PIC16F914T-E/MLQTP [MICROCHIP]

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology; 40分之28 / 44/ 64引脚基于闪存的8位CMOS微控制器与LCD驱动器和纳瓦技术
PIC16F914T-E/MLQTP
型号: PIC16F914T-E/MLQTP
厂家: MICROCHIP    MICROCHIP
描述:

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
40分之28 / 44/ 64引脚基于闪存的8位CMOS微控制器与LCD驱动器和纳瓦技术

驱动器 闪存 微控制器 CD
文件: 总330页 (文件大小:6045K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F913/914/916/917/946  
Data Sheet  
28/40/44/64-Pin Flash-Based,  
8-Bit CMOS Microcontrollers with  
LCD Driver and nanoWatt Technology  
© 2007 Microchip Technology Inc.  
DS41250F  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS41250F-page ii  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with  
LCD Driver and nanoWatt Technology  
High-Performance RISC CPU:  
Low-Power Features:  
• Only 35 instructions to learn:  
- All single-cycle instructions except branches  
• Operating speed:  
• Standby Current:  
- <100 nA @ 2.0V, typical  
• Operating Current:  
- 11 μA @ 32 kHz, 2.0V, typical  
- 220 μA @ 4 MHz, 2.0V, typical  
• Watchdog Timer Current:  
- 1 μA @ 2.0V, typical  
- DC – 20 MHz oscillator/clock input  
- DC – 200 ns instruction cycle  
• Program Memory Read (PMR) capability  
• Interrupt capability  
• 8-level deep hardware stack  
Peripheral Features:  
• Direct, Indirect and Relative Addressing modes  
• Liquid Crystal Display module:  
Special Microcontroller Features:  
- Up to 60/96/168 pixel drive capability on  
28/40/64-pin devices, respectively  
• Precision Internal Oscillator:  
- Four commons  
- Factory calibrated to ±1%, typical  
- Software selectable frequency range of  
8 MHz to 125 kHz  
• Up to 24/35/53 I/O pins and 1 input-only pin:  
- High-current source/sink for direct LED drive  
- Interrupt-on-change pin  
- Software tunable  
- Individually programmable weak pull-ups  
• In-Circuit Serial Programming™ (ICSP™) via two  
pins  
- Two-Speed Start-up mode  
- External Oscillator fail detect for critical  
applications  
- Clock mode switching during operation for  
power savings  
• Analog comparator module with:  
- Two analog comparators  
• Software selectable 31 kHz internal oscillator  
• Power-Saving Sleep mode  
- Programmable on-chip voltage reference  
(CVREF) module (% of VDD)  
- Comparator inputs and outputs externally  
accessible  
• A/D Converter:  
- 10-bit resolution and up to 8 channels  
• Timer0: 8-bit timer/counter with 8-bit  
programmable prescaler  
• Wide operating voltage range (2.0V-5.5V)  
• Industrial and Extended temperature range  
• Power-on Reset (POR)  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
• Brown-out Reset (BOR) with software control  
option  
• Enhanced Timer1:  
- 16-bit timer/counter with prescaler  
- External Timer1 Gate (count enable)  
- Option to use OSC1 and OSC2 as Timer1  
oscillator if INTOSCIO or LP mode is  
selected  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Addressable Universal Synchronous  
Asynchronous Receiver Transmitter (AUSART)  
• Enhanced Low-Current Watchdog Timer (WDT)  
with on-chip oscillator (software selectable  
nominal 268 seconds with full prescaler) with  
software enable  
• Multiplexed Master Clear with pull-up/input pin  
• Programmable code protection  
• High-Endurance Flash/EEPROM cell:  
- 100,000 write Flash endurance  
- 1,000,000 write EEPROM endurance  
- Flash/Data EEPROM retention: > 40 years  
• Up to 2 Capture, Compare, PWM modules:  
- 16-bit Capture, max. resolution 12.5 ns  
- 16-bit Compare, max. resolution 200 ns  
- 10-bit PWM, max. frequency 20 kHz  
• Synchronous Serial Port (SSP) with I2C™  
© 2007 Microchip Technology Inc.  
DS41250F-page 1  
PIC16F913/914/916/917/946  
Program  
Data Memory  
Memory  
LCD  
(segment  
drivers)  
10-bit A/D  
(ch)  
Timers  
8/16-bit  
Device  
I/O  
CCP  
Flash  
(words/bytes)  
SRAM  
EEPROM  
(bytes)  
(bytes)  
PIC16F913  
PIC16F914  
PIC16F916  
PIC16F917  
PIC16F946  
4K/7K  
4K/7K  
256  
256  
352  
352  
336  
256  
256  
256  
256  
256  
24  
35  
24  
35  
53  
5
8
5
8
8
16(1)  
24  
16(1)  
1
2
1
2
2
2/1  
2/1  
2/1  
2/1  
2/1  
8K/14K  
8K/14K  
8K/14K  
24  
42  
Note 1: COM3 and SEG15 share the same physical pin on the PIC16F913/916, therefore SEG15 is not available  
when using 1/4 multiplex displays.  
Pin Diagrams – PIC16F914/917, 40-Pin  
40-pin PDIP  
RE3/MCLR/VPP  
RA0/AN0/C1-/SEG12  
RA1/AN1/C2-/SEG7  
RA2/AN2/C2+/VREF-/COM2  
RA3/AN3/C1+/VREF+/SEG15  
RA4/C1OUT/T0CKI/SEG4  
RA5/AN4/C2OUT/SS/SEG5  
RE0/AN5/SEG21  
RE1/AN6/SEG22  
RE2/AN7/SEG23  
VDD  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
RB7/ICSPDAT/ICDDAT/SEG13  
RB6/ICSPCLK/ICDCK/SEG14  
RB5/COM1  
1
2
3
4
RB4/COM0  
RB3/SEG3  
5
RB2/SEG2  
6
RB1/SEG1  
7
8
RB0/INT/SEG0  
VDD  
9
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RD7/SEG20  
VSS  
RD6/SEG19  
RA7/OSC1/CLKIN/T1OSI  
RA6/OSC2/CLKOUT/T1OSO  
RC0/VLCD1  
RD5/SEG18  
27  
26  
25  
24  
23  
22  
21  
RD4/SEG17  
RC7/RX/DT/SDI/SDA/SEG8  
RC6/TX/CK/SCK/SCL/SEG9  
RC5/T1CKI/CCP1/SEG10  
RC4/T1G/SDO/SEG11  
RD3/SEG16  
RC1/VLCD2  
RC2/VLCD3  
RC3/SEG6  
RD0/COM3  
RD1  
RD2/CCP2  
DS41250F-page 2  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 1:  
PIC16F914/917 40-PIN SUMMARY  
I/O  
Pin  
A/D  
LCD  
Comparators  
Timers  
CCP  
AUSART  
SSP  
Interrupt  
Pull-Up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RE0  
RE1  
RE2  
RE3  
2
AN0  
AN1  
SEG12  
SEG7  
COM2  
SEG15  
SEG4  
SEG5  
C1-  
C2-  
C2+  
C1+  
C1OUT  
C2OUT  
Y
3
4
AN2/VREF-  
AN3/VREF+  
5
6
T0CKI  
7
AN4  
SS  
14  
13  
33  
34  
35  
36  
37  
38  
39  
40  
15  
16  
17  
18  
23  
24  
25  
26  
19  
20  
21  
22  
27  
28  
29  
30  
8
T1OSO  
T1OSI  
OSC2/CLKOUT  
OSC1/CLKIN  
SEG0  
SEG1  
SEG2  
SEG3  
COM0  
COM1  
SEG14  
SEG13  
VLCD1  
VLCD2  
VLCD3  
SEG6  
SEG11  
SEG10  
SEG9  
SEG8  
COM3  
INT  
Y
Y
Y
IOC  
IOC  
IOC  
IOC  
Y
Y
Y
ICSPCLK/ICDCK  
Y
ICSPDAT/ICDDAT  
Y(1)  
T1G  
T1CKI  
SDO  
CCP1  
TX/CK  
RX/DT  
SCK/SCL  
SDI/SDA  
CCP2  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
AN5  
AN6  
AN7  
9
10  
1
MCLR/VPP  
VDD  
VDD  
VSS  
VSS  
11  
32  
12  
31  
Note 1:  
Pull-up enabled only with external MCLR configuration.  
© 2007 Microchip Technology Inc.  
DS41250F-page 3  
PIC16F913/914/916/917/946  
Pin Diagrams – PIC16F913/916, 28-Pin  
28-pin PDIP, SOIC, SSOP  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
2
3
4
5
6
7
8
9
RE3/MCLR/VPP  
RA0/AN0/C1-/SEG12  
RA1/AN1/C2-/SEG7  
RA2/AN2/C2+/VREF-/COM2  
RA3/AN3/C1+/VREF+/COM3/SEG15  
RA4/C1OUT/T0CKI/SEG4  
RA5/AN4/C2OUT/SS/SEG5  
VSS  
RB7/ICSPDAT/ICDDAT/SEG13  
RB6/ICSPCLK/ICDCK/SEG14  
RB5/COM1  
RB4/COM0  
RB3/SEG3  
RB2/SEG2  
RB1/SEG1  
RB0/INT/SEG0  
VDD  
RA7/OSC1/CLKIN/T1OSI  
RA6/OSC2/CLKOUT/T1OSO  
RC0/VLCD1  
VSS  
10  
11  
RC7/RX/DT/SDI/SDA/SEG8  
RC6/TX/CK/SCK/SCL/SEG9  
RC5/T1CKI/CCP1/SEG10  
RC4/T1G/SDO/SEG11  
RC1/VLCD2  
12  
13  
14  
RC2/VLCD3  
RC3/SEG6  
28-pin QFN  
RB3/SEG3  
RB2/SEG2  
RB1/SEG1  
RB0/INT/SEG0  
VDD  
RA2/AN2/C2+/VREF-/COM2  
RA3/AN3/C1+/VREF+/COM3/SEG15  
RA4/C1OUT/T0CKI/SEG4  
RA5/AN4/C2OUT/SS/SEG5  
VSS  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
PIC16F913/916  
VSS  
RA7/OSC1/CLKIN/T1OSI  
RA6/OSC2/CLKOUT/T1OSO  
RC7/RX/DT/SDI/SDA/SEG8  
DS41250F-page 4  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 2:  
PIC16F913/916 28-PIN (PDIP, SOIC, SSOP) SUMMARY  
I/O  
Pin  
A/D  
LCD  
Comparators Timers  
CCP  
AUSART  
SSP  
Interrupt  
Pull-Up  
Basic  
RA0  
RA1  
RA2  
2
3
4
AN0  
AN1  
SEG12  
SEG7  
COM2  
C1-  
C2-  
C2+  
AN2/VREF-  
RA3  
5
SEG15/  
COM3  
C1+  
AN3/VREF+  
RA4  
RA5  
RA6  
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RE3  
6
SEG4  
SEG5  
C1OUT  
C2OUT  
T0CKI  
Y
7
SS  
10  
9
T1OSO  
T1OSI  
OSC2/CLKOUT  
OSC1/CLKIN  
21  
22  
23  
24  
25  
26  
27  
28  
11  
12  
13  
14  
15  
16  
17  
18  
1
SEG0  
SEG1  
SEG2  
SEG3  
COM0  
COM1  
SEG14  
SEG13  
VLCD1  
VLCD2  
VLCD3  
SEG6  
SEG11  
SEG10  
SEG9  
SEG8  
INT  
Y
Y
Y
IOC  
IOC  
IOC  
IOC  
Y
Y
Y
ICSPCLK/ICDCK  
Y
ICSPDAT/ICDDAT  
Y(1)  
SDO  
T1G  
T1CKI  
CCP1  
TX/CK  
RX/DT  
SCK/SCL  
SDI/SDA  
MCLR/VPP  
VDD  
VSS  
VSS  
20  
8
19  
Note 1:  
Pull-up enabled only with external MCLR configuration.  
© 2007 Microchip Technology Inc.  
DS41250F-page 5  
PIC16F913/914/916/917/946  
TABLE 3:  
PIC16F913/916 28-PIN (QFN) SUMMARY  
I/O  
Pin  
A/D  
LCD  
Comparators  
Timers  
CCP  
AUSART  
SSP  
Interrupt  
Pull-Up  
Basic  
RA0  
RA1  
RA2  
RA3  
27  
28  
1
AN0  
AN1  
SEG12  
SEG7  
COM2  
C1-  
C2-  
C2+  
C1+  
AN2/VREF-  
2
AN3/VREF+ SEG15/  
COM3  
RA4  
RA5  
RA6  
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RE3  
3
AN4  
SEG4  
SEG5  
C1OUT  
C2OUT  
T0CKI  
Y
4
SS  
7
T1OSO  
T1OSI  
OSC2/CLKOUT  
6
OSC1/CLKIN  
18  
19  
20  
21  
22  
23  
24  
25  
8
SEG0  
SEG1  
SEG2  
SEG3  
COM0  
COM1  
SEG14  
SEG13  
VLCD1  
VLCD2  
VLCD3  
SEG6  
SEG11  
SEG10  
SEG9  
SEG8  
INT  
Y
Y
Y
IOC  
IOC  
IOC  
IOC  
Y
Y
Y
ICSPCLK/ICDCK  
Y
ICSPDAT/ICDDAT  
Y(1)  
9
10  
11  
12  
13  
14  
15  
26  
17  
5
SDO  
T1G  
T1CKI  
CCP1  
TX/CK  
RX/DT  
SCK/SCL  
SDI/SDA  
MCLR/VPP  
VDD  
VSS  
VSS  
16  
Note 1:  
Pull-up enabled only with external MCLR configuration.  
DS41250F-page 6  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
Pin Diagrams – PIC16F914/917, 44-Pin  
44-pin TQFP  
NC  
RC0/VLCD1  
RA6/OSC2/CLKOUT/T1OSO  
RA7/OSC1/CLKIN/T1OSI  
VSS  
RC7/RX/DT/SDI/SDA/SEG8  
RD4/SEG17  
RD5/SEG18  
RD6/SEG19  
RD7/SEG20  
VSS  
1
2
3
4
5
6
7
8
9
10  
11  
33  
32  
31  
30  
29  
28  
27  
26  
PIC16F914/917  
VDD  
RE2/AN7/SEG23  
RE1/AN6/SEG22  
RE0/AN5/SEG21  
RA5/AN4/C2OUT/SS/SEG5  
RA4/C1OUT/T0CKI/SEG4  
VDD  
RB0/SEG0/INT  
RB1/SEG1  
25  
24  
23  
RB2/SEG2  
RB3/SEG3  
44-pin QFN  
RA6/OSC2/CLKOUT/T1OSO  
RA7/OSC1/CLKIN/T1OSI  
VSS  
VSS  
NC  
RC7/RX/DT/SDI/SDA/SEG8  
RD4/SEG17  
RD5/SEG18  
RD6/SEG19  
RD7/SEG20  
VSS  
1
2
3
4
5
6
7
8
9
10  
11  
33  
32  
31  
30  
29  
28  
27  
26  
PIC16F914/917  
VDD  
RE2/AN7/SEG23  
RE1/AN6/SEG22  
RE0/AN5/SEG21  
RA5/AN4/C2OUT/SS/SEG5  
RA4/C1OUT/T0CKI/SEG4  
VDD  
VDD  
RB0/INT/SEG0  
RB1/SEG1  
RB2/SEG2  
25  
24  
23  
© 2007 Microchip Technology Inc.  
DS41250F-page 7  
PIC16F913/914/916/917/946  
TABLE 4:  
PIC16F914/917 44-PIN (TQFP) SUMMARY  
I/O  
Pin  
A/D  
LCD  
Comparators  
Timers  
CCP  
AUSART  
SSP  
Interrupt  
Pull-Up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RE0  
RE1  
RE2  
RE3  
19  
20  
AN0  
AN1  
SEG12  
SEG7  
COM2  
C1-  
C2-  
C2+  
C1+  
C1OUT  
C2OUT  
CCP1  
CCP2  
INT  
IOC  
IOC  
IOC  
IOC  
Y
21 AN2/VREF-  
22 AN3/VREF+ SEG15  
23  
24  
31  
30  
8
AN4  
SEG4  
SEG5  
T0CKI  
SS  
T1OSO  
T1OSI  
OSC2/CLKOUT  
OSC1/CLKIN  
SEG0  
SEG1  
SEG2  
SEG3  
COM0  
COM1  
SEG14  
SEG13  
VLCD1  
VLCD2  
VLCD3  
SEG6  
SEG11  
SEG10  
SEG9  
SEG8  
COM3  
9
Y
10  
11  
14  
15  
16  
17  
32  
35  
36  
37  
42  
43  
44  
1
Y
Y
Y
Y
Y
ICSPCLK/ICDCK  
Y
ICSPDAT/ICDDAT  
Y(1)  
T1G  
T1CKI  
SDO  
TX/CK  
RX/DT  
SCK/SCL  
SDI/SDA  
38  
39  
40  
41  
2
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
3
4
5
25  
26  
27  
18  
7
AN5  
AN6  
AN7  
MCLR/VPP  
VDD  
VDD  
VSS  
VSS  
NC  
NC  
NC  
NC  
28  
6
29  
12  
13  
33  
34  
Note 1:  
Pull-up enabled only with external MCLR configuration.  
DS41250F-page 8  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 5:  
PIC16F914/917 44-PIN (QFN) SUMMARY  
I/O  
Pin  
A/D  
LCD  
Comparators  
Timers  
CCP  
AUSART  
SSP  
Interrupt  
Pull-Up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RE0  
RE1  
RE2  
RE3  
19  
20  
AN0  
AN1  
SEG12  
SEG7  
COM2  
C1-  
C2-  
C2+  
C1+  
C1OUT  
C2OUT  
CCP1  
CCP2  
INT  
IOC  
IOC  
IOC  
IOC  
Y
21 AN2/VREF-  
22 AN3/VREF+ SEG15  
23  
24  
33  
32  
9
AN4  
SEG4  
SEG5  
T0CKI  
SS  
T1OSO  
T1OSI  
OSC2/CLKOUT  
OSC1/CLKIN  
SEG0  
SEG1  
SEG2  
SEG3  
COM0  
COM1  
SEG14  
SEG13  
VLCD1  
VLCD2  
VLCD3  
SEG6  
SEG11  
SEG10  
SEG9  
SEG8  
COM3  
10  
11  
12  
14  
15  
16  
17  
34  
35  
36  
37  
42  
43  
44  
1
Y
Y
Y
Y
Y
Y
ICSPCLK/ICDCK  
Y
ICSPDAT/ICDDAT  
Y(1)  
T1G  
T1CKI  
SDO  
TX/CK  
RX/DT  
SCK/SCL  
SDI/SDA  
38  
39  
40  
41  
2
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
3
4
5
25  
26  
27  
18  
7
AN5  
AN6  
AN7  
MCLR/VPP  
VDD  
VDD  
VDD  
VSS  
VSS  
NC  
NC  
8
28  
6
30  
13  
29  
Note 1:  
Pull-up enabled only with external MCLR configuration.  
© 2007 Microchip Technology Inc.  
DS41250F-page 9  
PIC16F913/914/916/917/946  
Pin Diagram – PIC16F946  
64-pin TQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RF7/SEG31  
RD6/SEG19  
RD7/SEG20  
RG0/SEG36  
RG1/SEG37  
RG2/SEG38  
RG3/SEG39  
RG4/SEG40  
RG5/SEG41  
VSS  
1
RF6/SEG30  
2
RF5/SEG29  
3
RF4/SEG28  
4
RE7/SEG27  
5
RE6/SEG26  
6
RE5/SEG25  
7
VSS  
8
PIC16F946  
RA6/OSC2/CLKOUT/T1OSO  
RA7/OSC1/CLKIN/T1OSI  
VDD  
9
VDD  
10  
11  
12  
13  
14  
15  
16  
RF0/SEG32  
RF1/SEG33  
RF2/SEG34  
RF3/SEG35  
RB0/INT/SEG0  
RB1/SEG1  
RE4/SEG24  
RE3/MCLR/VPP  
RE2/AN7/SEG23  
RE1/AN6/SEG22  
RE0/AN5/SEG21  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
DS41250F-page 10  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 6:  
PIC16F946 64-PIN (TQFP) SUMMARY  
I/O  
Pin  
A/D  
LCD  
Comparators Timers  
CCP  
AUSART  
SSP  
Interrupt  
Pull-Up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RE0  
RE1  
RE2  
RE3  
RE4  
RE5  
RE6  
RE7  
RF0  
RF1  
RF2  
27  
28  
29  
30  
31  
32  
40  
39  
15  
16  
17  
18  
21  
22  
23  
24  
49  
50  
51  
52  
59  
60  
61  
62  
53  
54  
55  
58  
63  
64  
1
AN0  
AN1  
SEG12  
SEG7  
COM2  
C1-  
C2-  
C2+  
C1+  
C1OUT  
C2OUT  
CCP1  
CCP2  
INT  
IOC  
IOC  
IOC  
IOC  
Y
AN2/VREF-  
AN3/VREF+ SEG15  
AN4  
SEG5  
SEG4  
T0CKI  
SS  
T1OSO  
T1OSI  
OSC2/CLKOUT  
OSC1/CLKIN  
SEG0  
SEG1  
SEG2  
SEG3  
COM0  
COM1  
SEG14  
SEG13  
VLCD1  
VLCD2  
VLCD3  
SEG6  
SEG11  
SEG10  
SEG9  
SEG8  
COM3  
Y
Y
Y
Y
Y
Y
ICSPCLK/ICDCK  
Y
ICSPDAT/ICDDAT  
Y(1)  
T1G  
T1CKI  
SDO  
TX/CK  
RX/DT  
SCK/SCL  
SDI/SDA  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
2
33  
34  
35  
36  
37  
42  
43  
44  
11  
12  
13  
AN5  
AN6  
AN7  
MCLR/VPP  
SEG24  
SEG25  
SEG26  
SEG27  
SEG32  
SEG33  
SEG34  
Note 1:  
Pull-up enabled only with external MCLR configuration.  
© 2007 Microchip Technology Inc.  
DS41250F-page 11  
PIC16F913/914/916/917/946  
TABLE 6:  
PIC16F946 64-PIN (TQFP) SUMMARY (CONTINUED)  
I/O  
Pin  
A/D  
LCD  
Comparators Timers  
CCP  
AUSART  
SSP  
Interrupt  
Pull-Up  
Basic  
RF3  
RF4  
RF5  
RF6  
RF7  
RG0  
RG1  
RG2  
RG3  
RG4  
RG5  
14  
45  
46  
47  
48  
3
SEG35  
SEG28  
SEG29  
SEG30  
SEG31  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
4
5
6
7
8
26  
25  
10  
19  
38  
57  
9
AVDD  
AVSS  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
20  
41  
56  
Note 1:  
Pull-up enabled only with external MCLR configuration.  
DS41250F-page 12  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 15  
2.0 Memory Organization................................................................................................................................................................. 23  
3.0 I/O Ports ..................................................................................................................................................................................... 43  
4.0 Oscillator Module (With Fail-Safe Clock Monitor)....................................................................................................................... 87  
5.0 Timer0 Module ........................................................................................................................................................................... 99  
6.0 Timer1 Module with Gate Control............................................................................................................................................. 102  
7.0 Timer2 Module ......................................................................................................................................................................... 107  
8.0 Comparator Module.................................................................................................................................................................. 109  
9.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) ........................................................... 121  
10.0 Liquid Crystal Display (LCD) Driver Module............................................................................................................................. 143  
11.0 Programmable Low-Voltage Detect (PLVD) Module................................................................................................................ 171  
12.0 Analog-to-Digital Converter (ADC) Module .............................................................................................................................. 175  
13.0 Data EEPROM and Flash Program Memory Control............................................................................................................... 187  
14.0 SSP Module Overview ............................................................................................................................................................. 193  
15.0 Capture/Compare/PWM (CCP) Module ................................................................................................................................... 211  
16.0 Special Features of the CPU.................................................................................................................................................... 219  
17.0 Instruction Set Summary.......................................................................................................................................................... 241  
18.0 Development Support............................................................................................................................................................... 251  
19.0 Electrical Specifications............................................................................................................................................................ 255  
20.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 283  
21.0 Packaging Information.............................................................................................................................................................. 305  
Appendix A: Data Sheet Revision History.......................................................................................................................................... 315  
®
Appendix B: Migrating From Other PIC Devices.............................................................................................................................. 315  
Appendix C: Conversion Considerations ........................................................................................................................................... 316  
Index .................................................................................................................................................................................................. 317  
The Microchip Web Site..................................................................................................................................................................... 325  
Customer Change Notification Service .............................................................................................................................................. 325  
Customer Support.............................................................................................................................................................................. 325  
Reader Response.............................................................................................................................................................................. 327  
Product Identification System ............................................................................................................................................................ 328  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
© 2007 Microchip Technology Inc.  
DS41250F-page 13  
PIC16F913/914/916/917/946  
NOTES:  
DS41250F-page 14  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
1.0  
DEVICE OVERVIEW  
The PIC16F91X/946 devices are covered by this data  
sheet. They are available in 28/40/44/64-pin packages.  
Figure 1-1 shows a block diagram of the PIC16F913/916  
device, Figure 1-2 shows a block diagram of the  
PIC16F914/917 device, and Figure 1-3 shows a block  
diagram of the PIC16F946 device. Table 1-1 shows the  
pinout descriptions.  
FIGURE 1-1:  
PIC16F913/916 BLOCK DIAGRAM  
INT  
Configuration  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA7  
Flash  
4K/8K x 14  
Program  
Memory  
RAM  
256/352 bytes  
File  
8-Level Stack (13-bit)  
Registers  
Program  
Bus  
14  
Program Memory Read  
(PMR)  
RAM Addr  
9
PORTB  
RB0  
Addr MUX  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
Instruction Reg  
Indirect  
Addr  
7
Direct Addr  
8
FSR Reg  
STATUS Reg  
8
PORTC  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
3
MUX  
Power-up  
Timer  
Instruction  
Decode and  
Control  
Oscillator  
Start-up Timer  
ALU  
OSC1/CLKIN  
OSC2/CLKOUT  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W Reg  
PORTE  
Brown-out  
Reset  
Internal  
RE3/MCLR  
Oscillator  
Block  
VDD  
VSS  
Data EEPROM  
256 bytes  
Timer0  
Timer1  
Timer2  
10-bit A/D  
Addressable  
USART  
Comparators  
CCP1  
SSP  
PLVD  
LCD  
© 2007 Microchip Technology Inc.  
DS41250F-page 15  
PIC16F913/914/916/917/946  
FIGURE 1-2:  
PIC16F914/917 BLOCK DIAGRAM  
INT  
Configuration  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
Flash  
4K/8K x 14  
Program  
Memory  
RAM  
256/352 bytes  
File  
8-Level Stack (13-bit)  
Registers  
Program  
Bus  
14  
Program Memory Read  
(PMR)  
RAM Addr  
9
PORTB  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
Addr MUX  
Instruction Reg  
Indirect  
Addr  
7
Direct Addr  
8
FSR Reg  
STATUS Reg  
MUX  
8
PORTC  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
3
Power-up  
Timer  
Instruction  
Decode and  
Control  
Oscillator  
Start-up Timer  
ALU  
OSC1/CLKIN  
Power-on  
Reset  
8
Timing  
Generation  
PORTD  
OSC2/CLKOUT  
Watchdog  
Timer  
W Reg  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
Brown-out  
Reset  
Internal  
Oscillator  
Block  
VDD  
VSS  
PORTE  
RE0  
RE1  
RE2  
RE3/MCLR  
Timer0  
Timer1  
Timer2  
10-bit A/D  
Data EEPROM  
256 bytes  
Addressable  
USART  
Comparators  
CCP1  
CCP2  
SSP  
PLVD  
LCD  
DS41250F-page 16  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 1-3:  
PIC16F946 BLOCK DIAGRAM  
INT  
PORTA  
PORTB  
PORTC  
PORTD  
Configuration  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
13  
8
Data Bus  
Program Counter  
Flash  
8K x 14  
Program  
Memory  
RAM  
336 x 8 bytes  
File  
8-Level Stack (13-bit)  
Registers  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
Program  
Bus  
14  
Program Memory Read  
(PMR)  
RAM Addr  
9
Addr MUX  
Instruction Reg  
Indirect  
Addr  
7
Direct Addr  
8
FSR Reg  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
STATUS Reg  
8
Power-up  
Timer  
3
MUX  
Oscillator  
Start-up Timer  
Instruction  
Decode and  
Control  
Power-on  
Reset  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
ALU  
OSC1/CLKIN  
8
Watchdog  
Timer  
Timing  
Generation  
OSC2/CLKOUT  
W Reg  
Brown-out  
Reset  
Internal  
Oscillator  
Block  
PORTE  
PORTF  
PORTG  
RE0  
RE1  
RE2  
RE3/MCLR  
RE4  
RE5  
RE6  
RE7  
VDD  
VSS  
RF0  
RF1  
RF2  
RF3  
RF4  
RF5  
RF6  
RF7  
RG0  
RG1  
RG2  
RG3  
RG4  
RG5  
AVDD AVSS  
10-bit A/D  
Data EEPROM  
256 bytes  
Timer0  
CCP1  
Timer1  
CCP2  
Timer2  
SSP  
Addressable  
USART  
Comparators  
PLVD  
LCD  
© 2007 Microchip Technology Inc.  
DS41250F-page 17  
PIC16F913/914/916/917/946  
TABLE 1-1:  
PIC16F91X/946 PINOUT DESCRIPTIONS  
Input Output  
Name  
Function  
Description  
Type Type  
RA0/AN0/C1-/SEG12  
RA0  
AN0  
TTL  
AN  
AN  
CMOS General purpose I/O.  
Analog input Channel 0.  
C1-  
Comparator 1 negative input.  
LCD analog output.  
SEG12  
RA1  
AN  
RA1/AN1/C2-/SEG7  
TTL  
AN  
AN  
CMOS General purpose I/O.  
AN1  
Analog input Channel 1.  
Comparator 2 negative input.  
LCD analog output.  
C2-  
SEG7  
RA2  
AN  
RA2/AN2/C2+/VREF-/COM2  
TTL  
AN  
AN  
AN  
CMOS General purpose I/O.  
AN2  
Analog input Channel 2.  
C2+  
Comparator 2 positive input.  
External A/D Voltage Reference – negative.  
LCD analog output.  
VREF-  
COM2  
RA3  
AN  
(1)  
RA3/AN3/C1+/VREF+/COM3  
SEG15  
/
TTL  
AN  
AN  
AN  
CMOS General purpose I/O.  
AN3  
Analog input Channel 3.  
C1+  
Comparator 1 positive input.  
External A/D Voltage Reference – positive.  
LCD analog output.  
VREF+  
(1)  
COM3  
AN  
AN  
SEG15  
RA4  
LCD analog output.  
RA4/C1OUT/T0CKI/SEG4  
RA5/AN4/C2OUT/SS/SEG5  
TTL  
CMOS General purpose I/O.  
CMOS Comparator 1 output.  
C1OUT  
T0CKI  
SEG4  
RA5  
ST  
Timer0 clock input.  
LCD analog output.  
AN  
TTL  
AN  
CMOS General purpose I/O.  
Analog input Channel 4.  
CMOS Comparator 2 output.  
AN4  
C2OUT  
SS  
TTL  
Slave select input.  
LCD analog output.  
SEG5  
RA6  
AN  
RA6/OSC2/CLKOUT/T1OSO  
RA7/OSC1/CLKIN/T1OSI  
RB0/INT/SEG0  
TTL  
CMOS General purpose I/O.  
XTAL Crystal/Resonator.  
OSC2  
CLKOUT  
T1OSO  
RA7  
CMOS TOSC/4 reference clock.  
XTAL Timer1 oscillator output.  
CMOS General purpose I/O.  
TTL  
XTAL  
ST  
OSC1  
CLKIN  
T1OSI  
RB0  
Crystal/Resonator.  
Clock input.  
XTAL  
TTL  
ST  
Timer1 oscillator input.  
CMOS General purpose I/O. Individually enabled pull-up.  
INT  
External interrupt pin.  
LCD analog output.  
SEG0  
AN  
Legend: AN = Analog input or output  
TTL = TTL compatible input  
HV = High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels P  
XTAL = Crystal  
OD = Open Drain  
=
Power  
Note 1: COM3 is available on RA3 for the PIC16F913/916 and on RD0 for the PIC16F914/917 and PIC16F946.  
2: Pins available on PIC16F914/917 and PIC16F946 only.  
3: Pins available on PIC16F946 only.  
2
4: I C Schmitt trigger inputs have special input levels.  
DS41250F-page 18  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 1-1:  
PIC16F91X/946 PINOUT DESCRIPTIONS (CONTINUED)  
Input Output  
Type Type  
Name  
Function  
Description  
RB1/SEG1  
RB2/SEG2  
RB3/SEG3  
RB4/COM0  
RB1  
SEG1  
RB2  
TTL  
CMOS General purpose I/O. Individually enabled pull-up.  
AN LCD analog output.  
CMOS General purpose I/O. Individually enabled pull-up.  
AN LCD analog output.  
CMOS General purpose I/O. Individually enabled pull-up.  
AN LCD analog output.  
TTL  
SEG2  
RB3  
TTL  
SEG3  
RB4  
TTL  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up.  
COM0  
RB5  
AN  
LCD analog output.  
RB5/COM1  
TTL  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up.  
COM1  
RB6  
AN  
LCD analog output.  
RB6/ICSPCLK/ICDCK/SEG14  
RB7/ICSPDAT/ICDDAT/SEG13  
TTL  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up.  
ICSPCLK  
ICDCK  
SEG14  
RB7  
ST  
ST  
ICSP™ clock.  
ICD clock.  
AN  
LCD analog output.  
TTL  
CMOS General purpose I/O. Individually controlled inter-  
rupt-on-change. Individually enabled pull-up.  
ICSPDAT  
ICDDAT  
SEG13  
RC0  
ST  
ST  
CMOS ICSP Data I/O.  
CMOS ICD Data I/O.  
AN  
CMOS General purpose I/O.  
LCD analog input.  
CMOS General purpose I/O.  
LCD analog input.  
CMOS General purpose I/O.  
LCD analog input.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
Timer1 gate input.  
CMOS Serial data output.  
AN LCD analog output.  
CMOS General purpose I/O.  
Timer1 clock input.  
CMOS Capture 1 input/Compare 1 output/PWM 1 output.  
AN LCD analog output.  
LCD analog output.  
RC0/VLCD1  
ST  
AN  
ST  
AN  
ST  
AN  
ST  
VLCD1  
RC1  
RC1/VLCD2  
VLCD2  
RC2  
RC2/VLCD3  
VLCD3  
RC3  
RC3/SEG6  
SEG6  
RC4  
RC4/T1G/SDO/SEG11  
ST  
ST  
T1G  
SDO  
SEG11  
RC5  
RC5/T1CKI/CCP1/SEG10  
ST  
ST  
ST  
T1CKI  
CCP1  
SEG10  
Legend: AN = Analog input or output  
TTL = TTL compatible input  
HV = High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels P  
XTAL = Crystal  
OD = Open Drain  
=
Power  
Note 1: COM3 is available on RA3 for the PIC16F913/916 and on RD0 for the PIC16F914/917 and PIC16F946.  
2: Pins available on PIC16F914/917 and PIC16F946 only.  
3: Pins available on PIC16F946 only.  
2
4: I C Schmitt trigger inputs have special input levels.  
© 2007 Microchip Technology Inc.  
DS41250F-page 19  
PIC16F913/914/916/917/946  
TABLE 1-1:  
PIC16F91X/946 PINOUT DESCRIPTIONS (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type Type  
RC6/TX/CK/SCK/SCL/SEG9  
RC6  
TX  
ST  
CMOS General purpose I/O.  
CMOS USART asynchronous serial transmit.  
CMOS USART synchronous serial clock.  
CK  
ST  
ST  
SCK  
CMOS SPI clock.  
(4)  
2
SCL  
ST  
OD  
AN  
I C™ clock.  
SEG9  
RC7  
ST  
ST  
ST  
ST  
LCD analog output.  
RC7/RX/DT/SDI/SDA/SEG8  
CMOS General purpose I/O.  
RX  
USART asynchronous serial receive.  
DT  
CMOS USART synchronous serial data.  
SDI  
CMOS SPI data input.  
(4)  
2
SDA  
ST  
OD  
AN  
I C™ data.  
SEG8  
RD0  
ST  
LCD analog output.  
(1, 2)  
RD0/COM3  
CMOS General purpose I/O.  
AN LCD analog output.  
COM3  
RD1  
(2)  
RD1  
ST  
ST  
ST  
ST  
CMOS General purpose I/O.  
(2)  
RD2/CCP2  
RD2  
CMOS General purpose I/O.  
CCP2  
RD3  
CMOS Capture 2 input/Compare 2 output/PWM 2 output.  
CMOS General purpose I/O.  
(2)  
RD3/SEG16  
SEG16  
RD4  
AN  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
LCD analog output.  
(2)  
RD4/SEG17  
ST  
SEG17  
RD5  
(2)  
RD5/SEG18  
ST  
SEG18  
RD6  
(2)  
RD6/SEG19  
ST  
SEG19  
RD7  
(2)  
RD7/SEG20  
ST  
SEG20  
RE0  
(2)  
RE0/AN5/SEG21  
ST  
AN  
AN5  
Analog input Channel 5.  
LCD analog output.  
SEG21  
RE1  
AN  
(2)  
RE1/AN6/SEG22  
ST  
AN  
CMOS General purpose I/O.  
AN6  
Analog input Channel 6.  
LCD analog output.  
SEG22  
RE2  
AN  
(2)  
RE2/AN7/SEG23  
ST  
AN  
CMOS General purpose I/O.  
AN7  
AN  
Analog input Channel 7.  
LCD analog output.  
SEG23  
RE3  
RE3/MCLR/VPP  
ST  
ST  
HV  
Digital input only.  
MCLR  
VPP  
Master Clear with internal pull-up.  
Programming voltage.  
Legend: AN = Analog input or output  
TTL = TTL compatible input  
HV = High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels P  
XTAL = Crystal  
OD = Open Drain  
=
Power  
Note 1: COM3 is available on RA3 for the PIC16F913/916 and on RD0 for the PIC16F914/917 and PIC16F946.  
2: Pins available on PIC16F914/917 and PIC16F946 only.  
3: Pins available on PIC16F946 only.  
2
4: I C Schmitt trigger inputs have special input levels.  
DS41250F-page 20  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 1-1:  
PIC16F91X/946 PINOUT DESCRIPTIONS (CONTINUED)  
Input Output  
Type Type  
Name  
Function  
Description  
(3)  
RE4/SEG24  
RE5/SEG25  
RE6/SEG26  
RE7/SEG27  
RF0/SEG32  
RF1/SEG33  
RF2/SEG34  
RF3/SEG35  
RF4/SEG28  
RF5/SEG29  
RF6/SEG30  
RF7/SEG31  
RE4  
SEG24  
RE5  
ST  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
AN LCD analog output.  
CMOS General purpose I/O.  
(3)  
ST  
SEG25  
RE6  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
ST  
SEG26  
RE7  
ST  
SEG27  
RF0  
ST  
SEG32  
RF1  
ST  
SEG33  
RF2  
ST  
SEG34  
RF3  
ST  
SEG35  
RF4  
ST  
SEG28  
RF5  
ST  
SEG29  
RF6  
ST  
SEG30  
RF7  
ST  
SEG31  
RG0  
RG0/SEG36  
RG1/SEG37  
RG2/SEG38  
RG3/SEG39  
RG4/SEG40  
RG5/SEG41  
ST  
SEG36  
RG1  
(3)  
(3)  
(3)  
(3)  
(3)  
ST  
SEG37  
RG2  
ST  
SEG38  
RG3  
ST  
SEG39  
RG4  
ST  
SEG10  
RG5  
ST  
SEG41  
AVDD  
AVSS  
AN  
LCD analog output.  
(3)  
AVDD  
P
Analog power supply for microcontroller.  
Analog ground reference for microcontroller.  
Power supply for microcontroller.  
(3)  
AVSS  
P
VDD  
VDD  
P
Legend: AN = Analog input or output  
TTL = TTL compatible input  
HV = High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels P  
XTAL = Crystal  
OD = Open Drain  
=
Power  
Note 1: COM3 is available on RA3 for the PIC16F913/916 and on RD0 for the PIC16F914/917 and PIC16F946.  
2: Pins available on PIC16F914/917 and PIC16F946 only.  
3: Pins available on PIC16F946 only.  
2
4: I C Schmitt trigger inputs have special input levels.  
© 2007 Microchip Technology Inc.  
DS41250F-page 21  
PIC16F913/914/916/917/946  
TABLE 1-1:  
PIC16F91X/946 PINOUT DESCRIPTIONS (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type Type  
VSS  
VSS  
P
Ground reference for microcontroller.  
CMOS = CMOS compatible input or output OD = Open Drain  
ST = Schmitt Trigger input with CMOS levels P Power  
XTAL = Crystal  
Legend: AN = Analog input or output  
TTL = TTL compatible input  
HV = High Voltage  
=
Note 1: COM3 is available on RA3 for the PIC16F913/916 and on RD0 for the PIC16F914/917 and PIC16F946.  
2: Pins available on PIC16F914/917 and PIC16F946 only.  
3: Pins available on PIC16F946 only.  
2
4: I C Schmitt trigger inputs have special input levels.  
DS41250F-page 22  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 2-2:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F916/917/PIC16F946  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The PIC16F91X/946 has a 13-bit program counter  
capable of addressing a 4K x 14 program memory  
space for the PIC16F913/914 (0000h-0FFFh) and an  
8K x 14 program memory space for the PIC16F916/  
917 and PIC16F946 (0000h-1FFFh). Accessing a  
location above the memory boundaries for the  
PIC16F913 and PIC16F914 will cause a wrap around  
within the first 4K x 14 space. The Reset vector is at  
0000h and the interrupt vector is at 0004h.  
pc<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Reset Vector  
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F913/914  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
pc<12:0>  
CALL, RETURN  
RETFIE, RETLW  
07FFh  
0800h  
13  
Page 1  
On-chip  
Program  
Memory  
Stack Level 1  
Stack Level 2  
0FFFh  
1000h  
Page 2  
Page 3  
17FFh  
1800h  
Stack Level 8  
Reset Vector  
0000h  
1FFFh  
Interrupt Vector  
Page 0  
0004h  
0005h  
On-chip  
Program  
Memory  
07FFh  
0800h  
Page 1  
0FFFh  
1000h  
1FFFh  
© 2007 Microchip Technology Inc.  
DS41250F-page 23  
PIC16F913/914/916/917/946  
2.2  
Data Memory Organization  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers (GPRs)  
and the Special Function Registers (SFRs). Bits RP0  
and RP1 are bank select bits.  
RP1  
0
RP0  
0
Bank 0 is selected  
Bank 1 is selected  
Bank 2 is selected  
Bank 3 is selected  
0
1
1
0
1
1
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function  
Registers are the General Purpose Registers,  
implemented as static RAM. All implemented banks  
contain Special Function Registers. Some frequently  
used Special Function Registers from one bank are  
mirrored in another bank for code reduction and  
quicker access.  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
The register file is organized as 256 x 8 bits in the  
PIC16F913/914, 352 x 8 bits in the PIC16F916/917 and  
336 x 8 bits in the PIC16F946. Each register is accessed  
either directly or indirectly through the File Select  
Register (FSR) (see Section 2.5 “Indirect Addressing,  
INDF and FSR Registers”).  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral functions for controlling the  
desired operation of the device (see Tables 2-1, 2-2,  
2-3 and 2-4). These registers are static RAM.  
The Special Function Registers can be classified into  
two sets: core and peripheral. The Special Function  
Registers associated with the “core” are described in  
this section. Those related to the operation of the  
peripheral features are described in the section of that  
peripheral feature.  
DS41250F-page 24  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 2-3:  
PIC16F913/916 SPECIAL FUNCTION REGISTERS  
File File File  
Address Address Address  
Indirect addr. (1) 00h Indirect addr. (1) 80h Indirect addr. (1) 100h  
OPTION_REG 81h  
File  
Address  
Indirect addr. (1) 180h  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
TMR0  
PCL  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
OPTION_REG 181h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
PCL  
STATUS  
FSR  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
WDTCON  
PORTB  
TRISB  
LCDCON  
LCDPS  
PORTE  
PCLATH  
INTCON  
PIR1  
TRISE  
PCLATH  
INTCON  
PIE1  
LVDCON  
PCLATH  
INTCON  
EEDATL  
EEADRL  
EEDATH  
EEADRH  
LCDDATA0  
LCDDATA1  
PCLATH  
INTCON  
EECON1  
EECON2(1)  
Reserved  
Reserved  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
OSCCON  
OSCTUNE  
ANSEL  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
SSPADD  
SSPSTAT  
WPUB  
LCDDATA3  
LCDDATA4  
IOCB  
LCDDATA6  
LCDDATA7  
CMCON1  
TXSTA  
SPBRG  
LCDDATA9  
General  
Purpose  
LCDDATA10 11Ah  
11Bh  
Register(2)  
CMCON0  
VRCON  
LCDSE0  
LCDSE1  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
96 Bytes  
ADRESH  
ADCON0  
ADRESL  
ADCON1  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
80 Bytes  
96 Bytes  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
2: On the PIC16F913, unimplemented data memory locations, read as ‘0’.  
© 2007 Microchip Technology Inc.  
DS41250F-page 25  
PIC16F913/914/916/917/946  
FIGURE 2-4:  
PIC16F914/917 SPECIAL FUNCTION REGISTERS  
File  
File  
File  
File  
Address  
Indirect addr. (1) 00h  
Address  
Indirect addr. (1) 80h  
Address  
Indirect addr. (1) 100h  
Address  
Indirect addr. (1) 180h  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
OPTION_REG 81h  
TMR0  
PCL  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
OPTION_REG 181h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
PCL  
STATUS  
FSR  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
TRISA  
WDTCON  
PORTB  
TRISB  
TRISB  
TRISC  
TRISD  
TRISE  
LCDCON  
LCDPS  
LVDCON  
PCLATH  
INTCON  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
EEDATL  
EECON1  
EECON2(1)  
Reserved  
Reserved  
PIR2  
PIE2  
EEADRL  
EEDATH  
EEADRH  
LCDDATA0  
LCDDATA1  
LCDDATA2  
LCDDATA3  
LCDDATA4  
LCDDATA5  
LCDDATA6  
LCDDATA7  
LCDDATA8  
LCDDATA9  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
OSCCON  
OSCTUNE  
ANSEL  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
SSPADD  
SSPSTAT  
WPUB  
IOCB  
CMCON1  
TXSTA  
SPBRG  
General  
Purpose  
LCDDATA10 11Ah  
LCDDATA11 11Bh  
Register(2)  
CMCON0  
VRCON  
LCDSE0  
LCDSE1  
LCDSE2  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
96 Bytes  
ADRESL  
ADCON1  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
80 Bytes  
96 Bytes  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
2: On the PIC16F914, unimplemented data memory locations, read as ‘0’.  
DS41250F-page 26  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 2-5:  
PIC16F946 SPECIAL FUNCTION REGISTERS  
File File  
Address Address  
Indirect addr. (1) 00h Indirect addr. (1) 80h  
OPTION_REG 81h  
File  
File  
Address  
Indirect addr. (1) 100h  
Address  
Indirect addr. (1) 180h  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
TMR0  
PCL  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
OPTION_REG 181h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
PCL  
STATUS  
FSR  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
TRISA  
WDTCON  
PORTB  
TRISF  
TRISB  
TRISB  
TRISC  
TRISD  
TRISE  
LCDCON  
LCDPS  
TRISG  
PORTF  
PORTG  
PCLATH  
INTCON  
EECON1  
EECON2(1)  
Reserved  
Reserved  
LVDCON  
PCLATH  
INTCON  
PCLATH  
INTCON  
PIE1  
EEDATL  
PIR2  
PIE2  
EEADRL  
EEDATH  
EEADRH  
LCDDATA0  
LCDDATA1  
LCDDATA2  
LCDDATA3  
LCDDATA4  
LCDDATA5  
LCDDATA6  
LCDDATA7  
LCDDATA8  
LCDDATA9  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
OSCCON  
OSCTUNE  
ANSEL  
PR2  
LCDDATA12 190h  
LCDDATA13 191h  
LCDDATA14 192h  
LCDDATA15 193h  
LCDDATA16 194h  
LCDDATA17 195h  
LCDDATA18 196h  
LCDDATA19 197h  
LCDDATA20 198h  
LCDDATA21 199h  
LCDDATA22 19Ah  
LCDDATA23 19Bh  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
SSPADD  
SSPSTAT  
WPUB  
IOCB  
CMCON1  
TXSTA  
SPBRG  
LCDDATA10 11Ah  
LCDDATA11 11Bh  
CMCON0  
VRCON  
LCDSE0  
LCDSE1  
LCDSE2  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
LCDSE3  
LCDSE4  
LCDSE5  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
ADRESL  
ADCON1  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
80 Bytes  
80 Bytes  
96 Bytes  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
© 2007 Microchip Technology Inc.  
DS41250F-page 27  
PIC16F913/914/916/917/946  
TABLE 2-1:  
PIC16F91X/946 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---0 0000  
0000 000x  
0000 0000  
41,226  
99,226  
TMR0  
PCL  
Program Counter’s (PC) Least Significant Byte  
40,226  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
32,226  
Indirect Data Memory Address Pointer  
41,226  
PORTA  
PORTB  
PORTC  
PORTD(2)  
PORTE  
PCLATH  
INTCON  
PIR1  
RA7  
RB7  
RC7  
RD7  
RE7(3)  
RA6  
RB6  
RC6  
RD6  
RE6(3)  
RA5  
RB5  
RC5  
RD5  
RE5(3)  
RA4  
RB4  
RA3  
RB3  
RC3  
RD3  
RE3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
44,226  
54,226  
RC4  
RC2  
RC1  
RC0  
62,226  
RD4  
RE4(3)  
RD2  
RE2(2)  
RD1  
RE1(2)  
RD0  
RE0(2)  
71,226  
76,226  
Write Buffer for upper 5 bits of Program Counter  
40,226  
GIE  
PEIE  
ADIF  
C2IF  
T0IE  
RCIF  
C1IF  
INTE  
TXIF  
RBIE  
SSPIF  
T0IF  
CCP1IF  
LVDIF  
INTF  
TMR2IF  
RBIF  
34,226  
EEIF  
OSFIF  
TMR1IF  
CCP2IF(2) 0000 -0-0  
37,226  
PIR2  
LCDIF  
38,226  
TMR1L  
TMR1H  
T1CON  
TMR2  
Holding Register for the Least Significant Byte of the 16-bit TMR1  
Holding Register for the Most Significant Byte of the 16-bit TMR1  
xxxx xxxx  
102,226  
102,226  
105,226  
107,226  
108,226  
196,226  
195,226  
213,226  
213,226  
212,226  
131,226  
130,226  
128,227  
213,227  
213,227  
212,227  
182,227  
180,227  
xxxx xxxx  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000  
Timer2 Module Register 0000 0000  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
SSPM2  
SSPM1  
SSPM0  
Capture/Compare/PWM Register 1 (LSB)  
Capture/Compare/PWM Register 1 (MSB)  
CCP1X  
SREN  
CCP1Y  
CREN  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000  
SPEN  
RX9  
ADDEN  
FERR  
OERR  
RX9D  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
USART Transmit Data Register  
USART Receive Data Register  
1Bh(2) CCPR2L  
1Ch(2) CCPR2H  
1Dh(2) CCP2CON  
Capture/Compare/PWM Register 2 (LSB)  
Capture/Compare/PWM Register 2 (MSB)  
CCP2X  
A/D Result Register High Byte  
ADFM VCFG1 VCFG0  
CCP2Y  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000  
1Eh  
1Fh  
ADRESH  
ADCON0  
xxxx xxxx  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
0000 0000  
Legend:  
Note 1:  
-= Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
PIC16F914/917 and PIC16F946 only, forced ‘0’ on PIC16F913/916.  
2:  
3:  
PIC16F946 only, forced to ‘0’ on PIC16F91X.  
DS41250F-page 28  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 2-2:  
PIC16F91X/946 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 1  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx  
41,226  
33,227  
40,226  
32,226  
41,226  
44,227  
54,227  
62,227  
71,227  
76,227  
40,226  
34,226  
35,227  
36,227  
39,227  
88,227  
92,227  
43,227  
107,227  
202,227  
194,227  
55,227  
54,227  
117,227  
130,227  
132,227  
OPTION_REG  
PCL  
RBPU  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect Data Memory Address Pointer  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
STATUS  
FSR  
PD  
Z
DC  
C
TRISA  
TRISA7  
TRISB7  
TRISC7  
TRISD7  
TRISA6  
TRISB6  
TRISC6  
TRISD6  
TRISA5  
TRISB5  
TRISC5  
TRISD5  
TRISA4  
TRISB4  
TRISC4  
TRISD4  
TRISA3  
TRISB3  
TRISC3  
TRISD3  
TRISA2  
TRISB2  
TRISC2  
TRISD2  
TRISA1  
TRISB1  
TRISC1  
TRISD1  
TRISA0  
TRISB0  
TRISC0  
TRISD0  
TRISB  
TRISC  
TRISD(3)  
TRISE  
TRISE7(2) TRISE6(2) TRISE5(2) TRISE4(2) TRISE3(5) TRISE2(3) TRISE1(3) TRISE0(3) 1111 1111  
PCLATH  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
C2IE  
T0IE  
RCIE  
C1IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000  
0000 000x  
0000 0000  
INTE  
TXIE  
RBIE  
SSPIE  
T0IF  
CCP1IE  
LVDIE  
INTF  
TMR2IE  
RBIF  
EEIE  
OSFIE  
TMR1IE  
CCP2IE(3) 0000 -0-0  
PIE2  
LCDIE  
SBOREN  
IRCF0  
TUN4  
PCON  
POR  
LTS  
BOR  
SCS  
---1 --qq  
-110 q000  
---0 0000  
1111 1111  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
0000 ----  
---- --10  
0000 -010  
0000 0000  
OSCCON  
OSCTUNE  
ANSEL  
PR2  
IRCF2  
IRCF1  
OSTS(4)  
TUN3  
ANS3  
HTS  
ANS7(3)  
ANS6(3)  
ANS5(3)  
TUN2  
ANS2  
TUN1  
ANS1  
TUN0  
ANS0  
ANS4  
Timer2 Period Register  
Synchronous Serial Port (I2C mode) Address Register  
SSPADD  
SSPSTAT  
WPUB  
IOCB  
SMP  
WPUB7  
IOCB7  
CKE  
WPUB6  
IOCB6  
D/A  
WPUB5  
IOCB5  
P
S
WPUB3  
R/W  
WPUB2  
UA  
WPUB1  
BF  
WPUB0  
WPUB4  
IOCB4  
CMCON1  
TXSTA  
SPBRG  
T1GSS  
TRMT  
C2SYNC  
TX9D  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
SPBRG7 SPBRG6 SPBRG5 SPBRG4 SPBRG3 SPBRG2 SPBRG1 SPBRG0  
Unimplemented  
Unimplemented  
CMCON0  
VRCON  
ADRESL  
ADCON1  
C2OUT  
VREN  
C1OUT  
C2INV  
VRR  
C1INV  
CIS  
CM2  
VR2  
CM1  
VR1  
CM0  
VR0  
0000 0000  
0-0- 0000  
xxxx xxxx  
-000 ----  
116,227  
118,227  
182,227  
181,227  
VR3  
A/D Result Register Low Byte  
ADCS2 ADCS1  
ADCS0  
Legend:  
Note 1:  
-= Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
PIC16F946 only, forced ‘0’ on PIC16F91X.  
PIC16F914/917 and PIC16F946 only, forced ‘0’ on PIC16F913/916.  
The value of the OSTS bit is dependent on the value of the Configuration Word (CONFIG) of the device. See Section 4.2 “Oscillator  
Control”.  
2:  
3:  
4:  
5:  
Bit is read-only; TRISE3 = 1always.  
© 2007 Microchip Technology Inc.  
