
Memory  
RA2  
RAM  
128 bytes  
8-Level Stack  
(13-bit)  
RA3  
RA4  
RA5  
File  
Registers  
Program  
Bus  
14  
RAM Addr  
9
PORTB  
PORTC  
ADDR MUX  
RB4  
RB5  
RB6  
RB7  
Instruction reg  
Indirect  
Addr  
7
Direct Addr  
8
FSR Reg  
Status Reg  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
8
3
MUX  
Power-up  
Timer  
32 kHz Internal  
Oscillator  
Instruction  
Decode and  
Control  
Oscillator  
Start-up Timer  
ALU  
Power-on  
Reset  
OSC1/CLKIN  
8
Timing  
Generation  
OSC2/CLKOUT  
Watchdog  
Timer  
W Reg  
OP1  
OP1+  
OP1-  
OP2  
Brown-out  
Reset  
8 Mhz Internal  
Oscillator  
Dual  
Op Amps  
OP2+  
OP2-  
CCP1  
T1G  
VDD  
VSS  
MCLR  
EEDATA  
256 bytes  
Data  
EEPROM  
T1CKI  
PH1  
PH2  
Two-Phase  
PWM  
CCP  
Timer0  
Timer1  
Timer2  
T0CKI  
EEADDR  
8
SYNC  
Voltage  
Reference  
2 Analog  
Comparators  
Analog-to-Digital Converter  
AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN3 AN8 AN9 AN10 AN11  
VREF  
C1IN- C1IN+ C1OUT C2IN- C2IN+ C2OUT  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 5  
PIC16F785  
TABLE 1-1:  
PIC16F785 PINOUT DESCRIPTION  
Input Output  
Name  
Pin Function  
Description  
Type  
Type  
RA0/AN0/C1IN+/ICSPDAT  
19  
RA0  
AN0  
TTL  
AN  
AN  
ST  
CMOS PORTA I/O with prog. pull-up and interrupt-on-change  
A/D Channel 0 input  
C1IN+  
ICSPDAT  
RA1  
Comparator 1 non-inverting input  
CMOS Serial Programming Data I/O  
RA1/AN1/C12IN0-/VREF/ICSP-  
CLK  
18  
TTL  
AN  
AN  
AN  
CMOS PORTA I/O with prog. pull-up and interrupt-on-change  
AN1  
A/D Channel 1 input  
C12IN0-  
VREF  
Comparator 1 and 2 inverting input  
AN  
External Voltage Reference for A/D, buffered reference  
output  
ICSPCLK  
RA2  
ST  
ST  
AN  
ST  
ST  
Serial Programming Clock  
RA2/AN2/T0CKI/INT/C1OUT  
17  
CMOS PORTA I/O with prog. pull-up and interrupt-on-change  
AN2  
A/D Channel 2 input  
Timer0 clock input  
External Interrupt  
T0CKI  
INT  
C1OUT  
RA3  
CMOS Comparator 1 output  
RA3/MCLR/VPP  
4
3
TTL  
ST  
HV  
TTL  
AN  
ST  
PORTA input with prog. pull-up and interrupt-on-change  
MCLR  
VPP  
Master Clear with internal pull-up  
Programming voltage  
RA4/AN3/T1G/OSC2/CLKOUT  
RA4  
CMOS PORTA I/O with prog. pull-up and interrupt-on-change  
AN3  
A/D Channel 3 input  
Timer1 gate  
T1G  
OSC2  
CLKOUT  
XTAL Crystal/Resonator  
CMOS FOSC/4 output  
RA5/T1CKI/OSC1/CLKIN  
2
RA5  
T1CKI  
OSC1  
CLKIN  
RB4  
TTL  
ST  
CMOS PORTA I/O with prog. pull-up and interrupt-on-change  
Timer1 clock  
XTAL  
ST  
Crystal/Resonator  
External clock input/RC oscillator connection  
RB4/AN10/OP2-  
RB5/AN11/OP2+  
13  
12  
TTL  
AN  
CMOS PORTB I/O  
AN10  
OP2-  
RB5  
A/D Channel 10 input  
Op Amp 2 inverting input  
AN  
TTL  
AN  
CMOS PORTB I/O  
AN11  
OP2+  
RB6  
A/D Channel 11 input  
AN  
OD  
Op Amp 2 non-inverting input  
PORTB I/O. Open drain output  
RB6  
11  
10  
TTL  
TTL  
ST  
RB7/SYNC  
RB7  
CMOS PORTB I/O  
SYNC  
RC0  
CMOS Master PWM Sync output or slave PWM Sync input  
CMOS PORTC I/O  
RC0/AN4/C2IN+  
16  
15  
TTL  
AN  
AN  
TTL  
AN  
AN  
AN4  
A/D Channel 4 input  
C2IN+  
RC1  
Comparator 2 non-inverting input  
RC1/AN5/C12IN1-/PH1  
CMOS PORTC I/O  
AN5  
A/D Channel 5 input  
Comparator 1 and 2 inverting input  
C12IN1-  
PH1  
CMOS PWM phase 1 output  
CMOS PORTC I/O  
RC2/AN6/C12IN2-/OP2  
14  
RC2  
TTL  
AN  
AN  
AN6  
A/D Channel 6 input  
C12IN2-  
OP2  
Comparator 1 and 2 inverting input  
Op Amp 2 output  
AN  
Legend:  
TTL = TTL input buffer, ST = Schmitt Trigger input buffer, AN = Analog, OD = Open Drain output, HV = High Voltage  
DS41249B-page 6  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
TABLE 1-1:  
PIC16F785 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Pin Function  
Description  
Type  
Type  
RC3/AN7/C12IN3-/OP1  
7
RC3  
AN7  
TTL  
AN  
AN  
CMOS PORTC I/O  
A/D Channel 7 input  
C12IN3-  
OP1  
Comparator 1 and 2 inverting input  
Op Amp 1 output  
AN  
RC4/C2OUT/PH2  
6
RC4  
TTL  
CMOS PORTC I/O  
C2OUT  
PH2  
CMOS Comparator 2 output  
CMOS PWM phase 2 output  
CMOS PORTC I/O  
RC5/CCP1  
5
8
RC5  
TTL  
ST  
CCP1  
RC6  
CMOS Capture input/Compare output  
CMOS PORTC I/O  
RC6/AN8/OP1-  
TTL  
AN  
AN  
AN8  
A/D Channel 8 input  
OP1-  
RC7  
Op Amp 1 inverting input  
RC7/AN9/OP1+  
9
CMOS PORTC I/O  
AN9  
AN  
AN  
A/D Channel 9 input  
OP1+  
VSS  
Op Amp 1 non-inverting input  
Ground reference  
VSS  
VDD  
20  
1
Power  
Power  
VDD  
Positive supply  
Legend:  
TTL = TTL input buffer, ST = Schmitt Trigger input buffer, AN = Analog, OD = Open Drain output, HV = High Voltage  
TABLE 1-2:  
PIC16F785 PIN USAGE SUMMARY  
I/O  
Pin  
19  
Analog  
Comp. Op Amps PWM Timers  
CCP Interrupt Pull-ups  
Basic  
RA0  
RA1  
RA2  
RA3(1)  
RA4  
RA5  
RB4  
RB5  
RB6(2)  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
AN0  
C1IN+  
IOC  
IOC  
INT/IOC  
IOC  
IOC  
IOC  
Y
Y
ICSPDAT  
18 AN1/VREF C12IN0-  
ICSPCLK  
17  
4
AN2  
C1OUT  
T0CKI  
Y
Y
MCLR  
3
AN3  
T1G  
T1CKI  
Y
OSC2/CLKOUT  
2
Y
OSC1/CLKIN  
13  
12  
11  
10  
16  
15  
14  
7
AN10  
AN11  
OP2-  
OP2+  
SYNC  
AN4  
AN5  
AN6  
AN7  
C2IN+  
C12IN1-  
C12IN2-  
C12IN3-  
C2OUT  
PH1  
OP2  
OP1  
6
PH2  
5
CCP1  
8
AN8  
AN9  
OP1-  
OP1+  
9
1
VDD  
VSS  
20  
Note 1: Input only.  
2: Open drain.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 7  
PIC16F785  
NOTES:  
DS41249B-page 8  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
2.2  
Data Memory Organization  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The data memory (see Figure 2-2) is partitioned into  
four banks, which contain the General Purpose  
Registers (GPR) and the Special Function Registers  
(SFR). The Special Function Registers are located in  
the first 32 locations of each bank. Register locations  
20h-7Fh in Bank 0 and A0h-BFh in Bank 1 are General  
Purpose Registers, implemented as static RAM. The  
last sixteen register locations in Bank 1 (F0h-FFh),  
Bank 2 (170h-17Fh), and Bank 3 (1F0h-1FFh) point to  
addresses 70h-7Fh in Bank 0. All other RAM is  
unimplemented and returns ‘0’ when read.  
The PIC16F785 has a 13-bit program counter capable  
of addressing an 8k x 14 program memory space. Only  
the first 2k x 14 (0000h-07FFh) for the PIC16F785 is  
physically implemented. Accessing a location above  
these boundaries will cause a wrap around within the  
first 2k x 14 space. The Reset vector is at 0000h and  
the interrupt vector is at 0004h (see Figure 2-1).  
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F785  
Seven address bits are required to access any location  
in a data memory bank. Two additional bits are required  
to access the four banks. When data memory is  
accessed directly, the seven Least Significant address  
bits are contained within the opcode and the two Most  
Significant bits are contained in the STATUS register.  
RP0 and RP1 (STATUS<5> and STATUS<6>) are the  
two Most Significant data memory address bits and are  
also known as the bank select bits. Table 2-1 lists how  
to access the four banks of registers.  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Reset Vector  
TABLE 2-1:  
BANK SELECTION  
RP1  
RP0  
000H  
Bank0  
Bank1  
Bank2  
Bank3  
0
0
1
1
0
1
0
1
Interrupt Vector  
0004  
0005  
On-chip Program  
Memory  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
07FFH  
0800H  
The register file banks are organized as 128 x 8 in the  
PIC16F785. Each register is accessed, either directly, by  
seven address bits within the opcode, or indirectly,  
through the File Select Register (FSR). When the FSR is  
used to access data memory, the eight Least Significant  
data memory address bits are contained in the FSR and  
the ninth Most Significant address bit is contained in the  
IRP bit (STATUS<7>) of the STATUS register. (see  
Section 2.4 “Indirect Addressing, INDF and FSR  
Registers”).  
1FFFH  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral functions for controlling the  
desired operation of the device (see Table 2-2). These  
registers are static RAM.  
The special registers can be classified into two sets:  
core and peripheral. The Special Function Registers  
associated with the “core” are described in this section.  
Those related to the operation of the peripheral  
features are described in the section of that peripheral  
feature.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 9  
PIC16F785  
FIGURE 2-2:  
DATA MEMORY MAP OF THE PIC16F785  
File  
File  
File  
File  
Address  
Address  
Address  
Address  
Indirect addr.(1) 00h  
Indirect addr.(1) 80h  
OPTION_REG 81h  
Indirect addr.(1) 100h  
Indirect addr.(1) 180h  
OPTION_REG 181h  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
TMR0  
PCL  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
PCL  
STATUS  
FSR  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PCLATH  
INTCON  
TMR1L  
TMR1H  
T1CON  
PCON  
OSCCON  
OSCTUNE  
ANSEL0  
PR2  
PWMCON1  
PWMCON0  
PWMCLK  
PWMPH1  
PWMPH2  
TMR2  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
ANSEL1  
WPUA  
IOCA  
WDTCON  
REFCON  
VRCON  
CM1CON0  
CM2CON0  
CM2CON1  
OPA1CON  
OPA2CON  
EEDAT  
EEADR  
EECON1  
EECON2(1)  
ADRESL  
ADCON1  
ADRESH  
ADCON0  
General  
Purpose  
Register  
General  
Purpose  
Register  
32 Bytes  
BFh  
C0h  
96 Bytes  
6Fh  
70h  
7Fh  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
accesses  
Bank 0  
accesses  
Bank 0  
accesses  
Bank 0  
Bank 0  
Bank1  
Bank2  
Bank3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
DS41249B-page 10  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
TABLE 2-2:  
PIC16F785 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0  
Value on:  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module’s Register  
xxxx xxxx 22,114  
xxxx xxxx 49,114  
0000 0000 21,114  
0001 1xxx 15,114  
xxxx xxxx 22,114  
--x0 x000 35,114  
xx00 ---- 42,114  
00xx 0000 45,114  
TMR0  
PCL  
Program Counter's (PC) Least Significant Byte  
STATUS  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
FSR  
Indirect Data Memory Address Pointer  
PORTA(1)  
PORTB(1)  
PORTC(1)  
RA5  
RB5  
RC5  
RA4  
RB4  
RC4  
RA3  
RA2  
RA1  
RA0  
RB7  
RB6  
RC6  
RC7  
RC3  
RC2  
RC1  
RC0  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIR1  
Write Buffer for Upper 5 bits of Program Counter  
---0 0000 21,114  
0000 0000 17,114  
GIE  
PEIE  
ADIF  
T0IE  
INTE  
C2IF  
RAIE  
C1IF  
T0IF  
INTF  
RAIF  
EEIF  
CCP1IF  
OSFIF  
TMR2IF  
TMR1IF 0000 0000 19,114  
Unimplemented  
TMR1L  
TMR1H  
Holding Register for the Least Significant Byte of the 16-bit TMR1  
Holding Register for the Most Significant Byte of the 16-bit TMR1  
xxxx xxxx 51,114  
xxxx xxxx 51,114  
53,114  
TMR1ON 0000 0000  
10h  
11h  
12h  
13h  
T1CON  
TMR2  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS  
Timer2 Module Register  
0000 0000 55,114  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 55,114  
T2CON  
57,114  
57,114  
57,114  
CCPR1L  
CCPR1H  
Capture/Compare/PWM Register1 Low Byte  
Capture/Compare/PWM Register1 High Byte  
xxxx xxxx  
xxxx xxxx  
14h  
15h  
CCP1CON  
DC1B1  
DC1B0  
CCP1M3  
WDTPS2  
CCP1M2  
WDTPS1  
CCP1M1  
CCP1M0 --00 0000  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
Unimplemented  
Unimplemented  
WDTCON  
WDTPS3  
WDTPS0 SWDTEN  
122,114  
---0 1000  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADRESH  
Most Significant 8 bits of the left justified A/D result or 2 bits of right justified result  
ADFM VCFG CHS3 CHS2 CHS1 CHS0 GO/DONE  
xxxx xxxx 81,114  
83,114  
1Fh  
ADCON0  
ADON  
0000 0000  
Legend:  
Note 1:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Port pins with analog functions controlled by the ANSEL0 and ANSEL1 registers will read ‘0’ immediately after a Reset even though the  
data latches are either undefined (POR) or unchanged (other Resets).  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 11  
PIC16F785  
TABLE 2-3:  
PIC16F785 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1  
Value on:  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 1  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
xxxx xxxx 22,114  
1111 1111 16,114  
0000 0000 21,114  
0001 1xxx 15,114  
xxxx xxxx 22,114  
--11 1111 36,114  
1111 ---- 42,114  
1111 1111 45,114  
OPTION_REG  
PCL  
RAPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
TRISA  
TRISB  
TRISC  
TRISA5  
TRISB5  
TRISC5  
TRISA4  
TRISB4  
TRISC4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIE1  
Write Buffer for Upper 5 bits of Program Counter  
---0 0000 21,114  
0000 0000 17,114  
GIE  
PEIE  
ADIE  
T0IE  
INTE  
C2IE  
RAIE  
C1IE  
T0IF  
INTF  
RAIF  
EEIE  
CCP1IE  
OSFIE  
TMR2IE  
TMR1IE 0000 0000 18,114  
Unimplemented  
PCON  
OSCCON  
OSCTUNE  
ANSEL0  
PR2  
IRCF1  
SBOREN  
IRCF0  
TUN4  
POR  
LTS  
BOR  
SCS  
---1 --qq 20,114  
-110 q000 33,114  
---0 0000 28,114  
1111 1111 82,114  
1111 1111 55,114  
---- 1111 82,115  
IRCF2  
OSTS(1)  
TUN3  
ANS3  
HTS  
TUN2  
ANS2  
TUN1  
ANS1  
TUN0  
ANS0  
ANS7  
ANS6  
ANS5  
ANS4  
Timer2 Module Period Register  
ANSEL1  
ANS11  
ANS10  
ANS9  
ANS8  
Unimplemented  
WPUA  
IOCA  
WPUA5  
IOCA5  
WPUA4 WPUA3(2)  
WPUA2  
IOCA2  
WPUA1  
IOCA1  
WPUA0  
IOCA0  
--11 1111 36,115  
--00 0000 37,115  
IOCA4  
IOCA3  
Unimplemented  
REFCON  
VRCON  
EEDAT  
EEADR  
EECON1  
EECON2  
ADRESL  
ADCON1  
BGST  
VRR  
VRBB  
VREN  
VR3  
VROE  
VR2  
CVROE  
VR1  
--00 000- 73,115  
000- 0000 72,115  
C1VREN  
EEDAT7  
EEADR7  
C2VREN  
EEDAT6  
EEADR6  
VR0  
EEDAT5  
EEDAT4  
EEDAT3  
EEDAT2  
EEADR2  
WREN  
EEDAT1  
EEADR1  
WR  
EEDAT0 0000 0000 103,115  
EEADR0 0000 0000 103,115  
EEADR5 EEADR4 EEADR3  
WRERR  
RD  
---- x000 104,115  
---- ---- 104,115  
xxxx xxxx 80,115  
-000 ---- 84,115  
EEPROM Control Register 2 (not a physical register)  
Least Significant 2 bits of the left justified A/D result or 8 bits of the right justified result  
ADCS2 ADCS1 ADCS0  
Legend:  
Note 1:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled, otherwise this  
bit resets to ‘1’.  
2:  
RA3 pull-up is enabled when MCLRE is ‘1’ in Configuration Word.  
DS41249B-page 12  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
TABLE 2-4:  
PIC16F785 SPECIAL FUNCTION REGISTERS SUMMARY BANK 2  
Value on:  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 2  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module’s Register  
xxxx xxxx 22,114  
xxxx xxxx 49,114  
0000 0000 21,114  
0001 1xxx 15,114  
xxxx xxxx 22,114  
--x0 x000 35,114  
xx00 ---- 42,114  
00xx 0000 45,114  
TMR0  
PCL  
Program Counter's (PC) Least Significant Byte  
STATUS  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
FSR  
Indirect Data Memory Address Pointer  
PORTA(1)  
PORTB(1)  
PORTC(1)  
RA5  
RB5  
RC5  
RA4  
RB4  
RC4  
RA3  
RA2  
RA1  
RA0  
RB7  
RB6  
RC6  
RC7  
RC3  
RC2  
RC1  
RC0  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
Write Buffer for Upper 5 bits of Program Counter  
---0 0000 21,114  
0000 0000 17,114  
GIE  
PEIE  
T0IE  
INTE  
RAIE  
T0IF  
INTF  
RAIF  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
PWMCON1  
PWMCON0  
PWMCLK  
PWMPH1  
PWMPH2  
PRSEN  
PWMASE  
POL  
COMOD1 COMOD0 CMDLY4  
CMDLY3  
SYNC1  
PER3  
PH3  
CMDLY2  
SYNC0  
PER2  
PH2  
CMDLY1  
PH2EN  
PER1  
PH1  
CMDLY0 -000 0000 100,115  
PASEN  
PWMP1  
C2EN  
BLANK2  
PWMP0  
C1EN  
BLANK1  
PER4  
PH4  
PH1EN  
PER0  
PH0  
0000 0000 93,115  
0000 0000 94,115  
0000 0000 95,115  
0000 0000 96,115  
POL  
C2EN  
C1EN  
PH4  
PH3  
PH2  
PH1  
PH0  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
CM1CON0  
CM2CON0  
CM2CON1  
OPA1CON  
OPA2CON  
C1ON  
C2ON  
C1OUT  
C1OE  
C2OE  
C1POL  
C2POL  
C1SP  
C2SP  
C1R  
C2R  
C1CH1  
C2CH1  
T1GSS  
C1CH0  
C2CH0  
0000 0000 65,115  
0000 0000 67,115  
C2OUT  
MC2OUT  
MC1OUT  
OPAON  
OPAON  
C2SYNC 00-- --10 68,115  
0--- ---- 76,115  
0--- ---- 76,115  
Unimplemented  
Unimplemented  
Legend:  
Note 1:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Port pins with analog functions controlled by the ANSEL0 and ANSEL1 registers will read ‘0’ immediately after a Reset even though the  
data latches are either undefined (POR) or unchanged (other Resets).  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 13  
PIC16F785  
TABLE 2-5:  
PIC16F785 SPECIAL FUNCTION REGISTERS SUMMARY BANK 3  
Value on:  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 3  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
Legend:  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
xxxx xxxx 22,114  
1111 1111 16,114  
0000 0000 21,114  
0001 1xxx 15,114  
xxxx xxxx 22,114  
--11 1111 36,114  
1111 ---- 42,114  
1111 1111 45,114  
OPTION_REG  
RAPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
PCL  
STATUS  
FSR  
TRISA  
TRISB  
TRISC  
Program Counter's (PC) Least Significant Byte  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
TRISA5  
TRISB5  
TRISC5  
TRISA4  
TRISB4  
TRISC4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIE1  
Write Buffer for Upper 5 bits of Program Counter  
---0 0000 21,114  
0000 0000 17,114  
GIE  
PEIE  
ADIE  
T0IE  
INTE  
C2IE  
RAIE  
C1IE  
T0IF  
INTF  
RAIF  
EEIE  
CCP1IE  
OSFIE  
TMR2IE  
TMR1IE 0000 0000 18,114  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
DS41249B-page 14  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not  
affecting any Status bits, see Section 16.0  
“Instruction Set Summary”.  
• the bank select bits for data memory (SRAM)  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note:  
The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction. See the SUBLW and SUBWF  
instructions for examples.  
REGISTER 2-1:  
STATUS – STATUS REGISTER (ADDRESS: 03h, 83h, 103h OR 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(1)  
bit 7  
bit 0  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2,3 (100h-1FFh)  
0= Bank 0,1 (00h-FFh)  
bit 6-5  
RP<1:0>: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h-1FFh)  
10= Bank 2 (100h-17Fh)  
01= Bank 1 (80h-FFh)  
00= Bank 0 (00h-7Fh)  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(1)  
For borrow, the polarity is reversed.  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
bit 0  
C: Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high-order or low-order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 15  
PIC16F785  
2.2.2.2  
Option Register  
Note:  
To achieve a 1:1 prescaler assignment for  
TMR0, assign the prescaler to the WDT by  
setting PSA bit to ‘1’ (OPTION_REG<3>).  
See Section 5.4 “Prescaler”.  
The Option (OPTION_REG) register, shown in  
Register 2-2, is a readable and writable register, which  
contains various control bits to configure:  
• TMR0/WDT prescaler  
• External RA2/INT interrupt  
• TMR0  
• Weak pull-ups on PORTA  
REGISTER 2-2:  
OPTION_REG – OPTION REGISTER (ADDRESS: 81h OR 181h)  
R/W-1  
RAPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RAPU: PORTA Pull-up Enable bit  
1= PORTA pull-ups are disabled  
0= PORTA pull-ups are enabled by individual port latch values in WPUA register  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RA2/AN2/T0CKI/INT/C1OUT pin  
0= Interrupt on falling edge of RA2/AN2/T0CKI/INT/C1OUT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA2/AN2/T0CKI/INT/C1OUT pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA2/AN2/T0CKI/INT/C1OUT pin  
0= Increment on low-to-high transition on RA2/AN2/T0CKI/INT/C1OUT pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate(1)  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Note 1: A dedicated 16-bit WDT postscaler is available for the PIC16F785. See  
Section 15.5 “Watchdog Timer (WDT)” for more information.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41249B-page 16  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
2.2.2.3  
INTCON Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User  
software should ensure the appropriate  
interrupt flag bits are clear prior to  
enabling an interrupt.  
The Interrupt Control (INTCON) register, shown in  
Register 2-3, is a readable and writable register, which  
contains the various enable and flag bits for TMR0  
register overflow, PORTA change and external RA2/INT  
pin interrupts.  
REGISTER 2-3:  
INTCON – INTERRUPT CONTROL REGISTER (ADDRESS: 0Bh, 8Bh, 103h OR  
183h)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RAIE(1)  
R/W-0  
T0IF(2)  
R/W-0  
INTF  
R/W-0  
RAIF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RA2/AN2/T0CKI/INT/C1OUT External Interrupt Enable bit  
1= Enables the RA2/AN2/T0CKI/INT/C1OUT external interrupt  
0= Disables the RA2/AN2/T0CKI/INT/C1OUT external interrupt  
RAIE: PORTA Change Interrupt Enable bit(1)  
1= Enables the PORTA change interrupt  
0= Disables the PORTA change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit(2)  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RA2/AN2/T0CKI/INT/C1OUT External Interrupt Flag bit  
1= The RA2/AN2/T0CKI/INT/C1OUT external interrupt occurred (must be cleared in software)  
0= The RA2/AN2/T0CKI/INT/C1OUT external interrupt did not occur  
RAIF: PORTA Change Interrupt Flag bit  
1= When at least one of the PORTA <5:0> pins changed state (must be cleared in software)  
0= None of the PORTA <5:0> pins have changed state  
Note 1: IOCA register must also be enabled.  
2: T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should  
be initialized before clearing T0IF bit.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 17  
PIC16F785  
2.2.2.4  
PIE1 Register  
The Peripheral Interrupt Enable (PIE1) Register 1,  
shown in Register 2-4, contains the interrupt enable  
bits, as shown in Register 2-4.  
Note:  
Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
REGISTER 2-4:  
PIE1 – PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS: 8Ch)  
R/W-0  
EEIE  
R/W-0  
ADIE  
R/W-0  
R/W-0  
C2IE  
R/W-0  
C1IE  
R/W-0  
OSFIE  
R/W-0  
R/W-0  
TMR1IE  
bit 0  
CCP1IE  
TMR2IE  
bit 7  
bit 7  
EEIE: EE Write Complete Interrupt Enable bit  
1= Enables the EE write complete interrupt  
0= Disables the EE write complete interrupt  
bit 6  
bit 5  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D converter interrupt  
0= Disables the A/D converter interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
C2IE: Comparator 2 Interrupt Enable bit  
1= Enables the Comparator 2 interrupt  
0= Disables the Comparator 2 interrupt  
C1IE: Comparator 1 Interrupt Enable bit  
1= Enables the Comparator 1 interrupt  
0= Disables the Comparator 1 interrupt  
OSFIE: Oscillator Fail Interrupt Enable bit  
1= Enables the Oscillator Fail interrupt  
0= Disables the Oscillator Fail interrupt  
TMR2IE: Timer2 to PR2 Match Interrupt Enable bit  
1= Enables the Timer2 to PR2 match interrupt  
0= Disables the Timer2 to PR2 match interrupt  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41249B-page 18  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
2.2.2.5  
PIR1 Register  
The Peripheral Interrupt (PIR1) Register 1 contains the  
interrupt flag bits, as shown in Register 2-5.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User  
software should ensure the appropriate  
interrupt flag bits are clear prior to  
enabling an interrupt.  
REGISTER 2-5:  
PIR1 – PERIPHERAL INTERRUPT REGISTER 1 (ADDRESS: 0Ch)  
R/W-0  
EEIF  
R/W-0  
ADIF  
R/W-0  
R/W-0  
C2IF  
R/W-0  
C1IF  
R/W-0  
OSFIF  
R/W-0  
R/W-0  
CCP1IF  
TMR2IF  
TMR1IF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1= The write operation completed (must be cleared in software)  
0= The write operation has not completed or has not been started  
ADIF: A/D Interrupt Flag bit  
1= A/D conversion complete  
0= A/D conversion has not completed or has not been started  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
C2IF: Comparator 2 Interrupt Flag bit  
1= Comparator 2 output has changed (must be cleared in software)  
0= Comparator 2 output has not changed  
C1IF: Comparator 1 Interrupt Flag bit  
1= Comparator 1 output has changed (must be cleared in software)  
0= Comparator 1 output has not changed  
OSFIF: Oscillator Fail Interrupt Flag bit  
1= System oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= System clock operating  
TMR2IF: Timer2 to PR2 Match Interrupt Flag bit  
1= Timer2 to PR2 match occurred (must be cleared in software)  
0= Timer2 to PR2 match has not occurred  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= Timer1 register overflowed (must be cleared in software)  
0= Timer1 has not overflowed  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 19  
PIC16F785  
2.2.2.6  
PCON Register  
The Power Control (PCON) register (see Table 15-2)  
contains flag bits to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Watchdog Timer Reset (WDT)  
• External MCLR Reset  
The PCON register bits are shown in Register 2-6.  
REGISTER 2-6:  
PCON – POWER CONTROL REGISTER (ADDRESS: 8Eh)  
U-0  
U-0  
U-0  
R/W-1  
SBOREN(1)  
U-0  
U-0  
R/W-0  
POR  
R/W-x  
BOR  
bit 7  
bit 0  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
SBOREN: Software BOR Enable bit(1)  
1= BOR enabled  
0= BOR disabled  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: BOREN<1:0> = 01in Configuration Word for this bit to control the BOR.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41249B-page 20  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
FIGURE 2-3:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
2.3  
PCL and PCLATH  
The Program Counter (PC) specifies the address of the  
instruction to fetch for execution. The program counter  
is 13 bits wide. The low byte is called the PCL register.  
The PCL register is readable and writable. The high  
byte of the PC (PC<12:8>) is called the PCH register.  
This register contains PC<12:8> bits which are not  
directly readable or writable. All updates to the PCH  
register go through the PCLATH register.  
PCH  
PCL  
Instruction with  
12  
8
7
0
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU result  
On any Reset, the PC is cleared. Figure 2-3 shows the  
two situations for the loading of the PC. The upper  
example in Figure 2-3 shows how the PC is loaded on  
a write to PCL (PCLATH<4:0> PCH). The lower  
example in Figure 2-3 shows how the PC is loaded  
during a CALL or GOTO instruction (PCLATH<4:3> →  
PCH).  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO, CALL  
PCLATH<4:3>  
11  
2
Opcode <10:0>  
PCLATH  
2.3.1  
MODIFYING PCL  
Executing any instruction with the PCL register as the  
destination simultaneously causes the Program  
Counter PC<12:8> bits (PCH) to be replaced by the  
contents of the PCLATH register. This allows the entire  
contents of the program counter to be changed by first  
writing the desired upper 5 bits to the PCLATH register.  
When the lower 8 bits are then written to the PCL  
register, all 13 bits of the program counter will change  
to the values contained in the PCLATH register and  
those being written to the PCL register.  
2.3.3  
STACK  
The PIC16F785 family has an 8-level x 13-bit wide  
hardware stack (see Figure 2-1). The stack space is  
not part of either program or data space and the Stack  
Pointer is not readable or writable. The PC is PUSHed  
onto the stack when a CALLinstruction is executed or  
an interrupt causes a branch. The stack is POPed in  
the event of a RETURN,  
instruction execution. PCLATH is not affected by a  
PUSH or POP operation.  
RETLW or a RETFIE  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). Care should be  
exercised when jumping into a look-up table or  
program branch table (computed GOTO) by modifying  
the PCL register. Assuming that PCLATH is set to the  
table start address, if the table length is greater than  
255 instructions, or if the lower 8 bits of the memory  
address rolls over from 0xFF to 0x00 in the middle of  
the table, then PCLATH must be incremented for each  
address rollover that occurs between the table  
beginning and the target location within the table.  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
PUSH overwrites the value that was stored from the  
first PUSH. The tenth PUSH overwrites the second  
PUSH (and so on).  
Note 1: There are no Status bits to indicate stack  
overflow or stack underflow conditions.  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the CALL,  
RETURN, RETLWand RETFIEinstructions  
or the vectoring to an interrupt address.  
For more information refer to Application Note AN556,  
Implementing a Table Read” (DS00556).  
2.3.2  
PROGRAM MEMORY PAGING  
The CALL and GOTO instructions provide 11 bits of  
address to allow branching within any 2K program  
memory page. When doing a CALLor GOTOinstruction,  
the upper bit of the address is provided by PCLATH<3>  
(page select bit). When doing a CALLor GOTOinstruction  
the user must ensure that the page select bit is  
programmed so that the desired destination program  
memory page is addressed. When the CALLinstruction  
(or interrupt) is executed, the entire 13-bit PC return  
address is PUSHed onto the stack. Therefore,  
manipulation of the PCLATH<3> bit is not required for  
the RETURN or RETFIE instructions which POP the  
address from the stack.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 21  
PIC16F785  
A simple program to clear RAM location 20h-2Fh using  
indirect addressing is shown in Example 2-1.  
2.4  
Indirect Addressing, INDF and  
FSR Registers  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
EXAMPLE 2-1:  
INDIRECT ADDRESSING  
MOVLW 0x20  
MOVWF FSR  
;initialize pointer  
;to RAM  
;clear INDF register  
;increment pointer  
Indirect addressing is possible by using the INDF  
register. Any instruction using the INDF register  
actually accesses data pointed to by the File Select  
Register (FSR). Reading INDF itself indirectly will  
produce 00h. Writing to the INDF register indirectly  
results in a no operation (although Status bits may be  
affected). An effective 9-bit address is obtained by  
concatenating the 8-bit FSR and the IRP bit  
(STATUS<7>), as shown in Figure 2-4.  
NEXT  
CLRF  
INCF  
INDF  
FSR  
BTFSS FSR,4 ;all done?  
GOTO  
CONTINUE  
NEXT  
;no clear next  
;yes continue  
FIGURE 2-4:  
DIRECT/INDIRECT ADDRESSING PIC16F785  
Direct Addressing  
Indirect Addressing  
File Select Register  
From Opcode  
RP1  
6
0
RP0  
0
IRP  
7
Bank Select  
180H  
Location Select  
Bank Select  
Location Select  
00H  
00  
01  
10  
11  
Data  
Memory  
7FH  
1FFH  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note:  
For memory map detail see Figure 2-2.  
DS41249B-page 22  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
The PIC16F785 can be configured in one of eight clock  
modes.  
3.0  
3.1  
CLOCK SOURCES  
Overview  
1. EC – External clock with I/O on RA4.  
2. LP – 32.768 kHz Watch Crystal or Ceramic  
Resonator Oscillator mode.  
The PIC16F785 has a wide variety of clock sources  
and selection features to allow it to be used in a wide  
range of applications while maximizing performance  
and minimizing power consumption. Figure 3-1  
illustrates a block diagram of the PIC16F785 clock  
sources.  
3. XT – Medium Gain Crystal or Ceramic Resona-  
tor Oscillator mode.  
4. HS – High Gain Crystal or Ceramic Resonator  
mode.  
5. RC – External Resistor-Capacitor (RC) with  
FOSC/4 output on RA4  
Clock sources can be configured from external  
oscillators, quartz crystal resonators, ceramic  
resonators and Resistor-Capacitor (RC) circuits. In  
addition, the system clock source can be configured  
from one of two internal oscillators, with a choice of  
speeds selectable via software. Additional clock  
features include:  
6. RCIO – External Resistor-Capacitor with I/O on  
RA4.  
7. INTOSC – Internal Oscillator with FOSC/4 output  
on RA4 and I/O on RA5.  
8. INTOSCIO – Internal Oscillator with I/O on RA4  
and RA5.  
• Selectable system clock source between external  
or internal via software.  
Clock Source modes are configured by the FOSC<2:0>  
bits in the Configuration Word (see Section 15.0  
“Special Features of the CPU”). Once the PIC16F785  
is programmed and the Clock Source mode configured,  
it cannot be changed in software.  
• Two-speed Clock Start-up mode, which minimizes  
latency between external oscillator start-up and  
code execution.  
• Fail-Safe Clock Monitor (FSCM) designed to  
detect a failure of the external clock source (LP,  
XT, HS, EC or RC modes) and switch to the  
internal oscillator.  
FIGURE 3-1:  
PIC16F785 CLOCK SOURCE BLOCK DIAGRAM  
FOSC<2:0>  
(Configuration Word)  
External Oscillator  
SCS  
(OSCCON<0>)  
OSC2  
OSC1  
Sleep  
LP, XT, HS, RC, RCIO, EC  
IRCF<2:0>  
(OSCCON<6:4>)  
System Clock  
(CPU and Peripherals)  
8 MHz  
111  
110  
101  
Internal Oscillator  
4 MHz  
2 MHz  
1 MHz  
HFINTOSC  
8 MHz  
100  
011  
010  
001  
000  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
LFINTOSC  
31 kHz  
Power-up Timer (PWRT)  
Watchdog Timer (WDT)  
Fail-Safe Clock Monitor (FSCM)  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 23  
PIC16F785  
3.2  
Clock Source Modes  
3.3  
External Clock Modes  
Clock Source modes can be classified as external or  
internal.  
3.3.1 OSCILLATOR START-UP TIMER (OST)  
When the PIC16F785 is configured for any of the  
Crystal Oscillator modes (LP, XT or HS), the Oscillator  
Start-up Timer (OST) is enabled, which extends the  
reset period to allow the oscillator additional time to  
stabilize. The OST counts 1024 clock periods present  
on the OSC1 pin following a Power-on Reset (POR), a  
wake from Sleep, or when the Power-up Timer (PWRT)  
has expired (if the PWRT is enabled). During this time,  
the program counter does not increment and program  
execution is suspended. The OST ensures that the  
oscillator circuit, using a quartz crystal resonator or  
ceramic resonator, has started and is providing a stable  
system clock to the PIC16F785. Table 3-1 shows  
examples where the oscillator delay is invoked.  
• External Clock modes rely on external circuitry for  
the clock source. Examples are oscillator modules  
(EC mode), quartz crystal resonators or ceramic  
resonators (LP, XT, and HS modes), and resistor-  
capacitor (RC mode) circuits.  
• Internal clock sources are contained internally  
within the PIC16F785. The PIC16F785 has two  
internal oscillators; the 8 MHz High-frequency  
Internal Oscillator (HFINTOSC) and 31 kHz Low-  
frequency Internal Oscillator (LFINTOSC).  
The system clock can be selected between external or  
internal clock sources via the System Clock Selection  
(SCS) bit (see Section 3.5 “Clock Switching”).  
In order to minimize latency between external oscillator  
start-up and code execution, the Two-speed Clock  
Start-up mode can be selected (see Section 3.6 “Two-  
Speed Clock Start-up Mode”).  
TABLE 3-1:  
OSCILLATOR DELAY EXAMPLES  
Switch From  
Switch To  
Frequency  
Oscillator Delay  
Comments  
INTRC  
INTOSC  
31 kHz  
125 kHz-8 MHz  
Sleep/POR  
Sleep  
Following a wake-up from Sleep mode or POR,  
CPU start-up is invoked to allow the CPU to  
become ready for code execution.  
5 μs-10 μs (approx.)  
CPU Start-up  
EC, RC  
EC, RC  
DC – 20 MHz  
DC – 20 MHz  
(1)  
LFINTOSC  
(31 kHz)  
Sleep/POR  
LP, XT, HS  
INTOSC  
31 kHz-20 MHz  
125 kHz-8 MHz  
1024 Clock Cycles  
(OST)  
LFINTOSC  
(31 kHz)  
1 μs (approx.)  
Note 1: The 5 μs-10 μs start-up delay is based on a 1 MHz System Clock.  
3.3.2  
EC MODE  
FIGURE 3-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source.  
When operating in this mode, an external clock source  
is connected to OSC1 pin and the RA4 pin is available  
for general purpose I/O. Figure 3-2 shows the pin  
connections for EC mode.  
OSC1/CLKIN  
Clock from  
Ext. System  
PIC16F785  
I/O (OSC2)  
RA4  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC16F785 design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
DS41249B-page 24  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
3.3.3  
LP, XT, HS MODES  
FIGURE 3-4:  
CERAMIC RESONATOR  
OPERATION  
(XT OR HS MODE)  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
the OSC1 and OSC2 pins (Figure 3-1). The mode  
selects a low, medium, or high gain setting of the  
internal inverter-amplifier to support various resonator  
types and speed.  
OSC1  
PIC16F785  
C1  
(3)  
(2)  
RF  
Sleep  
RP  
LP Oscillator mode selects the lowest gain setting of the  
internal inverter-amplifier. LP mode current consumption  
is the least of the three modes. This mode is best suited  
to drive resonators with a low drive level specification, for  
example, tuning fork type crystals.  
OSC2  
(1)  
RS  
C2  
Ceramic  
Resonator  
To Internal  
Logic  
Note 1: A series resistor (RS) may be required for  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is best suited to drive resonators with a  
medium drive level specification, for example, AT-cut  
quartz crystal resonators.  
ceramic resonators with low drive level.  
2: The value of RF varies with the Oscillator  
mode selected (typically between 2 MΩ to  
10 MΩ).  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation (typical value 1 MΩ).  
HS Oscillator mode selects the highest gain setting of  
the internal inverter-amplifier. HS mode current  
consumption is the highest of the three modes. This  
mode is best suited for resonators that require a high  
drive setting, for example, AT-cut quartz crystal  
resonators or ceramic resonators.  
Figure 3-3 and Figure 3-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
FIGURE 3-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
OSC1  
PIC16F785  
C1  
C2  
Quartz  
Crystal  
(2)  
RF  
Sleep  
OSC2  
(1)  
RS  
To Internal  
Logic  
Note 1: A series resistor (RS) may be required for  
quartz crystals with low drive level.  
2: The value of RF varies with the Oscillator  
mode selected (typically between 2 MΩ to  
10 MΩ).  
Note 1: Quartz  
crystal  
characteristics  
vary  
according to type, package and  
manufacturer. The user should consult the  
manufacturer data sheets for specifications  
and recommended application.  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 25  
PIC16F785  
TABLE 3-2:  
Mode  
CERAMIC RESONATORS  
3.3.4  
EXTERNAL RC MODES  
The External Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required. There are two modes, RC and RCIO.  
Freq  
OSC1 (C1)  
OSC2 (C2)  
XT  
455 kHz  
2.0 MHz  
68-100 pF  
15-68 pF  
68-100 pF  
15-68 pF  
HS  
4.0 MHz  
8.0 MHz  
16.0 MHz  
10-68 pF  
15-68 pF  
10-22 pF  
10-68 pF  
15-68 pF  
10-22 pF  
In RC mode, the RC circuit connects to the OSC1 pin.  
The OSC2/CLKOUT pin outputs the RC oscillator  
frequency divided by 4. This signal may be used to  
provide a clock for external circuitry, synchronization,  
calibration, test or other application requirements.  
Figure 3-5 shows the RC mode connections.  
Note:  
These values are for design guidance  
only. See notes following this table.  
TABLE 3-3:  
Osc Type  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
FIGURE 3-5:  
RC MODE  
Crystal Cap. Range Cap. Range  
VDD  
Freq  
C1  
C2  
LP  
XT  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
4 MHz  
8 MHz  
20 MHz  
15-33 pF  
47-68 pF  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
47-68 pF  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
REXT  
Internal  
Clock  
OSC1  
CEXT  
VSS  
PIC16F785  
HS  
OSC2/CLKOUT  
FOSC/4  
Recommended values: 3 kΩ ≤ REXT 100 kΩ (VDD 3.0V)  
10 kΩ ≤ L 100 kΩ (VDD < 3.0V)  
CEXT > 20 pF  
Note:  
These values are for design guidance  
only. See notes following this table.  
In RCIO mode, the RC circuit is connected to the OSC1  
pin. The OSC2 pin becomes an additional general  
purpose I/O pin. The I/O pin becomes bit 4 of PORTA  
(RA4). Figure 3-6 shows the RCIO mode connections.  
Note 1: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
FIGURE 3-6:  
RCIO MODE  
2: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
VDD  
appropriate  
components.  
values  
of  
external  
REXT  
Internal  
Clock  
OSC1  
3: RS may be required to avoid overdriving  
CEXT  
crystals with low drive level specification.  
PIC16F785  
VSS  
I/O (OSC2)  
RA4  
Recommended values: 3 kΩ ≤ REXT 100 kΩ (VDD 3.0V)  
10 kΩ ≤ REXT 100 kΩ (VDD < 3.0V)  
CEXT > 20 pF  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT)  
values and the operating temperature. In addition to  
this, the oscillator frequency will vary from unit-to-unit  
due to normal threshold voltage. Furthermore, the dif-  
ference in lead frame capacitance between package  
types will also affect the oscillation frequency or low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external RC components  
used.  
DS41249B-page 26  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
3.4.2.1  
Calibration Bits  
3.4  
Internal Clock Modes  
The 8 MHz High-frequency Internal Oscillator  
(HFINTOSC) is factory calibrated. The HFINTOSC  
calibration bits are stored in the Calibration Word (CALIB)  
located in program memory location 2008h. The  
Calibration Word is not erased using the specified bulk  
erase sequence in the “PIC16F785/PS200 Memory  
Programming Specification” (DS41237) and does not  
require reprogramming. Reference the “PIC16F785/  
PS200 Memory Programming Specification” (DS41237)  
for more information on the Calibration Word register.  
The PIC16F785 has two independent, internal  
oscillators that can be configured or selected as the  
system clock source.  
1. The HFINTOSC (High-frequency Internal  
Oscillator) is factory calibrated and operates at  
8 MHz. The frequency of the HFINTOSC can be  
user adjusted ±12% via software using the  
OSCTUNE register (Register 3-1).  
2. The LFINTOSC (Low-frequency Internal  
Oscillator) is uncalibrated and operates at  
approximately 31 kHz.  
Note:  
Address 2008h is beyond the user program  
memory space. It belongs to the special  
Configuration Memory space (2000h-  
3FFFh), which can be accessed only during  
programming. See “PIC16F785/PS200  
Memory Programming Specification”  
(DS41237) for more information.  
The system clock speed can be selected via software  
using the Internal Oscillator Frequency Select (IRCF)  
bits.  
The system clock can be selected between external or  
internal clock sources via the System Clock Selection  
(SCS) bit (see Section 3.5 “Clock Switching”).  
3.4.1  
INTRC AND INTRCIO MODES  
The INTRC and INTRCIO modes configure the internal  
oscillators as the system clock source when the device  
is programmed using the Oscillator Selection (FOSC)  
bits in the Configuration Word (Register 12-1).  
In INTRC mode, the OSC1 pin is available for general  
purpose I/O. The OSC2/CLKOUT pin outputs the  
selected internal oscillator frequency divided by 4. The  
CLKOUT signal may be used to provide a clock for  
external circuitry, synchronization, calibration, test or  
other application requirements.  
In INTRCIO mode, the OSC1 and OSC2 pins are  
available for general purpose I/O.  
3.4.2  
HFINTOSC  
The High-frequency Internal Oscillator (HFINTOSC) is  
a factory calibrated 8 MHz internal clock source. The  
frequency of the HFINTOSC can be altered  
approximately ±12% via software using the OSCTUNE  
register (Register 3-1).  
The output of the HFINTOSC connects to a postscaler  
and multiplexer (see Figure 3-1). One of seven  
frequencies can be selected via software using the  
IRCF bits (see Section 3.4.4 “Frequency Select Bits  
(IRCF)”).  
The HFINTOSC is enabled by selecting any frequency  
between 8 MHz and 125 kHz (IRCF 000) as the  
system clock source (SCS = 1) or when Two-Speed  
Start-up is enabled (IESO = 1and IRCF 000).  
The HF Internal Oscillator (HTS) bit, (OSCCON<2>),  
indicates whether the HFINTOSC is stable or not.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 27  
PIC16F785  
When the OSCTUNE register is modified, the  
HFINTOSC frequency will begin shifting to the new  
frequency. The HFINTOSC clock will stabilize within  
1 ms. Code execution continues during this shift. There  
is no indication that the shift has occurred.  
3.4.2.2  
OSCTUNE Register  
The HFINTOSC is factory calibrated but can be  
adjusted in software by writing to the OSCTUNE  
register (Register 3-1).  
The OSCTUNE register has a tuning range of ±12%.  
The default value of the OSCTUNE register is ‘0’. The  
value is a 5-bit two’s complement number. Due to  
process variation, the monotonicity and frequency step  
cannot be specified.  
OSCTUNE does not affect the LFINTOSC frequency.  
Operation of features that depend on the LFINTOSC  
clock source frequency, such as the Power-up Timer  
(PWRT), Watchdog Timer (WDT), Fail-Safe Clock  
Monitor (FSCM) and peripherals, are not affected by the  
change in frequency.  
REGISTER 3-1:  
OSCTUNE – OSCILLATOR TUNING REGISTER (ADDRESS 90h)  
U-0  
U-0  
U-0  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
TUN<4:0>: Frequency Tuning bits  
01111= Maximum frequency  
01110=  
00001=  
00000= Center frequency. Oscillator module is running at the calibrated frequency.  
11111=  
10000= Minimum frequency  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41249B-page 28  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
3.4.3  
LFINTOSC  
3.4.5  
HF AND LF INTOSC CLOCK  
SWITCH TIMING  
The Low-frequency Internal Oscillator (LFINTOSC) is  
an uncalibrated (approximate) 31 kHz internal clock  
source.  
When switching between the LFINTOSC and the  
HFINTOSC, the new oscillator may already be shut  
down to save power. If this is the case, there is a 10 μs  
delay after the IRCF bits are modified before the  
frequency selection takes place. The LTS/HTS bits will  
reflect the current active status of the LFINTOSC and  
the HFINTOSC oscillators. The timing of a frequency  
selection is as follows:  
The output of the LFINTOSC connects to a postscaler  
and multiplexer (see Figure 3-1). 31 kHz can be  
selected via software using the IRCF bits (see  
Section 3.4.4 “Frequency Select Bits (IRCF)”). The  
LFINTOSC is also the frequency for the Power-up  
Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe  
Clock Monitor (FSCM).  
1. IRCF bits are modified.  
2. If the new clock is shut down, a 10 μs clock start-  
The LFINTOSC is enabled by selecting 31 kHz  
(IRCF = 000) as the system clock source (SCS = 1), or  
when any of the following are enabled:  
up delay is started.  
3. Clock switch circuitry waits for a falling edge of  
the current clock.  
• Two-Speed Start-up (IESO = 1and IRCF = 000)  
• Power-up Timer (PWRT)  
4. CLKOUT is held low and the clock switch  
circuitry waits for a rising edge in the new clock.  
• Watchdog Timer (WDT)  
5. CLKOUT is now connected with the new clock.  
HTS/LTS bits are updated as required.  
• Fail-Safe Clock Monitor (FSCM)  
The LF Internal Oscillator (LTS) bit, (OSCCON<1>),  
indicates whether the LFINTOSC is stable or not.  
6. Clock switch is complete.  
If the internal oscillator speed selected is between  
8 MHz and 125 kHz, there is no start-up delay before  
the new frequency is selected. This is because the old  
and the new frequencies are derived from the  
HFINTOSC via the postscaler and multiplexer.  
3.4.4  
FREQUENCY SELECT BITS (IRCF)  
The output of the 8 MHz HFINTOSC and 31 kHz  
LFINTOSC connect to a postscaler and multiplexer  
(see Figure 3-1). The Internal Oscillator Frequency  
select bits IRCF<2:0> (OSCCON<6:4>) select the  