DS41250F-page 29  
PIC16F913/914/916/917/946  
TABLE 2-3:  
PIC16F91X/946 SPECIAL FUNCTION REGISTERS SUMMARY BANK 2  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 2  
100h INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
41,226  
99,226  
40,226  
32,226  
41,226  
235,227  
54,226  
145,227  
146,227  
145,228  
40,226  
34,226  
188,228  
188,228  
101h TMR0  
102h PCL  
Program Counter’s (PC) Least Significant Byte  
103h STATUS  
104h FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
105h WDTCON  
106h PORTB  
107h LCDCON  
108h LCDPS  
109h LVDCON  
10Ah PCLATH  
10Bh INTCON  
RB7  
LCDEN  
WFT  
RB6  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN ---0 1000  
RB5  
RB4  
VLCDEN  
WA  
RB3  
CS1  
LP3  
RB2  
CS0  
RB1  
LMUX1  
LP1  
RB0  
LMUX0  
LP0  
xxxx xxxx  
0001 0011  
0000 0000  
--00 -100  
---0 0000  
0000 000x  
SLPEN  
BIASMD  
WERR  
LCDA  
IRVST  
LP2  
LVDEN  
LVDL2  
LVDL1  
LVDL0  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
GIE  
PEIE  
T0IE  
EEDATL  
EEADRL  
EEDATL7 EEDATL6 EEDATL5 EEDATL4 EEDATL3 EEDATL2 EEDATL1 EEDATL0 0000 0000  
EEADRL7 EEADRL6 EEADRL5 EEADRL4 EEADRL3 EEADRL2 EEADRL1 EEADRL0 0000 0000  
10Ch  
10Dh  
EEDATH5 EEDATH4 EEDATH3 EEDATH2 EEDATH1 EEDATH0  
10Eh EEDATH  
10Fh EEADRH  
110h LCDDATA0  
--00 0000  
---0 0000  
xxxx xxxx  
188,228  
188,228  
147,228  
EEADRH4 EEADRH3 EEADRH2 EEADRH1 EEADRH0  
SEG7  
COM0  
SEG6  
COM0  
SEG5  
COM0  
SEG4  
COM0  
SEG3  
COM0  
SEG2  
COM0  
SEG1  
COM0  
SEG0  
COM0  
111h LCDDATA1  
112h LCDDATA2(2)  
113h LCDDATA3  
114h LCDDATA4  
115h LCDDATA5(2)  
116h LCDDATA6  
117h LCDDATA7  
118h LCDDATA8(2)  
119h LCDDATA9  
11Ah LCDDATA10  
SEG15  
COM0  
SEG14  
COM0  
SEG13  
COM0  
SEG12  
COM0  
SEG11  
COM0  
SEG10  
COM0  
SEG9  
COM0  
SEG8  
COM0  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
147,228  
147,228  
147,228  
147,228  
147,228  
147,228  
147,228  
147,228  
147,228  
147,228  
147,228  
SEG23  
COM0  
SEG22  
COM0  
SEG21  
COM0  
SEG20  
COM0  
SEG19  
COM0  
SEG18  
COM0  
SEG17  
COM0  
SEG16  
COM0  
SEG7  
COM1  
SEG6  
COM1  
SEG5  
COM1  
SEG4  
COM1  
SEG3  
COM1  
SEG2  
COM1  
SEG1  
COM1  
SEG0  
COM1  
SEG15  
COM1  
SEG14  
COM1  
SEG13  
COM1  
SEG12  
COM1  
SEG11  
COM1  
SEG10  
COM1  
SEG9  
COM1  
SEG8  
COM1  
SEG23  
COM1  
SEG22  
COM1  
SEG21  
COM1  
SEG20  
COM1  
SEG19  
COM1  
SEG18  
COM1  
SEG17  
COM1  
SEG16  
COM1  
SEG7  
COM2  
SEG6  
COM2  
SEG5  
COM2  
SEG4  
COM2  
SEG3  
COM2  
SEG2  
COM2  
SEG1  
COM2  
SEG0  
COM2  
SEG15  
COM2  
SEG14  
COM2  
SEG13  
COM2  
SEG12  
COM2  
SEG11  
COM2  
SEG10  
COM2  
SEG9  
COM2  
SEG8  
COM2  
SEG23  
COM2  
SEG22  
COM2  
SEG21  
COM2  
SEG20  
COM2  
SEG19  
COM2  
SEG18  
COM2  
SEG17  
COM2  
SEG16  
COM2  
SEG7  
COM3  
SEG6  
COM3  
SEG5  
COM3  
SEG4  
COM3  
SEG3  
COM3  
SEG2  
COM3  
SEG1  
COM3  
SEG0  
COM3  
SEG15  
COM3  
SEG14  
COM3  
SEG13  
COM3  
SEG12  
COM3  
SEG11  
COM3  
SEG10  
COM3  
SEG9  
COM3  
SEG8  
COM3  
LCDDATA11(2)  
11Bh  
SEG23  
COM3  
SEG22  
COM3  
SEG21  
COM3  
SEG20  
COM3  
SEG19  
COM3  
SEG18  
COM3  
SEG17  
COM3  
SEG16  
COM3  
11Ch LCDSE0(3)  
11Dh LCDSE1(3)  
11Eh LCDSE2(2,3)  
SE7  
SE15  
SE23  
SE6  
SE14  
SE22  
SE5  
SE13  
SE21  
SE4  
SE12  
SE20  
SE3  
SE11  
SE19  
SE2  
SE10  
SE18  
SE1  
SE9  
SE0  
SE8  
0000 0000  
0000 0000  
0000 0000  
147,228  
147,228  
147,228  
SE17  
SE16  
11Fh  
Unimplemented  
Legend:  
Note 1:  
= Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
PIC16F914/917 and PIC16F946 only.  
2:  
3:  
This register is only initialized by a POR or BOR reset and is unchanged by other Resets.  
DS41250F-page 30  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 2-4:  
PIC16F91X/946 SPECIAL FUNCTION REGISTERS SUMMARY BANK 3  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 3  
180h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical  
register)  
xxxx xxxx  
41,226  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
OPTION_REG  
PCL  
RBPU  
Program Counter (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect Data Memory Address Pointer  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
33,227  
40,226  
32,226  
STATUS  
PD  
Z
DC  
C
FSR  
41,226  
81,228  
TRISF(3)  
TRISB  
TRISF7  
TRISB7  
TRISF6  
TRISB6  
TRISF5  
TRISB5  
TRISG5  
RF5  
TRISF4  
TRISB4  
TRISG4  
RF4  
TRISF3  
TRISB3  
TRISG3  
RF3  
TRISF2  
TRISB2  
TRISG2  
RF2  
TRISF1  
TRISB1  
TRISG1  
RF1  
TRISF0 1111 1111  
TRISB0 1111 1111  
TRISG0 --11 1111  
54,227  
84,228  
81,228  
84,228  
TRISG(3)  
PORTF(3)  
PORTG(3)  
PCLATH  
INTCON  
EECON1  
EECON2  
RF7  
RF6  
RF0  
RG0  
xxxx xxxx  
--xx xxxx  
RG5  
RG4  
RG3  
RG2  
RG1  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000  
0000 000x  
0--- x000  
---- ----  
40,226  
34,226  
189,229  
187  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
WR  
RBIF  
RD  
EEPGD  
WRERR  
WREN  
EEPROM Control Register 2 (not a physical register)  
18Eh  
18Fh  
190h  
Reserved  
Reserved  
LCDDATA12(3) SEG31  
COM0  
LCDDATA13(3) SEG39  
COM0  
SEG30  
COM0  
SEG29  
COM0  
SEG28  
COM0  
SEG27  
COM0  
SEG26  
COM0  
SEG25  
COM0  
SEG24  
COM0  
xxxx xxxx  
147,228  
147,228  
147,228  
147,228  
147,228  
147,228  
147,228  
147,228  
147,228  
147,228  
147,228  
147,228  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
SEG38  
COM0  
SEG37  
COM0  
SEG36  
COM0  
SEG35  
COM0  
SEG34  
COM0  
SE33  
COM0  
SEG32  
COM0  
xxxx xxxx  
---- --xx  
xxxx xxxx  
xxxx xxxx  
---- --xx  
xxxx xxxx  
xxxx xxxx  
---- --xx  
xxxx xxxx  
xxxx xxxx  
---- --xx  
LCDDATA14(3)  
SEG41  
COM0  
SEG40  
COM0  
LCDDATA15(3) SEG31  
COM1  
LCDDATA16(3) SEG39  
COM1  
SEG30  
COM1  
SEG29  
COM1  
SEG28  
COM1  
SEG27  
COM1  
SEG26  
COM1  
SEG25  
COM1  
SEG24  
COM1  
SEG38  
COM1  
SEG37  
COM1  
SEG36  
COM1  
SEG35  
COM1  
SEG34  
COM1  
SEG33  
COM1  
SEG32  
COM1  
LCDDATA17(3)  
SEG41  
COM1  
SEG40  
COM1  
LCDDATA18(3) SEG31  
COM2  
LCDDATA19(3) SEG39  
COM2  
SEG30  
COM2  
SEG29  
COM2  
SEG28  
COM2  
SEG27  
COM2  
SEG26  
COM2  
SEG25  
COM2  
SEG24  
COM2  
SEG38  
COM2  
SEG37  
COM2  
SEG36  
COM2  
SEG35  
COM2  
SEG34  
COM2  
SEG33  
COM2  
SEG32  
COM2  
LCDDATA20(3)  
SEG41  
COM2  
SEG40  
COM2  
LCDDATA21(3) SEG31  
COM3  
LCDDATA22(3) SEG39  
COM3  
SEG30  
COM3  
SEG29  
COM3  
SEG28  
COM3  
SEG27  
COM3  
SEG26  
COM3  
SEG25  
COM3  
SEG24  
COM3  
SEG38  
COM3  
SEG37  
COM3  
SEG36  
COM3  
SEG35  
COM3  
SEG34  
COM3  
SEG33  
COM3  
SEG32  
COM3  
LCDDATA23(3)  
SEG41  
COM3  
SEG40  
COM3  
19Ch  
19Dh  
LCDSE3(2, 3)  
LCDSE4(2, 3)  
SE31  
SE39  
SE30  
SE38  
SE29  
SE37  
SE28  
SE36  
SE27  
SE35  
SE26  
SE34  
SE25  
SE33  
SE41  
SE24  
SE32  
SE40  
0000 0000  
0000 0000  
147,229  
147,229  
19Eh  
19Fh  
LCDSE5(2, 3)  
---- --00  
147,229  
Unimplemented  
Legend:  
Note 1:  
= Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
This register is only initialized by a POR or BOR reset and is unchanged by other Resets.  
PIC16F946 only.  
2:  
3:  
© 2007 Microchip Technology Inc.  
DS41250F-page 31  
PIC16F913/914/916/917/946  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu’ (where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not  
affecting any Status bits (see Section 17.0  
“Instruction Set Summary”).  
• the bank select bits for data memory (SRAM)  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as Borrow and  
Digit Borrow out bits, respectively, in  
subtraction.  
REGISTER 2-1:  
STATUS: STATUS REGISTER  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h-1FFh)  
0= Bank 0, 1 (00h-FFh)  
bit 6-5  
RP<1:0>: Register Bank Select bits (used for direct addressing)  
00= Bank 0 (00h-7Fh)  
01= Bank 1 (80h-FFh)  
10= Bank 2 (100h-17Fh)  
11= Bank 3 (180h-1FFh)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(1)  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order  
bit of the source register.  
DS41250F-page 32  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
2.2.2.2  
OPTION register  
Note:  
To achieve a 1:1 prescaler assignment for  
Timer0, assign the prescaler to the WDT by  
setting PSA bit of the OPTION register to  
1’. See Section 6.3 “Timer1 Prescaler”.  
The OPTION register, shown in Register 2-2, is a  
readable and writable register, which contains various  
control bits to configure:  
• Timer0/WDT prescaler  
• External RB0/INT interrupt  
• Timer0  
• Weak pull-ups on PORTB  
REGISTER 2-2:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual bits in the WPUB register  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: Timer0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
© 2007 Microchip Technology Inc.  
DS41250F-page 33  
PIC16F913/914/916/917/946  
2.2.2.3  
INTCON Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE of the INTCON register.  
User software should ensure the appropri-  
ate interrupt flag bits are clear prior to  
enabling an interrupt.  
The INTCON register is a readable and writable  
register, which contains the various enable and flag bits  
for TMR0 register overflow, PORTB change and  
external RB0/INT/SEG0 pin interrupts.  
REGISTER 2-3:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE(1)  
R/W-0  
T0IF(2)  
R/W-0  
INTF  
R/W-x  
RBIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: PORTB Change Interrupt Enable bit(1)  
1= Enables the PORTB change interrupt  
0= Disables the PORTB change interrupt  
T0IF: Timer0 Overflow Interrupt Flag bit(2)  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: PORTB Change Interrupt Flag bit  
1= When at least one of the PORTB general purpose I/O pins changed state (must be cleared in soft-  
ware)  
0= None of the PORTB general purpose I/O pins have changed state  
Note 1: The appropriate bits in the IOCB register must also be set.  
2: T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before  
clearing T0IF bit.  
DS41250F-page 34  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
2.2.2.4  
PIE1 Register  
The PIE1 register contains the interrupt enable bits, as  
shown in Register 2-4.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 2-4:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
EEIE  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
CCP1IE  
TMR2IE  
TMR1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
EEIE: EE Write Complete Interrupt Enable bit  
1= Enables the EE write complete interrupt  
0= Disables the EE write complete interrupt  
ADIE: A/D Converter (ADC) Interrupt Enable bit  
1= Enables the ADC interrupt  
0= Disables the ADC interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port (SSP) Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the Timer2 to PR2 match interrupt  
0= Disables the Timer2 to PR2 match interrupt  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
© 2007 Microchip Technology Inc.  
DS41250F-page 35  
PIC16F913/914/916/917/946  
2.2.2.5  
PIE2 Register  
The PIE2 register contains the interrupt enable bits, as  
shown in Register 2-5.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 2-5:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0  
OSFIE  
bit 7  
R/W-0  
C2IE  
R/W-0  
C1IE  
R/W-0  
LCDIE  
U-0  
R/W-0  
LVDIE  
U-0  
R/W-0  
CCP2IE(1)  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
OSFIE: Oscillator Fail Interrupt Enable bit  
1= Enables oscillator fail interrupt  
0= Disables oscillator fail interrupt  
C2IE: Comparator C2 Interrupt Enable bit  
1= Enables Comparator C2 interrupt  
0= Disables Comparator C2 interrupt  
C1IE: Comparator C1 Interrupt Enable bit  
1= Enables Comparator C1 interrupt  
0= Disables Comparator C1 interrupt  
LCDIE: LCD Module Interrupt Enable bit  
1= Enables LCD interrupt  
0= Disables LCD interrupt  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
LVDIE: Low Voltage Detect Interrupt Enable bit  
1= Enables LVD Interrupt  
0= Disables LVD Interrupt  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IE: CCP2 Interrupt Enable bit(1)  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
Note 1: PIC16F914/PIC16F917/PIC16F946 only.  
DS41250F-page 36  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
2.2.2.6  
PIR1 Register  
The PIR1 register contains the interrupt flag bits, as  
shown in Register 2-6.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 2-6:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
R/W-0  
EEIF  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
EEIF: EE Write Operation Interrupt Flag bit  
1= The write operation completed (must be cleared in software)  
0= The write operation has not completed or has not started  
ADIF: A/D Converter Interrupt Flag bit  
1= A/D conversion complete (must be cleared in software)  
0= A/D conversion has not completed or has not been started  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer is full (cleared by reading RCREG)  
0= The USART receive buffer is not full  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer is empty (cleared by writing to TXREG)  
0= The USART transmit buffer is full  
SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit  
1= The Transmission/Reception is complete (must be cleared in software)  
0= Waiting to Transmit/Receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: Timer2 to PR2 Interrupt Flag bit  
1= A Timer2 to PR2 match occurred (must be cleared in software)  
0= No Timer2 to PR2 match occurred  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= The TMR1 register overflowed (must be cleared in software)  
0= The TMR1 register did not overflow  
© 2007 Microchip Technology Inc.  
DS41250F-page 37  
PIC16F913/914/916/917/946  
2.2.2.7  
PIR2 Register  
The PIR2 register contains the interrupt flag bits, as  
shown in Register 2-7.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 2-7:  
PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2  
R/W-0  
OSFIF  
bit 7  
R/W-0  
C2IF  
R/W-0  
C1IF  
R/W-0  
LCDIF  
U-0  
R/W-0  
LVDIF  
U-0  
R/W-0  
CCP2IF(1)  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
OSFIF: Oscillator Fail Interrupt Flag bit  
1= System oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= System clock operating  
C2IF: Comparator C2 Interrupt Flag bit  
1= Comparator output (C2OUT bit) has changed (must be cleared in software)  
0= Comparator output (C2OUT bit) has not changed  
C1IF: Comparator C1 Interrupt Flag bit  
1= Comparator output (C1OUT bit) has changed (must be cleared in software)  
0= Comparator output (C1OUT bit) has not changed  
LCDIF: LCD Module Interrupt bit  
1= LCD has generated an interrupt  
0= LCD has not generated an interrupt  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
LVDIF: Low Voltage Detect Interrupt Flag bit  
1= LVD has generated an interrupt  
0= LVD has not generated an interrupt  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IF: CCP2 Interrupt Flag bit(1)  
Capture Mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
Note 1: PIC16F914/PIC16F917/PIC16F946 only.  
DS41250F-page 38  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
2.2.2.8  
PCON Register  
The Power Control (PCON) register contains flag bits  
(see Table 16-2) to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Watchdog Timer Reset (WDT)  
• External MCLR Reset  
The PCON register also controls the software enable of  
the BOR.  
The PCON register bits are shown in Register 2-8.  
REGISTER 2-8:  
PCON: POWER CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-1  
U-0  
U-0  
R/W-0  
POR  
R/W-x  
BOR  
SBOREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
SBOREN: Software BOR Enable bit(1)  
1= BOR enabled  
0= BOR disabled  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset  
occurs)  
Note 1: Set BOREN<1:0> = 01in the Configuration Word register for this bit to control the BOR.  
© 2007 Microchip Technology Inc.  
DS41250F-page 39  
PIC16F913/914/916/917/946  
2.3  
PCL and PCLATH  
Note 1: There are no Status bits to indicate stack  
The Program Counter (PC) is 13 bits wide. The low  
byte comes from the PCL register, which is a readable  
and writable register. The high byte (PC<12:8>) is not  
directly readable or writable and comes from  
PCLATH. On any Reset, the PC is cleared. Figure 2-6  
shows the two situations for the loading of the PC. The  
upper example in Figure 2-6 shows how the PC is  
loaded on a write to PCL (PCLATH<4:0> PCH).  
The lower example in Figure 2-6 shows how the PC is  
overflow or stack underflow conditions.  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the CALL,  
RETURN, RETLW and RETFIE instruc-  
tions or the vectoring to an interrupt  
address.  
loaded during  
(PCLATH<4:3> PCH).  
a
CALL or GOTO instruction  
2.4  
Program Memory Paging  
All PIC16F91X/946 devices are capable of addressing  
a continuous 8K word block of program memory. The  
CALL and GOTO instructions provide only 11 bits of  
address to allow branching within any 2K program  
memory page. When doing a CALLor GOTOinstruction,  
the upper 2 bits of the address are provided by  
PCLATH<4:3>. When doing a CALL or GOTO instruc-  
tion, the user must ensure that the page select bits are  
programmed so that the desired program memory  
page is addressed. If a return from a CALLinstruction  
(or interrupt) is executed, the entire 13-bit PC is POPed  
off the stack. Therefore, manipulation of the  
PCLATH<4:3> bits is not required for the RETURN  
instructions (which POPs the address from the stack).  
FIGURE 2-6:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Instruction with  
12  
8
7
0
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU Result  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO, CALL  
Note:  
The contents of the PCLATH register are  
unchanged after a RETURN or RETFIE  
instruction is executed. The user must  
rewrite the contents of the PCLATH regis-  
ter for any subsequent subroutine calls or  
GOTOinstructions.  
PCLATH<4:3>  
PCLATH  
11  
2
OPCODE<10:0>  
2.3.1  
COMPUTED GOTO  
Example 2-1 shows the calling of a subroutine in  
page 1 of the program memory. This example assumes  
that PCLATH is saved and restored by the Interrupt  
Service Routine (if interrupts are used).  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When perform-  
ing a table read using a computed GOTOmethod, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256-byte block). Refer to the  
Application Note AN556, “Implementing a Table Read”  
(DS00556).  
EXAMPLE 2-1:  
CALL OF A SUBROUTINE  
IN PAGE 1 FROM PAGE 0  
ORG 500h  
BCF PCLATH,4  
BSF PCLATH,3 ;Select page 1  
;(800h-FFFh)  
CALL SUB1_P1 ;Call subroutine in  
:
2.3.2  
STACK  
The PIC16F91X/946 family has an 8-level x 13-bit wide  
hardware stack (see Figures 2-1 and 2-2). The stack  
space is not part of either program or data space and  
the Stack Pointer is not readable or writable. The PC is  
PUSHed onto the stack when a CALL instruction is  
executed or an interrupt causes a branch. The stack is  
POPed in the event of a RETURN, RETLWor a RETFIE  
instruction execution. PCLATH is not affected by a  
PUSH or POP operation.  
;page 1 (800h-FFFh)  
:
ORG 900h  
;page 1 (800h-FFFh)  
SUB1_P1  
:
;called subroutine  
;page 1 (800h-FFFh)  
:
RETURN  
;return to  
;Call subroutine  
;in page 0  
;(000h-7FFh)  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
PUSH overwrites the value that was stored from the  
first PUSH. The tenth PUSH overwrites the second  
PUSH (and so on).  
DS41250F-page 40  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
EXAMPLE 2-2:  
INDIRECT ADDRESSING  
2.5  
Indirect Addressing, INDF and  
FSR Registers  
MOVLW  
MOVWF  
020h  
FSR  
;initialize pointer  
;to RAM  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
BANKISEL 020h  
NEXT CLRF  
INDF  
FSR  
;clear INDF register  
;inc pointer  
INCF  
BTFSS  
GOTO  
Indirect addressing is possible by using the INDF  
register. Any instruction using the INDF register  
actually accesses data pointed to by the File Select  
Register (FSR). Reading INDF itself indirectly will  
produce 00h. Writing to the INDF register indirectly  
results in a no operation (although Status bits may be  
affected). An effective 9-bit address is obtained by  
concatenating the 8-bit FSR register and the IRP bit of  
the STATUS register, as shown in Figure 2-7.  
FSR,4 ;all done?  
NEXT ;no clear next  
;yes continue  
CONTINUE  
A simple program to clear RAM location 020h-02Fh  
using indirect addressing is shown in Example 2-2.  
FIGURE 2-7:  
DIRECT/INDIRECT ADDRESSING PIC16F91X/946  
Direct Addressing  
Indirect Addressing  
From Opcode  
7
RP1  
RP0  
6
0
0
IRP  
File Select Register  
Bank Select  
180h  
Location Select  
Bank Select  
Location Select  
00h  
00  
01  
10  
11  
Data  
Memory  
7Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note:  
For memory map detail, see Figures 2-3 and 2-4.  
© 2007 Microchip Technology Inc.  
DS41250F-page 41  
PIC16F913/914/916/917/946  
NOTES:  
DS41250F-page 42  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.1  
ANSEL Register  
3.0  
I/O PORTS  
The ANSEL register (Register 3-1) is used to configure  
the Input mode of an I/O pin to analog. Setting the  
appropriate ANSEL bit high will cause all digital reads  
on the pin to be read as ‘0’ and allow analog functions  
on the pin to operate correctly.  
The PIC16F913/914/916/917/946 family of devices  
includes several 8-bit PORT registers along with their  
corresponding TRIS registers and one four bit port:  
• PORTA and TRISA  
• PORTB and TRISB  
• PORTC and TRISC  
• PORTD and TRISD(1)  
• PORTE and TRISE  
• PORTF and TRISF(2)  
• PORTG and TRISG(2)  
The state of the ANSEL bits has no affect on digital out-  
put functions. A pin with TRIS clear and ANSEL set will  
still operate as a digital output, but the Input mode will  
be analog. This can cause unexpected behavior when  
executing read-modify-write instructions on the  
affected port.  
Note 1: PIC16F914/917 and PIC16F946 only.  
2: PIC16F946 only  
PORTA, PORTB, PORTC and RE3/MCLR/VPP are  
implemented on all devices. PORTD and RE<2:0>  
(PORTE) are implemented only on the PIC16F914/917  
and PIC16F946. RE<7:4> (PORTE), PORTF and  
PORTG are implemented only on the PIC16F946.  
REGISTER 3-1:  
ANSEL: ANALOG SELECT REGISTER  
R/W-1  
ANS7(2)  
bit 7  
R/W-1  
ANS6(2)  
R/W-1  
ANS5(2)  
R/W-1  
ANS4  
R/W-1  
ANS3  
R/W-1  
ANS2  
R/W-1  
ANS1  
R/W-1  
ANS0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ANS<7:0>: Analog Select bits  
Analog select between analog or digital function on pins AN<7:0>, respectively.  
1= Analog input. Pin is assigned as analog input(1)  
0= Digital I/O. Pin is assigned to port or special function.  
.
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and  
interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow  
external control of the voltage on the pin.  
2: PIC16F914/PIC16F917/PIC16F946 only.  
© 2007 Microchip Technology Inc.  
DS41250F-page 43  
PIC16F913/914/916/917/946  
The TRISA register controls the direction of the PORTA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs. I/O  
pins configured as analog inputs always read ‘0’.  
3.2  
PORTA and TRISA Registers  
PORTA is  
a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISA  
(Register 3-3). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISA bit (= 0) will make the corresponding  
PORTA pin an output (i.e., put the contents of the output  
latch on the selected pin). Example 3-1 shows how to  
initialize PORTA.  
Note 1: The CMCON0 and ANSEL registers must  
be initialized to configure an analog  
channel as a digital input. Pins configured  
as analog inputs will read ‘0’.  
Five of the pins of PORTA can be configured as analog  
inputs. These pins, RA5 and RA<3:0>, are configured  
as analog inputs on device power-up and must be  
reconfigured by the user to be used as I/O’s. This is  
done by writing the appropriate values to the CMCON0  
and ANSEL registers (see Example 3-1).  
EXAMPLE 3-1:  
INITIALIZING PORTA  
BANKSEL PORTA  
;
CLRF  
PORTA  
;Init PORTA  
BANKSEL TRISA  
;
MOVLW  
MOVWF  
CLRF  
MOVLW  
MOVWF  
07h  
;Set RA<2:0> to  
CMCON0 ;digital I/O  
ANSEL  
0F0h  
Reading the PORTA register (Register 3-2) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port means that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
;Make all PORTA digital I/O  
;Set RA<7:4> as inputs  
;and set RA<3:0> as outputs  
TRISA  
REGISTER 3-2:  
PORTA: PORTA REGISTER  
R/W-x  
RA7  
R/W-x  
RA6  
R/W-x  
RA5  
R/W-x  
RA4  
R/W-x  
RA3  
R/W-x  
RA2  
R/W-x  
RA1  
R/W-x  
RA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-0  
RA<7:0>: PORTA I/O Pin bits  
1= Port pin is >VIH min.  
0= Port pin is <VIL max.  
REGISTER 3-3:  
TRISA: PORTA TRI-STATE REGISTER  
R/W-1  
TRISA7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISA6  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-0  
TRISA<7:0>: PORTA Tri-State Control bits  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
Note 1: TRISA<7:6> always reads ‘1’ in XT, HS and LP Oscillator modes.  
DS41250F-page 44  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.2.1  
PIN DESCRIPTIONS AND  
DIAGRAMS  
Each PORTA pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions,  
refer to the appropriate section in this data sheet.  
3.2.1.1  
RA0/AN0/C1-/SEG12  
Figure 3-1 shows the diagram for this pin. The RA0 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
• an analog input for Comparator C1  
• an analog output for the LCD  
FIGURE 3-1:  
BLOCK DIAGRAM OF RA0  
Data Bus  
D
Q
WR PORTA  
WR TRISA  
VDD  
VSS  
CK  
Q
Data Latch  
D
Q
I/O Pin  
CK  
Q
TRIS Latch  
Analog Input or  
SE12 and LCDEN  
TTL  
Input Buffer  
RD TRISA  
SE12 and LCDEN  
RD PORTA  
SEG12  
SE12 and LCDEN  
To A/D Converter and Comparator  
© 2007 Microchip Technology Inc.  
DS41250F-page 45  
PIC16F913/914/916/917/946  
3.2.1.2  
RA1/AN1/C2-/SEG7  
Figure 3-2 shows the diagram for this pin. The RA1 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
• an analog input for Comparator C2  
• an analog output for the LCD  
FIGURE 3-2:  
BLOCK DIAGRAM OF RA1  
Data Bus  
D
Q
WR PORTA  
VDD  
VSS  
CK  
Q
Data Latch  
D
Q
I/O Pin  
WR TRISA  
CK  
Q
TRIS Latch  
Analog Input or  
SE7 and LCDEN  
TTL  
Input Buffer  
RD TRISA  
SE7 and LCDEN  
RD PORTA  
SEG7  
SE7 and LCDEN  
To A/D Converter and Comparator  
DS41250F-page 46  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.2.1.3  
RA2/AN2/C2+/VREF-/COM2  
Figure 3-3 shows the diagram for this pin. The RA2 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
• an analog input for Comparator C2  
• a voltage reference input for the ADC  
• an analog output for the LCD  
FIGURE 3-3:  
BLOCK DIAGRAM OF RA2  
Data Bus  
D
Q
Q
VDD  
WR PORTA  
WR TRISA  
CK  
Data Latch  
D
Q
I/O Pin  
VSS  
CK  
Q
TRIS Latch  
Analog Input or  
LCDEN and  
LMUX<1:0> = 1X  
RD TRISA  
LCDEN and  
LMUX<1:0> = 1X  
TTL  
Input Buffer  
RD PORTA  
COM2  
LCDEN and  
LMUX<1:0> = 1X  
To A/D Converter and Comparator  
To A/D Module VREF- Input  
© 2007 Microchip Technology Inc.  
DS41250F-page 47  
PIC16F913/914/916/917/946  
3.2.1.4  
RA3/AN3/C1+/VREF+/COM3/SEG15  
Figure 3-4 shows the diagram for this pin. The RA3 pin  
is configurable to function as one of the following:  
• a general purpose input  
• an analog input for the ADC  
• an analog input from Comparator C1  
• a voltage reference input for the ADC  
• analog outputs for the LCD  
FIGURE 3-4:  
BLOCK DIAGRAM OF RA3  
Data Bus  
D
Q
Q
VDD  
VSS  
WR PORTA  
CK  
Data Latch  
Q
D
I/O Pin  
WR TRISA  
CK  
Q
TRIS Latch  
Analog Input or  
LCDMODE_EN(2)  
TTL  
Input Buffer  
LCDMODE_EN(2)  
RD TRISA  
RD PORTA  
LCDMODE_EN(2)  
COM3(1) or SEG15  
To A/D Converter and Comparator  
To A/D Module VREF+ Input  
Note 1: PIC16F913/916 only.  
2: For the PIC16F913/916, the LCDMODE_EN = LCDEN and (SE15 or LMUX<1:0> = 11).  
For the PIC16F914/917 and PIC16F946, the LCDMODE_EN = LCDEN and SE15.  
DS41250F-page 48  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.2.1.5  
RA4/C1OUT/T0CKI/SEG4  
Figure 3-5 shows the diagram for this pin. The RA4 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a digital output from Comparator C1  
• a clock input for Timer0  
• an analog output for the LCD  
FIGURE 3-5:  
BLOCK DIAGRAM OF RA4  
CM<2:0> = 110or 101  
C1OUT  
1
Data Bus  
0
D
Q
Q
VDD  
WR PORTA  
CK  
Data Latch  
I/O Pin  
D
Q
VSS  
WR TRISA  
CK  
Q
TRIS Latch  
SE4 and LCDEN  
TTL  
Input Buffer  
RD TRISA  
SE4 and LCDEN  
RD PORTA  
T0CKI  
Schmitt Trigger  
SE4 and LCDEN  
SE4 and LCDEN  
SEG4  
© 2007 Microchip Technology Inc.  
DS41250F-page 49  
PIC16F913/914/916/917/946  
3.2.1.6  
RA5/AN4/C2OUT/SS/SEG5  
Figure 3-6 shows the diagram for this pin. The RA5 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a digital output from Comparator C2  
• a slave select input  
• an analog output for the LCD  
• an analog input for the ADC  
FIGURE 3-6:  
BLOCK DIAGRAM OF RA5  
CM<2:0> = 110or 101  
C2OUT  
1
0
Data Bus  
D
Q
Q
VDD  
VSS  
WR PORTA  
CK  
Data Latch  
I/O Pin  
D
Q
WR TRISA  
CK  
Q
TRIS Latch  
RD TRISA  
Analog Input or  
SE5 and LCDEN  
TTL  
Input Buffer  
SE5 and LCDEN  
RD PORTA  
To SS Input  
SEG5  
SE5 and LCDEN  
To A/D Converter  
DS41250F-page 50  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.2.1.7  
RA6/OSC2/CLKOUT/T1OSO  
Figure 3-7 shows the diagram for this pin. The RA6 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a crystal/resonator connection  
• a clock output  
• a Timer1 oscillator connection  
FIGURE 3-7:  
BLOCK DIAGRAM OF RA6  
FOSC = 1x1  
From OSC1  
Oscillator  
Circuit  
CLKOUT (FOSC/4)  
1
Data Bus  
D
Q
0
VDD  
VSS  
WR PORTA  
CK  
Q
Data Latch  
I/O Pin  
D
Q
WR TRISA  
CK  
Q
FOSC = 00x, 010  
TRIS Latch  
FOSC = 00x, 010  
or T1OSCEN  
or T1OSCEN  
TTL  
Input Buffer  
RD TRISA  
RD PORTA  
© 2007 Microchip Technology Inc.  
DS41250F-page 51  
PIC16F913/914/916/917/946  
3.2.1.8  
RA7/OSC1/CLKIN/T1OSI  
Figure 3-8 shows the diagram for this pin. The RA7 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a crystal/resonator connection  
• a clock input  
• a Timer1 oscillator connection  
FIGURE 3-8:  
BLOCK DIAGRAM OF RA7  
To OSC2  
Oscillator  
Circuit  
FOSC = 011  
Data Bus  
D
Q
Q
WR PORTA  
CK  
VDD  
VSS  
Data Latch  
D
Q
Q
I/O Pin  
WR TRISA  
CK  
FOSC = 10x  
TRIS Latch  
FOSC = 10x  
TTL  
Input Buffer  
RD TRISA  
RD PORTA  
TABLE 3-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
POR, BOR  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ANSEL  
ADFM  
ANS7  
C2OUT  
CPD  
VCFG1  
ANS6  
C1OUT  
CP  
VCFG0  
ANS5  
CHS2  
ANS4  
CHS1  
ANS3  
CIS  
CHS0  
ANS2  
CM2  
GO/DONE  
ANS1  
ADON  
ANS0  
CM0  
0000 0000  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
0000 0000  
CMCON0  
CONFIG(1)  
C2INV  
MCLRE  
C1INV  
PWRTE  
CM1  
WDTE  
FOSC2  
FOSC1  
FOSC0  
OPTION_REG  
LCDCON  
LCDSE0  
LCDSE1  
PORTA  
RBPU  
LCDEN  
SE7  
INTEDG  
SLPEN  
SE6  
T0CS  
WERR  
SE5  
T0SE  
VLCDEN  
SE4  
PSA  
CS1  
PS2  
CS0  
PS1  
LMUX1  
SE1  
PS0  
LMUX0  
SE0  
1111 1111  
0001 0011  
0000 0000  
0000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
0001 0011  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
1111 1111  
SE3  
SE2  
SE15  
RA7  
SE14  
SE13  
RA5  
SE12  
RA4  
SE11  
RA3  
SE10  
RA2  
SE9  
SE8  
RA6  
RA1  
RA0  
SSPCON  
T1CON  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0  
TRISA  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
Note 1:  
See Configuration Word register (CONFIG) for operation of all register bits.  
DS41250F-page 52  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.3  
PORTB and TRISB Registers  
3.4  
Additional PORTB Pin Functions  
PORTB is an 8-bit bidirectional I/O port. All PORTB pins  
can have a weak pull-up feature, and PORTB<7:4>  
implements an interrupt-on-input change function.  
RB<7:6> are used as data and clock signals, respectively,  
for both serial programming and the in-circuit debugger  
features on the device. Also, RB0 can be configured as an  
external interrupt input.  
PORTB is also used for the Serial Flash programming  
interface and ICD interface.  
3.4.1  
WEAK PULL-UPS  
Each of the PORTB pins has an individually configurable  
internal weak pull-up. Control bits WPUB<7:0> enable or  
disable each pull-up. Refer to Register 3-7. Each weak  
pull-up is automatically turned off when the port pin is  
configured as an output. The pull-ups are disabled on a  
Power-on Reset by the RBPU bit of the OPTION  
register.  
EXAMPLE 3-2:  
INITIALIZING PORTB  
BANKSELPORTB  
;
CLRF  
PORTB  
;Init PORTB  
;
;Set RB<7:0> as inputs  
;
BANKSELTRISB  
MOVLW  
MOVWF  
0FFh  
TRISB  
3.4.2  
INTERRUPT-ON-CHANGE  
Four of the PORTB pins are individually configurable  
as an interrupt-on-change pin. Control bits IOCB<7:4>  
enable or disable the interrupt function for each pin.  
Refer to Register 3-6. The interrupt-on-change feature  
is disabled on a Power-on Reset.  
For enabled interrupt-on-change pins, the values are  
compared with the old value latched on the last read of  
PORTB. The ‘mismatch’ outputs of the last read are  
OR’d together to set the PORTB Change Interrupt flag  
bit (RBIF) in the INTCON register (Register 2-3).  
This interrupt can wake the device from Sleep. The user,  
in the Interrupt Service Routine, clears the interrupt by:  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear the flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading or writing PORTB will end the mismatch con-  
dition and allow flag bit RBIF to be cleared. The latch  
holding the last read value is not affected by a MCLR  
nor Brown-out Reset. After these Resets, the RBIF flag  
will continue to be set if a mismatch is present.  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF  
interrupt flag may not get set. Furthermore,  
since a read or write on a port affects all bits  
of that port, care must be taken when using  
multiple pins in Interrupt-on-change mode.  
Changes on one pin may not be seen while  
servicing changes on another pin.  
© 2007 Microchip Technology Inc.  
DS41250F-page 53  
PIC16F913/914/916/917/946  
REGISTER 3-4:  
PORTB: PORTB REGISTER  
R/W-x  
RB7  
R/W-x  
RB6  
R/W-x  
RB5  
R/W-x  
RB4  
R/W-x  
RB3  
R/W-x  
RB2  
R/W-x  
RB1  
R/W-x  
RB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RB<7:0>: PORTB I/O Pin bits  
1= Port pin is >VIH min.  
0= Port pin is <VIL max.  
REGISTER 3-5:  
TRISB: PORTB TRI-STATE REGISTER  
R/W-1  
TRISB7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISB6  
TRISB5  
TRISB4  
TRISB3  
TRISB2  
TRISB1  
TRISB0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISB<7:0>: PORTB Tri-State Control bits  
1= PORTB pin configured as an input (tri-stated)  
0= PORTB pin configured as an output  
REGISTER 3-6:  
IOCB: PORTB INTERRUPT-ON-CHANGE REGISTER  
R/W-0  
IOCB7  
bit 7  
R/W-0  
IOCB6  
R/W-0  
IOCB5  
R/W-0  
IOCB4  
U-0  
U-0  
U-0  
U-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
IOCB<7:4>: Interrupt-on-Change bits  
1= Interrupt-on-change enabled  
0= Interrupt-on-change disabled  
Unimplemented: Read as ‘0’  
DS41250F-page 54  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
REGISTER 3-7:  
WPUB: WEAK PULL-UP REGISTER  
R/W-1  
WPUB7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WPUB6  
WPUB5  
WPUB4  
WPUB3  
WPUB2  
WPUB1  
WPUB0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
WPUB<7:0>: Weak Pull-up Register bits  
1= Pull-up enabled  
0= Pull-up disabled  
Note 1: Global RBPU must be enabled for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISx<7:0> = 0).  
© 2007 Microchip Technology Inc.  
DS41250F-page 55  
PIC16F913/914/916/917/946  
3.4.3  
PIN DESCRIPTIONS AND  
DIAGRAMS  
3.4.3.2  
RB1/SEG1  
Figure 3-9 shows the diagram for this pin. The RB1 pin  
is configurable to function as one of the following:  
Each PORTB pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the LCD or interrupts, refer to the appropriate  
section in this data sheet.  
• a general purpose I/O  
• an analog output for the LCD  
3.4.3.3  
RB2/SEG2  
Figure 3-9 shows the diagram for this pin. The RB2 pin  
is configurable to function as one of the following:  
3.4.3.1  
RB0/INT/SEG0  
Figure 3-9 shows the diagram for this pin. The RB0 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
• a general purpose I/O  
• an external edge triggered interrupt  
• an analog output for the LCD  
3.4.3.4  
RB3/SEG3  
Figure 3-9 shows the diagram for this pin. The RB3 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
FIGURE 3-9:  
BLOCK DIAGRAM OF RB<3:0>  
SE<3:0>  
VDD  
WPUB<3:0>  
VDD  
VSS  
Weak  
Pull-up  
RBPU  
P
Data Bus  
D
Q
I/O Pin  
WR PORTB  
CK  
Data Latch  
D
Q
WR TRISB  
CK  
TRIS Latch  
SE<3:0> and LCDEN  
TTL  
Input Buffer  
RD TRISB  
RD PORTB  
SEG<3:0>  
SE<3:0> and LCDEN  
Schmitt Trigger  
INT(1)  
SE0 and LCDEN  
Note 1: RB0 only.  
DS41250F-page 56  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.4.3.5  
RB4/COM0  
Figure 3-10 shows the diagram for this pin. The RB4  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
FIGURE 3-10:  
BLOCK DIAGRAM OF RB4  
LCDEN  
VDD  
WPUB<4>  
RBPU  
VDD  
VSS  
Weak  
P
Pull-up  
Data Bus  
D
Q
I/O Pin  
WR PORTB  
WR TRISB  
CK  
Data Latch  
D
Q
CK  
TRIS Latch  
LCDEN  
RD TRISB  
TTL  
Input Buffer  
RD PORTB  
D
Q
Q
WR IOC  
RD IOC  
CK  
Q
D
Q1  
EN  
Set RBIF  
Interrupt-on-  
Change  
LCDEN  
Q
S
D
Q
From other  
RB<7:4> pins  
R
EN  
RD PORTB  
Write ‘0’ to RBIF  
LCDEN  
COM0  
© 2007 Microchip Technology Inc.  
DS41250F-page 57  
PIC16F913/914/916/917/946  
3.4.3.6  
RB5/COM1  
Figure 3-11 shows the diagram for this pin. The RB5  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
FIGURE 3-11:  
BLOCK DIAGRAM OF RB5  
LCDEN and LMUX<1:0> 00  
VDD  
WPUB<5>  
VDD  
VSS  
Weak  
RBPU  
P
Pull-up  
Data Bus  
D
Q
I/O Pin  
WR PORTB  
WR TRISB  
CK  
Data Latch  
D
Q
CK  
TRIS Latch  
LCDEN and LMUX<1:0> 00  
TTL  
RD TRISB  
Input Buffer  
RD PORTB  
D
Q
Q
WR IOC  
RD IOC  
CK  
Q
D
LCDEN and  
LMUX<1:0> 00  
Q1  
EN  
Set RBIF  
Interrupt-on-  
Change  
Q
S
D
Q
From other  
RB<7:4> pins  
R
EN  
RD PORTB  
Write ‘0’ to RBIF  
LCDEN and LMUX<1:0> 00  
COM1  
DS41250F-page 58  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.4.3.7  
RB6/ICSPCLK/ICDCK/SEG14  
Figure 3-12 shows the diagram for this pin. The RB6  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an In-Circuit Serial Programming™ clock  
• an ICD clock input  
• an analog output for the LCD  
FIGURE 3-12:  
BLOCK DIAGRAM OF RB6  
Program Mode/ICD Mode  
WPUB<6>  
VDD  
RBPU  
SE14 and LCDEN  
Weak  
Pull-up  
P
VDD  
VSS  
Data Bus  
D
Q
I/O Pin  
WR PORTB  
WR TRISB  
CK  
Data Latch  
D
Q
SE14 and LCDEN  
CK  
TRIS Latch  
TTL  
Input Buffer  
RD TRISB  
RD PORTB  
D
Q
Q
WR IOC  
CK  
D
Q
RD IOC  
Q1  
EN  
Set RBIF  
Interrupt-on-  
Change  
Program Mode/ICD  
Q
S
D
Q
From other  
RB<7:4> pins  
R
EN  
RD PORTB  
Write ‘0’ to RBIF  
Schmitt Trigger  
ICSPCLK  
SEG14  
Program Mode or ICD Mode or (SE14 and LCDEN)  
SE14 and LCDEN  
© 2007 Microchip Technology Inc.  
DS41250F-page 59  
PIC16F913/914/916/917/946  
3.4.3.8  
RB7/ICSPDAT/ICDDAT/SEG13  
Figure 3-13 shows the diagram for this pin. The RB7  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an In-Circuit Serial Programming™ I/O  
• an ICD data I/O  
• an analog output for the LCD  
FIGURE 3-13:  
BLOCK DIAGRAM OF RB7  
PORT/Program Mode/ICD  
ICSPDAT  
VDD  
RBPU  
SE13 and LCDEN  
Weak  
P
Pull-up  
VDD  
VSS  
1
0
Data Bus  
D
Q
I/O Pin  
WR PORTB  
CK  
Data Latch  
D
Q
WR TRISB  
CK  
TRIS Latch  
0
1
PGD DRVEN  
TTL  
Input Buffer  
SE13 and LCDEN  
RD TRISB  
RD PORTB  
D
Q
D
Q
WR IOC  
RD IOC  
Q1  
EN  
CK  
Q
Program  
Mode/ICD  
Set RBIF  
S
Interrupt-on-  
Change  
Q
D
Q
From other  
RB<7:4> pins  
R
EN  
RD PORTB  
Write ‘0’ to RBIF  
Schmitt Trigger  
ICSPDAT/ICDDAT  
SEG13  
Program Mode or ICD Mode or (SE13 and LCDEN)  
SE13 and LCDEN  
DS41250F-page 60  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
POR, BOR  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
IOCB  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 ----  
0000 000x  
0000 ----  
IOCB7  
IOCB6  
IOCB5  
IOCB4  
LCDCON  
LCDSE0  
LCDSE1  
OPTION_REG  
PORTB  
LCDEN  
SE7  
SLPEN  
SE6  
WERR  
SE5  
VLCDEN  
SE4  
CS1  
SE3  
CS0  
SE2  
LMUX1  
SE1  
LMUX0  
SE0  
0001 0011  
0000 0000  
0000 0000  
1111 1111  
xxxx xxxx  
1111 1111  
1111 1111  
0001 0011  
uuuu uuuu  
uuuu uuuu  
1111 1111  
uuuu uuuu  
1111 1111  
1111 1111  
SE15  
SE14  
SE13  
SE12  
SE11  
PSA  
SE10  
PS2  
SE9  
SE8  
RBPU  
RB7  
INTEDG  
RB6  
T0CS  
RB5  
T0SE  
PS1  
PS0  
RB4  
RB3  
RB2  
RB1  
RB0  
TRISB  
TRISB7  
WPUB7  
TRISB6  
WPUB6  
TRISB5  
WPUB5  
TRISB4  
WPUB4  
TRISB3  
WPUB3  
TRISB2  
WPUB2  
TRISB1  
WPUB1  
TRISB0  
WPUB0  
WPUB  
Legend:  
Note 1:  
2:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by PORTB.  
This register is only initialized by a POR or BOR reset and is unchanged by other Resets.  
Configuration Word register bit DEBUG <12> is also associated with PORTB. See Register 16-1 for more details.  
© 2007 Microchip Technology Inc.  
DS41250F-page 61  
PIC16F913/914/916/917/946  
EXAMPLE 3-3:  
INITIALIZING PORTC  
3.5  
PORTC and TRISC Registers  
BANKSELPORTC  
;
PORTC is an 8-bit bidirectional port. PORTC is  
multiplexed with several peripheral functions. PORTC  
pins have Schmitt Trigger input buffers.  
CLRF  
PORTC  
;Init PORTC  
;
;Set RC<7:0> as inputs  
;
BANKSELTRISC  
MOVLW  
MOVWF  
0FFh  
TRISC  
All PORTC pins have latch bits (PORTC register).  
They will modify the contents of the PORTC latch  
(when written); thus, modifying the value driven out on  
a pin if the corresponding TRISC bit is configured for  
output.  
BANKSELLCDCON  
;
CLRF  
LCDCON  
;Disable VLCD<3:1>  
;inputs on RC<2:0>  
REGISTER 3-8:  
PORTC: PORTC REGISTER  
R/W-x  
RC7  
R/W-x  
RC6  
R/W-x  
RC5  
R/W-x  
RC4  
R/W-x  
RC3  
R/W-x  
RC2  
R/W-x  
RC1  
R/W-x  
RC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RC<7:0>: PORTC I/O Pin bits  
1= Port pin is >VIH min.  
0= Port pin is <VIL max.  
REGISTER 3-9:  
TRISC: PORTC TRI-STATE REGISTER  
R/W-1  
TRISC7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISC<7:0>: PORTC Tri-State Control bits  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
DS41250F-page 62  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.5.1  
PIN DESCRIPTIONS AND  
DIAGRAMS  
3.5.1.3  
RC2/VLCD3  
Figure 3-16 shows the diagram for this pin. The RC2  
pin is configurable to function as one of the following:  
Each PORTC pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the LCD or SSP, refer to the appropriate section  
in this data sheet.  
• a general purpose I/O  
• an analog input for the LCD bias voltage  
3.5.1.1  
RC0/VLCD1  
Figure 3-14 shows the diagram for this pin. The RC0  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the LCD bias voltage  
3.5.1.2  
RC1/VLCD2  
Figure 3-15 shows the diagram for this pin. The RC1  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the LCD bias voltage  
FIGURE 3-14:  
BLOCK DIAGRAM OF RC0  
VDD  
Data Bus  
D
Q
Q
WR PORTC  
WR TRISC  
CK  
I/O Pin  
VSS  
Data Latch  
D
Q
Q
CK  
TRIS Latch  
(VLCDEN and LMUX<1:0> 00)  
RD TRISC  
Schmitt  
Trigger  
RD PORTC  
VLCD1  
(LCDEN and LMUX<1:0> 00)  
© 2007 Microchip Technology Inc.  
DS41250F-page 63  
PIC16F913/914/916/917/946  
FIGURE 3-15:  
BLOCK DIAGRAM OF RC1  
VDD  
VSS  
Data Bus  
D
Q
Q
WR PORTC  
CK  
I/O Pin  
Data Latch  
D
Q
WR TRISC  
Q
CK  
TRIS Latch  
(VLCDEN and LMUX<1:0> 00)  
RD TRISC  
Schmitt  
Trigger  
RD PORTC  
VLCD2  
(LCDEN and LMUX<1:0> 00)  
FIGURE 3-16:  
BLOCK DIAGRAM OF RC2  
VDD  
VSS  
Data Bus  
D
Q
Q
WR PORTC  
CK  
I/O Pin  
Data Latch  
D
Q
WR TRISC  
Q
CK  
TRIS Latch  
VLCDEN  
RD TRISC  
Schmitt  
Trigger  
RD PORTC  
VLCD3  
LCDEN  
DS41250F-page 64  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.5.1.4  
RC3/SEG6  
Figure 3-17 shows the diagram for this pin. The RC3  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
FIGURE 3-17:  
BLOCK DIAGRAM OF RC3  
VDD  
VSS  
Data Bus  
D
Q
Q
WR PORTC  
CK  
I/O Pin  
Data Latch  
D
Q
WR TRISC  
Q
CK  
TRIS Latch  
SE6 and LCDEN  
RD TRISC  
Schmitt  
Trigger  
RD PORTC  
SE6 and LCDEN  
SEG6 and LCDEN  
© 2007 Microchip Technology Inc.  
DS41250F-page 65  
PIC16F913/914/916/917/946  
3.5.1.5  
RC4/T1G/SDO/SEG11  
Figure 3-18 shows the diagram for this pin. The RC4pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a Timer1 gate input  
• a serial data output  
• an analog output for the LCD  
FIGURE 3-18:  
BLOCK DIAGRAM OF RC4  
PORT/SDO Select  
SDO  
0
Data Bus  
D
Q
Q
1
VDD  
VSS  
WR PORTC  
CK  
Data Latch  
I/O Pin  
D
Q
WR TRISC  
CK  
Q
TRIS Latch  
RD TRISC  
SE11 and LCDEN  
Schmitt  
Trigger  
RD PORTC  
Timer1 Gate  
SE11 and LCDEN  
SEG11  
DS41250F-page 66  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.5.1.6  
RC5/T1CKI/CCP1/SEG10  
Figure 3-19 shows the diagram for this pin. The RC5  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• a Timer1 clock input  
• a Capture input, Compare output or PWM output  
• an analog output for the LCD  
FIGURE 3-19:  
BLOCK DIAGRAM OF RC5  
(PORT/CCP1 Select) and CCPMX  
CCP1 Data Out  
0
1
Data Bus  
D
Q
VDD  
VSS  
WR PORTC  
CK  
Q
Data Latch  
I/O Pin  
D
Q
WR TRISC  
CK  
Q
TRIS Latch  
RD TRISC  
SE10 and LCDEN  
Schmitt  
Trigger  
RD PORTC  
Timer1 Clock Input  
SE10 and LCDEN  
SEG10  
© 2007 Microchip Technology Inc.  
DS41250F-page 67  
PIC16F913/914/916/917/946  
3.5.1.7  
RC6/TX/CK/SCK/SCL/SEG9  
Figure 3-20 shows the diagram for this pin. The RC6  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an asynchronous serial output  
• a synchronous clock I/O  
• a SPI clock I/O  
• an I2C data I/O  
• an analog output for the LCD  
FIGURE 3-20:  
BLOCK DIAGRAM OF RC6  
PORT/USART/SSP Mode Select(1)  
I2CData Out  
TX/CK Data Out  
SCK Data Out  
Data Bus  
D
Q
VDD  
VSS  
WR PORTC  
CK  
Data Latch  
Q
I/O Pin  
D
Q
WR TRISC  
CK  
Q
TRIS Latch  
RD TRISC  
USART or I2CDrive  
SE9 and LCDEN  
Schmitt  
Trigger  
RD PORTC  
CK/SCL/SCK Input  
SE9 and LCDEN  
SEG9  
Note 1: If all three data output sources are enabled, the following priority order will be used:  
USART data (highest)  
SSP data  
PORT data (lowest)  
DS41250F-page 68  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.5.1.8  
RC7/RX/DT/SDI/SDA/SEG8  
Figure 3-21 shows the diagram for this pin. The RC7  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an asynchronous serial input  
• a synchronous serial data I/O  
• a SPI data input  
• an I2C data I/O  
• an analog output for the LCD  
FIGURE 3-21:  
BLOCK DIAGRAM OF RC7  
USART/I2CMode Select(1)  
DT Data Out  
I2CData Out  
PORT/(USART or I2C) Select  
VDD  
VSS  
0
1
I/O Pin  
Data Bus  
D
Q
Q
WR PORTC  
CK  
Data Latch  
D
Q
WR TRISC  
CK  
Q
TRIS Latch  
SE8 and LCDEN  
Schmitt  
Trigger  
RD TRISC  
I2CDrive  
or SCEN Drive  
RD PORTC  
RX/SDI Input  
SE8 and LCDEN  
SEG8  
Note 1: If all three data output sources are enabled, the following priority order will be used:  
USART data (highest)  
SSP data  
PORT data (lowest)  
© 2007 Microchip Technology Inc.  
DS41250F-page 69  
PIC16F913/914/916/917/946  
TABLE 3-3:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
POR, BOR  
Value on all  
other Resets  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CCP1CON  
CCP1X  
CCP1Y  
CCP1M3  
CCP1M2  
CCP1M1  
CCP1M0  
--00 0000  
--00 0000  
LCDCON  
LCDSE0  
LCDSE1  
PORTC  
RCSTA  
LCDEN  
SE7  
SLPEN  
SE6  
WERR  
SE5  
VLCDEN  
SE4  
CS1  
SE3  
CS0  
SE2  
LMUX1  
SE1  
LMUX0  
SE0  
0001 0011  
0000 0000  
0000 0000  
xxxx xxxx  
0000 000x  
0000 0000  
0000 0000  
1111 1111  
0001 0011  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 000x  
0000 0000  
uuuu uuuu  
1111 1111  
SE15  
SE14  
RC6  
SE13  
RC5  
SE12  
RC4  
SE11  
SE10  
RC2  
SE9  
SE8  
RC7  
RC3  
RC1  
RC0  
SPEN  
WCOL  
T1GINV  
TRISC7  
RX9  
SREN  
SSPEN  
CREN  
CKP  
ADDEN  
SSPM3  
FERR  
SSPM2  
OERR  
SSPM1  
RX9D  
SSPM0  
SSPCON  
T1CON  
TRISC  
SSPOV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2  
TMR1CS TMR1ON  
TRISC1 TRISC0  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by PORTC.  
DS41250F-page 70  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
EXAMPLE 3-4:  
INITIALIZING PORTD  
3.6  
PORTD and TRISD Registers  
BANKSELPORTD  
;
PORTD is an 8-bit port with Schmitt Trigger input buffers.  
Each pin is individually configured as an input or output.  
PORTD is only available on the PIC16F914/917 and  
PIC16F946.  
CLRF  
PORTD  
;Init PORTD  
;
;Set RD<7:0> as inputs  
;
BANKSELTRISD  
MOVLW  
MOVWF  
0FF  
TRISD  
REGISTER 3-10: PORTD: PORTD REGISTER  
R/W-x  
RD7  
R/W-x  
RD6  
R/W-x  
RD5  
R/W-x  
RD4  
R/W-x  
RD3  
R/W-x  
RD2  
R/W-x  
RD1  
R/W-x  
RD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RD<7:0>: PORTD I/O Pin bits  
1= Port pin is >VIH min.  
0= Port pin is <VIL max.  
REGISTER 3-11: TRISD: PORTD TRI-STATE REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISD7  
TRISD6  
TRISD5  
TRISD4  
TRISD3  
TRISD2  
TRISD1  
TRISD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISD<7:0>: PORTD Tri-State Control bits  
1= PORTD pin configured as an input (tri-stated)  
0= PORTD pin configured as an output  
© 2007 Microchip Technology Inc.  
DS41250F-page 71  
PIC16F913/914/916/917/946  
3.6.1  
PIN DESCRIPTIONS AND  
DIAGRAMS  
3.6.1.7  
RD6/SEG19  
Figure 3-25 shows the diagram for this pin. The RD6  
pin is configurable to function as one of the following:  
Each PORTD pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the Comparator or the ADC, refer to the  
appropriate section in this data sheet.  
• a general purpose I/O  
• an analog output for the LCD  
3.6.1.8  
RD7/SEG20  
Figure 3-25 shows the diagram for this pin. The RD7  
pin is configurable to function as one of the following:  
3.6.1.1  
RD0/COM3  
Figure 3-22 shows the diagram for this pin. The RD0  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
• a general purpose I/O  
• an analog output for the LCD  
3.6.1.2  
RD1  
Figure 3-23 shows the diagram for this pin. The RD1  
pin is configurable to function as one of the following:  
• a general purpose I/O  
3.6.1.3  
RD2/CCP2  
Figure 3-24 shows the diagram for this pin. The RD2  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• a Capture input, Compare output or PWM output  
3.6.1.4  
RD3/SEG16  
Figure 3-25 shows the diagram for this pin. The RD3  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
3.6.1.5  
RD4/SEG17  
Figure 3-25 shows the diagram for this pin. The RD4  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
3.6.1.6  
RD5/SEG18  
Figure 3-25 shows the diagram for this pin. The RD5  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
DS41250F-page 72  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 3-22:  
BLOCK DIAGRAM OF RD0  
VDD  
Data Bus  
D
Q
Q
WR PORTD  
I/O Pin  
CK  
VSS  
Data Latch  
D
Q
Q
WR TRISD  
CK  
TRIS Latch  
RD TRISD  
LCDEN and LMUX<1:0> = 11  
Schmitt  
Trigger  
RD PORTD  
LCDEN and  
LMUX<1:0> = 11  
COM3  
FIGURE 3-23:  
BLOCK DIAGRAM OF RD1  
VDD  
Data Bus  
D
Q
Q
WR PORTD  
CK  
RD1 Pin  
VSS  
Data Latch  
D
Q
Q
WR TRISD  
CK  
TRIS Latch  
Schmitt  
Trigger  
RD TRISD  
RD PORTD  
© 2007 Microchip Technology Inc.  
DS41250F-page 73  
PIC16F913/914/916/917/946  
FIGURE 3-24:  
BLOCK DIAGRAM OF RD2  
(PORT/CCP2 Select) and CCPMX  
VDD  
VSS  
CCP2 Data Out  
0
1
Data Bus  
D
Q
Q
I/O Pin  
WR PORTD  
CK  
Data Latch  
D
Q
Q
WR TRISD  
CK  
TRIS Latch  
Schmitt  
Trigger  
RD TRISD  
RD PORTD  
CCP2 Input  
FIGURE 3-25:  
BLOCK DIAGRAM OF RD<7:3>  
VDD  
VSS  
Data Bus  
D
Q
Q
WR PORTD  
CK  
I/O Pin  
Data Latch  
D
Q
Q
WR TRISD  
CK  
TRIS Latch  
SE<20:16> and LCDEN  
Schmitt  
Trigger  
RD TRISD  
RD PORTD  
SE<20:16> and LCDEN  
SEG<20:16>  
DS41250F-page 74  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 3-4:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD(1)  
Value on  
POR, BOR  
Value on all  
other Resets  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CCP2CON(1)  
CCP2X  
CCP2Y  
CCP2M3  
CCP2M2  
CCP2M1  
CCP2M0  
--00 0000  
--00 0000  
LCDCON  
LCDSE2(1)  
PORTD(1)  
TRISD(1)  
LCDEN  
SE23  
SLPEN  
SE22  
WERR  
SE21  
VLCDEN  
SE20  
CS1  
SE19  
CS0  
SE18  
LMUX1  
SE17  
LMUX0  
SE16  
0001 0011  
0000 0000  
xxxx xxxx  
1111 1111  
0001 0011  
uuuu uuuu  
uuuu uuuu  
1111 1111  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
TRISD7  
TRISD6  
TRISD5  
TRISD4  
TRISD3  
TRISD2  
TRISD1  
TRISD0  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by PORTD.  
Note 1:  
PIC16F914/917 and PIC16F946 only.  
© 2007 Microchip Technology Inc.  
DS41250F-page 75  
PIC16F913/914/916/917/946  
EXAMPLE 3-5:  
INITIALIZING PORTE  
3.7  
PORTE and TRISE Registers  
BANKSELPORTE  
CLRF PORTE  
BANKSELTRISE  
;
PORTE is a 1-bit, 4-bit or 8-bit port with Schmitt Trigger  
input buffers. RE<7:4, 2:0> are individually configured as  
inputs or outputs and RE3 is only available as an input if  
MCLRE is ‘0’ in Configuration Word (Register 16-1).  
;Init PORTE  
;
;Set RE<3:0> as inputs  
;
MOVLW  
MOVWF  
CLRF  
0Fh  
TRISE  
ANSEL  
;Make RE<2:0> as I/O’s  
RE<2:0> are only available on the PIC16F914/917 and  
PIC16F946. RE<7:4> are only available on the  
PIC16F946.  
REGISTER 3-12: PORTE: PORTE REGISTER  
R/W-x  
RE7(1,3)  
R/W-x  
RE6(1,3)  
R/W-x  
RE5(1,3)  
R/W-x  
RE4(1,3)  
R-x  
R/W-x  
RE2(2,4)  
R/W-x  
RE1(2,4)  
R/W-x  
RE0(2,4)  
RE3  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RE<7:0>: PORTE I/O Pin bits  
1= Port pin is >VIH min.  
0= Port pin is <VIL max.  
Note 1: PIC16F946 only.  
2: PIC16F914/917 and PIC16F946 only.  
3: PIC16F91X, Read as ‘0’.  
4: PIC16F913/916, Read as ‘0’.  
REGISTER 3-13: TRISE: PORTE TRI-STATE REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R-1  
R/W-1  
R/W-1  
R/W-1  
TRISE7(1,3)  
TRISE6(1,3) TRISE5(1,3) TRISE4(1,3)  
TRISE3  
TRISE2(2,4)  
TRISE1(2,4) TRISE0(2,4)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-0  
TRISE<7:0>: PORTE Tri-State Control bits  
1= PORTE pin configured as an input (tri-stated)  
0= PORTE pin configured as an output  
Note 1: PIC16F946 only.  
2: PIC16F914/917 and PIC16F946 only.  
3: PIC16F91X, Read as ‘0’.  
4: PIC16F913/916, Read as ‘0’.  
DS41250F-page 76  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.7.1  
PIN DESCRIPTIONS AND  
DIAGRAMS  
3.7.1.7  
RE6/SEG26(2)  
Figure 3-28 shows the diagram for this pin. The  
RE6/SEG26 pin is configurable to function as one of  
the following:  
Each PORTE pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the Comparator or the ADC, refer to the  
appropriate section in this data sheet.  
• a general purpose I/O  
• an analog output for the LCD  
3.7.1.8  
RE7/SEG27(2)  
3.7.1.1  
RE0/AN5/SEG21(1)  
Figure 3-28 shows the diagram for this pin. The  
RE7/SEG27 pin is configurable to function as one of  
the following:  
Figure 3-26 shows the diagram for this pin. The RE0  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input for the ADC  
• an analog output for the LCD  
• an analog output for the LCD  
3.7.1.2  
RE1/AN6/SEG22(1)  
Note 1: Pin is available on the PIC16F914/917 and  
PIC16F946 only.  
Figure 3-26 shows the diagram for this pin. The RE1  
pin is configurable to function as one of the following:  
2: Pin is available on the PIC16F946 only.  
• a general purpose I/O  
• an analog input for the ADC  
• an analog output for the LCD  
3.7.1.3  
RE2/AN7/SEG23(1)  
Figure 3-26 shows the diagram for this pin. The RE2  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
• an analog output for the LCD  
3.7.1.4  
RE3/MCLR/VPP  
Figure 3-27 shows the diagram for this pin. The RE3  
pin is configurable to function as one of the following:  
• a digital input only  
• as Master Clear Reset with weak pull-up  
• a programming voltage reference input  
3.7.1.5  
RE4/SEG24(2)  
Figure 3-28 shows the diagram for this pin. The  
RE4/SEG24 pin is configurable to function as one of  
the following:  
• a general purpose I/O  
• an analog output for the LCD  
3.7.1.6  
RE5/SEG25(2)  
Figure 3-28 shows the diagram for this pin. The  
RE5/SEG25 pin is configurable to function as one of  
the following:  
• a general purpose I/O  
• an analog output for the LCD  
© 2007 Microchip Technology Inc.  
DS41250F-page 77  
PIC16F913/914/916/917/946  
FIGURE 3-26:  
BLOCK DIAGRAM OF RE<2:0> (PIC16F914/917 AND PIC16F946 ONLY)  
VDD  
Data Bus  
D
Q
Q
WR PORTE  
CK  
I/O Pin  
VSS  
Data Latch  
D
Q
Q
WR TRISE  
CK  
TRIS Latch  
Analog Mode or  
SEG<23:21> and LCDEN  
and LCDEN  
Schmitt  
Trigger  
RD TRISE  
RD PORTE  
SEG<23:21> and LCDEN  
SEG<23:21>  
AN<7:5>  
FIGURE 3-27:  
BLOCK DIAGRAM OF RE3  
HV  
Schmitt Trigger  
Buffer  
MCLR circuit  
MCLR Filter  
HV Detect  
Programming mode  
Input Pin  
MCLRE  
VSS  
Data Bus  
HV  
Schmitt Trigger  
Buffer  
VSS  
RD TRISE  
RD PORTE  
DS41250F-page 78  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 3-28:  
BLOCK DIAGRAM OF RE<7:4> (PIC16F946 ONLY)  
VDD  
Data Bus  
D
Q
Q
WR PORTE  
CK  
I/O Pin  
VSS  
Data Latch  
D
Q
Q
WR TRISE  
CK  
TRIS Latch  
Analog Mode or  
SEG<27:24> and LCDEN  
Schmitt  
Trigger  
RD TRISE  
RD PORTE  
SEG<27:24> and LCDEN  
SEG<27:24>  
AN<7:5>  
© 2007 Microchip Technology Inc.  
DS41250F-page 79  
PIC16F913/914/916/917/946  
TABLE 3-5:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
POR, BOR  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ANSEL  
ADFM  
ANS7  
VCFG1  
ANS6  
VCFG0  
ANS5  
WERR  
SE21  
CHS2  
ANS4  
CHS1  
ANS3  
CS1  
CHS0  
ANS2  
CS0  
GO/DONE  
ANS1  
ADON  
ANS0  
LMUX0  
SE16  
0000 0000  
1111 1111  
0001 0011  
0000 0000  
0000 0000  
1111 1111  
0001 0011  
uuuu uuuu  
uuuu uuuu  
LCDCON  
LCDSE2(1,2)  
LCDEN  
SE23  
SLPEN  
SE22  
VLCDEN  
SE20  
LMUX1  
SE17  
SE19  
SE18  
LCDSE3(1, 3)  
SE31  
SE30  
SE29  
SE28  
SE27  
RE3  
SE26  
SE25  
SE24  
0000 0000  
xxxx xxxx  
1111 1111  
PORTE  
RE7(3)  
RE6(3)  
RE5(3)  
RE4(3)  
RE2(2)  
RE1(2)  
RE0(2)  
uuuu uuuu  
1111 1111  
TRISE  
TRISE7(3) TRISE6(3) TRISE5(3) TRISE4(3) TRISE3(4) TRISE2(2) TRISE1(2) TRISE0(2)  
Legend:  
Note 1:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by PORTC.  
This register is only initialized by a POR or BOR reset and is unchanged by other Resets.  
PIC16F914/917 and PIC16F946 only.  
PIC16F946 only.  
Bit is read-only; TRISE = 1always.  
2:  
3:  
4:  
DS41250F-page 80  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
EXAMPLE 3-6:  
INITIALIZING PORTF  
3.8  
PORTF and TRISF Registers  
BANKSELPORTF  
;
PORTF is an 8-bit port with Schmitt Trigger input buff-  
ers. RF<7:0> are individually configured as inputs or  
outputs, depending on the state of the port direction.  
The port bits are also multiplexed with LCD segment  
functions. PORTF is available on the PIC16F946 only.  
CLRF  
PORTF  
;Init PORTF  
;
;Set RF<7:0> as inputs  
;
BANKSELTRISF  
MOVLW  
MOVWF  
0FFh  
TRISF  
REGISTER 3-14: PORTF: PORTF REGISTER(1)  
R/W-x  
RF7  
R/W-x  
RF6  
R/W-x  
RF5  
R/W-x  
RF4  
R/W-x  
RF3  
R/W-x  
RF2  
R/W-x  
RF1  
R/W-x  
RF0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RF<7:0>: PORTF I/O Pin bits  
1= Port pin is >VIH min.  
0= Port pin is <VIL max.  
Note 1: PIC16F946 only.  
REGISTER 3-15: TRISF: PORTF TRI-STATE REGISTER(1)  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISF7  
TRISF6  
TRISF5  
TRISF4  
TRISF3  
TRISF2  
TRISF1  
TRISF0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISF<7:0>: PORTF Tri-State Control bits  
1= PORTF pin configured as an input (tri-stated)  
0= PORTF pin configured as an output  
Note 1: PIC16F946 only.  
© 2007 Microchip Technology Inc.  
DS41250F-page 81  
PIC16F913/914/916/917/946  
3.8.1  
PIN DESCRIPTIONS AND  
DIAGRAMS  
3.8.1.7  
RF6/SEG30  
Figure 3-29 shows the diagram for this pin. The RF6  
pin is configurable to function as one of the following:  
Each PORTF pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions,  
refer to the appropriate section in this data sheet.  
• a general purpose I/O  
• an analog output for the LCD  
3.8.1.8  
RF7/SEG31  
3.8.1.1  
RF0/SEG32  
Figure 3-29 shows the diagram for this pin. The RF7  
pin is configurable to function as one of the following:  
Figure 3-29 shows the diagram for this pin. The RF0  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog output for the LCD  
• an analog output for the LCD  
3.8.1.2  
RF1/SEG33  
Figure 3-29 shows the diagram for this pin. The RF1  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
3.8.1.3  
RF2/SEG34  
Figure 3-29 shows the diagram for this pin. The RF2  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
3.8.1.4  
RF3/SEG35  
Figure 3-29 shows the diagram for this pin. The RF3  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
3.8.1.5  
RF4/SEG28  
Figure 3-29 shows the diagram for this pin. The RF4  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
3.8.1.6  
RF5/SEG29  
Figure 3-29 shows the diagram for this pin. The RF5  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
DS41250F-page 82  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 3-29:  
BLOCK DIAGRAM OF RF<7:0>  
VDD  
Data Bus  
D
Q
Q
WR PORTF  
CK  
I/O Pin  
VSS  
Data Latch  
D
Q
Q
WR TRISF  
CK  
TRIS Latch  
SE<35:28> and LCDEN  
SE<35:28> and LCDEN  
RD TRISF  
Schmitt  
Trigger  
RD PORTF  
SEG<35:28>  
TABLE 3-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTF(1)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LCDCON  
LCDEN SLPEN  
WERR  
SE29  
SE37  
RF5  
VLCDEN  
SE28  
CS1  
SE27  
SE35  
RF3  
CS0  
SE26  
SE34  
RF2  
LMUX1  
SE25  
LMUX0 0001 0011 0001 0011  
(1)  
LCDSE3  
SE31  
SE39  
RF7  
SE30  
SE38  
RF6  
SE24  
SE32  
RF0  
0000 0000 uuuu uuuu  
0000 0000 uuuu uuuu  
xxxx xxxx uuuu uuuu  
(1)  
LCDSE4  
SE36  
SE33  
(1)  
PORTF  
RF4  
RF1  
(1)  
TRISF  
TRISF7 TRISF6 TRISF5  
TRISF4  
TRISF3 TRISF2  
TRISF1  
TRISF0 1111 1111 1111 1111  
Legend:  
x= unknown, u= unchanged, = unimplemented locations read as ‘0’. Shaded cells are not used by PORTF.  
Note 1: PIC16F946 only.  
© 2007 Microchip Technology Inc.  
DS41250F-page 83  
PIC16F913/914/916/917/946  
EXAMPLE 3-7:  
INITIALIZING PORTG  
3.9  
PORTG and TRISG Registers  
BANKSELPORTG  
CLRF PORTG  
BANKSELTRISG  
;
PORTG is an 8-bit port with Schmitt Trigger input  
buffers. RG<5:0> are individually configured as inputs  
or outputs, depending on the state of the port direction.  
The port bits are also multiplexed with LCD segment  
functions. PORTG is available on the PIC16F946 only.  
;Init PORTG  
;
;Set RG<5:0> as inputs  
;
MOVLW  
MOVWF  
3Fh  
TRISG  
REGISTER 3-16: PORTG: PORTG REGISTER(1)  
U-0  
U-0  
R/W-x  
RG5  
R/W-x  
RG4  
R/W-x  
RG3  
R/W-x  
RG2  
R/W-x  
RG1  
R/W-x  
RG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RG<5:0>: PORTG I/O Pin bits  
1= Port pin is >VIH min.  
0= Port pin is <VIL max.  
Note 1: PIC16F946 only.  
REGISTER 3-17: TRISG: PORTG TRI-STATE REGISTER(1)  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISG5  
TRISG4  
TRISG3  
TRISG2  
TRISG1  
TRISG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TRISF<5:0>: PORTG Tri-State Control bits  
1= PORTG pin configured as an input (tri-stated)  
0= PORTG pin configured as an output  
Note 1: PIC16F946 only.  
DS41250F-page 84  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
3.9.1  
PIN DESCRIPTIONS AND  
DIAGRAMS  
3.9.1.4  
RG3/SEG39  
Figure 3-30 shows the diagram for this pin. The RG3  
pin is configurable to function as one of the following:  
Each PORTG pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions,  
refer to the appropriate section in this data sheet.  
• a general purpose I/O  
• an analog output for the LCD  
3.9.1.5  
RG4/SEG40  
3.9.1.1  
RG0/SEG36  
Figure 3-30 shows the diagram for this pin. The RG4  
pin is configurable to function as one of the following:  
Figure 3-30 shows the diagram for this pin. The RG0  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog output for the LCD  
• an analog output for the LCD  
3.9.1.6  
RG5/SEG41  
3.9.1.2  
RG1/SEG37  
Figure 3-30 shows the diagram for this pin. The RG5  
pin is configurable to function as one of the following:  
Figure 3-30 shows the diagram for this pin. The RG1  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog output for the LCD  
• an analog output for the LCD  
3.9.1.3  
RG2/SEG38  
Figure 3-30 shows the diagram for this pin. The RG2  
pin is configurable to function as one of the following:  
• a general purpose I/O  
• an analog output for the LCD  
FIGURE 3-30:  
BLOCK DIAGRAM OF RG<5:0>  
VDD  
Data Bus  
D
Q
Q
WR PORTG  
CK  
I/O Pin  
VSS  
Data Latch  
D
Q
Q
WR TRISG  
CK  
TRIS Latch  
SE<41:36> and LCDEN  
RD TRISG  
Schmitt  
Trigger  
RD PORTG  
SE<41:36> and LCDEN  
SEG<41:36>  
© 2007 Microchip Technology Inc.  
DS41250F-page 85  
PIC16F913/914/916/917/946  
TABLE 3-7:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTG(1)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LCDCON  
LCDEN SLPEN  
WERR  
SE37  
VLCDEN  
SE36  
CS1  
SE35  
CS0  
SE34  
LMUX1  
SE33  
LMUX0 0001 0011 0001 0011  
(1)  
LCDSE4  
SE39  
SE38  
SE32  
SE40  
RG0  
0000 0000 uuuu uuuu  
---- --00 ---- --uu  
--xx xxxx --uu uuuu  
(1)  
LCDSE5  
SE41  
(1)  
PORTG  
RG5  
RG4  
RG3  
RG2  
RG1  
(1)  
TRISG  
TRISG5 TRISG4  
TRISG3 TRISG2  
TRISG1  
TRISG0 --11 1111 --11 1111  
Legend:  
x= unknown, u= unchanged, = unimplemented locations read as ‘0’. Shaded cells are not used by PORTG.  
Note 1: PIC16F946 only.  
DS41250F-page 86  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
The Oscillator module can be configured in one of eight  
clock modes.  
4.0  
4.1  
OSCILLATOR MODULE (WITH  
FAIL-SAFE CLOCK MONITOR)  
1. EC – External clock with I/O on OSC2/CLKOUT.  
2. LP – 32 kHz Low-Power Crystal mode.  
Overview  
3. XT  
– Medium Gain Crystal or Ceramic  
The Oscillator module has a wide variety of clock  
sources and selection features that allow it to be used  
in a wide range of applications while maximizing perfor-  
mance and minimizing power consumption. Figure 4-1  
illustrates a block diagram of the Oscillator module.  
Resonator Oscillator mode.  
4. HS – High Gain Crystal or Ceramic Resonator  
mode.  
5. RC – External Resistor-Capacitor (RC) with  
FOSC/4 output on OSC2/CLKOUT.  
Clock sources can be configured from external  
oscillators, quartz crystal resonators, ceramic resonators  
and Resistor-Capacitor (RC) circuits. In addition, the  
system clock source can be configured from one of two  
internal oscillators, with a choice of speeds selectable via  
software. Additional clock features include:  
6. RCIO – External Resistor-Capacitor (RC) with  
I/O on OSC2/CLKOUT.  
7. INTOSC – Internal oscillator with FOSC/4 output  
on OSC2 and I/O on OSC1/CLKIN.  
8. INTOSCIO – Internal oscillator with I/O on  
OSC1/CLKIN and OSC2/CLKOUT.  
• Selectable system clock source between external  
or internal via software.  
Clock Source modes are configured by the FOSC<2:0>  
bits in the Configuration Word register (CONFIG). The  
internal clock can be generated from two internal  
• Two-Speed Start-up mode, which minimizes  
latency between external oscillator start-up and  
code execution.  
oscillators. The HFINTOSC is  
a
calibrated  
high-frequency oscillator. The LFINTOSC is an  
uncalibrated low-frequency oscillator.  
• Fail-Safe Clock Monitor (FSCM) designed to  
detect a failure of the external clock source (LP,  
XT, HS, EC or RC modes) and switch  
automatically to the internal oscillator.  
FIGURE 4-1:  
SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
FOSC<2:0>  
(Configuration Word Register)  
External Oscillator  
SCS<0>  
(OSCCON Register)  
OSC2  
OSC1  
Sleep  
LP, XT, HS, RC, RCIO, EC  
IRCF<2:0>  
(OSCCON Register)  
System Clock  
(CPU and Peripherals)  
8 MHz  
111  
110  
101  
INTOSC  
Internal Oscillator  
4 MHz  
2 MHz  
1 MHz  
HFINTOSC  
8 MHz  
100  
011  
010  
001  
000  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
LFINTOSC  
31 kHz  
Power-up Timer (PWRT)  
Watchdog Timer (WDT)  
Fail-Safe Clock Monitor (FSCM)  
© 2007 Microchip Technology Inc.  
DS41250F-page 87  
PIC16F913/914/916/917/946  
4.2  
Oscillator Control  
The Oscillator Control (OSCCON) register (Figure 4-1)  
controls the system clock and frequency selection  
options. The OSCCON register contains the following  
bits:  
• Frequency selection bits (IRCF)  
• Frequency Status bits (HTS, LTS)  
• System clock control bits (OSTS, SCS)  
REGISTER 4-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R/W-1  
IRCF2  
R/W-1  
IRCF1  
R/W-0  
IRCF0  
R-1  
OSTS(1)  
R-0  
R-0  
LTS  
R/W-0  
SCS  
HTS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IRCF<2:0>: Internal Oscillator Frequency Select bits  
111= 8 MHz  
110= 4 MHz (default)  
101= 2 MHz  
100= 1 MHz  
011= 500 kHz  
010= 250 kHz  
001= 125 kHz  
000= 31 kHz (LFINTOSC)  
bit 3  
bit 2  
bit 1  
bit 0  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Device is running from the clock defined by FOSC<2:0> of the Configuration Word  
0= Device is running from the internal oscillator (HFINTOSC or LFINTOSC)  
HTS: HFINTOSC Status bit (High Frequency – 8 MHz to 125 kHz)  
1= HFINTOSC is stable  
0= HFINTOSC is not stable  
LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz)  
1= LFINTOSC is stable  
0= LFINTOSC is not stable  
SCS: System Clock Select bit  
1= Internal oscillator is used for system clock  
0= Clock source defined by FOSC<2:0> of the Configuration Word  
Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe  
mode is enabled.  
DS41250F-page 88  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
4.3  
Clock Source Modes  
4.4  
External Clock Modes  
Clock Source modes can be classified as external or  
internal.  
4.4.1 OSCILLATOR START-UP TIMER (OST)  
If the Oscillator module is configured for LP, XT or HS  
modes, the Oscillator Start-up Timer (OST) counts  
1024 oscillations from OSC1. This occurs following a  
Power-on Reset (POR) and when the Power-up Timer  
(PWRT) has expired (if configured), or a wake-up from  
Sleep. During this time, the program counter does not  
increment and program execution is suspended. The  
OST ensures that the oscillator circuit, using a quartz  
crystal resonator or ceramic resonator, has started and  
is providing a stable system clock to the Oscillator  
module. When switching between clock sources, a  
delay is required to allow the new clock to stabilize.  
These oscillator delays are shown in Table 4-1.  
• External Clock modes rely on external circuitry for  
the clock source. Examples are: Oscillator mod-  
ules (EC mode), quartz crystal resonators or  
ceramic resonators (LP, XT and HS modes) and  
Resistor-Capacitor (RC) mode circuits.  
• Internal clock sources are contained internally  
within the Oscillator module. The Oscillator  
module has two internal oscillators: the 8 MHz  
High-Frequency Internal Oscillator (HFINTOSC)  
and the 31 kHz Low-Frequency Internal Oscillator  
(LFINTOSC).  
The system clock can be selected between external or  
internal clock sources via the System Clock Select  
(SCS) bit of the OSCCON register. See Section 4.6  
“Clock Switching” for additional information.  
In order to minimize latency between external oscillator  
start-up and code execution, the Two-Speed Clock  
Start-up mode can be selected (see Section 4.7  
“Two-Speed Clock Start-up Mode”).  
TABLE 4-1:  
OSCILLATOR DELAY EXAMPLES  
Switch From  
Switch To  
Frequency  
Oscillator Delay  
LFINTOSC  
HFINTOSC  
31 kHz  
125 kHz to 8 MHz  
Sleep/POR  
Oscillator Warm-Up Delay (TWARM)  
Sleep/POR  
LFINTOSC (31 kHz)  
Sleep/POR  
EC, RC  
EC, RC  
DC – 20 MHz  
DC – 20 MHz  
2 instruction cycles  
1 cycle of each  
LP, XT, HS  
HFINTOSC  
32 kHz to 20 MHz  
125 kHz to 8 MHz  
1024 Clock Cycles (OST)  
1 μs (approx.)  
LFINTOSC (31 kHz)  
4.4.2  
EC MODE  
FIGURE 4-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source. When  
operating in this mode, an external clock source is  
connected to the OSC1 input and the OSC2 is available  
for general purpose I/O. Figure 4-2 shows the pin  
connections for EC mode.  
OSC1/CLKIN  
Clock from  
Ext. System  
PIC® MCU  
(1)  
I/O  
OSC2/CLKOUT  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC® MCU design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
Note 1: Alternate pin functions are listed in  
Section 1.0 “Device Overview”.  
© 2007 Microchip Technology Inc.  
DS41250F-page 89  
PIC16F913/914/916/917/946  
4.4.3  
LP, XT, HS MODES  
Note 1: Quartz crystal characteristics vary according  
to type, package and manufacturer. The  
user should consult the manufacturer data  
sheets for specifications and recommended  
application.  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
OSC1 and OSC2 (Figure 4-3). The mode selects a low,  
medium or high gain setting of the internal  
inverter-amplifier to support various resonator types  
and speed.  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
LP Oscillator mode selects the lowest gain setting of the  
internal inverter-amplifier. LP mode current consumption  
is the least of the three modes. This mode is designed to  
drive only 32.768 kHz tuning-fork type crystals (watch  
crystals).  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
• AN849, “Basic PIC® Oscillator Design”  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is best suited to drive resonators with a  
medium drive level specification.  
Analysis and Design” (DS00943)  
HS Oscillator mode selects the highest gain setting of the  
internal inverter-amplifier. HS mode current consumption  
is the highest of the three modes. This mode is best  
suited for resonators that require a high drive setting.  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
FIGURE 4-4:  
CERAMIC RESONATOR  
OPERATION  
Figure 4-3 and Figure 4-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
(XT OR HS MODE)  
FIGURE 4-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
PIC® MCU  
OSC1/CLKIN  
C1  
PIC® MCU  
To Internal  
Logic  
OSC1/CLKIN  
(3)  
(2)  
RP  
RF  
Sleep  
C1  
To Internal  
Logic  
Quartz  
Crystal  
(2)  
OSC2/CLKOUT  
(1)  
C2  
RF  
Sleep  
RS  
Ceramic  
Resonator  
Note 1: A series resistor (RS) may be required for  
OSC2/CLKOUT  
(1)  
C2  
RS  
ceramic resonators with low drive level.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
Note 1: A series resistor (RS) may be required for  
quartz crystals with low drive level.  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
DS41250F-page 90  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
4.4.4  
EXTERNAL RC MODES  
4.5  
Internal Clock Modes  
The external Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required. There are two modes: RC and RCIO.  
The Oscillator module has two independent, internal  
oscillators that can be configured or selected as the  
system clock source.  
1. The HFINTOSC (High-Frequency Internal  
Oscillator) is factory calibrated and operates at  
8 MHz. The frequency of the HFINTOSC can be  
user-adjusted via software using the OSCTUNE  
register (Register 4-2).  
In RC mode, the RC circuit connects to OSC1.  
OSC2/CLKOUT outputs the RC oscillator frequency  
divided by 4. This signal may be used to provide a clock  
for external circuitry, synchronization, calibration, test  
or other application requirements. Figure 4-5 shows  
the external RC mode connections.  
2. The LFINTOSC (Low-Frequency Internal  
Oscillator) is uncalibrated and operates at 31 kHz.  
The system clock speed can be selected via software  
using the Internal Oscillator Frequency Select bits  
IRCF<2:0> of the OSCCON register.  
FIGURE 4-5:  
EXTERNAL RC MODES  
The system clock can be selected between external or  
internal clock sources via the System Clock Selection  
(SCS) bit of the OSCCON register. See Section 4.6  
“Clock Switching” for more information.  
VDD  
PIC® MCU  
REXT  
OSC1/CLKIN  
Internal  
Clock  
4.5.1 INTOSC AND INTOSCIO MODES  
CEXT  
VSS  
The INTOSC and INTOSCIO modes configure the  
internal oscillators as the system clock source when  
the device is programmed using the oscillator selection  
or the FOSC<2:0> bits in the Configuration Word  
register (CONFIG). See Section 16.0 “Special  
Features of the CPU” for more information.  
(1)  
FOSC/4 or  
OSC2/CLKOUT  
(2)  
I/O  
Recommended values: 10 kΩ ≤ REXT 100 kΩ, <3V  
3 kΩ ≤ REXT 100 kΩ, 3-5V  
In INTOSC mode, OSC1/CLKIN is available for general  
purpose I/O. OSC2/CLKOUT outputs the selected  
internal oscillator frequency divided by 4. The CLKOUT  
signal may be used to provide a clock for external  
circuitry, synchronization, calibration, test or other  
application requirements.  
CEXT > 20 pF, 2-5V  
Note 1: Alternate pin functions are listed in  
Section 1.0 “Device Overview”.  
2: Output depends upon RC or RCIO clock mode.  
In RCIO mode, the RC circuit is connected to OSC1.  
OSC2 becomes an additional general purpose I/O pin.  
In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT  
are available for general purpose I/O.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) values  
and the operating temperature. Other factors affecting  
the oscillator frequency are:  
4.5.2  
HFINTOSC  
The High-Frequency Internal Oscillator (HFINTOSC) is  
a factory calibrated 8 MHz internal clock source. The  
frequency of the HFINTOSC can be altered via  
software using the OSCTUNE register (Register 4-2).  
• threshold voltage variation  
• component tolerances  
• packaging variations in capacitance  
The output of the HFINTOSC connects to a postscaler  
and multiplexer (see Figure 4-1). One of seven  
frequencies can be selected via software using the  
IRCF<2:0> bits of the OSCCON register. See  
Section 4.5.4 “Frequency Select Bits (IRCF)” for  
more information.  
The user also needs to take into account variation due  
to tolerance of external RC components used.  
The HFINTOSC is enabled by selecting any frequency  
between 8 MHz and 125 kHz by setting the IRCF<2:0>  
bits of the OSCCON register 000. Then, set the  
System Clock Source (SCS) bit of the OSCCON  
register to ‘1’ or enable Two-Speed Start-up by setting  
the IESO bit in the Configuration Word register  
(CONFIG) to ‘1’.  
The HF Internal Oscillator (HTS) bit of the OSCCON  
register indicates whether the HFINTOSC is stable or not.  
© 2007 Microchip Technology Inc.  
DS41250F-page 91  
PIC16F913/914/916/917/946  
When the OSCTUNE register is modified, the  
HFINTOSC frequency will begin shifting to the new  
frequency. Code execution continues during this shift.  
There is no indication that the shift has occurred.  
4.5.2.1  
OSCTUNE Register  
The HFINTOSC is factory calibrated but can be  
adjusted in software by writing to the OSCTUNE  
register (Register 4-2).  
OSCTUNE does not affect the LFINTOSC frequency.  
Operation of features that depend on the LFINTOSC  
clock source frequency, such as the Power-up Timer  
(PWRT), Watchdog Timer (WDT), Fail-Safe Clock  
Monitor (FSCM) and peripherals, are not affected by the  
change in frequency.  
The default value of the OSCTUNE register is ‘0’. The  
value is a 5-bit two’s complement number.  
REGISTER 4-2:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
TUN<4:0>: Frequency Tuning bits  
01111= Maximum frequency  
01110=  
00001=  
00000= Oscillator module is running at the factory-calibrated frequency.  
11111=  
10000= Minimum frequency  
DS41250F-page 92  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
4.5.3  
LFINTOSC  
4.5.5  
HF AND LF INTOSC CLOCK  
SWITCH TIMING  
The Low-Frequency Internal Oscillator (LFINTOSC) is  
an uncalibrated 31 kHz internal clock source.  
When switching between the LFINTOSC and the  
HFINTOSC, the new oscillator may already be shut  
down to save power (see Figure 4-6). If this is the case,  
there is a delay after the IRCF<2:0> bits of the  
OSCCON register are modified before the frequency  
selection takes place. The LTS and HTS bits of the  
OSCCON register will reflect the current active status  
of the LFINTOSC and HFINTOSC oscillators. The  
timing of a frequency selection is as follows:  
The output of the LFINTOSC connects to a postscaler  
and multiplexer (see Figure 4-1). Select 31 kHz, via  
software, using the IRCF<2:0> bits of the OSCCON  
register. See Section 4.5.4 “Frequency Select Bits  
(IRCF)” for more information. The LFINTOSC is also the  
frequency for the Power-up Timer (PWRT), Watchdog  
Timer (WDT) and Fail-Safe Clock Monitor (FSCM).  
The LFINTOSC is enabled by selecting 31 kHz  
(IRCF<2:0> bits of the OSCCON register = 000)as the  
system clock source (SCS bit of the OSCCON  
register = 1), or when any of the following are enabled:  
1. IRCF<2:0> bits of the OSCCON register are  
modified.  
2. If the new clock is shut down, a clock start-up  
delay is started.  
• Two-Speed Start-up IESO bit of the Configuration  
Word register = 1and IRCF<2:0> bits of the  
OSCCON register = 000  
3. Clock switch circuitry waits for a falling edge of  
the current clock.  
4. CLKOUT is held low and the clock switch  
circuitry waits for a rising edge in the new clock.  
• Power-up Timer (PWRT)  
• Watchdog Timer (WDT)  
5. CLKOUT is now connected with the new clock.  
LTS and HTS bits of the OSCCON register are  
updated as required.  
• Fail-Safe Clock Monitor (FSCM)  
The LF Internal Oscillator (LTS) bit of the OSCCON  
register indicates whether the LFINTOSC is stable or  
not.  
6. Clock switch is complete.  
See Figure 4-1 for more details.  
4.5.4  
FREQUENCY SELECT BITS (IRCF)  
If the internal oscillator speed selected is between  
8 MHz and 125 kHz, there is no start-up delay before  
the new frequency is selected. This is because the old  
and new frequencies are derived from the HFINTOSC  
via the postscaler and multiplexer.  
The output of the 8 MHz HFINTOSC and 31 kHz  
LFINTOSC connects to a postscaler and multiplexer  
(see Figure 4-1). The Internal Oscillator Frequency  
Select bits IRCF<2:0> of the OSCCON register select  
the frequency output of the internal oscillators. One of  
eight frequencies can be selected via software:  
Start-up delay specifications are located under the  
oscillator parameters of Section 19.0 “Electrical  
Specifications”.  
• 8 MHz  
• 4 MHz (Default after Reset)  
• 2 MHz  
• 1 MHz  
• 500 kHz  
• 250 kHz  
• 125 kHz  
• 31 kHz (LFINTOSC)  
Note:  
Following any Reset, the IRCF<2:0> bits of  
the OSCCON register are set to ‘110’ and  
the frequency selection is set to 4 MHz.  
The user can modify the IRCF bits to  
select a different frequency.  
© 2007 Microchip Technology Inc.  
DS41250F-page 93  
PIC16F913/914/916/917/946  
FIGURE 4-6:  
INTERNAL OSCILLATOR SWITCH TIMING  
HFINTOSC  
LFINTOSC (FSCM and WDT disabled)  
HFINTOSC  
Start-up Time  
2-cycle Sync  
Running  
LFINTOSC  
0  
= 0  
IRCF <2:0>  
System Clock  
HFINTOSC  
LFINTOSC (Either FSCM or WDT enabled)  
HFINTOSC  
2-cycle Sync  
Running  
LFINTOSC  
0  
= 0  
IRCF <2:0>  
System Clock  
LFINTOSC  
HFINTOSC  
LFINTOSC turns off unless WDT or FSCM is enabled  
Running  
LFINTOSC  
Start-up Time 2-cycle Sync  
HFINTOSC  
= 0  
0  
IRCF <2:0>  
System Clock  
DS41250F-page 94  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
When the Oscillator module is configured for LP, XT or  
HS modes, the Oscillator Start-up Timer (OST) is  
4.6  
Clock Switching  
The system clock source can be switched between  
external and internal clock sources via software using  
the System Clock Select (SCS) bit of the OSCCON  
register.  
enabled (see Section 4.4.1 “Oscillator Start-up Timer  
(OST)”). The OST will suspend program execution until  
1024 oscillations are counted. Two-Speed Start-up  
mode minimizes the delay in code execution by  
operating from the internal oscillator as the OST is  
counting. When the OST count reaches 1024 and the  
OSTS bit of the OSCCON register is set, program  
execution switches to the external oscillator.  
4.6.1  
SYSTEM CLOCK SELECT (SCS) BIT  
The System Clock Select (SCS) bit of the OSCCON  
register selects the system clock source that is used for  
the CPU and peripherals.  
4.7.1  
TWO-SPEED START-UP MODE  
CONFIGURATION  
• When the SCS bit of the OSCCON register = 0,  
the system clock source is determined by  
configuration of the FOSC<2:0> bits in the  
Configuration Word register (CONFIG).  
Two-Speed Start-up mode is configured by the  
following settings:  
• When the SCS bit of the OSCCON register = 1,  
the system clock source is chosen by the internal  
oscillator frequency selected by the IRCF<2:0>  
bits of the OSCCON register. After a Reset, the  
SCS bit of the OSCCON register is always  
cleared.  
• IESO (of the Configuration Word register) = 1;  
Internal/External Switchover bit (Two-Speed  
Start-up mode enabled).  
• SCS (of the OSCCON register) = 0.  
• FOSC<2:0> bits in the Configuration Word  
register (CONFIG) configured for LP, XT or HS  
mode.  
Note:  
Any automatic clock switch, which may  
occur from Two-Speed Start-up or Fail-Safe  
Clock Monitor, does not update the SCS bit  
of the OSCCON register. The user can  
monitor the OSTS bit of the OSCCON  
register to determine the current system  
clock source.  
Two-Speed Start-up mode is entered after:  
• Power-on Reset (POR) and, if enabled, after  
Power-up Timer (PWRT) has expired, or  
• Wake-up from Sleep.  
If the external clock oscillator is configured to be  
anything other than LP, XT or HS mode, then  
Two-Speed Start-up is disabled. This is because the  
external clock oscillator does not require any  
stabilization time after POR or an exit from Sleep.  
4.6.2  
OSCILLATOR START-UP TIME-OUT  
STATUS (OSTS) BIT  
The Oscillator Start-up Time-out Status (OSTS) bit of  
the OSCCON register indicates whether the system  
clock is running from the external clock source, as  
defined by the FOSC<2:0> bits in the Configuration  
Word register (CONFIG), or from the internal clock  
source. In particular, OSTS indicates that the Oscillator  
Start-up Timer (OST) has timed out for LP, XT or HS  
modes.  
4.7.2  
TWO-SPEED START-UP  
SEQUENCE  
1. Wake-up from Power-on Reset or Sleep.  
2. Instructions begin execution by the internal  
oscillator at the frequency set in the IRCF<2:0>  
bits of the OSCCON register.  
3. OST enabled to count 1024 clock cycles.  
4.7  
Two-Speed Clock Start-up Mode  
4. OST timed out, wait for falling edge of the  
internal oscillator.  
Two-Speed Start-up mode provides additional power  
savings by minimizing the latency between external  
oscillator start-up and code execution. In applications  
that make heavy use of the Sleep mode, Two-Speed  
Start-up will remove the external oscillator start-up  
time from the time spent awake and can reduce the  
overall power consumption of the device.  
5. OSTS is set.  
6. System clock held low until the next falling edge  
of new clock (LP, XT or HS mode).  
7. System clock is switched to external clock  
source.  
This mode allows the application to wake-up from  
Sleep, perform a few instructions using the INTOSC  
as the clock source and go back to Sleep without  
waiting for the primary oscillator to become stable.  
Note:  
Executing a SLEEP instruction will abort  
the oscillator start-up time and will cause  
the OSTS bit of the OSCCON register to  
remain clear.  
© 2007 Microchip Technology Inc.  
DS41250F-page 95  
PIC16F913/914/916/917/946  
4.7.3  
CHECKING TWO-SPEED CLOCK  
STATUS  
Checking the state of the OSTS bit of the OSCCON  
register will confirm if the microcontroller is running  
from the external clock source, as defined by the  
FOSC<2:0> bits in the Configuration Word register  
(CONFIG), or the internal oscillator.  
FIGURE 4-7:  
TWO-SPEED START-UP  
HFINTOSC  
TOST  
OSC1  
0
1
1022 1023  
OSC2  
PC - N  
PC + 1  
Program Counter  
PC  
System Clock  
DS41250F-page 96  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
4.8.3  
FAIL-SAFE CONDITION CLEARING  
4.8  
Fail-Safe Clock Monitor  
The Fail-Safe condition is cleared after a Reset,  
executing a SLEEPinstruction or toggling the SCS bit  
of the OSCCON register. When the SCS bit is toggled,  
the OST is restarted. While the OST is running, the  
device continues to operate from the INTOSC selected  
in OSCCON. When the OST times out, the Fail-Safe  
condition is cleared and the device will be operating  
from the external clock source. The Fail-Safe condition  
must be cleared before the OSFIF flag can be cleared.  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue operating should the external oscillator fail.  
The FSCM can detect oscillator failure any time after  
the Oscillator Start-up Timer (OST) has expired. The  
FSCM is enabled by setting the FCMEN bit in the  
Configuration Word register (CONFIG). The FSCM is  
applicable to all external oscillator modes (LP, XT, HS,  
EC, RC and RCIO).  
FIGURE 4-8:  
FSCM BLOCK DIAGRAM  
4.8.4  
RESET OR WAKE-UP FROM SLEEP  
Clock Monitor  
Latch  
The FSCM is designed to detect an oscillator failure  
after the Oscillator Start-up Timer (OST) has expired.  
The OST is used after waking up from Sleep and after  
any type of Reset. The OST is not used with the EC or  
RC Clock modes so that the FSCM will be active as  
soon as the Reset or wake-up has completed. When  
the FSCM is enabled, the Two-Speed Start-up is also  
enabled. Therefore, the device will always be executing  
code while the OST is operating.  
External  
Clock  
S
Q
LFINTOSC  
Oscillator  
÷ 64  
R
Q
31 kHz  
(~32 μs)  
488 Hz  
(~2 ms)  
Note:  
Due to the wide range of oscillator start-up  
times, the Fail-Safe circuit is not active  
during oscillator start-up (i.e., after exiting  
Reset or Sleep). After an appropriate  
amount of time, the user should check the  
OSTS bit of the OSCCON register to verify  
the oscillator start-up and that the system  
Sample Clock  
Clock  
Failure  
Detected  
4.8.1  
FAIL-SAFE DETECTION  
The FSCM module detects a failed oscillator by  
comparing the external oscillator to the FSCM sample  
clock. The sample clock is generated by dividing the  
LFINTOSC by 64. See Figure 4-8. Inside the fail  
detector block is a latch. The external clock sets the  
latch on each falling edge of the external clock. The  
sample clock clears the latch on each rising edge of the  
sample clock. A failure is detected when an entire  
half-cycle of the sample clock elapses before the  
primary clock goes low.  
clock  
completed.  
switchover  
has  
successfully  
4.8.2  
FAIL-SAFE OPERATION  
When the external clock fails, the FSCM switches the  
device clock to an internal clock source and sets the bit  
flag OSFIF of the PIR2 register. Setting this flag will  
generate an interrupt if the OSFIE bit of the PIE2  
register is also set. The device firmware can then take  
steps to mitigate the problems that may arise from a  
failed clock. The system clock will continue to be  
sourced from the internal clock source until the device  
firmware successfully restarts the external oscillator  
and switches back to external operation.  
The internal clock source chosen by the FSCM is  
determined by the IRCF<2:0> bits of the OSCCON  
register. This allows the internal oscillator to be  
configured before a failure occurs.  
© 2007 Microchip Technology Inc.  
DS41250F-page 97  
PIC16F913/914/916/917/946  
FIGURE 4-9:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
Clock Monitor Output  
(Q)  
Failure  
Detected  
OSCFIF  
Test  
Test  
Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
TABLE 4-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets(1)  
CONFIG(2)  
INTCON  
OSCCON  
OSCTUNE  
PIE2  
CPD  
GIE  
CP  
PEIE  
IRCF2  
MCLRE  
T0IE  
IRCF1  
PWRTE  
INTE  
WDTE  
RBIE  
OSTS  
TUN3  
FOSC2  
T0IF  
FOSC1  
INTF  
LTS  
FOSC0  
RBIF  
0000 000x  
-110 x000  
---0 0000  
0000 -0-0  
0000 -0-0  
0000 000x  
-110 x000  
---u uuuu  
0000 -0-0  
0000 -0-0  
0000 0000  
IRCF0  
TUN4  
LCDIE  
LCDIF  
HTS  
SCS  
TUN2  
LVDIE  
LVDIF  
TUN1  
TUN0  
OSFIE  
OSFIF  
C2IE  
C2IF  
C1IE  
C1IF  
CCP2IE  
CCP2IF  
PIR2  
T1CON  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
0000 0000  
Legend:  
Note 1:  
2:  
x= unknown, u= unchanged, = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators.  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
See Configuration Word register (CONFIG) for operation of all register bits.  
DS41250F-page 98  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
5.1  
Timer0 Operation  
5.0  
TIMER0 MODULE  
When used as a timer, the Timer0 module can be used  
as either an 8-bit timer or an 8-bit counter.  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
• 8-bit timer/counter register (TMR0)  
5.1.1  
8-BIT TIMER MODE  
• 8-bit prescaler (shared with Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
When used as a timer, the Timer0 module will  
increment every instruction cycle (without prescaler).  
Timer mode is selected by clearing the T0CS bit of the  
OPTION register to ‘0’.  
Figure 5-1 is a block diagram of the Timer0 module.  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
Note:  
The value written to the TMR0 register can  
be adjusted, in order to account for the two  
instruction cycle delay when TMR0 is  
written.  
5.1.2  
8-BIT COUNTER MODE  
When used as a counter, the Timer0 module will  
increment on every rising or falling edge of the T0CKI  
pin. The incrementing edge is determined by the T0SE  
bit of the Option register. Counter mode is selected by  
setting the T0CS bit of the Option register to ‘1’.  
FIGURE 5-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
FOSC/4  
Data Bus  
0
1
8
1
Sync  
TMR0  
2 Tcy  
T0CKI  
pin  
0
0
1
Set Flag bit T0IF  
on Overflow  
T0CS  
T0SE  
8-bit  
Prescaler  
PSA  
8
PSA  
WDTE  
SWDTEN  
1
PS<2:0>  
WDT  
Time-out  
16-bit  
Prescaler  
0
16  
31 kHz  
INTOSC  
Watchdog  
Timer  
PSA  
WDTPS<3:0>  
Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the Option register.  
2: SWDTEN and WDTPS<3:0> are bits in the WDTCON register.  
3: WDTE bit is in the Configuration Word register.  
© 2007 Microchip Technology Inc.  
DS41250F-page 99  
PIC16F913/914/916/917/946  
When changing the prescaler assignment from the  
WDT to the Timer0 module, the following instruction  
sequence must be executed (see Example 5-2).  
5.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
A single software programmable prescaler is available  
for use with either Timer0 or the Watchdog Timer  
(WDT), but not both simultaneously. The prescaler  
assignment is controlled by the PSA bit of the Option  
register. To assign the prescaler to Timer0, the PSA bit  
must be cleared to a ‘0’.  
EXAMPLE 5-2:  
CHANGING PRESCALER  
(WDT TIMER0)  
CLRWDT  
;Clear WDT and  
;prescaler  
;
BANKSEL OPTION_REG  
There are 8 prescaler options for the Timer0 module  
ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION register.  
In order to have a 1:1 prescaler value for the Timer0  
module, the prescaler must be assigned to the WDT  
module.  
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11110000’ ;Mask TMR0 select and  
OPTION_REG,W ;prescaler bits  
b’00000011’ ;Set prescale to 1:16  
OPTION_REG  
;
5.1.4  
TIMER0 INTERRUPT  
The prescaler is not readable or writable. When  
assigned to the Timer0 module, all instructions writing to  
the TMR0 register will clear the prescaler.  
Timer0 will generate an interrupt when the TMR0  
register overflows from FFh to 00h. The T0IF interrupt  
flag bit of the INTCON register is set every time the  
TMR0 register overflows, regardless of whether or not  
the Timer0 interrupt is enabled. The T0IF bit must be  
cleared in software. The Timer0 interrupt enable is the  
T0IE bit of the INTCON register.  
When the prescaler is assigned to WDT, a CLRWDT  
instruction will clear the prescaler along with the WDT.  
5.1.3.1  
Switching Prescaler Between  
Timer0 and WDT Modules  
Note:  
The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
As a result of having the prescaler assigned to either  
Timer0 or the WDT, it is possible to generate an  
unintended device Reset when switching prescaler  
values. When changing the prescaler assignment from  
Timer0 to the WDT module, the instruction sequence  
shown in Example 5-1, must be executed.  
5.1.5  
USING TIMER0 WITH AN  
EXTERNAL CLOCK  
When Timer0 is in Counter mode, the synchronization  
of the T0CKI input and the Timer0 register is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, the  
high and low periods of the external clock source must  
meet the timing requirements as shown in  
Section 19.0 “Electrical Specifications”  
EXAMPLE 5-1:  
CHANGING PRESCALER  
(TIMER0 WDT)  
BANKSEL TMR0  
CLRWDT  
;
;Clear WDT  
;Clear TMR0 and  
;prescaler  
CLRF  
TMR0  
BANKSEL OPTION_REG  
;
BSF  
OPTION_REG,PSA ;Select WDT  
CLRWDT  
;
;
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11111000’  
OPTION_REG,W  
b’00000101’  
OPTION_REG  
;Mask prescaler  
;bits  
;Set WDT prescaler  
;to 1:32  
DS41250F-page 100  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
REGISTER 5-1:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
BIT VALUE TMR0 RATE  
WDT RATE  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 1  
1 : 4  
1 : 2  
1 : 8  
1 : 4  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Note 1: A dedicated 16-bit WDT postscaler is available. See Section 16.4 “Watchdog Timer (WDT)” for more  
information.  
TABLE 5-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0  
Timer0 Module Register  
GIE PEIE T0IE  
xxxx xxxx uuuu uuuu  
INTCON  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RBIF 0000 000x 0000 000x  
PS0 1111 1111 1111 1111  
OPTION_REG RBPU INTEDG T0CS  
TRISA  
TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 1111 1111  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the  
Timer0 module.  
© 2007 Microchip Technology Inc.  
DS41250F-page 101  
PIC16F913/914/916/917/946  
6.1  
Timer1 Operation  
6.0  
TIMER1 MODULE WITH GATE  
CONTROL  
The Timer1 module is a 16-bit incrementing counter  
which is accessed through the TMR1H:TMR1L register  
pair. Writes to TMR1H or TMR1L directly update the  
counter.  
The Timer1 module is a 16-bit timer/counter with the  
following features:  
• 16-bit timer/counter register pair (TMR1H:TMR1L)  
• Programmable internal or external clock source  
• 3-bit prescaler  
When used with an internal clock source, the module is  
a timer. When used with an external clock source, the  
module can be used as either a timer or counter.  
• Optional LP oscillator  
• Synchronous or asynchronous operation  
6.2  
Clock Source Selection  
• Timer1 gate (count enable) via comparator or  
T1G pin  
The TMR1CS bit of the T1CON register is used to select  
the clock source. When TMR1CS = 0, the clock source  
is FOSC/4. When TMR1CS = 1, the clock source is  
supplied externally.  
• Interrupt on overflow  
• Wake-up on overflow (external clock,  
Asynchronous mode only)  
• Clock source for LCD module  
Clock Source  
TMR1CS  
Figure 6-1 is a block diagram of the Timer1 module.  
FOSC/4  
0
1
T1CKI pin  
FIGURE 6-1:  
TIMER1 BLOCK DIAGRAM  
TMR1GE  
T1GINV  
TMR1ON  
Set flag bit  
TMR1IF on  
Overflow  
To C2 Comparator Module  
Timer1 Clock  
(2)  
TMR1  
TMR1H  
Synchronized  
clock input  
0
EN  
TMR1L  
1
To LCD Module  
LP OSC  
(1)  
T1SYNC  
1
0
OSC1/T1OSI  
1
0
(3)  
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
OSC2/T1OSO  
2
T1CKPS<1:0>  
FOSC = 000  
FOSC = x00  
T1OSCEN  
TMR1CS  
1
0
T1G  
(4)  
SYNCC2OUT  
T1CKI  
T1GSS  
Note 1: ST Buffer is low power type when using LP oscillator, or high speed type when using T1CKI.  
2: Timer1 register increments on rising edge.  
3: Synchronize does not operate while in Sleep.  
4: SYNCC2OUT is synchronized when the C2SYNC bit of the CMCON1 register is set.  
DS41250F-page 102  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
6.2.1  
INTERNAL CLOCK SOURCE  
6.5  
Timer1 Operation in  
Asynchronous Counter Mode  
When the internal clock source is selected, the  
TMR1H:TMR1L register pair will increment on multiples  
of TCY as determined by the Timer1 prescaler.  
If control bit T1SYNC of the T1CON register is set, the  
external clock input is not synchronized. The timer  
continues to increment asynchronous to the internal  
phase clocks. The timer will continue to run during  
Sleep and can generate an interrupt on overflow,  
which will wake-up the processor. However, special  
precautions in software are needed to read/write the  
timer (see Section 6.5.1 “Reading and Writing  
Timer1 in Asynchronous Counter Mode”).  
6.2.2  
EXTERNAL CLOCK SOURCE  
When the external clock source is selected, the Timer1  
module may work as a timer or a counter.  
When counting, Timer1 is incremented on the rising  
edge of the external clock input T1CKI. In addition, the  
Counter mode clock can be synchronized to the  
microcontroller system clock or run asynchronously.  
Note 1: When switching from synchronous to  
asynchronous operation, it is possible to  
skip an increment. When switching from  
asynchronous to synchronous operation,  
it is possible to produce an additional  
increment.  
In Counter mode, a falling edge must be registered by  
the counter prior to the first incrementing rising edge  
after one or more of the following conditions:  
• Timer1 is enabled after POR or BOR Reset  
• A write to TMR1H or TMR1L  
• T1CKI is high when Timer1 is disabled and when  
Timer1 is reenabled T1CKI is low. See Figure 6-2.  
6.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
6.3  
Timer1 Prescaler  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself poses certain problems, since the  
timer may overflow between the reads.  
Timer1 has four prescaler options allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits of the  
T1CON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMR1H or TMR1L.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMR1H:TMR1L register pair.  
6.4  
Timer1 Oscillator  
A low-power 32.768 kHz crystal oscillator is built-in  
between pins OSC1 (input) and OSC2 (amplifier output).  
The oscillator is enabled by setting the T1OSCEN  
control bit of the T1CON register. The oscillator will  
continue to run during Sleep.  
6.6  
Timer1 Gate  
Timer1 gate source is software configurable to be the  
T1G pin or the output of Comparator C2. This allows the  
device to directly time external events using T1G or  
analog events using Comparator C2. See the CMCON1  
register (Register 8-2) for selecting the Timer1 gate  
source. This feature can simplify the software for a  
Delta-Sigma A/D converter and many other applications.  
For more information on Delta-Sigma A/D converters,  
see the Microchip web site (www.microchip.com).  
The Timer1 oscillator is shared with the system LP  
oscillator. Thus, Timer1 can use this mode only when  
the primary system clock is derived from the internal  
oscillator or when in LP oscillator mode. The user must  
provide a software time delay to ensure proper oscilla-  
tor start-up.  
TRISA7 and TRISA6 bits are set when the Timer1  
oscillator is enabled. RA7 and RA6 bits read as ‘0’ and  
TRISA7 and TRISA6 bits read as ‘1’.  
Note:  
TMR1GE bit of the T1CON register must be  
set to use the Timer1 gate.  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to enabling Timer1.  
Timer1 gate can be inverted using the T1GINV bit of  
the T1CON register, whether it originates from the T1G  
pin or Comparator C2 output. This configures Timer1 to  
measure either the active-high or active-low time  
between events.  
© 2007 Microchip Technology Inc.  
DS41250F-page 103  
PIC16F913/914/916/917/946  
6.7  
Timer1 Interrupt  
6.8  
Timer1 Operation During Sleep  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit of the PIR1 register is  
set. To enable the interrupt on rollover, you must set  
these bits:  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
• TMR1ON bit of the T1CON register must be set  
• TMR1IE bit of the PIE1 register must be set  
• PEIE bit of the INTCON register must be set  
• Timer1 interrupt enable bit of the PIE1 register  
• PEIE bit of the INTCON register  
• GIE bit of the INTCON register  
The device will wake-up on an overflow and execute  
the next instruction. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine (0004h).  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
Note:  
The TMR1H:TMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
6.9  
Clock Source for LCD Module  
The Timer1 oscillator can be used to provide a clock for  
the LCD module. This clock may be configured to  
remain running during Sleep.  
For more information, see Section 10.0 “Liquid Crys-  
tal Display (LCD) Driver Module”.  
FIGURE 6-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of  
the clock.  
DS41250F-page 104  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
6.10 Timer1 Control Register  
The Timer1 Control register (T1CON), shown in  
Register 6-1, is used to control Timer1 and select the  
various features of the Timer1 module.  
REGISTER 6-1:  
T1CON: TIMER 1 CONTROL REGISTER  
R/W-0  
T1GINV(1)  
R/W-0  
TMR1GE(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
T1GINV: Timer1 Gate Invert bit(1)  
1= Timer1 gate is active-high (Timer1 counts when gate is high)  
0= Timer1 gate is active-low (Timer1 counts when gate is low)  
TMR1GE: Timer1 Gate Enable bit(2)  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 counting is controlled by the Timer1 Gate function  
0= Timer1 is always counting  
bit 5-4  
bit 3  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale Value  
10= 1:4 Prescale Value  
01= 1:2 Prescale Value  
00= 1:1 Prescale Value  
T1OSCEN: LP Oscillator Enable Control bit  
If INTOSC without CLKOUT oscillator is active:  
1= LP oscillator is enabled for Timer1 clock  
0= LP oscillator is off  
Else:  
This bit is ignored. LP oscillator is disabled.  
bit 2  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from T1CKI pin (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Note 1: T1GINV bit inverts the Timer1 gate logic, regardless of source.  