frequency output of the internal oscillators. One of eight  
frequencies can be selected via software:  
Note:  
Care must be taken to ensure an invalid  
voltage or frequency selection is not  
selected. An example of an invalid  
configuration is selecting 8 MHz when  
VDD is 2.0V.  
• 8 MHz  
• 4 MHz (Default after Reset)  
• 2 MHz  
• 1 MHz  
• 500 kHz  
• 250 kHz  
• 125 kHz  
• 31 kHz  
Note:  
Following any Reset, the IRCF bits are set  
to ‘110’ and the frequency selection is  
forced to 4 MHz. The user can modify the  
IRCF bits to select a different frequency.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 29  
PIC16F785  
When the PIC16F785 is configured for LP, XT or HS  
modes, the Oscillator Start-up Timer (OST) is enabled  
(see Section 3.3.1 “Oscillator Start-up Timer  
(OST)”). The OST timer will suspend program  
execution until 1024 oscillations are counted. Two-  
Speed Start-up mode minimizes the delay in code  
execution by operating from the internal oscillator as  
the OST is counting. When the OST count reaches  
1024 and the OSTS bit (OSCCON<3>) is set, program  
execution switches to the external oscillator.  
3.5  
Clock Switching  
The system clock source can be switched between  
external and internal clock sources via software using  
the System Clock Select (SCS) bit.  
3.5.1  
SYSTEM CLOCK SELECT (SCS) BIT  
The System Clock Select (SCS) bit, (OSCCON<0>),  
selects the system clock source that is used for the  
CPU and peripherals.  
• When SCS = 0, the system clock source is  
determined by configuration of the FOSC<2:0>  
bits in Configuration Word (CONFIG).  
3.6.1  
TWO-SPEED START-UP MODE  
CONFIGURATION  
Two-Speed Start-up mode is configured by the  
following settings:  
• When SCS = 1, the system clock source is  
chosen by the internal oscillator frequency  
selected by the IRCF bits. After a Reset, SCS is  
always cleared.  
• IESO = 1(CONFIG<10>) Internal/External Switch  
Over bit.  
• SCS = 0.  
Note:  
Any automatic clock switch, which may  
occur from Two-Speed Start-up or  
Fail-Safe Clock Monitor, does not update  
the SCS bit. The user can monitor the  
OSTS (OSCCON<3>) to determine the  
current system clock source.  
• FOSC configured for LP, XT or HS mode.  
Two-Speed Start-up mode is entered after:  
• Power-on Reset (POR) and, if enabled, after  
PWRT has expired, or  
• Wake-up from Sleep.  
If the external clock oscillator is configured to be  
anything other than LP, XT or HS mode, then Two-  
Speed Start-up is disabled. This is because the external  
clock oscillator does not require any stabilization time  
after POR or an exit from Sleep.  
3.5.2  
OSCILLATOR START-UP TIME-OUT  
STATUS BIT  
The Oscillator Start-up Time-out Status (OSTS) bit,  
(OSCCON<3>), indicates whether the system clock is  
running from the external clock source as defined by  
the FOSC bits, or from internal clock source. In  
particular, OSTS indicates that the Oscillator Start-up  
Timer (OST) has timed out for LP, XT or HS modes.  
3.6.2  
TWO-SPEED START-UP  
SEQUENCE  
1. Wake-up from Power-on Reset or Sleep.  
2. Instructions begin execution by the internal  
oscillator at the frequency set in the IRCF bits  
(OSCCON<6:4>).  
3.6  
Two-Speed Clock Start-up Mode  
Two-Speed Start-up mode provides additional power  
savings by minimizing the latency between external  
oscillator start-up and code execution. In applications  
that make heavy use of the Sleep mode, Two-Speed  
Start-up will remove the external oscillator start-up time  
from the time spent awake and can reduce the overall  
power consumption of the device.  
3. OST enabled to count 1024 clock cycles.  
4. OST timed out, wait for falling edge of the  
internal oscillator.  
5. OSTS is set.  
6. System clock held low until the next falling edge  
of new clock (LP, XT or HS mode).  
This mode allows the application to wake-up from  
Sleep, perform a few instructions using the INTOSC as  
the clock source and go back to Sleep without waiting  
for the primary oscillator to become stable.  
7. System clock is switched to external clock  
source.  
3.6.3  
CHECKING EXTERNAL/INTERNAL  
CLOCK STATUS  
Note:  
Executing a SLEEP instruction will abort  
the Oscillator Start-up Time and will cause  
the OSTS bit (OSCCON<3>) to remain  
clear.  
Checking the state of the OSTS bit (OSCCON<3>) will  
confirm if the PIC16F785 is running from the external  
clock source as defined by the FOSC bits in the  
Configuration Word (CONFIG) or the internal oscillator.  
DS41249B-page 30  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
FIGURE 3-7:  
TWO-SPEED START-UP  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
INTOSC  
TOST  
OSC1  
0
1
1022 1023  
OSC2  
Program Counter  
PC  
PC + 1  
PC + 2  
System Clock  
The frequency of the internal oscillator will depend upon  
the value contained in the IRCF bits (OSCCON<6:4>).  
Upon entering the Fail-Safe condition, the OSTS bit  
(OSCCON<3>) is automatically cleared to reflect that  
the internal oscillator is active and the WDT is cleared.  
The SCS bit (OSCCON<0>) is not updated. Enabling  
FSCM does not affect the LTS bit.  
3.7  
Fail-Safe Clock Monitor  
The Fail-Safe Clock Monitor (FSCM) is designed to  
allow the device to continue to operate in the event of  
an oscillator failure. The FSCM can detect oscillator  
failure at any point after the device has exited a Reset  
or Sleep condition and the Oscillator Start-up Timer  
(OST) has expired.  
The FSCM sample clock is generated by dividing the  
LFINTOSC clock by 64. This will allow enough time  
between FSCM sample clocks for a system clock edge  
to occur. Figure 3-8 shows the FSCM block diagram.  
FIGURE 3-8:  
FSCM BLOCK DIAGRAM  
Clock Monitor  
Latch (CM)  
On the rising edge of the sample clock, the monitoring  
latch (CM = 0) will be cleared. On a falling edge of the  
primary system clock, the monitoring latch will be set  
(CM = 1). In the event that a falling edge of the sample  
clock occurs, and the monitoring latch is not set, a clock  
failure has been detected. The assigned internal  
oscillator is enabled when FSCM is enabled as  
reflected by the IRCF bits.  
(edge-triggered)  
Primary  
Clock  
S
Q
LFINTOSC  
Oscillator  
÷ 64  
C
Q
31 kHz  
(~32 μs)  
488 Hz  
(~2 ms)  
Note:  
Two-Speed Start-up is automatically  
enabled when the Fail-Safe Clock Monitor  
mode is enabled.  
Clock  
Failure  
Detected  
The FSCM function is enabled by setting the FCMEN  
bit in Configuration Word (CONFIG). It is applicable to  
all external clock options (LP, XT, HS, EC, RC or I/O  
modes).  
In the event of an external clock failure, the FSCM will  
set the OSFIF bit (PIR1<2>) and generate an oscillator  
fail interrupt if the OSFIE bit (PIE1<2>) is set. The  
device will then switch the system clock to the internal  
oscillator. The system clock will continue to come from  
the internal oscillator unless the external clock recovers  
and the Fail-Safe condition is exited.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 31  
PIC16F785  
3.7.1  
FAIL-SAFE CONDITION CLEARING  
The Fail-Safe condition is cleared after a Reset, the  
execution of a SLEEP instruction, or a modification of  
the SCS bit. While in Fail-Safe condition, the  
PIC16F785 uses the internal oscillator as the system  
clock source. The IRCF bits (OSCCON<6:4>) can be  
modified to adjust the internal oscillator frequency  
without exiting the Fail-Safe condition.  
The Fail-Safe condition must be cleared before the  
OSFIF flag can be cleared.  
FIGURE 3-9:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
CM Output  
(Q)  
Failure  
Detected  
OSCFIF  
CM Test  
CM Test  
CM Test  
Note: The system clock is normally at a much higher frequency than the sample clock. The relative  
frequencies in this example have been chosen for clarity.  
3.7.2  
RESET OR WAKE-UP FROM SLEEP  
The FSCM is designed to detect oscillator failure at  
any point after the device has exited a Reset or Sleep  
condition and the Oscillator Start-up Timer (OST) has  
expired. If the external clock is EC or RC mode,  
monitoring will begin immediately following these  
events.  
For LP, XT or HS mode, the external oscillator may  
require a start-up time considerably longer than the  
FSCM sample clock time; a false clock failure may be  
detected (see Figure 3-9). To prevent this, the internal  
oscillator is automatically configured as the system  
clock and functions until the external clock is stable  
(the OST has timed out). This is identical to Two-  
Speed Start-up mode. Once the external oscillator is  
stable, the LFINTOSC returns to its role as the FSCM  
source.  
Note:  
Due to the wide range of oscillator start-up  
times, the Fail-Safe circuit is not active  
during oscillator start-up (i.e., after exiting  
Reset or Sleep). After an appropriate  
amount of time, the user should check the  
OSTS bit (OSCCON<3>) to verify the  
oscillator start-up and system clock  
switchover has successfully completed.  
DS41249B-page 32  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
REGISTER 3-2:  
OSCCON – OSCILLATOR CONTROL REGISTER (ADDRESS: 8Fh)  
U-0  
R/W-1  
IRCF2  
R/W-1  
IRCF1  
R/W-0  
IRCF0  
R-q  
OSTS(1)  
R-0  
R-0  
LTS  
R/W-0  
SCS  
HTS  
bit 7  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IRCF<2:0>: Internal Oscillator Frequency Select bits  
000= 31 kHz  
001= 125 kHz  
010= 250 kHz  
011= 500 kHz  
100= 1 MHz  
101= 2 MHz  
110= 4 MHz  
111= 8 MHz  
bit 3  
bit 2  
bit 1  
bit 0  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Device is running from the external system clock defined by FOSC<2:0>  
0= Device is running from the internal system clock (HFINTOSC or LFINTOSC)  
HTS: HFINTOSC (High Frequency – 8 MHz to 125 kHz) Status bit  
1= HFINTOSC is stable  
0= HFINTOSC is not stable  
LTS: LFINTOSC (Low Frequency – 31 kHz) Stable bit  
1= LFINTOSC is stable  
0= LFINTOSC is not stable  
SCS: System Clock Select bit  
1= Internal oscillator is used for system clock  
0= Clock source defined by FOSC<2:0>  
Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator  
mode or Fail-Safe mode is enabled, otherwise this bit resets to ‘1’.  
Legend:  
q = value depends on condition  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
TABLE 3-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Ch  
PIR1  
EEIF  
EEIE  
ADIF  
ADIE  
IRCF2  
CCP1IF  
CCP1IE  
IRCF1  
C2IF  
C2IE  
C1IF  
C1IE  
OSFIF  
OSFIE  
HTS  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
0000 0000  
0000 0000  
-110 q000  
---0 0000  
0000 0000  
0000 0000  
-110 q000  
---u uuuu  
8Ch  
PIE1  
8Fh  
OSCCON  
OSCTUNE  
CONFIG  
IRCF0  
TUN4  
OSTS  
TUN3  
WDTE  
LTS  
SCS  
TUN0  
90h  
TUN2  
FOSC2  
TUN1  
FOSC1  
2007h(1)  
Legend:  
CPD  
CP  
MCLRE PWRTE  
FOSC0  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’, q= value depends on condition. Shaded cells are not used by  
oscillators.  
Note 1:  
See Register 15-1 for operation of all Configuration Word bits.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 33  
PIC16F785  
NOTES:  
DS41249B-page 34  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
The TRISA register controls the direction of the  
PORTA pins, even when they are being used as analog  
inputs. The user must ensure the bits in the TRISA  
register are maintained set when using them as analog  
inputs. I/O pins configured as analog inputs always  
read ‘0’.  
4.0  
I/O PORTS  
There are seventeen general purpose I/O pins and one  
input only pin available. Depending on which peripher-  
als are enabled, some or all of the pins may not be  
available as general purpose I/O. In general, when a  
peripheral is enabled, the associated pin may not be  
used as a general purpose I/O pin.  
When RA1 is configured as a voltage reference output,  
the RA1 digital output driver will automatically be  
disabled while not affecting the TRISA<1> value.  
Note:  
Additional information on I/O ports may be  
found in the “PICmicro® Mid-Range MCU  
Family Reference Manual” (DS33023).  
Note:  
The ANSEL0 (91h) register must be  
initialized to configure an analog channel  
as a digital input. Pins configured as  
analog inputs will read ‘0’.  
4.1  
PORTA and TRISA Registers  
PORTA is  
a 6-bit wide, bidirectional port. The  
corresponding data direction register is TRISA  
(Register 4-2). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., put the  
corresponding output driver in a High-impedance mode).  
Clearing a TRISA bit (= 0) will make the corresponding  
PORTA pin an output (i.e., put the contents of the output  
latch on the selected pin). The exception is RA3, which is  
input only and its TRIS bit will always read as ‘1’.  
Example 4-1 shows how to initialize PORTA.  
EXAMPLE 4-1:  
INITIALIZING PORTA  
BCF  
STATUS,RP0 ;Bank 0  
BCF  
STATUS,RP1  
;
CLRF  
MOVLW  
ANDWF  
BSF  
PORTA  
F8h  
ANSEL0,f  
;Init PORTA  
;Set RA<2:0> to  
; digital I/O  
STATUS,RP0 ;Bank 1  
MOVLW  
MOVWF  
0Ch  
TRISA  
;Set RA<3:2> as inputs  
; and set RA<5:4,1:0>  
; as outputs  
Reading the PORTA register (Register 4-1) reads the  
status of the pins, whereas writing to it will write to the  
port latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read; this value is modified and then  
written to the port data latch. RA3 reads ‘0’ when  
MCLRE = 1.  
BCF  
STATUS,RP0 ;Bank 0  
REGISTER 4-1:  
PORTA – PORTA REGISTER (ADDRESS: 05h, 105h)  
U-0  
U-0  
R/W-x  
RA5  
R/W-x(1)  
R/W-x  
RA3  
R/W-x(1) R/W-x(1) R/W-x(1)  
RA2 RA1 RA0  
bit 0  
RA4  
bit 7  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RA<5:0>: PORTA I/O Pin bits  
1= Port pin is greater than VIH  
0= Port pin is less than VIL  
Note 1: Data latches are unknown after a POR, but each port bit reads ‘0’ when the  
corresponding analog select bit is ‘1’ (see Register 12-1).  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 35  
PIC16F785  
REGISTER 4-2:  
TRISA – PORTA TRI-STATE REGISTER (ADDRESS: 85h, 185h)  
U-0  
U-0  
R/W-1  
R/W-1  
R-1  
R/W-1  
R/W-1  
R/W-1  
TRISA5(2) TRISA4(2) TRISA3(1) TRISA2  
TRISA1  
TRISA0  
bit 7  
bit 0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TRISA<5:0>: PORTA Tri-State Control bit(1, 2)  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
Note 1: TRISA<3> always reads ‘1’.  
2: TRISA<5:4> always reads ‘1’ in XT, HS and LP OSC modes.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
4.2.1  
WEAK PULL-UPS  
4.2  
Additional Pin Functions  
Each of the PORTA pins has an individually  
configurable internal weak pull-up. Control bits WPUAx  
enable or disable each pull-up. Refer to Register 4-3.  
Each weak pull-up is automatically turned off when the  
port pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset by the RAPU bit  
(OPTION_REG<7>). The weak pull-up on RA3 is  
automatically enabled when RA3 is configured as  
MCLR.  
Every PORTA pin on the PIC16F785 has an interrupt-  
on-change option and a weak pull-up option. The next  
three sections describe these functions.  
REGISTER 4-3:  
WPUA – WEAK PULL-UP REGISTER (ADDRESS: 95h)(1, 2)  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WPUA5(4) WPUA4(4) WPUA3(3) WPUA2  
WPUA1  
WPUA0  
bit 7  
bit 0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
WPUA<5:0>: Weak Pull-up Register bits  
1= Pull-up enabled  
0= Pull-up disabled  
Note 1: Global RAPU must be enabled for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in Output mode  
(TRISA = 0).  
3: The RA3 pull-up is automatically enabled when configured as MCLR in the  
Configuration Word.  
4: WPUA<5:4> always reads ‘1’ in XT, HS and LP OSC modes.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41249B-page 36  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, clears the  
interrupt by:  
4.2.2  
INTERRUPT-ON-CHANGE  
Each of the PORTA pins is individually configurable as  
an interrupt-on-change pin. Control bits IOCAx enable  
or disable the interrupt function for each pin. Refer to  
Register 4-4. The interrupt-on-change is disabled on a  
Power-on Reset.  
a) Any read or write of PORTA. This will end the  
mismatch condition, then,  
b) Clear the flag bit RAIF.  
For enabled interrupt-on-change pins, the values are  
compared with the old value latched on the last read of  
PORTA. The ‘mismatch’ outputs of the last read are  
OR'd together to set, the PORTA Change Interrupt flag  
bit (RAIF) in the INTCON register (Register 2-3).  
A mismatch condition will continue to set flag bit RAIF.  
Reading PORTA will end the mismatch condition and  
allow flag bit RAIF to be cleared. The latch holding the  
last read value is neither affected by an MCLR nor BOR  
Reset. After these resets, the RAIF flag will continue to  
be set if a mismatch is present.  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RAIF  
interrupt flag may not get set.  
REGISTER 4-4:  
IOCA – INTERRUPT-ON-CHANGE PORTA REGISTER (ADDRESS: 96h)(1)  
U-0  
U-0  
R/W-0  
IOCA5(2) IOCA4(2)  
R/W-0  
R/W-0  
IOCA3  
R/W-0  
IOCA2  
R/W-0  
IOCA1  
R/W-0  
IOCA0  
bit 7  
bit 0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IOCA<5:0>: Interrupt-on-change PORTA Control bits(2)  
1= Interrupt-on-change enabled  
0= Interrupt-on-change disabled  
Note 1: Global interrupt enable (GIE) must be enabled for individual interrupts to be  
recognized.  
2: IOCA<5:4> always reads ‘1’ in XT, HS and LP OSC modes.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 37  
PIC16F785  
4.2.3  
PORTA PIN DESCRIPTIONS AND  
DIAGRAMS  
4.2.3.2  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
Figure 4-1 shows the diagram for this pin. The RA1 pin  
is configurable to function as one of the following:  
Each PORTA pin is multiplexed with other functions.  
The pins and their combined functions are briefly  
described here. For specific information about individ-  
ual functions such as the comparator or the A/D, refer  
to the appropriate section in this Data Sheet.  
• a general purpose I/O  
• an analog input for the A/D  
• an analog input to Comparators 1 and 2  
• a voltage reference input for the A/D  
• a buffered or unbuffered voltage reference output  
• In-Circuit Serial Programming clock  
4.2.3.1  
RA0/AN0/C1IN+/ICSPDAT  
Figure 4-1 shows the diagram for this pin. The RA0 pin  
is configurable to function as one of the following:  
FIGURE 4-2:  
BLOCK DIAGRAM OF RA1  
• a general purpose I/O  
• an analog input for the A/D  
• an analog input to Comparator 1  
• In-Circuit Serial Programmingdata  
VROUT  
VROE*VREN  
CVROE  
ANS1  
VDD  
FIGURE 4-1:  
BLOCK DIAGRAM OF RA0  
Data Bus  
D
Weak  
Q
Q
ANS0  
Data Bus  
D
WR  
WPUA  
CK  
Q
Q
VDD  
RAPU  
WR  
WPUA  
CK  
Weak  
RD  
WPUA  
RAPU  
RD  
WPUA  
VDD  
D
Q
Q
WR  
PORTA  
CK  
VDD  
D
Q
Q
I/O pin  
D
Q
Q
WR  
PORTA  
CK  
WR  
TRISA  
CK  
VSS  
I/O pin  
D
Q
Q
RD  
TRISA  
WR  
TRISA  
CK  
VSS  
ANS0  
RD  
PORTA  
RD  
TRISA  
Q
Q
Q
D
EN  
D
D
Q
Q
RD  
PORTA  
CK  
WR  
IOCA  
Q
Q
Q
D
EN  
D
D
Q
Q
Q1  
RD  
IOCA  
EN  
D
CK  
WR  
IOCA  
Q1  
Q3  
Interrupt-on-  
change  
RD  
IOCA  
EN  
D
EN  
RD PORTA  
Q3  
Interrupt-on-  
change  
EN  
To Comparators  
To A/D Converter  
RD PORTA  
To Comparator  
To A/D Converter  
DS41249B-page 38  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
4.2.3.3  
RA2/AN2/T0CKI/INT/C1OUT  
4.2.3.4  
RA3/MCLR/VPP  
Figure 4-3 shows the diagram for this pin. The RA2 pin  
is configurable to function as one of the following:  
Figure 4-4 shows the diagram for this pin. The RA3 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose input  
• an analog input for the A/D  
• the clock input for TMR0  
• as Master Clear Reset with weak pull-up  
FIGURE 4-4:  
BLOCK DIAGRAM OF RA3  
• an external edge triggered interrupt  
• a digital output from Comparator 1  
Data Bus  
D
Q
Q
MCLRE  
VDD  
WR  
WPUA  
CK  
FIGURE 4-3:  
BLOCK DIAGRAM OF RA2  
Weak  
C1OE  
RAPU  
RD  
WPUA  
MCLRE  
C1OUT  
Reset  
VSS  
Input  
pin  
ANS2  
VDD  
RD  
TRISA  
Data Bus  
D
MCLRE  
VSS  
Weak  
Q
Q
RD  
PORTA  
WR  
WPUA  
CK  
D
Q
Q
RAPU  
Q
Q
Q
D
CK  
WR  
IOCA  
RD  
WPUA  
EN  
D
VDD  
D
Q
Q
RD  
IOCA  
WR  
PORTA  
CK  
Q1  
1
EN  
D
Interrupt-on-  
Change  
0
I/O pin  
D
Q
Q
Q3  
EN  
WR  
TRISA  
CK  
VSS  
RD PORTA  
ANS2  
RD  
TRISA  
RD  
PORTA  
Q
Q
Q
D
EN  
D
D
Q
Q
CK  
WR  
IOCA  
Q1  
RD  
IOCA  
EN  
D
Q3  
Interrupt-on-  
Change  
EN  
RD PORTA  
To TMR0  
To INT  
To A/D Converter  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 39  
PIC16F785  
4.2.3.5  
RA4/AN3/T1G/OSC2/CLKOUT  
4.2.3.6  
RA5/T1CKI/OSC1/CLKIN  
Figure 4-5 shows the diagram for this pin. The RA4 pin  
is configurable to function as one of the following:  
Figure 4-6 shows the diagram for this pin. The RA5 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the A/D  
• a TMR1 gate input  
• a general purpose I/O  
• a TMR1 clock input  
• a crystal/resonator connection  
• a clock input  
• a crystal/resonator connection  
• a clock output  
FIGURE 4-6:  
BLOCK DIAGRAM OF RA5  
FIGURE 4-5:  
BLOCK DIAGRAM OF RA4  
ANS3  
CLK(1)  
Modes  
INTOSC  
Mode  
Data Bus  
D
CLK modes(1)  
Q
Q
VDD  
Data Bus  
D
VDD  
Q
Q
WR  
CK  
Weak  
WPUA  
WR  
CK  
Weak  
WPUA  
RAPU  
RD  
WPUA  
RAPU  
RD  
WPUA  
Oscillator  
Circuit  
VDD  
Oscillator  
Circuit  
VDD  
OSC1  
OSC2  
FOSC/4  
1
0
D
Q
Q
I/O pin  
D
Q
Q
I/O pin  
WR  
PORTA  
CK  
CLKOUT  
Enable  
WR  
CK  
PORTA  
VSS  
INTOSC/  
RC/EC(2)  
VSS  
S
D
Q
Q
S
D
Q
Q
WR  
TRISA  
CK  
WR  
TRISA  
CK  
INTOSC  
Mode  
RD  
TRISA  
CLKOUT  
Enable  
RD  
TRISA  
(2)  
ANS3  
RD  
PORTA  
RD  
D
Q
Q
PORTA  
Q
Q
Q
D
EN  
D
Q
Q
Q
D
EN  
D
D
Q
Q
CK  
WR  
IOCA  
CK  
WR  
IOCA  
RD  
IOCA  
Q1  
RD  
IOCA  
EN  
D
Q1  
EN  
D
Interrupt-on-  
Change  
Q3  
Interrupt-on-  
CHANGE  
Q3  
EN  
EN  
RD PORTA  
To TMR1 or CLKGEN  
RD PORTA  
To T1G  
To A/D Converter  
Note 1: CLK modes are XT, HS, LP and LPTMR1.  
2: When using Timer1 with LP oscillator, the  
Note 1: CLK modes are XT, HS, LP, LPTMR1 and CLKOUT  
Schmitt Trigger is bypassed.  
Enable.  
2: With CLKOUT option.  
DS41249B-page 40  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
TABLE 4-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on:  
POR, BOR  
Value on all  
other Resets  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h, 105h PORTA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
--xx xxxx  
--uu uuuu  
0000 0000  
0000 0000  
1111 1111  
--11 1111  
1111 1111  
--11 1111  
10h  
T1CON  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000  
0Bh, 8Bh  
INTCON  
GIE  
RAPU  
PEIE  
INTEDG  
T0IE  
INTE  
RAIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RAIF  
PS0  
0000 0000  
1111 1111  
--11 1111  
1111 1111  
--11 1111  
81h, 181h OPTION_REG  
85h, 185h TRISA  
T0CS  
T0SE  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0  
ANS5 ANS4 ANS3 ANS2 ANS1 ANS0  
WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0  
91h  
95h  
ANSEL0  
WPUA  
ANS7  
ANS6  
96h  
IOCA  
IOCA5  
BGST  
IOCA4  
VRBB  
IOCA3  
VREN  
IOCA2  
VROE  
IOCA1  
IOCA0  
--00 0000  
--00 000-  
--00 0000  
--00 000-  
98h  
REFCON  
CM1CON0  
CM2CON1  
CVROE  
119h  
11Bh  
Legend:  
C1ON  
C1OUT  
C1OE  
C1POL  
C1SP  
C1R  
C1CH1  
C1CH0  
0000 0000  
0000 0000  
00-- --10  
MC1OUT MC2OUT  
T1GSS C2SYNC 00-- --10  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 41  
PIC16F785  
The TRISB register controls the direction of the  
PORTB pins, even when they are being used as  
analog inputs. The user must ensure the bits in the  
TRISB register are maintained set when using them as  
analog inputs. I/O pins configured as analog input  
always read ‘0’.  
4.3  
PORTB and TRISB Registers  
PORTB is  
a 4-bit wide, bidirectional port. The  
corresponding data direction register is TRISB  
(Register 4-6). Setting a TRISB bit (= 1) will make the  
corresponding PORTB pin an input (i.e., put the  
corresponding output driver in a High-impedance  
mode). Clearing a TRISB bit (= 0) will make the  
corresponding PORTB pin an output (i.e., put the  
contents of the output latch on the selected pin).  
Example 4-2 shows how to initialize PORTB.  
Note:  
The ANSEL1 (93h) register must be  
initialized to configure an analog channel  
as a digital input. Pins configured as  
analog inputs will read ‘0’.  
Reading the PORTB register (Register 4-5) reads the  
status of the pins, whereas writing to it will write to the  
port latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then  
written to the port data latch.  
EXAMPLE 4-2:  
INITIALIZING PORTB  
BCF  
BCF  
CLRF  
BSF  
BCF  
BCF  
STATUS,RP0  
STATUS,RP1  
PORTB  
STATUS,RP0  
ANSEL1,2  
ANSEL1,3  
;Bank 0  
;
;Init PORTB  
;Bank 1  
;digital I/O - RB4  
;digital I/O - RB5  
;Set RB<5:4> as inputs  
;and set RB<7:6>  
;as outputs  
;Bank 0  
Pin RB6 is an open drain output. All other PORTB pins  
have full CMOS output drivers.  
MOVLW 30h  
MOVWF TRISB  
BCF  
STATUS,RP0  
REGISTER 4-5:  
PORTB – PORTB REGISTER (ADDRESS: 06h, 106h)  
(1)  
(1)  
R/W-x  
RB7  
R/W-x  
RB6  
R/W-x  
RB5  
R/W-x  
RB4  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7-4  
bit 3-0  
RB<7:4>: PORTB General Purpose I/O Pin bits  
1= Port pin is greater than VIH  
0= Port pin is less than VIL  
Unimplemented: Read as ‘0’  
Note 1: Data latches are unknown after a POR, but each port bit reads ‘0’ when the  
corresponding analog select bit is ‘1’ (see Register 12-2 on page 82).  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 4-6:  
TRISB – PORTB TRI-STATE REGISTER (ADDRESS: 86h, 186h)  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U-0  
U-0  
U-0  
U-0  
TRISB7  
TRISB6  
TRISB5  
TRISB4  
bit 7  
bit 0  
bit 7-4  
bit 3-0  
TRISB<7:4>: PORTB Tri-State Control bits  
1= PORTB pin configured as an input (tri-stated)  
0= PORTB pin configured as an output  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41249B-page 42  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
4.3.1  
PORTB PIN DESCRIPTIONS AND  
DIAGRAMS  
4.3.1.3  
RB6  
The RB6 pin is configurable to function as the  
following:  
Each PORTB pin is multiplexed with other functions.  
The pins and their combined functions are briefly  
described here. For specific information about  
individual functions such as the PWM, operational  
amplifier, or the A/D, refer to the appropriate section in  
this Data Sheet.  
• an open drain general purpose I/O  
FIGURE 4-8:  
BLOCK DIAGRAM OF RB6  
Data Bus  
4.3.1.1  
RB4/AN10/OP2-  
D
Q
Q
The RB4/AN10/OP2- pin is configurable to function as  
one of the following:  
WR  
PORTB  
CK  
• a general purpose I/O  
I/O Pin  
N
• an analog input to the A/D  
• an analog input to Op Amp 2  
D
Q
Q
WR  
TRISB  
CK  
VSS  
VSS  
4.3.1.2  
RB5/AN11/OP2+  
RD  
TRISB  
The RB5/AN11/OP2+ pin is configurable to function as  
one of the following:  
Q
D
• a general purpose I/O  
• an analog input to the A/D  
• an analog input to Op Amp 2  
EN  
RD  
PORTB  
FIGURE 4-7:  
BLOCK DIAGRAM OF RB4  
AND RB5  
4.3.1.4  
RB7/SYNC  
The RB7/SYNC pin is configurable to function as one  
of the following:  
Data Bus  
• a general purpose I/O  
VDD  
D
Q
Q
• PWM synchronization input and output  
WR  
CK  
PORTB  
FIGURE 4-9:  
BLOCK DIAGRAM OF RB7  
I/O Pin  
PH1EN  
PH2EN  
D
Q
Q
PWM Master  
Sync out  
WR  
TRISB  
CK  
VSS  
ANS10 (RB4)  
ANS11 (RB5)  
Data Bus  
RD  
TRISB  
VDD  
D
Q
Q
Q
D
WR  
PORTB  
CK  
EN  
1
RD  
PORTB  
0
I/O Pin  
D
Q
Q
To A/D Converter  
To Op Amp 2  
WR  
TRISB  
CK  
VSS  
RD  
TRISB  
Q
D
EN  
RD  
PORTB  
to PWM Sync Input  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 43  
PIC16F785  
TABLE 4-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on:  
POR, BOR  
Value on all  
other Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
06h, 106h PORTB  
86h, 186h TRISB  
RB7  
RB6  
RB5  
RB4  
xxxx ----  
1111 ----  
uuuu ----  
1111 ----  
TRISB7 TRISB6 TRISB5 TRISB4  
93h  
ANSEL1  
ANS11  
ANS10  
SYNC0  
ANS9  
PH2EN  
ANS8  
PH1EN  
---- 1111  
0000 0000  
0--- ----  
---- 1111  
0000 0000  
0--- ----  
111h  
PWMCON0  
OPA2CON  
PRSEN  
OPAON  
PASEN BLANK2 BLANK1 SYNC1  
11Dh  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTB.  
DS41249B-page 44  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
When RC4 or RC5 is configured as an op amp output,  
the corresponding RC4 or RC5 digital output driver will  
automatically be disabled regardless of the TRISC<4>  
or TRISC<5> value.  
4.4  
PORTC and TRISC Registers  
PORTC is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISC  
(Register 4-8). Setting a TRISC bit (= 1) will make the  
corresponding PORTC pin an input (i.e., put the  
corresponding output driver in a High-impedance  
mode). Clearing a TRISC bit (= 0) will make the  
corresponding PORTC pin an output (i.e., put the  
contents of the output latch on the selected pin).  
Example 4-3 shows how to initialize PORTC.  
Note:  
The ANSEL0 (91h) and ANSEL1 (93h)  
registers must be initialized to configure  
an analog channel as a digital input. Pins  
configured as analog inputs will read ‘0’.  
EXAMPLE 4-3:  
INITIALIZING PORTC  
Reading the PORTC register (Register 4-7) reads the  
status of the pins, whereas writing to it will write to the  
port latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then  
written to the port data latch.  
BCF  
STATUS,RP0  
;Bank 0  
BCF  
CLRF  
BSF  
CLRF  
CLRF  
MOVLW  
MOVWF  
STATUS,RP1  
PORTC  
STATUS,RP0  
ANSEL0  
ANSEL1  
0Ch  
;Init PORTC  
;Bank 1  
;digital I/O  
;digital I/O  
;Set RC<3:2> as inputs  
; and set RC<5:4,1:0>  
; as outputs  
;Bank 0  
The TRISC register controls the direction of the  
PORTC pins, even when they are being used as  
analog inputs. The user must ensure the bits in the  
TRISC register are maintained set when using them as  
analog inputs. I/O pins configured as analog input  
always read ‘0.  
TRISC  
BCF  
STATUS,RP0  
REGISTER 4-7:  
PORTC – PORTC REGISTER (ADDRESS: 07h, 107h)  
R/W-x(1)  
R/W-x(1)  
R/W-x  
RC5  
R/W-x  
RC4  
R/W-x(1)  
R/W-x(1)  
R/W-x(1)  
RC1  
R/W-x(1)  
RC0  
RC7  
RC6  
RC3  
RC2  
bit 7  
bit 0  
bit 7-0  
RC<7:0>: PORTC General Purpose I/O Pin bits  
1= Port pin is greater than VIH  
0= Port pin is less than VIL  
Note 1: Data latches are unknown after a POR, but each port bit reads ‘0’ when the  
corresponding analog select bit is ‘1’ (see Registers 12-1 and 12-2 on page 82).  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 4-8:  
TRISC – PORTC TRI-STATE REGISTER (ADDRESS: 87h, 187h)  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
bit 7  
bit 0  
bit 7-0  
TRISC<7:0>: PORTC Tri-State Control bits  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 45  
PIC16F785  
4.4.1  
PORTC PIN DESCRIPTIONS AND  
DIAGRAMS  
4.4.1.4  
RC1/AN5/C12IN1-/PH1  
The RC1 is configurable to function as one of the  
following:  
Each PORTC pin is multiplexed with other functions.  
The pins and their combined functions are briefly  
described here. For specific information about individual  
functions such as the comparator or the A/D, refer to the  
appropriate section in this Data Sheet.  
• a general purpose I/O  
• an analog input for the A/D Converter  
• an analog input to Comparators 1 and 2  
• a digital output from the Two-Phase PWM  
4.4.1.1  
RC0/AN4/C2IN+  
FIGURE 4-11:  
PH1EN  
BLOCK DIAGRAM OF RC1  
The RC0 is configurable to function as one of the  
following:  
• a general purpose I/O  
PH1  
• an analog input for the A/D Converter  
• the non-inverting input to Comparator 2  
Data Bus  
VDD  
D
Q
4.4.1.2  
RC6/AN8/OP1-  
WR  
PORTC  
CK  
Q
The RC6/AN8/OP1- pin is configurable to function as  
one of the following:  
1
0
I/O Pin  
• a general purpose I/O  
D
Q
Q
• an analog input for the A/D  
• the inverting input for Op Amp 1  
WR  
TRISC  
CK  
VSS  
ANS5  
4.4.1.3  
RC7/AN9/OP1+  
RD  
TRISC  
The RC7/AN9/OP1+ pin is configurable to function as  
one of the following:  
Q
D
• a general purpose I/O  
EN  
• an analog input for the A/D  
• the non-inverting input for Op Amp 1  
RD  
PORTC  
To Comparators  
To A/D Converter  
FIGURE 4-10:  
BLOCK DIAGRAM OF  
RC0, RC6 AND RC7  
Data Bus  
VDD  
D
Q
Q
WR  
PORTC  
CK  
I/O Pin  
D
Q
Q
WR  
TRISC  
CK  
VSS  
ANS4 (RC0)  
ANS8 (RC6)  
ANS9 (RC7)  
RD  
TRISC  
Q
D
EN  
RD  
PORTC  
To Comparators (RC0)  
To A/D Converter  
To Op Amp1 (RC6, RC7)  
DS41249B-page 46  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
4.4.1.5  
RC2/AN6/C12IN2-/OP2  
4.4.1.7  
RC4/C2OUT/PH2  
The RC2 is configurable to function as one of the  
following:  
The RC4 is configurable to function as one of the  
following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input for the A/D Converter  
• an analog input to Comparators 1 and 2  
• an analog output from Op Amp 2  
• a digital output from Comparator 2  
• a digital output from the Two-Phase PWM  
FIGURE 4-13:  
BLOCK DIAGRAM OF RC4  
4.4.1.6  
RC3/AN7/C12IN3-/OP1  
C2OE  
The RC3 is configurable to function as one of the  
following:  
PH2EN  
PH2  
1
0
• a general purpose I/O  
C2OUT  
Data Bus  
• an analog input for the A/D Converter  
• an analog input to Comparators 1 and 2  
• an analog output for Op Amp 1  
VDD  
D
Q
FIGURE 4-12:  
BLOCK DIAGRAM OF RC2  
AND RC3  
WR  
PORTC  
CK  
Q
1
Op Amp out  
OPAON  
0
I/O Pin  
Data Bus  
D
Q
Q
WR  
TRISC  
CK  
VSS  
VDD  
D
Q
Q
WR  
PORTC  
CK  
RD  
TRISC  
I/O Pin  
Q
D
D
Q
Q
EN  
WR  
CK  
VSS  
TRISC  
RD  
ANS6 (RC2)  
ANS7 (RC3)  
PORTC  
RD  
TRISC  
Q
D
EN  
RD  
PORTC  
To Comparators  
To A/D Converter  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 47  
PIC16F785  
4.4.1.8  
RC5/CCP1  
FIGURE 4-14:  
BLOCK DIAGRAM OF RC5  
CCP1CON<1>  
CCP1CON<3>  
The RC5 is configurable to function as one of the  
following:  
CCP1CON<2>  
CCP out  
• a general purpose I/O  
• a digital input for the capture/compare  
• a digital output for the CCP  
Data Bus  
VDD  
D
Q
WR  
PORTC  
CK  
Q
1
0
I/O Pin  
D
Q
Q
WR  
TRISC  
CK  
VSS  
RD  
TRISC  
Q
D
EN  
RD  
PORTC  
to CCP Capture Input  
TABLE 4-3:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on:  
POR, BOR  
Value on all  
other Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
07h, 107h PORTC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx  
uuuu uuuu  
0000 0000  
1111 1111  
1111 1111  
---- 1111  
0000 0000  
0--- ----  
0--- ----  
15h  
CCP1CON  
DC1B1  
DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000  
87h, 187h TRISC  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
1111 1111  
1111 1111  
---- 1111  
0000 0000  
0--- ----  
0--- ----  
91h  
93h  
ANSEL0  
ANS7  
ANS6  
ANS5  
ANS4  
ANS3  
ANS2  
ANS10  
SYNC0  
ANS1  
ANS9  
PH2EN  
ANS0  
ANS8  
PH1EN  
ANSEL1  
ANS11  
111h  
PWMCON0  
OPA1CON  
OPA2CON  
PRSEN  
OPAON  
OPAON  
PASEN BLANK2 BLANK1 SYNC1  
11Ch  
11Dh  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTC.  
DS41249B-page 48  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
Counter mode is selected by setting the T0CS bit  
(OPTION_REG<5>). In this mode, the Timer0 module  
will increment either on every rising or falling edge of  
pin RA2/AN2/T0CKI/INT/C1OUT. The incrementing  
edge is determined by the source edge (T0SE) control  
bit (OPTION_REG<4>). Clearing the T0SE bit selects  
the rising edge.  
5.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following  
features:  
• 8-bit timer/counter  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
Note 1: Counter mode has specific external clock  
requirements. Additional information on  
these requirements is available in the  
PICmicro® Mid-Range MCU Family  
Reference Manual” (DS33023).  
Figure 5-1 is a block diagram of the Timer0 module and  
the prescaler shared with the WDT.  
2: The ANSEL0 (91h) register must be  
initialized to configure an analog channel  
as a digital input. Pins configured as  
analog inputs will read ‘0’.  
Note:  
Additional information on the Timer0  
module is available in the “PICmicro® Mid-  
Range MCU Family Reference Manual”  
(DS33023).  
5.2  
Timer0 Interrupt  
5.1  
Timer0 Operation  
A Timer0 interrupt is generated when the TMR0  
register timer/counter overflows from FFh to 00h. This  
overflow sets the T0IF bit (INTCON<2>). The interrupt  
can be masked by clearing the T0IE bit (INTCON<5>).  
The T0IF bit must be cleared in software by the Timer0  
module Interrupt Service Routine before re-enabling  
this interrupt. The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is shut-off during  
Sleep.  
Timer mode is selected by clearing the T0CS bit  
(OPTION_REG<5>). In Timer mode, the Timer0  
module will increment every instruction cycle (without  
prescaler). If TMR0 is written, the increment is inhibited  
for the following two instruction cycles. The user can  
work around this by writing an adjusted value to the  
TMR0 register.  
FIGURE 5-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
CLKOUT  
(= FOSC/4)  
Data Bus  
0
1
8
RA2/AN2/T0CKI/INT/C1OUT  
1
SYNC 2  
Cycles  
TMR0  
0
0
1
(1)  
Set Flag bit T0IF  
on Overflow  
(1)  
T0CS  
T0SE  
8-bit  
Prescaler  
(1)  
PSA  
8
(1)  
WDTE  
SWDTEN  
PSA  
(1)  
1
0
PS<0:2>  
WDT  
Time-out  
16-bit  
Prescaler  
16  
31 kHz  
INTRC  
Watchdog  
Timer  
(1)  
PSA  
(2)  
WDTPS<3:0>  
Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION_REG (see Register 2-2).  
2: WDTPS<3:0> are bits in the WDTCON register (see Register 15-2).  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 49  
PIC16F785  
EXAMPLE 5-1:  
CHANGING PRESCALER  
(TIMER0WDT)  
5.3  
Using Timer0 with an External  
Clock  
BCF  
BCF  
CLRWDT  
CLRF  
STATUS,RP0  
STATUS,RP1  
;Bank 0  
;
;Clear WDT  
;Clear TMR0 and  
; prescaler  
;Bank 1  
When no prescaler is used, the external clock input is the  
same as the prescaler output. The synchronization of  
T0CKI, with the internal phase clocks, is accomplished  
by sampling the prescaler output on the Q2 and Q4  
cycles of the internal phase clocks. Therefore, it is  
necessary for T0CKI to be high for at least 2TOSC (and a  
small RC delay of 20 ns) and low for at least 2TOSC (and  
a small RC delay of 20 ns). Refer to the electrical  
specification of the desired device.  
TMR0  
BSF  
STATUS,RP0  
MOVLW  
MOVWF  
CLRWDT  
b’00101111’  
OPTION_REG  
;Required if desired  
; PS2:PS0 is  
; 000 or 001  
;
MOVLW  
MOVWF  
BCF  
b’00101xxx’  
OPTION_REG  
STATUS,RP0  
;Set postscaler to  
; desired WDT rate  
;Bank 0  
5.4  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer. For simplicity, this counter will be referred to as  
“prescaler” throughout this Data Sheet. The prescaler  
assignment is controlled in software by the control bit  
PSA (OPTION_REG<3>). Clearing the PSA bit will  
assign the prescaler to Timer0. Prescale values are  
selectable via the PS<2:0> bits (OPTION_REG<2:0>).  
To change prescaler from the WDT to the TMR0  
module, use the sequence shown in Example 5-2. This  
precaution must be taken even if the WDT is disabled.  
EXAMPLE 5-2:  
CHANGING PRESCALER  
(WDTTIMER0)  
CLRWDT  
;Clear WDT and  
; prescaler  
;Bank 1  
The prescaler is not readable or writable. When  
assigned to the Timer0 module, all instructions writing  
to the TMR0 register (e.g., CLRF 1, MOVWF 1,  
BSF 1,x....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the Watchdog Timer.  
BSF  
BCF  
STATUS,RP0  
STATUS,RP1  
;
MOVLW  
b’xxxx0xxx’  
;Select TMR0,  
; prescale, and  
; clock source  
;
5.4.1  
SWITCHING PRESCALER  
ASSIGNMENT  
MOVWF  
BCF  
OPTION_REG  
STATUS,RP0  
;Bank 0  
The prescaler assignment is fully under software control  
(i.e., it can be changed “on the fly” during program  
execution). To avoid an unintended device Reset, the  
following instruction sequence (Example 5-1 and  
Example 5-2) must be executed when changing the  
prescaler assignment between Timer0 and WDT.  
TABLE 5-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h,  
101h  
TMR0  
Timer0 Module Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
1111 1111 1111 1111  
0Bh,  
8Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RAIE  
T0IF  
INTF  
RAIF  
PS0  
81h,  
181h  
INT-  
EDG  
OPTION_REG RAPU  
T0CS  
ANS5  
T0SE  
ANS4  
PSA  
PS2  
PS1  
91h  
ANSEL0  
TRISA  
ANS7  
ANS6  
ANS3  
ANS2  
ANS1  
ANS0 1111 1111 1111 1111  
85h,  
185h  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 --11 1111 --11 1111  
Legend:  
– = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Timer0  
module.  
DS41249B-page 50  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
The Timer1 Control register (T1CON), shown in  
Register 6-1, is used to enable/disable Timer1 and  
select the various features of the Timer1 module.  
6.0  
TIMER1 MODULE WITH GATE  
CONTROL  
The Timer1 module is the 16-bit counter of the  
PIC16F785. Figure 6-1 shows the basic block diagram  
of the Timer1 module. Timer1 has the following  
features:  
Note:  
Additional information on timer modules is  
available in the “PICmicro® Mid-Range  
MCU  
Family  
Reference  
Manual”  
(DS33023).  
• 16-bit timer/counter (TMR1H:TMR1L)  
• Readable and writable  
• Internal or external clock selection  
• Synchronous or asynchronous operation  
• Interrupt on overflow from FFFFh to 0000h  
• Wake-up upon overflow (Asynchronous mode)  
• Optional external enable input:  
- Selectable gate source; T1G or C2 output  
(T1GSS)  
- Selectable gate polarity (T1GINV)  
• Optional LP oscillator  
FIGURE 6-1:  
TIMER1 ON THE PIC16F785 BLOCK DIAGRAM  
TMR1ON  
TMR1GE  
T1GINV  
TMR1ON  
TMR1GE  
Set flag bit  
To C2 Comparator Module  
TMR1 Clock  
TMR1IF on  
Overflow  
(1)  
TMR1  
Synchronized  
clock input  
0
TMR1L  
TMR1H  
1
Oscillator  
RA5/T1CKI/OSC1/CLKIN  
T1SYNC  
*
1
0
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
RA4/AN3/T1G/OSC2/CLKOUT  
2
Sleep input  
T1CKPS<1:0>  
T1OSCEN  
INTOSC  
TMR1CS  
Without CLKOUT  
1
LP  
Sleep  
(2)  
0
SYNCC2OUT  
T1GSS  
*
ST Buffer is low power type when using LP OSC, or high-speed type when using  
T1CKI.  
Note 1: Timer1 increments on the rising edge.  
2: SYNCC2OUT is the synchronized output from Comparator 2 (See Figure 9-2 on  
66).  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 51  
PIC16F785  
The interrupt is cleared by clearing the TMR1IF in the  
Interrupt Service Routine.  
6.1  
Timer1 Modes of Operation  
Timer1 can operate in one of three modes:  
Note:  
The TMR1H:TMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
• 16-bit Timer with prescaler  
• 16-bit Synchronous counter  
• 16-bit Asynchronous counter  
6.3  
Timer1 Prescaler  
In Timer mode, Timer1 is incremented on every instruc-  
tion cycle. In Counter mode, Timer1 is incremented on  
the rising edge of the external clock input T1CKI. In  
addition, the Counter mode clock can be synchronized  
to the microcontroller system clock or run  
asynchronously.  
Timer1 has four prescaler options allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits  
(T1CON<5:4>) control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write  
to TMR1H or TMR1L.  
In Counter and Timer modules, the counter/timer clock  
can be gated by the Timer1 gate, which can be  
selected as either the T1G pin or Comparator 2 output.  
6.4  
Timer1 Gate  
If an external clock oscillator is needed (and the  
microcontroller is using the LP oscillator or INTOSC  
without CLKOUT), Timer1 can use the LP oscillator as  
a clock source.  
Timer1 gate source is software configurable to be T1G  
pin or the output of Comparator 2. This allows the  
device to directly time external events using T1G or  
analog events using Comparator 2. See CM2CON1  
(Register 9-3) for selecting the Timer1 gate source.  
This feature can simplify the software for a Delta-Sigma  
A/D Converter and many other applications. For more  
information on Delta-Sigma A/D Converters, see the  
Microchip web site (www.microchip.com).  
Note:  
In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge after any one or  
more of the following conditions.  
•Timer1 enabled after POR Reset  
•Write to TMR1H or TMR1L  
Note:  
TMR1GE bit (T1CON<6>) must be set to  
use either T1G or C2OUT as the Timer1  
gate source. See Register 9-3 for more  
information on selecting the Timer1 gate  
source.  
•Timer1 is disabled (TMR1ON = 0)  
when T1CKI is high then Timer1 is  
enabled (TMR1ON = 1) when T1CKI  
is low.  
Timer1 gate can be inverted using the T1GINV bit  
(T1CON<7>), whether it originates from the T1G pin or  
Comparator 2 output. This configures Timer1 to  
measure either the active high or active low time  
between events.  
See Figure 6-2.  
6.2  
Timer1 Interrupt  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit (PIR1<0>) is set. To  
enable the interrupt on rollover, you must set these bits:  
• Timer1 Interrupt Enable bit (PIE1<0>)  
• PEIE bit (INTCON<6>)  
• GIE bit (INTCON<7>)  
FIGURE 6-2:  
TIMER1 INCREMENTING EDGE  
T1CKI =  
1
when TMR1  
Enabled  
T1CKI =  
0
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: See note box in Section 6.1.  
DS41249B-page 52  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
REGISTER 6-1:  
T1CON – TIMER1 CONTROL REGISTER (ADDRESS: 10h)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
(2)  
(1)  
T1GINV  
bit 7  
TMR1GE  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS TMR1ON  
bit 0  
(1)  
bit 7  
bit 6  
T1GINV: Timer1 Gate Invert bit  
1= Timer1 gate is high true (see bit 6)  
0= Timer1 gate is low true (see bit 6)  
(2)  
TMR1GE: Timer1 Gate Enable bit  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 is on if Timer1 gate is true (see bit 7)  
0= Timer1 is on independent of Timer1 gate  
bit 5-4  
bit 3  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale Value  
10= 1:4 Prescale Value  
01= 1:2 Prescale Value  
00= 1:1 Prescale Value  
T1OSCEN: LP Oscillator Enable Control bit  
If System Clock is INTOSC without CLKOUT or LP mode:  
1= LP oscillator is enabled for Timer1 clock  
0= LP oscillator is off  
Else:  
This bit is ignored  
bit 2  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from T1CKI pin (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Note 1: T1GINV bit inverts the Timer1 gate logic, regardless of source.  
2: TMR1GE bit must be set to use either T1G pin or C2OUT, as selected by T1GSS bit  
(CM2CON1<1>), as a Timer1 gate source.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 53  
PIC16F785  
6.5  
Timer1 Operation in  
Asynchronous Counter Mode  
6.6  
Timer1 Oscillator  
A crystal oscillator circuit is built-in between pins OSC1  
(input) and OSC2 (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The  
oscillator is a low power oscillator rated for 32.768 kHz.  
It will continue to run during Sleep. It is primarily  
intended for a 32.768 kHz tuning fork crystal.  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during Sleep and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in  
software are needed to read/write the timer  
(Section 6.5.1 “Reading and Writing Timer1 in  
Asynchronous Counter Mode”).  
The Timer1 oscillator is shared with the system LP  
oscillator. Thus, Timer1 can use this mode only when  
the primary system clock is also the LP oscillator or is  
derived from the internal oscillator. As with the system  
LP oscillator, the user must provide a software time  
delay to ensure proper oscillator start-up.  
Note:  
The ANSEL0 (91h) register must be  
initialized to configure an analog channel  
as a digital input. Pins configured as  
analog inputs will read ‘0’.  
Sleep mode will not disable the system clock when the  
system clock and Timer1 share the LP oscillator.  
TRISA<5> and TRISA<4> bits are set when the Timer1  
oscillator is enabled. RA5 and RA4 read as ‘0’ and  
TRISA<5> and TRISA<4> bits read as ‘1’.  
6.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to enabling Timer1.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
6.7  
Timer1 Operation During Sleep  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To setup the timer to wake the device:  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the timer register.  
• Timer1 must be on (T1CON<0>)  
• TMR1IE bit (PIE1<0>) must be set  
• PEIE bit (INTCON<6>) must be set  
Reading the 16-bit value requires some care.  
Examples in the “PICmicro® Mid-Range MCU Family  
Reference Manual” (DS33023) show how to read and  
write Timer1 when it is running in Asynchronous mode.  
The device will wake-up on an overflow. If the GIE bit  
(INTCON<7>) is set, the device will wake-up and jump  
to the Interrupt Service Routine (0004h) on an overflow.  
If the GIE bit is clear, execution will continue with the  
next instruction.  
TABLE 6-1:  
REGISTERS ASSOCIATED WITH TIMER1  
Value on  
Value on:  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
0Bh,  
8Bh  
INTCON  
GIE  
PEIE  
ADIF  
T0IE  
INTE  
C2IF  
RAIE  
C1IF  
T0IF  
INTF  
RAIF  
0000 0000 0000 0000  
0Ch  
PIR1  
EEIF  
CCP1IF  
OSFIF  
TMR2IF  
TMR1IF  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0Eh  
TMR1L  
TMR1H  
T1CON  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
0Fh  
10h  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu  
11Bh  
8Ch  
CM2CON1 MC1OUT MC2OUT  
T1GSS  
TMR2IE  
ANS1  
C2SYNC 00-- --10 00-- --10  
PIE1  
EEIE  
ADIE  
CCP1IE  
ANS5  
C2IE  
ANS4  
C1IE  
ANS3  
OSFIE  
ANS2  
TMR1IE  
ANS0  
0000 0000 0000 0000  
1111 1111 1111 1111  
91h  
ANSEL0  
ANS7  
ANS6  
Legend:  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
DS41249B-page 54  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
7.1  
Timer2 Operation  
7.0  
TIMER2 MODULE  
Timer2 can be used as the PWM time base for the  
PWM mode of the CCP module. The TMR2 register is  
readable and writable, and is cleared on any device  
Reset. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits  
T2CKPS<1:0> (T2CON<1:0>). The match output of  
TMR2 goes through a 4-bit postscaler (which gives a  
1:1 to 1:16 scaling inclusive) to generate a TMR2  
interrupt (latched in flag bit TMR2IF, (PIR1<1>)).  
The Timer2 module timer is an 8-bit timer with the  
following features:  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16  
by 1’s)  
• Interrupt on TMR2 match with PR2  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 has a control register shown in Register 7-1.  
TMR2 can be shut-off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
Figure 7-1 is a simplified block diagram of the Timer2  
module. The prescaler and postscaler selection of  
Timer2 are controlled by this register.  
• A write to the TMR2 register  
• A write to the T2CON register  
• Any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 7-1:  
T2CON – TIMER2 CONTROL REGISTER (ADDRESS: 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3 TOUTPS<3:0>: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0 T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 55  
PIC16F785  
7.2  
Timer2 Interrupt  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon Reset.  
FIGURE 7-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
bit TMR2IF  
TMR2  
Output  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS<1:0>  
4
TOUTPS<3:0>  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH TIMER2  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,  
8Bh  
INTCON  
GIE  
PEIE  
ADIF  
T0IE  
INTE  
C2IF  
RAIE  
C1IF  
T0IF  
INTF  
RAIF  
0000 0000 0000 0000  
0Ch  
PIR1  
EEIF  
CCP1IF  
OSFIF  
TMR2IF  
TMR1IF  
0000 0000 0000 0000  
0000 0000 0000 0000  
11h  
TMR2  
T2CON  
PIE1  
Holding Register for the 8-bit TMR2 Register  
12h  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
8Ch  
EEIE  
ADIE  
CCP1IE  
C2IE  
C1IE  
OSFIE  
TMR2IE  
TMR1IE  
0000 0000 0000 0000  
1111 1111 1111 1111  
92h  
PR2  
Timer2 Module Period register  
Legend:  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
DS41249B-page 56  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
TABLE 8-1:  
CCP MODE – TIMER  
RESOURCES REQUIRED  
8.0  
CAPTURE/COMPARE/PWM  
(CCP) MODULE  
CCP Mode  
Capture  
Timer Resource  
The Capture/Compare/PWM (CCP) module contains a  
16-bit register which can operate as a:  
Timer1  
Timer1  
Timer2  
Compare  
PWM  
• 16-bit Capture register  
• 16-bit Compare register  
• PWM Master/Slave Duty Cycle register  
Capture/Compare/PWM Register  
1
(CCPR1) is  
comprised of two 8-bit registers: CCPR1L (low byte)  
and CCPR1H (high byte). The CCP1CON register  
controls the operation of CCP. The special event  
trigger is generated by a compare match and will clear  
both TMR1H and TMR1L registers.  
REGISTER 8-1:  
CCP1CON – CCP OPERATION REGISTER (ADDRESS: 15h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’.  
DC1B<1:0>: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0  
CCP1M<3:0>: CCP Mode Select bits  
0000= Capture/Compare/PWM off (resets CCP module)  
0001= Unused (reserved)  
0010= Compare mode, toggle output on match (CCP1IF bit is set)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCP1IF bit is set)  
1001= Compare mode, clear output on match (CCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin  
is unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit is set; TMR1 is reset, and A/D  
conversion is started if the A/D module is enabled. CCP1 pin is unaffected.)  
110x= PWM mode: CCP1 output is high true.  
111x= PWM mode: CCP1 output is low true.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 57  
PIC16F785  
8.1.4  
CCP PRESCALER  
8.1  
Capture Mode  
There are four prescaler settings specified by bits  
CCP1M<3:0> (CCP1CON<3:0>). Whenever the CCP  
module is turned off, or the CCP module is not in  
Capture mode, the prescaler counter is cleared. Any  
Reset will clear the prescaler counter.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC5/CCP1. An event is defined as one of the  
following and is configured by CCP1CON<3:0>:  
• Every falling edge  
• Every rising edge  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will not  
be cleared, therefore, the first capture may be from a non-  
zero prescaler. Example 8-1 shows the recommended  
method for switching between capture prescalers. This  
example also clears the prescaler counter and will not  
generate the “false” interrupt.  
• Every 4th rising edge  
• Every 16th rising edge  
When a capture is made, the interrupt request flag bit  
CCP1IF (PIR1<5>) is set. The interrupt flag must be  
cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value is overwritten by the new captured value.  
EXAMPLE 8-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
8.1.1  
CCP1 PIN CONFIGURATION  
CLRF  
CCP1CON  
;Turn CCP module off  
MOVLW  
NEW_CAPT_PS;Load the W reg with  
; the new prescaler  
In Capture mode, the RC5/CCP1 pin should be  
configured as an input by setting the TRISC<5> bit.  
; move value and CCP ON  
Note:  
If the RC5/CCP1 pin is configured as an  
output, a write to the port can cause a  
capture condition.  
MOVWF  
CCP1CON  
;Load CCP1CON with this  
; value  
8.2  
Compare Mode  
FIGURE 8-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC5/CCP1 pin is:  
Set Flag bit CCP1IF  
(PIR1<5>)  
Prescaler  
÷ 1, 4, 16  
• Driven high  
• Driven low  
RC5/CCP1  
pin  
CCPR1H  
CCPR1L  
• Remains unchanged  
The action on the pin is based on the value of control  
bits CCP1M<3:0> (CCP1CON<3:0>). At the same  
time, interrupt flag bit CCP1IF (PIR1<5>) is set.  
Capture  
Enable  
and  
Edge Detect  
TMR1H  
TMR1L  
CCP1CON<3:0>  
Q’s  
FIGURE 8-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
8.1.2  
TIMER1 MODE SELECTION  
CCP1CON<3:0>  
Mode Select  
Timer1 must be running in Timer mode or Synchronized  
Counter mode for the CCP module to use the capture  
feature. In Asynchronous Counter mode, the capture  
operation may not work.  
Set Flag bit CCP1IF  
(PIR1<5>)  
4
RC5/CCP1  
Pin  
CCPR1H CCPR1L  
Comparator  
8.1.3  
SOFTWARE INTERRUPT  
Q
S
R
Output  
Logic  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<5>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF (PIR1<5>) following  
any such change in Operating mode.  
Match  
TMR1H TMR1L  
TRISC<5>  
Output Enable  
Special Event Trigger  
Special Event Trigger will:  
clear TMR1H and TMR1L registers  
NOT set interrupt flag bit TMR1F (PIR1<0>)  
set the GO/DONE bit (ADCON0<1>)  
DS41249B-page 58  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
8.2.1  
CCP1 PIN CONFIGURATION  
8.2.4  
SPECIAL EVENT TRIGGER  
The user must configure the RC5/CCP1 pin as an  
output by clearing the TRISC<5> bit.  
In this mode (CCP1M<3:0> = 1011), an internal  
hardware trigger is generated, which may be used to  
initiate an action. See Register 8-1.  
Note:  
Clearing the CCP1CON register will force  
the RC5/CCP1 compare output latch to  
the default low level. This is not the  
PORTC I/O data latch.  
The special event trigger output of the CCP occurs  
immediately upon a match between the TMR1H,  
TMR1L register pair and CCPR1H, CCPR1L register  
pair. The TMR1H, TMR1L register pair is not reset until  
the next rising edge of the TMR1 clock. This allows the  
CCPR1H, CCPR1L register pair to effectively provide a  
16-bit programmable period register for Timer1. The  
special event trigger output also starts an A/D  
conversion provided that the A/D module is enabled.  
8.2.2  
TIMER1 MODE SELECTION  
Timer1 must be running in Timer mode or  
Synchronized Counter mode if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
Note 1: The special event trigger from the CCP  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
8.2.3  
SOFTWARE INTERRUPT MODE  
When Generate Software Interrupt mode is chosen  
(CCP1M<3:0> = 1010), the RC5/CCP1 pin is not  
affected. The CCP1IF (PIR1<5>) bit is set, causing a  
CCP interrupt (if enabled). See Register 8-1.  
2: Removing the match condition by  
changing the contents of the CCPR1H  
and CCPR1L register pair between the  
clock edge that generates the special  
event trigger and the clock edge that  
generates the TMR1 Reset, will preclude  
the Reset from occurring.  
TABLE 8-2:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh  
INTCON  
GIE  
PEIE  
ADIF  
T0IE  
INTE  
C2IF  
RAIE  
C1IF  
T0IF  
INTF  
RAIF  
0000 0000  
0000 0000  
8Bh  
0Ch  
0Eh  
0Fh  
PIR1  
EEIF  
CCP1IF  
OSFIF  
TMR2IF  
TMR1IF  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
uuuu uuuu  
uuuu uuuu  
TMR1L  
TMR1H  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
10h  
11Bh  
13h  
14h  
15h  
T1CON  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000  
uuuu uuuu  
00-- --10  
uuuu uuuu  
uuuu uuuu  
--00 0000  
--11 1111  
CM2CON1 MC1OUT MC2OUT  
T1GSS  
C2SYNC 00-- --10  
xxxx xxxx  
CCPR1L  
CCPR1H  
CCP1CON  
TRISC  
Capture/Compare/PWM Register 1 Low Byte  
Capture/Compare/PWM Register 1 High Byte  
xxxx xxxx  
DC1B1  
TRISC5  
DC1B0  
CCP1M3  
TRISC3  
CCP1M2 CCP1M1 CCP1M0 --00 0000  
87h,  
TRISC7  
TRISC6  
TRISC4  
TRISC2  
TRISC1  
TRISC0  
--11 1111  
187h  
8Ch  
PIE1  
EEIE  
ADIE  
CCP1IE  
C2IE  
C1IE  
OSFIE  
TMR2IE  
TMR1IE  
0000 0000  
0000 0000  
Legend:  
– = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Capture, Compare or Timer1  
module.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 59  
PIC16F785  
8.3.1  
PWM PERIOD  
8.3  
CCP PWM Mode  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
formula of Equation 8-1.  
In Pulse Width Modulation (PWM) mode, the CCP  
module produces up to a 10-bit resolution PWM output  
on the RC5/CCP1 pin. Since the RC5/CCP1 pin is  
multiplexed with the PORTC data latch, the TRISC<5>  
must be cleared to make the RC5/CCP1 pin an output.  
EQUATION 8-1:  
PWM PERIOD  
Note:  
Clearing the CCP1CON register will force  
the PWM output latch to the default  
inactive levels. This is not the PORTC I/O  
data latch.  
PWM period = [(PR2) + 1] • 4 TOSC •  
(TMR2 prescale value)  
PWM frequency is defined as 1/[PWM period].  
Figure 8-3 shows a simplified block diagram of PWM  
operation.  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 8.3.5 “Setup  
for PWM Operation”.  
• TMR2 is cleared  
• The RC5/CCP1 pin is set. (exception: if PWM  
duty cycle = 0%, the pin will not be set)  
FIGURE 8-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
CCP1CON<5:4>  
Duty Cycle Registers  
Note:  
The Timer2 postscaler (see Section 7.1  
“Timer2 Operation”) is not used in the  
determination of the PWM frequency. The  
postscaler could be used to have a servo  
update rate at a different frequency than  
the PWM output.  
CCPR1L  
CCPR1H (Slave)  
Comparator  
RC5/CCP1  
R
S
Q
(1)  
TMR2  
TRISC<5>  
Comparator  
PR2  
Clear Timer2,  
toggle PWM pin and  
latch duty cycle  
Note 1: The 8-bit timer TMR2 register is concate-  
nated with the 2-bit internal Q clock, or 2 bits  
of the prescaler, to create the 10-bit time  
base.  
The PWM output (Figure 8-4) has a time base  
(period) and a time that the output stays high (duty  
cycle). The frequency of the PWM is the inverse of  
the period (1/period).  
FIGURE 8-4:  
CCP PWM OUTPUT  
Period  
Duty Cycle  
TMR2 = 0  
TMR2 = PR2  
TMR2 = Duty Cycle  
DS41249B-page 60  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
CCPR1L and DC1B<1:0> can be written to at any time,  
but the duty cycle value is not latched into CCPR1H  
until after a match between PR2 and TMR2 occurs  
(i.e. the period is complete). In PWM mode, CCPR1H  
is a read only register.  
8.3.2  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the DC1B<1:0>  
(CCP1CON<5:4>) bits. Up to 10 bits of resolution is  
available. The CCPR1L contains the eight MSbs and  
the DC1B<1:0> contains the two LSbs. CCPR1L and  
DC1B<1:0> can be written to at any time. In PWM  
mode, CCPR1H is a read-only register. This 10-bit  
value is represented by CCPR1L (CCP1CON<5:4>).  
PWM DUTY CYCLE  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
Because of the buffering, the module waits until the  
timer resets, instead of starting immediately. This  
means that enhanced PWM waveforms do not exactly  
match the standard PWM waveforms, but are instead  
offset by one full instruction cycle (4 TOSC).  
Equation 8-2 is used to calculate the PWM duty cycle  
in time.  
EQUATION 8-2:  
PWM DUTY CYCLE  
When the CCPR1H and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or 2 bits of  
the TMR2 prescaler, the RC5/CCP1 pin is cleared.  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC (TMR2 prescale value)  
The maximum PWM resolution is a function of PR2 as  
shown by Equation 8-3.  
EQUATION 8-3:  
PWM RESOLUTION  
log[4(PR2 + 1)]  
Resolution = ----------------------------------------- b i t s  
log(2)  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the assigned PWM pin(s)  
will remain unchanged.  
TABLE 8-3:  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)  
PWM Frequency  
1.22 kHz(1)  
4.88 kHz(1)  
19.53 kHz  
78.12 kHz  
156.3 kHz  
208.3 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
6.6  
Maximum Resolution (bits)  
Note 1: Changing duty cycle will cause a glitch.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 61  
PIC16F785  
8.3.3  
OPERATION IN SLEEP MODE  
8.3.5  
SETUP FOR PWM OPERATION  
In Sleep mode, all clock sources are disabled. Timer2  
will not increment and the state of the module will not  
change. If the RC5/CCP1 pin is driving a value, it will  
continue to drive that value. When the device wakes  
up, it will continue from this state.  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Configure the PWM pin (RC5/CCP1) as an input  
by setting the TRISC<5> bit.  
2. Set the PWM period by loading the PR2 register.  
3. Configure the CCP module for the PWM mode  
by loading the CCP1CON register with the  
appropriate values.  
8.3.3.1  
OPERATION WITH FAIL-SAFE  
CLOCK MONITOR  
If the Fail-Safe Clock Monitor is enabled, a clock failure  
will force the CCP to be clocked from the internal  
oscillator clock source, which may have a different  
clock frequency than the primary clock.  
4. Set the PWM duty cycle by loading the CCPR1L  
register and CCP1CON<5:4> bits.  
5. Configure and start TMR2:  
• Clear the TMR2 interrupt flag bit by clearing  
the TMR2IF bit (PIR1<1>).  
See Section 3.0 “Clock Sources” for additional  
details.  
• Set the TMR2 prescale value by loading the  
T2CKPS bits (T2CON<1:0>).  
8.3.4  
EFFECTS OF RESET  
• Enable Timer2 by setting the TMR2ON bit  
(T2CON<2>).  
Any Reset will force all ports to Input mode and the  
CCP registers to their Reset states.  
6. Enable PWM output after a new PWM cycle has  
started:  
• Wait until TMR2 overflows (TMR2IF bit is  
set).  
• Enable the RC5/CCP1 pin output by clearing  
the TRISC<5> bit.  
TABLE 8-4:  
REGISTERS ASSOCIATED WITH CCP AND TIMER2  
Value on  
Value on:  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
0Bh, INTCON  
8Bh  
GIE  
PEIE  
ADIF  
T0IE  
INTE  
C2IF  
RAIE  
C1IF  
T0IF  
INTF  
RAIF  
0000 0000  
0000 0000  
0Ch PIR1  
EEIF  
CCP1IF  
OSFIF  
TMR2IF  
TMR1IF  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
-000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
--11 1111  
0000 0000  
1111 1111  
11h  
12h  
13h  
14h  
15h  
87h  
TMR2  
Timer2 Module Register  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
TRISC  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000  
Capture/Compare/PWM Register 1 Low Byte  
Capture/Compare/PWM Register 1 High Byte  
xxxx xxxx  
xxxx xxxx  
DC1B1  
TRISC5  
CCP1IE  
DC1B0  
TRISC4  
C2IE  
CCP1M3  
TRISC3  
C1IE  
CCP1M2 CCP1M1 CCP1M0 0000 0000  
TRISC7  
EEIE  
TRISC6  
ADIE  
TRISC2  
OSFIE  
TRISC1  
TMR2IE  
TRISC0  
TMR1IE  
--11 1111  
0000 0000  
1111 1111  
8Ch PIE1  
92h PR2  
Legend:  
Timer2 Module Period Register  
– = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the CCP or Timer2 modules.  
DS41249B-page 62  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
The polarity of the comparator output can be inverted  
by setting the C1POL bit (CM1CON0<4>). Clearing  
C1POL results in a non-inverted output.  
9.0  
COMPARATOR MODULE  
The Comparator module has two separate voltage  
comparators: Comparator 1 (C1) and Comparator 2  
(C2).  
A complete table showing the output state versus input  
conditions and the polarity bit is shown in Table 9-1.  
Each comparator offers the following list of features:  
• Control and Configuration register  
• Comparator output available externally  
• Programmable output polarity  
TABLE 9-1:  
C1 OUTPUT STATE VERSUS  
INPUT CONDITIONS  
Input Condition  
C1POL  
C1OUT  
• Interrupt-on-change flags  
C1VN > C1VP  
C1VN < C1VP  
C1VN > C1VP  
C1VN < C1VP  
0
0
1
1
0
1
1
0
• Wake-up from Sleep  
• Configurable as feedback input to the PWM  
• Programmable four input multiplexer  
• Programmable two input reference selections  
• Programmable speed/power  
• Output synchronization to Timer1 clock input  
(Comparator C2 only)  
Note 1: The internal output of the comparator is  
latched at the end of each instruction  
cycle. External outputs are not latched.  
9.1  
Control Registers  
2: The C1 interrupt will operate correctly  
Both comparators have separate control and  
Configuration registers: CM1CON0 for C1 and  
CM2CON0 for C2. In addition, Comparator C2 has a  
second control register, CM2CON1, for synchronization  
control and simultaneous reading of both comparator  
outputs.  
with C1OE set or cleared.  
3: To output C1 on RA2/AN2/T0CKI/INT/  
C1OUT:(C1OE = 1) and (C1ON = 1) and  
(TRISA<2> = 0).  
C1SP (CM1CON0<3>) configures the speed of the  
comparator. When C1SP is set, the comparator  
operates at its normal speed. Clearing C1SP operates  
the comparator in a slower, low-power mode.  
9.1.1  
COMPARATOR C1 CONTROL  
REGISTER  
The CM1CON0 register (shown in Register 9-1)  
contains the control and Status bits for the following:  
• Comparator enable  
• Comparator input selection  
• Comparator reference selection  
• Output mode  
• Comparator speed  
Setting C1ON (CM1CON0<7>) enables Comparator  
C1 for operation.  
Bits C1CH<1:0> (CM1CON0<1:0>) select the  
comparator input from the four analog pins AN<7:5,1>.  
Note:  
To use AN<7:5,1> as analog inputs the  
appropriate bits must be programmed to  
1’ in the ANSEL0 register.  
Setting C1R (CM1CON0<2>) selects the C1VREF  
output of the comparator voltage reference module as  
the reference voltage for the comparator. Clearing C1R  
selects the C1IN+ input on the RA0/AN0/C1IN+/  
ICSPDAT pin.  
The output of the comparator is available internally via  
the C1OUT flag (CM1CON0<6>). To make the output  
available for an external connection, the C1OE bit  
(CM1CON0<5>) must be set.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 63  
PIC16F785  
FIGURE 9-1:  
COMPARATOR C1 SIMPLIFIED BLOCK DIAGRAM  
C1CH<1:0>  
C1POL  
To  
Data Bus  
2
D
Q
Q1  
EN  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
RC1/AN5/C12IN1-/PH1  
0
RD_CM1CON0  
Set C1IF  
1
MUX  
2
D
Q
RC2/AN6/C12IN2-/OP2  
Q3*RD_CM1CON0  
EN  
CL  
To PWM Logic  
C1OE  
RC3/AN7/C12IN3-/OP1  
3
NRESET  
(1)  
C1ON  
C1R  
C1SP  
C1VN  
C1VP  
0
MUX  
1
RA0/AN0/C1IN+/ICSPDAT  
C1VREF  
C1OUT  
C1  
(2)  
RA2/AN2/T0CKI/INT/C1OUT  
C1POL  
Note 1: When C1ON = 0, the C1 comparator will produce a ‘0’ output to the XOR Gate.  
2: Output shown for reference only. For more detail, see Figure 4-3.  
DS41249B-page 64  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
REGISTER 9-1:  
CM1CON0 – COMPARATOR C1 CONTROL REGISTER 0 (ADDRESS: 119h)  
R/W-0  
C1ON  
R-0  
R/W-0  
C1OE  
R/W-0  
R/W-0  
C1SP  
R/W-0  
C1R  
R/W-0  
R/W-0  
C1CH0  
bit 0  
C1OUT  
C1POL  
C1CH1  
bit 7  
bit 7  
bit 6  
C1ON: Comparator C1 Enable bit  
1= C1 Comparator is enabled  
0= C1 Comparator is disabled  
C1OUT: Comparator C1 Output bit  
If C1POL = 1(inverted polarity):  
C1OUT = 1, C1VP < C1VN  
C1OUT = 0, C1VP > C1VN  
If C1POL = 0(non-inverted polarity):  
C1OUT = 1, C1VP > C1VN  
C1OUT = 0, C1VP < C1VN  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1-0  
C1OE: Comparator C1 Output Enable bit  
1= C1OUT is present on the RA2/AN2/T0CKI/INT/C1OUT pin(1)  
0= C1OUT is internal only  
C1POL: Comparator C1 Output Polarity Select bit  
1= C1OUT logic is inverted  
0= C1OUT logic is not inverted  
C1SP: Comparator C1 Speed Select bit  
1= C1 operates in normal speed mode  
0= C1 operates in low-power, slow speed mode  
C1R: Comparator C1 Reference Select bit (non-inverting input)  
1= C1VP connects to C1VREF output  
0= C1VP connects to RA0/AN0/C1IN+/ICSPDAT  
C1CH<1:0>: Comparator C1 Channel Select bits  
00= C1VN of C1 connects to RA1/AN1/C12IN0-/VREF/ICSPCLK  
01= C1VN of C1 connects to RC1/AN5/C12IN1-/PH1  
10= C1VN of C1 connects to RC2/AN6/C12IN2-/OP2  
11= C1VN of C1 connects to RC3/AN7/C12IN3-/OP1  
Note 1: C1OUT will only drive RA2/AN2/T0CKI/INT/C1OUT if:  
(C1OE = 1) and (C1ON = 1) and (TRISA<2> = 0)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 65  
PIC16F785  
The comparator output, C2OUT, can be inverted by  
setting the C2POL bit (CM2CON0<4>). Clearing  
C2POL results in a non-inverted output.  
9.1.2  
COMPARATOR C2 CONTROL  
REGISTERS  
The CM2CON0 register is a functional copy of the  
CM1CON0 register described in Section 9.1.1  
“Comparator C1 Control Register”. A second control  
register, CM2CON1, is also present for control of an  
additional synchronizing feature, as well as mirrors of  
both comparator outputs.  
A complete table showing the output state versus input  
conditions and the polarity bit is shown in Table 9-2.  
TABLE 9-2:  
C2 OUTPUT STATE VERSUS  
INPUT CONDITIONS  
9.1.2.1  
Control Register CM2CON0  
Input Condition  
C2POL  
C2OUT  
The CM2CON0 register, shown in Register 9-2, con-  
tains the control and Status bits for Comparator C2.  
C2VN > C2VP  
C2VN < C2VP  
C2VN > C2VP  
C2VN < C2VP  
0
0
1
1
0
1
1
0
Setting C2ON (CM2CON0<7>) enables Comparator  
C2 for operation.  
Bits C2CH<1:0> (CM2CON0<1:0>) select the  
comparator input from the four analog pins, AN<7:5,1>.  
Note:  
To use AN<7:5,1> as analog inputs, the  
appropriate bits must be programmed to 1  
in the ANSEL0 register.  
Note 1: The internal output of the comparator is  
latched at the end of each instruction  
cycle. External outputs are not latched.  
C2R (CM2CON0<2>) selects the reference to be used  
with the comparator. Setting C2R (CM2CON0<2>)  
selects the C2VREF output of the comparator voltage  
reference module as the reference voltage for the  
comparator. Clearing C2R selects the C2IN+ input on  
the RC0/AN4/C2IN+ pin.  
2: The C2 interrupt will operate correctly  
with C2OE set or cleared. An external  
output is not required for the C2 interrupt.  
3: For C2 output on RC4/C2OUT/PH2:  
(C2OE = 1) and (C2ON = 1) and  
(TRISA<4> = 0).  
The output of the comparator is available internally via  
the C2OUT bit (CM2CON0<6>). To make the output  
available for an external connection, the C2OE bit  
(CM2CON0<5>) must be set.  
C2SP (CM2CON0<3>) configures the speed of the  
comparator. When C2SP is set, the comparator  
operates at its normal speed. Clearing C2SP operates  
the comparator in low-power mode.  
FIGURE 9-2:  
COMPARATOR C2 SIMPLIFIED BLOCK DIAGRAM  
C2POL  
To  
Data Bus  
D
Q
Q1  
EN  
RD_CM2CON0  
2
C2CH<1:0>  
Set C2IF  
D
Q
Q3*RD_CM2CON0  
EN  
CL  
C2ON(1)  
C2SP  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
RC1/AN5/C12IN1-/PH1  
0
1
NRESET  
C2OUT  
C2VN  
C2VP  
MUX  
To PWM Logic  
C2  
RC2/AN6/C12IN2-/OP2  
2
RC3/AN7/C12IN3-/OP1  
3
C2SYNC  
C20E  
C2POL  
0
C2R  
MUX  
D
Q
1
(3)  
RC4/C2OUT/PH2  
SYNCC2OUT(2)  
RC0/AN4/C2IN+  
0
From TMR1  
Clock  
MUX  
1
C2VREF  
Note 1:  
When C2ON = 0, the C2 comparator will produce a ‘0’ output to the XOR Gate.  
Timer1 gate control (see Figure 6-1).  
Output shown for reference only. For more detail, see Figure 4-13.  
2:  
3:  
DS41249B-page 66  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
REGISTER 9-2:  
CM2CON0 – COMPARATOR C2 CONTROL REGISTER 0 (ADDRESS: 11AH)  
R/W-0  
C2ON  
R-0  
R/W-0  
C2OE  
R/W-0  
R/W-0  
C2SP  
R/W-0  
C2R  
R/W-0  
R/W-0  
C2CH0  
bit 0  
C2OUT  
C2POL  
C2CH1  
bit 7  
bit 7  
bit 6  
C2ON: Comparator C2 Enable bit  
1= C2 Comparator is enabled  
0= C2 Comparator is disabled  
C2OUT: Comparator C2 Output bit  
If C2POL = 1(inverted polarity):  
C2OUT = 1, C2VP < C2VN  
C2OUT = 0, C2VP > C2VN  
If C2POL = 0(non-inverted polarity):  
C2OUT = 1, C2VP > C2VN  
C2OUT = 0, C2VP < C2VN  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1-0  
C2OE: Comparator C2 Output Enable bit  
1= C2OUT is present on RC4/C2OUT/PH2(1)  
0= C2OUT is internal only  
C2POL: Comparator C2 Output Polarity Select bit  
1= C2OUT logic is inverted  
0= C2OUT logic is not inverted  
C2SP: Comparator C2 Speed Select bit  
1= C2 operates in normal speed mode  
0= C2 operates in low power, slow speed mode.  
C2R: Comparator C2 Reference Select bits (non-inverting input)  
1= C2VP connects to C2VREF  
0= C2VP connects to RC0/AN4/C2IN+  
C2CH<1:0>: Comparator C2 Channel Select bits  
00= C2VN of C2 connects to RA1/AN1/C12IN0-/VREF/ICSPCLK  
01= C2VN of C2 connects to RC1/AN5/C12IN1-/PH1  
10= C2VN of C2 connects to RC2/AN6/C12IN2-/OP2  
11= C2VN of C2 connects to RC3/AN7/C12IN3-/OP1  
Note 1: C2OUT will only drive RC4/C2OUT/PH2 if:  
(C2OE = 1) and (C2ON = 1) and (TRISC<4> = 0).  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 67  
PIC16F785  
The CM2CON1 register also contains mirror copies of  
both comparator outputs, MC1OUT and MC2OUT  
(CM2CON1<7:6>). The ability to read both outputs  
simultaneously from a single register eliminates the  
timing skew of reading separate registers.  
9.1.2.2  
Control Register CM2CON1  
Comparator C2 has one additional feature: its output  
can be synchronized to the Timer1 clock input. Setting  
C2SYNC (CM2CON1<0>) synchronizes the output of  
Comparator 2 to the falling edge of Timer1’s clock input  
(see Figure 9-2 and Register 9-3).  
Note:  
Obtaining the status of C1OUT or C2OUT  
by reading CM2CON1 does not affect the  
comparator interrupt mismatch registers.  
REGISTER 9-3:  
CM2CON1 – COMPARATOR C2 CONTROL REGISTER 1 (ADDRESS: 11Bh)  
R-0  
R-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
MC1OUT MC2OUT  
bit 7  
T1GSS C2SYNC  
bit 0  
bit 7  
MC1OUT: Mirror Copy of C1OUT bit (CM1CON0<6>)  
MC2OUT: Mirror Copy of C2OUT bit (CM2CON0<6>)  
Unimplemented: Read as ‘0’  
bit 6  
bit 5-2  
bit 1  
T1GSS: Timer1 Gate Source Select bit  
1= Timer1 gate source is RA4/AN3/T1G/OSC2/CLKOUT  
0= Timer1 gate source is SYNCC2OUT.  
bit 0  
C2SYNC: C2 Output Synchronous Mode bit  
1= C2 output is synchronous to falling edge of TMR1 clock  
0= C2 output is asynchronous  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41249B-page 68  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
9.2  
Comparator Outputs  
9.3  
Comparator Interrupts  
The comparator outputs are read through the  
CM1CON0, COM2CON0 or CM2CON1 registers.  
CM1CON0 and CM2CON0 each contain the individual  
comparator output of Comparator 1 and Comparator 2,  
respectively. CM2CON2 contains a mirror copy of both  
comparator outputs facilitating a simultaneous read of  
both comparators. These bits are read-only. The  
comparator outputs may also be directly output to the  
RA2/AN2/T0CKI/INT/C1OUT and RC4/C2OUT/PH2  
I/O pins. When enabled, multiplexers in the output path  
of the RA2 and RC4 pins will switch and the output of  
each pin will be the unsynchronized output of the com-  
parator. The uncertainty of each of the comparators is  
related to the input offset voltage and the response time  
given in the specifications. Figure 9-1 and Figure 9-2  
show the output block diagrams for Comparators 1 and  
2, respectively.  
The comparator interrupt flags are set whenever there  
is a change in the output value of its respective  
comparator. Software will need to maintain information  
about the status of the output bits, as read from  
CM2CON0<7:6>, to determine the actual change that  
has occurred. The CxIF bits, PIR1<4:3>, are the  
Comparator Interrupt Flags. Each comparator interrupt  
bit must be reset in software by clearing it to ‘0’. Since  
it is also possible to write a ‘1’ to this register, a  
simulated interrupt may be initiated.  
The CxIE bits (PIE1<4:3>) and the PEIE bit  
(INTCON<6>) must be set to enable the interrupts. In  
addition, the GIE bit must also be set. If any of these  
bits are cleared, the interrupt is not enabled, though the  
CxIF bits will still be set if an interrupt condition occurs.  
The comparator interrupt of the PIC16F785 differs from  
previous designs in that the interrupt flag is set by the  
mismatch edge and not the mismatch level. This  
means that the interrupt flag can be reset without the  
additional step of reading or writing the CMxCON0  
register to clear the mismatch registers. When the  
mismatch registers are not cleared, an interrupt will not  
occur when the comparator output returns to the  
previous state. When the mismatch registers are  
cleared, an interrupt will occur when the comparator  
returns to the previous state.  
The TRIS bits will still function as an output enable/  
disable for the RA2/AN2/T0CKI/INT/C1OUT and RC4/  
C2OUT/PH2 pins while in this mode.  
The polarity of the comparator outputs can be changed  
using the C1POL and C2POL bits (CMxCON0<4>).  
Timer1 gate source can be configured to use the T1G  
pin or Comparator 2 output as selected by the T1GSS bit  
(CM2CON1<1>). The Timer1 gate feature can be used  
to time the duration or interval of analog events. The  
output of Comparator 2 can also be synchronized with  
Timer1 by setting the C2SYNC bit (CM2CON1<0>).  
When enabled, the output of Comparator 2 is latched on  
the falling edge of Timer1 clock source. If a prescaler is  
used with Timer1, Comparator 2 is latched after the  
prescaler. To prevent a race condition, the Comparator 2  
output is latched on the falling edge of the Timer1 clock  
source and Timer1 increments on the rising edge of its  
clock source. See the Comparator 2 Block Diagram  
(Figure 9-2) and the Timer1 Block Diagram (Figure 6-1)  
for more information.  
Note 1: If a change in the CMxCON0 register  
(CxOUT) should occur when a read  
operation is being executed (start of the  
Q2 cycle), then the CxIF (PIR1<4:3>)  
interrupt flag may not get set.  
2: When either comparator is first enabled,  
bias circuitry in the Comparator module  
may cause an invalid output from the  
comparator until the bias circuitry is sta-  
ble. Allow about 1 μs for bias settling then  
clear the mismatch condition and inter-  
rupt flags before enabling comparator  
interrupts.  
It is recommended to synchronize Comparator 2 with  
Timer1 by setting the C2SYNC bit when Comparator 2  
is used as the Timer1 gate source. This ensures Timer1  
does not miss an increment if Comparator 2 changes  
during an increment.  
9.4  
Effects of Reset  
A Reset forces all registers to their Reset state. This  
disables both comparators.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 69  
PIC16F785  
NOTES:  
DS41249B-page 70  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
10.1.2  
VOLTAGE REFERENCE  
ACCURACY/ERROR  
10.0 VOLTAGE REFERENCES  
There are two voltage references available in the  
PIC16F785: The voltage referred to as the comparator  
reference (CVREF) is a variable voltage based on VDD;  
The voltage referred to as the VR reference (VR) is a  
fixed voltage derived from a stable band gap source.  
Each source may be individually routed internally to the  
comparators or output, buffered or unbuffered, on the  
RA1/AN1/C12IN0-/VREF/ICSPCLK pin.  
The full range of VSS to VDD cannot be realized due to  
the construction of the module. The transistors on the  
top and bottom of the resistor ladder network  
(Figure 10-1) keep CVREF from approaching VSS or  
VDD. The exception is when the module is disabled by  
clearing all CVROE, C1VREN and C2VREN bits. When  
disabled, the reference voltage is VSS when VR<3:0>  
is ‘0000’ and the VRR (VRCON<5>) bit is set. This  
allows the comparators to detect a zero-crossing and  
not consume CVREF module current.  
10.1 Comparator Reference  
The comparator module also allows the selection of an  
internally generated voltage reference for one of the  
comparator inputs. The VRCON register  
(Register 10-1) controls the voltage reference module  
shown in Figure 10-1.  
The voltage reference is VDD derived and therefore, the  
CVREF output changes with fluctuations in VDD. The  
tested absolute accuracy of the comparator voltage  
reference can be found in Table 18-8.  
10.1.1  
CONFIGURING THE VOLTAGE  
REFERENCE  
The voltage reference can output 32 distinct voltage  
levels, 16 in a high range and 16 in a low range.  
The following equation determines the output voltages:  
EQUATION 10-1: CVREF OUTPUT VOLTAGE  
VRR = 1 (low range):  
CVREF = VR<3:0> X VDD/24  
VRR = 0 (high range):  
CVREF = (VDD/4) + (VR<3:0> X VDD/32)  
FIGURE 10-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
16 Stages  
8R  
R
R
R
R
VDD  
VRR  
8R  
16-1 Analog  
MUX  
(1)  
CVREN  
15  
CVREF  
·
·
·
0
VR3:VR0  
CVROE  
C1VREN  
C2VREN  
C1VREF to  
Comparator 1  
Input  
1
0
C2VREF to  
1
0
Comparator 2  
VR  
1.2 V  
Input  
Note 1: See Register 10-1, bits 3-0.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 71  
PIC16F785  
REGISTER 10-1: VRCON – VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS: 99H)  
R/W-0  
C1VREN(1) C2VREN(1)  
R/W-0  
R/W-0  
VRR  
U-0  
R/W-0  
VR3  
R/W-0  
VR2  
R/W-0  
VR1  
R/W-0  
VR0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
C1VREN: Comparator 1 Voltage Reference Enable bit(1)  
1= CVREF circuit powered on and routed to C1VREF input of comparator 1  
0= 1.2 Volt VR routed to C1VREF input of comparator 1  
C2VREN: Comparator 2 Voltage Reference Enable bit(1)  
1= CVREF circuit powered on and routed to C2VREF input of comparator 2  
0= 1.2 Volt VR routed to C2VREF input of comparator 2  
VRR: Comparator Voltage Reference CVREF Range Selection bit  
1= Low Range  
0= High Range  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
VR<3:0>: Comparator Voltage Reference CVREF Value Selection 0 VR<3:0> 15  
When VRR = 1and CVREN = 1: CVREF = (VR<3:0> x VDD/24)  
When VRR = 0and CVREN = 1: CVREF = (VDD/4) + (VR<3:0> x VDD/32)  
When CxVREN = 0and VREN = 1: CxVREF = 1.2V from VR module  
Note 1: When C1VREN, C2VREN and CVROE (Register 10-2) are all low, the CVREF circuit  
is powered down and does not contribute to IDD current.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = bit is cleared x = bit is unknown  
DS41249B-page 72  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
10.2 VR Reference Module  
The VR Reference module generates a 1.2V nominal  
output voltage for use by the ADC and comparators. The  
output voltage can also be brought out to the VREF pin  
for user applications. This module uses a band gap as a  
reference. See Table 18-9 for detailed specifications.  
Register 10-2 shows the control register for the VR  
module.  
REGISTER 10-2: REFCON – VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS: 98h)  
U-0  
U-0  
R-0  
R/W-0  
VRBB  
R/W-0  
VREN  
R/W-0  
VROE  
R/W-0  
U-0  
BGST  
CVROE  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
BGST: Band Gap Reference Voltage Stable Flag bit  
1= Reference is stable  
0= Reference is not stable  
bit 4  
bit 3  
bit 2  
VRBB: Voltage Reference Buffer Bypass bit  
1= VREF output is not buffered. Power is removed from buffer amplifier.  
0= VREF output is buffered(1)  
VREN: Voltage Reference Enable bit (VR = 1.2V nominal)  
1= VR reference is enabled  
0= VR reference is disabled and does not consume any current  
VROE: Voltage Reference Output Enable bit  
If CVROE = 0:  
1= VREF output on RA1/AN1/C12IN0-/VREF/ICSPCLK pin is 1.2 volt VR analog reference  
0= Disabled, 1.2 volt VR analog reference is used internally only  
If CVROE = 1:  
VROE has no effect.  
bit 1  
bit 0  
CVROE: Comparator Voltage Reference Output Enable bit (see Figure 10-2)  
1= VREF output on RA1/AN1/C12IN0-/VREF/ICSPCLK pin is CVREF voltage  
0= VREF output on RA1/AN1/C12IN0-/VREF/ICSPCLK pin is controlled by VROE  
Unimplemented: Read as ‘0’  
Note 1: Buffer amplifier common mode limitations require VREF (VDD - 1.4)V for buffered  
output.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 73  
PIC16F785  
10.2.1  
VR STABILIZATION PERIOD  
When the Voltage Reference module is enabled, it will  
require some time for the reference and its amplifier  
circuits to stabilize. The user program must include a  
small delay routine to allow the module to settle. See  
Section 18.0 “Electrical Specifications” for the  
minimum delay requirement.  
FIGURE 10-2:  
VR REFERENCE BLOCK DIAGRAM  
(1)  
VREN  
VRBB  
CVREF  
CVROE  
(CVROE + (VREN*VROE))  
VROUT  
1
0
EN  
1
0
RA1/AN1/C12IN0-/VREF  
1X  
VRIN  
Voltage  
Reference  
Analog  
Buffer  
RDY  
VR  
BGST  
To CVREF MUX  
Note 1: Buffered output requires VRIN = (VDD - 1.4)V.  
TABLE 10-1: REGISTERS ASSOCIATED WITH THE COMPARATOR AND VOLTAGE REFERENCE  
MODULES  
Value on  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
119h  
11Ah  
11Bh  
CM1CON0 C1ON  
CM2CON0 C2ON  
C1OUT C1OE C1POL C1SP  
C2OUT C2OE C2POL C2SP  
C1R  
C2R  
C1CH1  
C2CH1  
C1CH0  
C2CH0  
0000 0000 0000 0000  
0000 0000 0000 0000  
CM2CON1 MC1OUT MC2OUT  
T1GSS C2SYNC 00-- --10 00-- --10  
85h,  
185h  
TRISA  
TRISC  
PORTA  
PORTC  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 --11 1111 --11 1111  
87h,  
187h  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
05h,  
105h  
RA5  
RC5  
RA4  
RC4  
RA3  
RC3  
RA2  
RC2  
RA1  
RC1  
RA0  
RC0  
--xx xxxx --uu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
07h,  
107h  
RC7  
RC6  
91h  
0Ch  
8Ch  
98h  
99h  
ANSEL0  
PIR1  
ANS7  
EEIF  
EEIE  
ANS6  
ADIF  
ADIE  
ANS5  
ANS4  
ANS3  
C1IF  
C1IE  
ANS2  
ANS1  
ANS0  
CCP1IF C2IF  
CCP1IE C2IE  
OSFIF TMR2IF TMR1IF 0000 ---0 0000 ---0  
OSFIE TMR2IE TMR1IE 0000 ---0 0000 ---0  
PIE1  
REFCON  
VRCON  
BGST VRBB VREN VROE CVROE  
VR3 VR2 VR1  
--00 000- --00 000-  
000- 0000 000- 0000  
C1VREN C2VREN VRR  
VR0  
Legend: x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used for comparator.  
DS41249B-page 74  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
11.2 OPAxCON Register  
11.0 OPERATIONAL AMPLIFIER  
(OPA) MODULE  
The OPA module is enabled by setting the OPAON bit  
(OPAxCON<7>). When enabled, OPAON forces the  
output driver of RC3/AN7/C12IN3-/OP1 for OPA1, and  
RC2/AN6/C12IN2-/OP2 for OPA2, into tri-state to prevent  
contention between the driver and the OPA output.  
The OPA module has the following features:  
• Two independent Operational Amplifiers  
• External connections to all ports  
• 3 MHz Gain Bandwidth Product (GBWP)  
Note:  
When OPA1 or OPA2 is enabled, the  
RC3/AN7/C12IN3-/OP1 pin, or  
11.1 Control Registers  
The OPA1CON register, shown in Register 11-1,  
controls OPA1. OPA2CON, shown in Register 11-2,  
controls OPA2.  
RC2/AN6/C12IN2-/OP2 pin, respectively,  
is driven by the op amp output, not by the  
PORTC driver. Refer to Table 18-11 for the  
electrical specifications for the op amp  
output drive capability.  
FIGURE 11-1:  
OPA MODULE BLOCK DIAGRAM  
OPA1CON<OPAON>  
RC7/AN9/OP1+  
OPA1  
RC6/AN8/OP1-  
RC3/AN7/C12IN3-/OP1  
TO ADC and Comparator MUXs  
OPA2CON<OPAON>  
RB5/AN11/OP2+  
OPA2  
RB4/AN10/OP2-  
RC2/AN6/C12IN2-/OP2  
TO ADC and Comparator MUXs  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 75  
PIC16F785  
REGISTER 11-1: OPA1CON – OP AMP 1 CONTROL REGISTER (ADDRESS: 11Ch)  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OPAON  
bit 7  
bit 0  
bit 7  
OPAON: Op Amp Enable bit  
1= Op Amp 1 is enabled  
0= Op Amp 1 is disabled  
bit 6-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 11-2:  
OPA2CON – OP AMP 2 CONTROL REGISTER (ADDRESS: 11Dh)  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OPAON  
bit 7  
bit 0  
bit 7  
OPAON: Op Amp Enable bit  
1= Op Amp 2 is enabled  
0= Op Amp 2 is disabled  
bit 6-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41249B-page 76  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
Leakage current is a measure of the small source or  
sink currents on the OPA+ and OPA- inputs. To minimize  
the effect of leakage currents, the effective impedances  
connected to the OPA+ and OPA- inputs should be kept  
as small as possible and equal.  
11.3 Effects of a Reset  
A device Reset forces all registers to their Reset state.  
This disables both op amps.  
11.4 OPA Module Performance  
Input offset voltage is a measure of the voltage  
difference between the OPA+ and OPA- inputs in a  
closed loop circuit with the OPA in its linear region. The  
offset voltage will appear as a DC offset in the output  
equal to the input offset voltage, multiplied by the gain  
of the circuit. The input offset voltage is also affected by  
the common mode voltage.  
Common AC and DC performance specifications for  
the OPA module:  
• Common Mode Voltage Range  
• Leakage Current  
• Input Offset Voltage  
• Open Loop Gain  
Open loop gain is the ratio of the output voltage to the  
differential input voltage, (OPA+) - (OPA-). The gain is  
greatest at DC and falls off with frequency.  
• Gain Bandwidth Product (GBWP)  
Common mode voltage range is the specified voltage  
range for the OPA+ and OPA- inputs, for which the OPA  
module will perform to within its specifications. The  
OPA module is designed to operate with input voltages  
between 0 and VDD-1.4V. Behavior for common mode  
voltages greater than VDD-1.4V, or below 0V, are  
beyond the normal operating range.  
Gain Bandwidth Product or GBWP is the frequency  
at which the open loop gain falls off to 0 dB.  
11.5 Effects of Sleep  
When enabled, the op amps continue to operate and  
consume current while the processor is in Sleep mode.  
TABLE 11-1: REGISTERS ASSOCIATED WITH THE OPA MODULE  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
11Ch  
11Dh  
91h  
OPA1CON  
OPA2CON  
ANSEL0  
OPAON  
OPAON  
ANS7  
0--- ---- 0--- ----  
0--- ---- 0--- ----  
ANS6  
ANS5  
ANS4  
ANS3  
ANS2  
ANS1  
ANS0 1111 1111 1111 1111  
ANS8 ---- 1111 ---- 1111  
93h  
ANSEL1  
ANS11 ANS10 ANS9  
86h, 186h TRISB  
87h, 187h TRISC  
TRISB7 TRISB6 TRISB5 TRISB4  
1111 ---- 1111 ----  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used for the OPA module.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 77  
PIC16F785  
NOTES:  
DS41249B-page 78  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
12.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The analog-to-digital converter (A/D) allows conversion  
of an analog input signal to  
a 10-bit binary  
representation of that signal. The PIC16F785 has  
twelve analog I/O inputs, plus two internal inputs,  
multiplexed into one sample and hold circuit. The output  
of the sample and hold is connected to the input of the  
converter. The converter generates a binary result via  
successive approximation and stores the result in a  
10-bit register. The voltage reference used in the  
conversion is software selectable to either VDD or a  
voltage applied by the VREF pin. Figure 12-1 shows the  
block diagram of the A/D on the PIC16F785.  
FIGURE 12-1:  
A/D BLOCK DIAGRAM  
VDD  
VCFG = 0  
VCFG = 1  
VREF  
RA0/AN0/C1IN+/ICSPDAT  
0
RA1/AN1/C12IN0-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RA4/AN3/T1G/OSC2/CLKOUT  
RC0/AN4/C2IN+  
RC1/AN5/C12IN1-/PH1  
RC2/AN6/C12IN2-/OP2  
RC3/AN7/C12IN3-/OP1  
RC6/AN8/OP1-  
A/D  
10  
10  
GO/DONE  
RC7/AN9/OP1+  
ADFM  
RB4/AN10/OP2-  
(1)  
ADON  
RB5/AN11/OP2+  
ADRESH ADRESL  
CVREF  
VSS  
13  
VR  
CHS<3:0>  
Note 1: When ADON = 0 all input channels are disconnected from  
ADC (no loading).  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 79  
PIC16F785  
12.1.3  
VOLTAGE REFERENCE  
12.1 A/D Configuration and Operation  
There are two options for the voltage reference to the  
A/D converter: either VDD is used or an analog voltage  
applied to VREF is used. The VCFG bit (ADCON0<6>)  
controls the voltage reference selection. If VCFG is set,  
then the voltage on the VREF pin is the reference;  
otherwise, VDD is the reference.  
There are four registers available to control the  
functionality of the A/D module:  
1. ANSEL0 (Register 12-1)  
2. ANSEL1 (Register 12-2)  
3. ADCON0 (Register 12-3)  
4. ADCON1 (Register 12-4)  
12.1.4  
CONVERSION CLOCK  
12.1.1  
The  
ANALOG PORT PINS  
ANS<11:0> bits (ANSEL1<3:0>  
The A/D conversion cycle requires 11 TAD. The source  
of the conversion clock is software selectable via the  
ADCS bits (ADCON1<6:4>). There are seven possible  
clock options:  
and  
ANSEL0<7:0>) and the TRISA<4,2:0>, TRISB<5:4>  
and TRISC<7:6,3:0>> bits control the operation of the  
A/D port pins. Set the corresponding TRISx bits to ‘1’ to  
set the pin output driver to its high-impedance state.  