2: TMR1GE bit must be set to use either T1G pin or C2OUT, as selected by the T1GSS bit of the CMCON1  
register, as a Timer1 gate source.  
© 2007 Microchip Technology Inc.  
DS41250F-page 105  
PIC16F913/914/916/917/946  
TABLE 6-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON1  
INTCON  
PIE1  
T1GSS  
INTF  
C2SYNC  
RBIF  
---- --10  
0000 000x  
0000 0000  
0000 0000  
---- --10  
0000 000x  
0000 0000  
0000 0000  
GIE  
EEIE  
PEIE  
ADIE  
T0IE  
RCIE  
INTE  
TXIE  
RBIE  
SSPIE  
T0IF  
CCP1IE  
TMR2IE  
TMR1IE  
PIR1  
EEIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF  
TMR2IF  
TMR1IF  
TMR1H  
TMR1L  
T1CON  
Legend:  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx  
xxxx xxxx  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS  
TMR1ON  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
DS41250F-page 106  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
The TMR2 and PR2 registers are both fully readable  
and writable. On any Reset, the TMR2 register is set to  
00h and the PR2 register is set to FFh.  
7.0  
TIMER2 MODULE  
The Timer2 module is an 8-bit timer with the following  
features:  
Timer2 is turned on by setting the TMR2ON bit in the  
T2CON register to a ‘1’. Timer2 is turned off by clearing  
the TMR2ON bit to a ‘0’.  
• 8-bit timer register (TMR2)  
• 8-bit period register (PR2)  
• Interrupt on TMR2 match with PR2  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
The Timer2 prescaler is controlled by the T2CKPS bits  
in the T2CON register. The Timer2 postscaler is  
controlled by the TOUTPS bits in the T2CON register.  
The prescaler and postscaler counters are cleared  
when:  
See Figure 7-1 for a block diagram of Timer2.  
• A write to TMR2 occurs.  
• A write to T2CON occurs.  
7.1  
Timer2 Operation  
The clock input to the Timer2 module is the system  
instruction clock (FOSC/4). The clock is fed into the  
Timer2 prescaler, which has prescale options of 1:1,  
1:4 or 1:16. The output of the prescaler is then used to  
increment the TMR2 register.  
• Any device Reset occurs (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset, or Brown-out  
Reset).  
Note:  
TMR2 is not cleared when T2CON is  
written.  
The values of TMR2 and PR2 are constantly compared  
to determine when they match. TMR2 will increment  
from 00h until it matches the value in PR2. When a  
match occurs, two things happen:  
• TMR2 is reset to 00h on the next increment cycle.  
• The Timer2 postscaler is incremented.  
The match output of the Timer2/PR2 comparator is  
then fed into the Timer2 postscaler. The postscaler has  
postscale options of 1:1 to 1:16 inclusive. The output of  
the Timer2 postscaler is used to set the TMR2IF  
interrupt flag bit in the PIR1 register.  
FIGURE 7-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
bit TMR2IF  
TMR2  
Output  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS<1:0>  
4
TOUTPS<3:0>  
© 2007 Microchip Technology Inc.  
DS41250F-page 107  
PIC16F913/914/916/917/946  
REGISTER 7-1:  
T2CON: TIMER 2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3  
TOUTPS2  
TOUTPS1  
TOUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
TOUTPS<3:0>: Timer2 Output Postscaler Select bits  
0000= 1:1 Postscaler  
0001= 1:2 Postscaler  
0010= 1:3 Postscaler  
0011= 1:4 Postscaler  
0100= 1:5 Postscaler  
0101= 1:6 Postscaler  
0110= 1:7 Postscaler  
0111= 1:8 Postscaler  
1000= 1:9 Postscaler  
1001= 1:10 Postscaler  
1010= 1:11 Postscaler  
1011= 1:12 Postscaler  
1100= 1:13 Postscaler  
1101= 1:14 Postscaler  
1110= 1:15 Postscaler  
1111= 1:16 Postscaler  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
TABLE 7-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
INTE  
TXIE  
TXIF  
RBIE  
SSPIE  
SSPIF  
T0IF  
INTF  
RBIF  
0000 000x  
0000 0000  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
CCP1IE  
CCP1IF  
TMR2IE  
TMR2IF  
TMR1IE  
TMR1IF  
PIR1  
PR2  
Timer2 Module Period Register  
Holding Register for the 8-bit TMR2 Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0  
1111 1111  
0000 0000  
-000 0000  
1111 1111  
0000 0000  
-000 0000  
TMR2  
T2CON  
Legend:  
TMR2ON  
T2CKPS1  
T2CKPS0  
x= unknown, u= unchanged, -= unimplemented read as ‘0’. Shaded cells are not used for Timer2 module.  
DS41250F-page 108  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
8.1  
Comparator Overview  
8.0  
COMPARATOR MODULE  
A comparator is shown in Figure 8-1 along with the  
relationship between the analog input levels and the  
digital output. When the analog voltage at VIN+ is less  
than the analog voltage at VIN-, the output of the  
comparator is a digital low level. When the analog  
voltage at VIN+ is greater than the analog voltage at  
VIN-, the output of the comparator is a digital high level.  
Comparators are used to interface analog circuits to a  
digital circuit by comparing two analog voltages and  
providing a digital indication of their relative magnitudes.  
The comparators are very useful mixed signal building  
blocks because they provide analog functionality  
independent of the program execution. The Analog  
Comparator module includes the following features:  
• Dual comparators  
FIGURE 8-1:  
SINGLE COMPARATOR  
• Multiple comparator configurations  
• Comparator outputs are available  
internally/externally  
VIN+  
VIN-  
+
• Programmable output polarity  
• Interrupt-on-change  
Output  
• Wake-up from Sleep  
• Timer1 gate (count enable)  
• Output synchronization to Timer1 clock input  
• Programmable voltage reference  
VIN-  
VIN+  
Note:  
Only Comparator C2 can be linked to  
Timer1.  
Output  
Note:  
The black areas of the output of the  
comparator represents the uncertainty  
due to input offsets and response time.  
This device contains two comparators as shown in  
Figure 8-2 and Figure 8-3. The comparators are not  
independently configurable.  
© 2007 Microchip Technology Inc.  
DS41250F-page 109  
PIC16F913/914/916/917/946  
FIGURE 8-2:  
COMPARATOR C1 OUTPUT BLOCK DIAGRAM  
C1INV  
C1  
To C1OUT pin  
To Data Bus  
D
Q
Q
Q1  
EN  
RD CMCON0  
Set C1IF bit  
D
Q3*RD CMCON0  
EN  
CL  
Reset  
Note 1: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
2: Q1 is held high during Sleep mode.  
FIGURE 8-3:  
COMPARATOR C2 OUTPUT BLOCK DIAGRAM  
C2SYNC  
To SYNCC2OUT  
To C2OUT pin  
C2INV  
0
1
C2  
D
Q
Timer1  
clock source  
(1)  
To Data Bus  
Set C2IF bit  
D
Q
Q
Q1  
EN  
RD CMCON0  
D
Q3*RD CMCON0  
EN  
CL  
Reset  
Note 1: Comparator output is latched on falling edge of Timer1 clock source.  
2: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
3: Q1 is held high during Sleep mode.  
DS41250F-page 110  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
8.1.1  
ANALOG INPUT CONNECTION  
CONSIDERATIONS  
Note 1: When reading a PORT register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert as an analog input, according to  
the input specification.  
A simplified circuit for an analog input is shown in  
Figure 8-4. Since the analog input pins share their con-  
nection with a digital input, they have reverse biased  
ESD protection diodes to VDD and VSS. The analog  
input, therefore, must be between VSS and VDD. If the  
input voltage deviates from this range by more than  
0.6V in either direction, one of the diodes is forward  
biased and a latch-up may occur.  
2: Analog levels on any pin defined as a  
digital input, may cause the input buffer to  
consume more current than is specified.  
A maximum source impedance of 10 kΩ is recommended  
for the analog sources. Also, any external component  
connected to an analog input pin, such as a capacitor or  
a Zener diode, should have very little leakage current to  
minimize inaccuracies introduced.  
FIGURE 8-4:  
ANALOG INPUT MODEL  
VDD  
VT 0.6V  
RIC  
Rs < 10K  
To Comparator  
AIN  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT 0.6V  
Vss  
Legend: CPIN  
= Input Capacitance  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
VT  
= Threshold Voltage  
© 2007 Microchip Technology Inc.  
DS41250F-page 111  
PIC16F913/914/916/917/946  
8.2  
Comparator Configuration  
There are eight modes of operation for the comparator.  
The CM<2:0> bits of the CMCON0 register are used to  
select these modes as shown in Figure 8-5. I/O lines  
change as a function of the mode and are designated  
as follows:  
• Analog function (A): digital input buffer is disabled  
• Digital function (D): comparator digital output,  
overrides port function  
• Normal port function (I/O): independent of  
comparator  
The port pins denoted as “A” will read as a ‘0’  
regardless of the state of the I/O pin or the I/O control  
TRIS bit. Pins used as analog inputs should also have  
the corresponding TRIS bit set to ‘1’ to disable the  
digital output driver. Pins denoted as “D” should have  
the corresponding TRIS bit set to ‘0’ to enable the  
digital output driver.  
Note:  
Comparator interrupts should be disabled  
during a Comparator mode change to  
prevent unintended interrupts.  
DS41250F-page 112  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 8-5:  
COMPARATOR I/O OPERATING MODES  
Comparators Reset (POR Default Value)  
CM<2:0> = 000  
Two Independent Comparators  
CM<2:0> = 100  
A
VIN-  
A
VIN-  
C1IN-  
C1IN-  
Off (Read as ‘0’)  
C1  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
VIN+  
A
C1IN+  
C1IN+  
A
A
VIN-  
A
A
VIN-  
C2IN-  
C2IN+  
C2IN-  
C2IN+  
Off (Read as ‘0’)  
C2  
VIN+  
VIN+  
Three Inputs Multiplexed to Two Comparators  
CM<2:0> = 001  
One Independent Comparator with Reference Option  
CM<2:0> = 101  
VIN-  
I/O  
A
C1IN-  
C1IN-  
CIS = 0 VIN-  
C1  
C2  
Off (Read as ‘0’)  
VIN+  
A
I/O  
CIS = 1  
C1IN+  
C1IN+  
C1OUT  
C1  
C2  
VIN+  
A
VIN-  
C2IN-  
C2IN+  
A
A
VIN-  
A
C2IN-  
C2IN+  
C2OUT  
CIS = 0  
CIS = 1  
VIN+  
C2OUT  
VIN+  
Internal  
C2OUT(pin)  
Fixed Voltage Ref  
Four Inputs Multiplexed to Two Comparators  
CM<2:0> = 010  
Two Common Reference Comparators with Outputs  
CM<2:0> = 110  
A
A
VIN-  
C1IN-  
C1IN-  
CIS = 0  
CIS = 1  
VIN-  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
C1IN+  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
D
C1OUT(pin)  
A
A
C2IN-  
C2IN+  
VIN-  
CIS = 0  
CIS = 1  
A
A
VIN-  
C2IN-  
C2IN+  
VIN+  
VIN+  
D
C2OUT(pin)  
From CVREF Module  
Two Common Reference Comparators  
CM<2:0> = 011  
Comparators Off (Lowest Power)  
CM<2:0> = 111  
A
VIN-  
I/O  
VIN-  
C1IN-  
C1IN-  
C1OUT  
C1  
C2  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
VIN+  
C1  
I/O  
VIN+  
I/O  
C1IN+  
C1IN+  
A
A
VIN-  
I/O  
I/O  
VIN-  
C2IN-  
C2IN+  
C2IN-  
C2IN+  
C2OUT  
C2  
VIN+  
VIN+  
Legend: A = Analog Input, ports always reads ‘0’  
CIS = Comparator Input Switch (CMCON0<3>)  
D = Comparator Digital Output  
I/O = Normal port I/O  
© 2007 Microchip Technology Inc.  
DS41250F-page 113  
PIC16F913/914/916/917/946  
8.3  
Comparator Control  
8.4  
Comparator Response Time  
The CMCON0 register (Register 8-1) provides access  
to the following comparator features:  
The comparator output is indeterminate for a period of  
time after the change of an input source or the selection  
of a new reference voltage. This period is referred to as  
the response time. The response time of the comparator  
differs from the settling time of the voltage reference.  
Therefore, both of these times must be considered when  
determining the total response time to a comparator  
input change. See the Comparator and Voltage  
Reference Specifications in Section 19.0 “Electrical  
Specifications” for more details.  
• Mode selection  
• Output state  
• Output polarity  
• Input switch  
8.3.1  
COMPARATOR OUTPUT STATE  
Each comparator state can always be read internally  
via the associated CxOUT bit of the CMCON0 register.  
The comparator outputs are directed to the CxOUT  
pins when CM<2:0> = 110. When this mode is  
selected, the TRIS bits for the associated CxOUT pins  
must be cleared to enable the output drivers.  
8.5  
Comparator Interrupt Operation  
The comparator interrupt flag is set whenever there is  
a change in the output value of the comparator.  
Changes are recognized by means of a mismatch  
circuit which consists of two latches and an  
exclusive-or gate (see Figure 8-2 and Figure 8-3). One  
latch is updated with the comparator output level when  
the CMCON0 register is read. This latch retains the  
value until the next read of the CMCON0 register or the  
occurrence of a Reset. The other latch of the mismatch  
circuit is updated on every Q1 system clock. A  
mismatch condition will occur when a comparator  
output change is clocked through the second latch on  
the Q1 clock cycle. The mismatch condition will persist,  
holding the CxIF bit of the PIR2 register true, until either  
the CMCON0 register is read or the comparator output  
returns to the previous state.  
8.3.2  
COMPARATOR OUTPUT POLARITY  
Inverting the output of a comparator is functionally  
equivalent to swapping the comparator inputs. The  
polarity of a comparator output can be inverted by set-  
ting the CxINV bits of the CMCON0 register. Clearing  
CxINV results in a non-inverted output. A complete  
table showing the output state versus input conditions  
and the polarity bit is shown in Table 8-1.  
TABLE 8-1:  
OUTPUT STATE VS. INPUT  
CONDITIONS  
Input Conditions  
CxINV  
CxOUT  
Note:  
A write operation to the CMCON0 register  
will also clear the mismatch condition  
VIN- > VIN+  
VIN- < VIN+  
VIN- > VIN+  
VIN- < VIN+  
0
0
1
1
0
1
1
0
because all writes include  
a
read  
operation at the beginning of the write  
cycle.  
Software will need to maintain information about the  
status of the comparator output to determine the actual  
change that has occurred.  
Note:  
CxOUT refers to both the register bit and  
output pin.  
8.3.3  
COMPARATOR INPUT SWITCH  
The CxIF bit of the PIR2 register is the comparator  
interrupt flag. This bit must be reset in software by  
clearing it to ‘0’. Since it is also possible to write a ‘1’ to  
this register, a simulated interrupt may be initiated.  
The inverting input of the comparators may be switched  
between two analog pins or an analog input pin and  
and the fixed voltage reference in the following modes:  
The CxIE bit of the PIE2 register and the PEIE and GIE  
bits of the INTCON register must all be set to enable  
comparator interrupts. If any of these bits are cleared,  
the interrupt is not enabled, although the CxIF bit of the  
PIR2 register will still be set if an interrupt condition  
occurs.  
• CM<2:0> = 001(Comparator C1 only)  
• CM<2:0> = 010(Comparators C1 and C2)  
• CM<2:0> = 101(Comparator C2 only)  
In the above modes, both pins remain in Analog mode  
regardless of which pin is selected as the input. The CIS  
bit of the CMCON0 register controls the comparator  
input switch.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON0. This will end the  
mismatch condition. See Figures 8-6 and 8-7  
b) Clear the CxIF interrupt flag.  
A persistent mismatch condition will preclude clearing  
the CxIF interrupt flag. Reading CMCON0 will end the  
mismatch condition and allow the CxIF bit to be cleared.  
DS41250F-page 114  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 8-6:  
COMPARATOR  
8.6  
Operation During Sleep  
INTERRUPT TIMING W/O  
CMCON0 READ  
The comparator, if enabled before entering Sleep mode,  
remains active during Sleep. The additional current  
consumed by the comparator is shown separately in the  
Section 19.0 “Electrical Specifications”. If the  
comparator is not used to wake the device, power  
consumption can be minimized while in Sleep mode by  
turning off the comparator. The comparator is turned off  
by selecting mode CM<2:0> = 000or CM<2:0> = 111  
of the CMCON0 register.  
Q1  
Q3  
CIN+  
TRT  
COUT  
Set CxIF (level)  
CxIF  
reset by software  
A change to the comparator output can wake-up the  
device from Sleep. To enable the comparator to wake  
the device from Sleep, the CxIE bit of the PIE2 register  
and the PEIE bit of the INTCON register must be set.  
The instruction following the Sleep instruction always  
executes following a wake from Sleep. If the GIE bit of  
the INTCON register is also set, the device will then  
execute the Interrupt Service Routine.  
FIGURE 8-7:  
COMPARATOR  
INTERRUPT TIMING WITH  
CMCON0 READ  
Q1  
Q3  
CIN+  
TRT  
COUT  
8.7  
Effects of a Reset  
Set CxIF (level)  
CxIF  
A device Reset forces the CMCON0 and CMCON1  
registers to their Reset states. This forces the Compar-  
ator module to be in the Comparator Reset mode  
(CM<2:0> = 000). Thus, all comparator inputs are  
analog inputs with the comparator disabled to consume  
the smallest current possible.  
cleared by CMCON0 read  
reset by software  
Note 1: If a change in the CMCON0 register  
(CxOUT) occurs when a read operation is  
being executed (start of the Q2 cycle),  
then the CxIF Interrupt Flag bit of the  
PIR2 register may not get set.  
2: When either comparator is first enabled,  
bias circuitry in the Comparator module  
may cause an invalid output from the  
comparator until the bias circuitry is stable.  
Allow about 1 μs for bias settling then clear  
the mismatch condition and interrupt flags  
before enabling comparator interrupts.  
© 2007 Microchip Technology Inc.  
DS41250F-page 115  
PIC16F913/914/916/917/946  
REGISTER 8-1:  
CMCON0: COMPARATOR CONFIGURATION REGISTER  
R-0  
C2OUT  
bit 7  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
C1OUT  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 Output inverted  
0= C1 Output not inverted  
CIS: Comparator Input Switch bit  
When CM<2:0> = 010:  
1= C1IN+ connects to C1 VIN-  
C2IN+ connects to C2 VIN-  
0= C1IN- connects to C1 VIN-  
C2IN- connects to C2 VIN-  
When CM<2:0> = 001:  
1= C1IN+ connects to C1 VIN-  
0= C1IN- connects to C1 VIN-  
When CM<2:0> = 101: (16F91x/946)  
1= C2 VIN+ connects to fixed voltage reference  
0= C2 VIN+ connects to C2IN+  
bit 2-0  
CM<2:0>: Comparator Mode bits (See Figure 8-5)  
000= Comparators off. CxIN pins are configured as analog  
001= Three inputs multiplexed to two comparators  
010= Four inputs multiplexed to two comparators  
011= Two common reference comparators  
100= Two independent comparators  
101= One independent comparator  
110= Two comparators with outputs and common reference  
111= Comparators off. CxIN pins are configured as digital I/O  
DS41250F-page 116  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
8.8  
Comparator C2 Gating Timer1  
8.9  
Synchronizing Comparator C2  
Output to Timer1  
This feature can be used to time the duration or interval  
of analog events. Clearing the T1GSS bit of the  
CMCON1 register will enable Timer1 to increment  
based on the output of Comparator C2. This requires  
that Timer1 is on and gating is enabled. See  
Section 6.0 “Timer1 Module with Gate Control” for  
details.  
The output of Comparator C2 can be synchronized with  
Timer1 by setting the C2SYNC bit of the CMCON1  
register. When enabled, the comparator output is  
latched on the falling edge of the Timer1 clock source.  
If a prescaler is used with Timer1, the comparator  
output is latched after the prescaling function. To  
prevent a race condition, the comparator output is  
latched on the falling edge of the Timer1 clock source  
and Timer1 increments on the rising edge of its clock  
source. Reference the comparator block diagrams  
(Figure 8-2 and Figure 8-3) and the Timer1 Block  
Diagram (Figure 6-1) for more information.  
It is recommended to synchronize Comparator C2 with  
Timer1 by setting the C2SYNC bit when the comparator  
is used as the Timer1 gate source. This ensures Timer1  
does not miss an increment if the comparator changes  
during an increment.  
REGISTER 8-2:  
CMCON1: COMPARATOR CONFIGURATION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
T1GSS  
C2SYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
T1GSS: Timer1 Gate Source Select bit(1)  
1= Timer1 gate source is T1G pin (pin should be configured as digital input)  
0= Timer1 gate source is Comparator C2 output  
bit 0  
C2SYNC: Comparator C2 Output Synchronization bit(2)  
1= Output is synchronized with falling edge of Timer1 clock  
0= Output is asynchronous  
Note 1: Refer to Section 6.6 “Timer1 Gate”.  
2: Refer to Figure 8-3.  
© 2007 Microchip Technology Inc.  
DS41250F-page 117  
PIC16F913/914/916/917/946  
EQUATION 8-1:  
CVREF OUTPUT VOLTAGE  
VRR = 1 (low range):  
CVREF = (VR<3:0>/24) × VDD  
VRR = 0 (high range):  
CVREF = (VDD/4) +  
8.10 Comparator Voltage Reference  
The Comparator Voltage Reference module provides  
an internally generated voltage reference for the com-  
parators. The following features are available:  
• Independent from Comparator operation  
• Two 16-level voltage ranges  
• Output clamped to VSS  
(VR<3:0> × VDD/32)  
The full range of VSS to VDD cannot be realized due to  
the construction of the module. See Figure 8-8.  
• Ratiometric with VDD  
The VRCON register (Register 8-3) controls the  
Voltage Reference module shown in Figure 8-8.  
8.10.3  
OUTPUT CLAMPED TO VSS  
The CVREF output voltage can be set to Vss with no  
power consumption by configuring VRCON as follows:  
8.10.1  
INDEPENDENT OPERATION  
• VREN = 0  
The comparator voltage reference is independent of  
the comparator configuration. Setting the VREN bit of  
the VRCON register will enable the voltage reference.  
• VRR = 1  
• VR<3:0> = 0000  
This allows the comparator to detect a zero-crossing  
while not consuming additional CVREF module current.  
8.10.2  
OUTPUT VOLTAGE SELECTION  
The CVREF voltage reference has 2 ranges with 16  
voltage levels in each range. Range selection is  
controlled by the VRR bit of the VRCON register. The  
16 levels are set with the VR<3:0> bits of the VRCON  
register.  
8.10.4  
OUTPUT RATIOMETRIC TO VDD  
The comparator voltage reference is VDD derived and  
therefore, the CVREF output changes with fluctuations in  
VDD. The tested absolute accuracy of the Comparator  
Voltage Reference can be found in Section 19.0  
“Electrical Specifications”.  
The CVREF output voltage is determined by the following  
equations:  
REGISTER 8-3:  
VRCON: VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
VREN  
U-0  
R/W-0  
VRR  
U-0  
R/W-0  
VR3  
R/W-0  
VR2  
R/W-0  
VR1  
R/W-0  
VR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
VREN: CVREF Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down, no IDD drain and CVREF = VSS.  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
VRR: CVREF Range Selection bit  
1= Low range  
0= High range  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
VR<3:0>: CVREF Value Selection bits (0 VR<3:0> 15)  
When VRR = 1: CVREF = (VR<3:0>/24) * VDD  
When VRR = 0: CVREF = VDD/4 + (VR<3:0>/32) * VDD  
DS41250F-page 118  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 8-8:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
16 Stages  
8R  
R
R
R
R
VDD  
VRR  
8R  
16-1 Analog  
MUX  
VREN  
15  
14  
CVREF to  
Comparator  
Input  
2
1
0
(1)  
VR<3:0>  
VREN  
VR<3:0> = 0000  
VRR  
Note 1: Care should be taken to ensure VREF remains  
within the comparator common mode input range.  
See Section 19.0 “Electrical Specifications”  
for more detail.  
TABLE 8-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND VOLTAGE  
REFERENCE MODULES  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
ANSEL  
CMCON0  
CMCON1  
INTCON  
PIE2  
ANS7  
C2OUT  
ANS6  
C1OUT  
ANS5  
C2INV  
ANS4  
C1INV  
ANS3  
CIS  
ANS2  
CM2  
ANS1  
CM1  
T1GSS  
INTF  
ANS0  
CM0  
1111 1111 1111 1111  
0000 0000 0000 0000  
---- --10 ---- --10  
0000 000x 0000 000x  
0000 -0-0 0000 -0-0  
0000 -0-0 0000 -0-0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0-0- 0000 0000 0000  
C2SYNC  
RBIF  
GIE  
PEIE  
C2IE  
C2IF  
RA6  
T0IE  
C1IE  
C1IF  
RA5  
INTE  
LCDIE  
LCDIF  
RA4  
RBIE  
T0IF  
LVDIE  
LVDIF  
RA2  
OSFIE  
OSFIF  
RA7  
CCP2IE  
CCP2IF  
RA0  
PIR2  
PORTA  
TRISA  
RA3  
RA1  
TRISA7  
VREN  
TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1  
VRR VR3 VR2 VR1  
TRISA0  
VR0  
VRCON  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used for comparator.  
© 2007 Microchip Technology Inc.  
DS41250F-page 119  
PIC16F913/914/916/917/946  
NOTES:  
DS41250F-page 120  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
The AUSART module includes the following capabilities:  
9.0  
ADDRESSABLE UNIVERSAL  
• Full-duplex asynchronous transmit and receive  
• Two-character input buffer  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (AUSART)  
• One-character output buffer  
• Programmable 8-bit or 9-bit character length  
• Address detection in 9-bit mode  
• Input buffer overrun error detection  
• Received character framing error detection  
• Half-duplex synchronous master  
• Half-duplex synchronous slave  
• Sleep operation  
The  
Addressable  
Universal  
Synchronous  
Asynchronous Receiver Transmitter (AUSART)  
module is a serial I/O communications peripheral. It  
contains all the clock generators, shift registers and  
data buffers necessary to perform an input or output  
serial data transfer independent of device program  
execution. The AUSART, also known as a Serial  
Communications Interface (SCI), can be configured as  
a full-duplex asynchronous system or half-duplex  
synchronous system. Full-Duplex mode is useful for  
communications with peripheral systems, such as CRT  
terminals and personal computers. Half-Duplex  
Synchronous mode is intended for communications  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs or other microcontrollers.  
These devices typically do not have internal clocks for  
baud rate generation and require the external clock  
signal provided by a master synchronous device.  
Block diagrams of the AUSART transmitter and  
receiver are shown in Figure 9-1 and Figure 9-2.  
FIGURE 9-1:  
AUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIE  
Interrupt  
TXIF  
TXREG Register  
8
TX/CK pin  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• • •  
Transmit Shift Register (TSR)  
TXEN  
TRMT  
SPEN  
Baud Rate Generator  
FOSC  
÷ n  
TX9  
n
+ 1  
Multiplier x4 x16 x64  
TX9D  
SYNC  
BRGH  
1
x
0
1
0
0
SPBRG  
© 2007 Microchip Technology Inc.  
DS41250F-page 121  
PIC16F913/914/916/917/946  
FIGURE 9-2:  
AUSART RECEIVE BLOCK DIAGRAM  
SPEN  
CREN  
OERR  
RX/DT pin  
RSR Register  
MSb  
Stop (8)  
LSb  
Pin Buffer  
and Control  
Data  
Recovery  
7
1
0
START  
• • •  
Baud Rate Generator  
FOSC  
RX9  
÷ n  
n
+ 1  
Multiplier x4 x16 x64  
SYNC  
BRGH  
1
x
0
1
0
0
FIFO  
SPBRG  
RX9D  
FERR  
RCREG Register  
8
Data Bus  
RCIF  
RCIE  
Interrupt  
The operation of the AUSART module is controlled  
through two registers:  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
These registers are detailed in Register 9-1 and  
Register 9-2 respectively.  
DS41250F-page 122  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
9.1  
AUSART Asynchronous Mode  
Note 1: When the SPEN bit is set the RX/DT I/O pin  
is automatically configured as an input,  
regardless of the state of the corresponding  
TRIS bit and whether or not the AUSART  
receiver is enabled. The RX/DT pin data  
can be read via a normal PORT read but  
PORT latch data output is precluded.  
The AUSART transmits and receives data using the  
standard non-return-to-zero (NRZ) format. NRZ is  
implemented with two levels: a VOH mark state which  
represents a ‘1’ data bit, and a VOL space state which  
represents a ‘0’ data bit. NRZ refers to the fact that  
consecutively transmitted data bits of the same value  
stay at the output level of that bit without returning to a  
neutral level between each bit transmission. An NRZ  
transmission port idles in the mark state. Each character  
transmission consists of one Start bit followed by eight  
or nine data bits and is always terminated by one or  
more Stop bits. The Start bit is always a space and the  
Stop bits are always marks. The most common data  
format is 8 bits. Each transmitted bit persists for a period  
of 1/(Baud Rate). An on-chip dedicated 8-bit Baud Rate  
Generator is used to derive standard baud rate  
frequencies from the system oscillator. See Table 9-5 for  
examples of baud rate configurations.  
2: The TXIF transmitter interrupt flag is set  
when the TXEN enable bit is set.  
9.1.1.2  
Transmitting Data  
A transmission is initiated by writing a character to the  
TXREG register. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately  
transferred to the TSR register. If the TSR still contains  
all or part of a previous character, the new character  
data is held in the TXREG until the Stop bit of the  
previous character has been transmitted. The pending  
character in the TXREG is then transferred to the TSR  
in one TCY immediately following the Stop bit  
transmission. The transmission of the Start bit, data bits  
and Stop bit sequence commences immediately  
following the transfer of the data to the TSR from the  
TXREG.  
The AUSART transmits and receives the LSb first. The  
AUSART’s transmitter and receiver are functionally  
independent, but share the same data format and baud  
rate. Parity is not supported by the hardware, but can  
be implemented in software and stored as the ninth  
data bit.  
9.1.1  
AUSART ASYNCHRONOUS  
TRANSMITTER  
9.1.1.3  
Transmit Interrupt Flag  
The AUSART transmitter block diagram is shown in  
Figure 9-1. The heart of the transmitter is the serial  
Transmit Shift Register (TSR), which is not directly  
accessible by software. The TSR obtains its data from  
the transmit buffer, which is the TXREG register.  
The TXIF interrupt flag bit of the PIR1 register is set  
whenever the AUSART transmitter is enabled and no  
character is being held for transmission in the TXREG.  
In other words, the TXIF bit is only clear when the TSR  
is busy with a character and a new character has been  
queued for transmission in the TXREG. The TXIF flag bit  
is not cleared immediately upon writing TXREG. TXIF  
becomes valid in the second instruction cycle following  
the write execution. Polling TXIF immediately following  
the TXREG write will return invalid results. The TXIF bit  
is read-only, it cannot be set or cleared by software.  
9.1.1.1  
Enabling the Transmitter  
The AUSART transmitter is enabled for asynchronous  
operations by configuring the following three control  
bits:  
• TXEN = 1  
• SYNC = 0  
• SPEN = 1  
The TXIF interrupt can be enabled by setting the TXIE  
interrupt enable bit of the PIE1 register. However, the  
TXIF flag bit will be set whenever the TXREG is empty,  
regardless of the state of TXIE enable bit.  
All other AUSART control bits are assumed to be in  
their default state.  
To use interrupts when transmitting data, set the TXIE  
bit only when there is more data to send. Clear the  
TXIE interrupt enable bit upon writing the last character  
of the transmission to the TXREG.  
Setting the TXEN bit of the TXSTA register enables the  
transmitter circuitry of the AUSART. Clearing the SYNC  
bit of the TXSTA register configures the AUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the AUSART and automatically  
configures the TX/CK I/O pin as an output.  
The LCD SEG9 function must be disabled by clearing  
the SE9 bit of the LCDSE1 register, if the TX/CK pin is  
shared with the LCD peripheral.  
© 2007 Microchip Technology Inc.  
DS41250F-page 123  
PIC16F913/914/916/917/946  
9.1.1.4  
TSR Status  
9.1.1.6  
Asynchronous Transmission Set-up:  
The TRMT bit of the TXSTA register indicates the  
status of the TSR register. This is a read-only bit. The  
TRMT bit is set when the TSR register is empty and is  
cleared when a character is transferred to the TSR  
register from the TXREG. The TRMT bit remains clear  
until all bits have been shifted out of the TSR register.  
No interrupt logic is tied to this bit, so the user has to  
poll this bit to determine the TSR status.  
1. Initialize the SPBRG register and the BRGH bit to  
achieve the desired baud rate (see Section 9.2  
“AUSART Baud Rate Generator (BRG)”).  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
3. If 9-bit transmission is desired, set the TX9 con-  
trol bit. A set ninth data bit will indicate that the 8  
Least Significant data bits are an address when  
the receiver is set for address detection.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
4. Enable the transmission by setting the TXEN  
control bit. This will cause the TXIF interrupt bit  
to be set.  
9.1.1.5  
Transmitting 9-Bit Characters  
The AUSART supports 9-bit character transmissions.  
When the TX9 bit of the TXSTA register is set the  
AUSART will shift 9 bits out for each character transmit-  
ted. The TX9D bit of the TXSTA register is the ninth,  
and Most Significant, data bit. When transmitting 9-bit  
data, the TX9D data bit must be written before writing  
the 8 Least Significant bits into the TXREG. All nine bits  
of data will be transferred to the TSR shift register  
immediately after the TXREG is written.  
5. If interrupts are desired, set the TXIE interrupt  
enable bit of the PIE1 register. An interrupt will  
occur immediately provided that the GIE and  
PEIE bits of the INTCON register are also set.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded into the TX9D data bit.  
7. Load 8-bit data into the TXREG register. This  
will start the transmission.  
A special 9-bit Address mode is available for use with  
multiple receivers. See Section 9.1.2.7 “Address  
Detection” for more information on the Address mode.  
FIGURE 9-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
TX/CK pin  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 9-4:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TX/CK pin  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
TXIF bit  
(Transmit Buffer  
Empty Flag)  
1 TCY  
Word 1  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note:  
This timing diagram shows two consecutive transmissions.  
DS41250F-page 124  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 9-1:  
Name  
REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
Resets  
Value on  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON  
GIE  
PEIE  
SLPEN  
SE14  
ADIE  
T0IE  
INTE  
RBIE  
CS1  
T0IF  
CS0  
INTF  
LMUX1  
SE9  
RBIF  
LMUX0  
SE8  
0000 000x 0000 000x  
0001 0011 0001 0011  
0000 0000 0000 0000  
LCDCON  
LCDSE1  
PIE1  
LCDEN  
SE15  
EEIE  
WERR VLCDEN  
SE13  
RCIE  
SE12  
TXIE  
SE11  
SE10  
SSPIE  
SSPIF  
ADDEN  
BRG3  
SSPM3  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIR1  
EEIF  
ADIF  
RCIF  
TXIF  
RCSTA  
SPBRG  
SSPCON  
TRISC  
SPEN  
BRG7  
WCOL  
RX9  
SREN  
BRG5  
SSPEN  
CREN  
BRG4  
CKP  
FERR  
BRG2  
OERR  
BRG1  
RX9D  
BRG0  
0000 000x 0000 000x  
0000 0000 0000 0000  
BRG6  
SSPOV  
SSPM2  
SSPM1  
SSPM0 0000 0000 0000 0000  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
TXREG  
TXSTA  
Legend:  
AUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 -010 0000 -010  
SYNC  
BRGH  
TRMT  
TX9D  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Asynchronous Transmission.  
© 2007 Microchip Technology Inc.  
DS41250F-page 125  
PIC16F913/914/916/917/946  
9.1.2  
AUSART ASYNCHRONOUS  
RECEIVER  
9.1.2.2  
Receiving Data  
The receiver data recovery circuit initiates character  
reception on the falling edge of the first bit. The first bit,  
also known as the Start bit, is always a zero. The data  
recovery circuit counts one-half bit time to the center of  
the Start bit and verifies that the bit is still a zero. If it is  
not a zero then the data recovery circuit aborts  
character reception, without generating an error, and  
resumes looking for the falling edge of the Start bit. If  
the Start bit zero verification succeeds then the data  
recovery circuit counts a full bit time to the center of the  
next bit. The bit is then sampled by a majority detect  
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.  
This repeats until all data bits have been sampled and  
shifted into the RSR. One final bit time is measured and  
the level sampled. This is the Stop bit, which is always  
a ‘1’. If the data recovery circuit samples a ‘0’ in the  
Stop bit position then a framing error is set for this  
character, otherwise the framing error is cleared for this  
character. See Section 9.1.2.4 “Receive Framing  
Error” for more information on framing errors.  
The Asynchronous mode is typically used in RS-232  
systems. The receiver block diagram is shown in  
Figure 9-2. The data is received on the RX/DT pin and  
drives the data recovery block. The data recovery block  
is actually a high-speed shifter operating at 16 times  
the baud rate, whereas the serial Receive Shift  
Register (RSR) operates at the bit rate. When all 8 or 9  
bits of the character have been shifted in, they are  
immediately transferred to a two character First-In  
First-Out (FIFO) memory. The FIFO buffering allows  
reception of two complete characters and the start of a  
third character before software must start servicing the  
AUSART receiver. The FIFO and RSR registers are not  
directly accessible by software. Access to the received  
data is via the RCREG register.  
9.1.2.1  
Enabling the Receiver  
The AUSART receiver is enabled for asynchronous  
operation by configuring the following three control bits:  
Immediately after all data bits and the Stop bit have  
been received, the character in the RSR is transferred  
to the AUSART receive FIFO and the RCIF interrupt  
flag bit of the PIR1 register is set. The top character in  
the FIFO is transferred out of the FIFO by reading the  
RCREG register.  
• CREN = 1  
• SYNC = 0  
• SPEN = 1  
All other AUSART control bits are assumed to be in  
their default state.  
Setting the CREN bit of the RCSTA register enables the  
receiver circuitry of the AUSART. Clearing the SYNC bit  
of the TXSTA register configures the AUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the AUSART and automatically  
configures the RX/DT I/O pin as an input.  
Note:  
If the receive FIFO is overrun, no additional  
characters will be received until the overrun  
condition is cleared. See Section 9.1.2.5  
“Receive Overrun Error” for more  
information on overrun errors.  
9.1.2.3  
Receive Interrupts  
The LCD SEG8 function must be disabled by clearing  
the SE8 bit of the LCDSE1 register, if the RX/DT pin is  
shared with the LCD peripheral.  
The RCIF interrupt flag bit of the PIR1 register is set  
whenever the AUSART receiver is enabled and there is  
an unread character in the receive FIFO. The RCIF  
interrupt flag bit is read-only, it cannot be set or cleared  
by software.  
Note:  
When the SPEN bit is set the TX/CK I/O  
pin is automatically configured as an  
output, regardless of the state of the  
corresponding TRIS bit and whether or not  
the AUSART transmitter is enabled. The  
PORT latch is disconnected from the  
output driver so it is not possible to use the  
TX/CK pin as a general purpose output.  
RCIF interrupts are enabled by setting all of the  
following bits:  
• RCIE interrupt enable bit of the PIE1 register  
• PEIE peripheral interrupt enable bit of the  
INTCON register  
• GIE global interrupt enable bit of the INTCON  
register  
The RCIF interrupt flag bit of the PIR1 register will be  
set when there is an unread character in the FIFO,  
regardless of the state of interrupt enable bits.  
DS41250F-page 126  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
9.1.2.4  
Receive Framing Error  
9.1.2.7  
Address Detection  
Each character in the receive FIFO buffer has a  
corresponding framing error Status bit. A framing error  
indicates that a Stop bit was not seen at the expected  
time. The framing error status is accessed via the  
FERR bit of the RCSTA register. The FERR bit  
represents the status of the top unread character in the  
receive FIFO. Therefore, the FERR bit must be read  
before reading the RCREG.  
A special Address Detection mode is available for use  
when multiple receivers share the same transmission  
line, such as in RS-485 systems. Address detection is  
enabled by setting the ADDEN bit of the RCSTA  
register.  
Address detection requires 9-bit character reception.  
When address detection is enabled, only characters  
with the ninth data bit set will be transferred to the  
receive FIFO buffer, thereby setting the RCIF interrupt  
bit of the PIR1 register. All other characters will be  
ignored.  
The FERR bit is read-only and only applies to the top  
unread character in the receive FIFO. A framing error  
(FERR = 1) does not preclude reception of additional  
characters. It is not necessary to clear the FERR bit.  
Reading the next character from the FIFO buffer will  
advance the FIFO to the next character and the next  
corresponding framing error.  
Upon receiving an address character, user software  
determines if the address matches its own. Upon  
address match, user software must disable address  
detection by clearing the ADDEN bit before the next  
Stop bit occurs. When user software detects the end of  
the message, determined by the message protocol  
used, software places the receiver back into the  
Address Detection mode by setting the ADDEN bit.  
The FERR bit can be forced clear by clearing the SPEN  
bit of the RCSTA register which resets the AUSART.  
Clearing the CREN bit of the RCSTA register does not  
affect the FERR bit. A framing error by itself does not  
generate an interrupt.  
Note:  
If all receive characters in the receive  
FIFO have framing errors, repeated reads  
of the RCREG will not clear the FERR bit.  
9.1.2.5  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated If a third character, in its  
entirety, is received before the FIFO is accessed. When  
this happens the OERR bit of the RCSTA register is set.  
The characters already in the FIFO buffer can be read  
but no additional characters will be received until the  
error is cleared. The error must be cleared by either  
clearing the CREN bit of the RCSTA register.  
9.1.2.6  
Receiving 9-bit Characters  
The AUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the AUSART  
will shift 9 bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth and Most Significant data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
© 2007 Microchip Technology Inc.  
DS41250F-page 127  
PIC16F913/914/916/917/946  
9.1.2.8  
Asynchronous Reception Set-up:  
9.1.2.9  
9-bit Address Detection Mode Set-up  
1. Initialize the SPBRG register and the BRGH bit  
to achieve the desired baud rate (see  
Section 9.2 “AUSART Baud Rate Generator  
(BRG)”).  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRG register and the BRGH bit  
to achieve the desired baud rate (see  
Section 9.2 “AUSART Baud Rate Generator  
(BRG)”).  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
3. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
4. If 9-bit reception is desired, set the RX9 bit.  
5. Enable reception by setting the CREN bit.  
3. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
6. The RCIF interrupt flag bit of the PIR1 register  
will be set when a character is transferred from  
the RSR to the receive buffer. An interrupt will be  
generated if the RCIE bit of the PIE1 register  
was also set.  
4. Enable 9-bit reception by setting the RX9 bit.  
5. Enable address detection by setting the ADDEN  
bit.  
6. Enable reception by setting the CREN bit.  
7. Read the RCSTA register to get the error flags  
and, if 9-bit data reception is enabled, the ninth  
data bit.  
7. The RCIF interrupt flag bit of the PIR1 register  
will be set when a character with the ninth bit set  
is transferred from the RSR to the receive buffer.  
An interrupt will be generated if the RCIE inter-  
rupt enable bit of the PIE1 register was also set.  
8. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register.  
8. Read the RCSTA register to get the error flags.  
The ninth data bit will always be set.  
9. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
9. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register. Software determines if this is the  
device’s address.  
10. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and generate interrupts.  
FIGURE 9-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX/DT pin  
bit 7/8  
bit 7/8  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
DS41250F-page 128  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 9-2:  
Name  
REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON  
GIE  
PEIE  
SLPEN  
SE14  
ADIE  
T0IE  
INTE  
RBIE  
CS1  
T0IF  
CS0  
INTF  
LMUX1  
SE9  
RBIF  
LMUX0  
SE8  
0000 000x 0000 000x  
0001 0011 0001 0011  
0000 0000 0000 0000  
LCDCON  
LCDSE1  
PIE1  
LCDEN  
SE15  
EEIE  
WERR VLCDEN  
SE13  
RCIE  
RCIF  
SE12  
TXIE  
TXIF  
SE11  
SSPIE  
SSPIF  
SE10  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
0000 0000 0000 0000  
PIR1  
EEIF  
ADIF  
RCREG  
RCSTA  
SPBRG  
SSPCON  
TRISC  
AUSART Receive Data Register  
SPEN  
BRG7  
WCOL  
RX9  
BRG6  
SSPOV  
SREN  
BRG5  
CREN  
BRG4  
CKP  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
RX9D  
BRG0  
0000 000x 0000 000x  
0000 0000 0000 0000  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0 0000 0000 0000 0000  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
CSRC TX9 TXEN SYNC BRGH TRMT TX9D 0000 -010 0000 -010  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Asynchronous Reception.  
TXSTA  
Legend:  
© 2007 Microchip Technology Inc.  
DS41250F-page 129  
PIC16F913/914/916/917/946  
REGISTER 9-1:  
TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
bit 7  
R/W-0  
TX9  
R/W-0  
TXEN(1)  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit(1)  
1= Transmit enabled  
0= Transmit disabled  
SYNC: AUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: Ninth bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
DS41250F-page 130  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
REGISTER 9-2:  
RCSTA: RECEIVE STATUS AND CONTROL REGISTER(1)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave  
Don’t care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care  
Synchronous mode:  
Must be set to ‘0’  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: Ninth bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
© 2007 Microchip Technology Inc.  
DS41250F-page 131  
PIC16F913/914/916/917/946  
EXAMPLE 9-1:  
CALCULATING BAUD  
RATE ERROR  
9.2  
AUSART Baud Rate Generator  
(BRG)  
For a device with FOSC of 16 MHz, desired baud rate  
of 9600, Asynchronous mode:  
The Baud Rate Generator (BRG) is an 8-bit timer that  
is dedicated to the support of both the asynchronous  
and synchronous AUSART operation.  
FOSC  
Desired Baud Rate = ---------------------------------------  
64(SPBRG + 1)  
The SPBRG register determines the period of the free  
running baud rate timer. In Asynchronous mode the  
multiplier of the baud rate period is determined by the  
BRGH bit of the TXSTA register. In Synchronous mode,  
the BRGH bit is ignored.  
Solving for SPBRG:  
FOSC  
---------------------------------------------  
Desired Baud Rate  
X = --------------------------------------------- 1  
64  
Table 9-3 contains the formulas for determining the  
baud rate. Example 9-1 provides a sample calculation  
for determining the baud rate and baud rate error.  
16000000  
-----------------------  
9600  
= ----------------------- 1  
64  
Typical baud rates and error values for various  
asynchronous modes have been computed for your  
convenience and are shown in Table 9-3. It may be  
advantageous to use the high baud rate (BRGH = 1), to  
reduce the baud rate error.  
= [25.042] = 25  
16000000  
Calculated Baud Rate = --------------------------  
64(25 + 1)  
= 9615  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures that  
the BRG does not wait for a timer overflow before out-  
putting the new baud rate.  
Calc. Baud Rate Desired Baud Rate  
Error = --------------------------------------------------------------------------------------------  
Desired Baud Rate  
(9615 9600)  
= ---------------------------------- = 0 . 1 6 %  
9600  
TABLE 9-3:  
BAUD RATE FORMULAS  
Configuration Bits  
Baud Rate Formula  
AUSART Mode  
SYNC  
BRGH  
0
0
1
0
1
x
Asynchronous  
Asynchronous  
Synchronous  
FOSC/[64 (n+1)]  
FOSC/[16 (n+1)]  
FOSC/[4 (n+1)]  
Legend:  
x= Don’t care, n = value of SPBRG register  
TABLE 9-4:  
REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCSTA  
SPBRG  
TXSTA  
SPEN  
BRG7  
CSRC  
RX9  
BRG6  
TX9  
SREN  
BRG5  
TXEN  
CREN  
BRG4  
SYNC  
ADDEN  
BRG3  
FERR  
BRG2  
BRGH  
OERR  
BRG1  
TRMT  
RX9D  
BRG0  
TX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 -010 0000 -010  
Legend:  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for the Baud Rate Generator.  
DS41250F-page 132  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 9-5:  
BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0  
FOSC = 18.432 MHz FOSC = 11.0592 MHz  
FOSC = 20.000 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
Error  
(decimal)  
(decimal)  
(decimal)  
300  
1200  
255  
129  
32  
239  
119  
29  
143  
71  
17  
16  
8
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
1221  
2404  
9470  
10417  
19.53k  
1.73  
0.16  
-1.36  
0.00  
1.73  
1200  
2400  
9600  
10286  
19.20k  
0.00  
0.00  
0.00  
-1.26  
0.00  
0.00  
1200  
2400  
9600  
10165  
19.20k  
0.00  
0.00  
0.00  
-2.42  
0.00  
0.00  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
29  
27  
15  
14  
2
57.60k  
7
57.60k  
SYNC = 0, BRGH = 0  
FOSC = 3.6864 MHz FOSC = 2.000 MHz  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
0.00  
0.00  
0.00  
0.00  
300  
1200  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
300  
1200  
2400  
9600  
191  
47  
23  
5
300  
1202  
2404  
0.16  
0.16  
0.16  
103  
25  
12  
2
300  
1202  
0.16  
0.16  
51  
12  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
0.00  
2
10417  
0.00  
19.20k  
0.00  
0.00  
0
57.60k  
SYNC = 0, BRGH = 1  
FOSC = 18.432 MHz FOSC = 11.0592 MHz  
FOSC = 20.000 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
2404  
9615  
10417  
19231  
55556  
0.16  
0.16  
0.00  
0.16  
-3.55  
207  
51  
47  
25  
8
71  
65  
35  
11  
5
9615  
10417  
19.23k  
56.82k  
0.16  
0.00  
0.16  
-1.36  
129  
119  
64  
9600  
10378  
19.20k  
57.60k  
115.2k  
0.00  
-0.37  
0.00  
0.00  
0.00  
119  
110  
59  
19  
9
9600  
0.00  
0.53  
0.00  
0.00  
0.00  
10473  
19.20k  
57.60k  
115.2k  
21  
115.2k 113.64k -1.36  
10  
© 2007 Microchip Technology Inc.  
DS41250F-page 133  
PIC16F913/914/916/917/946  
TABLE 9-5:  
BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 1  
FOSC = 4.000 MHz  
FOSC = 3.6864 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
value  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
(decimal)  
300  
1200  
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
191  
95  
23  
21  
11  
3
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2400  
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10473  
19.2k  
57.60k  
115.2k  
10417  
0.00  
12  
1
DS41250F-page 134  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
9.3.1.2  
Synchronous Master Transmission  
9.3  
AUSART Synchronous Mode  
Data is transferred out of the device on the RX/DT pin.  
The RX/DT and TX/CK pin output drivers are automat-  
ically enabled when the AUSART is configured for  
synchronous master transmit operation.  
Synchronous serial communications are typically used  
in systems with a single master and one or more  
slaves. The master device contains the necessary cir-  
cuitry for baud rate generation and supplies the clock  
for all devices in the system. Slave devices can take  
advantage of the master clock by eliminating the inter-  
nal clock generation circuitry.  
A transmission is initiated by writing a character to the  
TXREG register. If the TSR still contains all or part of a  
previous character the new character data is held in the  
TXREG until the last bit of the previous character has  
been transmitted. If this is the first character, or the pre-  
vious character has been completely flushed from the  
TSR, the data in the TXREG is immediately transferred  
to the TSR. The transmission of the character com-  
mences immediately following the transfer of the data  
to the TSR from the TXREG.  
There are two signal lines in Synchronous mode: a bidi-  
rectional data line and a clock line. Slaves use the  
external clock supplied by the master to shift the serial  
data into and out of their respective receive and trans-  
mit shift registers. Since the data line is bidirectional,  
synchronous operation is half-duplex only. Half-duplex  
refers to the fact that master and slave devices can  
receive and transmit data but not both simultaneously.  
The AUSART can operate as either a master or slave  
device.  
Each data bit changes on the leading edge of the  
master clock and remains valid until the subsequent  
leading clock edge.  
Start and Stop bits are not used in synchronous  
transmissions.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
9.3.1  
SYNCHRONOUS MASTER MODE  
9.3.1.3  
Synchronous Master Transmission  
Set-up:  
The following bits are used to configure the AUSART  
for Synchronous Master operation:  
1. Initialize the SPBRG register and the BRGH bit  
to achieve the desired baud rate (see  
Section 9.2 “AUSART Baud Rate Generator  
(BRG)”).  
• SYNC = 1  
• CSRC = 1  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. Disable Receive mode by clearing bits SREN  
and CREN.  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Setting the CSRC  
bit of the TXSTA register configures the device as a  
master. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
AUSART.  
4. Enable Transmit mode by setting the TXEN bit.  
5. If 9-bit transmission is desired, set the TX9 bit.  
6. If interrupts are desired, set the TXIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded in the TX9D bit.  
The LCD SEG8 and SEG9 functions must be disabled  
by clearing the SE8 and SE9 bits of the LCDSE1  
register, if the RX/DT and TX/CK pins are shared with  
the LCD peripheral.  
8. Start transmission by loading data to the TXREG  
register.  
9.3.1.1  
Master Clock  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device config-  
ured as a master transmits the clock on the TX/CK line.  
The TX/CK pin output driver is automatically enabled  
when the AUSART is configured for synchronous  
transmit or receive operation. Serial data bits change  
on the leading edge to ensure they are valid at the trail-  
ing edge of each clock. One clock cycle is generated  
for each data bit. Only as many clock cycles are gener-  
ated as there are data bits.  
© 2007 Microchip Technology Inc.  
DS41250F-page 135  
PIC16F913/914/916/917/946  
FIGURE 9-6:  
SYNCHRONOUS TRANSMISSION  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
TX/CK pin  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note:  
Sync Master mode, SPBRG = 0, continuous transmission of two 8-bit words.  
FIGURE 9-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RX/DT pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 9-6:  
REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
LCDCON  
LCDSE1  
PIE1  
GIE  
LCDEN  
SE15  
EEIE  
PEIE  
SLPEN  
SE14  
ADIE  
T0IE  
INTE  
RBIE  
CS1  
T0IF  
CS0  
INTF  
LMUX1  
SE9  
RBIF  
LMUX0  
SE8  
0000 000x 0000 000x  
0001 0011 0001 0011  
0000 0000 0000 0000  
WERR VLCDEN  
SE13  
RCIE  
SE12  
TXIE  
SE11  
SE10  
SSPIE  
SSPIF  
ADDEN  
BRG3  
SSPM3  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIR1  
EEIF  
ADIF  
RCIF  
TXIF  
RCSTA  
SPBRG  
SSPCON  
TRISC  
SPEN  
BRG7  
WCOL  
RX9  
SREN  
BRG5  
SSPEN  
CREN  
BRG4  
CKP  
FERR  
BRG2  
OERR  
BRG1  
RX9D  
BRG0  
0000 000x 0000 000x  
0000 0000 0000 0000  
BRG6  
SSPOV  
SSPM2  
SSPM1  
SSPM0 0000 0000 0000 0000  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
TXREG  
TXSTA  
Legend:  
AUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 -010 0000 -010  
SYNC  
BRGH  
TRMT  
TX9D  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Synchronous Master Transmission.  
DS41250F-page 136  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
9.3.1.4  
Synchronous Master Reception  
9.3.1.7  
Receiving 9-bit Characters  
Data is received at the RX/DT pin. The RX/DT pin  
output driver is automatically disabled when the  
AUSART is configured for synchronous master receive  
operation.  
The AUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the AUSART  
will shift 9-bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth, and Most Significant, data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
In Synchronous mode, reception is enabled by setting  
either the Single Receive Enable bit (SREN of the  
RCSTA register) or the Continuous Receive Enable bit  
(CREN of the RCSTA register).  
When SREN is set and CREN is clear, only as many  
clock cycles are generated as there are data bits in a  
single character. The SREN bit is automatically cleared  
at the completion of one character. When CREN is set,  
clocks are continuously generated until CREN is  
cleared. If CREN is cleared in the middle of a character  
the CK clock stops immediately and the partial charac-  
ter is discarded. If SREN and CREN are both set, then  
SREN is cleared at the completion of the first character  
and CREN takes precedence.  
Address detection in Synchronous modes is not  
supported, therefore the ADDEN bit of the RCSTA  
register must be cleared.  
9.3.1.8  
Synchronous Master Reception  
Set-up:  
1. Initialize the SPBRG register for the appropriate  
baud rate. Set or clear the BRGH bit, as  
required, to achieve the desired baud rate.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
To initiate reception, set either SREN or CREN. Data is  
sampled at the RX/DT pin on the trailing edge of the  
TX/CK clock pin and is shifted into the Receive Shift  
Register (RSR). When a complete character is  
received into the RSR, the RCIF bit of the PIR1 register  
is set and the character is automatically transferred to  
the two character receive FIFO. The Least Significant  
eight bits of the top character in the receive FIFO are  
available in RCREG. The RCIF bit remains set as long  
as there are un-read characters in the receive FIFO.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
5. If 9-bit reception is desired, set bit RX9.  
6. Verify address detection is disabled by clearing  
the ADDEN bit of the RCSTA register.  
7. Start reception by setting the SREN bit or for  
continuous reception, set the CREN bit.  
9.3.1.5  
Slave Clock  
8. Interrupt flag bit RCIF of the PIR1 register will be  
set when reception of a character is complete.  
An interrupt will be generated if the RCIE inter-  
rupt enable bit of the PIE1 register was set.  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device configured  
as a slave receives the clock on the TX/CK line. The  
TX/CK pin output driver is automatically disabled when  
the device is configured for synchronous slave transmit  
or receive operation. Serial data bits change on the  
leading edge to ensure they are valid at the trailing edge  
of each clock. One data bit is transferred for each clock  
cycle. Only as many clock cycles should be received as  
there are data bits.  
9. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
10. Read the 8-bit received data by reading the  
RCREG register.  
11. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the AUSART.  
9.3.1.6  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before RCREG is read to access  
the FIFO. When this happens the OERR bit of the  
RCSTA register is set. Previous data in the FIFO will  
not be overwritten. The two characters in the FIFO  
buffer can be read, however, no additional characters  
will be received until the error is cleared. The OERR bit  
can only be cleared by clearing the overrun condition.  
If the overrun error occurred when the SREN bit is set  
and CREN is clear then the error is cleared by reading  
RCREG. If the overrun occurred when the CREN bit is  
set then the error condition is cleared by either clearing  
the CREN bit of the RCSTA register.  
© 2007 Microchip Technology Inc.  