Likewise, set the corresponding ANSx bit to disable the  
digital input buffer.  
• FOSC/2  
• FOSC/4  
• FOSC/8  
• FOSC/16  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input  
buffer to conduct excess current.  
• FOSC/32  
• FOSC/64  
• FRC (dedicated internal oscillator)  
12.1.2  
CHANNEL SELECTION  
For correct conversion, the A/D conversion clock  
(1/TAD) must be selected to ensure a minimum TAD of  
1.6 μs. Table 12-1 shows a few TAD calculations for  
selected frequencies.  
There are fourteen analog channels on the PIC16F785.  
The CHS<3:0> bits (ADCON0<5:2>) control which  
channel is connected to the sample and hold circuit.  
TABLE 12-1: TAD VS. DEVICE OPERATING FREQUENCIES  
Device Frequency  
A/D Clock Source (TAD)  
Operation  
ADCS2:ADCS0  
20 MHz  
100 ns(2)  
200 ns(2)  
400 ns(2)  
800 ns(2)  
1.6 μs  
5 MHz  
400 ns(2)  
800 ns(2)  
1.6 μs  
4 MHz  
500 ns(2)  
1.0 μs(2)  
2.0 μs  
1.25 MHz  
1.6 μs  
3.2 μs  
2 TOSC  
4 TOSC  
000  
100  
001  
101  
010  
110  
x11  
8 TOSC  
6.4 μs  
16 TOSC  
32 TOSC  
64 TOSC  
A/D RC  
3.2 μs  
6.4 μs  
12.8 μs(3)  
2-6 μs(1,4)  
4.0 μs  
12.8 μs(3)  
25.6 μs(3)  
51.2 μs(3)  
2-6 μs(1,4)  
8.0 μs(3)  
16.0 μs(3)  
2-6 μs(1,4)  
3.2 μs  
2-6 μs(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The A/D RC source has a typical TAD time of 4 μs for VDD > 3.0V.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the A/D RC clock source is only recommended if the  
conversion will be performed during Sleep.  
DS41249B-page 80  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
If the conversion must be aborted, the GO/DONE bit can  
be cleared in software. The ADRESH:ADRESL registers  
will not be updated with the partially complete A/D  
conversion sample. Instead, the ADRESH:ADRESL  
registers will retain the value of the previous conversion.  
After an aborted conversion, a 2 TAD delay is required  
before another acquisition can be initiated. Following the  
delay, an input acquisition is automatically started on the  
selected channel.  
12.1.5  
STARTING A CONVERSION  
The A/D conversion is initiated by setting the  
GO/DONE bit (ADCON0<1>). When the conversion is  
complete, the A/D module:  
• Clears the GO/DONE bit  
• Sets the ADIF flag (PIR1<6>)  
• Generates an interrupt (if enabled)  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the A/D.  
FIGURE 12-2:  
A/D CONVERSION TAD CYCLES  
TCY to TAD  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6  
TAD  
7
TAD  
8
TAD9 TAD10 TAD11  
b9  
b8  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Conversion Starts  
Holding Capacitor is Disconnected from Analog Input (typically 100 ns)  
Set GO bit  
ADRESH and ADRESL registers are loaded,  
GO bit is cleared,  
ADIF bit is set,  
Holding capacitor is connected to analog input  
12.1.6  
CONVERSION OUTPUT  
The A/D conversion can be supplied in two formats: left  
or right justified. The ADFM bit (ADCON0<7>) controls  
the output format. Figure 12-3 shows the output  
formats.  
FIGURE 12-3:  
10-BIT A/D RESULT FORMAT  
ADRESH (ADDRESS:1Eh)  
ADRESL (ADDRESS:9Eh)  
LSB  
(ADFM = 0)  
MSB  
bit 7  
bit 0  
bit 7  
bit 0  
10-bit A/D Result  
Unimplemented: Read as ‘0’  
(ADFM = 1)  
MSB  
LSB  
bit 0  
bit 7  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
10-bit A/D Result  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 81  
PIC16F785  
REGISTER 12-1:  
ANSEL0 – ANALOG SELECT REGISTER (ADDRESS: 91h)  
R/W-1  
ANS7  
R/W-1  
ANS6  
R/W-1  
ANS5  
R/W-1  
ANS4  
R/W-1  
ANS3  
R/W-1  
ANS2  
R/W-1  
ANS1  
R/W-1  
ANS0  
bit 7  
bit 0  
bit 7-0  
ANS<7:0>: Analog Select bits  
Analog select between analog or digital function on pins AN<7:0>, respectively.  
1= Analog input. Pin is assigned as analog input.(1)  
0= Digital I/O. Pin is assigned to port or special function.  
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak  
pull-ups, and interrupt-on-change, if available. The corresponding TRIS bit must be  
set to Input mode in order to allow external control of the voltage on the pin. Port  
reads of pins configured assigned as analog inputs will read as ‘0’.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 12-2: ANSEL1 – ANALOG SELECT REGISTER (ADDRESS: 93h)  
U-0  
U-0  
U-0  
U-0  
R/W-1  
ANS11  
R/W-1  
R/W-1  
ANS9  
R/W-1  
ANS8  
ANS10  
bit 7  
bit 0  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
ANS<11:8>: Analog Select bits  
Analog select between analog or digital function on pins AN<11:8>, respectively.  
1= Analog input. Pin is assigned as analog input.(1)  
0= Digital I/O. Pin is assigned to port or special function.  
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak  
pull-ups, and interrupt-on-change, if available. The corresponding TRIS bit must be  
set to Input mode in order to allow external control of the voltage on the pin. Port  
reads of pins assigned as analog inputs will read as ‘0’.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
TABLE 12-2: ANALOG SELECT CROSS REFERENCE  
Mode  
Reference  
Analog  
Select  
ANS11 ANS10  
ANS9  
ANS8  
ANS7  
ANS6  
ANS5  
ANS4  
ANS3  
ANS2  
ANS1  
ANS0  
Analog  
Channel  
AN11  
RB5  
AN10  
RB4  
AN9  
RC7  
AN8  
RC6  
AN7  
RC3  
AN6  
RC2  
AN5  
RC1  
AN4  
RC0  
AN3  
RA4  
AN2  
RA2  
AN1  
RA1  
AN0  
RA0  
I/O Pin  
DS41249B-page 82  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
REGISTER 12-3: ADCON0 – A/D CONTROL REGISTER (ADDRESS: 1Fh)  
R/W-0  
ADFM  
R/W-0  
VCFG  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0 GO/DONE ADON  
bit 0  
R/W-0  
R/W-0  
bit 7  
bit 7  
ADFM: A/D Result Formed Select bit  
1= Right justified  
0= Left justified  
bit 6  
VCFG: Voltage Reference bit  
1= VREF pin  
0= VDD  
bit 5-2  
CHS<3:0>: Analog Channel Select bits  
0000= Channel 00 (AN0)  
0001= Channel 01 (AN1)  
0010= Channel 02 (AN2)  
0011= Channel 03 (AN3)  
0100= Channel 04 (AN4)  
0101= Channel 05 (AN5)  
0110= Channel 06 (AN6)  
0111= Channel 07 (AN7)  
1000= Channel 08 (AN8)  
1001= Channel 09 (AN9)  
1010= Channel 10 (AN10)  
1011= Channel 11 (AN11)  
1100= CVREF  
1101= VR  
1110= Reserved. Do not use.  
1111= Reserved. Do not use.  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: A/D Enable bit  
1= A/D converter module is enabled  
0= A/D converter is shut-off and consumes no operating current  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 83  
PIC16F785  
REGISTER 12-4: ADCON1 – A/D CONTROL REGISTER 1 (ADDRESS: 9Fh)  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADCS<2:0>: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
x11= FRC (clock derived from a dedicated internal oscillator = 500 kHz max)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
bit 3-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41249B-page 84  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
12.1.7  
CONFIGURING THE A/D  
EXAMPLE 12-1:  
A/D CONVERSION  
;This code block configures the A/D  
;for polling, Vdd reference, R/C clock  
;and RA0 input.  
;
After the A/D module has been configured as desired,  
the selected channel must be acquired before the  
conversion is started. The analog input channels must  
have their corresponding TRIS bits selected as inputs.  
;Conversion start and wait for complete  
To determine sample time, see Tables 18-15 and 18-16.  
After this sample time has elapsed, the A/D conversion  
can be started.  
;polling code included.  
;
BCF  
BSF  
STATUS,RP1 ;Bank 1  
STATUS,RP0  
;
These steps should be followed for an A/D conversion:  
MOVLW B’01110000’ ;A/D RC clock  
MOVWF ADCON1  
1. Configure the A/D module:  
BSF  
BSF  
BCF  
TRISA,0  
ANSEL0,0  
STATUS,RP0 ;Bank 0  
;Set RA0 to input  
;Set RA0 to analog  
• Configure analog/digital I/O (ANSx)  
• Select A/D conversion clock (ADCON1<6:4>)  
• Configure voltage reference (ADCON0<6>)  
• Select A/D input channel (ADCON0<5:2>)  
• Select result format (ADCON0<7>)  
• Turn on A/D module (ADCON0<0>)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit (PIR1<6>)  
MOVLW B’10000001’ ;Right, Vdd Vref, AN0  
MOVWF ADCON0  
CALL  
BSF  
SampleTime ;Wait min sample time  
ADCON0,GO  
;Start conversion  
;Is conversion done?  
;No, test again  
BTFSC ADCON0,GO  
GOTO  
MOVF  
$-1  
ADRESH,W  
;Read upper 2 bits  
MOVWF RESULTHI  
• Set ADIE bit (PIE1<6>)  
BSF  
STATUS,RP0 ;Bank 1  
MOVF  
BCF  
MOVWF RESULTLO  
ADRESL,W  
STATUS,RP0 ;Bank 0  
;Read lower 8 bits  
• Set PEIE and GIE bits (INTCON<7:6>)  
3. Wait the required acquisition time.  
4. Start conversion:  
• Set GO/DONE bit (ADCON0<1>)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
(with interrupts disabled); OR  
• Waiting for the A/D interrupt  
6. Read A/D Result register pair  
(ADRESH:ADRESL), clear bit ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before the next acquisition starts.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 85  
PIC16F785  
be decreased. After the analog input channel is  
selected (changed), this acquisition must be done  
before the conversion can be started.  
12.2 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 12-4. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD), see Figure 12-4. The maximum recom-  
mended impedance for analog sources is 10 kΩ. As  
the impedance is decreased, the acquisition time may  
To calculate the minimum acquisition time, Equation 12-1  
may be used. This equation assumes that 1/2 LSb error is  
used (1024 steps for the A/D). The 1/2 LSb error is the  
maximum error allowed for the A/D to meet its specified  
resolution.  
To calculate the minimum acquisition time, TACQ, see  
the “PICmicro® Mid-Range MCU Family Reference  
Manual” (DS33023).  
EQUATION 12-1: ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10kΩ 5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2µs + TC + [(Temperature - 25°C)(0.05µs/°C)]  
The value for TC can be approximated with the following equations:  
1
2047  
-----------  
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED 1 –  
= VCHOLD  
TC  
---------  
VAPPLIED 1 – e RC = VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
Tc  
--------  
1
2047  
VAPPLIED 1 – e RC = VAPPLIED 1 –  
;combining [1] and [2]  
-----------  
Solving for TC:  
TC = CHOLD(RIC + RSS + RS) ln(1/2047)  
= 10pF(1kΩ + 7kΩ + 10kΩ) ln(0.0004885)  
= 1.37µs  
Therefore:  
TACQ = 2µS + 1.37µS + [(50°C- 25°C)(0.05µS/°C)]  
= 4.67µS  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin  
leakage specification.  
DS41249B-page 86  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
FIGURE 12-4:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
RS  
CHOLD  
= DAC capacitance  
= 10 pF  
CPIN  
5 pF  
VA  
ILEAKAGE  
± 500 nA  
VT = 0.6V  
VSS  
6V  
5V  
RSS  
VDD 4V  
3V  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
2V  
I LEAKAGE = Leakage current at the pin due to  
various junctions  
RIC  
SS  
CHOLD  
= Interconnect Resistance  
= Sampling Switch  
= Sample/Hold Capacitance (from DAC)  
5 6 7 8 9 10 11  
Sampling Switch  
(kΩ)  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 87  
PIC16F785  
When the A/D clock source is something other than  
RC, a SLEEPinstruction causes the present conversion  
to be aborted and the A/D module is turned off. The  
ADON bit remains set.  
12.3 A/D Operation During Sleep  
The A/D Converter module can operate during Sleep.  
This requires the A/D clock source to be set to the FRC  
option. When the RC clock source is selected, the A/D  
waits one instruction before starting the conversion.  
This allows the SLEEPinstruction to be executed, thus  
eliminating much of the switching noise from the  
conversion. When the conversion is complete, the  
GO/DONE bit is cleared and the result is loaded into  
the ADRESH:ADRESL registers. If the A/D interrupt is  
enabled (ADIE and PEIE bits set), the device awakens  
from Sleep. If the GIE bit (INTCON<7>) is set, the  
program counter is set to the interrupt vector (0004h).  
If GIE is clear, the next instruction is executed. If the  
A/D interrupt is not enabled, the A/D module is turned  
off, although the ADON bit remains set.  
FIGURE 12-5:  
A/D TRANSFER FUNCTION  
Full-Scale Range  
3FFh  
3FEh  
3FDh  
3FCh  
3FBh  
1 LSB ideal  
Full-Scale  
Transition  
004h  
003h  
002h  
001h  
000h  
Analog Input Voltage  
1 LSB ideal  
VREF  
Zero-Scale  
Transition  
0V  
DS41249B-page 88  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
The appropriate analog input channel must be selected  
and the minimum acquisition done before the “special  
12.4 Effects of Reset  
A device Reset forces all registers to their Reset state.  
Thus, the A/D module is turned off and any pending  
conversion is aborted. The ADRESH:ADRESL  
registers are unchanged.  
event trigger” sets the GO/DONE bit (starts  
conversion).  
a
If the A/D module is not enabled (ADON is cleared), then  
the “special event trigger” will be ignored by the A/D  
module, but will still reset the Timer1 counter. See  
Section 8.0 “Capture/Compare/PWM (CCP) Module”  
for more information.  
12.5 Use of the CCP Trigger  
An A/D conversion can be started by the “special event  
trigger” of the CCP module. This requires that the  
CCP1M3:CCP1M0  
bits  
(CCP1CON<3:0>)  
be  
programmed as ‘1011’ and that the A/D module is  
enabled (ADON bit is set). When the trigger occurs, the  
GO/DONE bit will be set, starting the A/D conversion  
and the Timer1 counter will be reset to zero. Timer1 is  
reset to automatically repeat the A/D acquisition period  
with minimal software overhead (moving the  
ADRESH:ADRESL to the desired location).  
TABLE 12-3: SUMMARY OF A/D REGISTERS  
Value on  
Value on:  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
05h,105h PORTA  
06h,106h PORTB  
07h,107h PORTC  
RA5  
RB5  
RC5  
T0IE  
RA4  
RB4  
RC4  
INTE  
RA3  
RA2  
RA1  
RA0  
--xx xxxx  
xxxx ----  
xxxx xxxx  
0000 0000  
--uu uuuu  
uuuu ----  
uuuu uuuu  
0000 0000  
RB7  
RC7  
GIE  
RB6  
RC6  
PEIE  
RC3  
RAIE  
RC2  
T0IF  
RC1  
INTF  
RC0  
RAIF  
0Bh,8Bh, INTCON  
10Bh,18Bh  
0Ch  
1Eh  
1Fh  
PIR1  
EEIF  
ADIF  
CCP1IF  
C2IF  
C1IF  
OSFIF  
TMR2IF  
TMR1IF  
0000 0000  
xxxx xxxx  
0000 0000  
--11 1111  
1111 ----  
1111 1111  
0000 0000  
1111 1111  
---- 1111  
xxxx xxxx  
-000 ----  
0000 0000  
uuuu uuuu  
0000 0000  
--11 1111  
1111 ----  
1111 1111  
0000 0000  
1111 1111  
---- 1111  
uuuu uuuu  
-000 ----  
ADRESH Most Significant 8 bits of the left justified A/D result or 2 bits of the right justified result  
ADCON0  
ADFM  
VCFG  
CHS3  
TRISA5  
TRISB5  
TRISC5  
CCP1IE  
ANS5  
CHS2  
TRISA4  
TRISB4  
TRISC4  
C2IE  
CHS1  
TRISA3  
CHS0  
TRISA2  
GO/DONE ADON  
85h,185h TRISA  
86h,186h TRISB  
87h,187h TRISC  
TRISA1  
TRISA0  
TRISB7  
TRISC7  
EEIE  
ANS7  
TRISB6  
TRISC6  
ADIE  
ANS6  
TRISC3  
C1IE  
TRISC2  
OSFIE  
ANS2  
ANS10  
TRISC1  
TMR2IE  
ANS1  
ANS9  
TRISC0  
TMR1IE  
ANS0  
ANS8  
8Ch  
PIE1  
91h  
ANSEL0  
ANSEL1  
ANS4  
ANS3  
ANS11  
93h  
9Eh  
ADRESL Least Significant 2 bits of the left justified A/D result or 8 bits of the right justified result  
ADCON1 ADCS2 ADCS1 ADCS0  
9Fh  
Legend:  
x= unknown, u= unchanged, – = unimplemented read as ‘0’. Shaded cells are not used for A/D module.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 89  
PIC16F785  
NOTES:  
DS41249B-page 90  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
EQUATION 13-2: PHASE RESOLUTION  
13.0 TWO-PHASE PWM  
The two-phase PWM (Pulse Width Modulator) is a  
stand-alone peripheral that supports:  
360  
(PER + 1)  
PhaseDEG = -------------------------  
• Single or dual-phase PWM  
• Single complementary output PWM with overlap/  
delay  
13.3 PWM Duty Cycle  
• Sync input/output to cascade devices for  
additional phases  
Each PWM output is driven inactive, terminating the  
drive period, by asynchronous feedback through the  
internal comparators. The duty cycle resolution is in  
effect infinitely adjustable. Either or both comparators  
can be used to reset the PWM by setting the  
corresponding comparator enable bit (CxEN, see  
Register 13-3). Duty cycles of 100% can be obtained  
by suppressing the feedback which would otherwise  
terminate the pulse.  
Setting either, or both, of the PH1EN or PH2EN bits of  
the PWMCON0 register will activate the PWM module  
(see Register 13-1). If PH1 is used then TRISC<1>  
must be cleared to configure the pin as an output. The  
same is true for TRISC<4> when using PH2. Both  
PH1EN and PH2EN must be set when using  
Complementary mode.  
The comparator outputs can be “held off”, or blanked,  
by enabling the corresponding BLANK bit (BLANKx,  
see Register 13-1) for each phase. The blank bit  
disables the comparator outputs for 1/2 of a system  
clock (FOSC), thus ensuring at least Tosc/2 active time  
for the PWM output. Blanking avoids early termination  
of the PWM output which may result due to switching  
transients at the beginning of the cycle.  
13.1 PWM Period  
The PWM period is derived from the main clock (FOSC),  
the PWM prescaler and the period counter (see  
Figure 13-1). The prescale bits (PWMP<1:0>, see  
Register 13-2) determine the value of the clock divider  
which divides the system clock (FOSC) to the pwm_clk.  
This pwm_clk is used to drive the PWM counter. In  
Master mode, the PWM counter is reset when the  
count reaches the period count (PER<4:0>, see  
Register 13-2), which determines the frequency of the  
PWM. The relationship between the PWM frequency,  
prescale and period count is shown in Equation 13-1.  
13.4 Master/Slave Operation  
Multiple chips can operate together to achieve  
additional phases by operating one as the master and  
the others as slaves. When the PWM is configured as  
a master, the RB7/SYNC pin is an output and  
generates a high output for one pwm_clk period at the  
end of each PWM period (see Figure 13-4).  
EQUATION 13-1: PWM FREQUENCY  
Fosc  
PWMFREQ = ---------------------------------------------------  
When the PWM is configured as a slave, the RB7/  
SYNC pin is an input. The high input from a master in  
this configuration resets the PWM period counter which  
synchronizes the slave unit at the end of each PWM  
period. Proper operation of a slave device requires a  
common external FOSC clock source to drive the  
master and slave. The PWM prescale value of the  
slave device must also be identical to that of the  
master. As mentioned previously, the slave period  
count value must be greater than or equal to that of the  
master.  
(2PWMP ⋅ (PER + 1))  
The maximum PWM frequency is FOSC/2, since the  
period count must be greater than zero.  
In Slave mode, the period counter is reset by the SYNC  
input, which is the master device period counter reset.  
For proper operation, the slave period count should be  
equal to or greater than that of the master.  
13.2 PWM Phase  
The PWM Counter will be reset and held at zero when  
both PH1EN and PH2EN (PWMCON0<1:0>) are false.  
If the PWM is configured as a slave, the PWM Counter  
will remain reset at zero until the first SYNC input is  
received.  
Each enabled phase output is driven active when the  
phase counter matches the corresponding PWM phase  
count (PH<4:0>, see Register 13-3 and Register 13-4).  
The phase output remains true until terminated by a  
feedback signal from either of the comparators or the  
auto-shutdown activates.  
Phase granularity is a function of the period count  
value. For example, if PER<4:0> = 3, each output can  
be shifted in 90° steps (see Equation 13-2).  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 91  
PIC16F785  
The PWMASE bit (see Register 13-2) is set by hard-  
ware when a shutdown event occurs. If automatic  
restarts are not enabled (PRSEN = 0, see  
Register 13-1), PWM operation will not resume until the  
PWMASE bit is cleared by firmware after the shutdown  
condition clears. The PWMASE bit can not be cleared  
as long as the shutdown condition exists. If automatic  
restarts are not enabled, the auto-shutdown mode can  
be forced by writing a ‘1’ to the PWMASE bit.  
13.5 Active PWM Output Level  
The PWM output signal can be made active high or low  
by setting or resetting the corresponding POL bit (see  
Register 13-3 and Register 13-4). When POL is ‘1’ the  
active output state is VOL. When POL is ‘0’ the active  
output state is VOH.  
13.6 Auto-Shutdown and Auto-Restart  
If automatic restarts are enabled (PRSEN = 1), the  
PWMASE bit is automatically cleared and PWM opera-  
tion resumes when the auto-shutdown event clears  
(VIH on the RA2/AN2/T0CKI/INT/C1OUT pin).  
When the PWM is enabled, the PWM outputs may be  
configured for auto-shutdown by setting the PASEN bit  
(see Register 13-1). VIL on the RA2/AN2/T0CKI/INT/  
C1OUT pin will cause a shutdown event if auto-shutdown  
is enabled. An auto-shutdown event immediately places  
the PWM outputs in the inactive state (see Section 13.5  
“Active PWM Output Level”) and the PWM phase and  
period counters are reset and held to zero.  
FIGURE 13-1:  
TWO-PHASE PWM SIMPLIFIED BLOCK DIAGRAM  
PH1EN  
PH2EN  
PWMASE  
PASEN  
PWMP<1:0>  
MASTER  
S
SHUTDOWN  
÷1,2,4,8  
FOSC  
pwm_clk  
Phase  
Counter  
0
Res  
Prescale  
1
M
RB7/SYNC  
5
PER<4:0>  
pwm_count  
5
PWMPH1<POL>  
5
S
PWMPH1<4:0>  
BLANK1  
pha1  
Q
SHUTDOWN  
PH1EN  
(1)  
R
RC1/AN5/C12IN1-/PH1  
PWMPH1<C1EN>  
PWMPH1<C2EN>  
C1OUT  
C2OUT  
PWMPH2<POL>  
5
PWMPH2<4:0>  
SHUTDOWN  
PH2EN  
S
R
BLANK2  
pha2  
Q
(1)  
RC4/C2OUT/PH2  
PWMPH2<C1EN>  
PWMPH2<C2EN>  
Note 1: Reset dominant.  
DS41249B-page 92  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
REGISTER 13-1: PWMCON0 – PWM CONTROL REGISTER 0 (ADDRESS: 111h)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PRSEN  
PASEN  
BLANK2 BLANK1  
SYNC1  
SYNC0  
PH2EN  
PH1EN  
bit 7  
bit 0  
bit 7  
PRSEN: PWM Restart Enable bit  
1= Upon auto-shutdown, the PWMASE shutdown bit clears automatically once the shutdown  
condition goes away. The PWM restarts automatically.  
0= Upon auto-shutdown, the PWMASE must be cleared in firmware to restart the PWM.  
bit 6  
PASEN: PWM Auto-Shutdown Enable bit  
0= PWM auto-shutdown is disabled  
1= VIL on INT pin will cause auto-shutdown event  
bit 5  
BLANK2: PH2 Blanking bit(1)  
1= The PH2 pin is active for a minimum of 1/2 of an FOSC clock period after it is set  
0= The PH2 pin is reset as soon as the comparator trigger is active  
bit 4  
BLANK1: PH1 Blanking bit(1)  
1= The PH1 pin is active for a minimum of 1/2 of an FOSC clock period after it is set  
0= The PH1 pin is reset as soon as the comparator trigger is active  
bit 3-2  
SYNC<1:0>: SYNC Pin Function bits  
0X= SYNC pin not used for PWM. PWM acts as its own master. RB7/SYNC pin is available  
for general purpose I/O.  
10= SYNC pin acts as system slave, receiving the PWM counter reset pulse  
11= SYNC pin acts as system master, driving the PWM counter reset pulse  
bit 1  
bit 0  
PH2EN: PH2 Pin Enabled bit  
1= The PH2 pin is driven by the PWM signal  
0= The PH2 pin is not used for PWM functions  
PH1EN: PH1 Pin Enabled bit  
1= The PH1 pin is driven by the PWM signal  
0= The PH1 pin is not used for PWM functions  
Note 1: Blanking is disabled when operating in complementary mode. See COMOD<1:0>  
bits in the PWMCON1 register (Register 13-5) for more information.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 93  
PIC16F785  
REGISTER 13-2: PWMCLK – PWM CLOCK CONTROL REGISTER (ADDRESS: 112h)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PER4  
R/W-0  
PER3  
R/W-0  
PER2  
R/W-0  
PER1  
R/W-0  
PER0  
PWMASE PWMP1 PWMP0  
bit 7  
bit 0  
bit 7  
PWMASE: PWM Auto-Shutdown event Status bit  
0= PWM outputs are operating  
1= A shutdown event has occured. PWM outputs are inactive.  
bit 6-5  
PWMP<1:0>: PWM Clock Prescaler bits  
00= pwm_clk = FOSC ÷ 1  
01= pwm_clk = FOSC ÷ 2  
10= pwm_clk = FOSC ÷ 4  
11= pwm_clk = FOSC ÷ 8  
bit 4-0  
PER<4:0>: PWM Period bits  
00000= Not used. (Period = 1/pwm_clk)  
00001= Period = 2/pwm_clk2  
0....= . . .  
01111= Period = 16/pwm_clk  
10000= Period = 17/pwm_clk  
1....= . . .  
11110= Period = 31/pwm_clk  
11111= Period = 32/pwm_clk  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41249B-page 94  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
REGISTER 13-3: PWMPH1 – PWM PHASE 1 CONTROL REGISTER (ADDRESS: 113h)  
R/W-0  
POL  
R/W-0  
C2EN  
R/W-0  
C1EN  
R/W-0  
PH4  
R/W-0  
PH3  
R/W-0  
PH2  
R/W-0  
PH1  
R/W-0  
PH0  
bit 7  
bit 0  
bit 7  
bit 6  
POL: PH1 Output Polarity bit  
1= PH1 Pin is active low  
0= PH1 Pin is active high  
C2EN: Comparator 2 Enable bit  
When COMOD<1:0> = 00(1)  
1= PH1 is reset when C2OUT goes high  
0= PH1 ignores Comparator 2  
When COMOD<1:0> = X1(1)  
1= Complementary drive terminates when C2OUT goes high  
0= Comparator 2 is ignored  
When COMOD<1:0> = 10(1)  
C2EN has no effect  
bit 5  
C1EN: Comparator 1 Enable bit  
When COMOD<1:0> = 00(1)  
1= PH1 is reset when C1OUT goes high  
0= PH1 ignores Comparator 1  
When COMOD<1:0> = X1(1)  
1= Complementary drive terminates when C1OUT goes high  
0= Comparator 1 is ignored  
When COMOD<1:0> = 10(1)  
C1EN has no effect  
bit 4-0  
PH<4:0>: PWM Phase bits  
When COMOD<1:0> = 00(1)  
00000= PH1 starts 1 pwm_clk period after falling edge of SYNC pulse. All other PH1  
delays are expressed relative to this time.  
00001= PH1 is delayed by 1 pwm_clk pulse  
.....= . . .  
11111= PH1 is delayed by 31 pwm_clk pulses  
When COMOD<1:0> = X1or 1X(1)  
00000= Complementary drive starts 1 pwm_clk period after falling edge of SYNC pulse.  
All other delays are expressed relative to this time.  
00001= Complementary drive start is delayed by 1 pwm_clk pulse  
.....= . . .  
11111= Complementary drive start is delayed by 31 pwm_clk pulses  
Note 1: See PWMCON1 register (Register 13-5).  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 95  
PIC16F785  
REGISTER 13-4: PWMPH2 – PWM PHASE 2 CONTROL REGISTER (ADDRESS: 114h)  
R/W-0  
POL  
R/W-0  
C2EN  
R/W-0  
C1EN  
R/W-0  
PH4  
R/W-0  
PH3  
R/W-0  
PH2  
R/W-0  
PH1  
R/W-0  
PH0  
bit 7  
bit 0  
bit 7  
bit 6  
POL: PH2 Output Polarity bit  
1= PH2 Pin is active low  
0= PH2 Pin is active high  
C2EN: Comparator 2 Enable bit  
When COMOD<1:0> = 00(1)  
1= PH2 is reset when C2OUT goes high  
0= PH2 ignores Comparator 2  
When COMOD<1:0> = 1Xor X1(1)  
C2EN has no effect  
bit 5  
C1EN: Comparator 1 Enable bit  
When COMOD<1:0> = 00(1)  
1= PH2 is reset when C1OUT goes high  
0= PH2 ignores Comparator 1  
When COMOD<1:0> = 1Xor X1(1)  
C1EN has no effect  
bit 4-0  
PH<4:0>: PWM Phase bits  
When COMOD<1:0> = 00(1)  
00000= PH2 starts 1 pwm_clk period after falling edge of SYNC pulse. All other PH2  
delays are expressed relative to this time.  
00001= PH2 is delayed by 1 pwm_clk pulse  
.....= . . .  
11111= PH2 is delayed by 31 pwm_clk pulses  
When COMOD<1:0> = 1X(1)  
00000= Complementary drive terminates 1 pwm_clk period after falling edge of SYNC  
pulse. All other PH2 delays are expressed relative to this time.  
00001= Complementary drive termination is delayed by 1 pwm_clk pulse  
.....= . . .  
11111= Complementary drive termination is delayed by 31 pwm_clk pulses  
When COMOD<1:0> = 01(1)  
PH<4:0> has no effect.  
Note 1: See PWMCON1 register (Register 13-5).  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41249B-page 96  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
FIGURE 13-2:  
TWO-PHASE PWM AUTO-SHUTDOWN AND SYNC TIMING  
FOSC  
PWMP<1:0> = 0X01, PER<4:0> = 0X03  
pwm_clk  
2
pwm_count  
0
1
0
1
2
3
0
1
2
3
0
SYNC  
Phase1 setup: PH<4:0> = 0x00, C1EN = 1, BLANK1 = 0  
pha1  
SHUTDOWN  
pwm_clk  
0
1
2
0
1
2
3
0
1
2
3
0
pwm_count  
Phase2 setup: PH<4:0> = 0x02, C2EN = 1, BLANK2 = 1  
pha2  
FIGURE 13-3:  
TWO-PHASE PWM START-UP TIMING  
FOSC  
PWMP<1:0> = 0X01, PER<4:0> = 0X03  
pwm_clk  
pwm_count  
1
2
3
0
1
2
0
0
SYNC  
PHnEN  
pwm_clk  
0
1
2
3
0
1
2
3
pwm_count  
PHnEN  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 97  
PIC16F785  
Resistor divider R5 and R6 scale the output voltage,  
which is inverted and amplified by Op Amp 1, relative  
to the reference voltage present at the non-inverting pin  
of the op amp. R3, C5 and C2 form the inverting  
stabilization gain feedback of the amplifier. The VR  
reference supplies a stable reference to the non-  
inverting input of the op amp, which is tweaked by the  
voltage source created by a secondary time based  
PWM output of the CCP and R1 and C1.  
13.7 Example Single Phase Application  
Figure 13-4 shows an example of a single phase buck  
voltage regulator application. The PWM output drives  
Q1 with pulses to alternately charge and discharge L1.  
C4 holds the charge from L1 during the inactive cycle  
of the drive period. R4 and C3 form a ramp generator.  
At the beginning of the PWM period, the PWM output  
goes high causing the voltage on C3 to rise concurrently  
with the current in L1. When the voltage across C3  
reaches the threshold level present at the positive input  
of Comparator 1, the comparator output changes and  
terminates the drive output from the PWM to Q1. When  
Q1 is not driven, the current path to L1 through Q1 is  
interrupted, but since the current in L1 cannot stop  
instantly, the current continues to flow through D2 as L1  
discharges into C4. D1 quickly discharges C3 in  
preparation of the next ramp cycle.  
Output regulation occurs by the following principle: If the  
regulator output voltage is too low, then the voltage to the  
non-inverting input of Comparator 1 will rise, resulting in  
a higher threshold voltage and, consequently, longer  
PWM drive pulses into Q1. If the output voltage is too  
high, then the voltage to the non-inverting input of  
Comparator 1 will fall, resulting in shorter PWM drive  
pulses into Q1.  
FIGURE 13-4:  
EXAMPLE SINGLE PHASE APPLICATION  
CCP  
VR  
PIC16F785  
R1  
R2  
C1  
OPA1  
VUNREG  
FOSC  
FET  
Driver  
R3  
Q1  
PH1  
TWO- Phase  
PWM  
C2  
C5  
L1  
C4  
C1  
D2  
R4  
D1  
R5  
R6  
C3  
DS41249B-page 98  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
When COMOD<1:0> = 11, the duty cycle is controlled  
by the phase counter or feedback through comparator  
C1 or C2. For example, in this mode, the maximum  
duty cycle is determined by the values of  
PWMPH1<4:0> (duty cycle start) and PWMPH2<4:0>  
(duty cycle end). The duty cycle can be terminated ear-  
lier than the maximum by feedback through comparator  
C1 or C2.  
13.8 PWM Configuration  
When configuring the Two-Phase PWM, care must be  
taken to avoid active output levels from the PH1 and  
PH2 pins before the PWM is fully configured. The  
following sequence is suggested before the TRISC  
register or any of the Two-Phase PWM control registers  
are first configured:  
• Output inactive (OFF) levels to the PORTC RC1/  
AN5/C12IN1-/PH1 and RC4/C2OUT/PH2 pins.  
13.9.1  
DEAD BAND CONTROL  
• Clear TRISC bits 1 and 4 to configure the PH1  
and PH2 pins as outputs.  
The Complementary Output mode facilitates driving  
series connected MOSFET drivers by providing dead  
band drive timing between each phase output (see  
Figure 13-6). Dead band times are selectable by the  
CMDLY<4:0> bits of the PWMCON1 register. Delays  
from 0 to 155 nanoseconds (typical) with a resolution of  
5 nanoseconds (typical) are available.  
• Configure the PWMCLK, PWMPH1, PWMPH2,  
and PWMCON1 registers.  
• Configure the PWMCON0 register.  
13.9 Complementary Output Mode  
13.9.2  
OVERLAP CONTROL  
The Two-Phase PWM module may be configured to  
operate in a Complementary Output mode where PH1  
and PH2 are always 180 degrees out-of-phase (see  
Figure 13-5). Three complementary modes are  
available and are selected by the COMOD<1:0> bits in  
the PWMCON1 register (see Register 13-5). The differ-  
ence between the modes is the method by which the  
PH1 and PH2 outputs switch from the active to the  
inactive state during the PWM period.  
Overlap timing can be accomplished by configuring the  
Complementary mode for the desired output polarity  
and overlap time (as dead time) then swapping the  
output connections and inverting the outputs. For  
example, to configure a complementary drive for 55 ns  
of overlap and an active high drive output on PH1 and  
an active low drive output on PH2, set the PWM control  
registers as follows:  
In Complementary mode, there are three methods by  
which the duty cycle can be controlled. These modes  
are selected with the COMOD<1:0> bits (see  
Register 13-5). In each of these modes, the duty cycle  
is started when the pwm_count = PWMPH1<4:0> and  
terminates on one of the following:  
• Connect PH1 driver to PH2 output  
• Connect PH2 driver to PH1 output  
• Initialize PORTC<1> to 1(PH2 driver off)  
• Initialize PORTC<4> to 0(PH1 driver off)  
• Set TRISC<1,4> to 0for output  
• Set PWMPH1<POL> to 1(Inverted PH1)  
• Set PWMPH2<POL> to 1(Non-Inverted PH2)  
• Feedback through C1 or C2.  
• When the pwm_count equals PWMPH1<4:0>.  
• Combined feedback and pwm_count match.  
• Set PWMCON1 for 55 ns delay and desired termi-  
nation (comparator, count, or both)  
When COMOD<1:0> = 01, the duty cycle is controlled  
only by feedback through comparator C1 or C2. In this  
mode, the active drive cycle starts when pwm_count  
equals PWMPH1<4:0> and terminates when compara-  
tor C1’s output goes high (if enabled by  
PWMPH1<5> = 1) or when comparator C2 output goes  
high (if enabled by PWMPH1<6> = 1).  
• Set PWMCON0 desired SYNC and auto-shutdown  
configuration and to enable PH1 and PH2  
13.9.3  
SHUTDOWN IN COMPLEMENTARY  
MODE  
During shutdown the PH1 and PH2 complementary  
outputs are forced to their inactive states (see  
Figure 13-5). When shutdown ceases the PWM  
outputs revert to their start-up states for the first cycle  
which is PH1 inactive (output undriven) and PH2 active  
(output driven).  
When COMOD<1:0> = 10, the duty cycle is controlled  
only by the PWM Phase counter. In this mode, the  
active drive cycle starts when the pwm_count equals  
PWMPH1<4:0> and terminates when the pwm_count  
equals PWMPH2<4:0>. For example, free running  
50% duty cycle can be accomplished by setting  
COMOD<1:0> = 10 and choosing appropriate values  
for PWMPH1<4:0> and PWMPH2<4:0>.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 99  
PIC16F785  
REGISTER 13-5: PWMCON1 – PWM CONTROL REGISTER 1 (ADDRESS: 110h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CMDLY0  
bit 0  
COMOD1  
COMOD0  
CMDLY4  
CMDLY3  
CMDLY2  
CMDLY1  
bit 7  
bit 7  
Unimplemented: Read as ‘0’  
COMOD<1:0>: Complementary Mode Select bits  
(1)  
bit 6-5  
00= Normal two-phase operation. Complementary mode is disabled.  
01= Complementary operation. Duty cycle is terminated by C1OUT or C2OUT.  
10= Complementary operation. Duty cycle is terminated by PWMPH2<4:0> = pwm_count.  
11= Complementary operation. Duty cycle is terminated by PWMPH2<4:0> = pwm_count or C1OUT or  
C2OUT.  
bit 4-0  
CMDLY<4:0>: Complementary Drive Dead Time bits (typical)  
00000= Delay = 0  
00001= Delay = 5 ns  
00010= Delay = 10 ns  
.....= . . .  
11111= Delay = 155 ns  
Note 1: PWMCON0<1:0> must be set to ‘11’ for Complementary mode operation.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
FIGURE 13-5:  
COMPLEMENTARY OUTPUT PWM BLOCK DIAGRAM  
PH1EN  
pwm_reset  
PH2EN  
PS<1:0>  
PWMASE  
Shutdown  
MASTER  
S
PASEN  
FOSC  
pwm_clk  
0
Phase Res  
Prescale  
Counter  
1
RB7/SYNC  
M
5
PER<4:0>  
5
pwm_count  
PWMPH1<POL>  
pha1  
5
Delay  
5
S
PWMPH1<4:0>  
Q
RC1/AN5/C12IN1-/PH1  
R(1)  
CMDLY<4:0>  
5
5
PWMPH2<POL>  
pha2  
11  
10  
01  
PWMPH2<4:0>  
delay  
S
PWMPH1<C1EN>  
C1OUT  
Q
pwm_reset  
PWMPH1<C2EN>  
C2OUT  
RC4/C2OUT/PH2  
R(1)  
Shutdown  
COMOD<1:0>  
Note 1:  
Reset dominant.  
DS41249B-page 100  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
FIGURE 13-6:  
COMPLEMENTARY OUTPUT PWM TIMING  
FOSC  
PWMP<1:0> = 0X01, PER<4:0> = 0X03  
pwm_clk  
3
1
0
0
1
2
3
0
1
2
3
0
1
pwm_count  
SYNC  
C1OUT  
Phase 1 setup: PH<4:0> = 0x00, C1EN = 1, BLANKx = X, COMOD<1:0> = 0x01  
pha1  
pha2  
Delay  
Delay  
Shutdown  
TABLE 13-1: REGISTERS/BITS ASSOCIATED WITH PWM  
Value on:  
POR, BOR other Resets  
Value on all  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
98h  
REFCON  
VRCON  
BGST  
VRR  
VRBB  
VREN  
VR3  
VROE  
VR2  
CVROE  
VR1  
--00 000- --00 000-  
000- 0000 000- 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
99h  
C1VREN C2VREN  
VR0  
119h  
11Ah  
110h  
111h  
112h  
113h  
114h  
CM1CON0  
CM2CON0  
PWMCON1  
PWMCON0  
PWMCLK  
PWMPH1  
PWMPH2  
C1ON  
C2ON  
C1OUT  
C2OUT  
C1OE  
C2OE  
C1POL  
C2POL  
C1SP  
C2SP  
C1R  
C2R  
C1CH1  
C2CH1  
C1CH0  
C2CH0  
COMOD1 COMOD0 CMDLY4 CMDLY3 CMDLY2 CMDLY1 CMDLY0 -000 0000 -000 0000  
PRSEN  
PASEN  
BLANK2 BLANK1  
SYNC1  
PER3  
PH3  
SYNC0  
PER2  
PH2  
PH2EN  
PER1  
PH1  
PH1EN  
PER0  
PH0  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
PWMASE PWMP1 PWMP0  
PER4  
PH4  
POL  
POL  
C2EN  
C2EN  
C1EN  
C1EN  
PH4  
PH3  
PH2  
PH1  
PH0  
Legend: x= unknown, u= unchanged, – = unimplemented read as ‘0’, q= value depends upon condition. Shaded cells are not used by data PWM  
module.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 101  
PIC16F785  
NOTES:  
DS41249B-page 102  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
The EEPROM data memory allows byte read and write.  
A byte write automatically erases the location and  
writes the new data (erase before write). The EEPROM  
data memory is rated for high erase/write cycles. The  
write time is controlled by an on-chip timer. The write  
time will vary with voltage and temperature, as well as  
from chip-to-chip. Please refer to AC Specifications in  
Section 18.0 “Electrical Specifications” for exact  
limits.  
14.0 DATA EEPROM MEMORY  
The EEPROM data memory is readable and writable  
during normal operation (full VDD range). This memory  
is not directly mapped in the register file space.  
Instead, it is indirectly addressed through the Special  
Function Registers. There are four SFRs used to read  
and write this memory:  
• EECON1  
• EECON2 (not a physically implemented register)  
When the data memory is code-protected, the CPU  
may continue to read and write the data EEPROM  
memory. The device programmer can no longer access  
the data EEPROM data and will read zeroes.  
• EEDAT  
• EEADR  
EEDAT holds the 8-bit data for read/write, and EEADR  
holds the address of the EEPROM location being  
accessed. The PIC16F785 has 256 bytes of data  
EEPROM with an address range from 0h to FFh.  
Additional information on the data EEPROM is  
available in the “PICmicro® Mid-Range MCU Family  
Reference Manual” (DS33023).  
REGISTER 14-1: EEDAT – EEPROM DATA REGISTER (ADDRESS: 9Ah)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDAT7 EEDAT6 EEDAT5 EEDAT4  
bit 7  
EEDAT3  
EEDAT2 EEDAT1 EEDAT0  
bit 0  
bit 7-0  
EEDATn: Byte Value to Write to or Read From Data EEPROM bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 14-2:  
EEADR – EEPROM ADDRESS REGISTER (ADDRESS: 9Bh)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEADR7 EEADR6 EEADR5 EEADR4  
bit 7  
EEADR3  
EEADR2 EEADR1 EEADR0  
bit 0  
bit 7-0  
EEADR: Specifies one of 256 locations for EEPROM Read/Write Operation bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 103  
PIC16F785  
The WREN bit, when set, will allow a write operation. On  
power-up, the WREN bit is clear. The WRERR bit is set  
when a write operation is interrupted by a MCLR Reset,  
or a WDT Time-out Reset during normal operation. In  
these situations, following Reset, the user can check the  
WRERR bit, clear it and rewrite the location. The EEDAT  
14.1 EECON1 and EECON2 Registers  
EECON1 is the control register with four low-order bits  
physically implemented. The upper four bits are non-  
implemented and read as ‘0’s.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set in  
software. They are cleared in hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
and EEADR registers are cleared by  
a Reset.  
Therefore, the EEDAT and EEADR registers will need to  
be re-initialized.  
Interrupt flag EEIF bit (PIR1<7>) is set when write is  
complete. This bit must be cleared in software.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the data EEPROM write sequence.  
Note:  
The EECON1, EEDAT and EEADR  
registers should not be modified during a  
data EEPROM write (WR bit = 1).  
REGISTER 14-3: EECON1 – EEPROM CONTROL REGISTER (ADDRESS: 9Ch)  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
WRERR  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during  
normal operation or BOR reset)  
0= The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the data EEPROM  
WR: Write Control bit  
1= Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit  
can only be set, not cleared, in software.)  
0= Write cycle to the data EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit  
can only be set, not cleared, in software.)  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41249B-page 104  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit will  
be inhibited from being set unless the WREN bit is set.  
14.2 Reading the EEPROM Data  
Memory  
To read a data memory location, the user must write the  
address to the EEADR register and then set control bit  
RD (EECON1<0>), as shown in Example 14-1. The  
data is available, in the very next cycle, in the EEDAT  
register. Therefore, it can be read in the next  
instruction. EEDAT holds this value until another read,  
or until it is written to by the user (during a write  
operation).  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. The EEIF bit  
(PIR1<7>) register must be cleared by software.  
14.4 Write Verify  
Depending on the application, good programming  
practice may dictate that the value written to the data  
EEPROM should be verified (see Example 14-3) to the  
desired value to be written.  
EXAMPLE 14-1:  
DATA EEPROM READ  
STATUS,RP0 ;Bank 1  
STATUS,RP1  
BSF  
BCF  
MOVLW  
MOVWF  
BSF  
CONFIG_ADDR;  
EEADR  
EECON1,RD ;EE Read  
EEDAT,W ;Move data to W  
;Address to read  
EXAMPLE 14-3:  
WRITE VERIFY  
BSF  
BCF  
MOVF  
STATUS,RP0 ;Bank 1  
STATUS,RP1  
EEDAT,W  
MOVF  
;EEDAT not changed  
; from previous write  
14.3 Writing to the EEPROM Data  
Memory  
BSF  
EECON1,RD ;YES, Read the  
; value written  
EEDAT,W  
;Is data the same  
WRITE_ERR ;No, handle error  
;Yes, continue  
XORWF  
BTFSS  
GOTO  
To write an EEPROM data location, the user must first  
write the address to the EEADR register and the data  
to the EEDAT register. Then the user must follow a  
specific sequence to initiate the write for each byte, as  
shown in Example 14-2.  
STATUS,Z  
14.4.1  
USING THE DATA EEPROM  
EXAMPLE 14-2:  
DATA EEPROM WRITE  
The data EEPROM is  
a high-endurance, byte  
BSF  
BCF  
BSF  
STATUS,RP0  
STATUS,RP1  
EECON1,WREN ;Enable write  
;Bank 1  
addressable array that has been optimized for the  
storage of frequently changing information (e.g.,  
program variables or other data that are updated  
often). When variables in one section change  
frequently, while variables in another section do not  
change, it is possible to exceed the total number of  
write cycles to the EEPROM (specification D124)  
without exceeding the total number of write cycles to a  
single byte (specifications D120 and D120A). If this is  
the case, then an array refresh must be performed. For  
this reason, variables that change infrequently (such as  
constants, IDs, calibration, etc.) should be stored in  
Flash program memory.  
BCF  
INTCON,GIE  
INTCON,GIE  
$-2  
55h  
EECON2  
AAh  
EECON2  
EECON1,WR  
INTCON,GIE  
;Disable INTs  
;See AN-576  
;
;Unlock write  
;
;
;
BTFSC  
GOTO  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
;Start the write  
;Enable INTs  
BSF  
The write will not initiate if the above sequence is not  
followed exactly (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. We strongly  
recommend that interrupts be disabled during this  
code segment. A cycle count is executed during the  
required sequence. Any number that is not equal to the  
required cycles to execute the required sequence will  
prevent the data from being written into the EEPROM.  
14.5 Protect Against Spurious Write  
There are conditions when the user may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built in. On power-up, WREN is cleared. Also, the  
Power-up  
EEPROM write.  
Timer  
(64 ms  
duration)  
prevents  
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating the EEPROM. The WREN bit is not cleared  
by hardware.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during:  
• brown-out  
• power glitch  
• software malfunction  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 105  
PIC16F785  
14.6 Data EEPROM Operation During  
Code-Protect  
Data memory can be code-protected by programming  
the CPD bit in the Configuration Word (Register 15-1)  
to ‘0’.  
When the data memory is code-protected, the CPU is  
able to read and write data to the data EEPROM. It is  
recommended to code-protect the program memory  
when code-protecting data memory. This prevents  
anyone from programming zeroes over the existing  
code (which will execute as NOPs) to reach an added  
routine, programmed in unused program memory,  
which outputs the contents of data memory.  
Programming unused locations in program memory to  
0’ will also help prevent data memory code protection  
from becoming breached.  
TABLE 14-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RAIE  
T0IF  
INTF  
RAIF  
0000 0000 0000 0000  
10Bh,18Bh  
0Ch  
8Ch  
9Ah  
9Bh  
9Ch  
9Dh  
PIR1  
EEIF  
EEIE  
ADIF  
ADIE  
CCP1IF  
CCP1IE  
C2IF  
C2IE  
C1IF  
C1IE  
OSFIF  
TMR2IF TMR1IF 0000 0000 0000 0000  
PIE1  
OSFIE TMR2IE TMR1IE 0000 0000 0000 0000  
EEDAT  
EEADR  
EECON1  
EEDAT7 EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0 0000 0000 0000 0000  
EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 0000 0000 0000 0000  
WRERR WREN  
WR  
RD  
---- x000 ---- q000  
---- ---- ---- ----  
EECON2 EEPROM Control register 2 (not a physical register)  
Legend: x= unknown, u= unchanged, – = unimplemented read as ‘0’, q= value depends upon condition. Shaded cells are not used by  
data EEPROM module.  
DS41249B-page 106  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
15.1 Configuration Bits  
15.0 SPECIAL FEATURES OF THE  
CPU  
The configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’) to select various  
device configurations as shown in Register 15-1.  
These bits are mapped in program memory location  
2007h.  
The PIC16F785 has a host of features intended to  
maximize system reliability, minimize cost through  
elimination of external components, provide power  
saving features and offer code protection.  
These features are:  
Note:  
Address 2007h is beyond the user program  
memory space. It belongs to the special  
configuration memory space (2000h-  
3FFFh), which can be accessed only during  
programming. See “PIC16F785/PS200  
Memory Programming Specification”  
(DS41237) for more information.  
• Reset:  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
• Watchdog Timer (WDT)  
• Oscillator selection  
• Sleep  
• Code protection  
• ID Locations  
• In-Circuit Serial Programming™ (ICSP™)  
The PIC16F785 has two timers that offer necessary  
delays on power-up. One is the Oscillator Start-up  
Timer (OST), intended to keep the chip in Reset until  
the crystal oscillator is stable. The other is the Power-  
up Timer (PWRT), which provides a fixed delay of  
64 ms (nominal) on power-up only, designed to keep  
the part in Reset while the power supply stabilizes.  
There is also circuitry to reset the device if a brown-out  
occurs, which can use the Power-up Timer to provide  
at least a 64 ms Reset. With these three functions on-  
chip, most applications need no external Reset  
circuitry.  
The Sleep mode is designed to offer a very low-current  
Power-down mode. The user can wake-up from Sleep  
through:  
• External Reset  
• Watchdog Timer Wake-up  
• An interrupt  
Several oscillator options are also made available to  
allow the part to fit the application. The INTOSC option  
saves system cost, while the LP crystal option saves  
power. A set of configuration bits are used to select  
various options (see Register 15-1).  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 107  
PIC16F785  
REGISTER 15-1: CONFIG – CONFIGURATION WORD (ADDRESS: 2007h)  
(5)  
(1)  
(1)  
(2,3)  
(2)  
(4)  
(5)  
FCMEN  
IESO BOREN1  
BOREN0  
CPD  
CP  
MCLRE  
PWRTE WDTE  
FOSC2 FOSC1 FOSC0  
bit 0  
bit 13  
bit 13-12  
bit 11  
Unimplemented: Read as ‘1’  
(5)  
FCMEN: Fail-Safe Clock Monitor Enabled bit  
1= Fail-Safe Clock Monitor is enabled  
0= Fail-Safe Clock Monitor is disabled  
bit 10  
IESO: Internal External Switchover bit  
1= Internal External Switchover mode is enabled  
0= Internal External Switchover mode is disabled  
(1)  
bit 9-8  
BOREN<1:0>: Brown-out Reset Selection bits  
11= BOR enabled  
10= BOR enabled during operation and disabled in Sleep  
01= BOR controlled by SBOREN bit (PCON<4>)  
00= BOR disabled  
(2,3)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
CPD: Data Code Protection bit  
1= Data memory code protection is disabled  
0= Data memory code protection is enabled  
(2)  
CP: Code Protection bit  
1= Program memory code protection is disabled  
0= Program memory code protection is enabled  
(4)  
MCLRE: RA3/MCLR pin function select bit  
1= RA3/MCLR pin function is MCLR  
0= RA3/MCLR pin function is digital input, MCLR internally tied to VDD  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
(5)  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>)  
FOSC<2:0>: Oscillator Selection bits  
111= RC oscillator: CLKOUT function on RA4/AN3/T1G/OSC2/CLKOUT pin, RC on RA5/T1CKI/OSC1/CLKIN  
110= RCIO oscillator: I/O function on RA4/AN3/T1G/OSC2/CLKOUT pin, RC on RA5/T1CKI/OSC1/CLKIN  
101= INTOSC oscillator: CLKOUT function on RA4/AN3/T1G/OSC2/CLKOUT pin, I/O function on  
RA5/T1CKI/OSC1/CLKIN  
100= INTOSCIO oscillator: I/O function on RA4/AN3/T1G/OSC2/CLKOUT pin, I/O function on  
RA5/T1CKI/OSC1/CLKIN  
011= EC: I/O function on RA4/AN3/T1G/OSC2/CLKOUT pin, CLKIN on RA5/T1CKI/OSC1/CLKIN  
010= HS oscillator: High-speed crystal/resonator on RA4/AN3/T1G/OSC2/CLKOUT and RA5/T1CKI/OSC1/CLKIN  
(5)  
(5)  
001= XT oscillator: Crystal/resonator on RA4/AN3/T1G/OSC2/CLKOUT and RA5/T1CKI/OSC1/CLKIN  
(5)  
000= LP oscillator: Low-power crystal on RA4/AN3/T1G/OSC2/CLKOUT and RA5/T1CKI/OSC1/CLKIN  
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.  
2: Program memory bulk erase must be performed to turn off code protection.  
3: The entire data EEPROM will be erased when the code protection is turned off.  
4: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  
5: If the HS, XT, or LP oscillator fails In Fail-safe mode the Watchdog time-out can occur only once after  
which it will be disabled until the oscillator is restored.  
Legend:  
R = Readable  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41249B-page 108  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
They are not affected by a WDT wake-up since this is  
viewed as the resumption of normal operation. TO and  
PD bits are set or cleared differently in different Reset  
situations, as indicated in Table 15-2. These bits are  
used in software to determine the nature of the Reset.  
See Table 15-4 for a full description of Reset states of  
all registers.  
15.2 Reset  
The PIC16F785 differentiates between various kinds of  
Reset:  
• Power-on Reset (POR)  
• WDT Reset during normal operation  
• WDT Reset during Sleep  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 15-1.  
• MCLR Reset during normal operation  
• MCLR Reset during Sleep  
• Brown-out Reset (BOR)  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Section 18.0 “Electrical  
Specifications” for pulse width specifications.  
Some registers are not affected in any Reset condition;  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
• Power-on Reset  
• MCLR Reset  
• MCLR Reset during Sleep  
• WDT Reset  
• Brown-out Reset (BOR)  
FIGURE 15-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR/VPP pin  
Sleep  
WDT  
WDT  
Module  
Time-out  
Reset  
Power-on Reset  
VDD Rise  
Detect  
VDD  
Brown-out(1)  
Reset  
BOREN  
SBOREN  
S
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
R
Q
OSC1/  
CLKI pin  
PWRT  
11-bit Ripple Counter  
LFINTOSC  
Enable PWRT  
Enable OST  
Note 1: Refer to the Configuration Word register (Register 15-1).  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 109  
PIC16F785  
15.2.1  
POWER-ON RESET  
15.2.3  
POWER-UP TIMER (PWRT)  
The on-chip POR circuit holds the chip in Reset until  
VDD has reached a high enough level for proper  
operation. A minimum rise time for VDD is required. See  
Section 18.0 “Electrical Specifications” for details. If  
the BOR is enabled, the minimum rise time  
specification does not apply. The BOR circuitry will  
keep the device in Reset until VDD reaches VBOR (see  
Section 15.2.4 “Brown-Out Reset (BOR)”)  
The Power-up Timer provides a fixed 64 ms (nominal)  
time out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates from the 31 kHz  
LFINTOSC oscillator. For more information, see  
Section 3.4 “Internal Clock Modes”. The chip is kept  
in Reset as long as PWRT is active. The PWRT delay  
allows the VDD to rise to an acceptable level. A  
configuration bit, PWRTE can disable (if ‘1’) or enable  
(if ‘0’) the Power-up Timer. The Power-up Timer should  
be enabled when Brown-out Reset is enabled,  
although it is not required.  
The POR circuit on this device has a POR re-arm  
circuit. This circuit is designed to ensure a re-arm of the  
POR circuit if VDD drops below a preset re-arming  
voltage (VPARM) for at least the minimum required time.  
Once VDD has been below the re-arming point for the  
minimum required time, the POR Reset will reactivate  
and remain in Reset until VDD returns to a value greater  
than VPOR. At this point, a 1μs (typical) delay will be  
initiated to allow VDD to continue to ramp to a voltage  
safely above VPOR.  
The Power-up Time Delay will vary from chip-to-chip  
and vary due to:  
• VDD variation  
Temperature variation  
• Process variation  
See DC parameters for details (Section 18.0  
“Electrical Specifications”).  
When the device starts normal operation (exits the  
Reset condition), device operating parameters  
(i.e., voltage, frequency, temperature, etc.) must be  
met to ensure operation. If these conditions are not  
met, the device must be held in Reset until the  
operating conditions are met.  
15.2.4  
BROWN-OUT RESET (BOR)  
The BOREN0 and BOREN1 bits in the Configuration  
Word select one of four BOR modes. Two modes have  
been added to allow software or hardware control of  
the BOR enable. When BOREN<1:0> = 01, the  
SBOREN bit (PCON<4>) enables/disables the BOR  
allowing it to be controlled in software. By selecting  
BOREN<1:0>, the BOR is automatically disabled in  
Sleep to conserve power and enabled on wake-up. In  
this mode, the SBOREN bit is disabled. See  
Register 15-1 for the Configuration Word definition.  
For additional information, refer to the Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
15.2.2  
MASTER CLEAR (MCLR)  
PIC16F785 has a noise filter in the MCLR Reset path.  
The filter will detect and ignore small pulses.  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
If VDD falls below VBOR for greater than parameter  
(TBOR), see Section 18.0 “Electrical Specifica-  
tions”, the Brown-out situation will reset the device.  
This will occur regardless of VDD slew rate. A Reset is  
not assured if VDD falls below VBOR for less than  
parameter (TBOR).  
The behavior of the ESD protection on the MCLR pin  
has been altered from early devices of this family.  
Voltages applied to the pin that exceed its specification  
can result in both MCLR Resets and excessive current  
beyond the device specification during the ESD event.  
For this reason, Microchip recommends that the MCLR  
pin no longer be tied directly to VDD. The use of an RC  
network, as shown in Figure 15-1, is suggested.  
On any Reset (Power-on, Brown-out Reset, Watchdog,  
etc.), the chip will remain in Reset until VDD rises above  
VBOR (see Figure 15-2). The Power-up Timer will now  
be invoked, if enabled, and will keep the chip in Reset  
an additional 64 ms.  
An internal MCLR option is enabled by clearing the  
MCLRE bit in the Configuration Word. When cleared,  
MCLR is internally tied to VDD and an internal Weak  
Pull-up is enabled for the MCLR pin. In-Circuit Serial  
Programming is not affected by selecting the internal  
MCLR option.  
Note:  
The Power-up Timer is enabled by the  
PWRTE bit in the Configuration Word.  
If VDD drops below VBOR while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOR, the Power-up Timer will execute a  
64 ms Reset.  
DS41249B-page 110  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
15.2.5  
BOR CALIBRATION  
The PIC16F785 stores the BOR calibration values in  
fuses located in the Calibration Word (2008h). The  
Calibration Word is not erased when using the specified  
bulk erase sequence in the “PIC16F785/PS200 Memory  
Programming Specification” (DS41237) and thus, does  
not require reprogramming.  
Note:  
Address 2008h is beyond the user program  
memory space. It belongs to the special  
configuration memory space (2000h-  
3FFFh), which can be accessed only during  
programming. See “PIC16F785/PS200  
Memory Programming Specification”  
(DS41237) for more information.  
FIGURE 15-2:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
<64 ms  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
Note 1: 64 ms delay only if PWRTE bit is programmed to ‘0’.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 111  
PIC16F785  
15.2.6  
TIME-OUT SEQUENCE  
15.2.7  
POWER CONTROL (PCON)  
REGISTER  
On power-up, the time-out sequence is as follows: first,  
PWRT time out is invoked after POR has expired, then  
OST is activated after the PWRT time out has expired.  
The total time out will vary based on oscillator configu-  
ration and PWRTE bit status. For example, in EC mode  
with PWRTE bit equal to ‘1’ (PWRT disabled), there will  
be no time out at all. Figure 15-3, Figure 15-4 and  
Figure 15-5 depict time-out sequences. The device can  
execute code from the INTOSC, while OST is active by  
enabling Two-Speed Start-up or Fail-Safe Monitor (see  
Section 3.6.2 “Two-Speed Start-up Sequence” and  
Section 3.7 “Fail-Safe Clock Monitor”).  
The Power Control register PCON (address 8Eh) has  
two Status bits to indicate what type of Reset that last  
occurred.  
Bit 0 is BOR (Brown-out Reset). BOR is unknown on  
Power-on Reset. It must then be set by the user and  
checked on subsequent Resets to see if BOR = 0,  
indicating that a Brown-out has occurred. The BOR  
Status bit is a “don’t care” and is not necessarily  
predictable if the brown-out circuit is disabled  
(BOREN<1:0> = 00in the Configuration Word).  
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
1’ to this bit following a Power-on Reset. On a  
subsequent Reset, if POR is ‘0’, it will indicate that a  
Power-on Reset has occurred (i.e., VDD may have  
gone too low).  
Since the time outs occur from the POR pulse, if MCLR  
is kept low long enough, the time outs will expire. Then  
bringing MCLR high will begin execution immediately  
(see Figure 15-4). This is useful for testing purposes or  
to synchronize more than one PIC16F785 device  
operating in parallel.  
For more information, see Section 15.2.4 “Brown-Out  
Reset (BOR)”.  
Table 15-5 shows the Reset conditions for some  
special registers, while Table 15-4 shows the Reset  
conditions for all the registers.  
TABLE 15-1: TIME OUT IN VARIOUS SITUATIONS  
Power-up  
Brown-out Reset  
Wake-up from  
Oscillator Configuration  
Sleep  
PWRTE = 0  
PWRTE = 1  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
TPWRT +  
1024•TOSC  
1024•TOSC  
TPWRT +  
1024•TOSC  
1024•TOSC  
1024•TOSC  
RC, EC, INTOSC  
TPWRT  
TPWRT  
TABLE 15-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
Condition  
0
1
u
u
x
0
u
u
1
1
0
0
1
1
u
0
Power-on Reset  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
u
u
u
u
u
1
u
0
MCLR Reset during normal operation  
MCLR Reset during Sleep  
Legend: u= unchanged, x= unknown  
TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
03h, 103h STATUS  
83h, 183h  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
0001 1xxx 000q quuu  
8Eh  
PCON  
SBOREN  
POR  
BOR  
---1 --qq ---u --uu  
Legend:  
u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition. Shaded cells are not  
used by BOR.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
DS41249B-page 112  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
FIGURE 15-3:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 15-4:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 15-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 113  
PIC16F785  
TABLE 15-4: INITIALIZATION CONDITION FOR REGISTERS  
• MCLR Reset  
• Wake-up from Sleep  
through interrupt  
Power-on  
Reset  
• WDT Reset  
• Brown-out Reset(1)  
Register  
Address  
• Wake-up from Sleep  
through WDT time out  
W
00h/80h  
01h  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--x0 x000(6)  
xx00 ----(6)  
00xx 0000(6)  
---0 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
-000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
---0 1000  
xxxx xxxx  
0000 0000  
1111 1111  
--11 1111  
1111 ----  
1111 1111  
0000 0000  
---1 --0x  
-110 x000  
---0 0000  
1111 1111  
1111 1111  
uuuu uuuu  
xxxx xxxx  
uuuu uuuu  
0000 0000  
000q quuu(4)  
uuuu uuuu  
--u0 u000(7)  
uu00 ----(7)  
00uu uuuu(7)  
---0 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
---0 1000  
uuuu uuuu  
0000 0000  
1111 1111  
--11 1111  
1111 ----  
1111 1111  
0000 0000  
---u --uq(1,5)  
-110 x000  
---u uuuu  
1111 1111  
1111 1111  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
PC + 1(3)  
INDF  
TMR0  
PCL  
02h/82h  
03h/83h  
04h/84h  
05h  
STATUS  
FSR  
uuuq quuu(4)  
uuuu uuuu  
--uu uuuu  
uuuu ----  
uuuu uuuu  
---u uuuu  
uuuu uuuu(2)  
uuuu uuuu(2)  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu ----  
uuuu uuuu  
uuuu uuuu  
---u --uu  
-uuu uuuu  
---u uuuu  
uuuu uuuu  
1111 1111  
PORTA  
PORTB  
PORTC  
PCLATH  
INTCON  
PIR1  
06h  
07h  
0Ah/8Ah  
0Bh/8Bh  
0Ch  
TMR1L  
TMR1H  
T1CON  
TMR2  
0Eh  
0Fh  
10h  
11h  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
WDTCON  
ADRESH  
ADCON0  
OPTION_REG  
TRISA  
12h  
13h  
14h  
15h  
18h  
1Eh  
1Fh  
81h  
85h  
TRISB  
86h  
TRISC  
87h  
PIE1  
8Ch  
PCON  
8Eh  
OSCCON  
OSCTUNE  
ANSEL0  
PR2  
8Fh  
90h  
91h  
92h  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 15-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: Analog channels read 0but data latches are unknown.  
7: Analog channels read 0but data latches are unchanged.  
DS41249B-page 114  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
TABLE 15-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)  
• MCLR Reset  
• Wake-up from Sleep  
through interrupt  
Power-on  
Reset  
• WDT Reset (Continued)  
• Brown-out Reset(1)  
Register  
Address  
• Wake-up from Sleep  
through WDT time out  
ANSEL1  
93h  
95h  
---- 1111  
--11 1111  
--00 0000  
--00 000-  
000- 0000  
0000 0000  
0000 0000  
---- x000  
---- ----  
xxxx xxxx  
-000 ----  
-000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
00-- --10  
0--- ----  
0--- ----  
---- 1111  
--11 1111  
--00 0000  
--00 000-  
000- 0000  
0000 0000  
0000 0000  
---- q000  
---- ----  
uuuu uuuu  
-000 ----  
-000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
00-- --10  
0--- ----  
0--- ----  
---- uuuu  
--uu uuuu  
--uu uuuu  
--uu uuu-  
uuu- uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
---- ----  
uuuu uuuu  
-uuu ----  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu-- --uu  
u--- ----  
u--- ----  
WPUA  
IOCA  
96h  
REFCON  
VRCON  
98h  
99h  
EEDAT  
9Ah  
EEADR  
9Bh  
EECON1  
EECON2  
ADRESL  
ADCON1  
PWMCON1  
PWMCON0  
PWMCLK  
PWMPH1  
PWMPH2  
CM1CON0  
CM2CON0  
CM2CON1  
OPA1CON  
OPA2CON  
9Ch  
9Dh  
9Eh  
9Fh  
110h  
111h  
112h  
113h  
114h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 15-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: Analog channels read 0but data latches are unknown.  
7: Analog channels read 0but data latches are unchanged.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 115  
PIC16F785  
TABLE 15-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
---1 --0x  
---u --uu  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
000h  
000h  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---u --uu  
---u --uu  
---u --uu  
---1 --10  
---u --uu  
WDT Wake-up  
PC + 1  
000h  
PC + 1(1)  
Brown-out Reset  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and global enable bit GIE is set, the PC is loaded with the  
interrupt vector (0004h) after execution of PC+1.  
DS41249B-page 116  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
For external interrupt events, such as the INT pin or  
PORTA change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends upon when the interrupt event occurs (see  
Figure 15-7). The latency is the same for one or two-  
cycle instructions. Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be  
determined by polling the interrupt flag bits. The  
interrupt flag bit(s) must be cleared in software before  
re-enabling interrupts to avoid multiple interrupt  
requests.  
15.3 Interrupts  
The PIC16F785 has 11 sources of interrupt:  
• External Interrupt RA2/INT  
• TMR0 Overflow Interrupt  
• PORTA Change Interrupt  
• 2 Comparator Interrupts  
• A/D Interrupt  
• Timer1 Overflow Interrupt  
• Timer2 Match Interrupt  
• EEPROM Data Write Interrupt  
• Fail-Safe Clock Monitor Interrupt  
• CCP Interrupt  
Note 1: Individual interrupt flag bits are set,  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The interrupts, which were  
ignored, are still pending to be serviced  
when the GIE bit is set again.  
The Interrupt Control register (INTCON) and Peripheral  
Interrupt register (PIR1) record individual interrupt  
requests in flag bits. The INTCON register also has  
individual and global interrupt enable bits.  
A Global Interrupt Enable bit, GIE (INTCON<7>)  
enables (if set) all unmasked interrupts, or disables (if  
cleared) all interrupts. Individual interrupts can be  
disabled through their corresponding enable bits in  
INTCON register and PIE1 register. GIE is cleared on  
Reset.  
For additional information on Timer1, Timer2,  
comparators, A/D, Data EEPROM or CCP modules,  
refer to the respective peripheral section.  
The Return from Interrupt instruction, RETFIE, exits  
interrupt routine, as well as sets the GIE bit, which  
re-enables unmasked interrupts.  
The following interrupt flags are contained in the  
INTCON register:  
• INT Pin Interrupt  
• PORTA Change Interrupt  
• TMR0 Overflow Interrupt  
The peripheral interrupt flags are contained in the  
special register PIR1. The corresponding interrupt  
enable bit is contained in special register PIE1.  
The following interrupt flags are contained in the PIR1  
register:  
• EEPROM Data Write Interrupt  
• A/D Interrupt  
• 2 Comparator Interrupts  
• Timer1 Overflow Interrupt  
• Timer2 Match Interrupt  
• Fail-Safe Clock Monitor Interrupt  
• CCP Interrupt  
When an interrupt is serviced:  
• The GIE is cleared to disable any further interrupt  
• The return address is PUSHed onto the stack  
• The PC is loaded with 0004h  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 117  
PIC16F785  
15.3.1  
RA2/AN2/T0CKI/INT/C1OUT  
INTERRUPT  
15.3.2  
TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
the T0IF (INTCON<2>) bit. The interrupt can be  
enabled/disabled by setting/clearing T0IE (INTCON<5>)  
bit. See Section 5.0 “Timer0 Module” for operation of  
the Timer0 module.  
External interrupt on RA2/AN2/T0CKI/INT/C1OUT pin  
is edge-triggered; either rising, if INTEDG bit  
(OPTION_REG<6>) is set, or falling, if INTEDG bit is  
clear. When a valid edge appears on the RA2/AN2/  
T0CKI/INT/C1OUT pin, the INTF bit (INTCON<1>) is  
set. This interrupt can be disabled by clearing the INTE  
control bit (INTCON<4>). The INTF bit must be cleared  
in software in the Interrupt Service Routine before re-  
enabling this interrupt. The RA2/AN2/T0CKI/INT/  
C1OUT interrupt can wake-up the processor from  
Sleep if the INTE bit was set prior to going into Sleep.  
The status of the GIE bit decides whether or not the  
processor branches to the interrupt vector following  
wake-up (0004h). See Section 15.6 “Power-Down  
Mode (Sleep)” for details on Sleep and Figure 15-9 for  
timing of wake-up from Sleep through RA2/AN2/  
T0CKI/INT/C1OUT interrupt.  
15.3.3  
PORTA INTERRUPT  
An input change on PORTA change sets the RAIF  
(INTCON<0>) bit. The interrupt can be enabled/  
disabled by setting/clearing the RAIE (INTCON<3>)  
bit. Plus, individual pins can be configured through the  
IOCA register.  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RAIF  
interrupt flag may not get set.  
Note:  
The ANSEL0 (91h), and ANSEL1 (93h)  
registers must be initialized to configure  
an analog channel as a digital input. Pins  
configured as analog inputs will read ‘0’.  
FIGURE 15-6:  
INTERRUPT LOGIC  
IOC-RA0  
IOCA0  
IOC-RA1  
IOCA1  
IOC-RA2  
IOCA2  
IOC-RA3  
IOCA3  
IOC-RA4  
IOCA4  
IOC-RA5  
IOCA5  
(1)  
Wake-up (If in Sleep mode)  
T0IF  
T0IE  
TMR2IF  
TMR2IE  
INTF  
INTE  
RAIF  
Interrupt to CPU  
TMR1IF  
TMR1IE  
RAIE  
C1IF  
C1IE  
PEIE  
GIE  
C2IF  
C2IE  
ADIF  
ADIE  
EEIF  
EEIE  
Note 1: Some peripherals depend upon the system clock for  
operation. Since the system clock is suspended during  
Sleep, only those peripherals which do not depend upon  
the system clock will wake the part from Sleep. See  
Section 15.6.1 “Wake-up from Sleep”.  
OSFIF  
OSFIE  
CCP1IF  
CCP1IE  
DS41249B-page 118  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
FIGURE 15-7:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(2)  
(5)  
Interrupt Latency  
INTF Flag  
(INTCON<1>)  
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
0004h  
PC + 1  
PC + 1  
0005h  
PC  
Instruction  
Fetched  
Inst (PC)  
Inst (PC + 1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC - 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in INTOSC and RC Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 18.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
TABLE 15-6: SUMMARY OF INTERRUPT REGISTERS  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh INTCON  
GIE  
EEIF  
EEIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
C2IF  
C2IE  
RAIE  
C1IF  
C1IE  
T0IF  
INTF  
RAIF  
0000 0000 0000 0000  
0Ch  
PIR1  
PIE1  
CCP1IF  
CCP1IE  
OSFIF TMR2IF TMR1IF 0000 0000 0000 0000  
OSFIE TMR2IE TMR1IE 0000 0000 0000 0000  
8Ch  
Legend:  
x= unknown, u= unchanged, – = unimplemented read as ‘0’, q= value depends upon condition. Shaded cells are not  
used by the Interrupt module.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 119  
PIC16F785  
15.4 Context Saving During Interrupts  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key  
registers during an interrupt (e.g., W and STATUS  
registers). This must be implemented in software.  
Since the last 16 bytes of all banks are common in the  
PIC16F785 (see Figure 2-2), temporary holding  
registers W_TEMP and STATUS_TEMP should be  
placed in here. These 16 locations do not require  
banking, therefore, making it easier to save and restore  
context. The same code shown in Example 15-1 can  
be used to:  
• Store the W register  
• Store the STATUS register  
• Execute the ISR code  
• Restore the Status (and Bank Select Bit register)  
• Restore the W register  
Note:  
The PIC16F785 normally does not require  
saving the PCLATH. However, if computed  
GOTO’s are used in the ISR and the main  
code, the PCLATH must be saved and  
restored in the ISR.  
EXAMPLE 15-1:  
SAVING STATUS AND W REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
:
W_TEMP  
STATUS,W  
STATUS  
;Copy W to TEMP register  
;Swap status to be saved into W (swap does not affect status)  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
STATUS_TEMP  
:(ISR)  
:
;Insert user code here  
SWAPF  
STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into Status register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
DS41249B-page 120  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
A new prescaler has been added to the path between  
the INTRC and the multiplexers used to select the path  
for the WDT. This prescaler is 16 bits and can be  
programmed to divide the INTRC by 128 to 65536,  
giving the time base used for the WDT a nominal range  
of 1 ms to 268s.  
15.5 Watchdog Timer (WDT)  
For PIC16F785, the WDT has been modified from  
previous PIC16F785 devices. The new WDT is code  
and functionally compatible with previous PIC16F785  
WDT modules and adds a 16-bit prescaler to the WDT.  
This allows the user to scale the value for the WDT and  
TMR0 at the same time. In addition, the WDT time out  
value can be extended to 268 seconds. WDT is cleared  
under certain conditions described in Table 15-7.  
15.5.2  
WDT CONTROL  
The WDTE bit is located in the Configuration Word.  
When set, the WDT runs continuously.  
15.5.1  
WDT OSCILLATOR  
When the WDTE bit in the Configuration Word register  
is set, the SWDTEN bit (WDTCON<0>) has no effect.  
If WDTE is clear, then the SWDTEN bit can be used to  
enable and disable the WDT. Setting the bit will enable  
it and clearing the bit will disable it.  
The WDT derives its time base from the 31 kHz  
LFINTOSC. The LTS bit does not reflect that the  
LFINTOSC is enabled (OSCON<1>).  
The value of WDTCON is ‘---0 1000’ on all Resets.  
This gives a nominal time base of 16 ms, which is com-  
patible with the time base generated with previous  
PIC16F785 microcontroller versions.  
The PSA and PS<2:0> bits (OPTION_REG) have the  
same function as in previous versions of the  
PIC16F785 family of microcontrollers. See Section 5.0  
“Timer0 Module” for more information.  
Note:  
When the Oscillator Start-up Timer (OST)  
is invoked, the WDT is held in Reset,  
because the WDT Ripple Counter is used  
by the OST to perform the oscillator delay  
count. When the OST count has expired,  
the WDT will begin counting (if enabled).  
FIGURE 15-8:  
WATCHDOG TIMER BLOCK DIAGRAM  
0
From TMR0 Clock Source  
Prescaler(1)  
1
16-bit WDT Prescaler  
8
PSA  
PS<2:0>  
31 kHz  
LFINTOSC Clock  
WDTPS<3:0>  
TO TMR0  
1
0
PSA  
WDTE from Configuration Word  
SWDTEN from WDTCON  
WDT time-out  
Note 1:  
This is the shared Timer0/WDT prescaler. See Section 5.4 “Prescaler” for more information.  
TABLE 15-7: WDT STATUS  
Conditions  
WDT  
WDTE = 0  
CLRWDTcommand  
OSC FAIL detected  
Cleared  
Exit Sleep + System Clock = T1OSC, EXTRC, INTRC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 121  
PIC16F785  
REGISTER 15-2: WDTCON – WATCHDOG TIMER CONTROL REGISTER (ADDRESS: 18h)  
U-0  
U-0  
U-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN(1)  
bit 7  
bit 0  
bit 7-5  
bit 4-1  
Unimplemented: Read as ‘0’  
WDTPS<3:0>: Watchdog Timer Period Select bits  
Bit Value = Prescale Rate  
0000 = 1:32  
0001 = 1:64  
0010 = 1:128  
0011 = 1:256  
0100 = 1:512 (Reset value)  
0101 = 1:1024  
0110 = 1:2048  
0111 = 1:4096  
1000 = 1:8192  
1001 = 1:16384  
1010 = 1:32768  
1011 = 1:65536  
1100 = reserved  
1101 = reserved  
1110 = reserved  
1111 = reserved  
bit 0  
SWDTEN: Software Enable or Disable the Watchdog Timer bit(1)  
1= WDT is turned on  
0= WDT is turned off (Reset value)  
Note 1: If WDTE configuration bit = 1, then WDT is always enabled, irrespective of this  
control bit. If WDTE configuration bit = 0, then it is possible to turn WDT on/off with  
this control bit.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
TABLE 15-8: SUMMARY OF WATCHDOG TIMER REGISTERS  
Value on all  
other  
resets  
Value on:  
POR,BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
03h, 103h  
83h, 183h  
STATUS  
IRP  
RP1  
RPO  
TO  
PD  
Z
DC  
C
0001 1xxx 000q quuu  
18h  
WDTCON  
WDTPS3 WDTPS2 WSTPS1 WDTPS0 SWDTEN ---0 1000 ---0 1000  
81h/  
181h  
OPTION_REG  
RAPU INTEDG T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111 1111 1111  
2007h(1)  
CONFIG  
CPD CP MCLRE  
PWRTE  
WDTE  
FOSC2  
FOSC1  
FOSC0 uuuu uuuu uuuu uuuu  
Legend:  
Note 1:  
Shaded cells are not used by the Watchdog Timer.  
See Register 15-1 for operation of all Configuration Word bits.  
DS41249B-page 122  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit (and PEIE bit where applicable)  
must be set (enabled). Wake-up is regardless of the  
state of the GIE bit. If the GIE bit is clear (disabled), the  
device continues execution at the instruction after the  
SLEEP instruction. If the GIE bit is set (enabled), the  
device executes the instruction after the SLEEPinstruc-  
tion, then branches to the interrupt address (0004h). In  
cases where the execution of the instruction following  
SLEEP is not desirable, the user should have a NOP  
after the SLEEPinstruction.  
15.6 Power-Down Mode (Sleep)  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
If the Watchdog Timer is enabled:  
• WDT will be cleared but keeps running.  
• PD bit in the STATUS register is cleared.  
• TO bit is set.  
• Oscillator driver is turned off.  
• I/O ports maintain the status they had before  
SLEEPwas executed (driving high, low or high-  
impedance).  
Note:  
If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the corresponding  
interrupt flag bits set (including PEIE, where  
applicable), the device will immediately  
wake-up from Sleep. The SLEEPinstruction  
is completely executed.  
For lowest current consumption in this mode, all I/O  
pins should be either at VDD or VSS, with no external  
circuitry drawing current from the I/O pin, and all  
unused peripheral modules should be disabled. Digital  
I/O pins that are high-impedance inputs should be  
pulled high or low externally to avoid switching currents  
caused by floating inputs. The T0CKI input should also  
be at VDD or VSS for lowest current consumption. The  
contribution from on-chip pull-ups on PORTA should be  
considered.  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
15.6.2  
WAKE-UP USING INTERRUPTS  
The MCLR pin must be at a logic high level.  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
Note:  
It should be noted that a Reset generated  
by a WDT time-out does not drive MCLR  
pin low.  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP. Therefore, the WDT and WDT  
prescaler and postscaler (if enabled) will not be  
cleared, the TO bit will not be set and the PD bit  
will not be cleared.  
15.6.1  
WAKE-UP FROM SLEEP  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin  
2. Watchdog Timer Wake-up (if WDT was enabled)  
• If the interrupt occurs during or after the  
execution of a SLEEPinstruction, the device will  
immediately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT prescaler  
and postscaler (if enabled) will be cleared, the TO  
bit will be set, and the PD bit will be cleared.  
3. Interrupt from RA2/AN2/T0CKI/INT/C1OUT pin,  
PORTA change or a peripheral interrupt.  
The first event will cause a device Reset. The two latter  
events are considered a continuation of program  
execution. The TO and PD bits in the STATUS register  
can be used to determine the cause of device Reset.  
The PD bit, which is set on power-up, is cleared when  
Sleep is invoked. TO bit is cleared if WDT Wake-up  
occurred.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
The following peripheral interrupts can wake the device  
from Sleep:  
1. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
To ensure that the WDT is cleared, a CLRWDTinstruction  
should be executed before a SLEEPinstruction.  
2. CCP Capture mode interrupt  
3. A/D conversion (when A/D clock source is RC)  
4. EEPROM write operation completion  
5. Comparator output changes state  
6. Interrupt-on-change  
7. External Interrupt from INT pin  
Other peripherals cannot generate interrupts since,  
during Sleep, no on-chip clocks are present.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 123  
PIC16F785  
FIGURE 15-9:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT(1)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTF flag  
(INTCON<1>)  
Interrupt Latency(3)  
GIE bit  
(INTCON<7>)  
Processor  
in Sleep  
INSTRUCTION FLOW  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Inst(PC - 1)  
Fetched  
Instruction  
Executed  
Dummy cycle  
Dummy cycle  
Sleep  
Inst(PC + 1)  
Inst(0004h)  
Note 1:  
2:  
XT, HS or LP Oscillator mode assumed.  
TOST = 1024TOSC (drawing not to scale). This delay does not apply to EC, RC and INTOSC Oscillator modes or Two-Speed Start-up  
(see Section 3.6 “Two-Speed Clock Start-up Mode”).  
3:  
4:  
GIE = 1assumed. In this case after wake-up, the processor jumps to 0004h.  
If GIE = 0, execution will continue in-line.  
CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.  
DS41249B-page 124  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
FIGURE 15-10:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
15.7 Code Protection  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out using ICSPfor verification purposes.  
To Normal  
Connections  
Note:  
The entire data EEPROM and Flash  
program memory will be erased when the  
code protection is turned off by performing  
a bulk erase. See the “PIC16F785/PS200  
Memory Programming Specification”  
(DS41237) for more information.  
External  
Connector  
Signals  
*
PIC16F785  
+5.0V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP/RA3  
15.8 ID Locations  
RA1  
RA0  
CLK  
Data I/O  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution, but are  
readable and writable during Program/Verify. Only the  
Least Significant 7 bits of the ID locations are used.  
*
*
*
15.9 In-Circuit Serial Programming™  
To Normal  
Connections  
The PIC16F785 microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with five lines:  
*
Isolation devices (as required)  
• clock  
• data  
• power  
• ground  
• programming voltage  
This allows customers to manufacture boards with  
unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
The device is placed into a Program/Verify mode by  
holding the RA0 and RA1 pins low, while raising the  
MCLR (VPP) pin from VIL to VIHH. See the “PIC16F785/  
PS200  
Memory  
Programming  
Specification”  
(DS41237) for more information. RA0 becomes the  
programming data and RA1 becomes the programming  
clock. Both RA0 and RA1 are Schmitt Trigger inputs in  
this mode.  
After Reset, to place the device into Program/Verify  
mode, the Program Counter (PC) is at location 00h. A  
6-bit command is then supplied to the device.  
Depending on the command, 14 bits of program data  
are then supplied to or from the device, depending on  
whether the command was a load or a read. For  
complete details of serial programming, please refer to  
the “PIC16F785/PS200 Memory Programming  
Specification” (DS41237).  
A typical In-Circuit Serial Programming connection is  
shown in Figure 15-10.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 125  
PIC16F785  
15.10 In-Circuit Debugger  
In-circuit debugging requires clock, data and MCLR  
pins. A special 28-pin PIC16F785 ICD device is used  
with MPLAB® ICD 2 to provide separate clock, data  
and MCLR pins so that no pins are lost for these  
functions leaving all 18 of the PIC16F785 I/O pins  
available to the user during debug operation.  
This special ICD device is mounted on the top of a  
header and its signals are routed to the MPLAB ICD 2  
connector. On the bottom of the header is a 20-pin  
socket that plugs into the user’s target via the 20-pin  
stand-off connector.  
When the ICD pin on the PIC16F785 ICD device is held  
low, the In-Circuit Debugger functionality is enabled.  
This function allows simple debugging functions when  
used with MPLAB ICD 2. When the microcontroller has  
this feature enabled, some of the resources are not  
available for general use. Table 15-9 shows which  
features are consumed by the background debugger:  
TABLE 15-9: DEBUGGER RESOURCES  
Resource  
Description  
I/O pins  
Stack  
ICDCLK, ICDDATA  
1 level  
Data RAM  
65h-70h, F0h  
Program Memory Address 0h must be NOP  
700h-7FFh  
For more information, see “MPLAB® ICD 2 In-Circuit  
Debugger User’s Guide” (DS51331), available on  
Microchip’s web site (www.microchip.com).  
FIGURE 15-11:  
28-Pin PDIP  
28-PIN ICD PINOUT  
In-Circuit Debug Device  
1
28  
SHNTREG  
ICDCLK  
2
3
27  
26  
ICDMCLR/VPP  
VDD  
ICDDATA  
Vss  
4
5
25  
24  
RA5  
RA4  
RA3  
RC5  
RC4  
RA0  
RA1  
RA2  
RC0  
RC1  
6
7
8
23  
22  
21  
9
20  
19  
18  
17  
RC3  
RC6  
RC7  
RB7  
RC2  
RB4  
RB5  
RB6  
10  
11  
12  
13  
14  
16  
15  
ICD  
NC  
NC  
NC  
DS41249B-page 126  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
For example, a CLRF PORTA instruction will read  
PORTA, clear all the data bits, then write the result back  
to PORTA. This example would have the unintended  
result of clearing the condition that set the RAIF flag.  
16.0 INSTRUCTION SET SUMMARY  
The PIC16F785 instruction set is highly orthogonal and  
is comprised of three basic categories:  
Byte-oriented operations  
Bit-oriented operations  
TABLE 16-1: OPCODE FIELD  
DESCRIPTIONS  
Literal and control operations  
Field  
Description  
Each PIC16 instruction is a 14-bit word divided into an  
opcode, which specifies the instruction type and one or  
more operands, which further specify the operation of  
the instruction. The format for each of the categories is  
presented in Figure 16-1, while the various opcode  
fields are summarized in Table 16-1.  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Table 16-2 lists the instructions recognized by the  
MPASMTM assembler. A complete description of  
each instruction is also available in the “PICmicro®  
Mid-Range MCU Family Reference Manual”  
(DS33023).  
Don't care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
PC  
TO  
PD  
Program Counter  
Time-out bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
Power-down bit  
FIGURE 16-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ‘b’ represents a bit field  
designator, which selects the bit affected by the  
operation, while ‘f’ represents the address of the file in  
which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
OPCODE  
d
f (FILE #)  
For literal and control operations, ‘k’ represents an  
8-bit or 11-bit constant, or literal value.  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a normal  
instruction execution time of 1 μs. All instructions are  
executed within a single instruction cycle, unless a  
conditional test is true, or the program counter is  
changed as a result of an instruction. When this occurs,  
the execution takes two instruction cycles, with the  
second cycle executed as a NOP.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Literal and control operations  
Note:  
To maintain upward compatibility with  
future products, do not use the OPTION  
and TRISinstructions.  
General  
13  
8
7
0
OPCODE  
k (literal)  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘hsignifies  
a hexadecimal digit.  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
16.1 Read-Modify-Write Operations  
0
Any instruction that specifies a file register as part of  
the instruction performs a read-modify-write (RMW)  
operation. The register is read, the data is modified,  
and the result is stored according to either the  
instruction, or the destination designator ‘d’. A read  
operation is always performed, even if the instruction is  
a write command.  
k (literal)  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 127  
PIC16F785  
TABLE 16-2: PIC16F785 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Description  
Operands  
Status  
Affected  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
1,2  
Z
Z
Z
Move W to f  
No Operation  
-
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
00 0010 dfff ffff C,DC,Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1,2  
1,2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
00 0000 0110 0100  
10 1kkk kkkk kkkk  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
00 0000 0110 0011  
Z
TO,PD  
Z
Inclusive OR literal with W  
Move literal to W  
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
Note:  
Additional information on the mid-range  
instruction set is available in the “PICmicro®  
Mid-Range MCU Family Reference  
Manual” (DS33023).  
DS41249B-page 128  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
16.2 Instruction Descriptions  
ADDLW  
Add Literal and W  
BCF  
Bit Clear f  
Syntax:  
[label] ADDLW  
0 k 255  
k
Syntax:  
[label] BCF f,b  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
0 b 7  
(W) + k (W)  
C, DC, Z  
Operation:  
0 (f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal ‘k’  
and the result is placed in the W  
register.  
Bit ‘b’ in register ‘f’ is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[label] BSF f,b  
Syntax:  
[label] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
1 (f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit ‘b’ in register ‘f’ is set.  
Description:  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If  
‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
BTFSC  
Bit Test f, Skip if Clear  
ANDLW  
AND Literal with W  
Syntax:  
[label] BTFSC f,b  
Syntax:  
[label] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 0  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description:  
If bit ‘b’ in register ‘f'’ is ‘1’, the next  
instruction is executed.  
If bit ‘b’, in register ‘f’, is ‘0’, the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a two-cycle instruction.  
ANDWF  
AND W with f  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[label] ANDWF f,d  
Syntax:  
[label] BTFSS f,b  
Operands:  
0 f 127  
d ∈ [0,1]  
Operands:  
0 f 127  
0 b < 7  
Operation:  
(W) .AND. (f) (destination)  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Description:  
Z
Status Affected: None  
AND the W register with register  
‘f’. If ‘d’ is ‘0’, the result is stored in  
the W register. If ‘d’ is ‘1’, the  
Description: If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
If bit ‘b’ is ‘1’, then the next instruc-  
tion is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction.  
result is stored back in register ‘f’.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 129  
PIC16F785  
COMF  
Complement f  
CALL  
Call Subroutine  
Syntax:  
[ label ] COMF f,d  
Syntax:  
[ label ] CALL  
0 k 2047  
k
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in regis-  
ter ‘f’.  
Description:  
Call Subroutine. First, return  
address (PC + 1) is pushed onto  
the stack. The eleven-bit immedi-  
ate address is loaded into PC bits  
<10:0>. The upper bits of the PC  
are loaded from PCLATH. CALLis  
a two-cycle instruction.  
DECF  
Decrement f  
CLRF  
Clear f  
Syntax:  
[label] DECF f,d  
Syntax:  
[label] CLRF  
0 f 127  
f
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h (f)  
1 Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
The contents of register ‘f’ are  
cleared and the Z bit is set.  
CLRW  
Clear W  
DECFSZ  
Decrement f, Skip if 0  
Syntax:  
[ label ] CLRW  
Syntax:  
[ label ] DECFSZ f,d  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
d [0,1]  
00h (W)  
1 Z  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
Status Affected: None  
Description: The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CLRWDT  
Operands:  
Operation:  
None  
If the result is ‘1’, the next instruc-  
tion is executed. If the result is ‘0’,  
then a NOPis executed instead,  
making it a two-cycle instruction.  
00h WDT  
0 WDT prescaler,  
1 TO  
1 PD  
Status Affected: TO, PD  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT.  
Status bits TO and PD are set.  
DS41249B-page 130  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR Literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the W  
register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a two-  
cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
INCFSZ  
Increment f, Skip if 0  
MOVF  
Move f  
Syntax:  
[ label ] INCFSZ f,d  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
0 f 127  
d [0,1]  
0 f 127  
d [0,1]  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Operation:  
(f) (dest)  
Status Affected:  
Encoding:  
Z
Status Affected: None  
00  
1000  
dfff  
ffff  
Description: The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ is  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
If the result is ‘1’, the next instruc-  
tion is executed. If the result is ‘0’,  
a NOPis executed instead, making  
it a two-cycle instruction.  
moved to a destination dependent  
upon the status of ‘d’. If ‘d’ = 0,  
destination is W register. If ‘d’ = 1,  
the destination is file register ‘f’  
itself. ‘d’ = 1is useful to test a file  
register since status flag Z is  
affected.  
Words:  
1
1
Cycles:  
Example:  
MOVF  
FSR,  
0
After Instruction  
W
=
value in FSR  
register  
Z
=
1
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 131  
PIC16F785  
NOP  
No Operation  
[ label ] NOP  
None  
MOVLW  
Move Literal to W  
Syntax:  
Syntax:  
[ label ] MOVLW k  
0 k 255  
k (W)  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
No operation  
None  
None  
00  
0000  
0xx0  
0000  
11  
00xx  
kkkk  
kkkk  
No operation.  
The eight-bit literal ‘k’ is loaded  
into W register. The “don’t cares”  
will assemble as 0’s.  
1
Cycles:  
1
Words:  
1
1
NOP  
Example:  
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
MOVWF  
Move W to f  
Syntax:  
Syntax:  
[ label ] MOVWF  
0 f 127  
(W) (f)  
f
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
TOS PC,  
1 GIE  
None  
Status Affected:  
Encoding:  
None  
00  
0000  
1fff  
ffff  
00  
0000  
0000  
1001  
Move data from W register to  
register ‘f’.  
Description:  
Return from Interrupt. Stack is  
POPed and Top-of-Stack (TOS) is  
loaded in the PC. Interrupts are  
enabled by setting Global  
Interrupt Enable bit, GIE  
Words:  
1
1
Cycles:  
Example:  
MOVWF  
OPTION  
(INTCON<7>). This is a two-cycle  
instruction.  