DS41250F-page 137  
PIC16F913/914/916/917/946  
FIGURE 9-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
TX/CK pin  
(SCKP = 0)  
TX/CK pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
0’  
0’  
CREN bit  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note:  
Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 9-7:  
Name  
REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
Resets  
Value on  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON  
GIE  
PEIE  
SLPEN  
SE14  
ADIE  
T0IE  
INTE  
RBIE  
CS1  
T0IF  
CS0  
INTF  
LMUX1  
SE9  
RBIF  
LMUX0  
SE8  
0000 000x 0000 000x  
0001 0011 0001 0011  
0000 0000 0000 0000  
LCDCON  
LCDSE1  
PIE1  
LCDEN  
SE15  
EEIE  
WERR VLCDEN  
SE13  
RCIE  
RCIF  
SE12  
TXIE  
TXIF  
SE11  
SSPIE  
SSPIF  
SE10  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
0000 0000 0000 0000  
PIR1  
EEIF  
ADIF  
RCREG  
RCSTA  
SSPCON  
TRISC  
AUSART Receive Data Register  
SPEN  
WCOL  
RX9  
SREN  
CREN  
CKP  
ADDEN  
SSPM3  
FERR  
OERR  
RX9D  
0000 000X 0000 000X  
SSPOV  
SSPEN  
SSPM2  
SSPM1  
SSPM0 0000 0000 0000 0000  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
CSRC TX9 TXEN SYNC BRGH TRMT TX9D 0000 -010 0000 -010  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Synchronous Master Reception.  
TXSTA  
Legend:  
DS41250F-page 138  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
9.3.2  
SYNCHRONOUS SLAVE MODE  
The following bits are used to configure the AUSART  
for Synchronous slave operation:  
1. The first character will immediately transfer to  
the TSR register and transmit.  
• SYNC = 1  
2. The second word will remain in TXREG register.  
3. The TXIF bit will not be set.  
• CSRC = 0  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
4. After the first character has been shifted out of  
TSR, the TXREG register will transfer the second  
character to the TSR and the TXIF bit will now be  
set.  
Setting the SYNC bit of the TXSTA register configures the  
device for synchronous operation. Clearing the CSRC bit  
of the TXSTA register configures the device as a slave.  
Clearing the SREN and CREN bits of the RCSTA register  
ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
AUSART.  
5. If the PEIE and TXIE bits are set, the interrupt  
will wake the device from Sleep and execute the  
next instruction. If the GIE bit is also set, the  
program will call the Interrupt Service Routine.  
9.3.2.2  
Synchronous Slave Transmission  
Set-up:  
The LCD SEG8 and SEG9 functions must be disabled  
by clearing the SE8 and SE9 bits of the LCDSE1  
register, if the RX/DT and TX/CK pins are shared with  
the LCD peripheral.  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
2. Clear the CREN and SREN bits.  
3. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
TXIE bit.  
9.3.2.1  
AUSART Synchronous Slave  
Transmit  
4. If 9-bit transmission is desired, set the TX9 bit.  
5. Enable transmission by setting the TXEN bit.  
The operation of the Synchronous Master and Slave  
modes are identical (see Section 9.3.1.2 “Synchronous  
Master Transmission”), except in the case of the Sleep  
mode.  
6. Verify address detection is disabled by clearing  
the ADDEN bit of the RCSTA register.  
7. If 9-bit transmission is selected, insert the Most  
Significant bit into the TX9D bit.  
8. Start transmission by writing the Least  
Significant 8 bits to the TXREG register.  
TABLE 9-8:  
Name  
REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
Resets  
Value on  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON  
GIE  
PEIE  
SLPEN  
SE14  
ADIE  
T0IE  
INTE  
RBIE  
CS1  
T0IF  
CS0  
INTF  
LMUX1  
SE9  
RBIF  
LMUX0  
SE8  
0000 000x 0000 000x  
0001 0011 0001 0011  
0000 0000 0000 0000  
LCDCON  
LCDSE1  
PIE1  
LCDEN  
SE15  
EEIE  
WERR VLCDEN  
SE13  
RCIE  
SE12  
TXIE  
TXIF  
CREN  
CKP  
SE11  
SE10  
SSPIE  
SSPIF  
ADDEN  
SSPM3  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIR1  
EEIF  
ADIF  
RCIF  
RCSTA  
SSPCON  
TRISC  
SPEN  
WCOL  
RX9  
SREN  
SSPEN  
FERR  
OERR  
RX9D  
0000 000X 0000 000X  
SSPOV  
SSPM2  
SSPM1  
SSPM0 0000 0000 0000 0000  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
TXREG  
TXSTA  
Legend:  
AUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 -010 0000 -010  
SYNC  
BRGH  
TRMT  
TX9D  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Synchronous Slave Transmission.  
© 2007 Microchip Technology Inc.  
DS41250F-page 139  
PIC16F913/914/916/917/946  
9.3.2.3  
AUSART Synchronous Slave  
Reception  
9.3.2.4  
Synchronous Slave Reception  
Set-up:  
The operation of the Synchronous Master and Slave  
modes is identical (Section 9.3.1.4 “Synchronous  
Master Reception”), with the following exceptions:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
2. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
• Sleep  
• CREN bit is always set, therefore the receiver is  
never Idle  
3. If 9-bit reception is desired, set the RX9 bit.  
4. Verify address detection is disabled by clearing  
the ADDEN bit of the RCSTA register.  
• SREN bit, which is a “don't care” in Slave mode  
A character may be received while in Sleep mode by  
setting the CREN bit prior to entering Sleep. Once the  
word is received, the RSR register will transfer the data  
to the RCREG register. If the RCIE interrupt enable bit  
of the PIE1 register is set, the interrupt generated will  
wake the device from Sleep and execute the next  
instruction. If the GIE bit is also set, the program will  
branch to the interrupt vector.  
5. Set the CREN bit to enable reception.  
6. The RCIF bit of the PIR1 register will be set  
when reception is complete. An interrupt will be  
generated if the RCIE bit of the PIE1 register  
was set.  
7. If 9-bit mode is enabled, retrieve the Most  
Significant bit from the RX9D bit of the RCSTA  
register.  
8. Retrieve the 8 Least Significant bits from the  
receive FIFO by reading the RCREG register.  
9. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register.  
TABLE 9-9:  
Name  
REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
Value on  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
POR, BOR  
INTCON  
GIE  
PEIE  
SLPEN  
SE14  
ADIE  
T0IE  
INTE  
RBIE  
CS1  
T0IF  
CS0  
INTF  
LMUX1  
SE9  
RBIF  
LMUX0  
SE8  
0000 000x 0000 000x  
0001 0011 0001 0011  
0000 0000 0000 0000  
LCDCON  
LCDSE1  
PIE1  
LCDEN  
SE15  
EEIE  
WERR VLCDEN  
SE13  
RCIE  
RCIF  
SE12  
TXIE  
TXIF  
SE11  
SSPIE  
SSPIF  
SE10  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
0000 0000 0000 0000  
PIR1  
EEIF  
ADIF  
RCREG  
RCSTA  
SSPCON  
TRISC  
AUSART Receive Data Register  
SPEN  
WCOL  
RX9  
SREN  
CREN  
CKP  
ADDEN  
SSPM3  
FERR  
OERR  
RX9D  
0000 000X 0000 000X  
SSPOV  
SSPEN  
SSPM2  
SSPM1  
SSPM0 0000 0000 0000 0000  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
CSRC TX9 TXEN SYNC BRGH TRMT TX9D 0000 -010 0000 -010  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Synchronous Slave Reception.  
TXSTA  
Legend:  
DS41250F-page 140  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
9.4.2  
SYNCHRONOUS TRANSMIT  
DURING SLEEP  
9.4  
AUSART Operation During Sleep  
The AUSART will remain active during Sleep only in the  
Synchronous Slave mode. All other modes require the  
system clock and therefore cannot generate the neces-  
sary signals to run the Transmit or Receive Shift regis-  
ters during Sleep.  
To transmit during Sleep, all the following conditions  
must be met before entering Sleep mode:  
• RCSTA and TXSTA Control registers must be  
configured for Synchronous Slave Transmission  
(see Section 9.3.2.2 “Synchronous Slave  
Transmission Set-up:”).  
Synchronous Slave mode uses an externally generated  
clock to run the Transmit and Receive Shift registers.  
The TXIF interrupt flag must be cleared by writing  
the output data to the TXREG, thereby filling the  
TSR and transmit buffer.  
9.4.1  
SYNCHRONOUS RECEIVE DURING  
SLEEP  
• If interrupts are desired, set the TXIE bit of the  
PIE1 register and the PEIE bit of the INTCON  
register.  
To receive during Sleep, all the following conditions  
must be met before entering Sleep mode:  
• RCSTA and TXSTA Control registers must be  
configured for Synchronous Slave Reception (see  
Section 9.3.2.4 “Synchronous Slave  
Reception Set-up:”).  
Upon entering Sleep mode, the device will be ready to  
accept clocks on TX/CK pin and transmit data on the  
RX/DT pin. When the data word in the TSR has been  
completely clocked out by the external device, the  
pending byte in the TXREG will transfer to the TSR and  
the TXIF flag will be set. Thereby, waking the processor  
from Sleep. At this point, the TXREG is available to  
accept another character for transmission, which will  
clear the TXIF flag.  
• If interrupts are desired, set the RCIE bit of the  
PIE1 register and the PEIE bit of the INTCON  
register.  
• The RCIF interrupt flag must be cleared by read-  
ing RCREG to unload any pending characters in  
the receive buffer.  
Upon waking from Sleep, the instruction following the  
SLEEP instruction will be executed. If the GIE global  
interrupt enable bit is also set then the Interrupt Service  
Routine at address 0004h will be called.  
Upon entering Sleep mode, the device will be ready to  
accept data and clocks on the RX/DT and TX/CK pins,  
respectively. When the data word has been completely  
clocked in by the external device, the RCIF interrupt  
flag bit of the PIR1 register will be set. Thereby, waking  
the processor from Sleep.  
Upon waking from Sleep, the instruction following the  
SLEEP instruction will be executed. If the GIE global  
interrupt enable bit of the INTCON register is also set,  
then the Interrupt Service Routine at address 004h will  
be called.  
© 2007 Microchip Technology Inc.  
DS41250F-page 141  
PIC16F913/914/916/917/946  
NOTES:  
DS41250F-page 142  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
The LCDCON register (Register 10-1) controls the  
operation of the LCD driver module. The LCDPS  
register (Register 10-2) configures the LCD clock  
10.0 LIQUID CRYSTAL DISPLAY  
(LCD) DRIVER MODULE  
source prescaler and the type of waveform; Type-A or  
Type-B. The LCDSE registers (Register 10-3)  
configure the functions of the port pins.  
The Liquid Crystal Display (LCD) driver module  
generates the timing control to drive a static or  
multiplexed LCD panel. In the PIC16F913/916 devices,  
the module drives the panels of up to four commons  
and up to 16 segments. In the PIC16F914/917 devices,  
the module drives the panels of up to four commons  
and up to 24 segments. In the PIC16F946 device, the  
module drives the panels of up to four commons and up  
to 42 segments. The LCD module also provides control  
of the LCD pixel data.  
The following LCDSE registers are available:  
• LCDSE0 SE<7:0>  
• LCDSE1 SE<15:8>  
• LCDSE2 SE<23:16>(1)  
• LCDSE3 SE<31:24>(2)  
• LCDSE4 SE<39:32>(2)  
• LCDSE5 SE<41:40>(2)  
The LCD driver module supports:  
Note 1: PIC16F914/917 and PIC16F946 only.  
2: PIC16F946 only.  
• Direct driving of LCD panel  
• Three LCD clock sources with selectable prescaler  
• Up to four commons:  
Once the module is initialized for the LCD panel, the  
individual bits of the LCDDATA<11:0> registers are  
cleared/set to represent a clear/dark pixel, respectively:  
- Static (1 common)  
- 1/2 multiplex (2 commons)  
- 1/3 multiplex (3 commons)  
- 1/4 multiplex (4 commons)  
• Segments up to:  
• LCDDATA0 SEG<7:0>COM0  
• LCDDATA1 SEG<15:8>COM0  
• LCDDATA2 SEG<23:16>COM0  
• LCDDATA3 SEG<7:0>COM1  
• LCDDATA4 SEG<15:8>COM1  
• LCDDATA5 SEG<23:16>COM1  
• LCDDATA6 SEG<7:0>COM2  
• LCDDATA7 SEG<15:8>COM2  
• LCDDATA8 SEG<23:16>COM2  
• LCDDATA9 SEG<7:0>COM3  
• LCDDATA10 SEG<15:8>COM3  
• LCDDATA11 SEG<23:16>COM3  
- 16 (PIC16F913/916)  
- 24 (PIC16F914/917)  
- 42 (PIC16F946)  
• Static, 1/2 or 1/3 LCD Bias  
Note:  
COM3 and SEG15 share the same  
physical pin on the PIC16F913/916,  
therefore SEG15 is not available when  
using 1/4 multiplex displays.  
The following additional registers are available on the  
PIC16F946 only:  
10.1 LCD Registers  
• LCDDATA12 SEG<31:24>COM0  
• LCDDATA13 SEG<39:32>COM0  
• LCDDATA14 SEG<41:40>COM0  
• LCDDATA15 SEG<31:24>COM1  
• LCDDATA16 SEG<39:32>COM1  
• LCDDATA17 SEG<41:40>COM1  
• LCDDATA18 SEG<31:24>COM2  
• LCDDATA19 SEG<39:32>COM2  
• LCDDATA20 SEG<41:40>COM2  
• LCDDATA21 SEG<31:24>COM3  
• LCDDATA22 SEG<39:32>COM3  
• LCDDATA23 SEG<41:40>COM3  
The module contains the following registers:  
• LCD Control Register (LCDCON)  
• LCD Phase Register (LCDPS)  
• Up to 6 LCD Segment Enable Registers (LCDSEn)  
• Up to 24 LCD Data Registers (LCDDATA)  
TABLE 10-1: LCD SEGMENT AND DATA  
REGISTERS  
# of LCD Registers  
Device  
Segment Enable  
Data  
As an example, LCDDATAx is detailed in  
Register 10-4.  
PIC16F913/916  
PIC16F914/917  
PIC16F946  
2
3
6
8
Once the module is configured, the LCDEN bit of the  
LCDCON register is used to enable or disable the LCD  
module. The LCD panel can also operate during Sleep  
by clearing the SLPEN bit of the LCDCON register.  
12  
24  
Note:  
The LCDDATA2, LCDDATA5, LCDDATA8  
and LCDDATA11 registers are not  
implemented in the PIC16F913/916  
devices.  
© 2007 Microchip Technology Inc.  
DS41250F-page 143  
PIC16F913/914/916/917/946  
FIGURE 10-1:  
LCD DRIVER MODULE BLOCK DIAGRAM  
SEG<41:0>(1, 2, 3)  
To I/O Pads(1)  
LCDDATAx  
Data Bus  
MUX  
Registers  
Timing Control  
LCDCON  
COM<3:0>(3)  
LCDPS  
To I/O Pads(1)  
LCDSEn  
FOSC/8192  
Clock Source  
Select and  
T1OSC/32  
Prescaler  
LFINTOSC/32  
Note 1: These are not directly connected to the I/O pads, but may be tri-stated, depending on the  
configuration of the LCD module.  
2: SEG<23:0> on PIC16F914/917, SEG<15:0> on PIC16F913/916.  
3: COM3 and SEG15 share the same physical pin on the PIC16F913/916, therefore SEG15 is  
not available when using 1/4 multiplex displays.  
DS41250F-page 144  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
REGISTER 10-1: LCDCON: LIQUID CRYSTAL DISPLAY CONTROL REGISTER  
R/W-0  
R/W-0  
R/C-0  
R/W-1  
R/W-0  
CS1  
R/W-0  
CS0  
R/W-1  
R/W-1  
LCDEN  
SLPEN  
WERR  
VLCDEN  
LMUX1  
LMUX0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
C = Only clearable bit  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
LCDEN: LCD Driver Enable bit  
1= LCD driver module is enabled  
0= LCD driver module is disabled  
SLPEN: LCD Driver Enable in Sleep mode bit  
1= LCD driver module is disabled in Sleep mode  
0= LCD driver module is enabled in Sleep mode  
WERR: LCD Write Failed Error bit  
1 = LCDDATAx register written while the WA bit of the LCDPS register = 0 (must be cleared in  
software)  
0= No LCD write error  
bit 4  
VLCDEN: LCD Bias Voltage Pins Enable bit  
1= VLCD pins are enabled  
0= VLCD pins are disabled  
bit 3-2  
CS<1:0>: Clock Source Select bits  
00= FOSC/8192  
01= T1OSC (Timer1)/32  
1x= LFINTOSC (31 kHz)/32  
bit 1-0  
LMUX<1:0>: Commons Select bits  
Maximum Number of Pixels  
LMUX<1:0>  
Multiplex  
Bias  
PIC16F913/916  
PIC16F914/917  
PIC16F946  
00  
01  
10  
11  
Static (COM0)  
1/2 (COM<1:0>)  
1/3 (COM<2:0>)  
1/4 (COM<3:0>)  
16  
32  
24  
48  
72  
96  
42  
84  
Static  
1/2 or 1/3  
1/2 or 1/3  
1/3  
48  
60(1)  
126  
168  
Note 1: On PIC16F913/916 devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 64  
pixels.  
© 2007 Microchip Technology Inc.  
DS41250F-page 145  
PIC16F913/914/916/917/946  
REGISTER 10-2: LCDPS: LCD PRESCALER SELECT REGISTER  
R/W-0  
WFT  
R/W-0  
R-0  
R-0  
WA  
R/W-0  
LP3  
R/W-0  
LP2  
R/W-0  
LP1  
R/W-0  
LP0  
BIASMD  
LCDA  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
WFT: Waveform Type Select bit  
1= Type-B waveform (phase changes on each frame boundary)  
0= Type-A waveform (phase changes within each common interval)  
BIASMD: Bias Mode Select bit  
When LMUX<1:0> = 00:  
0= Static Bias mode (do not set this bit to ‘1’)  
When LMUX<1:0> = 01:  
1= 1/2 Bias mode  
0= 1/3 Bias mode  
When LMUX<1:0> = 10:  
1= 1/2 Bias mode  
0= 1/3 Bias mode  
When LMUX<1:0> = 11:  
0= 1/3 Bias mode (do not set this bit to ‘1’)  
LCDA: LCD Active Status bit  
bit 5  
1= LCD driver module is active  
0= LCD driver module is inactive  
bit 4  
WA: LCD Write Allow Status bit  
1= Write into the LCDDATAx registers is allowed  
0= Write into the LCDDATAx registers is not allowed  
bit 3-0  
LP<3:0>: LCD Prescaler Select bits  
1111= 1:16  
1110= 1:15  
1101= 1:14  
1100= 1:13  
1011= 1:12  
1010= 1:11  
1001= 1:10  
1000= 1:9  
0111= 1:8  
0110= 1:7  
0101= 1:6  
0100= 1:5  
0011= 1:4  
0010= 1:3  
0001= 1:2  
0000= 1:1  
DS41250F-page 146  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
REGISTER 10-3: LCDSEn: LCD SEGMENT ENABLE REGISTERS  
R/W-0  
SEn  
R/W-0  
SEn  
R/W-0  
SEn  
R/W-0  
SEn  
R/W-0  
SEn  
R/W-0  
SEn  
R/W-0  
SEn  
R/W-0  
SEn  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
SEn: Segment Enable bits  
1= Segment function of the pin is enabled  
0= I/O function of the pin is enabled  
REGISTER 10-4: LCDDATAx: LCD DATA REGISTERS  
R/W-x R/W-x R/W-x R/W-x R/W-x  
SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy  
R/W-x  
R/W-x  
R/W-x  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
SEGx-COMy: Pixel On bits  
1= Pixel on (dark)  
0= Pixel off (clear)  
© 2007 Microchip Technology Inc.  
DS41250F-page 147  
PIC16F913/914/916/917/946  
10.2.1  
LCD PRESCALER  
10.2 LCD Clock Source Selection  
A 4-bit counter is available as a prescaler for the LCD  
clock. The prescaler is not directly readable or writable;  
its value is set by the LP<3:0> bits of the LCDPS register,  
which determine the prescaler assignment and prescale  
ratio.  
The LCD driver module has 3 possible clock sources:  
• FOSC/8192  
• T1OSC/32  
• LFINTOSC/32  
The first clock source is the system clock divided by  
8192 (FOSC/8192). This divider ratio is chosen to  
provide about 1 kHz output when the system clock is  
8 MHz. The divider is not programmable. Instead, the  
LCD prescaler bits LP<3:0> of the LCDPS register are  
used to set the LCD frame clock rate.  
The prescale values are selectable from 1:1 through  
1:16.  
10.3 LCD Bias Types  
The LCD driver module can be configured into one of  
three bias types:  
The second clock source is the T1OSC/32. This also  
gives about 1 kHz when a 32.768 kHz crystal is used  
with the Timer1 oscillator. To use the Timer1 oscillator  
as a clock source, the T1OSCEN bit of the T1CON  
register should be set.  
• Static Bias (2 voltage levels: VSS and VDD)  
• 1/2 Bias (3 voltage levels: VSS, 1/2 VDD and VDD)  
• 1/3 Bias (4 voltage levels: VSS, 1/3 VDD, 2/3 VDD  
and VDD)  
The third clock source is the 31 kHz LFINTOSC/32,  
which provides approximately 1 kHz output.  
This module uses an external resistor ladder to  
generate the LCD bias voltages.  
The second and third clock sources may be used to  
continue running the LCD while the processor is in  
Sleep.  
The external resistor ladder should be connected to the  
VLCD1 pin (Bias 1), VLCD2 pin (Bias 2), VLCD3 pin  
(Bias 3) and VSS. The VLCD3 pin should also be  
connected to VDD.  
Using bits CS<1:0> of the LCDCON register can select  
any of these clock sources.  
Figure 10-2 shows the proper way to connect the  
resistor ladder to the Bias pins..  
Note:  
VLCD pins used to supply LCD bias voltage  
are enabled on power-up (POR) and must  
be disabled by the user by clearing the  
VLCDEN bit of the LCDCON register.  
FIGURE 10-2:  
LCD BIAS RESISTOR LADDER CONNECTION DIAGRAM  
Static  
Bias  
1/2 Bias  
1/3 Bias  
VLCD 0  
VLCD 1  
VLCD 2  
VLCD 3  
VSS  
VSS  
1/2 VDD  
1/2 VDD  
VDD  
VSS  
1/3 VDD  
2/3 VDD  
VDD  
VLCD 3  
VLCD 2  
VLCD 1  
VLCD 0  
To  
LCD  
Driver  
(1)  
VDD  
LCD Bias 3  
LCD Bias 2  
LCD Bias 1  
Connections for External R-ladder  
Static Bias  
VDD*  
VDD*  
1/2 Bias  
10 kΩ*  
10 kΩ*  
10 kΩ*  
10 kΩ*  
VSS  
1/3 Bias  
10 kΩ*  
VDD*  
VSS  
*
These values are provided for design guidance only and should be optimized for the application  
by the designer.  
Note 1: Internal connection.  
DS41250F-page 148  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
10.4 LCD Multiplex Types  
10.7 LCD Frame Frequency  
The LCD driver module can be configured into one of  
four multiplex types:  
The rate at which the COM and SEG outputs change is  
called the LCD frame frequency.  
• Static (only COM0 is used)  
TABLE 10-3: FRAME FREQUENCY  
FORMULAS  
• 1/2 multiplex (COM<1:0> are used)  
• 1/3 multiplex (COM<2:0> are used)  
• 1/4 multiplex (COM<3:0> are used)  
Multiplex  
Frame Frequency =  
Static  
1/2  
Clock source/(4 x 1 x (LP<3:0> + 1))  
Clock source/(2 x 2 x (LP<3:0> + 1))  
Clock source/(1 x 3 x (LP<3:0> + 1))  
Clock source/(1 x 4 x (LP<3:0> + 1))  
The LMUX<1:0> bit setting of the LCDCON register  
decides the function of RB5, RA2 or either RA3 or RD0  
pins (see Table 10-2 for details).  
1/3  
If the pin is a digital I/O, the corresponding TRIS bit  
controls the data direction. If the pin is a COM drive,  
then the TRIS setting of that pin is overridden.  
1/4  
Note:  
Clock source is FOSC/8192, T1OSC/32 or  
LFINTOSC/32.  
Note:  
On a Power-on Reset, the LMUX<1:0>  
bits of the LCDCON register are ‘11’.  
TABLE 10-4: APPROXIMATE FRAME  
FREQUENCY (IN Hz) USING  
FOSC @ 8 MHz, TIMER1 @  
TABLE 10-2: RA3/RD0, RA2, RB5  
FUNCTION  
32.768 kHz OR LFINTOSC  
LMUX  
<1:0>  
Multiplex  
RA3/RD0(1)  
RA2  
RB5  
LP<3:0>  
Static  
1/2  
1/3  
1/4  
Static  
1/2  
00  
01  
10  
11  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
2
3
4
5
6
7
85  
64  
51  
43  
37  
32  
85  
64  
51  
43  
37  
32  
114  
85  
68  
57  
49  
43  
85  
64  
51  
43  
37  
32  
COM1 Driver  
1/3  
COM2 Driver COM1 Driver  
1/4  
COM3 Driver COM2 Driver COM1 Driver  
Note 1:  
RA3 for PIC16F913/916, RD0 for PIC16F914/917 and  
PIC16F946  
10.5 Segment Enables  
The LCDSEn registers are used to select the pin  
function for each segment pin. The selection allows  
each pin to operate as either an LCD segment driver or  
as one of the pin’s alternate functions. To configure the  
pin as a segment pin, the corresponding bits in the  
LCDSEn registers must be set to ‘1’.  
If the pin is a digital I/O, the corresponding TRIS bit  
controls the data direction. Any bit set in the LCDSEn  
registers overrides any bit settings in the corresponding  
TRIS register.  
Note:  
On a Power-on Reset, these pins are  
configured as digital I/O.  
10.6 Pixel Control  
The LCDDATAx registers contain bits which define the  
state of each pixel. Each bit defines one unique pixel.  
Register 10-4 shows the correlation of each bit in the  
LCDDATAx registers to the respective common and  
segment signals.  
Any LCD pixel location not being used for display can  
be used as general purpose RAM.  
© 2007 Microchip Technology Inc.  
DS41250F-page 149  
PIC16F913/914/916/917/946  
FIGURE 10-3:  
LCD CLOCK GENERATION  
FOSC  
÷8192  
Static  
1/2  
÷4  
T1OSC 32 kHz  
Crystal Osc.  
÷32  
÷1, 2, 3, 4  
Ring Counter  
4-bit Prog Presc  
÷2  
1/3,  
1/4  
LFINTOSC  
Nominal = 31 kHz  
÷32  
LP<3:0>  
(LCDPS<3:0>)  
LMUX<1:0>  
(LCDCON<1:0>)  
CS<1:0>  
(LCDCON<3:2>)  
LMUX<1:0>  
(LCDCON<1:0>)  
DS41250F-page 150  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 10-4:  
LCD SEGMENT MAPPING WORKSHEET (SHEET 1 OF 2)  
© 2007 Microchip Technology Inc.  
DS41250F-page 151  
PIC16F913/914/916/917/946  
FIGURE 10-5:  
LCD SEGMENT MAPPING WORKSHEET (SHEET 2 OF 2)  
DS41250F-page 152  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
The LCDs can be driven by two types of waveform:  
Type-A and Type-B. In Type-A waveform, the phase  
10.8 LCD Waveform Generation  
LCD waveforms are generated so that the net AC  
voltage across the dark pixel should be maximized and  
the net AC voltage across the clear pixel should be  
minimized. The net DC voltage across any pixel should  
be zero.  
changes within each common type, whereas in Type-B  
waveform, the phase changes on each frame  
boundary. Thus, Type-A waveform maintains 0 VDC  
over a single frame, whereas Type-B waveform takes  
two frames.  
The COM signal represents the time slice for each  
common, while the SEG contains the pixel data.  
Note 1: If Sleep has to be executed with LCD  
Sleep disabled (LCDCON<SLPEN> is  
1’), then care must be taken to execute  
Sleep only when VDC on all the pixels is  
0’.  
The pixel signal (COM-SEG) will have no DC  
component and it can take only one of the two rms  
values. The higher rms value will create a dark pixel  
and a lower rms value will create a clear pixel.  
2: When the LCD clock source is FOSC/8192,  
if Sleep is executed, irrespective of the  
LCDCON<SLPEN> setting, the LCD goes  
into Sleep. Thus, take care to see that VDC  
on all pixels is ‘0’ when Sleep is executed.  
As the number of commons increases, the delta  
between the two rms values decreases. The delta  
represents the maximum contrast that the display can  
have.  
Figure 10-6 through Figure 10-16 provide waveforms  
for static, half-multiplex, one-third-multiplex and  
quarter-multiplex drives for Type-A and Type-B  
waveforms.  
FIGURE 10-6:  
TYPE-A/TYPE-B WAVEFORMS IN STATIC DRIVE  
V1  
COM0  
SEG0  
SEG1  
V0  
V1  
COM0  
V0  
V1  
V0  
V1  
V0  
COM0-SEG0  
COM0-SEG1  
-V1  
V0  
1 Frame  
© 2007 Microchip Technology Inc.  
DS41250F-page 153  
PIC16F913/914/916/917/946  
FIGURE 10-7:  
TYPE-A WAVEFORMS IN 1/2 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0  
COM1  
COM0  
V2  
V1  
V0  
COM1  
SEG0  
V2  
V1  
V0  
V2  
V1  
V0  
SEG1  
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
1 Frame  
DS41250F-page 154  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 10-8:  
TYPE-B WAVEFORMS IN 1/2 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0  
COM1  
COM0  
V2  
V1  
V0  
COM1  
SEG0  
V2  
V1  
V0  
V2  
V1  
V0  
SEG1  
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
2 Frames  
© 2007 Microchip Technology Inc.  
DS41250F-page 155  
PIC16F913/914/916/917/946  
FIGURE 10-9:  
TYPE-A WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM0  
COM1  
COM0  
COM1  
SEG0  
SEG1  
V3  
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
-V3  
1 Frame  
DS41250F-page 156  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 10-10:  
TYPE-B WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM0  
COM1  
COM0  
COM1  
SEG0  
SEG1  
V3  
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
-V3  
2 Frames  
© 2007 Microchip Technology Inc.  
DS41250F-page 157  
PIC16F913/914/916/917/946  
FIGURE 10-11:  
TYPE-A WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0  
V2  
V1  
V0  
COM2  
COM1  
COM2  
COM1  
COM0  
V2  
V1  
V0  
V2  
V1  
V0  
SEG0  
SEG2  
V2  
V1  
V0  
SEG1  
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
1 Frame  
DS41250F-page 158  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 10-12:  
TYPE-B WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0  
COM1  
COM2  
SEG0  
SEG1  
COM2  
V2  
V1  
V0  
COM1  
COM0  
V2  
V1  
V0  
V2  
V1  
V0  
V2  
V1  
V0  
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
2 Frames  
© 2007 Microchip Technology Inc.  
DS41250F-page 159  
PIC16F913/914/916/917/946  
FIGURE 10-13:  
TYPE-A WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
COM0  
COM2  
COM1  
COM2  
COM1  
COM0  
SEG0  
SEG2  
SEG1  
COM0-SEG0  
COM0-SEG1  
1 Frame  
DS41250F-page 160  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 10-14:  
TYPE-B WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
COM0  
COM1  
COM2  
SEG0  
SEG1  
COM2  
COM1  
COM0  
COM0-SEG0  
COM0-SEG1  
2 Frames  
© 2007 Microchip Technology Inc.  
DS41250F-page 161  
PIC16F913/914/916/917/946  
FIGURE 10-15:  
COM3  
TYPE-A WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE  
V
V
V
V
3
2
1
0
COM2  
COM0  
COM1  
V
V
V
V
3
2
1
0
COM1  
COM0  
V
V
V
V
3
2
1
0
COM2  
COM3  
SEG0  
SEG1  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG0  
1
2
3
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG1  
1
2
3
1 Frame  
DS41250F-page 162  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 10-16:  
COM3  
TYPE-B WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE  
V
V
V
V
3
2
1
0
COM2  
COM0  
COM1  
V
V
V
V
3
2
1
0
COM1  
COM0  
V
V
V
V
3
2
1
0
COM2  
COM3  
SEG0  
SEG1  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG0  
COM0-SEG1  
1
2
3
V
V
V
V
3
2
1
0
-V  
-V  
-V  
1
2
3
2 Frames  
© 2007 Microchip Technology Inc.  
DS41250F-page 163  
PIC16F913/914/916/917/946  
component would be introduced into the panel.  
10.9 LCD Interrupts  
Therefore, when using Type-B waveforms, the user  
must synchronize the LCD pixel updates to occur within  
a subframe after the frame interrupt.  
The LCD timing generation provides an interrupt that  
defines the LCD frame timing.  
A new frame is defined to begin at the leading edge of  
the COM0 common signal. The interrupt will be set  
immediately after the LCD controller completes access-  
ing all pixel data required for a frame. This will occur at  
a fixed interval before the frame boundary (TFINT), as  
shown in Figure 10-17. The LCD controller will begin to  
access data for the next frame within the interval from  
the interrupt to when the controller begins to access  
data after the interrupt (TFWR). New data must be writ-  
ten within TFWR, as this is when the LCD controller will  
begin to access the data for the next frame.  
To correctly sequence writing while in Type-B, the  
interrupt will only occur on complete phase intervals. If  
the user attempts to write when the write is disabled,  
the WERR bit of the LCDCON register is set and the  
write does not occur.  
Note: The interrupt is not generated when the  
Type-A waveform is selected and when the  
Type-B with no multiplex (static) is  
selected.  
When the LCD driver is running with Type-B waveforms  
and the LMUX<1:0> bits are not equal to ‘00’ (static  
drive), there are some additional issues that must be  
addressed. Since the DC voltage on the pixel takes two  
frames to maintain zero volts, the pixel data must not  
change between subsequent frames. If the pixel data  
were allowed to change, the waveform for the odd  
frames would not necessarily be the complement of the  
waveform generated in the even frames and a DC  
FIGURE 10-17:  
WAVEFORMS AND INTERRUPT TIMING IN QUARTER-DUTY CYCLE DRIVE  
(EXAMPLE – TYPE-B, NON-STATIC)  
LCD  
Interrupt  
Occurs  
Controller Accesses  
Next Frame Data  
V
V
V
V
3
2
1
0
COM0  
COM1  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
COM2  
COM3  
V
V
V
V
3
2
1
0
2 Frames  
Frame  
TFINT  
TFWR  
Frame  
Boundary  
Frame  
Boundary  
Boundary  
TFWR = TFRAME/2*(LMUX<1:0> + 1) + TCY/2  
TFINT = (TFWR/2 – (2 TCY + 40 ns)) minimum = 1.5(TFRAME/4) – (2 TCY + 40 ns)  
(TFWR/2 – (1 TCY + 40 ns)) maximum = 1.5(TFRAME/4) – (1 TCY + 40 ns)  
DS41250F-page 164  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
Table 10-5 shows the status of the LCD module during  
a Sleep while using each of the three available clock  
sources:  
10.10 Operation During Sleep  
The LCD module can operate during Sleep. The  
selection is controlled by bit SLPEN of the LCDCON  
register. Setting the SLPEN bit allows the LCD module  
to go to Sleep. Clearing the SLPEN bit allows the  
module to continue to operate during Sleep.  
TABLE 10-5: LCD MODULE STATUS  
DURING SLEEP  
Operation  
During Sleep?  
If a SLEEPinstruction is executed and SLPEN = 1, the  
LCD module will cease all functions and go into a very  
low-current Consumption mode. The module will stop  
operation immediately and drive the minimum LCD  
voltage on both segment and common lines.  
Figure 10-18 shows this operation.  
Clock Source  
T1OSC  
SLPEN  
0
1
0
1
0
1
Yes  
No  
Yes  
No  
No  
No  
LFINTOSC  
FOSC/4  
To ensure that no DC component is introduced on the  
panel, the SLEEP instruction should be executed  
immediately after a LCD frame boundary. For Type-B  
multiplex (non-static), the LCD interrupt can be used to  
determine the frame boundary. See Section 10.9  
“LCD Interrupts” for the formulas to calculate the  
delay. In all other modes, the LCDA bit can be used to  
determine when the display is active. To use this  
method, the following sequence should be used when  
wanting to enter into Sleep mode:  
Note:  
The LFINTOSC or external T1OSC  
oscillator must be used to operate the LCD  
module during Sleep.  
If LCD interrupts are being generated (Type-B wave-  
form with a multiplex mode not static) and LCDIE = 1,  
the device will awaken from Sleep on the next frame  
boundary.  
• Clear LCDEN  
• Wait for LCDA to clear  
• Drive all LCD pins to inactive state using PORT  
and TRIS registers  
• Execute SLEEPinstruction  
Note:  
When the LCDEN bit is cleared, the LCD  
module will be disabled at the completion  
of frame. At this time, the PORT pins will  
revert to digital functionality. To minimize  
power consumption due to floating digital  
inputs, the LCD pins should be driven low  
using the PORT and TRIS registers.  
If a SLEEPinstruction is executed and SLPEN = 0, the  
module will continue to display the current contents of  
the LCDDATA registers. To allow the module to  
continue operation while in Sleep, the clock source  
must be either the LFINTOSC or T1OSC external  
oscillator. While in Sleep, the LCD data cannot be  
changed. The LCD module current consumption will  
not decrease in this mode; however, the overall  
consumption of the device will be lower due to shut  
down of the core and other peripheral functions.  
© 2007 Microchip Technology Inc.  
DS41250F-page 165  
PIC16F913/914/916/917/946  
FIGURE 10-18:  
SLEEP ENTRY/EXIT WHEN SLPEN = 1  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM0  
COM1  
COM2  
SEG0  
2 Frames  
Wake-up  
SLEEPInstruction Execution  
DS41250F-page 166  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
10.11 Configuring the LCD Module  
10.13 LCD Current Consumption  
The following is the sequence of steps to configure the  
LCD module.  
When using the LCD module the current consumption  
consists of the following three factors:  
1. Select the frame clock prescale using bits  
LP<3:0> of the LCDPS register.  
1. The oscillator selected  
2. The LCD bias source  
2. Configure the appropriate pins to function as  
segment drivers using the LCDSEn registers.  
3. The current required to charge the LCD  
segments  
3. Configure the LCD module for the following  
using the LCDCON register:  
The current consumption of just the LCD module can  
be considered negligible compared to these other  
factors.  
- Multiplex and Bias mode, bits LMUX<1:0>  
- Timing source, bits CS<1:0>  
- Sleep mode, bit SLPEN  
The oscillator selected:  
For LCD operation during Sleep either the T1oc or the  
LFINTOSC sources need to be used as the main  
system oscillator may be disabled during Sleep. During  
Sleep the LFINTOSC current consumption is given by  
electrical parameter D021, where the LFINTOSC use  
the same internal oscillator circuitry as the Watchdog  
Timer.  
4. Write initial values to pixel data registers,  
LCDDATA0 through LCDDATA11 (LCDDATA23  
on PIC16F946).  
5. Clear LCD Interrupt Flag, LCDIF bit of the PIR2  
register and if desired, enable the interrupt by  
setting bit LCDIE of the PIE2 register.  
6. Enable bias voltage pins (VLCD<3:1>) by  
setting bit VLCDEN of the LCDCON register.  
The LCD bias source:  
The LCD bias source, typically an external resistor  
ladder which will have its own current draw.  
7. Enable the LCD module by setting bit LCDEN of  
the LCDCON register.  
The current required to charge the LCD segments:  
10.12 Disabling the LCD Module  
The LCD segments which can be modeled as capaci-  
tors which must be both charged and discharged every  
frame. The size of the LCD segment and its technology  
determines the segment’s capacitance.  
To disable the LCD module, write all ‘0’s to the  
LCDCON register.  
© 2007 Microchip Technology Inc.  
DS41250F-page 167  
PIC16F913/914/916/917/946  
TABLE 10-6: REGISTERS ASSOCIATED WITH LCD OPERATION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON0  
INTCON  
0000 0000  
0000 000x  
C2OUT  
GIE  
C1OUT  
PEIE  
C2INV  
T0IE  
C1INV  
INTE  
CIS  
CM2  
T0IF  
CM1  
INTF  
CM0  
RBIF  
0000 0000  
0000 000x  
RBIE  
LCDCON  
LCDDATA0  
LCDEN  
SLPEN  
WERR  
VLCDEN  
CS1  
CS0  
LMUX1  
LMUX0  
0001 0011  
xxxx xxxx  
0001 0011  
uuuu uuuu  
SEG7  
COM0  
SEG6  
COM0  
SEG5  
COM0  
SEG4  
COM0  
SEG3  
COM0  
SEG2  
COM0  
SEG1  
COM0  
SEG0  
COM0  
LCDDATA1  
LCDDATA2(2)  
LCDDATA3  
LCDDATA4  
LCDDATA5(2)  
LCDDATA6  
LCDDATA7  
LCDDATA8(2)  
LCDDATA9  
LCDDATA10  
LCDDATA11(2)  
SEG15  
COM0  
SEG14  
COM0  
SEG13  
COM0  
SEG12  
COM0  
SEG11  
COM0  
SEG10  
COM0  
SEG9  
COM0  
SEG8  
COM0  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
SEG23  
COM0  
SEG22  
COM0  
SEG21  
COM0  
SEG20  
COM0  
SEG19  
COM0  
SEG18  
COM0  
SEG17  
COM0  
SEG16  
COM0  
SEG7  
COM1  
SEG6  
COM1  
SEG5  
COM1  
SEG4  
COM1  
SEG3  
COM1  
SEG2  
COM1  
SEG1  
COM1  
SEG0  
COM1  
SEG15  
COM1  
SEG14  
COM1  
SEG13  
COM1  
SEG12  
COM1  
SEG11  
COM1  
SEG10  
COM1  
SEG9  
COM1  
SEG8  
COM1  
SEG23  
COM1  
SEG22  
COM1  
SEG21  
COM1  
SEG20  
COM1  
SEG19  
COM1  
SEG18  
COM1  
SEG17  
COM1  
SEG16  
COM1  
SEG7  
COM2  
SEG6  
COM2  
SEG5  
COM2  
SEG4  
COM2  
SEG3  
COM2  
SEG2  
COM2  
SEG1  
COM2  
SEG0  
COM2  
SEG15  
COM2  
SEG14  
COM2  
SEG13  
COM2  
SEG12  
COM2  
SEG11  
COM2  
SEG10  
COM2  
SEG9  
COM2  
SEG8  
COM2  
SEG23  
COM2  
SEG22  
COM2  
SEG21  
COM2  
SEG20  
COM2  
SEG19  
COM2  
SEG18  
COM2  
SEG17  
COM2  
SEG16  
COM2  
SEG7  
COM3  
SEG6  
COM3  
SEG5  
COM3  
SEG4  
COM3  
SEG3  
COM3  
SEG2  
COM3  
SEG1  
COM3  
SEG0  
COM3  
SEG15  
COM3  
SEG14  
COM3  
SEG13  
COM3  
SEG12  
COM3  
SEG11  
COM3  
SEG10  
COM3  
SEG9  
COM3  
SEG8  
COM3  
SEG23  
COM3  
SEG22  
COM3  
SEG21  
COM3  
SEG20  
COM3  
SEG19  
COM3  
SEG18  
COM3  
SEG17  
COM3  
SEG16  
COM3  
LCDDATA12(3)  
LCDDATA13(3)  
LCDDATA14(3)  
LCDDATA15(3)  
LCDDATA16(3)  
LCDDATA17(3)  
LCDDATA18(3)  
LCDDATA19(3)  
LCDDATA20(3)  
LCDDATA21(3)  
LCDDATA22(3)  
LCDDATA23(3)  
SEG31  
COM0  
SEG30  
COM0  
SEG29  
COM0  
SEG28  
COM0  
SEG27  
COM0  
SEG26  
COM0  
SEG25  
COM0  
SEG24  
COM0  
xxxx xxxx  
xxxx xxxx  
---- --xx  
xxxx xxxx  
xxxx xxxx  
---- --xx  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uuuu uuuu  
SEG39  
COM0  
SEG38  
COM0  
SEG37  
COM0  
SEG36  
COM0  
SEG35  
COM0  
SEG34  
COM0  
SE33  
COM0  
SEG32  
COM0  
SEG41  
COM0  
SEG40  
COM0  
SEG31  
COM1  
SEG30  
COM1  
SEG29  
COM1  
SEG28  
COM1  
SEG27  
COM1  
SEG26  
COM1  
SEG25  
COM1  
SEG24  
COM1  
SEG39  
COM1  
SEG38  
COM1  
SEG37  
COM1  
SEG36  
COM1  
SEG35  
COM1  
SEG34  
COM1  
SEG33  
COM1  
SEG32  
COM1  
SEG41  
COM1  
SEG40  
COM1  
SEG31  
COM2  
SEG30  
COM2  
SEG29  
COM2  
SEG28  
COM2  
SEG27  
COM2  
SEG26  
COM2  
SEG25  
COM2  
SEG24  
COM2  
SEG39  
COM2  
SEG38  
COM2  
SEG37  
COM2  
SEG36  
COM2  
SEG35  
COM2  
SEG34  
COM2  
SEG33  
COM2  
SEG32  
COM2  
SEG41  
COM2  
SEG40  
COM2  
---- --xx  
xxxx xxxx  
---- --uu  
uuuu uuuu  
SEG31  
COM3  
SEG30  
COM3  
SEG29  
COM3  
SEG28  
COM3  
SEG27  
COM3  
SEG26  
COM3  
SEG25  
COM3  
SEG24  
COM3  
SEG39  
COM3  
SEG38  
COM3  
SEG37  
COM3  
SEG36  
COM3  
SEG35  
COM3  
SEG34  
COM3  
SEG33  
COM3  
SEG32  
COM3  
xxxx xxxx  
---- --xx  
uuuu uuuu  
---- --uu  
SEG41  
COM3  
SEG40  
COM3  
LCDPS  
WFT  
SE7  
BIASMD  
SE6  
LCDA  
SE5  
WA  
SE4  
LP3  
SE3  
LP2  
SE2  
LP1  
SE1  
SE9  
LP0  
SE0  
SE8  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
LCDSE0  
LCDSE1  
SE15  
SE14  
SE13  
SE12  
SE11  
SE10  
Legend:  
Note 1:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the LCD module.  
These pins may be configured as port pins, depending on the oscillator mode selected.  
PIC16F914/917 and PIC16F946 only.  
2:  
3:  
PIC16F946 only.  
DS41250F-page 168  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 10-6: REGISTERS ASSOCIATED WITH LCD OPERATION (CONTINUED)  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LCDSE2(2)  
LCDSE3(3)  
LCDSE4(3)  
SE23  
SE31  
SE39  
SE22  
SE30  
SE38  
SE21  
SE29  
SE37  
SE20  
SE28  
SE36  
SE19  
SE27  
SE35  
SE18  
SE26  
SE34  
SE17  
SE25  
SE33  
SE41  
SE16  
SE24  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
SE32  
LCDSE5(3)  
PIE2  
SE40  
---- --00  
0000 -0-0  
0000 -0-0  
---- --00  
0000 -0-0  
0000 -0-0  
OSFIE  
OSFIF  
C2IE  
C2IF  
C1IE  
C1IF  
LCDIE  
LCDIF  
LVDIE  
LVDIF  
CCP2IE  
CCP2IF  
PIR2  
T1CON  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS  
TMR1ON  
0000 0000  
uuuu uuuu  
Legend:  
Note 1:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the LCD module.  
These pins may be configured as port pins, depending on the oscillator mode selected.  
PIC16F914/917 and PIC16F946 only.  
2:  
3:  
PIC16F946 only.  
© 2007 Microchip Technology Inc.  
DS41250F-page 169  
PIC16F913/914/916/917/946  
NOTES:  
DS41250F-page 170  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
The PLVD module includes the following capabilities:  
11.0 PROGRAMMABLE  
LOW-VOLTAGE DETECT  
(PLVD) MODULE  
• Eight programmable trip points  
• Interrupt on falling VDD  
• Stable reference indication  
The Programmable Low-Voltage Detect (PLVD)  
module is a power supply detector which monitors the  
internal power supply. This module is typically used in  
key fobs and other devices, where certain actions  
need to be taken as a result of a falling battery voltage.  
• Operation during Sleep  
A Block diagram of the PLVD module is shown in  
Figure 11-1.  
FIGURE 11-1:  
PLVD BLOCK DIAGRAM  
8 Stages  
VDD  
8-to-1  
Analog MUX  
LVDEN  
0
1
2
+
-
LVDIF  
det  
6
7
LVDL<2:0>  
Reference  
Voltage  
Generator  
FIGURE 11-2:  
PLVD OPERATION  
VDD  
PLVD Trip Point  
LVDIF  
Cleared by  
Software  
Set by  
Hardware  
© 2007 Microchip Technology Inc.  
DS41250F-page 171  
PIC16F913/914/916/917/946  
11.1 PLVD Operation  
11.4 Stable Reference Indication  
To setup the PLVD for operation, the following steps  
must be taken:  
When the PLVD module is enabled, the reference volt-  
age must be allowed to stabilize before the PLVD will  
provide a valid result. Refer to Section 19.0 “Electri-  
cal Specifications”, Table 19-13, for the stabilization  
time.  
• Enable the module by setting the LVDEN bit of the  
LVDCON register.  
• Configure the trip point by setting the LVDL<2:0>  
bits of the LVDCON register.  
When the HFINTOSC is running, the IRVST bit of the  
LVDCON register indicates the stability of the voltage  
reference. The voltage reference is stable when the  
IRVST bit is set.  
• Wait for the reference voltage to become stable.  
Refer to Section 11.4 “Stable Reference  
Indication”.  
• Clear the LVDIF bit of the PIR2 register.  
11.5 Operation During Sleep  
The LVDIF bit will be set when VDD falls below the  
PLVD trip point. The LVDIF bit remains set until cleared  
by software. Refer to Figure 11-2.  
To wake from Sleep, set the LVDIE bit of the PIE2  
register and the PEIE bit of the INTCON register. When  
the LVDIE and PEIE bits are set, the device will wake  
from Sleep and execute the next instruction. If the GIE  
bit is also set, the program will call the Interrupt Service  
Routine upon completion of the first instruction after  
waking from Sleep.  
11.2 Programmable Trip Point  
The PLVD trip point is selectable from one of eight  
voltage levels. The LVDL bits of the LVDCON register  
select the trip point. Refer to Register 11-1 for the  
available PLVD trip points.  
11.3 Interrupt on Falling VDD  
When VDD falls below the PLVD trip point, the falling  
edge detector will set the LVDIF bit. See Figure 11-2.  
An interrupt will be generated if the following bits are  
also set:  
• GIE and PEIE bits of the INTCON register  
• LVDIE bit of the PIE2 register  
The LVDIF bit must be cleared by software. An interrupt  
can be generated from a simulated PLVD event when  
the LVDIF bit is set by software.  
DS41250F-page 172  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
REGISTER 11-1: LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER  
U-0  
U-0  
R-0  
IRVST(1)  
R/W-0  
U-0  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-0  
LVDL0  
LVDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
IRVST: Internal Reference Voltage Stable Status Flag bit(1)  
1= Indicates that the PLVD is stable and PLVD interrupt is reliable  
0= Indicates that the PLVD is not stable and PLVD interrupt must not be enabled  
bit 4  
LVDEN: Low-Voltage Detect Module Enable bit  
1= Enables PLVD Module, powers up PLVD circuit and supporting reference circuitry  
0= Disables PLVD Module, powers down PLVD circuit and supporting reference circuitry  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
LVDL<2:0>: Low-Voltage Detection Level bits (nominal values)(3)  
111= 4.5V  
110= 4.2V  
101= 4.0V  
100= 2.3V (default)  
011= 2.2V  
010= 2.1V  
001= 2.0V(2)  
000= Reserved  
Note 1: The IRVST bit is usable only when the HFINTOSC is running.  
2: Not tested and below minimum operating conditions.  
3: See Section 19.0 “Electrical Specifications”.  
TABLE 11-1: REGISTERS ASSOCIATED WITH PROGRAMMABLE LOW-VOLTAGE DETECT  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
LVDCON  
PIE2  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF 0000 000x 0000 000x  
IRVST LVDEN  
LVDL2 LVDL1 LVDL0 --00 -100 --00 -100  
0000 -0-0 0000 -0-0  
0000 -0-0 0000 -0-0  
OSFIE  
OSFIF  
C2IE  
C2IF  
C1IE  
C1IF  
LCDIE  
LCDIF  
LVDIE  
LVDIF  
CCP2IE  
CCP2IF  
PIR2  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used by the PLVD module.  
© 2007 Microchip Technology Inc.  
DS41250F-page 173  
PIC16F913/914/916/917/946  
NOTES:  
DS41250F-page 174  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
The ADC voltage reference is software selectable to be  
either internally generated or externally supplied.  
12.0 ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 10-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates a 10-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result registers (ADRESL and ADRESH).  
Figure 12-1 shows the block diagram of the ADC.  
FIGURE 12-1:  
ADC BLOCK DIAGRAM  
VDD  
VCFG0 = 0  
VCFG0 = 1  
VREF+  
000  
001  
010  
011  
100  
101  
110  
111  
RA0/AN0  
RA1/AN1  
ADC  
RA2/AN2  
RA3/AN3  
10  
GO/DONE  
RA5/AN4  
0= Left Justify  
1= Right Justify  
ADFM  
RE0/AN5(1)  
RE1/AN6(1)  
RE2/AN7(1)  
ADON  
VSS  
10  
ADRESH ADRESL  
VCFG1 = 0  
VCFG1 = 1  
CHS  
VREF-  
Note 1: These channels are only available on PIC16F914/917 and PIC16F946 devices.  
© 2007 Microchip Technology Inc.  
DS41250F-page 175  
PIC16F913/914/916/917/946  
12.1.3  
ADC VOLTAGE REFERENCE  
12.1 ADC Configuration  
The VCFG bits of the ADCON0 register provide  
independent control of the positive and negative  
voltage references. The positive voltage reference can  
be either VDD or an external voltage source. Likewise,  
the negative voltage reference can be either VSS or an  
external voltage source.  
When configuring and using the ADC the following  
functions must be considered:  
• Port configuration  
• Channel selection  
• ADC voltage reference selection  
• ADC conversion clock source  
• Interrupt control  
12.1.4  
CONVERSION CLOCK  
The source of the conversion clock is software select-  
able via the ADCS bits of the ADCON1 register. There  
are seven possible clock options:  
• Results formatting  
12.1.1  
PORT CONFIGURATION  
• FOSC/2  
The ADC can be used to convert both analog and digital  
signals. When converting analog signals, the I/O pin  
should be configured for analog by setting the associated  
TRIS and ANSEL bits. See the corresponding Port  
section for more information.  
• FOSC/4  
• FOSC/8  
• FOSC/16  
• FOSC/32  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input  
buffer to conduct excess current.  
• FOSC/64  
• FRC (dedicated internal oscillator)  
The time to complete one bit conversion is defined as  
TAD. One full 10-bit conversion requires 11 TAD periods  
as shown in Figure 12-3.  
12.1.2  
CHANNEL SELECTION  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
For correct conversion, the appropriate TAD specification  
must be met. See A/D conversion requirements in  
Section 19.0 “Electrical Specifications” for more  
information. Table 12-1 gives examples of appropriate  
ADC clock selections.  
When changing channels, a delay is required before  
starting the next conversion. Refer to Section 12.2  
“ADC Operation” for more information.  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
DS41250F-page 176  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 12-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES (VDD > 3.0V)  
ADC Clock Period (TAD)  
ADC Clock Source ADCS<2:0>  
Device Frequency (FOSC)  
20 MHz  
8 MHz  
4 MHz  
1 MHz  
FOSC/2  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/32  
FOSC/64  
FRC  
000  
100  
001  
101  
010  
110  
x11  
100 ns(2)  
200 ns(2)  
400 ns(2)  
800 ns(2)  
1.6 μs  
250 ns(2)  
500 ns(2)  
1.0 μs(2)  
2.0 μs  
500 ns(2)  
1.0 μs(2)  
2.0 μs  
2.0 μs  
4.0 μs  
8.0 μs(3)  
16.0 μs(3)  
32.0 μs(3)  
64.0 μs(3)  
2-6 μs(1,4)  
4.0 μs  
4.0 μs  
8.0 μs(3)  
16.0 μs(3)  
2-6 μs(1,4)  
3.2 μs  
2-6 μs(1,4)  
8.0 μs(3)  
2-6 μs(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The FRC source has a typical TAD time of 4 μs for VDD > 3.0V.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the  
conversion will be performed during Sleep.  
FIGURE 12-2:  
ANALOG-TO-DIGITAL CONVERSION TAD CYCLES  
TCY to TAD  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
b9  
b8  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Conversion Starts  
Holding Capacitor is Disconnected from Analog Input (typically 100 ns)  
Set GO/DONE bit  
ADRESH and ADRESL registers are loaded,  
GO bit is cleared,  
ADIF bit is set,  
Holding capacitor is connected to analog input  
12.1.5  
INTERRUPTS  
The ADC module allows for the ability to generate an  
interrupt upon completion of an Analog-to-Digital  
conversion. The ADC interrupt flag is the ADIF bit in the  
PIR1 register. The ADC interrupt enable is the ADIE bit  
in the PIE1 register. The ADIF bit must be cleared in  
software.  
Note:  
The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEP  
instruction is always executed. If the user is attempting  
to wake-up from Sleep and resume in-line code  
execution, the global interrupt must be disabled. If the  
global interrupt is enabled, execution will switch to the  
Interrupt Service Routine.  
Please see Section 12.1.5 “Interrupts” for more  
information.  
© 2007 Microchip Technology Inc.  
DS41250F-page 177  
PIC16F913/914/916/917/946  
12.1.6  
RESULT FORMATTING  
The 10-bit A/D conversion result can be supplied in two  
formats, left justified or right justified. The ADFM bit of  
the ADCON0 register controls the output format.  
Figure 12-4 shows the two output formats.  
FIGURE 12-3:  
10-BIT A/D CONVERSION RESULT FORMAT  
ADRESH  
ADRESL  
(ADFM = 0)  
MSB  
bit 7  
LSB  
bit 0  
bit 0  
bit 7  
bit 7  
bit 0  
10-bit A/D Result  
Unimplemented: Read as ‘0’  
(ADFM = 1)  
MSB  
LSB  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
10-bit A/D Result  
12.2.4  
ADC OPERATION DURING SLEEP  
12.2 ADC Operation  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. When the FRC clock source is selected, the  
ADC waits one additional instruction before starting the  
conversion. This allows the SLEEP instruction to be  
executed, which can reduce system noise during the  
conversion. If the ADC interrupt is enabled, the device  
will wake-up from Sleep when the conversion  
completes. If the ADC interrupt is disabled, the ADC  
module is turned off after the conversion completes,  
although the ADON bit remains set.  