Before Instruction  
OPTION =  
0xFF  
0x4F  
Words:  
1
W
=
After Instruction  
Cycles:  
Example:  
2
OPTION =  
W
0x4F  
0x4F  
RETFIE  
=
After Interrupt  
PC  
GIE =  
=
TOS  
1
DS41249B-page 132  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
RETLW  
Return with Literal in W  
[ label ] RETLW k  
0 k 255  
RLF  
Rotate Left f through Carry  
Syntax:  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Operands:  
Operation:  
0 f 127  
d [0,1]  
k (W);  
TOS PC  
Operation:  
See description below  
C
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
11  
01xx  
kkkk  
kkkk  
00  
1101  
dfff  
ffff  
Description:  
The W register is loaded with the  
eight-bit literal ‘k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
Description:  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry Flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
Words:  
1
2
C
Register f  
Cycles:  
Example:  
CALL TABLE;W contains  
table  
Words:  
1
1
Cycles:  
Example:  
;offset value  
TABLE  
;W now has table value  
RLF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
After Instruction  
RETLW k2  
;
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
RETURN  
Return from Subroutine  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
TOS PC  
Status Affected: None  
Description: Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 133  
PIC16F785  
RRF  
Rotate Right f through Carry  
SUBLW  
Subtract W from Literal  
Syntax:  
[ label ] RRF f,d  
Syntax:  
[label]  
SUBLW k  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
0 k 255  
k - (W) → (W)  
Operation:  
See description below  
C
Status  
Affected:  
C, DC, Z  
Status Affected:  
Encoding:  
00  
1100  
dfff  
ffff  
11  
110x  
kkkk  
kkkk  
Encoding:  
Description:  
The contents of register ‘f’ are  
rotated one bit to the right  
through the Carry Flag. If ‘d’ is  
0’, the result is placed in the W  
register. If ‘d’ is ‘1’ the result is  
placed back in register ‘f’.  
Description:  
The W register is subtracted (2’s  
complement method) from the eight-  
bit literal ‘k’. The result is placed in  
the W register.  
Words:  
1
1
Cycles:  
C
REGISTER F  
SUBLW  
0x02  
Example 1:  
Before Instruction  
W = 1  
Words:  
1
Cycles:  
Example:  
1
C
= ?  
RRF  
REG1, 0  
After Instruction  
Before Instruction  
REG1 = 1110 0110  
= 0  
After Instruction  
REG1 = 1110 0110  
W = 1  
C
= 1; result is positive  
C
Example 2:  
Example 3:  
Before Instruction  
W =  
C =  
2
?
W
C
= 0111 0011  
= 0  
After Instruction  
W =  
C = 1; result is zero  
Before Instruction  
W =  
C =  
0
SLEEP  
Go into Standby mode  
Syntax:  
[label]  
SLEEP  
3
?
Operands:  
Operation:  
None  
00h WDT,  
0 WDT prescaler,  
1 TO,  
After Instruction  
W = 0xFF  
0 PD  
C = 0; result is negative  
Status Affected:  
Encoding:  
TO, PD  
00  
0000  
0110  
0011  
Description:  
The power-down Status bit, PD  
is cleared. Time out Status bit,  
TO is set. Watchdog Timer and  
its prescaler are cleared.  
The processor is put into Sleep  
mode with the oscillator  
stopped.  
Words:  
1
Cycles:  
Example:  
1
SLEEP  
DS41249B-page 134  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
SUBWF  
Subtract W from f  
SWAPF  
Swap Nibbles in f  
Syntax:  
[label]  
SUBWF f,d  
Syntax:  
[ label ]  
SWAPF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - (W) → (dest)  
Operation:  
(f<3:0>) (dest<7:4>),  
(f<7:4>) (dest<3:0>)  
Status  
C, DC, Z  
Affected:  
Status Affected:  
Encoding:  
None  
00  
0010  
dfff  
ffff  
00  
1110  
dfff  
ffff  
Encoding:  
Description:  
Subtract (2’s complement method)  
W register from register ‘f’. If ‘d’ is  
0’, the result is stored in the W reg-  
ister. If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
Description:  
The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in W regis-  
ter. If ‘d’ is ‘1’, the result is placed  
in register ‘f’.  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Example:  
SUBWF  
REG1, 1  
SWAPF  
REG1, 0  
Example 1:  
Before Instruction  
REG1 = 3  
Before Instruction  
REG1 = 0xA5  
After Instruction  
REG1 = 0xA5  
0x5A  
W
C
= 2  
= ?  
After Instruction  
W
=
REG1 = 1  
W
C
= 2  
= 1; result is positive  
TRIS  
Load TRIS Register  
Z
DC  
= 0  
= 1  
Syntax:  
[ label ] TRIS  
5 f 6  
f
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Example 2:  
Before Instruction  
(W) TRIS register f;  
REG1 = 2  
W
C
None  
= 2  
= ?  
00  
0000  
0110  
0fff  
The instruction is supported for  
code compatibility with the  
PIC16C5X products. Since TRIS  
registers are readable and writ-  
able, the user can directly  
address them.  
After Instruction  
REG1 = 0  
W
C
Z
= 2  
= 1; result is zero  
= DC = 1  
Example 3:  
Before Instruction  
Words:  
Cycles:  
Example  
1
1
REG1 = 1  
W
C
= 2  
= ?  
To maintain upward compatibil-  
ity with future PICmicro®  
products, do not use this  
instruction.  
After Instruction  
REG1 = 0xFF  
W
C
Z
= 2  
= 0; result is negative  
= DC = 0  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 135  
PIC16F785  
XORLW  
Exclusive OR Literal with W  
[label] XORLW k  
XORWF  
Exclusive OR W with f  
Syntax:  
Syntax:  
[ label ]  
XORWF f,d  
Operands:  
Operation:  
Status Affected:  
Encoding:  
0 k 255  
Operands:  
0 f 127  
d [0,1]  
(W) .XOR. k → (W)  
Operation:  
(W) .XOR. (f) → (dest)  
Z
Status Affected:  
Encoding:  
Z
11  
1010  
kkkk  
kkkk  
00  
0110  
dfff  
ffff  
Description:  
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
Description:  
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’ the result is  
stored back in register ‘f’.  
Words:  
1
1
Cycles:  
Example:  
Words:  
1
1
XORLW  
0xAF  
Cycles:  
Example:  
Before Instruction  
W = 0xB5  
XORWF  
REG1, 1  
Before Instruction  
REG1 = 0xAF  
0xB5  
After Instruction  
W = 0x1A  
W
=
After Instruction  
REG1 = 0x1A  
0xB5  
W
=
DS41249B-page 136  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
17.1 MPLAB Integrated Development  
Environment Software  
17.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• An interface to debugging tools  
- simulator  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor with color coded context  
• A multiple project manager  
- MPLAB C30 C Compiler  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB SIM Software Simulator  
- MPLAB dsPIC30 Software Simulator  
• Emulators  
• High-level source code debugging  
• Mouse over variable inspection  
• Extensive on-line help  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB ICE 4000 In-Circuit Emulator  
• In-Circuit Debugger  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
- MPLAB ICD 2  
• One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools  
(automatically updates all project information)  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
• Low-Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM.netTM Demonstration Board  
- PICDEM 2 Plus Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 4 Demonstration Board  
- PICDEM 17 Demonstration Board  
- PICDEM 18R Demonstration Board  
- PICDEM LIN Demonstration Board  
- PICDEM USB Demonstration Board  
• Evaluation Kits  
• Debug using:  
- source files (assembly or C)  
- mixed assembly and C  
- machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increasing flexibility  
and power.  
17.2 MPASM Assembler  
The MPASM assembler is a full-featured, universal  
macro assembler for all PICmicro MCUs.  
®
- KEELOQ Evaluation and Programming Tools  
- PICDEM MSC  
- microID® Developer Kits  
- CAN  
The MPASM assembler generates relocatable object  
files for the MPLINK object linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol ref-  
erence, absolute LST files that contain source lines and  
generated machine code and COFF files for  
debugging.  
- PowerSmart® Developer Kits  
- Analog  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects  
• User defined macros to streamline assembly code  
• Conditional assembly for multi-purpose source  
files  
• Directives that allow complete control over the  
assembly process  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 137  
PIC16F785  
17.3 MPLAB C17 and MPLAB C18  
C Compilers  
17.6 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPLAB C17 and MPLAB C18 Code Development  
MPLAB ASM30 assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 compiler uses the  
assembler to produce it’s object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC17CXXX and PIC18CXXX family of  
microcontrollers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
17.4 MPLINK Object Linker/  
MPLIB Object Librarian  
• Rich directive set  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can link  
relocatable objects from precompiled libraries, using  
directives from a linker script.  
• Flexible macro language  
• MPLAB IDE compatibility  
17.7 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any pin. The execu-  
tion can be performed in Single-Step, Execute Until  
Break or Trace mode.  
The MPLIB object librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The MPLAB SIM simulator fully supports symbolic  
debugging using the MPLAB C17 and MPLAB C18  
C Compilers, as well as the MPASM assembler. The  
software simulator offers the flexibility to develop and  
debug code outside of the laboratory environment,  
making it an excellent, economical software  
development tool.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
17.5 MPLAB C30 C Compiler  
17.8 MPLAB SIM30 Software Simulator  
The MPLAB C30 C compiler is a full-featured, ANSI  
compliant, optimizing compiler that translates standard  
ANSI C programs into dsPIC30F assembly language  
source. The compiler also supports many command  
line options and language extensions to take full  
advantage of the dsPIC30F device hardware capabili-  
ties and afford fine control of the compiler code  
generator.  
The MPLAB SIM30 software simulator allows code  
development in a PC hosted environment by simulating  
the dsPIC30F series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any of the pins.  
The MPLAB SIM30 simulator fully supports symbolic  
debugging using the MPLAB C30 C Compiler and  
MPLAB ASM30 assembler. The simulator runs in either  
a Command Line mode for automated tasks, or from  
MPLAB IDE. This high-speed simulator is designed to  
debug, analyze and optimize time intensive DSP  
routines.  
MPLAB C30 is distributed with a complete ANSI C  
standard library. All library functions have been vali-  
dated and conform to the ANSI C library standard. The  
library includes functions for string manipulation,  
dynamic memory allocation, data conversion, time-  
keeping and math functions (trigonometric, exponential  
and hyperbolic). The compiler provides symbolic  
information for high-level source debugging with the  
MPLAB IDE.  
DS41249B-page 138  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
17.9 MPLAB ICE 2000  
High-Performance Universal  
17.11 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash  
PICmicro MCUs and can be used to develop for these  
and other PICmicro microcontrollers. The MPLAB  
ICD 2 utilizes the in-circuit debugging capability built  
into the Flash devices. This feature, along with  
In-Circuit Emulator  
The MPLAB ICE 2000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers. Software control of the  
MPLAB ICE 2000 in-circuit emulator is advanced by  
the MPLAB Integrated Development Environment,  
which allows editing, building, downloading and source  
debugging from a single environment.  
Microchip’s In-Circuit Serial ProgrammingTM (ICSPTM  
)
protocol, offers cost effective in-circuit Flash debugging  
from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by setting  
breakpoints, single-stepping and watching variables,  
CPU status and peripheral registers. Running at full  
speed enables testing hardware and applications in  
real-time. MPLAB ICD 2 also serves as a development  
programmer for selected PICmicro devices.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLAB ICE 2000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
17.12 PRO MATE II Universal Device  
Programmer  
The PRO MATE II is a universal, CE compliant device  
programmer with programmable voltage verification at  
VDDMIN and VDDMAX for maximum reliability. It features  
an LCD display for instructions and error messages  
and a modular detachable socket assembly to support  
various package types. In Stand-Alone mode, the  
PRO MATE II device programmer can read, verify and  
program PICmicro devices without a PC connection. It  
can also set code protection in this mode.  
17.10 MPLAB ICE 4000  
High-Performance Universal  
In-Circuit Emulator  
The MPLAB ICE 4000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for high-  
end PICmicro microcontrollers. Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment, which  
allows editing, building, downloading and source  
debugging from a single environment.  
17.13 MPLAB PM3 Device Programmer  
The MPLAB PM3 is a universal, CE compliant device  
programmer with programmable voltage verification at  
VDDMIN and VDDMAX for maximum reliability. It features  
a large LCD display (128 x 64) for menus and error  
messages and a modular detachable socket assembly  
to support various package types. The ICSP™ cable  
assembly is included as a standard item. In Stand-  
Alone mode, the MPLAB PM3 device programmer can  
read, verify and program PICmicro devices without a  
PC connection. It can also set code protection in this  
mode. MPLAB PM3 connects to the host PC via an RS-  
232 or USB cable. MPLAB PM3 has high-speed com-  
munications and optimized algorithms for quick pro-  
gramming of large memory devices and incorporates  
an SD/MMC card for file storage and secure data appli-  
cations.  
The MPLAB ICD 4000 is a premium emulator system,  
providing the features of MPLAB ICE 2000, but with  
increased emulation memory and high-speed perfor-  
mance for dsPIC30F and PIC18XXXX devices. Its  
advanced emulator features include complex triggering  
and timing, up to 2 Mb of emulation memory and the  
ability to view variables in real-time.  
The MPLAB ICE 4000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 139  
PIC16F785  
17.14 PICSTART Plus Development  
Programmer  
17.17 PICDEM 2 Plus  
Demonstration Board  
The PICSTART Plus development programmer is an  
easy-to-use, low-cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus development programmer supports  
most PICmicro devices up to 40 pins. Larger pin count  
devices, such as the PIC16C92X and PIC17C76X,  
may be supported with an adapter socket. The  
PICSTART Plus development programmer is CE  
compliant.  
The PICDEM 2 Plus demonstration board supports  
many 18, 28 and 40-pin microcontrollers, including  
PIC16F87X and PIC18FXX2 devices. All the neces-  
sary hardware and software is included to run the dem-  
onstration programs. The sample microcontrollers  
provided with the PICDEM 2 demonstration board can  
be programmed with a PRO MATE II device program-  
mer, PICSTART Plus development programmer, or  
MPLAB ICD 2 with a Universal Programmer Adapter.  
The MPLAB ICD 2 and MPLAB ICE in-circuit emulators  
may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area extends the  
circuitry for additional application components. Some  
of the features include an RS-232 interface, a 2 x 16  
LCD display, a piezo speaker, an on-board temperature  
sensor, four LEDs and sample PIC18F452 and  
PIC16F877 Flash microcontrollers.  
17.15 PICDEM 1 PICmicro  
Demonstration Board  
The PICDEM 1 demonstration board demonstrates the  
capabilities of the PIC16C5X (PIC16C54 to  
PIC16C58A), PIC16C61, PIC16C62X, PIC16C71,  
PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All  
necessary hardware and software is included to run  
basic demo programs. The sample microcontrollers  
provided with the PICDEM 1 demonstration board can  
be programmed with a PRO MATE II device program-  
mer or a PICSTART Plus development programmer.  
The PICDEM 1 demonstration board can be connected  
to the MPLAB ICE in-circuit emulator for testing. A  
prototype area extends the circuitry for additional appli-  
cation components. Features include an RS-232  
interface, a potentiometer for simulated analog input,  
push button switches and eight LEDs.  
17.18 PICDEM 3 PIC16C92X  
Demonstration Board  
The PICDEM 3 demonstration board supports the  
PIC16C923 and PIC16C924 in the PLCC package. All  
the necessary hardware and software is included to run  
the demonstration programs.  
17.19 PICDEM 4 8/14/18-Pin  
Demonstration Board  
The PICDEM 4 can be used to demonstrate the capa-  
bilities of the 8, 14 and 18-pin PIC16XXXX and  
PIC18XXXX MCUs, including the PIC16F818/819,  
PIC16F87/88, PIC16F62XA and the PIC18F1320  
family of microcontrollers. PICDEM 4 is intended to  
showcase the many features of these low pin count  
parts, including LIN and Motor Control using ECCP.  
Special provisions are made for low-power operation  
with the supercapacitor circuit and jumpers allow on-  
board hardware to be disabled to eliminate current  
draw in this mode. Included on the demo board are pro-  
visions for Crystal, RC or Canned Oscillator modes, a  
five volt regulator for use with a nine volt wall adapter  
or battery, DB-9 RS-232 interface, ICD connector for  
programming via ICSP and development with MPLAB  
ICD 2, 2 x 16 liquid crystal display, PCB footprints for  
H-Bridge motor driver, LIN transceiver and EEPROM.  
Also included are: header for expansion, eight LEDs,  
four potentiometers, three push buttons and a proto-  
typing area. Included with the kit is a PIC16F627A and  
a PIC18F1320. Tutorial firmware is included along  
with the User’s Guide.  
17.16 PICDEM.net Internet/Ethernet  
Demonstration Board  
The PICDEM.net demonstration board is an Internet/  
Ethernet demonstration board using the PIC18F452  
microcontroller and TCP/IP firmware. The board  
supports any 40-pin DIP device that conforms to the  
standard pinout used by the PIC16F877 or  
PIC18C452. This kit features a user friendly TCP/IP  
stack, web server with HTML, a 24L256 Serial  
EEPROM for Xmodem download to web pages into  
Serial EEPROM, ICSP/MPLAB ICD 2 interface con-  
nector, an Ethernet interface, RS-232 interface and a  
16 x 2 LCD display. Also included is the book and  
CD-ROM “TCP/IP Lean, Web Servers for Embedded  
Systems,” by Jeremy Bentham  
DS41249B-page 140  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
17.20 PICDEM 17 Demonstration Board  
17.24 PICDEM USB PIC16C7X5  
Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. A pro-  
grammed sample is included. The PRO MATE II device  
programmer, or the PICSTART Plus development pro-  
grammer, can be used to reprogram the device for user  
tailored application development. The PICDEM 17  
demonstration board supports program download and  
execution from external on-board Flash memory. A  
generous prototype area is available for user hardware  
expansion.  
The PICDEM USB Demonstration Board shows off the  
capabilities of the PIC16C745 and PIC16C765 USB  
microcontrollers. This board provides the basis for  
future USB products.  
17.25 Evaluation and  
Programming Tools  
In addition to the PICDEM series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
for these products.  
• KEELOQ evaluation and programming tools for  
Microchip’s HCS Secure Data Products  
17.21 PICDEM 18R PIC18C601/801  
Demonstration Board  
• CAN developers kit for automotive network  
applications  
The PICDEM 18R demonstration board serves to assist  
development of the PIC18C601/801 family of Microchip  
microcontrollers. It provides hardware implementation  
of both 8-bit Multiplexed/Demultiplexed and 16-bit  
Memory modes. The board includes 2 Mb external  
Flash memory and 128 Kb SRAM memory, as well as  
serial EEPROM, allowing access to the wide range of  
memory types supported by the PIC18C601/801.  
• Analog design boards and filter design software  
• PowerSmart battery charging evaluation/  
calibration kits  
• IrDA® development kit  
• microID development and rfLabTM development  
software  
• SEEVAL® designer kit for memory evaluation and  
endurance calculations  
17.22 PICDEM LIN PIC16C43X  
Demonstration Board  
• PICDEM MSC demo boards for Switching mode  
power supply, high-power IR driver, delta sigma  
ADC and flow rate sensor  
The powerful LIN hardware and software kit includes a  
series of boards and three PICmicro microcontrollers.  
The small footprint PIC16C432 and PIC16C433 are  
used as slaves in the LIN communication and feature  
Check the Microchip web page and the latest Product  
Selector Guide for the complete list of demonstration  
and evaluation kits.  
on-board LIN transceivers.  
A PIC16F874 Flash  
microcontroller serves as the master. All three micro-  
controllers are programmed with firmware to provide  
LIN bus communication.  
17.23 PICkitTM 1 Flash Starter Kit  
A complete “development system in a box”, the PICkit™  
Flash Starter Kit includes a convenient multi-section  
board for programming, evaluation and development of  
8/14-pin Flash PIC® microcontrollers. Powered via USB,  
the board operates under a simple Windows GUI. The  
PICkit 1 Starter Kit includes the User’s Guide (on CD  
ROM), PICkit 1 tutorial software and code for various  
applications. Also included are MPLAB® IDE (Integrated  
Development Environment) software, software and  
hardware “Tips 'n Tricks for 8-pin Flash PIC®  
Microcontrollers” Handbook and a USB interface cable.  
Supports all current 8/14-pin Flash PIC microcontrollers,  
as well as many future planned devices.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 141  
PIC16F785  
NOTES:  
DS41249B-page 142  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
18.0 ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings(†)  
Ambient temperature under bias........................................................................................................... -40 to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS ...................................................................................................... -0.3 to +6.5V  
Voltage on MCLR with respect to Vss ..................................................................................................-0.3 to +13.5V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) (PDIP and SOIC)................................................................................................... 800 mW  
Total power dissipation(1) (SSOP)..................................................................................................................600 mW  
Maximum current out of VSS pin ..................................................................................................................... 300 mA  
Maximum current into VDD pin ........................................................................................................................ 250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)................................................................................................................ 20 mA  
Output clamp current, IOK (Vo < 0 or Vo >VDD).......................................................................................................... 20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sunk by PORTA, PORTB, and PORTC (combined)...........................................................200 mA  
Maximum current sourced PORTA, PORTB, and PORTC (combined)...........................................................200 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note:  
Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the MCLR pin, rather than  
pulling this pin directly to VSS.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 143  
PIC16F785  
FIGURE 18-1:  
PIC16F785 WITH ANALOG DISABLED VOLTAGE-FREQUENCY GRAPH,  
-40°C TA +125°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
VDD  
(Volts)  
0
4
8
10  
12  
16  
20  
Frequency (MHz)  
Note:  
The shaded region indicates the permissible combinations of voltage and frequency.  
DS41249B-page 144  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
18.1 DC Characteristics: PIC16F785-I (Industrial), PIC16F785-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min Typ† Max Units  
Conditions  
VDD  
Supply Voltage  
FOSC 4 MHz:  
D001  
2.0  
2.2  
2.5  
3.0  
4.5  
5.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
V
PIC16F785with A/D off  
D001A  
D001B  
D001C  
D001D  
PIC16F785 with A/D on, 0°C to +125°C  
PIC16F785 with A/D on, -40°C to +125°C  
4 MHz FOSC 10 MHz  
10 MHz FOSC 20 MHz  
D002  
VDR  
RAM Data Retention  
Voltage(1)  
1.5*  
1.8  
1.0  
V
V
V
Device in Sleep mode  
D003  
VPOR  
VDD voltage above which  
the internal POR releases  
See Section 15.2.1 “Power-On Reset” for  
details.  
D003A VPARM VDD voltage below which  
See Section 15.2.1 “Power-On Reset” for  
details.  
the internal POR rearms  
D004  
D005  
SVDD  
VDD Rise Rate to ensure 0.05*  
internal Power-on Reset  
signal  
V/ms See Section 15.2.1 “Power-On Reset” for  
details.  
VBOR  
Brown-out Reset  
2.1  
V
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 145  
PIC16F785  
(1,2)  
18.2 DC Characteristics: PIC16F785-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
Conditions  
Param  
No.  
Device Characteristics  
Min Typ† Max Units  
VDD  
Note  
D010  
Supply Current (IDD)  
9
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
mA  
μA  
μA  
μA  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32 kHz  
LP Oscillator mode  
17  
33  
D011  
D012  
D013  
D014  
D015  
D016  
D017  
110  
190  
330  
220  
300  
540  
70  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
FOSC = 1 MHz  
EC Oscillator mode  
140  
260  
180  
320  
580  
9
FOSC = 4 MHz  
EC Oscillator mode  
FOSC = 31 kHz  
INTRC mode  
18  
35  
340  
500  
0.8  
180  
320  
580  
2.8  
3.3  
FOSC = 4 MHz  
INTOSC mode  
FOSC = 4 MHz  
EXTRC mode  
D018  
FOSC = 20 MHz  
HS Oscillator mode  
Legend:  
TBD = To Be Determined.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-  
rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current  
consumption.  
3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. When A/D is off, it will not consume  
any current other than leakage current. the power-down current spec includes any such leakage from the A/D module.  
DS41249B-page 146  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
(1,2)  
18.2 DC Characteristics: PIC16F785-I (Industrial)  
(Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
Conditions  
Param  
No.  
Device Characteristics  
Min Typ† Max Units  
VDD  
Note  
D020  
Power-down Base Current  
(IPD)  
25  
45  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
nA  
nA  
nA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
nA  
nA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOR, Comparators, VREF, T1OSC,  
Op Amps and VR disabled  
(4)  
85  
(3)  
D021  
0.3  
1.2  
2.2  
50  
WDT Current  
(3)  
D022  
D023  
BOR Current  
100  
150  
170  
200  
3.3  
6.1  
35  
(3)  
Comparator Current  
CxSP = 1  
(3)  
D023A  
D024  
Comparator Current  
CxSP = 0  
(3)  
58  
CVREF Current  
Low Range  
85  
104  
35  
(3)  
D024A  
D025  
CVREF Current  
High Range (VRR = 0)  
45  
80  
(3)  
1.8  
2.0  
3.2  
1.2  
2.2  
10  
T1 OSC Current  
(3)  
D026  
D027  
A/D Current  
(not converting)  
(3)  
VR Current  
11  
12  
(3)  
D028  
150  
250  
Op Amp Current  
Legend:  
TBD = To Be Determined.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-  
rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current  
consumption.  
3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. When A/D is off, it will not consume  
any current other than leakage current. the power-down current spec includes any such leakage from the A/D module.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 147  
PIC16F785  
(1,2)  
18.3 DC Characteristics: PIC16F785-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Device Characteristics  
Min Typ† Max Units  
VDD  
Note  
D010E Supply Current (IDD)  
9
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
mA  
μA  
μA  
μA  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32 kHz  
LP Oscillator mode  
17  
33  
D011E  
D012E  
D013E  
D014E  
D015E  
D016E  
D017E  
D018E  
110  
190  
330  
220  
300  
540  
70  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
FOSC = 1 MHz  
EC Oscillator mode  
140  
260  
180  
320  
580  
9
FOSC = 4 MHz  
EC Oscillator mode  
FOSC = 31 kHz  
INTRC mode  
18  
35  
340  
500  
0.8  
180  
320  
580  
2.8  
3.3  
FOSC = 4 MHz  
INTOSC mode  
FOSC = 4 MHz  
EXTRC mode  
FOSC = 20 MHz  
HS Oscillator mode  
Legend:  
TBD = To Be Determined  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail to  
rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current  
consumption.  
3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. When A/D is off, it will not consume  
any current other than leakage current. The power-down current spec includes any such leakage from the A/D  
module.  
DS41249B-page 148  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
(1,2)  
18.3 DC Characteristics: PIC16F785-E (Extended)  
(Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Device Characteristics  
Min Typ† Max Units  
VDD  
Note  
D020E Power-down Base Current  
25  
45  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
nA  
nA  
nA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
nA  
nA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
3.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOR, Comparators, VREF, T1OSC,  
Op Amps and VR disabled  
(4)  
(IPD)  
85  
(3)  
D021E  
0.3  
1.2  
2.2  
50  
WDT Current  
(3)  
D022E  
D023E  
BOR Current  
100  
50  
(3)  
Comparator Current  
CxSP = 1  
170  
200  
3.3  
6.1  
35  
(3)  
D023E  
D024E  
D024E  
D025E  
Comparator Current  
CxSP = 0  
(3)  
58  
CVREF Current  
Low Range  
85  
104  
35  
(3)  
CVREF Current  
High Range  
45  
80  
(3)  
1.8  
2.0  
3.2  
1.2  
2.2  
10  
T1 OSC Current  
(3)  
D026E  
D027E  
A/D Current  
(not converting)  
(3)  
VR Current  
11  
12  
(3)  
D028E  
150  
250  
Op Amp Current  
Legend:  
TBD = To Be Determined  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail to  
rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current  
consumption.  
3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. When A/D is off, it will not consume  
any current other than leakage current. The power-down current spec includes any such leakage from the A/D  
module.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 149  
PIC16F785  
18.4 DC Characteristics: PIC16F785-I (Industrial), PIC16F785-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D030A  
D031  
D032  
D033  
D033A  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.8  
V
V
V
V
V
V
4.5V VDD 5.5V  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3  
Otherwise  
with Schmitt Trigger buffer  
MCLR, OSC1 (RC mode)  
Entire range  
(1)  
OSC1 (XT and LP modes)  
(1)  
OSC1 (HS mode)  
0.3 VDD  
Input High Voltage  
I/O ports  
VIH  
D040  
D040A  
with TTL buffer  
2.0  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
Otherwise  
(0.25 VDD + 0.8)  
D041  
D042  
D043  
D043A  
D043B  
D070  
with Schmitt Trigger buffer  
MCLR  
0.8 VDD  
0.8 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
400*  
V
V
V
V
V
Entire range  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
(Note 1)  
(Note 1)  
0.7 VDD  
0.9 VDD  
50*  
OSC1 (RC mode)  
IPUR  
IIL  
PORTA Weak Pull-up Current  
250  
μA VDD = 5.0V, VPIN = VSS  
(2)  
Input Leakage Current  
D060  
I/O ports  
0.1  
1
μA VSS VPIN VDD,  
Pin at high-impedance  
D060A  
D060B  
D061  
Analog inputs  
VREF  
0.1  
0.1  
0.1  
0.1  
1
1
5
5
μA VSS VPIN VDD  
μA VSS VPIN VDD  
μA VSS VPIN VDD  
(3)  
MCLR  
D063  
OSC1  
μA VSS VPIN VDD, XT, HS and  
LP osc configuration  
Output Low Voltage  
I/O ports  
D080  
D083  
VOL  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V  
OSC2/CLKOUT (RC mode)  
IOL = 1.6 mA, VDD = 4.5V (Ind.)  
IOL = 1.2 mA, VDD = 4.5V (Ext.)  
Output High Voltage  
I/O ports  
D090  
D092  
VOH  
VOD  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = -3.0 mA, VDD = 4.5V  
OSC2/CLKOUT (RC mode)  
IOH = -1.3 mA, VDD = 4.5V (Ind.)  
IOH = -1.0 mA, VDD = 4.5V (Ext.)  
D193*  
Open-Drain High Voltage  
TBD  
V
RB6 pin  
Legend:  
TBD = To Be Determined  
These parameters are characterized but not tested.  
*
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
DS41249B-page 150  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
18.4 DC Characteristics: PIC16F785-I (Industrial), PIC16F785-E (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Capacitive Loading Specs on  
Output Pins  
D100  
COSC2 OSC2 pin  
15*  
50*  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101  
D120  
CIO  
ED  
All I/O pins  
pF  
Data EEPROM Memory  
Byte Endurance  
Byte Endurance  
VDD for Read/Write  
100K  
10K  
1M  
100K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D120A ED  
D121  
VDRW  
VMIN  
5.5  
V
Using EECON1 to read/write  
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW  
Erase/Write cycle time  
5
6
ms  
TRETD Characteristic Retention  
40  
Year Provided no other specifications  
are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh  
1M  
10M  
E/W -40°C TA +85°C  
(1)  
Program Flash Memory  
Cell Endurance  
D130  
EP  
10K  
1K  
100K  
10K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D130A EP  
Cell Endurance  
D131  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
D134  
VPEW  
TPEW  
VDD for Erase/Write  
4.5  
2
5.5  
2.5  
V
Erase/Write cycle time  
ms  
TRETD Characteristic Retention  
40  
Year Provided no other specifications  
are violated  
Legend:  
TBD = To Be Determined  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 151  
PIC16F785  
18.5 Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 18-2:  
LOAD CONDITIONS  
Load Condition 1  
Load Condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
Legend:  
RL = 464Ω  
CL = 50 pF for all pins  
15 pF for OSC2 output  
FIGURE 18-3:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1  
1
3
4
4
3
2
CLKOUT  
DS41249B-page 152  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
TABLE 18-1: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param  
Sym  
Characteristic  
Min Typ†  
Max  
Units  
Conditions  
No.  
FOSC External CLKIN Frequency(1)  
32.768  
kHz LP mode (complementary input  
only)  
DC  
DC  
DC  
4
MHz XT mode  
20  
20  
4
MHz HS mode  
MHz EC mode  
Oscillator Frequency(1)  
32.768  
4
kHz LP Osc mode  
MHz INTOSC mode  
MHz RC Osc mode  
MHz XT Osc mode  
MHz HS Osc mode  
DC  
0.1  
1
4
20  
1
0.3052  
μs LP mode (complementary input  
TOSC  
External CLKIN Period(1)  
only)  
50  
50  
ns HS Osc mode  
ns EC Osc mode  
ns XT Osc mode  
250  
Oscillator Period(1)  
0.3052  
250  
μs LP Osc mode  
ns INTOSC mode  
ns RC Osc mode  
ns XT Osc mode  
ns HS Osc mode  
250  
250  
50  
10,000  
1,000  
2
3
TCY  
Instruction Cycle Time(1)  
200  
TCY  
DC  
ns TCY = 4/FOSC  
TosL, External CLKIN (OSC1) High 2*  
TosH External CLKIN Low  
μs LP oscillator, TOSC L/H duty cycle  
ns HS oscillator, TOSC L/H duty cycle  
ns XT oscillator, TOSC L/H duty cycle  
ns LP oscillator  
20*  
100 *  
4
TosR, External CLKIN Rise  
TosF External CLKIN Fall  
50*  
25*  
15*  
ns XT oscillator  
ns HS oscillator  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at ‘min’  
values with an external clock applied to OSC1 pin. When an external clock input is used, the ‘max’ cycle  
time limit is ‘DC’ (no clock) for all devices.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 153  
PIC16F785  
TABLE 18-2:  
Param  
PRECISION INTERNAL OSCILLATOR PARAMETERS  
Freq  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
No.  
Tolerance  
F10  
FOSC  
Internal Calibrated  
1%  
2%  
7.92  
7.84  
8.00  
8.00  
8.08  
8.16  
MHz VDD = 3.5V, 25°C  
MHz 2.5V VDD 5.5V  
0°C TA +85°C  
INTOSC Frequency(1)  
5%  
7.60  
8.00  
8.40  
MHz 2.0V VDD 5.5V  
-40°C TA +85°C (Ind.)  
-40°C TA +125°C (Ext.)  
μs VDD = 2.0V, -40°C to +85°C  
μs VDD = 3.0V, -40°C to +85°C  
μs VDD = 5.0V, -40°C to +85°C  
F14  
TIOSCST Oscillator wake-up from  
Sleep start-up time*  
10.3  
9.0  
TBD  
TBD  
TBD  
6.5  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to  
the device as possible. 0.1uF and 0.01uF values in parallel are recommended.  
FIGURE 18-4:  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
22  
23  
CLKOUT  
13  
12  
19  
18  
14  
16  
I/O pin  
(Input)  
15  
17  
I/O pin  
(Output)  
New Value  
Old Value  
20, 21  
TABLE 18-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
10  
11  
12  
13  
14  
15  
16  
TOSH2CKL OSC1to CLOUT↓  
TOSH2CKH OSC1to CLOUT↑  
75  
75  
35  
35  
200  
200  
100  
100  
20  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
TCKR  
TCKF  
CLKOUT rise time  
CLKOUT fall time  
TCKL2IOV CLKOUTto Port out valid  
TIOV2CKH Port in valid before CLKOUT↑  
TCKH2IOI Port in hold after CLKOUT↑  
These parameters are characterized but not tested.  
TOSC + 200 ns  
0
*
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
DS41249B-page 154  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
TABLE 18-3: CLKOUT AND I/O TIMING REQUIREMENTS (CONTINUED)  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
17  
TOSH2IOV OSC1(Q1 cycle) to Port out valid  
50  
150 *  
300  
ns  
ns  
ns  
18  
19  
TOSH2IOI OSC1(Q2 cycle) to Port input  
100  
invalid (I/O in hold time)  
TIOV2OSH Port input valid to OSC1↑  
0
ns  
(I/O in setup time)  
20  
21  
22  
23  
TIOR  
TIOF  
TINP  
TRBP  
Port output rise time  
Port output fall time  
INT pin high or low time  
10  
10  
40  
40  
ns  
ns  
ns  
ns  
25  
PORTA change INT high or low  
time  
TCY  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
FIGURE 18-5:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 155  
PIC16F785  
FIGURE 18-6:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR  
(Device not in Brown-out Reset)  
(Device in Brown-out Reset)  
36  
Reset (due to BOR)  
(1)  
64 ms time-out  
Note 1: 64 ms delay only if PWRTE bit in Configuration Word is programmed to ‘0’.  
TABLE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param  
No.  
Sym  
TMCL  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
MCLR Pulse Width (low)  
2
11  
18  
μs VDD = 5.0V, -40°C to +85°C  
24  
ms Extended temperature  
31  
TWDT  
TOST  
Watchdog Timer Time-out  
Period  
(No Prescaler)  
10  
10  
17  
17  
25  
30  
ms VDD = 5.0V, -40°C to +85°C  
ms Extended temperature  
32  
33*  
34  
Oscillation Start-up Timer  
Period  
1024 TOSC  
TOSC = OSC1 period  
TPWRT Power-up Timer Period  
28*  
TBD  
64  
TBD  
132*  
TBD  
ms VDD = 5.0V, -40°C to +85°C  
ms Extended Temperature  
TIOZ  
I/O High-impedance from  
MCLR Low or Watchdog Timer  
Reset  
2.0  
μs  
35  
36  
VBOR  
TBOR  
Brown-out Reset Voltage  
2.025  
100*  
2.175  
V
Brown-out Reset Pulse Width  
μs VDD VBOR (D005)  
Legend: TBD = To Be Determined.  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
DS41249B-page 156  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
FIGURE 18-7:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
TABLE 18-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
TT0H  
Characteristic  
T0CKI High Pulse Width  
Min  
Typ† Max Units  
Conditions  
40*  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
41*  
42*  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale  
value (2, 4, ...,  
256)  
45*  
46*  
47*  
TT1H  
TT1L  
T1CKI High  
Time  
Synchronous, No Prescaler  
0.5 TCY + 20  
15  
ns  
ns  
Synchronous,  
with Prescaler  
Asynchronous  
30  
0.5 TCY + 20  
15  
ns  
ns  
ns  
T1CKI Low Time Synchronous, No Prescaler  
Synchronous,  
with Prescaler  
Asynchronous  
30  
ns  
TT1P  
FT1  
T1CKI Input  
Period  
Synchronous  
Greater of:  
30 or TCY + 40  
N
ns N = prescale  
value (1, 2, 4,  
8)  
Asynchronous  
60  
ns  
48  
49  
Timer1 oscillator input frequency range  
(oscillator enabled by setting bit T1OSCEN)  
DC  
200*  
kHz  
TCKEZTMR1 Delay from external clock edge to timer increment  
These parameters are characterized but not tested.  
2 TOSC*  
7 TOSC*  
*
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 157  
PIC16F785  
FIGURE 18-8:  
CAPTURE/COMPARE/PWM TIMINGS (CCP)  
CCP1  
(Capture mode)  
50  
51  
52  
CCP1  
(Compare or PWM mode)  
53  
Note: Refer to Figure 18-2 for load conditions.  
54  
TABLE 18-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)  
Param  
Symbol  
Characteristic  
Min  
Typ† Max Units Conditions  
No.  
50* TCCL  
51* TCCH  
52* TCCP  
CCP1 input low time  
No Prescaler  
0.5TCY +  
20  
ns  
With Prescaler  
No Prescaler  
20  
ns  
ns  
CCP1 input high time  
CCP1 input period  
0.5TCY +  
20  
With Prescaler  
20  
ns  
3TCY + 40  
N
ns N = prescale  
value (1,4 or  
16)  
53* TCCR  
54* TCCF  
CCP1 output rise time  
CCP1 output fall time  
25  
25  
50  
45  
ns  
ns  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
DS41249B-page 158  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
TABLE 18-7: COMPARATOR SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Comparator Specifications  
Param  
Symbol  
No.  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
C01  
C02  
C03  
C04  
VOS  
VCM  
ILC  
Input Offset Voltage  
0
5
TBD  
VDD – 1.5  
200*  
mV  
V
Input Common Mode Voltage  
Input Leakage Current  
nA  
dB  
CMRR  
Common Mode Rejection  
Ratio  
+70*  
C05  
TRT  
Response Time(1)  
20*  
40*  
ns  
ns  
Internal  
Output to pin  
*
These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from  
VSS to VDD – 1.5V.  
TABLE 18-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Comparator Voltage Reference Specifications  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Symbol  
CVRES Resolution  
Absolute Accuracy  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
CV01  
VDD/24*  
VDD/32  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
CV02  
1/4*  
1/2*  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
CV03  
CV04  
Unit Resistor Value (R)  
Settling Time(1)  
2K*  
Ω
10*  
μs  
*
These parameters are characterized but not tested.  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from 0000to 1111.  
TABLE 18-9: VOLTAGE REFERENCE (VR) SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
VR Voltage Reference Specifications  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
3.0V VDD 5.5V  
VR01  
VR02  
VROUT  
VR voltage output  
TBD  
1.200  
150  
TBD  
TBD  
V
TCVOUT Voltage drift temperature  
coefficient  
ppm/°C  
VR03  
VR04  
ΔVROUT/ Voltage drift with respect to  
200  
10  
μV/V  
μs  
ΔVDD  
VDD regulation  
TSTABLE Settling Time  
100*  
Legend: TBD = To Be Determined  
These parameters are characterized but not tested.  
*
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 159  
PIC16F785  
TABLE 18-10: VOLTAGE REFERENCE OUTPUT (VREF) BUFFER SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Voltage Reference Output Buffer Specifications Operating temperature -40°C TA +125°C  
Operating voltage 3.0V VDD 5.5V  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
VB01*  
VB02*  
CL  
External capacitor load  
1
200  
TBD  
TBD  
TBD  
pF  
ΔVOUT/ Load regulation  
ΔIOUT  
mV/mA VREF=1.2V, IREF= 1ma  
VREF=0.5V, IREF= 1ma  
1
1
VREF=3.6V, IREF= 1ma  
Legend: TBD = To Be Determined  
These parameters are characterized but not tested.  
*
TABLE 18-11: OPERATIONAL AMPLIFIER (OPA) MODULE DC SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
VCM = 0V, VOUT = VDD/2, VDD = 5.0V, VSS = 0V, CL = 50pF,  
RL = 100k  
OPA DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Sym  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
OPA01*  
VOS  
Input Offset Voltage  
5
mV  
Input current and impedance  
Input bias current  
Input offset bias current  
OPA02*  
OPA03*  
IB  
IOS  
2*  
1*  
nA  
pA  
Common Mode  
OPA04*  
OPA05*  
VCM  
CMR  
Common mode input range  
Common mode rejection  
VSS  
TBD  
70  
VDD – 1.4  
V
dB  
VDD = 5.0V  
VCM = VDD/2, Freq = DC  
Open Loop Gain  
DC Open loop gain  
DC Open loop gain  
OPA06A* AOL  
OPA06B* AOL  
90  
60  
dB  
dB  
No load  
Standard load  
Output  
OPA07*  
Vout  
Output voltage swing  
VSS+100  
VDD – 100  
mV To VDD/2 (20 kΩ  
connected to VDD,  
20 kΩ + 20 pF to Vss)  
mA  
OPA08*  
OPA10  
Isc  
Output short circuit current  
25  
TBD  
Power Supply  
Power supply rejection  
PSR  
80  
dB  
Legend: TBD = To Be Determined  
These parameters are characterized but not tested.  
*
DS41249B-page 160  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
TABLE 18-12: OPERATIONAL AMPLIFIER (OPA) MODULE AC SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
VCM = 0V, VOUT = VDD/2, VDD = 5.0V, VSS = 0V, CL = 50 pF,  
RL = 100k  
OPA AC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C  
Param  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
No.  
OPA11* GBWP Gain bandwidth product  
2
3
TBD  
MHz  
μs  
OPA12* TON  
OPA13* ΘM  
OPA14* SR  
Turn on time  
Phase margin  
Slew rate  
10  
60  
deg  
V/μs  
Legend: TBD = To Be Determined  
These parameters are characterized but not tested.  
*
TABLE 18-13: TWO-PHASE PWM DEAD TIME DELAY SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Dead Time Delay Characteristics  
Param  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
No.  
PW01* TDLY  
Dead Time Delay  
TBD  
150  
TBD  
ns  
Fosc = 4 MHz,  
maximum delay,  
Complementary mode  
Legend: TBD = To Be Determined  
These parameters are characterized but not tested.  
*
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 161  
PIC16F785  
TABLE 18-14: PIC16F785 A/D CONVERTER CHARACTERISTICS:  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR  
Resolution  
10 bits  
bit  
A03  
A04  
EIL  
EDL  
Integral Error  
Differential Error  
1
1
LSb VREF = 5.0V (external)  
LSb No missing codes to 10 bits  
VREF = 5.0V (external)  
A05  
A06  
A07  
A10  
EFS  
Full Scale Range  
2.2*  
5.5*  
1
V
EOFF Offset Error  
EGN Gain Error  
LSb VREF = 5.0V (external)  
LSb VREF = 5.0V (external)  
guaranteed(2)  
1
Monotonicity  
V
VSS VAIN VREF  
A20  
VREF Reference Voltage 2.2(4)  
A20A  
1.0  
VDD + 0.3  
Absolute minimum to ensure 10-bit  
accuracy  
(5)  
A25  
A30  
VAIN Analog Input  
Voltage  
VSS  
VREF  
V
ZAIN Recommended  
Impedance of  
Analog Voltage  
Source  
10  
kΩ  
A50  
IREF VREF Input  
Current*(3)  
150  
1
μA During VAIN acquisition.  
Based on differential of VHOLD to  
mA VAIN.  
Transient during A/D conversion  
cycle.  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Total Absolute Error includes Integral, Differential, Offset and Gain Errors.  
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing  
codes.  
3: VREF current is from external VREF or VDD pin, whichever is selected as reference input.  
4: Only limited when VDD is at or below 2.5V. If VDD is above 2.5V, VREF is allowed to go as low as 1.0V.  
5: Analog input voltages are allowed up to VDD, however the conversion accuracy is limited to VSS to VREF.  
DS41249B-page 162  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
FIGURE 18-9:  
PIC16F785 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
134  
Q4  
1 TCY  
(1)  
(TOSC/2)  
131  
130  
A/D CLK  
9
8
7
6
3
2
1
0
A/D DATA  
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 18-15: PIC16F785 A/D CONVERSION REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
130  
TAD  
A/D Clock Period  
1.6  
μs  
μs  
TOSC-based, VREF 3.0V  
3.0*  
TOSC-based, VREF full range  
130  
TAD  
A/D Internal RC  
Oscillator Period  
ADCS<1:0> = 11(RC mode)  
At VDD = 2.5V  
3.0*  
2.0*  
6.0  
4.0  
11  
9.0*  
6.0*  
μs  
μs  
At VDD = 5.0V  
131  
132  
TCNV  
TACQ  
Conversion Time (not  
including  
Acquisition Time)  
TAD Set GO bit to new data in A/D result  
register  
(1)  
Acquisition Time  
(Note 2)  
11.5  
μs  
5*  
μs  
The minimum time is the amplifier settling  
time. This may be used if the “new” input  
voltage has not changed by more than 1  
LSb (i.e., 4.1 mV @ 4.096V) from the last  
sampled voltage (as stored on CHOLD).  
134  
TGO  
Q4 to A/D Clock Start  
TOSC/2  
If the A/D clock source is selected as  
RC, a time of TCY is added before the  
A/D clock starts. This allows the SLEEP  
instruction to be executed.  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.  
2: See Table 12-2 for minimum conditions.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 163  
PIC16F785  
FIGURE 18-10:  
PIC16F785 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
134  
(1)  
(TOSC/2 + TCY)  
1 TCY  
131  
Q4  
130  
A/D CLK  
9
8
7
3
2
1
0
6
A/D DATA  
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This  
allows the SLEEPinstruction to be executed.  
TABLE 18-16: PIC16F785 A/D CONVERSION REQUIREMENTS (SLEEP MODE)  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
No.  
130  
TAD  
A/D Internal RC  
Oscillator Period  
ADCS<1:0> = 11(RC mode)  
μs At VDD = 2.5V  
3.0*  
2.0*  
6.0  
4.0  
11  
9.0*  
6.0*  
μs At VDD = 5.0V  
131  
132  
TCNV  
TACQ  
Conversion Time  
(not including  
TAD  
Acquisition Time)(1)  
Acquisition Time  
(Note 2)  
11.5  
μs  
5*  
μs The minimum time is the amplifier  
settling time. This may be used if  
the “new” input voltage has not  
changed by more than 1 LSb (i.e.,  
4.1 mV @ 4.096V) from the last  
sampled voltage (as stored on  
CHOLD).  
134  
TGO  
Q4 to A/D Clock  
Start  
TOSC/2 + TCY  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Table 12-1 for minimum conditions.  
DS41249B-page 164  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
19.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
Graphs are not available at this time.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 165  
PIC16F785  
NOTES:  
DS41249B-page 166  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
20.0 PACKAGING INFORMATION  
20.1 Package Marking Information  
20-Lead PDIP  
Example  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC16F785-I/P  
0410017  
20-Lead SOIC (.300”)  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
PIC16F785  
-E/SO  
0410017  
YYWWNNN  
20-Lead SSOP  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16F785  
-I/SS  
0410017  
YYWWNNN  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 167  
PIC16F785  
20.2 Package Details  
The following sections give the technical details of the  
packages.  
20-Lead Plastic Dual In-line (P) – 300 mil Body (PDIP)  
E1  
D
2
α
n
1
E
A2  
A
L
c
A1  
β
B1  
eB  
p
B
Units  
INCHES*  
NOM  
20  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
Number of Pins  
Pitch  
.100  
2.54  
Top to Seating Plane  
A
.140  
.155  
.130  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.295  
.240  
1.025  
.120  
.008  
.055  
.014  
.310  
5
.145  
3.68  
0.38  
7.49  
6.10  
26.04  
3.05  
0.20  
1.40  
0.36  
7.87  
5
.310  
.250  
1.033  
.130  
.012  
.060  
.018  
.370  
10  
.325  
.260  
1.040  
.140  
.015  
.065  
.022  
.430  
15  
7.87  
6.35  
26.24  
3.30  
0.29  
1.52  
0.46  
9.40  
10  
8.26  
6.60  
26.42  
3.56  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-019  
DS41249B-page 168  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
20-Lead Plastic Small Outline (SO) – Wide, 300 mil Body (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
A1  
L
Units  
INCHES*  
NOM  
20  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
Number of Pins  
Pitch  
.050  
.099  
.091  
.008  
.407  
.295  
.504  
.020  
.033  
4
1.27  
Overall Height  
A
.093  
.088  
.004  
.394  
.291  
.496  
.010  
.016  
0
.104  
2.36  
2.50  
2.31  
0.20  
10.34  
7.49  
12.80  
0.50  
0.84  
4
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.094  
.012  
.420  
.299  
.512  
.029  
.050  
8
2.24  
0.10  
10.01  
7.39  
12.60  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
13.00  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-094  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 169  
PIC16F785  
20-Lead Plastic Shrink Small Outline (SS) – 209 mil Body, 5.30 mm (SSOP)  
DS41249B-page 170  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: MIGRATING FROM  
OTHER PICmicro®  
DEVICES  
Revision A  
This discusses some of the issues in migrating from the  
PIC16F684 PICmicro device to the PIC16F785.  
This is a new data sheet.  
Revision B  
B.1  
TABLE B-1:  
Feature  
PIC16F684 to PIC16F785  
FEATURE COMPARISON  
Updates throughout document.  
PIC16F684  
PIC16F785  
Max Operating Speed  
20 MHz  
2048  
20 MHz  
2048  
Max Program  
Memory (Words)  
SRAM (bytes)  
A/D Resolution  
128  
10-bit  
256  
128  
10-bit  
256  
Data EEPROM  
(bytes)  
Timers (8/16-bit)  
Oscillator modes  
Brown-out Reset  
Internal Pull-ups  
2/1  
8
2/1  
8
Y
Y
RA0/1/2/4/5 RA0/1/2/3/4/5  
MCLR MCLR  
Interrupt-on-change RA0/1/2/3/4/5 RA0/1/2/3/4/5  
Comparator  
CCP  
2
ECCP  
Y
Op Amps  
PWM  
N
N
Y
2
Two-Phase  
N
Ultra Low-Power  
Wake-up  
Extended WDT  
Y
Y
Y
Y
Software Control  
Option of WDT/BOR  
INTOSC Frequencies  
Clock Switching  
32 kHz -  
8 MHz  
32 kHz -  
8 MHz  
Y
Y
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 171  
PIC16F785  
NOTES:  
DS41249B-page 172  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
INDEX  
RC2 and RC3 Pins ..................................................... 47  
RC4 Pin ...................................................................... 47  
RC5 Pin ...................................................................... 48  
Resonator Operation .................................................. 25  
Timer1 ........................................................................ 51  
Timer2 ........................................................................ 56  
TMR0/WDT Prescaler ................................................ 49  
Two-Phase PWM  
A
A/D...................................................................................... 79  
Acquisition Requirements ........................................... 86  
Analog Port Pins ......................................................... 80  
Associated Registers .................................................. 89  
Block Diagram............................................................. 79  
Calculating Acquisition Time....................................... 86  
Channel Selection....................................................... 80  
Configuration and Operation....................................... 80  
Configuring.................................................................. 85  
Configuring Interrupt ................................................... 85  
Conversion Clock........................................................ 80  
Effects of Reset........................................................... 89  
Internal Sampling Switch (RSS) Impedance................ 86  
Operation During Sleep .............................................. 88  
Output Format............................................................. 81  
Reference Voltage (VREF)........................................... 80  
Source Impedance...................................................... 86  
Special Event Trigger.................................................. 89  
Specifications............................................ 162, 163, 164  
Starting a Conversion ................................................. 81  
Using the ECCP Trigger ............................................. 89  
Absolute Maximum Ratings .............................................. 143  
AC Characteristics  
Complementary Output Mode .......................... 100  
Simplified Diagram ............................................. 92  
Single Phase Example ....................................... 98  
VR Reference............................................................. 74  
Watchdog Timer (WDT)............................................ 121  
Brown-out Reset (BOR).................................................... 110  
Associated registers ................................................. 112  
Calibration ................................................................ 111  
Specifications ........................................................... 156  
Timing and Characteristics....................................... 156  
C
C Compilers  
MPLAB C17.............................................................. 138  
MPLAB C18.............................................................. 138  
MPLAB C30.............................................................. 138  
Capture Module. See Capture/Compare/PWM (CCP)  
Capture/Compare/PWM (CCP) .......................................... 57  
Associated Registers.................................................. 62  
Associated registers w/ Capture/Compare/Timer1..... 59  
Capture Mode............................................................. 58  
CCP1 Pin Configuration ............................................. 58  
Compare Mode........................................................... 58  
CCP1 Pin Configuration ..................................... 59  
Software Interrupt Mode..................................... 59  
Special Event Trigger and A/D Conversions ...... 59  
Timer1 Mode Selection....................................... 59  
Prescaler .................................................................... 58  
PWM Mode................................................................. 60  
Duty Cycle .......................................................... 61  
Effects of Reset.................................................. 62  
Example PWM Frequencies and Resolutions .... 61  
Operation in Power Managed Modes................. 62  
Operation with Fail-Safe Clock Monitor.............. 62  
Setup for Operation ............................................ 62  
Setup for PWM Operation .................................. 62  
Specifications ........................................................... 158  
Timer Resources ........................................................ 57  
CCP. See Capture/Compare/PWM (CCP)  
Load Conditions........................................................ 152  
ADCON0 Register............................................................... 83  
ADCON1 Register............................................................... 84  
Analog-to-Digital Converter. See A/D  
ANSEL Register.............................................. 93, 94, 96, 100  
ANSEL0 Register................................................................ 82  
ANSEL1 Register................................................................ 82  
Assembler  
MPASM Assembler................................................... 137  
B
Block Diagrams  
(CCP) Capture Mode Operation ................................. 58  
A/D.............................................................................. 79  
Analog Input Model..................................................... 87  
CCP PWM................................................................... 60  
Clock Source............................................................... 23  
Comparator 1.............................................................. 64  
Comparator 2.............................................................. 66  
Compare ..................................................................... 58  
CVref........................................................................... 71  
Fail-Safe Clock Monitor (FSCM)................................. 31  
In-Circuit Serial Programming Connections.............. 125  
Interrupt Logic........................................................... 118  
On-Chip Reset Circuit............................................... 109  
OPA Module................................................................ 75  
PIC16F684.................................................................... 5  
RA0 Pin....................................................................... 38  
RA1 Pin....................................................................... 38  
RA2 Pin....................................................................... 39  
RA3 Pin....................................................................... 39  
RA4 Pin....................................................................... 40  
RA5 Pin....................................................................... 40  
RB4 and RB5 Pins...................................................... 43  
RB6 Pin....................................................................... 43  
RB7 Pin....................................................................... 43  
RC0 and RC1 Pins...................................................... 43  
RC0, RC6 and RC7 Pins ............................................ 46  
RC1 Pin....................................................................... 46  
CCP1CON Register............................................................ 57  
CCPR1H Register............................................................... 57  
CCPR1L Register ............................................................... 57  
Clock Sources..................................................................... 23  
CM1CON0 .......................................................................... 65  
CM2CON1 .......................................................................... 68  
Code Examples  
Assigning Prescaler to Timer0.................................... 50  
Assigning Prescaler to WDT....................................... 50  
Changing Between Capture Prescalers ..................... 58  
Data EEPROM Read................................................ 105  
Data EEPROM Write................................................ 105  
EEPROM Write Verify .............................................. 105  
Indirect Addressing..................................................... 22  
Initializing A/D............................................................. 85  
Initializing PORTA ...................................................... 35  
Initializing PORTB ...................................................... 42  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 173  
PIC16F785  
Initializing PORTC.......................................................45  
Interrupt Context Saving ...........................................120  
Code Protection ................................................................125  
Comparator Module ............................................................63  
Associated registers....................................................74  
C1 Output State Versus Input Conditions...................63  
C2 Output State Versus Input Conditions...................66  
Comparator Interrupts.................................................69  
Effects of Reset...........................................................69  
Comparator Voltage Reference (CVREF)  
F
Fail-Safe Clock Monitor ...................................................... 31  
Fail-Safe Condition Clearing....................................... 32  
Reset and Wake-up from Sleep.................................. 32  
Firmware Instructions ....................................................... 127  
Fuses. See Configuration Bits  
G
General Purpose Register File ............................................. 9  
I
Specifications............................................................159  
Comparators  
ID Locations...................................................................... 125  
In-Circuit Debugger........................................................... 126  
In-Circuit Serial Programming (ICSP)............................... 125  
Indirect Addressing, INDF and FSR registers..................... 22  
Instruction Format............................................................. 127  
Instruction Set................................................................... 127  
ADDLW..................................................................... 129  
ADDWF..................................................................... 129  
ANDLW..................................................................... 129  
ANDWF..................................................................... 129  
BCF .......................................................................... 129  
BSF........................................................................... 129  
BTFSC...................................................................... 129  
BTFSS ...................................................................... 129  
CALL......................................................................... 130  
CLRF ........................................................................ 130  
CLRW ....................................................................... 130  
CLRWDT .................................................................. 130  
COMF ....................................................................... 130  
DECF........................................................................ 130  
DECFSZ ................................................................... 130  
GOTO ....................................................................... 131  
INCF ......................................................................... 131  
INCFSZ..................................................................... 131  
IORLW...................................................................... 131  
IORWF...................................................................... 131  
MOVF ....................................................................... 131  
MOVLW .................................................................... 132  
MOVWF.................................................................... 132  
NOP.......................................................................... 132  
RETFIE..................................................................... 132  
RETLW ..................................................................... 133  
RETURN................................................................... 133  
RLF........................................................................... 133  
RRF .......................................................................... 134  
SLEEP ...................................................................... 134  
SUBLW..................................................................... 134  
SUBWF..................................................................... 135  
SWAPF..................................................................... 135  
TRIS ......................................................................... 135  
XORLW .................................................................... 136  
XORWF .................................................................... 136  
Summary Table ........................................................ 128  
INTCON Register................................................................ 17  
Internal Oscillator Block  
C2OUT as T1 Gate .....................................................52  
Specifications............................................................159  
Compare Module. See Capture/Compare/PWM (CCP)  
CONFIG Register..............................................................108  
Configuration Bits..............................................................107  
CPU Features ...................................................................107  
Customer Change Notification Service .................................1  
Customer Support.................................................................1  
D
Data EEPROM Memory  
Associated registers..................................................106  
Code Protection ................................................ 103, 106  
Data Memory.........................................................................9  
DC Characteristics  
Extended and Industrial ............................................150  
Industrial and Extended ............................................145  
Demonstration Boards  
PICDEM 1 .................................................................140  
PICDEM 17 ...............................................................141  
PICDEM 18R ............................................................141  
PICDEM 2 Plus.........................................................140  
PICDEM 3 .................................................................140  
PICDEM 4 .................................................................140  
PICDEM LIN .............................................................141  
PICDEM USB............................................................141  
PICDEM.net Internet/Ethernet ..................................140  
Development Support .......................................................137  
Device Overview ...................................................................5  
E
EEADR Register ...............................................................103  
EECON1 Register.............................................................104  
EECON2 Register.............................................................104  
EEDAT Register................................................................103  
EEPROM Data Memory  
Avoiding Spurious Write............................................105  
Reading.....................................................................105  
Write Verify ...............................................................105  
Writing.......................................................................105  
Effects of Reset  
A/D module .................................................................89  
Comparator module ....................................................69  
OPA module................................................................77  
PWM mode .................................................................62  
Electrical Specifications ....................................................143  
Errata ....................................................................................3  
Evaluation and Programming Tools..................................141  
INTOSC  
Specifications ................................................... 154  
Internal Sampling Switch (RSS) Impedance........................ 86  
Internet Address ................................................................... 1  
Interrupts........................................................................... 117  
(CCP) Compare.......................................................... 58  
A/D.............................................................................. 85  
Associated registers ................................................. 119  
Comparator................................................................. 69  
DS41249B-page 174  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
Context Saving.......................................................... 120  
Data EEPROM Memory Write .................................. 104  
Interrupt-on-change .................................................... 37  
Oscillator Fail (OSF) ................................................... 31  
PORTA Interrupt-on-change..................................... 118  
RA2/INT .................................................................... 118  
TMR0 ........................................................................ 118  
TMR1 .......................................................................... 52  
TMR2 to PR2 Match ............................................. 55, 56  
INTOSC Specifications ..................................................... 154  
IOCA (Interrupt-on-Change) ............................................... 37  
IOCA Register..................................................................... 37  
PIR1 Register ..................................................................... 19  
PORTA ............................................................................... 35  
Additional Pin Functions............................................. 36  
Interrupt-on-change............................................ 37  
Weak Pull-up ...................................................... 36  
Associated registers ................................................... 41  
Pin Descriptions and Diagrams .................................. 38  
RA0............................................................................. 38  
RA1............................................................................. 38  
RA2............................................................................. 39  
RA3............................................................................. 39  
RA4............................................................................. 40  
RA5............................................................................. 40  
Specifications ........................................................... 154  
PORTB ............................................................................... 42  
Associated registers ................................................... 44  
Pin Descriptions and Diagrams .................................. 43  
RB4............................................................................. 43  
RB5............................................................................. 43  
RB6............................................................................. 43  
RB7............................................................................. 43  
PORTC ............................................................................... 45  
Associated registers ............................................. 33, 48  
Pin Descriptions and Diagrams .................................. 46  
RC0 ............................................................................ 46  
RC1 ............................................................................ 46  
RC2 ............................................................................ 47  
RC3 ............................................................................ 47  
RC4 ............................................................................ 47  
RC5 ............................................................................ 48  
RC6 ............................................................................ 46  
RC7 ............................................................................ 46  
Specifications ........................................................... 154  
Power-Down Mode (Sleep)............................................... 123  
Power-up Timer (PWRT).................................................. 110  
Specifications ........................................................... 156  
Power-up Timing Delays................................................... 112  
Precision Internal Oscillator Parameters .......................... 154  
Prescaler  
L
Load Conditions................................................................ 152  
M
MCLR................................................................................ 110  
Internal...................................................................... 110  
Memory Organization............................................................ 9  
Data .............................................................................. 9  
Data EEPROM Memory............................................ 103  
Program ........................................................................ 9  
Microchip Internet Web Site.................................................. 1  
Migrating from other PICmicro Devices ............................ 171  
MPLAB ASM30 Assembler, Linker, Librarian ................... 138  
MPLAB ICD 2 In-Circuit Debugger ................................... 139  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator .................................................... 139  
MPLAB ICE 4000 High-Performance Universal  
In-Circuit Emulator .................................................... 139  
MPLAB Integrated Development Environment Software .. 137  
MPLAB PM3 Device Programmer .................................... 139  
MPLINK Object Linker/MPLIB Object Librarian ................ 138  
O
OPA2CON Register ............................................................ 76  
OPCODE Field Descriptions............................................. 127  
Operational Amplifier (OPA) Module................................... 75  
AC Specifications...................................................... 161  
Associated Registers .................................................. 77  
DC Specifications...................................................... 161  
OPTION_REG Register ...................................................... 16  
OSCCON Register.............................................................. 33  
Oscillator  
Associated registers.................................................... 33  
Oscillator Specifications.................................................... 153  
Oscillator Start-up Timer (OST)  
Specifications............................................................ 156  
Oscillator Switching  
Shared WDT/Timer0................................................... 50  
Switching Prescaler Assignment ................................ 50  
PRO MATE II Universal Device Programmer................... 139  
Product Identification ........................................................ 175  
Program Memory.................................................................. 9  
Map and Stack.............................................................. 9  
Programming, Device Instructions.................................... 127  
PWM. See Two-Phase PWM  
PWMCLK Register.............................................................. 94  
PWMCON0 Register........................................................... 93  
PWMCON1 Register......................................................... 100  
PWMPH1 Register.............................................................. 95  
PWMPH2 Register.............................................................. 96  
Fail-Safe Clock Monitor............................................... 31  
Two-Speed Clock Start-up.......................................... 30  
P
R
Packaging ......................................................................... 167  
Marking ..................................................................... 167  
PDIP Details.............................................................. 168  
PCL and PCLATH............................................................... 21  
Stack........................................................................... 21  
PCON Register ................................................................. 112  
PICkit 1 Flash Starter Kit................................................... 141  
PICSTART Plus Development Programmer ..................... 140  
PIE1 Register...................................................................... 18  
Pin Diagram .......................................................................... 2  
Pinout Descriptions  
Reader Response................................................................. 2  
Read-Modify-Write Operations ......................................... 127  
REFCON (VR control) ........................................................ 73  
Register  
IOCA (Interrupt-on-Change)....................................... 37  
WPUA (Weak Pull-up PORTA)................................... 36  
Registers  
ADCON0 (A/D Control 0)............................................ 83  
ADCON1 (A/D Control 1)............................................ 84  
ANSEL (Analog Select) .......................... 93, 94, 96, 100  
ANSEL0 (Analog Select 0) ......................................... 82  
ANSEL1 (Analog Select 1) ......................................... 82  
PIC16F684.................................................................... 6  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 175  
PIC16F785  
CCP1CON (CCP Operation).......................................57  
CCPR1H .....................................................................57  
CCPR1L......................................................................57  
CM1CON0 (C1 Control)..............................................65  
CM1CON0 (C2 Control)  
Prescaler .................................................................... 50  
Specifications ........................................................... 157  
Timer1................................................................................. 51  
Associated registers ................................................... 54  
Asynchronous Counter Mode ..................................... 54  
Reading and Writing........................................... 54  
Interrupt ...................................................................... 52  
Modes of Operations .................................................. 52  
Operation During Sleep .............................................. 54  
Oscillator..................................................................... 54  
Prescaler .................................................................... 52  
Specifications ........................................................... 157  
Timer1 Gate  
Inverting Gate..................................................... 52  
Selecting Source ................................................ 52  
TMR1H Register......................................................... 51  
TMR1L Register.......................................................... 51  
Timer2................................................................................. 55  
Associated registers ................................................... 56  
Operation.................................................................... 55  
Postscaler................................................................... 55  
PR2 Register .............................................................. 55  
Prescaler .................................................................... 55  
TMR2 Register............................................................ 55  
TMR2 to PR2 Match Interrupt............................... 55, 56  
Timing Diagrams  
CM2CON0 ..........................................................67  
CM2CON1 (C2 control)...............................................68  
CONFIG (Configuration Word)..................................108  
Data Memory Map ......................................................10  
EEADR (EEPROM Address) ....................................103  
EECON1 (EEPROM Control 1).................................104  
EECON2 (EEPROM Control 2).................................104  
EEDAT (EEPROM Data) ..........................................103  
INTCON (Interrupt Control).........................................17  
IOCA (Interrupt-on-change PORTA)...........................37  
Op Amp 2 Control Register (OPA2CON)....................76  
OPTION_REG (Option) ..............................................16  
OSCCON (Oscillator Control) .....................................33  
PCON (Power Control) .............................................112  
PIE1 (Peripheral Interrupt Enable 1)...........................18  
PIR1 (Peripheral Interrupt Register 1) ........................19  
PORTA........................................................................35  
PORTB........................................................................42  
PORTC .......................................................................45  
PWMCLK (PWM clock control) ...................................94  
PWMCON0 (PWM control 0) ......................................93  
PWMCON1 (PWM control 1) ....................................100  
PWMPH1 (PWM Phase 1 control) ..............................95  
PWMPH2 (PWM Phase 2 control) ..............................96  
REFCON (VR control).................................................73  
Reset Values.............................................................114  
Reset Values (special registers) ...............................116  
Special Function registers.............................................9  
Special Register Summary ............................. 12, 13, 14  
Status..........................................................................15  
T1CON (Timer1 Control).............................................53  
T2CON (Timer2 Control).............................................55  
TRISA (Tri-state PORTA) ...........................................36  
TRISB (Tri-state PORTB) ...........................................42  
TRISC (Tri-state PORTC) ...........................................45  
WDTCON (Watchdog Timer Control)........................122  
WPUA (Weak Pull-up PORTA)...................................36  
Resets...............................................................................109  
Power-On Reset .......................................................110  
Revision History ................................................................171  
RRF Instruction .................................................................134  
A/D Conversion......................................................... 163  
A/D Conversion (Sleep Mode).................................. 164  
Brown-out Reset (BOR)............................................ 156  
Brown-out Reset Situations ...................................... 111  
Capture/Compare/PWM (CCP) ................................ 158  
CLKOUT and I/O ...................................................... 154  
External Clock........................................................... 152  
Fail-Safe Clock Monitor (FSCM)................................. 32  
INT Pin Interrupt ....................................................... 119  
Reset, WDT, OST and Power-up Timer................... 155  
Time-out Sequence  
Case 1 .............................................................. 113  
Case 2 .............................................................. 113  
Case 3 .............................................................. 113  
Timer0 and Timer1 External Clock ........................... 157  
Timer1 Incrementing Edge ......................................... 52  
Two-Phase PWM  
Complementary Output .................................... 101  
Start-up............................................................... 97  
Two-Speed Start-up.................................................... 31  
Two-Phase PWM  
S
Auto-Shutdown................................................... 97  
Wake-up from Interrupt............................................. 124  
Timing Parameter Symbology .......................................... 152  
TRIS Instruction................................................................ 135  
TRISA Register................................................................... 36  
TRISB Register................................................................... 42  
TRISC Register................................................................... 45  
Two-Phase PWM................................................................ 91  
Activating .................................................................... 91  
Active Output Level .................................................... 92  
Associated registers ................................................. 101  
Auto-shutdown............................................................ 92  
Clock control (PWMCLK)............................................ 94  
Control Register 0 (PWMCON0)................................. 93  
Control Register 1 (PWMCON1)............................... 100  
Master/Slave Operation.............................................. 91  
Output Blanking .......................................................... 91  
Phase 1 control (PWMPH1)........................................ 95  
SLEEP Instruction.............................................................134  
Software Simulator (MPLAB SIM).....................................138  
Software Simulator (MPLAB SIM30).................................138  
Special Event Trigger..........................................................89  
Special Function registers.....................................................9  
Specifications....................................................................162  
STATUS Register................................................................15  
SUBLW Instruction............................................................134  
SUBWF Instruction............................................................135  
SWAPF Instruction............................................................135  
T
Time-out Sequence...........................................................112  
Timer0.................................................................................49  
Associated registers....................................................50  
External Clock.............................................................50  
Interrupt.......................................................................49  
Operation ....................................................................49  
DS41249B-page 176  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
Phase 2 control (PWMPH1)........................................ 96  
PWM Duty Cycle......................................................... 91  
PWM Frequency ......................................................... 91  
PWM Period................................................................ 91  
PWM Phase................................................................ 91  
PWM Phase resolution ............................................... 91  
Shutdown.................................................................... 92  
Two-Phase PWM  
Dead Time Delay ...................................................... 162  
Two-Speed Clock Start-up Mode........................................ 30  
V
Voltage Reference (VR)  
Specifications............................................................ 160  
Voltage Reference Output (VREF) BUFFER  
Specifications............................................................ 160  
Voltage References ............................................................ 71  
Associated registers.................................................... 74  
Configuring CVref ....................................................... 71  
CVref (Comparator Reference)................................... 71  
CVref Accuracy........................................................... 71  
Fixed VR reference..................................................... 73  
VR Stabilization........................................................... 74  
VREF. SEE A/D Reference Voltage  
W
Wake-up Using Interrupts ................................................. 123  
Watchdog Timer (WDT) .................................................... 121  
Associated registers.................................................. 122  
Clock Source............................................................. 121  
Modes ....................................................................... 121  
Period........................................................................ 121  
Specifications............................................................ 156  
WDTCON Register ........................................................... 122  
WPUA (Weak Pull-up PORTA)........................................... 36  
WPUA Register................................................................... 36  
WWW Address...................................................................... 1  
WWW, On-Line Support ....................................................... 3  
X
XORLW Instruction ........................................................... 136  
XORWF Instruction ........................................................... 136  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 177  
PIC16F785  
NOTES:  
DS41249B-page 178  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
In addition, there is  
a
Development Systems  
Information Line which lists the latest versions of  
Microchip’s development systems software products.  
This line also provides information on how customers  
can receive currently available upgrade kits.  
The Development Systems Information Line  
numbers are:  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
1-800-755-2345 – United States and most of Canada  
1-480-792-7302 – Other International Locations  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 179  
PIC16F785  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC16F785  
DS41249B  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41249B-page 180  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC16F785  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature Package  
Range  
Pattern  
a)  
PIC16F785 – E/P 301 = Extended Temp., PDIP  
package, 20 MHz, QTP pattern #301  
PIC16F785 – I/SO = Industrial Temp., SOIC  
package, 20 MHz  
b)  
Device:  
PIC16F785, PIC16F785T(1)  
:
Temperature Range:  
Package:  
I
E
=
=
-40°C to +85°C  
-40°C to +125°C  
P
SO  
SS  
=
=
=
PDIP  
SOIC (Gull wing, 300 mil body)  
SSOP(5.3 mm)  
Pattern:  
3-Digit Pattern Code for QTP (blank otherwise)  
Note 1: T = in tape and reel SOIC, and SSOP  
packages only.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41249B-page 181  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Ballerup  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Massy  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Japan - Kanagawa  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Ismaning  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Malaysia - Penang  
Tel:011-604-646-8870  
Fax:011-604-646-5086  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Philippines - Manila  
Tel: 011-632-634-9065  
Fax: 011-632-634-9069  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
England - Berkshire  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Dallas  
Addison, TX  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Tel: 972-818-7423  
Fax: 972-818-2924  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
China - Shunde  
Detroit  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
04/20/05  
DS41249B-page 182  
Preliminary  
© 2005 Microchip Technology Inc.  