12.2.1  
STARTING A CONVERSION  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the  
GO/DONE bit of the ADCON0 register to a ‘1’ will start  
the Analog-to-Digital conversion.  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 12.2.6 “A/D Conver-  
sion Procedure”.  
When the ADC clock source is something other than  
FRC, a SLEEP instruction causes the present conver-  
sion to be aborted and the ADC module is turned off,  
although the ADON bit remains set.  
12.2.2  
COMPLETION OF A CONVERSION  
When the conversion is complete, the ADC module will:  
• Clear the GO/DONE bit  
• Set the ADIF flag bit  
12.2.5  
SPECIAL EVENT TRIGGER  
• Update the ADRESH:ADRESL registers with new  
conversion result  
The CCP Special Event Trigger allows periodic ADC  
measurements without software intervention. When  
this trigger occurs, the GO/DONE bit is set by hardware  
and the Timer1 counter resets to zero.  
12.2.3  
TERMINATING A CONVERSION  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared in software. The  
ADRESH:ADRESL registers will not be updated with the  
partially complete Analog-to-Digital conversion sample.  
Instead, the ADRESH:ADRESL register pair will retain  
the value of the previous conversion. Additionally, a  
2 TAD delay is required before another acquisition can be  
initiated. Following this delay, an input acquisition is  
automatically started on the selected channel.  
Using the Special Event Trigger does not assure proper  
ADC timing. It is the user’s responsibility to ensure that  
the ADC timing requirements are met.  
See Section 15.0 “Capture/Compare/PWM (CCP)  
Module” for more information.  
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
DS41250F-page 178  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
12.2.6  
A/D CONVERSION PROCEDURE  
EXAMPLE 12-1:  
A/D CONVERSION  
This is an example procedure for using the ADC to  
perform an Analog-to-Digital conversion:  
;This code block configures the ADC  
;for polling, Vdd reference, Frc clock  
;and AN0 input.  
;
1. Configure Port:  
• Disable pin output driver (See TRIS register)  
• Configure pin as analog  
;Conversion start & polling for completion  
; are included.  
;
2. Configure the ADC module:  
• Select ADC conversion clock  
• Configure voltage reference  
• Select ADC input channel  
• Select result format  
BANKSEL  
MOVLW  
MOVWF  
BANKSEL  
BSF  
BANKSEL  
BSF  
BANKSEL  
MOVLW  
MOVWF  
CALL  
BSF  
BTFSC  
GOTO  
BANKSEL  
MOVF  
MOVWF  
BANKSEL  
MOVF  
ADCON1  
;
B’01110000’ ;ADC Frc clock  
ADCON1  
TRISA  
TRISA,0  
ANSEL  
ANSEL,0  
ADCON0  
B’10000001’ ;Right justify,  
ADCON0  
SampleTime  
ADCON0,GO  
ADCON0,GO  
$-1  
;
;
;Set RA0 to input  
;
;Set RA0 to analog  
;
• Turn on ADC module  
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
;Vdd Vref, AN0, On  
;Acquisiton delay  
;Start conversion  
;Is conversion done?  
;No, test again  
;
;Read upper 2 bits  
;store in GPR space  
;
• Enable ADC interrupt  
• Enable peripheral interrupt  
• Enable global interrupt(1)  
4. Wait the required acquisition time(2)  
.
ADRESH  
5. Start conversion by setting the GO/DONE bit.  
ADRESH,W  
RESULTHI  
ADRESL  
ADRESL,W  
RESULTLO  
6. Wait for ADC conversion to complete by one of  
the following:  
;Read lower 8 bits  
;Store in GPR space  
• Polling the GO/DONE bit  
MOVWF  
• Waiting for the ADC interrupt (interrupts  
enabled)  
12.2.7  
ADC REGISTER DEFINITIONS  
7. Read ADC Result  
The following registers are used to control the opera-  
tion of the ADC.  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: See Section 12.3 “A/D Acquisition  
Requirements”.  
© 2007 Microchip Technology Inc.  
DS41250F-page 179  
PIC16F913/914/916/917/946  
REGISTER 12-1: ADCON0: A/D CONTROL REGISTER 0  
R/W-0  
ADFM  
R/W-0  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
VCFG1  
VCFG0  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ADFM: A/D Conversion Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
VCFG1: Voltage Reference bit  
1= VREF- pin  
0= VSS  
bit 5  
VCFG0: Voltage Reference bit  
1= VREF+ pin  
0= VSS  
bit 4-2  
CHS<2:0>: Analog Channel Select bits  
000= AN0  
001= AN1  
010= AN2  
011= AN3  
100= AN4  
101= AN5(1)  
110= AN6(1)  
111= AN7(1)  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
Note 1: Not available on 28-pin devices.  
DS41250F-page 180  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
REGISTER 12-2: ADCON1: A/D CONTROL REGISTER 1  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADCS<2:0>: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
x11= FRC (clock derived from a dedicated internal oscillator = 500 kHz max.)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
bit 3-0  
Unimplemented: Read as ‘0’  
© 2007 Microchip Technology Inc.  
DS41250F-page 181  
PIC16F913/914/916/917/946  
REGISTER 12-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES9  
ADRES8  
ADRES7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADRES<9:2>: ADC Result Register bits  
Upper 8 bits of 10-bit conversion result  
REGISTER 12-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES1  
ADRES0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
ADRES<1:0>: ADC Result Register bits  
Lower 2 bits of 10-bit conversion result  
Reserved: Do not use.  
REGISTER 12-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES9  
ADRES8  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1-0  
Reserved: Do not use.  
ADRES<9:8>: ADC Result Register bits  
Upper 2 bits of 10-bit conversion result  
REGISTER 12-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
ADRES1  
ADRES0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
Lower 8 bits of 10-bit conversion result  
DS41250F-page 182  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
an A/D acquisition must be done before the conversion  
can be started. To calculate the minimum acquisition  
time, Equation 12-1 may be used. This equation  
assumes that 1/2 LSb error is used (1024 steps for the  
ADC). The 1/2 LSb error is the maximum error allowed  
for the ADC to meet its specified resolution.  
12.3 A/D Acquisition Requirements  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The Analog  
Input model is shown in Figure 12-4. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge the  
capacitor CHOLD. The sampling switch (RSS) impedance  
varies over the device voltage (VDD), see Figure 12-4.  
The maximum recommended impedance for analog  
sources is 10 kΩ. As the source impedance is  
decreased, the acquisition time may be decreased.  
After the analog input channel is selected (or changed),  
EQUATION 12-1: ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10kΩ 5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2μs + TC + [(Temperature - 25°C)(0.05μs/°C)]  
The value for TC can be approximated with the following equations:  
1
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED 1 -------------------------- = VCHOLD  
(2n + 1) 1  
TC  
---------  
VAPPLIED 1 e RC = VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
;combining [1] and [2]  
Tc  
--------  
1
VAPPLIED 1 eRC = VAPPLIED 1 --------------------------  
(2n + 1) 1  
Note: Where n = number of bits of the ADC.  
Solving for TC:  
TC = CHOLD(RIC + RSS + RS) ln(1/2047)  
= 10pF(1kΩ + 7kΩ + 10kΩ) ln(0.0004885)  
= 1.37μs  
Therefore:  
TACQ = 2μS + 1.37μS + [(50°C- 25°C)(0.05μS/°C)]  
= 4.67μS  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin  
leakage specification.  
© 2007 Microchip Technology Inc.  
DS41250F-page 183  
PIC16F913/914/916/917/946  
FIGURE 12-4:  
ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
Sampling  
Switch  
ANx  
Rs  
SS  
RIC 1k  
Rss  
(1)  
CPIN  
5 pF  
VA  
I LEAKAGE  
CHOLD = 10 pF  
VSS/VREF-  
VT = 0.6V  
6V  
5V  
RSS  
VDD 4V  
3V  
Legend: CPIN  
VT  
= Input Capacitance  
= Threshold Voltage  
2V  
I LEAKAGE = Leakage current at the pin due to  
various junctions  
RIC  
SS  
CHOLD  
= Interconnect Resistance  
= Sampling Switch  
= Sample/Hold Capacitance  
5 6 7 8 9 10 11  
Sampling Switch  
(kΩ)  
Note 1: See Section 19.0 “Electrical Specifications”.  
FIGURE 12-5:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
3FFh  
3FEh  
3FDh  
3FCh  
3FBh  
1 LSB ideal  
Full-Scale  
Transition  
004h  
003h  
002h  
001h  
000h  
Analog Input Voltage  
1 LSB ideal  
Zero-Scale  
VSS/VREF-  
VDD/VREF+  
Transition  
DS41250F-page 184  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 12-2: SUMMARY OF ASSOCIATED ADC REGISTERS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ADCON1  
ANSEL  
ADFM  
VCFG1  
ADCS2  
ANS6  
VCFG0  
ADCS1  
ANS5  
CHS2  
ADCS0  
ANS4  
CHS1  
CHS0  
GO/DONE  
ADON  
0000 0000  
-000 ----  
1111 1111  
xxxx xxxx  
xxxx xxxx  
0000 000x  
0001 0011  
0000 0000  
-000 ----  
1111 1111  
uuuu uuuu  
uuuu uuuu  
0000 000x  
0001 0011  
ANS7  
ANS3  
ANS2  
ANS1  
ANS0  
ADRESH  
ADRESL  
INTCON  
LCDCON  
A/D Result Register High Byte  
A/D Result Register Low Byte  
GIE  
LCDEN  
SE7  
PEIE  
SLPEN  
SE6  
T0IE  
WERR  
SE5  
INTE  
VLCDEN  
SE4  
RBIE  
CS1  
T0IF  
CS0  
INTF  
LMUX1  
SE1  
RBIF  
LMUX0  
SE0  
LCDSE0  
LCDSE1  
LCDSE2(1)  
SE3  
SE2  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
SE15  
SE23  
SE14  
SE22  
SE13  
SE21  
SE12  
SE11  
SE19  
SE10  
SE18  
SE9  
SE8  
SE20  
SE17  
SE16  
PIE1  
EEIE  
EEIF  
ADIE  
ADIF  
RCIE  
RCIF  
TXIE  
TXIF  
SSPIE  
SSPIF  
RA3  
CCP1IE  
CCP1IF  
RA2  
TMR2IE  
TMR2IF  
RA1  
TMR1IE  
TMR1IF  
RA0  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
1111 1111  
1111 ----  
1111 1111  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
1111 ----  
1111 1111  
PIR1  
PORTA  
PORTB  
PORTE  
TRISA  
TRISB  
TRISE  
Legend:  
RA7  
RA6  
RA5  
RA4  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
RE7  
RE6  
RE5  
RE4  
RE3  
RE2  
RE1  
RE0  
TRISA7  
TRISB7  
TRISE7  
TRISA6  
TRISB6  
TRISE6  
TRISA5  
TRISB5  
TRISE5  
TRISA4  
TRISB4  
TRISE4  
TRISA3  
TRISB3  
TRISE3  
TRISA2  
TRISB2  
TRISE2  
TRISA1  
TRISB1  
TRISE1  
TRISA0  
TRISB0  
TRISE0  
x= unknown, u= unchanged, = unimplemented read as ‘0’. Shaded cells are not used for ADC module.  
© 2007 Microchip Technology Inc.  
DS41250F-page 185  
PIC16F913/914/916/917/946  
NOTES:  
DS41250F-page 186  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
13.1 EEADRL and EEADRH Registers  
13.0 DATA EEPROM AND FLASH  
PROGRAM MEMORY  
CONTROL  
The EEADRL and EEADRH registers can address up  
to a maximum of 256 bytes of data EEPROM or up to a  
maximum of 8K words of program Flash.  
Data EEPROM memory is readable and writable and  
the Flash program memory is readable during normal  
operation (full VDD range). These memories are not  
directly mapped in the register file space. Instead, they  
are indirectly addressed through the Special Function  
Registers. There are six SFRs used to access these  
memories:  
When selecting a program address value, the MSB of  
the address is written to the EEADRH register and the  
LSB is written to the EEADRL register. When selecting  
a data address value, only the LSB of the address is  
written to the EEADRL register.  
13.1.1  
EECON1 AND EECON2 REGISTERS  
• EECON1  
• EECON2  
• EEDATL  
• EEDATH  
• EEADRL  
• EEADRH  
EECON1 is the control register for EE memory  
accesses.  
Control bit EEPGD determines if the access will be a  
program or data memory access. When clear, as it is  
when reset, any subsequent operations will operate on  
the data memory. When set, any subsequent operations  
will operate on the program memory. Program memory  
can only be read.  
When interfacing the data memory block, EEDATL  
holds the 8-bit data for read/write, and EEADRL holds  
the address of the EE data location being accessed.  
This device has 256 bytes of data EEPROM with an  
address range from 00h to FFh.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set, in  
software. They are cleared in hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
When interfacing the program memory block, the  
EEDATL and EEDATH registers form a 2-byte word  
that holds the 14-bit data for read, and the EEADRL  
and EEADRH registers form a 2-byte word that holds  
the 13-bit address of the EEPROM location being  
accessed. This family of devices has 4K and 8K words  
of program Flash with an address range from  
0h-0FFFh and 0h-1FFFh. The program memory allows  
one word reads.  
The WREN bit, when set, will allow a write operation to  
data EEPROM. On power-up, the WREN bit is clear.  
The WRERR bit is set when a write operation is inter-  
rupted by a MCLR or a WDT Time-out Reset during  
normal operation. In these situations, following Reset,  
the user can check the WRERR bit. The Data and  
Address registers will be cleared on the Reset. User  
code can then run an appropriate recovery routine.  
The EEPROM data memory allows byte read and write.  
A byte write automatically erases the location and  
writes the new data (erase before write).  
Interrupt flag bit EEIF of the PIR1 register is set when  
write is complete. It must be cleared in the software.  
The write time is controlled by an on-chip timer. The  
write/erase voltages are generated by an on-chip  
charge pump rated to operate over the voltage range of  
the device for byte or word operations.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the data EEPROM write sequence.  
When the device is code-protected, the CPU may  
continue to read and write the data EEPROM memory  
and read the program memory. When code-protected,  
the device programmer can no longer access data or  
program memory.  
© 2007 Microchip Technology Inc.  
DS41250F-page 187  
PIC16F913/914/916/917/946  
REGISTER 13-1: EEDATL: EEPROM/PROGRAM MEMORY DATA LOW BYTE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDATL7  
EEDATL6  
EEDATL5  
EEDATL4  
EEDATL3  
EEDATL2  
EEDATL1  
EEDATL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
EEDATL<7:0>: Byte value to Write to or Read from data EEPROM bits or to Read from program memory  
REGISTER 13-2: EEADRL: EEPROM/PROGRAM MEMORY ADDRESS LOW BYTE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEADRL0  
bit 0  
EEADRL7  
EEADRL6  
EEADRL5  
EEADRL4  
EEADRL3  
EEADRL2  
EEADRL1  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
EEADRL<7:0>: Specifies one of 256 locations for EEPROM Read/Write operation bits or low address byte for  
program memory reads  
REGISTER 13-3: EEDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDATH5  
EEDATH4  
EEDATH3  
EEDATH2  
EEDATH1  
EEDATH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
EEDATH<5:0>: Byte value to Read from program memory  
REGISTER 13-4: EEADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDATH4  
EEDATH3  
EEDATH2  
EEDATH1  
EEDATH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
EEADRH<4:0>: Specifies the high address byte for program memory reads  
DS41250F-page 188  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
REGISTER 13-5: EECON1: EEPROM CONTROL REGISTER  
R/W-x  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
Legend:  
S = Bit can only be set  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
EEPGD: Program/Data EEPROM Select bit  
1= Accesses program memory  
0= Accesses data memory  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during  
normal operation or BOR Reset)  
0= The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the data EEPROM  
WR: Write Control bit  
EEPGD = 1:  
This bit is ignored  
EEPGD = 0:  
1= Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only  
be set, not cleared, in software.)  
0= Write cycle to the data EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates a memory read (the RD is cleared in hardware and can only be set, not cleared, in  
software.)  
0= Does not initiate a memory read  
© 2007 Microchip Technology Inc.  
DS41250F-page 189  
PIC16F913/914/916/917/946  
The steps to write to EEPROM data memory are:  
13.1.2  
READING THE DATA EEPROM  
MEMORY  
1. If step 10 is not implemented, check the WR bit  
to see if a write is in progress.  
To read a data memory location, the user must write the  
address to the EEADRL register, clear the EEPGD  
control bit, and then set control bit RD of the EECON1  
register. The data is available in the very next cycle, in  
the EEDATL register; therefore, it can be read in the  
next instruction. EEDATL will hold this value until  
another read or until it is written to by the user (during  
a write operation).  
2. Write the address to EEADRL. Make sure that  
the address is not larger than the memory size  
of the device.  
3. Write the 8-bit data value to be programmed in  
the EEDATL register.  
4. Clear the EEPGD bit to point to EEPROM data  
memory.  
5. Set the WREN bit to enable program operations.  
6. Disable interrupts (if enabled).  
EXAMPLE 13-1:  
DATA EEPROM READ  
BANKSELEEADRL  
;
7. Execute the special five instruction sequence:  
MOVF  
MOVWF  
DATA_EE_ADDR,W ;Data Memory  
EEADRL ;Address to read  
• Write 55h to EECON2 in two steps (first to W,  
then to EECON2)  
BANKSELEECON1  
;
BCF  
EECON1,EEPGD  
;Point to Data  
;memory  
;EE Read  
• Write AAh to EECON2 in two steps (first to  
W, then to EECON2)  
BSF  
EECON1,RD  
• Set the WR bit  
BANKSELEEDATL  
MOVF EEDATL,W  
;
8. Enable interrupts (if using interrupts).  
;W = EEPROM Data  
9. Clear the WREN bit to disable program  
operations.  
13.1.3  
WRITING TO THE DATA EEPROM  
MEMORY  
10. At the completion of the write cycle, the WR bit  
is cleared and the EEIF interrupt flag bit is set.  
(EEIF must be cleared by firmware.) If step 1 is  
not implemented, then firmware should check  
for EEIF to be set, or WR to clear, to indicate the  
end of the program cycle.  
To write an EEPROM data location, the user must first  
write the address to the EEADRL register and the data  
to the EEDATL register. Then the user must follow a  
specific sequence to initiate the write for each byte.  
The write will not initiate if the sequence described below  
is not followed exactly (write 55h to EECON2, write AAh  
to EECON2, then set WR bit) for each byte. Interrupts  
should be disabled during this code segment.  
EXAMPLE 13-2:  
DATA EEPROM WRITE  
BANKSELEECON1  
;
BTFSC  
GOTO  
EECON1,WR  
$-1  
;Wait for write  
;to complete  
;
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating EEPROM. The WREN bit is not cleared  
by hardware.  
BANKSELEEADRL  
MOVF  
DATA_EE_ADDR,W;Data Memory  
MOVWF  
MOVF  
EEADRL  
;Address to write  
DATA_EE_DATA,W;Data Memory Value  
MOVWF  
EEDATL  
;to write  
;
BANKSELEECON1  
BCF  
BSF  
EECON1,EEPGD ;Point to DATA  
;memory  
EECON1,WREN  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit will  
be inhibited from being set unless the WREN bit is set.  
;Enable writes  
BCF  
INTCON,GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1,WR  
;Disable INTs.  
;
;Write 55h  
;
;Write AAh  
;Set WR bit to  
;begin write  
;Enable INTs.  
;Disable writes  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. EEIF must be  
cleared by software.  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BSF  
BCF  
INTCON,GIE  
EECON1,WREN  
DS41250F-page 190  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
13.1.4  
READING THE FLASH PROGRAM  
MEMORY  
To read a program memory location, the user must  
write two bytes of the address to the EEADRL and  
EEADRH registers, set the EEPGD control bit, and  
then set control bit RD of the EECON1 register. Once  
the read control bit is set, the program memory Flash  
controller will use the second instruction cycle to read  
the data. This causes the second instruction immedi-  
ately following the “BSF EECON1,RD” instruction to be  
ignored. The data is available in the very next cycle, in  
the EEDATL and EEDATH registers; therefore, it can  
be read as two bytes in the following instructions.  
EEDATL and EEDATH registers will hold this value until  
another read or until it is written to by the user (during  
a write operation).  
Note 1: The two instructions following a program  
memory read are required to be NOP’s.  
This prevents the user from executing a  
two-cycle instruction on the next  
instruction after the RD bit is set.  
2: If the WR bit is set when EEPGD = 1, the  
WR bit will be immediately reset to ‘0’ and  
no operation will take place.  
EXAMPLE 13-3:  
FLASH PROGRAM READ  
BANKSEL EEADRL  
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MS_PROG_EE_ADDR;  
EEADRH  
;MS Byte of Program Address to read  
LS_PROG_EE_ADDR;  
EEADRL  
;LS Byte of Program Address to read  
BANKSEL EECON1  
;
BSF  
BSF  
EECON1, EEPGD ;Point to PROGRAM memory  
EECON1, RD  
;EE Read  
;
;
NOP  
NOP  
;Any instructions here are ignored as program  
;memory is read in second cycle after BSF  
BANKSEL EEDATL  
;
MOVF  
EEDATL, W  
;W = LS Byte of EEPROM Data program  
MOVWF  
MOVF  
MOVWF  
DATAL  
EEDATH, W  
DATAH  
;
;W = MS Byte of EEPROM Data program  
;
© 2007 Microchip Technology Inc.  
DS41250F-page 191  
PIC16F913/914/916/917/946  
FIGURE 13-1:  
FLASH PROGRAM MEMORY READ CYCLE EXECUTION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
PC + 1  
EEADRH,EEADRL  
P C + 3  
PC + 4  
PC + 5  
Flash ADDR  
Flash Data  
INSTR (PC)  
INSTR (PC + 1)  
EEDATH,EEDATL  
INSTR (PC + 3)  
INSTR (PC + 4)  
BSF EECON1,RD  
executed here  
INSTR(PC - 1)  
executed here  
INSTR(PC + 1)  
executed here  
Forced NOP  
executed here  
INSTR(PC + 3)  
executed here  
INSTR(PC + 4)  
executed here  
RD bit  
EEDATH  
EEDATL  
register  
EERHLT  
TABLE 13-1: SUMMARY OF ASSOCIATED REGISTERS WITH DATA EEPROM  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
INTE  
TXIE  
TXIF  
RBIE  
SSPIE  
SSPIF  
T0IF  
INTF  
RBIF  
0000 000x  
0000 0000  
0000 0000  
---0 0000  
0000 0000  
0--- x000  
---- ----  
--00 0000  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
---0 0000  
0000 0000  
---- q000  
--------  
--00 0000  
0000 0000  
CCP1IE  
CCP1IF  
TMR2IE  
TMR2IF  
TMR1IE  
TMR1IF  
PIR1  
EEADRH4 EEADRH3 EEADRH2 EEADRH1 EEADRH0  
EEADRH  
EEADRL  
EECON1  
EECON2  
EEDATH  
EEDATL  
Legend:  
EEADRL7 EEADRL6 EEADRL5 EEADRL4 EEADRL3 EEADRL2 EEADRL1 EEADRL0  
EEPGD WRERR WREN WR RD  
EEPROM Control Register 2 (not a physical register)  
EEDATH5 EEDATH4 EEDATH3 EEDATH2 EEDATH1 EEDATH0  
EEDATL7 EEDATL6 EEDATL5 EEDATL4 EEDATL3 EEDATL2 EEDATL1 EEDATL0  
x= unknown, u= unchanged, -= unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by data EEPROM module.  
DS41250F-page 192  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 14-1:  
SSP BLOCK DIAGRAM  
(SPI MODE)  
14.0 SSP MODULE OVERVIEW  
The Synchronous Serial Port (SSP) module is a serial  
interface used to communicate with other peripheral or  
microcontroller devices. These peripheral devices  
may be serial EEPROMs, shift registers, display  
drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
Internal  
Data Bus  
Read  
Write  
SSPBUF Reg  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
Refer to Application Note AN578, “Use of the SSP  
Module in the Multi-Master Environment” (DS00578).  
SSPSR Reg  
SDI/SDA  
SDO  
Shift  
Clock  
bit 0  
14.1 SPI Mode  
Peripheral OE  
This section contains register definitions and operational  
characteristics of the SPI module.  
Control  
Enable  
SS  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. To accomplish  
communication, typically three pins are used:  
SS  
Edge  
Select  
• Serial Data Out (SDO)  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
2
Clock Select  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
SSPM<3:0>  
4
TMR2 Output  
2
• Slave Select (SS)  
Edge  
Note 1: When the SPI is in Slave mode with SS  
pin control enabled (SSPM<3:0> bits of  
the SSPCON register = 0100), the SPI  
module will reset if the SS pin is set to  
VDD.  
Select  
TCY  
Prescaler  
4, 16, 64  
SCK/  
SCL  
TRISC<6>  
2: If the SPI is used in Slave mode with  
CKE = 1, then the SS pin control must be  
enabled.  
3: When the SPI is in Slave mode with SS  
pin control enabled (SSPM<3:0> bits of  
the SSPCON register = 0100), the state  
of the SS pin can affect the state read  
back from the TRISC<4> bit. The  
peripheral OE signal from the SSP  
module into PORTC controls the state  
that is read back from the TRISC<4> bit  
(see Section 19.0 “Electrical  
Specifications” for information on  
PORTC). If read-write-modify  
instructions, such as BSF,are performed  
on the TRISC register while the SS pin is  
high, this will cause the TRISC<4> bit to  
be set, thus disabling the SDO output.  
© 2007 Microchip Technology Inc.  
DS41250F-page 193  
PIC16F913/914/916/917/946  
REGISTER 14-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
SMP: SPI Data Input Sample Phase bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time (Microwire)  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
2
I C™ mode:  
This bit must be maintained clear  
bit 6  
CKE: SPI Clock Edge Select bit  
SPI mode, CKP = 0:  
1= Data stable on rising edge of SCK (Microwire alternate)  
0= Data stable on falling edge of SCK  
SPI mode, CKP = 1:  
1= Data stable on falling edge of SCK (Microwire default)  
0= Data stable on rising edge of SCK  
2
I C mode:  
This bit must be maintained clear  
2
bit 5  
bit 4  
D/A: DATA/ADDRESS bit (I C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
2
P: Stop bit (I C mode only)  
This bit is cleared when the SSP module is disabled, or when the Start bit is detected last.  
SSPEN is cleared.  
1= Indicates that a Stop bit has been detected last (this bit is ‘0’ on Reset)  
0= Stop bit was not detected last  
2
bit 3  
bit 2  
S: Start bit (I C mode only)  
This bit is cleared when the SSP module is disabled, or when the Stop bit is detected last.  
SSPEN is cleared.  
1= Indicates that a Start bit has been detected last (this bit is ‘0’ on Reset)  
0= Start bit was not detected last  
2
R/W: READ/WRITE bit Information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the address match  
to the next Start bit, Stop bit or ACK bit.  
1= Read  
0= Write  
2
bit 1  
bit 0  
UA: Update Address bit (10-bit I C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes):  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only):  
1= Transmit in progress, SSPBUF is full  
0= Transmit complete, SSPBUF is empty  
DS41250F-page 194  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
REGISTER 14-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
(2)  
(2)  
(2)  
(2)  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
WCOL: Write Collision Detect bit  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)  
0= No collision  
SSPOV: Receive Overflow Indicator bit  
In SPI mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the  
data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only  
transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new recep-  
tion (and transmission) is initiated by writing to the SSPBUF register.  
0= No overflow  
2
In I C™ mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a “don’t care” in  
Transmit mode. SSPOV must be cleared in software in either mode.  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode:  
1= Enables serial port and configures SCK, SDO and SDI as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
2
In I C mode:  
1= Enables the serial port and configures the SDA and SCL pins as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
In both modes, when enabled, these pins must be properly configured as input or output.  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= Idle state for clock is a high level (Microwire default)  
0= Idle state for clock is a low level (Microwire alternate)  
2
In I C mode:  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
2
0110= I C Slave mode, 7-bit address  
2
0111= I C Slave mode, 10-bit address  
1000= Reserved  
1001= Reserved  
1010= Reserved  
2
1011= I C Firmware Controlled Master mode (slave IDLE)  
1100= Reserved  
1101= Reserved  
2
1110= I C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
2
1111= I C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
© 2007 Microchip Technology Inc.  
DS41250F-page 195  
PIC16F913/914/916/917/946  
When the application software is expecting to receive  
14.2 Operation  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
Full bit BF of the SSPSTAT register indicates when  
SSPBUF has been loaded with the received data  
(transmission is complete). When the SSPBUF is read,  
the BF bit is cleared. This data may be irrelevant if the  
SPI is only a transmitter. Generally, the SSP interrupt is  
used to determine when the transmission/reception  
has completed. The SSPBUF must be read and/or  
written. If the interrupt method is not going to be used,  
then software polling can be done to ensure that a write  
collision does not occur. Example 14-1 shows the  
loading of the SSPBUF (SSPSR) for data transmission.  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
• Data Input Sample Phase (middle or end of data  
output time)  
• Clock Edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
The SSPSR is not directly readable or writable and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the SSP STATUS register (SSPSTAT)  
indicates the various status conditions.  
• Slave Select mode (Slave mode only)  
The SSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR  
until the received data is ready. Once the eight bits of  
data have been received, that byte is moved to the  
SSPBUF register. Then, the Buffer Full Status bit BF of  
the SSPSTAT register, and the interrupt flag bit SSPIF,  
are set. Any write to the SSPBUF register during  
transmission/reception of data will be ignored and the  
Write Collision Detect bit, WCOL of the SSPCON  
register, will be set. User software must clear the  
WCOL bit so that it can be determined if the following  
write(s) to the SSPBUF register completed  
successfully.  
EXAMPLE 14-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
BANKSEL  
BTFSS  
GOTO  
SSPSTAT  
SSPSTAT, BF  
LOOP  
;
LOOP  
;Has data been received(transmit complete)?  
;No  
BANKSEL  
MOVF  
MOVWF  
MOVF  
SSPBUF  
SSPBUF, W  
RXDATA  
TXDATA, W  
SSPBUF  
;
;WREG reg = contents of SSPBUF  
;Save in user RAM, if data is meaningful  
;W reg = contents of TXDATA  
;New data to xmit  
MOVWF  
DS41250F-page 196  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
14.3 Enabling SPI I/O  
14.4 Typical Connection  
To enable the serial port, SSP Enable bit SSPEN of the  
SSPCON register must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, re-initialize the  
SSPCON registers and then set the SSPEN bit. This  
configures the SDI, SDO, SCK and SS pins as serial  
port pins. For the pins to behave as the serial port  
function, their data direction bits (in the TRISA and  
TRISC registers) should be set as follows:  
Figure 14-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their  
programmed clock edge and latched on the opposite  
edge of the clock. Both processors should be  
programmed to the same Clock Polarity (CKP), then  
both controllers would send and receive data at the  
same time. Whether the data is meaningful (or dummy  
data) depends on the application software. This leads  
to three scenarios for data transmission:  
• TRISC<7> bit must be set  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<4> bit cleared  
• Master sends data – Slave sends dummy data  
• Master sends data – Slave sends data  
• SCK (Master mode) must have TRISC<6> bit  
cleared  
• Master sends dummy data – Slave sends data  
• SCK (Slave mode) must have TRISC<6> bit set  
• If enabled, SS must have TRISA<5> bit set  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRISA and TRISC) registers to the opposite  
value.  
FIGURE 14-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM<3:0> = 00xxb  
SPI Slave SSPM<3:0> = 010xb  
SDI  
SDO  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
Processor 1  
Processor 2  
© 2007 Microchip Technology Inc.  
DS41250F-page 197  
PIC16F913/914/916/917/946  
The clock polarity is selected by appropriately  
14.5 Master Mode  
programming the CKP bit of the SSPCON register. This  
then, would give waveforms for SPI communication as  
shown in Figure 14-3, Figure 14-5 and Figure 14-6,  
where the MSB is transmitted first. In Master mode, the  
SPI clock rate (bit rate) is user programmable to be one  
of the following:  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 14-2) is to  
broadcast data by the software protocol.  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be  
disabled (programmed as an input). The SSPSR  
register will continue to shift in the signal present on the  
SDI pin at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and Status bits  
appropriately set). This could be useful in receiver  
applications as a Line Activity Monitor mode.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
This allows a maximum data rate (at 20 MHz) of  
5 Mbps.  
Figure 14-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
FIGURE 14-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
SDO  
(CKE = 0)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS41250F-page 198  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
even if in the middle of a transmitted byte, and becomes  
a floating output. External pull-up/pull-down resistors  
may be desirable, depending on the application.  
14.6 Slave Mode  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
Note 1: When the SPI is in Slave mode with SS  
pin control enabled (SSPCON<3:0> =  
0100), the SPI module will reset if the SS  
pin is set to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: If the SPI is used in Slave Mode with CKE  
set, then the SS pin control must be  
enabled.  
While in Sleep mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from Sleep.  
When the SPI module resets, the bit counter is forced  
to 0. This can be done by either forcing the SS pin to a  
high level or clearing the SSPEN bit.  
14.7 Slave Select Synchronization  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
The SS pin allows a Synchronous Slave mode. The SPI  
must be in Slave mode with SS pin control enabled  
(SSPCON<3:0> = 0100). The pin must not be driven  
low for the SS pin to function as an input. The data latch  
must be high. When the SS pin is low, transmission and  
reception are enabled and the SDO pin is driven. When  
the SS pin goes high, the SDO pin is no longer driven,  
FIGURE 14-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 7  
bit 7  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
© 2007 Microchip Technology Inc.  
DS41250F-page 199  
PIC16F913/914/916/917/946  
FIGURE 14-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 14-6:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS41250F-page 200  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
14.8 Sleep Operation  
14.10 Bus Mode Compatibility  
In Master mode, all module clocks are halted and the  
transmission/reception will remain in that state until the  
device wakes from Sleep. After the device returns to  
Normal mode, the module will continue to  
transmit/receive data.  
Table 14-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
TABLE 14-1: SPI BUS MODES  
In Slave mode, the SPI Transmit/Receive Shift register  
operates asynchronously to the device. This allows the  
device to be placed in Sleep mode and data to be  
shifted into the SPI Transmit/Receive Shift register.  
When all 8 bits have been received, the SSP interrupt  
flag bit will be set and if enabled, will wake the device  
from Sleep.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
14.9 Effects of a Reset  
There is also a SMP bit which controls when the data is  
sampled.  
A Reset disables the SSP module and terminates the  
current transfer.  
TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
POR, BOR other Resets  
Value on all  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
LCDCON  
LCDSE0  
LCDSE1  
PIE1  
GIE  
LCDEN  
SE7  
PEIE  
SLPEN  
SE6  
T0IE  
INTE  
RBIE  
CS1  
T0IF  
CS0  
INTF  
LMUX1  
SE1  
RBIF  
0000 000x 0000 000x  
WERR VLCDEN  
LMUX0 0001 0011 0001 0011  
SE5  
SE13  
RCIE  
RCIF  
SREN  
SE4  
SE12  
TXIE  
TXIF  
SE3  
SE2  
SE0  
SE8  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
SE15  
EEIE  
SE14  
ADIE  
ADIF  
RX9  
SE11  
SE10  
SE9  
SSPIE  
SSPIF  
ADDEN  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
PIR1  
EEIF  
0000 000x  
xxxx xxxx uuuu uuuu  
SSPM0 0000 0000 0000 0000  
BF 0000 0000 0000 0000  
RCSTA  
SPEN  
CREN  
FERR  
OERR  
RX9D  
0000 000x  
SSPBUF  
SSPCON  
SSPSTAT  
TRISA  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 1111 1111  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the SSP in SPI mode.  
TRISC  
Legend:  
© 2007 Microchip Technology Inc.  
DS41250F-page 201  
PIC16F913/914/916/917/946  
The SSPCON register allows control of the I2C  
2
14.11 SSP I C Operation  
operation. Four mode selection bits (SSPCON<3:0>)  
The SSP module in I2C mode, fully implements all slave  
functions, except general call support, and provides  
interrupts on Start and Stop bits in hardware to facilitate  
firmware implementations of the master functions. The  
SSP module implements the Standard mode  
specifications, as well as 7-bit and 10-bit addressing.  
allow one of the following I2C modes to be selected:  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
• I2C Slave mode (7-bit address), with Start and  
Stop bit interrupts enabled to support Firmware  
Master mode  
• I2C Slave mode (10-bit address), with Start and  
Stop bit interrupts enabled to support Firmware  
Master mode  
• I2C Start and Stop bit interrupts enabled to  
support Firmware Master mode; Slave is idle  
Two pins are used for data transfer. These are the  
RC6/TX/CK/SCK/SCL/SEG9 pin, which is the clock  
(SCL), and the RC7/RX/DT/SDI/SDA/SEG8 pin, which  
is the data (SDA).  
The SSP module functions are enabled by setting SSP  
enable bit SSPEN (SSPCON<5>).  
Selection of any I2C mode with the SSPEN bit set  
forces the SCL and SDA pins to be open drain,  
provided these pins are programmed to inputs by  
setting the appropriate TRISC bits. Pull-up resistors  
must be provided externally to the SCL and SDA pins  
for proper operation of the I2C module.  
FIGURE 14-7:  
SSP BLOCK DIAGRAM  
(I2C™ MODE)  
Internal  
Data Bus  
Read  
Write  
14.12 Slave Mode  
SCK/  
SCL  
SSPBUF Reg  
In Slave mode, the SCL and SDA pins must be  
configured as inputs (TRISC<7,6> are set). The SSP  
module will override the input state with the output data  
when required (slave-transmitter).  
Shift  
Clock  
SSPSR Reg  
When an address is matched, or the data transfer after  
an address match is received, the hardware  
automatically will generate the Acknowledge (ACK)  
pulse, and then load the SSPBUF register with the  
received value currently in the SSPSR register.  
SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match Detect  
There are certain conditions that will cause the SSP  
module not to give this ACK pulse. They include (either  
or both):  
SSPADD Reg  
Set, Reset  
S, P bits  
(SSPSTAT Reg.)  
Start and  
Stop bit Detect  
a) The Buffer Full bit BF of the SSPSTAT register  
was set before the transfer was received.  
b) The overflow bit SSPOV of the SSPCON  
register was set before the transfer was  
received.  
The SSP module has five registers for the I2C operation,  
which are listed below.  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF of the PIR1 register is  
set. Table 14-3 shows the results of when a data  
transfer byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow  
condition. Flag bit BF is cleared by reading the  
SSPBUF register, while bit SSPOV is cleared through  
software.  
• SSP Control register (SSPCON)  
• SSP STATUS register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• SSP Shift register (SSPSR) – Not directly  
accessible  
• SSP Address register (SSPADD)  
The SCL clock input must have a minimum high and low  
for proper operation. For high and low times of the I2C  
specification, as well as the requirements of the SSP  
module, see Section 19.0 “Electrical Specifications”.  
DS41250F-page 202  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
The sequence of events for 10-bit address is as  
follows, with steps 7-9 for slave-transmitter:  
14.12.1 ADDRESSING  
Once the SSP module has been enabled, it waits for a  
Start condition to occur. Following the Start condition,  
the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of register SSPADD <7:1>. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
1. Receive first (high) byte of address (bits SSPIF,  
BF and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of address (bits  
SSPIF, BF and UA are set).  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
5. Update the SSPADD register with the first (high)  
byte of address; if match releases SCL line, this  
will clear bit UA.  
b) The buffer full bit, BF is set.  
c) An ACK pulse is generated.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
d) SSP interrupt flag bit, SSPIF of the PIR1 register  
is set (interrupt is generated if enabled) on the  
falling edge of the ninth SCL pulse.  
7. Receive repeated Start condition.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
In 10-bit Address mode, two address bytes need to be  
received by the slave (Figure 14-8). The five Most  
Significant bits (MSbs) of the first address byte specify  
if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must  
specify a write so the slave device will receive the  
second address byte. For a 10-bit address, the first  
byte would equal ‘1111 0 A9 A8 0’, where A9and  
A8are the two MSbs of the address.  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
TABLE 14-3: DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Set bit SSPIF  
(SSP Interrupt occurs  
if enabled)  
Generate ACK  
Transfer is Received  
SSPSR SSPBUF  
Pulse  
BF  
SSPOV  
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
1
1
0
Note:  
Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
© 2007 Microchip Technology Inc.  
DS41250F-page 203  
PIC16F913/914/916/917/946  
14.12.2 RECEPTION  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
When the address byte overflow condition exists, then  
no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF of the SSPSTAT  
register is set, or bit SSPOV of the SSPCON register is  
set. This is an error condition due to the user’s firm-  
ware.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF of the PIR1 register must be  
cleared in software. The SSPSTAT register is used to  
determine the status of the byte.  
FIGURE 14-8:  
I2C™ WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
R/W = 0  
ACK  
Receiving Address  
A7 A6 A5 A4 A3 A2  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
SDA  
SCL  
A1  
7
D2 D1 D0  
D4  
D3  
D7 D6 D5 D4 D3 D2 D1 D0  
D7  
1
D6 D5  
1
2
3
4
5
6
8
9
1
2
3
4
5
6
8
2
3
4
5
6
7
8
7
P
S
SSPIF (PIR1<3>)  
Cleared in software  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
DS41250F-page 204  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 14-9:  
I2C™ SLAVE MODE TIMING (RECEPTION, 10-BIT ADDRESS)  
© 2007 Microchip Technology Inc.  
DS41250F-page 205  
PIC16F913/914/916/917/946  
An SSP interrupt is generated for each data transfer  
14.12.3 TRANSMISSION  
byte. Flag bit SSPIF must be cleared in software, and  
the SSPSTAT register is used to determine the status  
of the byte. Flag bit SSPIF is set on the falling edge of  
the ninth clock pulse.  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
As a slave-transmitter, the ACK pulse from the master  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line was high (not ACK), then  
the data transfer is complete. When the ACK is latched  
by the slave, the slave logic is reset (resets SSPSTAT  
register) and the slave then monitors for another  
occurrence of the Start bit. If the SDA line was low  
(ACK), the transmit data must be loaded into the  
SSPBUF register, which also loads the SSPSR  
register. Then pin RC6/TX/CK/SCK/SCL/SEG9 should  
be enabled by setting bit CKP.  
be  
sent  
on  
the  
ninth  
bit,  
and  
pin  
RC6/TX/CK/SCK/SCL/SEG9 is held low. The transmit  
data must be loaded into the SSPBUF register, which  
also loads the SSPSR register. Then, pin  
RC6/TX/CK/SCK/SCL/SEG9 should be enabled by  
setting bit CKP of the SSPCON register. The master  
must monitor the SCL pin prior to asserting another  
clock pulse. The slave devices may be holding off the  
master by stretching the clock. The eight data bits are  
shifted out on the falling edge of the SCL input. This  
ensures that the SDA signal is valid during the SCL high  
time (Figure 14-10).  
FIGURE 14-10:  
I2C™ WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
ACK  
9
SDA  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
SCL  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
Cleared in software  
SSPIF (PIR1<3>)  
BF (SSPSTAT<0>)  
From SSP Interrupt  
Service Routine  
SSPBUF is written in software  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to  
before the CKP bit can be set)  
DS41250F-page 206  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
2
FIGURE 14-11:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESS)  
© 2007 Microchip Technology Inc.  
DS41250F-page 207  
PIC16F913/914/916/917/946  
14.13 Master Mode  
14.14 Multi-Master Mode  
Master mode of operation is supported in firmware  
using interrupt generation on the detection of the Start  
and Stop conditions. The Stop (P) and Start (S) bits are  
cleared from a Reset or when the SSP module is  
disabled. The Stop (P) and Start (S) bits will toggle  
based on the Start and Stop conditions. Control of the  
I2C bus may be taken when the P bit is set or the bus  
is idle and both the S and P bits are clear.  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions, allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the SSP  
module is disabled. The Stop (P) and Start (S) bits will  
toggle based on the Start and Stop conditions. Control  
of the I2C bus may be taken when bit P (SSPSTAT<4>)  
is set, or the bus is idle and both the S and P bits clear.  
When the bus is busy, enabling the SSP Interrupt will  
generate the interrupt when the Stop condition occurs.  
In Master mode, the SCL and SDA lines are  
manipulated  
by  
clearing  
the  
corresponding  
TRISC<7,6> bit(s). The output level is always low,  
irrespective of the value(s) in PORTC<7,6>. So when  
transmitting data, a ‘1’ data bit must have the  
TRISC<6> bit set (input) and a ‘0’ data bit must have  
the TRISC<7> bit cleared (output). The same scenario  
is true for the SCL line with the TRISC<6> bit. Pull-up  
resistors must be provided externally to the SCL and  
SDA pins for proper operation of the I2C module.  
In Multi-Master operation, the SDA line must be  
monitored to see if the signal level is the expected  
output level. This check only needs to be done when a  
high level is output. If a high level is expected and a low  
level is present, the device needs to release the SDA  
and SCL lines (set TRISC<7,6>). There are two stages  
where this arbitration can be lost, these are:  
• Address Transfer  
• Data Transfer  
The following events will cause the SSP Interrupt Flag  
bit, SSPIF, to be set (SSP Interrupt will occur if  
enabled):  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address  
transfer stage, communication to the device may be in  
progress. If addressed, an ACK pulse will be generated.  
If arbitration was lost during the data transfer stage, the  
device will need to re-transfer the data at a later time.  
• Start condition  
• Stop condition  
• Data transfer byte transmitted/received  
Master mode of operation can be done with either the  
Slave mode idle (SSPM<3:0> = 1011), or with the  
Slave active. When both Master and Slave modes are  
enabled, the software needs to differentiate the  
source(s) of the interrupt.  
14.14.1 CLOCK SYNCHRONIZATION AND  
THE CKP BIT  
When the CKP bit is cleared, the SCL output is forced  
to ‘0’; however, setting the CKP bit will not assert the  
SCL output low until the SCL output is already sampled  
low. Therefore, the CKP bit will not assert the SCL line  
until an external I2C master device has already  
asserted the SCL line. The SCL output will remain low  
until the CKP bit is set and all other devices on the I2C  
bus have deasserted SCL. This ensures that a write to  
the CKP bit will not violate the minimum high time  
requirement for SCL (see Figure 14-12).  
DS41250F-page 208  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 14-12:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX-1  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPCON  
TABLE 14-4: SUMMARY OF REGISTERS ASSOCIATED WITH I2C™ OPERATION  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
LCDCON  
LCDSE1  
PIE1  
GIE  
LCDEN  
SE15  
EEIE  
PEIE  
SLPEN  
SE14  
ADIE  
ADIF  
T0IE  
INTE  
RBIE  
CS1  
T0IF  
CS0  
INTF  
LMUX1  
SE9  
RBIF  
0000 000x 0000 000x  
WERR VLCDEN  
LMUX0 0001 0011 0001 0011  
SE8 0000 0000 0000 0000  
SE13  
RCIE  
RCIF  
SREN  
SE12  
TXIE  
SE11  
SE10  
SSPIE  
SSPIF  
ADDEN  
CCP1IE TMR2IF TMR1IF 0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x  
xxxx xxxx uuuu uuuu  
SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
R/W UA BF 0000 0000 0000 0000  
PIR1  
EEIF  
TXIF  
CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
RCSTA  
SPEN  
RX9  
CREN  
0000 000x  
SSPBUF  
SSPCON  
SSPSTAT  
TRISC  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL  
SSPOV SSPEN  
CKP  
P
(1)  
(1)  
SMP  
CKE  
D/A  
S
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
Legend:  
– = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the SSP module.  
Note 1: Maintain these bits clear.  
© 2007 Microchip Technology Inc.  
DS41250F-page 209  
PIC16F913/914/916/917/946  
NOTES:  
DS41250F-page 210  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 15-1: CCP MODE – TIMER  
RESOURCES REQUIRED  
15.0 CAPTURE/COMPARE/PWM  
(CCP) MODULE  
CCP Mode  
Timer Resource  
The Capture/Compare/PWM module is a peripheral  
which allows the user to time and control different  
events. In Capture mode, the peripheral allows the  
timing of the duration of an event. The Compare mode  
allows the user to trigger an external event when a  
predetermined amount of time has expired. The PWM  
mode can generate a Pulse-Width Modulated signal of  
varying frequency and duty cycle.  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
The timer resources used by the module are shown in  
Table 15-1.  
Additional information on CCP modules is available in  
the Application Note AN594, “Using the CCP Modules”  
(DS00594).  
TABLE 15-2: INTERACTION OF TWO CCP MODULES  
CCPx Mode  
CCPy Mode  
Interaction  
Capture  
Capture  
Compare  
PWM  
Capture  
Compare  
Compare  
PWM  
Same TMR1 time base  
Same TMR1 time base  
Same TMR1 time base  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
The rising edges will be aligned.  
PWM  
PWM  
Capture  
None  
None  
Compare  
Note:  
CCPRx and CCPx throughout this  
document refer to CCPR1 or CCPR2 and  
CCP1 or CCP2, respectively.  
© 2007 Microchip Technology Inc.  
DS41250F-page 211  
PIC16F913/914/916/917/946  
REGISTER 15-1: CCPxCON: CCPx CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCPxX  
CCPxY  
CCP1M3  
CCP1M2  
CCP1M1  
CCP1M0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
CCPxX:CCPxY: PWM Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0  
CCPxM<3:0>: CCP Mode Select bits  
0000= Capture/Compare/PWM off (resets CCP module)  
0001= Unused (reserved)  
0010= Unused (reserved)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCPxIF bit is set)  
1001= Compare mode, clear output on match (CCPxIF bit is set)  
1010= Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin  
is unaffected)  
1011= Compare mode, trigger special event (CCPxIF bit is set, TMR1 is reset and A/D  
conversion is started if the ADC module is enabled. CCPx pin is unaffected.)  
11xx= PWM mode.  
DS41250F-page 212  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
15.1.2  
TIMER1 MODE SELECTION  
15.1 Capture Mode  
Timer1 must be running in Timer mode or Synchronized  
Counter mode for the CCP module to use the capture  
feature. In Asynchronous Counter mode, the capture  
operation may not work.  
In Capture mode, CCPRxH:CCPRxL captures the  
16-bit value of the TMR1 register when an event occurs  
on pin CCPx. An event is defined as one of the  
following and is configured by the CCPxM<3:0> bits of  
the CCPxCON register:  
15.1.3  
SOFTWARE INTERRUPT  
• Every falling edge  
• Every rising edge  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCPxIE interrupt enable bit of the PIEx register clear to  
avoid false interrupts. Additionally, the user should  
clear the CCPxIF interrupt flag bit of the PIRx register  
following any change in operating mode.  
• Every 4th rising edge  
• Every 16th rising edge  
When a capture is made, the Interrupt Request Flag bit  
CCPxIF of the PIRx register is set. The interrupt flag  
must be cleared in software. If another capture occurs  
before the value in the CCPRxH, CCPRxL register pair  
is read, the old captured value is overwritten by the new  
captured value (see Figure 15-1).  
15.1.4  
CCP PRESCALER  
There are four prescaler settings specified by the  
CCPxM<3:0> bits of the CCPxCON register. Whenever  
the CCP module is turned off, or the CCP module is not  
in Capture mode, the prescaler counter is cleared. Any  
Reset will clear the prescaler counter.  
15.1.1  
CCPx PIN CONFIGURATION  
In Capture mode, the CCPx pin should be configured  
as an input by setting the associated TRIS control bit.  
Switching from one capture prescaler to another does not  
clear the prescaler and may generate a false interrupt. To  
avoid this unexpected operation, turn the module off by  
clearing the CCPxCON register before changing the  
prescaler (see Example 15-1).  
Note:  
If the CCPx pin is configured as an output,  
a write to the port can cause a capture  
condition.  
FIGURE 15-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
EXAMPLE 15-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
BANKSELCCP1CON  
;Set Bank bits to point  
;to CCP1CON  
;Turn CCP module off  
Set Flag bit CCPxIF  
(PIRx register)  
Prescaler  
÷ 1, 4, 16  
CLRF  
CCP1CON  
MOVLW  
NEW_CAPT_PS;Load the W reg with  
; the new prescaler  
CCPx  
pin  
CCPRxH  
CCPRxL  
; move value and CCP ON  
Capture  
Enable  
MOVWF  
CCP1CON  
;Load CCP1CON with this  
; value  
and  
Edge Detect  
TMR1H  
TMR1L  
CCPxCON<3:0>  
System Clock (FOSC)  
© 2007 Microchip Technology Inc.  
DS41250F-page 213  
PIC16F913/914/916/917/946  
15.2.2  
TIMER1 MODE SELECTION  
15.2 Compare Mode  
In Compare mode, Timer1 must be running in either  
Timer mode or Synchronized Counter mode. The  
compare operation may not work in Asynchronous  
Counter mode.  
In Compare mode, the 16-bit CCPRx register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the CCPx module may:  
Toggle the CCPx output.  
• Set the CCPx output.  
15.2.3  
SOFTWARE INTERRUPT MODE  
• Clear the CCPx output.  
When Generate Software Interrupt mode is chosen  
(CCPxM<3:0> = 1010), the CCPx module does not  
assert control of the CCPx pin (see the CCPxCON  
register).  
• Generate a Special Event Trigger.  
• Generate a Software Interrupt.  
The action on the pin is based on the value of the  
CCPxM<3:0> control bits of the CCPxCON register.  
15.2.4  
SPECIAL EVENT TRIGGER  
All Compare modes can generate an interrupt.  
When Special Event Trigger mode is chosen  
(CCPxM<3:0> = 1011), the CCPx module does the  
following:  
FIGURE 15-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
• Resets Timer1  
• Starts an ADC conversion if ADC is enabled  
CCPxCON<3:0>  
Mode Select  
The CCPx module does not assert control of the CCPx  
pin in this mode (see the CCPxCON register).  
Set CCPxIF Interrupt Flag  
The Special Event Trigger output of the CCP occurs  
immediately upon a match between the TMR1H,  
TMR1L register pair and the CCPRxH, CCPRxL  
register pair. The TMR1H, TMR1L register pair is not  
reset until the next rising edge of the Timer1 clock. This  
allows the CCPRxH, CCPRxL register pair to  
effectively provide a 16-bit programmable period  
register for Timer1.  
(PIRx)  
4
CCPx  
Pin  
CCPRxH CCPRxL  
Comparator  
Q
S
R
Output  
Logic  
Match  
TMR1H TMR1L  
TRIS  
Output Enable  
Special Event Trigger  
Note 1: The Special Event Trigger from the CCP  
module does not set interrupt flag bit  
TMRxIF of the PIR1 register.  
Special Event Trigger will:  
Clear TMR1H and TMR1L registers.  
NOT set interrupt flag bit TMR1IF of the PIR1 register.  
Set the GO/DONE bit to start the ADC conversion.  
2: Removing the match condition by  
changing the contents of the CCPRxH  
and CCPRxL register pair, between the  
clock edge that generates the Special  
Event Trigger and the clock edge that  
generates the Timer1 Reset, will preclude  
the Reset from occurring.  
15.2.1  
CCPx PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the associated TRIS bit.  
Note:  
Clearing the CCPxCON register will force  
the CCPx compare output latch to the  
default low level. This is not the PORT I/O  
data latch.  
DS41250F-page 214  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
The PWM output (Figure 15-2) has a time base  
(period) and a time that the output stays high (duty  
cycle).  
15.3 PWM Mode  
The PWM mode generates a Pulse-Width Modulated  
signal on the CCPx pin. The duty cycle, period and  
resolution are determined by the following registers:  
FIGURE 15-4:  
CCP PWM OUTPUT  
• PR2  
Period  
• T2CON  
• CCPRxL  
• CCPxCON  
Pulse Width  
TMR2 = PR2  
TMR2 = CCPRxL:CCPxCON<5:4>  
In Pulse-Width Modulation (PWM) mode, the CCP  
module produces up to a 10-bit resolution PWM output  
on the CCPx pin. Since the CCPx pin is multiplexed  
with the PORT data latch, the TRIS for that pin must be  
cleared to enable the CCPx pin output driver.  
TMR2 = 0  
Note:  
Clearing the CCPxCON register will  
relinquish CCPx control of the CCPx pin.  
Figure 15-3 shows a simplified block diagram of PWM  
operation.  
Figure 15-4 shows a typical waveform of the PWM  
signal.  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 15.3.7  
“Setup for PWM Operation”.  
FIGURE 15-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCPxCON<5:4>  
Duty Cycle Registers  
CCPRxL  
CCPRxH(2) (Slave)  
CCPx  
R
S
Q
Comparator  
(1)  
TMR2  
TRIS  
Comparator  
PR2  
Clear Timer2,  
toggle CCPx pin and  
latch duty cycle  
Note 1: The 8-bit timer TMR2 register is concatenated  
with the 2-bit internal system clock (FOSC), or  
2 bits of the prescaler, to create the 10-bit time  
base.  
2: In PWM mode, CCPRxH is a read-only register.  
© 2007 Microchip Technology Inc.  
DS41250F-page 215  
PIC16F913/914/916/917/946  
15.3.1  
PWM PERIOD  
EQUATION 15-2: PULSE WIDTH  
The PWM period is specified by the PR2 register of  
Timer2. The PWM period can be calculated using the  
formula of Equation 15-1.  
Pulse Width = (CCPRxL:CCPxCON<5:4>) •  
TOSC (TMR2 Prescale Value)  
EQUATION 15-1: PWM PERIOD  
EQUATION 15-3: DUTY CYCLE RATIO  
PWM Period = [(PR2) + 1] • 4 TOSC •  
(TMR2 Prescale Value)  
(CCPRxL:CCPxCON<5:4>)  
Duty Cycle Ratio = ----------------------------------------------------------------------  
4(PR2 + 1)  
Note:  
TOSC = 1/FOSC  
The CCPRxH register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
• TMR2 is cleared  
The 8-bit timer TMR2 register is concatenated with  
either the 2-bit internal system clock (FOSC), or 2 bits of  
the prescaler, to create the 10-bit time base. The system  
clock is used if the Timer2 prescaler is set to 1:1.  
• The CCPx pin is set. (Exception: If the PWM duty  
cycle = 0%, the pin will not be set.)  
• The PWM duty cycle is latched from CCPRxL into  
CCPRxH.  
When the 10-bit time base matches the CCPRxH and  
2-bit latch, then the CCPx pin is cleared (see  
Figure 15-3).  
Note:  
The Timer2 postscaler (see Section 7.1  
“Timer2 Operation”) is not used in the  
determination of the PWM frequency.  
15.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing a 10-bit value  
to multiple registers: CCPRxL register and CCPx<1:0>  
bits of the CCPxCON register. The CCPRxL contains  
the eight MSbs and the CCPx<1:0> bits of the  
CCPxCON register contain the two LSbs. CCPRxL and  
CCPx<1:0> bits of the CCPxCON register can be written  
to at any time. The duty cycle value is not latched into  
CCPRxH until after the period completes (i.e., a match  
between PR2 and TMR2 registers occurs). While using  
the PWM, the CCPRxH register is read-only.  