相关型号:

PIC16F785-I/SO

20-Pin Flash-Based, 8-Bit CMOS Microcontroller with Two-Phase Asynchronous Feedback PWM Dual High-Speed Comparators and Dual Operational Amplifiers
MICROCHIP

PIC16F785-I/SS

20-Pin Flash-Based, 8-Bit CMOS Microcontroller with Two-Phase Asynchronous Feedback PWM Dual High-Speed Comparators and Dual Operational Amplifiers
MICROCHIP

PIC16F785T-E/ML

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,LLCC,20PIN,PLASTIC
MICROCHIP

PIC16F785_05

20-Pin Flash-Based, 8-Bit CMOS Microcontroller with Two-Phase Asynchronous Feedback PWM Dual High-Speed Comparators and Dual Operational Amplifiers
MICROCHIP

PIC16F7X

28/40-pin, 8-bit CMOS FLASH Microcontrollers
MICROCHIP

PIC16F7X7

28/40/44-Pin, 8-Bit CMOS Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC16F7X7T

28/40/44-Pin, 8-Bit CMOS Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC16F7X7_13

28/40/44-Pin, 8-Bit CMOS Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC16F7XE

28/40-pin, 8-bit CMOS FLASH Microcontrollers
MICROCHIP

PIC16F7XELQTP

28/40-pin, 8-bit CMOS FLASH Microcontrollers
MICROCHIP

PIC16F7XELSQTP

28/40-pin, 8-bit CMOS FLASH Microcontrollers
MICROCHIP

PIC16F7XEMLQTP

28/40-pin, 8-bit CMOS FLASH Microcontrollers
MICROCHIP