Equation 15-2 is used to calculate the PWM pulse  
width.  
Equation 15-3 is used to calculate the PWM duty cycle  
ratio.  
DS41250F-page 216  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
15.3.3  
PWM RESOLUTION  
EQUATION 15-4: PWM RESOLUTION  
The resolution determines the number of available duty  
cycles for a given period. For example, a 10-bit resolution  
will result in 1024 discrete duty cycles, whereas an 8-bit  
resolution will result in 256 discrete duty cycles.  
log[4(PR2 + 1)]  
Resolution = ----------------------------------------- bits  
log(2)  
The maximum PWM resolution is 10 bits when PR2 is  
255. The resolution is a function of the PR2 register  
value as shown by Equation 15-4.  
Note:  
If the pulse width value is greater than the  
period the assigned PWM pin(s) will  
remain unchanged.  
TABLE 15-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)  
PWM Frequency  
1.22 kHz  
4.88 kHz  
19.53 kHz  
78.12 kHz  
156.3 kHz  
208.3 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
6.6  
Maximum Resolution (bits)  
TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)  
PWM Frequency  
1.22 kHz  
4.90 kHz  
19.61 kHz  
76.92 kHz  
153.85 kHz 200.0 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0x65  
8
4
0x65  
8
1
0x65  
8
1
0x19  
6
1
0x0C  
5
1
0x09  
5
Maximum Resolution (bits)  
© 2007 Microchip Technology Inc.  
DS41250F-page 217  
PIC16F913/914/916/917/946  
15.3.4  
OPERATION IN SLEEP MODE  
15.3.7  
SETUP FOR PWM OPERATION  
In Sleep mode, the TMR2 register will not increment  
and the state of the module will not change. If the CCPx  
pin is driving a value, it will continue to drive that value.  
When the device wakes up, TMR2 will continue from its  
previous state.  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Disable the PWM pin (CCPx) output drivers by  
setting the associated TRIS bit.  
2. Set the PWM period by loading the PR2 register.  
3. Configure the CCP module for the PWM mode  
by loading the CCPxCON register with the  
appropriate values.  
15.3.5  
CHANGES IN SYSTEM CLOCK  
FREQUENCY  
The PWM frequency is derived from the system clock  
frequency. Any changes in the system clock frequency  
will result in changes to the PWM frequency. See  
Section 4.0 “Oscillator Module (With Fail-Safe  
Clock Monitor)” for additional details.  
4. Set the PWM duty cycle by loading the CCPRxL  
register and CCPx bits of the CCPxCON register.  
5. Configure and start Timer2:  
• Clear the TMR2IF interrupt flag bit of the  
PIR1 register.  
15.3.6  
EFFECTS OF RESET  
• Set the Timer2 prescale value by loading the  
T2CKPS bits of the T2CON register.  
Any Reset will force all ports to Input mode and the  
CCP registers to their Reset states.  
• Enable Timer2 by setting the TMR2ON bit of  
the T2CON register.  
6. Enable PWM output after a new PWM cycle has  
started:  
• Wait until Timer2 overflows (TMR2IF bit of  
the PIR1 register is set).  
• Enable the CCPx pin output driver by  
clearing the associated TRIS bit.  
TABLE 15-5: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND PWM  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
CCPxCON  
CCPRxL  
CCPRxH  
CMCON1  
INTCON  
CCPxX  
CCPxY  
CCPxM3 CCPxM2 CCPxM1 CCPxM0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
Capture/Compare/PWM Register X Low Byte  
Capture/Compare/PWM Register X High Byte  
xxxx xxxx uuuu uuuu  
INTE  
RBIE  
CS1  
---- --10  
C2SYNC ---- --10  
T1GSS  
INTF  
GIE  
PEIE  
SLPEN  
SE14  
ADIE  
C2IE  
T0IE  
T0IF  
RBIF  
0000 000x 0000 000x  
LCDCON  
LCDSE1  
PIE1  
LCDEN  
SE15  
EEIE  
WERR  
SE13  
RCIE  
C1IE  
VLCDEN  
SE12  
TXIE  
CS0  
LMUX1  
SE9  
LMUX0 0001 0011 0001 0011  
SE8 0000 0000 0000 0000  
SE11  
SSPIE  
SE10  
CCP1IE  
LVDIE  
CCP1IF  
LVDIF  
FERR  
SSPM2  
TMR2IE  
TMR1IE 0000 0000 0000 0000  
CCP2IE 0000 -0-0 0000 -0-0  
TMR1IF 0000 0000 0000 0000  
CCP2IF 0000 -0-0 0000 -0-0  
PIE2  
OSFIE  
EEIF  
LCDIE  
TXIF  
PIR1  
ADIF  
C2IF  
RCIF  
C1IF  
SSPIF  
TMR2IF  
PIR2  
OSFIF  
SPEN  
WCOL  
LCDIF  
CREN  
CKP  
RCSTA  
SSPCON  
T1CON  
T2CON  
TMR1L  
TMR1H  
TMR2  
RX9  
SREN  
SSPEN  
ADDEN  
SSPM3  
OERR  
SSPM1  
RX9D  
0000 000x 0000 000x  
SSPOV  
SSPM0 0000 0000 0000 0000  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu  
-000 0000 -000 0000  
xxxx xxxx uuuu uuuu  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Timer2 Module Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
TRISC  
TRISD(1)  
TRISC7  
TRISD7  
TRISC6  
TRISD6  
TRISC5  
TRISD5  
TRISC4  
TRISD4  
TRISC3  
TRISD3  
TRISC2  
TRISD2  
TRISC1  
TRISD1  
TRISC0 1111 1111 1111 1111  
1111 1111  
TRISD0 1111 1111  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Capture, Compare  
and PWM.  
Note 1: PIC16F914/917 and PIC16F946 only.  
DS41250F-page 218  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
The PIC16F91X/946 has two timers that offer  
16.0 SPECIAL FEATURES OF THE  
necessary delays on power-up. One is the Oscillator  
Start-up Timer (OST), intended to keep the chip in  
Reset until the crystal oscillator is stable. The other is  
the Power-up Timer (PWRT), which provides a fixed  
delay of 64 ms (nominal) on power-up only, designed  
to keep the part in Reset while the power supply  
stabilizes. There is also circuitry to reset the device if  
a brown-out occurs, which can use the Power-up  
Timer to provide at least a 64 ms Reset. With these  
three functions-on-chip, most applications need no  
external Reset circuitry.  
CPU  
The PIC16F91X/946 has a host of features intended to  
maximize system reliability, minimize cost through  
elimination of external components, provide  
power-saving features and offer code protection.  
These features are:  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
The Sleep mode is designed to offer a very low-current  
Power-down mode. The user can wake-up from Sleep  
through:  
• External Reset  
• Watchdog Timer (WDT)  
• Oscillator Selection  
• Sleep  
• Watchdog Timer Wake-up  
• An interrupt  
• Code Protection  
Several oscillator options are also made available to  
allow the part to fit the application. The INTOSC option  
saves system cost, while the LP crystal option saves  
power. A set of Configuration bits are used to select  
various options (see Register 16-1).  
• ID Locations  
• In-Circuit Serial Programming™  
© 2007 Microchip Technology Inc.  
DS41250F-page 219  
PIC16F913/914/916/917/946  
16.1 Configuration Bits  
Note:  
Address 2007h is beyond the user  
program memory space. It belongs to the  
special configuration memory space  
(2000h-3FFFh), which can be accessed  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’) to select various  
device configurations as shown in Register 16-1.  
These bits are mapped in program memory location  
2007h.  
only  
during  
programming.  
See  
PIC16F91X/946 Memory Programming  
Specification”  
(DS41244)  
for  
more  
information.  
REGISTER 16-1: CONFIG1: CONFIGURATION WORD REGISTER 1  
DEBUG  
FCMEN  
IESO  
BOREN1  
FOSC1  
BOREN0  
bit 15  
bit 8  
CPD  
CP  
MCLRE  
PWRTE  
WDTE  
FOSC2  
FOSC0  
bit 7  
bit 0  
bit 15-13  
bit 12  
Unimplemented: Read as ‘1’  
DEBUG: In-Circuit Debugger Mode bit  
1= In-Circuit Debugger disabled, RB6/ICSPCLK and RB7/ICSPDAT are general purpose I/O pins  
0= In-Circuit Debugger enabled, RB6/ICSPCLK and RB7/ICSPDAT are dedicated to the debugger  
bit 11  
bit 10  
bit 9-8  
FCMEN: Fail-Safe Clock Monitor Enabled bit  
1= Fail-Safe Clock Monitor is enabled  
0= Fail-Safe Clock Monitor is disabled  
IESO: Internal External Switchover bit  
1= Internal/External Switchover mode is enabled  
0= Internal/External Switchover mode is disabled  
BOREN<1:0>: Brown-out Reset Selection bits(1)  
11= BOR enabled  
10= BOR enabled during operation and disabled in Sleep  
01= BOR controlled by SBOREN bit of the PCON register  
00= BOR disabled  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
CPD: Data Code Protection bit(2)  
1= Data memory code protection is disabled  
0= Data memory code protection is enabled  
CP: Code Protection bit(3)  
1= Program memory code protection is disabled  
0= Program memory code protection is enabled  
MCLRE: RE3/MCLR pin function select bit(4)  
1= RE3/MCLR pin function is MCLR  
0= RE3/MCLR pin function is digital input, MCLR internally tied to VDD  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled and can be enabled by SWDTEN bit of the WDTCON register  
FOSC<2:0>: Oscillator Selection bits  
111= RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT/T1OSO pin, RC on RA7/OSC1/CLKIN/T1OSI  
110= RCIO oscillator: I/O function on RA6/OSC2/CLKOUT/T1OSO pin, RC on RA7/OSC1/CLKIN/T1OSI  
101= INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT/T1OSO pin, I/O function on RA7/OSC1/CLKIN/T1OSI  
100= INTOSCIO oscillator: I/O function on RA6/OSC2/CLKOUT/T1OSO pin, I/O function on RA7/OSC1/CLKIN/T1OSI  
011= EC: I/O function on RA6/OSC2/CLKOUT/T1OSO pin, CLKIN on RA7/OSC1/CLKIN/T1OSI  
010= HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT/T1OSO and RA7/OSC1/CLKIN/T1OSI  
001= XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT/T1OSO and RA7/OSC1/CLKIN/T1OSI  
000= LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT/T1OSO and RA7/OSC1/CLKIN/T1OSI  
Note 1:  
Enabling Brown-out Reset does not automatically enable Power-up Timer.  
The entire data EEPROM will be erased when the code protection is turned off.  
The entire program memory will be erased when the code protection is turned off.  
When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  
2:  
3:  
4:  
DS41250F-page 220  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
They are not affected by a WDT wake-up since this is  
viewed as the resumption of normal operation. TO and  
16.2 Resets  
The PIC16F91X/946 differentiates between various  
kinds of Reset:  
PD bits are set or cleared differently in different Reset  
situations, as indicated in Table 16-2. These bits are  
used in software to determine the nature of the Reset.  
See Table 16-5 for a full description of Reset states of  
all registers.  
a) Power-on Reset (POR)  
b) WDT Reset during normal operation  
c) WDT Reset during Sleep  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 16-1.  
d) MCLR Reset during normal operation  
e) MCLR Reset during Sleep  
f) Brown-out Reset (BOR)  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Section 19.0 “Electrical  
Specifications” for pulse width specifications.  
Some registers are not affected in any Reset condition;  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
• Power-on Reset  
• MCLR Reset  
• MCLR Reset during Sleep  
• WDT Reset  
• Brown-out Reset (BOR)  
FIGURE 16-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR/VPP pin  
Sleep  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out(1)  
Reset  
BOREN  
SBOREN  
S
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
R
Q
OSC1/  
CLKIN pin  
PWRT  
11-bit Ripple Counter  
LFINTOSC  
Enable PWRT  
Enable OST  
Note 1: Refer to the Configuration Word register (Register 16-1).  
© 2007 Microchip Technology Inc.  
DS41250F-page 221  
PIC16F913/914/916/917/946  
16.2.1  
POWER-ON RESET (POR)  
FIGURE 16-2:  
RECOMMENDED MCLR  
CIRCUIT  
The on-chip POR circuit holds the chip in Reset until VDD  
has reached a high enough level for proper operation. To  
take advantage of the POR, simply connect the MCLR  
pin through a resistor to VDD. This will eliminate external  
RC components usually needed to create Power-on  
Reset. A maximum rise time for VDD is required. See  
Section 19.0 “Electrical Specifications” for details. If  
the BOR is enabled, the maximum rise time specification  
does not apply. The BOR circuitry will keep the device in  
Reset until VDD reaches VBOR (see Section 16.2.4  
“Brown-Out Reset (BOR)”).  
VDD  
R1  
PIC® MCU  
1 kΩ (or greater)  
MCLR  
C1  
0.1 μF  
(optional, not critical)  
Note:  
The POR circuit does not produce an  
internal Reset when VDD declines. To  
re-enable the POR, VDD must reach Vss  
for a minimum of 100 μs.  
16.2.3  
POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 64 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates from the 31 kHz  
LFINTOSC oscillator. For more information, see  
Section 4.5 “Internal Clock Modes”. The chip is kept  
in Reset as long as PWRT is active. The PWRT delay  
allows the VDD to rise to an acceptable level. A Config-  
uration bit, PWRTE, can disable (if set) or enable (if  
cleared or programmed) the Power-up Timer. The  
Power-up Timer should be enabled when Brown-out  
Reset is enabled, although it is not required.  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (i.e.,  
voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
16.2.2  
MCLR  
PIC16F91X/946 has a noise filter in the MCLR Reset  
path. The filter will detect and ignore small pulses.  
The Power-up Timer delay will vary from chip-to-chip  
and vary due to:  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
• VDD variation  
Temperature variation  
• Process variation  
Voltages applied to the pin that exceed its specification  
can result in both MCLR Resets and excessive current  
beyond the device specification during the ESD event.  
For this reason, Microchip recommends that the MCLR  
pin no longer be tied directly to VDD. The use of an RC  
network, as shown in Figure 16-2, is suggested.  
See DC parameters for details (Section 19.0  
“Electrical Specifications”).  
An internal MCLR option is enabled by clearing the  
MCLRE bit in the Configuration Word register. When  
MCLRE = 0, the Reset signal to the chip is generated  
internally. When the MCLRE = 1, the RE3/MCLR pin  
becomes an external Reset input. In this mode, the  
RE3/MCLR pin has a weak pull-up to VDD. In-Circuit  
Serial Programming is not affected by selecting the  
internal MCLR option.  
DS41250F-page 222  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
If VDD drops below VBOR while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOR, the Power-up Timer will execute a  
64 ms Reset.  
16.2.4  
BROWN-OUT RESET (BOR)  
The BOREN0 and BOREN1 bits in the Configuration  
Word register selects one of four BOR modes. Two  
modes have been added to allow software or hardware  
control of the BOR enable. When BOREN<1:0> = 01,  
the SBOREN bit of the PCON register enables/disables  
the BOR allowing it to be controlled in software. By  
selecting BOREN<1:0>, the BOR is automatically dis-  
abled in Sleep to conserve power and enabled on  
wake-up. In this mode, the SBOREN bit is disabled.  
See Register 16-1 for the Configuration Word defini-  
tion.  
16.2.5  
BOR CALIBRATION  
The PIC16F91X/946 stores the BOR calibration values  
in fuses located in the Calibration Word (2008h). The  
Calibration Word is not erased when using the  
specified bulk erase sequence in the “PIC16F91X/946  
Memory Programming Specification” (DS41244) and  
thus, does not require reprogramming.  
If VDD falls below VBOR for greater than parameter  
(TBOR) (see Section 19.0 “Electrical Specifica-  
tions”), the Brown-out situation will reset the device.  
This will occur regardless of VDD slew rate. A Reset is  
not insured to occur if VDD falls below VBOR for less  
than parameter (TBOR).  
Address 2008h is beyond the user program memory  
space. It belongs to the special configuration memory  
space (2000h-3FFFh), which can be accessed only  
during programming. See “PIC16F91X/946 Memory  
Programming Specification” (DS41244) for more  
information.  
On any Reset (Power-on, Brown-out Reset, Watchdog  
Timer, etc.), the chip will remain in Reset until VDD rises  
above VBOR (see Figure 16-3). The Power-up Timer  
will now be invoked, if enabled and will keep the chip in  
Reset an additional 64 ms.  
Note:  
The Power-up Timer is enabled by the  
PWRTE bit in the Configuration Word.  
FIGURE 16-3:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
< 64 ms  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
Note 1: 64 ms delay only if PWRTE bit is programmed to ‘0’.  
© 2007 Microchip Technology Inc.  
DS41250F-page 223  
PIC16F913/914/916/917/946  
16.2.6  
TIME-OUT SEQUENCE  
16.2.7  
POWER CONTROL (PCON)  
REGISTER  
On power-up, the time-out sequence is as follows: first,  
PWRT time-out is invoked after POR has expired, then  
OST is activated after the PWRT time-out has expired.  
The total time-out will vary based on oscillator configu-  
ration and PWRTE bit status. For example, in EC mode  
with PWRTE bit erased (PWRT disabled), there will be  
no time-out at all. Figure 16-4, Figure 16-5 and Figure  
16-6 depict time-out sequences. The device can exe-  
cute code from the INTOSC while OST is active, by  
enabling Two-Speed Start-up or Fail-Safe Monitor (see  
Section 4.7.2 “Two-Speed Start-up Sequence” and  
Section 4.8 “Fail-Safe Clock Monitor”).  
The Power Control (PCON) register (address 8Eh) has  
two Status bits to indicate what type of Reset that last  
occurred.  
Bit 0 is BOR (Brown-out Reset). BOR is unknown on  
Power-on Reset. It must then be set by the user and  
checked on subsequent Resets to see if BOR = 0,  
indicating that a Brown-out has occurred. The BOR  
Status bit is a “don’t care” and is not necessarily  
predictable if the brown-out circuit is disabled  
(BOREN<1:0> = 00in the Configuration Word register).  
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
1’ to this bit following a Power-on Reset. On a  
subsequent Reset, if POR is ‘0’, it will indicate that a  
Power-on Reset has occurred (i.e., VDD may have  
gone too low).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then,  
bringing MCLR high will begin execution immediately  
(see Figure 16-5). This is useful for testing purposes or  
to synchronize more than one PIC16F91X/946 device  
operating in parallel.  
For more information, see Section 16.2.4 “Brown-Out  
Reset (BOR)”.  
Table 16-5 shows the Reset conditions for some  
special registers, while Table 16-5 shows the Reset  
conditions for all the registers.  
TABLE 16-1: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Brown-out Reset  
Wake-up from  
Oscillator Configuration  
Sleep  
PWRTE = 0  
PWRTE = 1  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP(1)  
TPWRT + 1024 •  
TOSC  
1024 • TOSC  
TPWRT + 1024 •  
TOSC  
1024 • TOSC  
1024 • TOSC  
RC, EC, INTOSC  
TPWRT  
TPWRT  
Note 1: LP mode with T1OSC disabled.  
TABLE 16-2: PCON BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
Condition  
0
1
u
u
u
0
u
u
1
1
0
0
1
1
u
0
Power-on Reset  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
u
u
u
u
u
1
u
0
MCLR Reset during normal operation  
MCLR Reset during Sleep  
Legend: u= unchanged, x= unknown  
TABLE 16-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT  
Value on  
all other  
Resets(1)  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
STATUS  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
0001 1xxx 000q quuu  
--01 --qq --0u --uu  
PCON  
SBOREN  
POR  
BOR  
Legend:  
u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’, q= value depends on condition. Shaded cells are not  
used by BOR.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
DS41250F-page 224  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 16-4:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 16-5:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 16-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD): CASE 3  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
© 2007 Microchip Technology Inc.  
DS41250F-page 225  
PIC16F913/914/916/917/946  
TABLE 16-4: INITIALIZATION CONDITION FOR REGISTERS  
Wake-up from Sleep  
through interrupt  
MCLR Reset  
WDT Reset  
Brown-out Reset(1)  
Register  
Address  
Power-on Reset  
Wake-up from Sleep  
through WDT time-out  
W
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
INDF  
00h/80h/  
100h/180h  
TMR0  
PCL  
01h/101h  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
PC + 1(3)  
02h/82h/  
102h/182h  
STATUS  
FSR  
03h/83h/  
103h/183h  
0001 1xxx  
xxxx xxxx  
000q quuu(4)  
uuuu uuuu  
uuuq quuu(4)  
uuuu uuuu  
04h/84h/  
104h/184h  
PORTA  
PORTB  
PORTC  
PORTD(6)  
PORTE  
05h  
06h/106h  
07h  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
08h  
09h  
---- xxxx  
xxxx xxxx(7)  
---- xxxx  
xxxx xxxx(7)  
---- uuuu  
uuuu uuuu(7)  
PCLATH  
INTCON  
0Ah/8Ah/  
10Ah/18Ah  
---0 0000  
---0 0000  
---u uuuu  
0Bh/8Bh/  
0000 000x  
0000 000x  
uuuu uuuu(2)  
10Bh/18Bh  
PIR1  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
0000 0000  
0000 -0-0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
---0 1000  
0000 0000  
0000 0000  
0000 -0-0  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
---0 1000  
0000 0000  
uuuu uuuu(2)  
uuuu -u-u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---u uuuu  
uuuu uuuu  
PIR2  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
Legend: u= unchanged, x= unknown, - = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 16-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: PIC16F914/917 and PIC16F946 only.  
7: PIC16F946 only.  
DS41250F-page 226  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 16-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)  
Wake-up from Sleep  
through interrupt  
MCLR Reset  
WDT Reset  
Brown-out Reset(1)  
Register  
Address  
Power-on Reset  
Wake-up from Sleep  
through WDT time-out  
RCREG  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
0000 0000  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
uuuu uuuu  
0000 0000  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
CCPR2L(6)  
CCPR2H(6)  
CCP2CON(6)  
ADRESH  
ADCON0  
OPTION_REG 81h/181h  
TRISA  
TRISB  
TRISC  
TRISD(6)  
TRISE  
85h  
86h/186h  
87h  
88h  
89h  
---- 1111  
1111 1111(7)  
---- 1111  
1111 1111(7)  
---- uuuu  
uuuu uuuu(7)  
PIE1  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ch  
9Dh  
9Eh  
9Fh  
105h  
107h  
108h  
0000 0000  
0000 -0-0  
--01 --0x  
-110 q000  
---0 0000  
1111 1111  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
0000 ----  
---- --10  
0000 -010  
0000 0000  
0000 0000  
0-0- 0000  
xxxx xxxx  
-000 ----  
---0 1000  
0001 0011  
0000 0000  
0000 0000  
0000 -0-0  
--0u --uu(1,5)  
-110 x000  
---u uuuu  
1111 1111  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
0000 ----  
---- --10  
0000 -010  
0000 0000  
0000 0000  
0-0- 0000  
uuuu uuuu  
-000 ----  
---0 1000  
0001 0011  
0000 0000  
uuuu uuuu  
uuuu -u-u  
--uu --uu  
-uuu uuuu  
---u uuuu  
uuuu uuuu  
1111 1111  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu ----  
---- --uu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
u-u- uuuu  
uuuu uuuu  
-uuu ----  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
PIE2  
PCON  
OSCCON  
OSCTUNE  
ANSEL  
PR2  
SSPADD  
SSPSTAT  
WPUB  
IOCB  
CMCON1  
TXSTA  
SPBRG  
CMCON0  
VRCON  
ADRESL  
ADCON1  
WDTCON  
LCDCON  
LCDPS  
Legend: u= unchanged, x= unknown, - = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 16-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: PIC16F914/917 and PIC16F946 only.  
7: PIC16F946 only.  
© 2007 Microchip Technology Inc.  
DS41250F-page 227  
PIC16F913/914/916/917/946  
TABLE 16-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)  
Wake-up from Sleep  
through interrupt  
MCLR Reset  
WDT Reset  
Brown-out Reset(1)  
Register  
Address  
Power-on Reset  
Wake-up from Sleep  
through WDT time-out  
LVDCON  
109h  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
185h  
187h  
188h  
189h  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
--00 -100  
0000 0000  
0000 0000  
--00 0000  
---0 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
1111 1111  
--11 1111  
xxxx xxxx  
--xx xxxx  
xxxx xxxx  
xxxx xxxx  
---- --xx  
xxxx xxxx  
xxxx xxxx  
---- --xx  
xxxx xxxx  
xxxx xxxx  
---- --xx  
xxxx xxxx  
--00 -100  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
--11 1111  
0000 0000  
--00 0000  
uuuu uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
--uu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
EEDATL  
EEADRL  
EEDATH  
EEADRH  
LCDDATA0  
LCDDATA1  
LCDDATA2(6)  
LCDDATA3  
LCDDATA4  
LCDDATA5(6)  
LCDDATA6  
LCDDATA7  
LCDDATA8(6)  
LCDDATA9  
LCDDATA10  
LCDDATA11(6)  
LCDSE0  
LCDSE1  
LCDSE2(6)  
TRISF(7)  
TRISG(7)  
PORTF(7)  
PORTG(7)  
LCDDATA12(7)  
LCDDATA13(7)  
LCDDATA14(7)  
LCDDATA15(7)  
LCDDATA16(7)  
LCDDATA17(7)  
LCDDATA18(7)  
LCDDATA19(7)  
LCDDATA20(7)  
LCDDATA21(7)  
Legend: u= unchanged, x= unknown, - = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 16-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: PIC16F914/917 and PIC16F946 only.  
7: PIC16F946 only.  
DS41250F-page 228  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 16-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)  
Wake-up from Sleep  
through interrupt  
MCLR Reset  
WDT Reset  
Brown-out Reset(1)  
Register  
Address  
Power-on Reset  
Wake-up from Sleep  
through WDT time-out  
LCDDATA22(7)  
LCDDATA23(7)  
LCDSE3(7)  
LCDSE4(7)  
LCDSE5(7)  
EECON1  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
18Ch  
xxxx xxxx  
---- --xx  
0000 0000  
0000 0000  
---- --00  
x--- x000  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uuuu uuuu  
---- --uu  
u--- q000  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uuuu uuuu  
---- --uu  
u--- uuuu  
Legend: u= unchanged, x= unknown, - = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 16-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: PIC16F914/917 and PIC16F946 only.  
7: PIC16F946 only.  
TABLE 16-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
0000h  
0000h  
0001 1xxx  
000u uuuu  
---1 --0x  
---u --uu  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---u --uu  
---u --uu  
---u --uu  
---1 --10  
---u --uu  
WDT Wake-up  
PC + 1  
Brown-out Reset  
0000h  
PC + 1(1)  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with  
the interrupt vector (0004h) after execution of PC + 1.  
© 2007 Microchip Technology Inc.  
DS41250F-page 229  
PIC16F913/914/916/917/946  
The following interrupt flags are contained in the PIR2  
register:  
16.3 Interrupts  
The PIC16F91X/946 has multiple sources of interrupt:  
• Fail-Safe Clock Monitor Interrupt  
• Comparator 1 and 2 Interrupts  
• LCD Interrupt  
• External Interrupt RB0/INT/SEG0  
• TMR0 Overflow Interrupt  
• PORTB Change Interrupts  
• 2 Comparator Interrupts  
• A/D Interrupt  
• PLVD Interrupt  
• CCP2 Interrupt  
When an interrupt is serviced:  
• Timer1 Overflow Interrupt  
• EEPROM Data Write Interrupt  
• Fail-Safe Clock Monitor Interrupt  
• LCD Interrupt  
• The GIE is cleared to disable any further interrupt.  
• The return address is pushed onto the stack.  
• The PC is loaded with 0004h.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends upon when the interrupt event occurs (see  
Figure 16-8). The latency is the same for one or  
two-cycle instructions. Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt flag  
bit(s) must be cleared in software before re-enabling  
interrupts to avoid multiple interrupt requests.  
• PLVD Interrupt  
• USART Receive and Transmit interrupts  
• CCP1 and CCP2 Interrupts  
• Timer2 Interrupt  
The Interrupt Control (INTCON), Peripheral Interrupt  
Request 1 (PIR1) and Peripheral Interrupt Request 2  
(PIR2) registers record individual interrupt requests in  
flag bits. The INTCON register also has individual and  
global interrupt enable bits.  
A Global Interrupt Enable bit, GIE of the INTCON  
register, enables (if set) all unmasked interrupts, or  
disables (if cleared) all interrupts. Individual interrupts  
can be disabled through their corresponding enable  
bits in the INTCON, PIE1 and PIE2 registers. GIE is  
cleared on Reset.  
Note 1: Individual interrupt flag bits are set,  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The interrupts, which were  
ignored, are still pending to be serviced  
when the GIE bit is set again.  
The Return from Interrupt instruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables unmasked interrupts.  
The following interrupt flags are contained in the  
INTCON register:  
For additional information on how a module generates  
an interrupt, refer to the respective peripheral section.  
• INT Pin Interrupt  
Note:  
The ANSEL and CMCON0 registers must  
be initialized to configure an analog chan-  
nel as a digital input. Pins configured as  
analog inputs will read ‘0’. Also, if a LCD  
output function is active on an external  
interrupt pin, that interrupt function will be  
disabled.  
• PORTB Change Interrupt  
• TMR0 Overflow Interrupt  
The peripheral interrupt flags are contained in the special  
registers, PIR1 and PIR2. The corresponding interrupt  
enable bit are contained in the special registers, PIE1  
and PIE2.  
The following interrupt flags are contained in the PIR1  
register:  
• EEPROM Data Write Interrupt  
• A/D Interrupt  
• USART Receive and Transmit Interrupts  
• Timer1 Overflow Interrupt  
• CCP1 Interrupt  
• SSP Interrupt  
• Timer2 Interrupt  
DS41250F-page 230  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
16.3.1  
RB0/INT/SEG0 INTERRUPT  
16.3.2  
TMR0 INTERRUPT  
External interrupt on RB0/INT/SEG0 pin is edge-trig-  
gered; either rising if the INTEDG bit of the OPTION  
register is set, or falling, if the INTEDG bit is clear.  
When a valid edge appears on the RB0/INT/SEG0 pin,  
the INTF bit of the INTCON register is set. This inter-  
rupt can be disabled by clearing the INTE control bit of  
the INTCON register. The INTF bit must be cleared in  
software in the Interrupt Service Routine before  
re-enabling this interrupt. The RB0/INT/SEG0 interrupt  
can wake-up the processor from Sleep if the INTE bit  
was set prior to going into Sleep. The status of the GIE  
bit decides whether or not the processor branches to  
the interrupt vector following wake-up (0004h). See  
Section 16.5 “Power-Down Mode (Sleep)” for details  
on Sleep and Figure 16-10 for timing of wake-up from  
Sleep through RB0/INT/SEG0 interrupt.  
An overflow (FFh 00h) in the TMR0 register will set  
the T0IF bit of the INTCON register. The interrupt can  
be enabled/disabled by setting/clearing T0IE bit of the  
INTCON register. See Section 5.0 “Timer0 Module”  
for operation of the Timer0 module.  
16.3.3  
PORTB INTERRUPT  
An input change on PORTB change sets the RBIF bit  
of the INTCON register. The interrupt can be  
enabled/disabled by setting/clearing the RBIE bit of the  
INTCON register. Plus, individual pins can be  
configured through the IOCB register.  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF  
interrupt flag may not get set.  
FIGURE 16-7:  
INTERRUPT LOGIC  
IOC-RB4  
IOCB4  
IOC-RB5  
IOCB5  
IOC-RB6  
IOCB6  
IOC-RB7  
IOCB7  
TMR0IF  
TMR0IE  
Wake-up (If in Sleep mode)  
Interrupt to CPU  
TMR2IF  
TMR2IE  
INTF  
INTE  
RBIF  
RBIE  
TMR1IF  
TMR1IE  
C1IF  
C1IE  
PEIF  
PEIE  
C2IF  
C2IE  
ADIF  
ADIE  
GIE  
OSFIF  
OSFIE  
EEIF  
EEIE  
CCP1IF  
CCP1IE  
CCP2IF  
CCP2IE  
*
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
LCDIF  
LCDIE  
LVDIF  
LVDIE  
* Only available on the PIC16F914/917.  
© 2007 Microchip Technology Inc.  
DS41250F-page 231  
PIC16F913/914/916/917/946  
FIGURE 16-8:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(2)  
(5)  
Interrupt Latency  
INTF Flag  
(INTCON reg.)  
GIE bit  
(INTCON reg.)  
Instruction Flow  
PC  
0004h  
PC + 1  
PC + 1  
0005h  
PC  
Instruction  
Fetched  
Inst (PC)  
Inst (PC + 1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC - 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in INTOSC and RC Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 19.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
TABLE 16-6: SUMMARY OF INTERRUPT REGISTERS  
Value on  
POR, BOR other Resets  
Value on all  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE  
EEIF  
PEIE  
ADIF  
C2IF  
ADIE  
C2IE  
T0IE  
RCIF  
C1IF  
RCIE  
C1IE  
INTE  
TXIF  
RBIE  
SSPIF  
T0IF  
INTF  
RBIF  
0000 000x 0000 000x  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
LVDIF CCP2IF 0000 -0-0 0000 -0-0  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
LVDIE CCP2IE 0000 -0-0 0000 -0-0  
PIR2  
OSFIF  
EEIE  
LCDIF  
TXIE  
PIE1  
SSPIE  
PIE2  
OSFIE  
LCDIE  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by the Interrupt  
Module.  
DS41250F-page 232  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
16.3.4  
CONTEXT SAVING DURING  
INTERRUPTS  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key  
registers during an interrupt (e.g., W and STATUS  
registers). This must be implemented in software.  
Since the lower 16 bytes of all banks are common in the  
PIC16F91X/946 (see Figure 2-3), temporary holding  
registers, W_TEMP and STATUS_TEMP, should be  
placed in here. These 16 locations do not require  
banking and therefore, make it easier to context save  
and restore. The same code shown in Example 16-1  
can be used to:  
• Store the W register  
• Store the STATUS register  
• Execute the ISR code  
• Restore the STATUS register (Bank Select bits)  
• Restore the W register  
Note:  
The microcontroller does not normally  
require saving the PCLATH register  
unless it is modified in code either directly  
or via the pagesel macro. Then, the  
PCLATH register must be saved at the  
beginning of the ISR, managed for CALLs  
and GOTOs in the ISR and restored when  
the ISR is complete to ensure correct  
program flow.  
EXAMPLE 16-1:  
SAVING STATUS AND W REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
:
W_TEMP  
STATUS,W  
STATUS  
;Copy W to TEMP register  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
STATUS_TEMP  
:(ISR)  
:
;Insert user code here  
SWAPF  
STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
© 2007 Microchip Technology Inc.  
DS41250F-page 233  
PIC16F913/914/916/917/946  
A new prescaler has been added to the path between  
16.4 Watchdog Timer (WDT)  
the INTOSC and the multiplexers used to select the  
path for the WDT. This prescaler is 16 bits and can be  
programmed to divide the INTOSC by 32 to 65536,  
giving the WDT a nominal range of 1 ms to 268s.  
For PIC16F91X/946, the WDT has been modified from  
previous PIC16F devices. The new WDT is code and  
functionally compatible with previous PIC16F WDT  
modules and adds a 16-bit prescaler to the WDT. This  
allows the user to have a scaled value for the WDT and  
TMR0 at the same time. In addition, the WDT time-out  
value can be extended to 268 seconds. WDT is cleared  
under certain conditions described in Table 16-7.  
16.4.2  
WDT CONTROL  
The WDTE bit is located in the Configuration Word  
register. When set, the WDT runs continuously.  
When the WDTE bit in the Configuration Word register  
is set, the SWDTEN bit of the WDTCON register has no  
effect. If WDTE is clear, then the SWDTEN bit can be  
used to enable and disable the WDT. Setting the bit will  
enable it and clearing the bit will disable it.  
16.4.1  
WDT OSCILLATOR  
The WDT derives its time base from the 31 kHz  
LFINTOSC. The LTS bit does not reflect that the  
LFINTOSC is enabled.  
The PSA and PS<2:0> bits of the OPTION register  
have the same function as in previous versions of the  
PIC16F family of microcontrollers. See Section 5.0  
“Timer0 Module” for more information.  
The value of WDTCON is ‘---0 1000on all Resets.  
This gives a nominal time base of 16 ms, which is  
compatible with the time base generated with previous  
PIC16F microcontroller versions.  
Note:  
When the Oscillator Start-up Timer (OST)  
is invoked, the WDT is held in Reset,  
because the WDT Ripple Counter is used  
by the OST to perform the oscillator delay  
count. When the OST count has expired,  
the WDT will begin counting (if enabled).  
FIGURE 16-9:  
WATCHDOG TIMER BLOCK DIAGRAM  
0
1
From TMR0 Clock Source  
Prescaler(1)  
16-bit WDT Prescaler  
8
PSA  
PS<2:0>  
To TMR0  
31 kHz  
LFINTOSC Clock  
WDTPS<3:0>  
1
0
PSA  
WDTE from Configuration Word register  
SWDTEN from WDTCON  
WDT Time-out  
Note 1: This is the shared Timer0/WDT prescaler. See Section 5.4 “Prescaler” for more information.  
TABLE 16-7: WDT STATUS  
Conditions  
WDT  
WDTE = 0  
CLRWDTCommand  
Oscillator Fail Detected  
Cleared  
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
DS41250F-page 234  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
REGISTER 16-2: WDTCON – WATCHDOG TIMER CONTROL REGISTER (ADDRESS: 105h)  
U-0  
U-0  
U-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN  
bit 0  
bit 7  
bit 7-5  
bit 4-1  
Unimplemented: Read as ‘0’  
WDTPS<3:0>: Watchdog Timer Period Select bits  
Bit Value = Prescale Rate  
0000 = 1:32  
0001 = 1:64  
0010 = 1:128  
0011 = 1:256  
0100 = 1:512 (Reset value)  
0101 = 1:1024  
0110 = 1:2048  
0111 = 1:4096  
1000 = 1:8192  
1001 = 1:16384  
1010 = 1:32768  
1011 = 1:65536  
1100 = reserved  
1101 = reserved  
1110 = reserved  
1111 = reserved  
bit 0  
SWDTEN: Software Enable or Disable the Watchdog Timer bit(1)  
1= WDT is turned on  
0= WDT is turned off (Reset value)  
Note 1: If WDTE Configuration bit = 1, then WDT is always enabled, irrespective of this  
control bit. If WDTE Configuration bit = 0, then it is possible to turn WDT on/off with  
this control bit.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
TABLE 16-8: SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG  
CPD  
RBPU  
CP  
INTEDG  
MCLRE  
T0CS  
PWRTE  
T0SE  
WDTE  
PSA  
FOSC2  
PS2  
FOSC1  
PS1  
FOSC0  
PS0  
OPTION_REG  
WDTCON  
WDTPS3 WDTPS2 WSTPS1 WDTPS0 SWDTEN  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 16-1 for operation of all Configuration Word register bits.  
© 2007 Microchip Technology Inc.  
DS41250F-page 235  
PIC16F913/914/916/917/946  
The following peripheral interrupts can wake the device  
from Sleep:  
16.5 Power-Down Mode (Sleep)  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
1. TMR1 Interrupt. Timer1 must be operating as an  
asynchronous counter.  
If the Watchdog Timer is enabled:  
2. USART Receive Interrupt (Sync Slave mode  
only)  
• WDT will be cleared but keeps running.  
• PD bit in the STATUS register is cleared.  
• TO bit is set.  
3. A/D conversion (when A/D clock source is RC)  
4. EEPROM write operation completion  
5. Comparator output changes state  
6. Interrupt-on-change  
• Oscillator driver is turned off.  
• Timer1 oscillator is unaffected  
• I/O ports maintain the status they had before  
SLEEPwas executed (driving high, low or  
high-impedance).  
7. External Interrupt from INT pin  
8. PLVD Interrupt  
9. LCD Interrupt (if running during Sleep)  
For lowest current consumption in this mode, all I/O  
pins should be either at VDD or VSS, with no external  
circuitry drawing current from the I/O pin, and the  
comparators and CVREF should be disabled. I/O pins  
that are high-impedance inputs should be pulled high  
or low externally to avoid switching currents caused by  
floating inputs. The T0CKI input should also be at VDD  
or VSS for lowest current consumption. The  
contribution from on-chip pull-ups on PORTB should be  
considered.  
Other peripherals cannot generate interrupts since  
during Sleep, no on-chip clocks are present.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction, then branches to the interrupt  
address (0004h). In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
The MCLR pin must be at a logic high level.  
Note:  
It should be noted that a Reset generated  
by a WDT time-out does not drive MCLR  
pin low.  
Note:  
If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the correspond-  
ing interrupt flag bits set, the device will  
immediately wake-up from Sleep. The  
SLEEPinstruction is completely executed.  
16.5.1  
WAKE-UP FROM SLEEP  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin.  
2. Watchdog Timer wake-up (if WDT was  
enabled).  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
3. Interrupt from RB0/INT/SEG0 pin, PORTB  
change or a peripheral interrupt.  
16.5.2  
WAKE-UP USING INTERRUPTS  
The first event will cause a device Reset. The two latter  
events are considered a continuation of program  
execution. The TO and PD bits in the STATUS register  
can be used to determine the cause of device Reset.  
The PD bit, which is set on power-up, is cleared when  
Sleep is invoked. TO bit is cleared if WDT wake-up  
occurred.  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP. Therefore, the WDT and WDT  
prescaler and postscaler (if enabled) will not be  
cleared, the TO bit will not be set and the PD bit  
will not be cleared.  
• If the interrupt occurs during or after the  
execution of a SLEEPinstruction, the device will  
immediately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT prescaler  
and postscaler (if enabled) will be cleared, the TO  
bit will be set and the PD bit will be cleared.  
DS41250F-page 236  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
To ensure that the WDT is cleared, a CLRWDTinstruction  
should be executed before a SLEEPinstruction.  
FIGURE 16-10:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1(1)  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTF flag  
(INTCON reg.)  
Interrupt Latency(3)  
GIE bit  
(INTCON reg.)  
Processor in  
Sleep  
Instruction Flow  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Sleep  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1:  
XT, HS or LP Oscillator mode assumed.  
TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC and RC Oscillator modes.  
GIE = 1assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.  
2:  
3:  
4:  
CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.  
© 2007 Microchip Technology Inc.  
DS41250F-page 237  
PIC16F913/914/916/917/946  
FIGURE 16-11:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
16.6 Code Protection  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out using ICSP for verification purposes.  
To Normal  
Connections  
Note:  
The entire data EEPROM and Flash  
program memory will be erased when the  
code protection is turned off. See the  
PIC16F91X/946 Memory Programming  
Specification” (DS41244) for more  
information.  
External  
Connector  
Signals  
PIC® MCU  
*
VDD  
+5V  
0V  
VSS  
RE3/MCLR/VPP  
VPP  
RB6/ICSPCLK/  
ICDCK/SEG14  
RB7/ICSPDATA/  
ICDDAT/SEG13  
16.7 ID Locations  
CLK  
Data I/O  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution, but are  
readable and writable during Program/Verify mode.  
Only the Least Significant 7 bits of the ID locations are  
used.  
*
*
*
To Normal  
Connections  
16.8 In-Circuit Serial Programming  
The PIC16F91X/946 microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for:  
* Isolation devices (as required)  
• power  
• ground  
• programming voltage  
This allows customers to manufacture boards with  
unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
The device is placed into a Program/Verify mode by  
holding the RB7/ICSPDAT/ICDDAT/SEG13 and  
RB6/ICSPCLK/ICDCK/SEG14 pins low, while raising  
the MCLR (VPP) pin from VIL to VIHH. See  
PIC16F91X/946 Memory Programming Specification”  
(DS41244) for more information. RB7 becomes the  
programming data and the RB6 becomes the  
programming clock. Both RB7 and RB6 are Schmitt  
Trigger inputs in this mode.  
After Reset, to place the device into Program/Verify  
mode, the Program Counter (PC) is at location 0000h. A  
6-bit command is then supplied to the device. Depending  
on the command, 14 bits of program data are then  
supplied to or from the device, depending on whether the  
command was a load or a read. For complete details of  
serial programming, please refer to the “PIC16F91X/946  
Memory Programming Specification” (DS41244).  
A typical In-Circuit Serial Programming connection is  
shown in Figure 16-11.  
DS41250F-page 238  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
16.9.1 ICD PINOUT  
16.9 In-Circuit Debugger  
The devices in the PIC16F91X/946 family carry the  
circuitry for the In-Circuit Debugger on-chip and on  
existing device pins. This eliminates the need for a  
separate die or package for the ICD device. The  
pinout for the ICD device is the same as the devices  
(see Section 1.0 “Device Overview” for complete  
pinout and pin descriptions). Table 16-9 shows the  
location and function of the ICD related pins on the 28  
and 40-pin devices.  
When the debug bit in the Configuration Word register  
is programmed to a ‘0’, the In-Circuit Debugger func-  
tionality is enabled. This function allows simple debug-  
ging functions when used with MPLAB® ICD 2. When  
the microcontroller has this feature enabled, some of  
the resources are not available for general use. See  
Table 16-9 for more detail.  
Note: The user’s application must have the  
circuitry  
required  
to  
support  
ICD  
functionality. Once the ICD circuitry is  
enabled, normal device pin functions on  
RB6/ICSPCLK/ICDCK/SEG14  
and  
RB7/ICSPDAT/ICDDAT/SEG13 will not be  
usable. The ICD circuitry uses these pins for  
communication with the ICD2 external  
debugger.  
For more information, see “Using MPLAB® ICD 2”  
(DS51265), available on Microchip’s web site  
(www.microchip.com).  
TABLE 16-9: PIC16F91X/946-ICD PIN DESCRIPTIONS  
Pin Numbers  
PDIP  
TQFP  
Name  
Type Pull-up  
Description  
PIC16F914/917 PIC16F913/916  
PIC16F946  
40  
39  
28  
27  
1
24  
ICDDATA  
ICDCLK  
TTL  
ST  
HV  
P
In Circuit Debugger Bidirectional data  
In Circuit Debugger Bidirectional clock  
Programming voltage  
Power  
23  
1
36  
10, 19, 38, 51  
9, 20, 41, 56  
26  
MCLR/VPP  
VDD  
11,32  
12,31  
20  
8,19  
VSS  
P
Ground  
AVDD  
AVSS  
P
Analog power  
25  
P
Analog ground  
Legend:  
TTL = TTL input buffer, ST = Schmitt Trigger input buffer, P = Power, HV = High Voltage  
© 2007 Microchip Technology Inc.  
DS41250F-page 239  
PIC16F913/914/916/917/946  
NOTES:  
DS41250F-page 240  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 17-1: OPCODE FIELD  
17.0 INSTRUCTION SET SUMMARY  
DESCRIPTIONS  
The PIC16F913/914/916/917/946 instruction set is  
highly orthogonal and is comprised of three basic cate-  
gories:  
Field  
Description  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Byte-oriented operations  
Bit-oriented operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Literal and control operations  
k
Each PIC16 instruction is a 14-bit word divided into an  
opcode, which specifies the instruction type and one or  
more operands, which further specify the operation of  
the instruction. The formats for each of the categories  
is presented in Figure 17-1, while the various opcode  
fields are summarized in Table 17-1.  
x
Don’t care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
Table 17-2 lists the instructions recognized by the  
MPASMTM assembler.  
PC  
TO  
C
Program Counter  
Time-out bit  
Carry bit  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
DC  
Z
Digit carry bit  
Zero bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
PD  
Power-down bit  
FIGURE 17-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ‘b’ represents a bit field  
designator, which selects the bit affected by the  
operation, while ‘f’ represents the address of the file in  
which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
OPCODE  
d
f (FILE #)  
For literal and control operations, ‘k’ represents an  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
8-bit or 11-bit constant, or literal value.  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a  
nominal instruction execution time of 1 μs. All  
instructions are executed within a single instruction  
cycle, unless a conditional test is true, or the program  
counter is changed as a result of an instruction. When  
this occurs, the execution takes two instruction cycles,  
with the second cycle executed as a NOP.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
Literal and control operations  
General  
13  
8
7
0
0
OPCODE  
k (literal)  
17.1 Read-Modify-Write Operations  
k = 8-bit immediate value  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion, or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
For example, a CLRF PORTA instruction will read  
PORTA, clear all the data bits, then write the result back  
to PORTA. This example would have the unintended  
consequence of clearing the condition that set the RBIF  
flag.  
© 2007 Microchip Technology Inc.  
DS41250F-page 241  
PIC16F913/914/916/917/946  
TABLE 17-2: PIC16F913/914/916/917/946 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
1, 2  
1, 2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1, 2  
1, 2  
1, 2, 3  
1, 2  
1, 2, 3  
1, 2  
1, 2  
Z
Z
Z
Move W to f  
No Operation  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
00 0010 dfff ffff C, DC, Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1, 2  
1, 2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Call Subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C, DC, Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO, PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO, PD  
11 110x kkkk kkkk C, DC, Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
DS41250F-page 242  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
17.2 Instruction Descriptions  
BCF  
Bit Clear f  
ADDLW  
Add literal and W  
Syntax:  
[ label ] BCF f,b  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) + k (W)  
C, DC, Z  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal ‘k’  
and the result is placed in the  
W register.  
Bit ‘b’ in register ‘f’ is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
1(f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit ‘b’ in register ‘f’ is set.  
Description:  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If  
‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
BTFSC  
Bit Test f, Skip if Clear  
ANDLW  
AND literal with W  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 0  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
If bit ‘b’, in register ‘f’, is ‘0’, the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a 2-cycle instruction.  
ANDWF  
AND W with f  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
AND the W register with register  
‘f’. If ‘d’ is ‘0’, the result is stored in  
the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
© 2007 Microchip Technology Inc.  
DS41250F-page 243  
PIC16F913/914/916/917/946  
CLRWDT  
Clear Watchdog Timer  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[ label ] CLRWDT  
Syntax:  
[ label ] BTFSS f,b  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
0 b < 7  
00h WDT  
0WDT prescaler,  
1TO  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
1PD  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
Status Affected: TO, PD  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOP  
is executed instead, making this a  
2-cycle instruction.  
Status bits TO and PD are set.  
CALL  
Call Subroutine  
COMF  
Complement f  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in  
register ‘f’.  
Description:  
Call Subroutine. First, return  
address (PC + 1) is pushed onto  
the stack. The eleven-bit  
immediate address is loaded into  
PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two-cycle instruction.  
CLRF  
Clear f  
DECF  
Decrement f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are  
cleared and the Z bit is set.  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
DS41250F-page 244  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, then a NOPis  
executed instead, making it a  
2-cycle instruction.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, a NOPis executed  
instead, making it a 2-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the  
W register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a  
two-cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
© 2007 Microchip Technology Inc.  
DS41250F-page 245  
PIC16F913/914/916/917/946  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
MOVF  
Move f  
Syntax:  
f
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
0 f 127  
d [0,1]  
Operation:  
(f) (dest)  
None  
Status Affected:  
Description:  
Z
Move data from W register to  
register ‘f’.  
The contents of register f is  
moved to a destination dependent  
upon the status of d. If d = 0,  
destination is W register. If d = 1,  
the destination is file register f  
itself. d = 1is useful to test a file  
register since status flag Z is  
affected.  
Words:  
1
1
Cycles:  
Example:  
MOVW  
F
OPTION  
Before Instruction  
OPTION = 0xFF  
Words:  
1
1
W
=
0x4F  
After Instruction  
Cycles:  
Example:  
OPTION = 0x4F  
W
MOVF  
FSR, 0  
=
0x4F  
After Instruction  
W
=
value in FSR  
register  
Z
=
1
MOVLW  
Syntax:  
Move literal to W  
NOP  
No Operation  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] NOP  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
k (W)  
No operation  
Status Affected: None  
None  
Description:  
The eight-bit literal ‘k’ is loaded into  
W register. The “don’t cares” will  
assemble as ‘0’s.  
No operation.  
1
Cycles:  
1
Words:  
1
1
NOP  
Example:  
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
DS41250F-page 246  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RETLW  
Return with literal in W  
[ label ] RETLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC,  
1GIE  
k (W);  
TOS PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
Return from Interrupt. Stack is  
POPed and Top-of-Stack (TOS) is  
loaded in the PC. Interrupts are  
enabled by setting Global  
Interrupt Enable bit, GIE  
The W register is loaded with the  
eight bit literal ‘k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
(INTCON<7>). This is a two-cycle  
instruction.  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
CALL TABLE;W contains  
table  
Cycles:  
Example:  
2
;offset value  
RETFIE  
;W now has table value  
TABLE  
After Interrupt  
PC = TOS  
GIE =  
1
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
RETLW k2  
;
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
RETURN  
Return from Subroutine  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
TOS PC  
Status Affected: None  
Description: Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
© 2007 Microchip Technology Inc.  
DS41250F-page 247  
PIC16F913/914/916/917/946  
RLF  
Rotate Left f through Carry  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0PD  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
C
Register f  
Words:  
1
1
Cycles:  
Example:  
RLF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
SUBLW  
Subtract W from literal  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Syntax:  
[ label ] RRF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
k - (W) → (W)  
Operation:  
See description below  
C
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Description: The W register is subtracted (2’s  
complement method) from the  
eight-bit literal ‘k’. The result is  
placed in the W register.  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is placed  
back in register ‘f’.  
C = 0  
W > k  
C = 1  
W k  
DC = 0  
DC = 1  
W<3:0> > k<3:0>  
W<3:0> k<3:0>  
C
Register f  
DS41250F-page 248  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
SUBWF  
Subtract W from f  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k → (W)  
Z
Operation:  
(f) - (W) → (destination)  
Status Affected: C, DC, Z  
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
Description:  
Subtract (2’s complement method)  
W register from register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f.  
C = 0  
W > f  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> > f<3:0>  
W<3:0> f<3:0>  
SWAPF  
Swap Nibbles in f  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Operation:  
(W) .XOR. (f) → (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Description: The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in the W  
register. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
© 2007 Microchip Technology Inc.  
DS41250F-page 249  
PIC16F913/914/916/917/946  
NOTES:  
DS41250F-page 250  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
18.1 MPLAB Integrated Development  
Environment Software  
18.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2007 Microchip Technology Inc.  
DS41250F-page 251  
PIC16F913/914/916/917/946  
18.2 MPASM Assembler  
18.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
18.6 MPLAB SIM Software Simulator  
18.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcontrol-  
lers and the dsPIC30 and dsPIC33 family of digital sig-  
nal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
18.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS41250F-page 252  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
18.7 MPLAB ICE 2000  
High-Performance  
18.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU STATUS and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
18.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
18.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC® and MCU devices. It debugs and  
programs PIC® and dsPIC® Flash microcontrollers with  
the easy-to-use, powerful graphical user interface of the  
MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high speed, noise tolerant, low-  
voltage differential signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2007 Microchip Technology Inc.  
DS41250F-page 253  
PIC16F913/914/916/917/946  
18.11 PICSTART Plus Development  
Programmer  
18.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
18.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart® battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
and the latest “Product Selector Guide” (DS00148) for  
the complete list of demonstration, development and  
evaluation kits.  
DS41250F-page 254  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
19.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias..........................................................................................................-40° to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS ................................................................................................... -0.3V to +6.5V  
Voltage on MCLR with respect to Vss ............................................................................................... -0.3V to +13.5V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ...............................................................................................................................800 mW  
Maximum current out of VSS pin ....................................................................................................................... 95 mA  
Maximum current into VDD pin .......................................................................................................................... 95 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)................................................................................................................ 20 mA  
Output clamp current, IOK (Vo < 0 or Vo >VDD).......................................................................................................... 20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sourced by all ports (combined) ........................................................................................... 90 mA  
Maximum current sunk by all ports (combined) ................................................................................................ 90 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL).  
2: PORTD and PORTE are not implemented in PIC16F913/916 devices.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
© 2007 Microchip Technology Inc.  
DS41250F-page 255  
PIC16F913/914/916/917/946  
FIGURE 19-1:  
PIC16F913/914/916/917/946 VOLTAGE-FREQUENCY GRAPH,  
-40°C TA +125°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
0
8
10  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 19-2:  
HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE  
125  
85  
60  
25  
0
± 5%  
± 2%  
± 1%  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
DS41250F-page 256  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
19.1 DC Characteristics: PIC16F913/914/916/917/946-I (Industrial)  
PIC16F913/914/916/917/946-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
Sym.  
Characteristic  
Min. Typ† Max. Units  
Conditions  
No.  
VDD  
Supply Voltage  
2.0  
2.0  
3.0  
4.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
FOSC < = 8 MHz: HFINTOSC, EC  
FOSC < = 4 MHz  
FOSC < = 10 MHz  
D001  
D001C  
D001D  
FOSC < = 20 MHz  
D002* VDR  
RAM Data Retention  
Voltage(1)  
1.5  
V
Device in Sleep mode  
D003 VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See Section 16.2.1 “Power-on Reset  
(POR)” for details.  
D004* SVDD  
VDD Rise Rate to ensure  
internal Power-on Reset  
signal  
0.05  
V/ms See Section 16.2.1 “Power-on Reset  
(POR)” for details.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
© 2007 Microchip Technology Inc.  
DS41250F-page 257  
PIC16F913/914/916/917/946  
19.2 DC Characteristics: PIC16F913/914/916/917/946-I (Industrial)  
PIC16F913/914/916/917/946-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Units  
Device Characteristics  
Min.  
Typ†  
Max.  
No.  
VDD  
Note  
D010  
Supply Current (IDD)(1, 2)  
13  
22  
19  
30  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
mA  
μA  
μA  
mA  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32 kHz  
LP Oscillator mode  
33  
60  
D011*  
D012  
D013*  
D014  
D015  
D016*  
D017  
D018  
D019  
180  
290  
490  
280  
480  
0.9  
250  
400  
650  
380  
670  
1.4  
295  
480  
690  
450  
720  
1.3  
20  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
170  
280  
470  
290  
490  
0.85  
8
FOSC = 1 MHz  
EC Oscillator mode  
FOSC = 4 MHz  
EC Oscillator mode  
FOSC = 31 kHz  
LFINTOSC mode  
16  
40  
31  
65  
416  
640  
1.13  
0.65  
1.01  
1.86  
340  
550  
0.92  
3.8  
520  
840  
1.6  
0.9  
1.3  
2.3  
580  
900  
1.4  
4.7  
4.8  
FOSC = 4 MHz  
HFINTOSC mode  
FOSC = 8 MHz  
HFINTOSC mode  
FOSC = 4 MHz  
EXTRC mode(3)  
FOSC = 20 MHz  
HS Oscillator mode  
4.0  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave,  
from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.  
DS41250F-page 258  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
19.3 DC Characteristics: PIC16F913/914/916/917/946-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Conditions  
Param  
No.  
Device Characteristics Min.  
Typ†  
Max.  
Units  
VDD  
Note  
D020  
Power-down Base  
Current(IPD)(2)  
0.05  
0.15  
0.35  
150  
1.0  
2.0  
3.0  
42  
1.2  
1.5  
1.8  
500  
2.2  
4.0  
7.0  
60  
μA  
μA  
μA  
nA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
3.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOR, Comparators, VREF and  
T1OSC disabled  
-40°C TA +25°C  
WDT Current(1)  
D021  
D022A  
D022B  
BOR Current(1)  
PLVD Current  
85  
122  
28  
22  
25  
35  
33  
45  
D023  
D024  
D025*  
D026  
D027  
32  
45  
Comparator Current(1), both  
comparators enabled  
60  
78  
120  
30  
160  
36  
CVREF Current(1) (high range)  
CVREF Current(1) (low range)  
T1OSC Current(1), 32.768 kHz  
45  
55  
75  
95  
39  
47  
59  
72  
98  
124  
5.0  
5.5  
7.0  
1.6  
1.9  
2.0  
2.5  
3.0  
0.30  
0.36  
A/D Current(1), no conversion in  
progress  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
© 2007 Microchip Technology Inc.  
DS41250F-page 259  
PIC16F913/914/916/917/946  
19.4 DC Characteristics: PIC16F913/914/916/917/946-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C for extended  
Conditions  
Units  
Param  
No.  
Device Characteristics Min.  
Typ†  
Max.  
VDD  
Note  
D020E Power-down Base  
0.05  
0.15  
0.35  
1
9
11  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOR, Comparators, VREF and  
T1OSC disabled  
Current (IPD)(2)  
15  
28  
30  
35  
65  
127  
48  
55  
65  
45  
78  
160  
70  
90  
120  
91  
117  
156  
18  
21  
24  
12  
16  
D021E  
WDT Current(1)  
2
3
D022E  
D022B  
42  
85  
22  
25  
33  
32  
60  
120  
30  
45  
75  
39  
59  
98  
3.5  
4
BOR Current(1)  
PLVD Current  
D023E  
D024E  
D025E*  
D026E  
D027E  
Comparator Current(1), both  
comparators enabled  
CVREF Current(1) (high range)  
CVREF Current(1) (low range)  
T1OSC Current(1), 32.768 kHz  
5
0.30  
0.36  
A/D Current(1), no conversion in  
progress  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41250F-page 260  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
19.5 DC Characteristics: PIC16F913/914/916/917/946-I (Industrial)  
PIC16F913/914/916/917/946-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Sym.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
No.  
VIL  
Input Low Voltage  
I/O Port:  
D030  
D030A  
D031  
D032  
D033  
D033A  
with TTL buffer  
Vss  
Vss  
Vss  
VSS  
VSS  
VSS  
0.8  
V
V
V
V
V
V
4.5V VDD 5.5V  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3  
2.0V VDD 4.5V  
2.0V VDD 5.5V  
with Schmitt Trigger buffer  
(1)  
MCLR, OSC1 (RC mode)  
OSC1 (XT mode)  
OSC1 (HS mode)  
Input High Voltage  
I/O ports:  
0.3 VDD  
VIH  
D040  
with TTL buffer  
2.0  
0.25 VDD + 0.8  
0.8 VDD  
0.8 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
4.5V VDD 5.5V  
2.0V VDD 4.5V  
2.0V VDD 5.5V  
D040A  
D041  
with Schmitt Trigger buffer  
MCLR  
D042  
D043  
OSC1 (XT mode)  
OSC1 (HS mode)  
OSC1 (RC mode)  
D043A  
D043B  
0.7 VDD  
0.9 VDD  
(Note 1)  
(2)  
IIL  
Input Leakage Current  
D060  
I/O ports  
0.1  
1
μA VSS VPIN VDD,  
Pin at high-impedance  
(3)  
D061  
D063  
MCLR  
0.1  
0.1  
5
5
μA VSS VPIN VDD  
OSC1  
μA VSS VPIN VDD, XT, HS and  
LP oscillator configuration  
D070* IPUR  
VOL  
PORTB Weak Pull-up Current  
50  
250  
400  
0.6  
μA VDD = 5.0V, VPIN = VSS  
(5)  
Output Low Voltage  
D080  
I/O ports  
V
V
IOL = 8.5 mA, VDD = 4.5V (Ind.)  
IOH = -3.0 mA, VDD = 4.5V (Ind.)  
(5)  
VOH  
Output High Voltage  
D090  
I/O ports  
VDD – 0.7  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 13.0 “Data EEPROM and Flash Program Memory Control” for additional information.  
5: Including OSC2 in CLKOUT mode.  
© 2007 Microchip Technology Inc.  
DS41250F-page 261  
PIC16F913/914/916/917/946  
19.5 DC Characteristics: PIC16F913/914/916/917/946-I (Industrial)  
PIC16F913/914/916/917/946-E (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
Capacitive Loading Specs on  
Output Pins  
D101* COSC2 OSC2 pin  
15  
50  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101A* CIO  
All I/O pins  
pF  
Data EEPROM Memory  
Byte Endurance  
Byte Endurance  
VDD for Read/Write  
D120  
ED  
100K  
10K  
1M  
100K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D120A ED  
D121  
VDRW  
VMIN  
5.5  
V
Using EECON1 to read/write  
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW  
Erase/Write Cycle Time  
Characteristic Retention  
5
6
ms  
TRETD  
40  
Year Provided no other specifications  
are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh  
1M  
10M  
E/W -40°C TA +85°C  
(4)  
Program Flash Memory  
Cell Endurance  
D130  
EP  
10K  
1K  
100K  
10K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D130A ED  
Cell Endurance  
D131  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
D134  
VPEW  
TPEW  
TRETD  
VDD for Erase/Write  
4.5  
5.5  
3
V
Erase/Write cycle time  
Characteristic Retention  
ms  
40  
Year Provided no other specifications  
are violated  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 13.0 “Data EEPROM and Flash Program Memory Control” for additional information.  
5: Including OSC2 in CLKOUT mode.  
DS41250F-page 262  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
19.6 Thermal Considerations  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Symbol  
No.  
Characteristic  
Typ.  
Units  
Conditions  
TH01  
θJA  
Thermal Resistance  
Junction to Ambient  
60.0  
80.0  
90.0  
27.5  
47.2  
46.0  
24.4  
77.0  
31.4  
24.0  
24.0  
20.0  
24.7  
14.5  
20.0  
24.4  
150  
°C/W 28-pin PDIP package  
°C/W 28-pin SOIC package  
°C/W 28-pin SSOP package  
°C/W 28-pin QFN 6x6 mm package  
°C/W 40-pin PDIP package  
°C/W 44-pin TQFP package  
°C/W 44-pin QFN 8x8 mm package  
°C/W 64-pin TQFP package  
°C/W 28-pin PDIP package  
°C/W 28-pin SOIC package  
°C/W 28-pin SSOP package  
°C/W 28-pin QFN 6x6 mm package  
°C/W 40-pin PDIP package  
°C/W 44-pin TQFP package  
°C/W 44-pin QFN 8x8 mm package  
°C/W 64-pin TQFP package  
TH02  
θJC  
Thermal Resistance  
Junction to Case  
TH03  
TH04  
TH05  
TJ  
Junction Temperature  
Power Dissipation  
°C  
W
W
For derated power calculations  
PD = PINTERNAL + PI/O  
PD  
PINTERNAL Internal Power Dissipation  
PINTERNAL = IDD x VDD  
(NOTE 1)  
TH06  
TH07  
PI/O  
I/O Power Dissipation  
Derated Power  
W
W
PI/O = Σ (IOL * VOL) + Σ (IOH * (VDD - VOH))  
PDER = (TJ - TA)/θJA  
(NOTE 2, 3)  
PDER  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient Temperature.  
3: Maximum allowable power dissipation is the lower value of either the absolute maximum total power  
dissipation or derated power (PDER).  
© 2007 Microchip Technology Inc.  
DS41250F-page 263  
PIC16F913/914/916/917/946  
19.7 Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 19-3:  
LOAD CONDITIONS  
Load Condition  
Pin  
CL  
VSS  
Legend: CL = 50 pF for all pins  
15 pF for OSC2 output  
DS41250F-page 264  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
19.8 AC Characteristics: PIC16F913/914/916/917/946 (Industrial, Extended)  
FIGURE 19-4:  
CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1/CLKIN  
OS02  
OS04  
OS04  
OS03  
OSC2/CLKOUT  
(LP, XT, HS Modes)  
OSC2/CLKOUT  
(CLKOUT Mode)  
TABLE 19-1: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
(1)  
OS01  
OS02  
OS03  
FOSC  
TOSC  
TCY  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
37  
4
kHz LP Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz EC Oscillator mode  
kHz LP Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz RC Oscillator mode  
20  
20  
4
(1)  
Oscillator Frequency  
32.768  
0.1  
1
20  
4
DC  
27  
250  
50  
50  
(1)  
External CLKIN Period  
μs  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
EC Oscillator mode  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
RC Oscillator mode  
TCY = 4/FOSC  
(1)  
Oscillator Period  
30.5  
10,000  
1,000  
DC  
250  
50  
250  
200  
2
(1)  
Instruction Cycle Time  
TCY  
OS04* TosH, External CLKIN High,  
TosL External CLKIN Low  
LP oscillator  
100  
20  
0
XT oscillator  
HS oscillator  
OS05* TosR, External CLKIN Rise,  
TosF External CLKIN Fall  
LP oscillator  
0
XT oscillator  
0
HS oscillator  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min” values with an external  
clock applied to OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for  
all devices.  
© 2007 Microchip Technology Inc.  
DS41250F-page 265  
PIC16F913/914/916/917/946  
TABLE 19-2: OSCILLATOR PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Freq.  
Tolerance  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
TOSC Slowest clock  
ms LFINTOSC/64  
OS06  
OS07  
OS08  
TWARM  
Internal Oscillator Switch  
2
(3)  
when running  
TSC  
Fail-Safe Sample Clock  
21  
(1)  
Period  
HFOSC  
Internal Calibrated  
HFINTOSC Frequency  
1%  
2%  
7.92  
7.84  
8.0  
8.0  
8.08  
8.16  
MHz VDD = 3.5V, 25°C  
(2)  
MHz 2.5V VDD 5.5V,  
0°C TA +85°C  
5%  
7.60  
15  
8.0  
31  
8.40  
45  
MHz 2.0V VDD 5.5V,  
-40°C TA +85°C (Ind.),  
-40°C TA +125°C (Ext.)  
OS09*  
OS10*  
LFOSC  
Internal Uncalibrated  
LFINTOSC Frequency  
kHz  
TIOSC  
ST  
HFINTOSC Oscillator  
Wake-up from Sleep  
Start-up Time  
5.5  
3.5  
3
12  
7
24  
14  
11  
μs  
μs  
μs  
VDD = 2.0V, -40°C to +85°C  
VDD = 3.0V, -40°C to +85°C  
VDD = 5.0V, -40°C to +85°C  
6
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min” values with an external  
clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock)  
for all devices.  
2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the  
device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
3: By design.  
DS41250F-page 266  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 19-5:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
FOSC  
OS12  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS18  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
TABLE 19-3: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ† Max. Units  
Conditions  
OS11  
OS12  
OS13  
OS14  
TOSH2CKL FOSCto CLKOUT(1)  
TOSH2CKH FOSCto CLKOUT(1)  
70  
72  
20  
70  
ns VDD = 5.0V  
ns VDD = 5.0V  
ns  
50  
TCKL2IOV  
TIOV2CKH Port input valid before CLKOUT(1)  
CLKOUTto Port out valid(1)  
TOSC + 200 ns  
ns  
OS15* TOSH2IOV FOSC(Q1 cycle) to Port out valid  
ns VDD = 5.0V  
ns VDD = 5.0V  
OS16  
OS17  
OS18  
OS19  
TOSH2IOI  
FOSC(Q2 cycle) to Port input invalid  
(I/O in hold time)  
50  
TIOV2OSH Port input valid to FOSC(Q2 cycle)  
20  
ns  
(I/O in setup time)  
TIOR  
TIOF  
Port output rise time(2)  
15  
40  
72  
32  
ns VDD = 2.0V  
VDD = 5.0V  
Port output fall time(2)  
28  
15  
55  
30  
ns VDD = 2.0V  
VDD = 5.0V  
OS20* TINP  
OS21* TRAP  
INT pin input high or low time  
25  
ns  
ns  
PORTA interrupt-on-change new input  
level time  
TCY  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
2: Includes OSC2 in CLKOUT mode.  
© 2007 Microchip Technology Inc.  
DS41250F-page 267  
PIC16F913/914/916/917/946  
FIGURE 19-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Start-Up Time  
(1)  
Internal Reset  
Watchdog Timer  
(1)  
Reset  
31  
34  
34  
I/O pins  
Note 1: Asserted low.  
FIGURE 19-7:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR + VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
33*  
37  
BOR Reset  
(if PWRTE = 1)  
BOR Reset  
(if PWRTE = 0)  
DS41250F-page 268  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
30  
TMCL  
MCLR Pulse Width (low)  
2
5
μs VDD = 5V, -40°C to +85°C  
μs VDD = 5V  
31  
32  
TWDT  
TOST  
Watchdog Timer Time-out  
Period (No Prescaler)  
10  
10  
16  
16  
29  
31  
ms VDD = 5V, -40°C to +85°C  
ms VDD = 5V  
Oscillation Start-up Timer  
Period(1, 2)  
1024  
TOSC (NOTE 3)  
33*  
34*  
TPWRT Power-up Timer Period  
40  
65  
140  
2.0  
ms  
TIOZ  
I/O High-impedance from  
MCLR Low or Watchdog Timer  
Reset  
μs  
35  
VBOR  
Brown-out Reset Voltage  
2.0  
2.0  
2.2  
2.25  
V
V
-40°C to +85°C, (NOTE 4)  
-40°C to +125°C, (NOTE 4)  
36*  
37*  
VHYST  
TBOR  
Brown-out Reset Hysteresis  
50  
mV  
Brown-out Reset Minimum  
Detection Period  
100  
μs VDD VBOR  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator oper-  
ation and/or higher than expected current consumption. All devices are tested to operate at “min” values  
with an external clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time  
limit is “DC” (no clock) for all devices.  
2: By design.  
3: Period of the slower clock.  
4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
© 2007 Microchip Technology Inc.  
DS41250F-page 269  
PIC16F913/914/916/917/946  
FIGURE 19-8:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
TABLE 19-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
40*  
41*  
42*  
TT0H  
TT0L  
TT0P  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45*  
46*  
47*  
TT1H  
TT1L  
T1CKI High Synchronous, No Prescaler  
0.5 TCY + 20  
15  
ns  
ns  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
0.5 TCY + 20  
15  
ns  
ns  
ns  
T1CKI Low Synchronous, No Prescaler  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
ns  
TT1P  
FT1  
T1CKI Input Synchronous  
Period  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
ns  
48  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
32.768  
kHz  
49*  
TCKEZTMR1 Delay from External Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
Timers in Sync  
mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS41250F-page 270  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 19-6: COMPARATOR SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Symbol  
Characteristics  
Min. Typ†  
Max.  
Units  
Comments  
CM01 VOS  
CM02 VCM  
CM03* CMRR  
CM04* TRT  
Input Offset Voltage  
0
5.0  
10  
VDD – 1.5  
mV (VDD - 1.5)/2  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time  
V
+55  
dB  
Falling  
Rising  
150  
200  
600  
ns  
ns  
μs  
(NOTE 1)  
1000  
10  
CM05* TMC2COV Comparator Mode Change to  
Output Valid  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.  
TABLE 19-7: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Symbol  
No.  
Characteristics  
Min.  
Typ†  
Max.  
Units  
Comments  
CV01* CLSB  
Step Size(2)  
Absolute Accuracy  
VDD/24  
VDD/32  
V
V
Low Range (VRR = 1)  
High Range (VRR = 0)  
CV02* CACC  
1/2  
1/2  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
CV03* CR  
CV04* CST  
Unit Resistor Value (R)  
Settling Time(1)  
2k  
Ω
μs  
10  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from ‘0000’ to ‘1111’.  
2: See Section 8.10 “Comparator Voltage Reference” for more information.  
© 2007 Microchip Technology Inc.  
DS41250F-page 271  
PIC16F913/914/916/917/946  
TABLE 19-8: PIC16F913/914/916/917/946 A/D CONVERTER (ADC) CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
AD01 NR  
AD02 EIL  
AD03 EDL  
Resolution  
10 bits  
bit  
Integral Error  
1
1
LSb VREF = 5.12V  
Differential Error  
LSb No missing codes to 10 bits  
VREF = 5.12V  
AD04 EOFF Offset Error  
AD07 EGN Gain Error  
AD06 VREF Reference Voltage(1)  
1
1
LSb VREF = 5.12V  
LSb VREF = 5.12V  
2.2  
2.7  
VDD  
VDD  
V
AD06A  
Absolute minimum to ensure 1 LSb  
accuracy  
AD07 VAIN Full-Scale Range  
VSS  
VREF  
10  
V
AD08 ZAIN Recommended  
Impedance of Analog  
Voltage Source  
kΩ  
AD09* IREF  
VREF Input Current(1)  
10  
1000  
50  
μA During VAIN acquisition.  
Based on differential of VHOLD to VAIN.  
μA During A/D conversion cycle.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.  
DS41250F-page 272  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 19-9: PIC16F913/914/916/917/946 A/D CONVERSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
A/D Clock Period  
Min.  
Typ†  
Max. Units  
Conditions  
AD130* TAD  
1.6  
3.0  
9.0  
9.0  
μs TOSC-based, VREF 3.0V  
μs TOSC-based, VREF full range  
A/D Internal RC  
Oscillator Period  
ADCS<1:0> = 11(ADRC mode)  
μs At VDD = 2.5V  
3.0  
1.6  
6.0  
4.0  
11  
9.0  
6.0  
μs At VDD = 5.0V  
AD131 TCNV Conversion Time  
(not including  
TAD Set GO/DONE bit to new data in A/D  
Result register  
Acquisition Time)(1)  
AD132* TACQ Acquisition Time  
11.5  
5
μs  
μs  
AD133* TAMP Amplifier Settling Time  
AD134 TGO Q4 to A/D Clock Start  
TOSC/2  
TOSC/2 + TCY  
If the A/D clock source is selected as  
RC, a time of TCY is added before the  
A/D clock starts. This allows the SLEEP  
instruction to be executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.  
2: See Section 12.3 “A/D Acquisition Requirements” for minimum conditions.  
© 2007 Microchip Technology Inc.  
DS41250F-page 273  
PIC16F913/914/916/917/946  
FIGURE 19-9:  
PIC16F913/914/916/917/946 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
1 TCY  
(1)  
(TOSC/2  
AD134  
Q4  
)
AD131  
AD130  
A/D CLK  
9
8
7
6
3
2
1
0
A/D Data  
ADRES  
NEW_DATA  
1 TCY  
OLD_DATA  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
FIGURE 19-10:  
PIC16F913/914/916/917/946 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
AD134  
Q4  
(1)  
(TOSC/2 + TCY  
)
1 TCY  
AD131  
AD130  
A/D CLK  
A/D Data  
9
8
7
3
2
1
0
6
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
DS41250F-page 274  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 19-11:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
SCK/SCL/SEG9  
121  
121  
RC7/RX/DT/  
SDI/SDA/SEG8  
120  
Refer to Figure 19-3 for load conditions.  
122  
Note:  
TABLE 19-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param.  
Symbol  
No.  
Characteristic  
Min.  
Max.  
Units Conditions  
120  
121  
122  
TCKH2DT SYNC XMIT (Master and Slave)  
3.0-5.5V  
2.0-5.5V  
3.0-5.5V  
2.0-5.5V  
3.0-5.5V  
2.0-5.5V  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
V
Clock high to data-out valid  
TCKRF  
Clock out rise time and fall time  
(Master mode)  
50  
TDTRF  
Data-out rise time and fall time  
45  
50  
FIGURE 19-12:  
RC6/TX/CK  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
SCK/SCL/SEG9  
125  
RC7/RX/DT/  
SDI/SDA/SEG8  
126  
Note: Refer to Figure 19-3 for load conditions.  
TABLE 19-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param.  
Symbol  
No.  
Characteristic  
Min.  
Max. Units  
Conditions  
125  
TDTV2CKL SYNC RCV (Master and Slave)  
Data-hold before CK (DT hold time)  
TCKL2DTL Data-hold after CK (DT hold time)  
10  
15  
ns  
ns  
126  
© 2007 Microchip Technology Inc.  
DS41250F-page 275  
PIC16F913/914/916/917/946  
FIGURE 19-13:  
CAPTURE/COMPARE/PWM TIMINGS  
CCP1/CCP2  
(Capture mode)  
50  
51  
52  
CCP1/CCP2  
(Compare mode)  
53  
Note: Refer to Figure 19-3 for load conditions.  
54  
TABLE 19-12: CAPTURE/COMPARE/PWM (CCP) REQUIREMENTS  
Param. Sym. Characteristic  
No.  
Min.  
Typ† Max. Units Conditions  
50*  
TCCL CCPx  
input low time  
No Prescaler  
0.5TCY + 5  
10  
ns  
ns  
With Prescaler  
3.0-5.5V  
2.0-5.5V  
20  
0.5TCY + 5  
10  
ns  
ns  
ns  
ns  
51*  
TCCH  
No Prescaler  
CCPx  
input high time  
With Prescaler  
3.0-5.5V  
2.0-5.5V  
20  
52*  
53*  
TCCP  
3TCY + 40  
N
ns N = prescale  
value (1,4 or 16)  
CCPx input period  
TCCR CCPx output fall time  
TCCF CCPx output fall time  
3.0-5.5V  
2.0-5.5V  
3.0-5.5V  
2.0-5.5V  
10  
25  
10  
25  
25  
50  
25  
45  
ns  
ns  
ns  
ns  
54*  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
DS41250F-page 276  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 19-13: PIC16F913/914/916/917/946 PLVD CHARACTERISTICS:  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating Temperature  
Operating Voltage  
-40°C TA +125°C  
VDD Range 2.0V-5.5V  
Max.  
(85°C)  
Max.  
(125°C)  
Sym.  
Characteristic  
Min.  
Typ†  
Units  
Conditions  
VPLVD  
PLVD  
Voltage  
LVDL<2:0> = 001  
LVDL<2:0> = 010  
LVDL<2:0> = 011  
LVDL<2:0> = 100  
LVDL<2:0> = 101  
LVDL<2:0> = 110  
LVDL<2:0> = 111  
1.900  
2.000  
2.100  
2.200  
3.825  
4.025  
4.425  
2.0  
2.1  
2.2  
2.3  
4.0  
4.2  
4.5  
2.100  
2.200  
2.300  
2.400  
4.175  
4.375  
4.675  
2.125  
2.225  
2.325  
2.425  
4.200  
4.400  
4.700  
V
V
V
V
V
V
V
*TPLVDS PLVD Settling time  
50  
25  
μs  
VDD = 5.0V  
VDD = 3.0V  
*
These parameters are characterized but not tested  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
© 2007 Microchip Technology Inc.  
DS41250F-page 277  
PIC16F913/914/916/917/946  
FIGURE 19-14:  
SPI MASTER MODE TIMING (CKE = 0, SMP = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
73  
Note: Refer to Figure 19-3 for load conditions.  
FIGURE 19-15:  
SPI MASTER MODE TIMING (CKE = 1, SMP = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
bit 6 - - - - - -1  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
Note: Refer to Figure 19-3 for load conditions.  
DS41250F-page 278  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 19-16:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
bit 6 - - - - - -1  
77  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
73  
Note: Refer to Figure 19-3 for load conditions.  
FIGURE 19-17:  
SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
bit 6 - - - -1  
LSb In  
Note: Refer to Figure 19-3 for load conditions.  
© 2007 Microchip Technology Inc.  
DS41250F-page 279  
PIC16F913/914/916/917/946  
TABLE 19-14: SPI MODE REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ† Max. Units Conditions  
70* TSSL2SCH, SSto SCKor SCKinput  
TCY  
ns  
TSSL2SCL  
71* TSCH  
72* TSCL  
SCK input high time (Slave mode)  
SCK input low time (Slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
73* TDIV2SCH, Setup time of SDI data input to SCK edge  
TDIV2SCL  
74* TSCH2DIL, Hold time of SDI data input to SCK edge  
TSCL2DIL  
100  
ns  
75* TDOR  
SDO data output rise time  
3.0-5.5V  
2.0-5.5V  
10  
Tcy  
10  
25  
10  
10  
25  
10  
25  
50  
25  
50  
25  
50  
25  
50  
145  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76* TDOF  
SDO data output fall time  
77* TSSH2DOZ SSto SDO output high-impedance  
78* TSCR  
SCK output rise time  
(Master mode)  
3.0-5.5V  
2.0-5.5V  
79* TSCF  
SCK output fall time (Master mode)  
80* TSCH2DOV, SDO data output valid after  
TSCL2DOV SCK edge  
3.0-5.5V  
2.0-5.5V  
81* TDOV2SCH, SDO data output setup to SCK edge  
TDOV2SCL  
82* TSSL2DOV SDO data output valid after SSedge  
50  
ns  
ns  
83* TSCH2SSH, SS after SCK edge  
1.5TCY + 40  
TSCL2SSH  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 19-18:  
I2C™ BUS START/STOP BITS TIMING  
SCL  
SDA  
91  
93  
90  
92  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 19-3 for load conditions.  
DS41250F-page 280  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
TABLE 19-15: I2C™ BUS START/STOP BITS REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min. Typ. Max. Units  
Conditions  
400 kHz mode  
600  
90*  
91*  
92*  
93  
TSU:STA Start condition  
Setup time  
ns Only relevant for Repeated  
Start condition  
THD:STA Start condition  
Hold time  
400 kHz mode  
400 kHz mode  
400 kHz mode  
600  
600  
600  
ns After this period, the first  
clock pulse is generated  
TSU:STO Stop condition  
Setup time  
ns  
THD:STO Stop condition  
Hold time  
ns  
*
These parameters are characterized but not tested.  
FIGURE 19-19:  
I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 19-3 for load conditions.  
© 2007 Microchip Technology Inc.  
DS41250F-page 281  
PIC16F913/914/916/917/946  
TABLE 19-16: I2C™ BUS DATA REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
400 kHz mode  
Min.  
Max.  
Units  
Conditions  
0.6  
1.5TCY  
1.3  
μs  
Device must operate at a  
minimum of 10 MHz  
100*  
THIGH  
Clock high time  
SSP Module  
400 kHz mode  
SSP Module  
400 kHz mode  
101*  
TLOW  
Clock low time  
μs  
Device must operate at a  
minimum of 10 MHz  
1.5TCY  
20 + 0.1CB  
102*  
103*  
90*  
TR  
SDA and SCL rise  
time  
250  
ns  
ns  
μs  
μs  
CB is specified to be from  
10-400 pF  
TF  
SDA and SCL fall time 400 kHz mode  
20 + 0.1CB  
250  
CB is specified to be from  
10-400 pF  
TSU:STA  
THD:STA  
Start condition setup 400 kHz mode  
time  
1.3  
0.6  
Only relevant for Repeated  
Start condition  
91*  
Start condition hold  
time  
400 kHz mode  
After this period the first clock  
pulse is generated  
106*  
107*  
92*  
THD:DAT  
TSU:DAT  
TSU:STO  
Data input hold time  
400 kHz mode  
0
0.9  
μs  
ns  
μs  
Data input setup time 400 kHz mode  
100  
0.6  
(Note 2)  
(Note 1)  
Stop condition setup  
time  
400 kHz mode  
400 kHz mode  
400 kHz mode  
109*  
110*  
TAA  
Output valid from  
clock  
ns  
TBUF  
Bus free time  
1.3  
μs  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus capacitive loading  
400  
pF  
*
These parameters are characterized but not tested.  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns)  
of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2
2
2: A Fast mode (400 kHz) I C bus device can be used in a Standard mode (100 kHz) I C bus system, but the requirement  
TSU:DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of  
the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA  
2
line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I C bus specification), before the SCL  
line is released.  
DS41250F-page 282  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
20.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
The graphs and tables provided in this section are for design guidance and are not tested.  
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are ensured to operate properly only within the specified range.  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents  
(mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.  
FIGURE 20-1:  
TYPICAL IDD vs. FOSC OVER VDD (EC MODE)  
4.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5V  
3.5  
3.0  
2.5  
4V  
M
2.0  
3V  
2V  
1.5  
1.0  
0.5  
0.0  
1 MHz  
2 MHz  
4 MHz  
6 MHz  
8 MHz  
10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41250F-page 283  
PIC16F913/914/916/917/946  
FIGURE 20-2:  
MAXIMUM IDD vs. FOSC OVER VDD (EC MODE)  
6.0  
5.5V  
5V  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
4V  
3V  
2V  
1 MHz  
2 MHz  
4 MHz  
6 MHz  
8 MHz  
10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz  
VDD (V)  
FIGURE 20-3:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
HS Mode  
5.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.5V  
5V  
4.5V  
4V
3.5V  
3V  
4 MHz  
10 MHz  
16 MHz  
20 Mhz  
FOSC  
DS41250F-page 284  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 20-4:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
5.5  
5.0  
Typical: Statistical Mean @25°C  
5.5V  
5V  
4.5V  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4V  
3.5V  
3V  
4 MHz  
10 MHz  
16 MHz  
20 MHz  
FOSC  
FIGURE 20-5:  
TYPICAL IDD vs. VDD OVER FOSC (XT MODE)  
M
1,200  
Maximum:Mean (Worst-case Temp) + 3σ  
Typical: Statistical Mean @25°C  
1,000  
800  
600  
400  
200  
0
(-40°C to 125°C)  
4 MHz  
1 MHz  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41250F-page 285  
PIC16F913/914/916/917/946  
FIGURE 20-6:  
MAXIMUM IDD vs. VDD OVER FOSC (XT MODE)  
1,800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
1,600  
1,400  
1,200  
1,000  
800  
4 MHz  
1 MHz  
600  
400  
200  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 20-7:  
TYPICAL IDD vs. VDD OVER FOSC (EXTRC MODE)  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
4 Mhz  
1 Mhz  
600  
400  
200  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41250F-page 286  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 20-8:  
MAXIMUM IDD vs. VDD (EXTRC MODE)  
2,000  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
4 Mhz  
1 Mhz  
600  
400  
200  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 20-9:  
IDD vs. VDD OVER FOSC (LFINTOSC MODE, 31 kHz)  
LFINTOSC Mode, 31KHZ  
80  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
70  
60  
50  
40  
30  
20  
10  
0
Maximum  
Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41250F-page 287  
PIC16F913/914/916/917/946  
FIGURE 20-10:  
IDD vs. VDD (LP MODE)  
80  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
70  
60  
50  
40  
30  
20  
10  
0
32 kHz Maximum  
32 kHz Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 20-11:  
TYPICAL IDD vs. FOSC OVER VDD (HFINTOSC MODE)  
HFINTOSC  
2,500  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
5.5V  
5V  
2,000  
1,500  
1,000  
500  
(-40°C to 125°C)  
4V  
3V  
2V  
25 kHz  
1 MHz  
VDD (V)  
0
125 kHz  
500 kHz  
2 MHz  
4 MHz  
8 MHz  
DS41250F-page 288  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 20-12:  
MAXIMUM IDD vs. FOSC OVER VDD (HFINTOSC MODE)  
3,000  
5.5V  
5V  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
2,500  
2,000  
1,500  
1,000  
500  
4V  
3V  
2V  
0
125 kHz  
250 kHz  
500 kHz  
1 MHz  
VDD (V)  
2 MHz  
4 MHz  
8 MHz  
FIGURE 20-13:  
TYPICAL IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD (V)  
© 2007 Microchip Technology Inc.  
DS41250F-page 289  
PIC16F913/914/916/917/946  
FIGURE 20-14:  
MAXIMUM IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
18  
Typical: Statistical Mean @25°C  
16  
14  
12  
10  
8
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
6
4
Max. 85°C  
3.5  
2
0
2.0  
2.5  
3.0  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 20-15:  
COMPARATOR IPD vs. VDD (BOTH COMPARATORS ENABLED)  
180  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
160  
140  
120  
100  
80  
Maximum  
Typical  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41250F-page 290  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 20-16:  
BOR IPD vs. VDD OVER TEMPERATURE  
180  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
160  
140  
120  
100  
80  
Maximum  
Typical  
60  
40  
20  
0
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
FIGURE 20-17:  
TYPICAL WDT IPD vs. VDD (25°C)  
3.0  
Typical: Statistical Mean @25°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41250F-page 291  
PIC16F913/914/916/917/946  
FIGURE 20-18:  
MAXIMUM WDT IPD vs. VDD OVER TEMPERATURE  
40.0  
Maximum: Mean + 3σ  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
Max. 125°C  
Max. 85°C  
4.0  
0.0  
2.0  
2.5  
3.0  
3.5  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 20-19:  
WDT PERIOD vs. VDD OVER TEMPERATURE  
WDT Time-out Period  
32  
Maximum: Mean + 3σ (-40°C to 125°C)  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
Max. (125°C)  
Max. (85°C)  
Typical  
Minimum  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41250F-page 292  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 20-20:  
WDT PERIOD vs. TEMPERATURE (VDD = 5.0V)  
Vdd = 5V  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
Maximum  
Typical  
Minimum  
-40°C  
25°C  
85°C  
125°C  
Temperature (°C)  
FIGURE 20-21:  
CVREF IPD vs. VDD OVER TEMPERATURE (HIGH RANGE)  
140  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
120  
100  
80  
60  
40  
20  
0
(-40°C to 125°C)  
Max. 125°C  
Max. 85°C  
Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41250F-page 293  
PIC16F913/914/916/917/946  
FIGURE 20-22:  
CVREF IPD vs. VDD OVERloTwEMRaPnEgeRATURE (LOW RANGE)  
180  
Typical: Statistical Mean @25°C  
160  
140  
120  
100  
80  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
Max. 85°C  
Typical  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 20-23:  
LVD IPD vs. VDD OVER TEMPERATURE  
80  
Typical: Statistical Mean @25°C  
Maximum: Mean + 3σ  
70  
60  
50  
40  
30  
20  
10  
0
Max. 125°C  
Max. 85°C  
Typical  
2.0V  
2.5V  
3.0V  
3.5V  
4.0V  
4.5V  
5V  
5.5V  
VDD (V)  
DS41250F-page 294  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 20-24:  
T1OSC IPD vs. VDD OVER TEMPERATURE (32 kHz)  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
25  
20  
15  
10  
5
Max. 125°C  
Max. 85°C  
Typ. 25°C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 20-25:  
VOL vs. IOL OVER TEMPERATURE (VDD = 3.0V)  
(VDD = 3V, -40×C TO 125×C)  
0.8  
Typical: Statistical Mean @25°C  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Maximum: Mean + 3σ  
Max. 125°C  
Max. 85°C  
Typical 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
© 2007 Microchip Technology Inc.  
DS41250F-page 295  
PIC16F913/914/916/917/946  
FIGURE 20-26:  
VOL vs. IOL OVER TEMPERATURE (VDD = 5.0V)  
0.45  
Typical: Statistical Mean @25°C  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Maximum: Mean + 3σ  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
FIGURE 20-27:  
VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V)  
3.5  
3.0  
2.5  
2.0  
1.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
1.0  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
IOH (mA)  
DS41250F-page 296  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 20-28:  
VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V)  
5.5  
5.0  
4.5  
4.0  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
3.5  
3.0  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-4.5  
-5.0  
IOH (mA)  
FIGURE 20-29:  
TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
1.7  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41250F-page 297  
PIC16F913/914/916/917/946  
FIGURE 20-30:  
SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VIH Max. 125°C  
VIH Min. -40°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
VIL Max. -40°C  
VIL Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 20-31:  
COMPARATOR RESPONSE TIME (RISING EDGE)  
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
Max. (125°C)  
Max. (85°C)  
VCM = VDD - 1.5V)/2  
V+ input = VCM  
V- input = Transition from VCM + 100MV to VCM - 20MV  
Note:  
Typ. (25°C)  
Min. (-40°C)  
0
2.0  
2.5  
4.0  
5.5  
VDD (Volts)  
DS41250F-page 298  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 20-32:  
COMPARATOR RESPONSE TIME (FALLING EDGE)  
Vdd  
-40×C 25×C  
85×C  
125×C  
600  
500  
400  
300  
200  
100  
0
Max. (125°C)  
Max. (85°C)  
VCM = VDD - 1.5V)/2  
V+ input = VCM  
V- input = Transition from VCM - 100MV to VCM + 20MV  
Typ. (25°C)  
Min. (-40°C)  
Note:  
2.0  
2.5  
4.0  
5.5  
VDD (Volts)  
FIGURE 20-33:  
LFINTOSC FREQUENCY vs. VDD OVER TEMPERATURE (31 kHz)  
LFINTOSC 31Khz  
45,000  
40,000  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5,000  
Max. -40°C  
Typ. 25°C  
Min. 85°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case) + 3σ  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41250F-page 299  
PIC16F913/914/916/917/946  
FIGURE 20-34:  
ADC CLOCK PERIOD vs. VDD OVER TEMPERATURE  
8
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
(-40°C to 125°C)  
125°C  
85°C  
6
4
2
0
25°C  
-40°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 20-35:  
TYPICAL HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
16  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case) + 3σ  
14  
85°C  
12  
25°C  
10  
-40°C  
8
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41250F-page 300  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 20-36:  
MAXIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
-40C to +85C  
25  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case) + 3σ  
20  
15  
10  
5
85°C  
25°C  
-40°C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 20-37:  
MINIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
10  
9
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-case Temp) + 3σ  
8
7
85°C  
6
25°C  
5
-40°C  
4
3
2
1
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41250F-page 301  
PIC16F913/914/916/917/946  
FIGURE 20-38:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 20-39:  
TYPICAL HFINTOSC FREQUENCY CHANGE OVER DEVICE VDD (85°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41250F-page 302  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
FIGURE 20-40:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (125°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 20-41:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (-40°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41250F-page 303  
PIC16F913/914/916/917/946  
NOTES:  
DS41250F-page 304  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
21.0 PACKAGING INFORMATION  
21.1 Package Marking Information  
28-Lead SPDIP  
Example  
Example  
PIC16F913  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
e
3
-I/SP  
YYWWNNN  
0710017  
40-Lead PDIP  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC16F914  
-I/P  
e
3
0710017  
Example  
-I/ML  
28-Lead QFN  
16F916  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
e
3
0710017  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
*
Standard PIC® device marking consists of Microchip part number, year code, week code and traceability  
code. For PIC® device marking beyond this, certain price adders apply. Please check with your  
Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  
© 2007 Microchip Technology Inc.  
DS41250F-page 305  
PIC16F913/914/916/917/946  
Package Marking Information (Continued)  
44-Lead QFN  
Example  
-I/ML  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F914  
e
3
0710017  
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC16F913  
-I/SO  
e
3
0710017  
YYWWNNN  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16F916  
-I/SS  
e
3
YYWWNNN  
0710017  
44-Lead TQFP  
Example  
-I/PT  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F917  
e
3
0710017  
64-Lead TQFP (10x10x1mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F946  
e
3
-I/PT  
0710017  
DS41250F-page 306  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
21.2 Package Details  
The following sections give the technical details of the packages.  
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
Units  
INCHES  
NOM  
28  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
.100 BSC  
Top to Seating Plane  
A
.200  
.150  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.120  
.015  
.290  
.240  
1.345  
.110  
.008  
.040  
.014  
.135  
.310  
.285  
1.365  
.130  
.010  
.050  
.018  
.335  
.295  
1.400  
.150  
.015  
.070  
.022  
.430  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-070B  
© 2007 Microchip Technology Inc.  
DS41250F-page 307  
PIC16F913/914/916/917/946  
40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
1 2 3  
D
E
A2  
A
L
c
b1  
b
A1  
e
eB  
Units  
INCHES  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
40  
.100 BSC  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
.250  
.195  
A2  
A1  
E
.125  
.015  
.590  
.485  
1.980  
.115  
.008  
.030  
.014  
.625  
.580  
2.095  
.200  
.015  
.070  
.023  
.700  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-016B  
DS41250F-page 308  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN]  
with 0.55 mm Contact Length  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D2  
EXPOSED  
PAD  
e
E
b
E2  
2
1
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
Units  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
Number of Pins  
N
e
28  
Pitch  
0.65 BSC  
0.90  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
E
0.02  
Contact Thickness  
Overall Width  
0.20 REF  
6.00 BSC  
3.70  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
E2  
D
3.65  
4.20  
6.00 BSC  
3.70  
D2  
b
3.65  
0.23  
0.50  
0.20  
4.20  
0.35  
0.70  
0.30  
L
0.55  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-105B  
© 2007 Microchip Technology Inc.  
DS41250F-page 309  
PIC16F913/914/916/917/946  
44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
44  
MAX  
Number of Pins  
N
e
Pitch  
0.65 BSC  
0.90  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
E
0.02  
Contact Thickness  
Overall Width  
0.20 REF  
8.00 BSC  
6.45  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
E2  
D
6.30  
6.80  
8.00 BSC  
6.45  
D2  
b
6.30  
0.25  
0.30  
0.20  
6.80  
0.38  
0.50  
0.30  
L
0.40  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-103B  
DS41250F-page 310  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
28  
1.27 BSC  
Overall Height  
A
2.65  
Molded Package Thickness  
Standoff §  
A2  
A1  
E
2.05  
0.10  
0.30  
Overall Width  
10.30 BSC  
Molded Package Width  
Overall Length  
Chamfer (optional)  
Foot Length  
E1  
D
h
7.50 BSC  
17.90 BSC  
0.25  
0.40  
0.75  
1.27  
L
Footprint  
L1  
φ
1.40 REF  
Foot Angle Top  
Lead Thickness  
Lead Width  
0°  
0.18  
0.31  
5°  
8°  
c
0.33  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-052B  
© 2007 Microchip Technology Inc.  
DS41250F-page 311  
PIC16F913/914/916/917/946  
28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
1
2
b
NOTE 1  
e
c
A2  
A
φ
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
28  
0.65 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
A
1.75  
2.00  
1.85  
A2  
A1  
E
1.65  
0.05  
7.40  
5.00  
9.90  
0.55  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
7.80  
5.30  
10.20  
0.75  
1.25 REF  
8.20  
5.60  
10.50  
0.95  
E1  
D
L
Footprint  
L1  
c
Lead Thickness  
Foot Angle  
0.09  
0°  
0.25  
8°  
φ
4°  
Lead Width  
b
0.22  
0.38  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-073B  
DS41250F-page 312  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
44  
MAX  
Number of Leads  
Lead Pitch  
N
e
0.80 BSC  
Overall Height  
A
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
A2  
A1  
L
0.95  
0.05  
0.45  
1.00  
Foot Length  
0.60  
Footprint  
L1  
φ
1.00 REF  
3.5°  
Foot Angle  
0°  
7°  
Overall Width  
E
12.00 BSC  
12.00 BSC  
10.00 BSC  
10.00 BSC  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
0.09  
0.30  
11°  
0.20  
0.45  
13°  
b
0.37  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
12°  
11°  
12°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-076B  
© 2007 Microchip Technology Inc.  
DS41250F-page 313  
PIC16F913/914/916/917/946  
64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
A1  
β
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
64  
MAX  
Number of Leads  
N
e
Lead Pitch  
0.50 BSC  
Overall Height  
A
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
A2  
A1  
L
0.95  
0.05  
0.45  
1.00  
Foot Length  
0.60  
Footprint  
L1  
φ
1.00 REF  
3.5°  
Foot Angle  
0°  
7°  
Overall Width  
E
12.00 BSC  
12.00 BSC  
10.00 BSC  
10.00 BSC  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
D
E1  
D1  
c
0.09  
0.17  
11°  
0.20  
0.27  
13°  
b
0.22  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
12°  
11°  
12°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-085B  
DS41250F-page 314  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
APPENDIX A: DATA SHEET  
APPENDIX B: MIGRATING FROM  
REVISION HISTORY  
OTHER PIC®  
DEVICES  
Revision A  
This discusses some of the issues in migrating from  
other PIC® devices to the PIC16F91X/946 family of  
devices.  
This is a new data sheet.  
Revision B  
B.1  
PIC16F676 to PIC16F91X/946  
FEATURE COMPARISON  
Updated Peripheral Features.  
Page 2, Table: Corrected I/O numbers.  
TABLE B-1:  
Figure 8-3: Revised Comparator I/O operating modes.  
Register 9-1, Table: Corrected max. number of pixels.  
PIC16F91X/  
Feature  
PIC16F676  
946  
Max. Operating Speed  
20 MHz  
1K  
20 MHz  
8K  
Revision C  
Max. Program  
Memory (Words)  
Correction to Pin Description Table.  
Correction to IPD base and T1OSC.  
Max. SRAM (Bytes)  
A/D Resolution  
64  
352  
10-bit  
256  
10-bit  
Revision D  
Data EEPROM (bytes)  
Timers (8/16-bit)  
Oscillator Modes  
Brown-out Reset  
Internal Pull-ups  
128  
Revised references 31.25 kHz to 31 kHz.  
Revised Standby Current to 100 nA.  
Revised 9.1: internal RC oscillator to internal LF  
oscillator.  
1/1  
2/1  
8
Y
8
Y
RB0/1/2/4/5  
RB<7:0>  
RB<7:4>  
Revision E  
Interrupt-on-change  
RB0/1/2/3  
/4/5  
Removed “Advance Information” from Section 19.0  
Electrical Specifications. Removed 28-Lead Plastic  
Quad Flat No Lead Package (ML) (QFN-S) package.  
Comparator  
USART  
1
N
N
N
2
Y
Y
Y
Extended WDT  
Revision F  
Software Control  
Updates throughout document. Removed “Preliminary”  
from Data Sheet. Added Characterization Data  
chapter. Update Electrical Specifications chapter.  
Added PIC16F946 device.  
Option of WDT/BOR  
INTOSC Frequencies  
Clock Switching  
4 MHz  
N
32 kHz -  
8 MHz  
Y
© 2007 Microchip Technology Inc.  
DS41250F-page 315  
PIC16F913/914/916/917/946  
APPENDIX C: CONVERSION  
CONSIDERATIONS  
Considerations for converting from previous versions  
of devices to the ones listed in this data sheet are listed  
in Table C-1.  
TABLE C-1:  
CONVERSION CONSIDERATIONS  
Characteristic  
PIC16F91X/946  
PIC16F87X  
PIC16F87XA  
Pins  
28/40/64  
3
28/40  
3
28/40  
3
Timers  
Interrupts  
Communication  
11 or 12  
13 or 14  
14 or 15  
USART, SSP(1)  
PSP, USART, SSP  
PSP, USART, SSP  
(SPI, I2C™ Slave)  
(SPI, I2C Master/Slave)  
(SPI, I2C Master/Slave)  
Frequency  
Voltage  
A/D  
20 MHz  
20 MHz  
20 MHz  
2.0V-5.5V  
2.2V-5.5V  
2.0V-5.5V  
10-bit,  
10-bit,  
10-bit,  
7 conversion clock selects  
4 conversion clock selects  
7 conversion clock selects  
CCP  
2
2
2
2
2
Comparator  
Comparator Voltage  
Reference  
Yes  
Yes  
Program Memory  
4K, 8K Flash  
4K, 8K Flash  
(Erase/Write on  
single-word)  
4K, 8K Flash  
(Erase/Write on  
four-word blocks)  
RAM  
256, 336, 352 bytes  
256 bytes  
192, 368 bytes  
128, 256 bytes  
192, 368 bytes  
128, 256 bytes  
On/Off  
EEPROM Data  
Code Protection  
On/Off  
Segmented, starting at end  
of program memory  
Program Memory  
Write Protection  
On/Off  
Segmented, starting at  
beginning of  
program memory  
LCD Module  
Other  
16, 24 segment drivers,  
4 commons  
In-Circuit Debugger,  
In-Circuit Debugger,  
In-Circuit Debugger,  
Low-Voltage Programming Low-Voltage Programming  
Low-Voltage Programming  
Note 1: SSP aand USART share the same pins on the PIC16F91X.  
DS41250F-page 316  
© 2007 Microchip Technology Inc.  
PIC16F917/916/914/913  
INDEX  
Associated Registers  
A
Receive .................................................... 140  
Transmit ................................................... 139  
Reception ......................................................... 140  
Transmission .................................................... 139  
A/D  
Specifications.................................................... 272, 273  
Absolute Maximum Ratings .............................................. 255  
AC Characteristics  
Industrial and Extended ............................................ 265  
Load Conditions........................................................ 264  
ACK pulse......................................................................... 202  
ADC .................................................................................. 175  
Acquisition Requirements ......................................... 183  
Associated registers.................................................. 185  
Block Diagram........................................................... 175  
Calculating Acquisition Time..................................... 183  
Channel Selection..................................................... 176  
Configuration............................................................. 176  
Configuring Interrupt ................................................. 179  
Conversion Clock...................................................... 176  
Conversion Procedure .............................................. 179  
Internal Sampling Switch (RSS) Impedance.............. 183  
Interrupts................................................................... 177  
Operation .................................................................. 178  
Operation During Sleep ............................................ 178  
Port Configuration..................................................... 176  
Reference Voltage (VREF)......................................... 176  
Result Formatting...................................................... 178  
Source Impedance.................................................... 183  
Special Event Trigger................................................ 178  
Starting an A/D Conversion ...................................... 178  
ADCON0 Register............................................................. 180  
ADCON1 Register............................................................. 181  
Addressable Universal Synchronous  
Asynchronous Receiver Transmitter (AUSART)....... 121  
ADRESH Register (ADFM = 0)......................................... 182  
ADRESH Register (ADFM = 1)......................................... 182  
ADRESL Register (ADFM = 0).......................................... 182  
ADRESL Register (ADFM = 1).......................................... 182  
Analog Input Connection Considerations.......................... 111  
Analog-to-Digital Converter. See ADC  
ANSEL Register.................................................................. 43  
Assembler  
MPASM Assembler................................................... 252  
AUSART ........................................................................... 121  
Associated Registers  
B
BF bit ................................................................................ 194  
Block Diagram of RF........................................................... 83  
Block Diagrams  
(CCP) Capture Mode Operation............................... 213  
ADC.......................................................................... 175  
ADC Transfer Function............................................. 184  
Analog Input Model........................................... 111, 184  
AUSART Receive..................................................... 122  
AUSART Transmit.................................................... 121  
CCP PWM ................................................................ 215  
Clock Source .............................................................. 87  
Comparator 1............................................................ 110  
Comparator 2............................................................ 110  
Comparator Modes................................................... 113  
Compare................................................................... 214  
Crystal Operation........................................................ 90  
External RC Mode ...................................................... 91  
Fail-Safe Clock Monitor (FSCM)................................. 97  
In-Circuit Serial Programming Connections ............. 238  
Interrupt Logic........................................................... 231  
LCD Clock Generation.............................................. 150  
LCD Driver Module................................................... 144  
LCD Resistor Ladder Connection............................. 148  
MCLR Circuit ............................................................ 222  
On-Chip Reset Circuit............................................... 221  
PIC16F913/916 .......................................................... 15  
PIC16F914/917 .......................................................... 16  
PIC16F946 ................................................................. 17  
RA0 Pin ...................................................................... 45  
RA1 Pin ...................................................................... 46  
RA2 Pin ...................................................................... 47  
RA3 Pin ...................................................................... 48  
RA4 Pin ...................................................................... 49  
RA5 Pin ...................................................................... 50  
RA6 Pin ...................................................................... 51  
RA7 Pin ...................................................................... 52  
RB Pins....................................................................... 56  
RB4 Pin ...................................................................... 57  
RB5 Pin ...................................................................... 58  
RB6 Pin ...................................................................... 59  
RB7 Pin ...................................................................... 60  
RC0 Pin ...................................................................... 63  
RC1 Pin ...................................................................... 64  
RC2 Pin ...................................................................... 64  
RC3 Pin ...................................................................... 65  
RC4 Pin ...................................................................... 66  
RC5 Pin ...................................................................... 67  
RC6 Pin ...................................................................... 68  
RC7 Pin ...................................................................... 69  
RD Pins ...................................................................... 74  
RD0 Pin ...................................................................... 73  
RD1 Pin ...................................................................... 73  
RD2 Pin ...................................................................... 74  
RE Pins....................................................................... 78  
RE Pins....................................................................... 79  
Resonator Operation .................................................. 90  
RF Pins....................................................................... 83  
Baud Rate Generator........................................ 132  
Asynchronous Mode ................................................. 123  
Associated Registers  
Receive..................................................... 129  
Transmit.................................................... 125  
Baud Rate Generator (BRG) ............................ 132  
Receiver............................................................ 126  
Setting up 9-bit Mode with Address Detect....... 128  
Transmitter........................................................ 123  
Baud Rate Generator (BRG)  
Baud Rate Error, Calculating ............................ 132  
Baud Rates, Asynchronous Modes .................. 133  
Formulas........................................................... 132  
High Baud Rate Select (BRGH Bit) .................. 132  
Synchronous Master Mode............................... 135, 139  
Associated Registers  
Receive..................................................... 138  
Transmit.................................................... 136  
Reception.......................................................... 137  
Transmission .................................................... 135  
Synchronous Slave Mode  
© 2007 Microchip Technology Inc.  
DS41250F-page 317  
PIC16F917/916/914/913  
RG Pins.......................................................................85  
SSP (I C Mode) ........................................................202  
Assigning Prescaler to WDT..................................... 100  
Call of a Subroutine in Page 1 from Page 0 ............... 40  
Changing Between Capture Prescalers.................... 213  
Indirect Addressing..................................................... 41  
Initializing PORTA....................................................... 44  
Initializing PORTB....................................................... 53  
Initializing PORTC ...................................................... 62  
Initializing PORTD ...................................................... 71  
Initializing PORTE....................................................... 76  
Initializing PORTF....................................................... 81  
Initializing PORTG ...................................................... 84  
Loading the SSPBUF (SSPSR) Register.................. 196  
Saving Status and W Registers in RAM ................... 233  
Code Protection................................................................ 238  
Comparator....................................................................... 109  
C2OUT as T1 Gate................................................... 117  
Configurations .......................................................... 112  
Interrupts .................................................................. 114  
Operation.......................................................... 109, 114  
Operation During Sleep ............................................ 115  
Response Time......................................................... 114  
Synchronizing COUT w/Timer1 ................................ 117  
Comparator Module  
2
SSP (SPI Mode)........................................................193  
Timer1.......................................................................102  
Timer2.......................................................................107  
TMR0/WDT Prescaler.................................................99  
Watchdog Timer (WDT)............................................234  
Brown-out Reset (BOR) ....................................................223  
Associated Registers ................................................224  
Calibration.................................................................223  
Specifications............................................................269  
Timing and Characteristics .......................................268  
C
C Compilers  
MPLAB C18 ..............................................................252  
MPLAB C30 ..............................................................252  
Capture Module. See Capture/Compare/PWM (CCP)  
Capture/Compare/PWM (CCP).........................................211  
Associated registers w/ Capture/Compare/PWM......218  
Capture Mode ...........................................................213  
CCPx Pin Configuration ............................................213  
Compare Mode .........................................................214  
CCPx Pin Configuration....................................214  
Software Interrupt Mode ........................... 213, 214  
Special Event Trigger........................................214  
Timer1 Mode Selection............................. 213, 214  
Interaction of Two CCP Modules (table) ...................211  
Prescaler...................................................................213  
PWM Mode ...............................................................215  
Duty Cycle.........................................................216  
Effects of Reset.................................................218  
Example PWM Frequencies and  
Associated registers ................................................. 119  
Comparator Voltage Reference (CVREF)  
Response Time......................................................... 114  
Comparator Voltage Reference (CVREF).......................... 118  
Effects of a Reset ..................................................... 115  
Specifications ........................................................... 271  
Comparators  
C2OUT as T1 Gate................................................... 103  
Effects of a Reset ..................................................... 115  
Specifications ........................................................... 271  
Compare Module. See Capture/Compare/PWM (CCP)  
CONFIG1 Register ........................................................... 220  
Configuration Bits ............................................................. 220  
Conversion Considerations............................................... 316  
CPU Features................................................................... 219  
Customer Change Notification Service............................. 325  
Customer Notification Service .......................................... 325  
Customer Support............................................................. 325  
Resolutions, 20 MHZ ................................217  
Example PWM Frequencies and  
Resolutions, 8 MHz...................................217  
Operation in Sleep Mode ..................................218  
Setup for Operation...........................................218  
System Clock Frequency Changes...................218  
PWM Period..............................................................216  
Setup for PWM Operation.........................................218  
Timer Resources.......................................................211  
CCP. See Capture/Compare/PWM (CCP)  
D
CCPxCON Register ..........................................................212  
CKE bit..............................................................................194  
CKP bit..............................................................................195  
Clock Sources  
D/A bit............................................................................... 194  
Data EEPROM Memory.................................................... 187  
Associated Registers................................................ 192  
Reading .................................................................... 190  
Writing ...................................................................... 190  
Data Memory ...................................................................... 24  
Data/Address bit (D/A)...................................................... 194  
DC and AC Characteristics  
Graphs and Tables ................................................... 283  
DC Characteristics  
Extended and Industrial............................................ 261  
Industrial and Extended............................................ 257  
Development Support....................................................... 251  
Device Overview................................................................. 15  
External Modes...........................................................89  
EC.......................................................................89  
HS.......................................................................90  
LP........................................................................90  
OST.....................................................................89  
RC.......................................................................91  
XT .......................................................................90  
Internal Modes ............................................................91  
Frequency Selection ...........................................93  
HFINTOSC..........................................................91  
INTOSC ..............................................................91  
INTOSCIO...........................................................91  
LFINTOSC ..........................................................93  
Clock Switching...................................................................95  
CMCON0 Register ............................................................116  
CMCON1 Register ............................................................117  
Code Examples  
E
EEADRH Registers................................................... 187, 188  
EEADRL Register............................................................. 188  
EEADRL Registers ........................................................... 187  
EECON1 Register..................................................... 187, 189  
EECON2 Register............................................................. 187  
EEDATH Register............................................................. 188  
EEDATL Register ............................................................. 188  
A/D Conversion.........................................................179  
Assigning Prescaler to Timer0 ..................................100  
DS41250F-page 318  
© 2007 Microchip Technology Inc.  
PIC16F917/916/914/913  
Effects of Reset  
PWM mode ............................................................... 218  
Electrical Specifications .................................................... 255  
Errata .................................................................................. 13  
SLEEP...................................................................... 248  
SUBLW..................................................................... 248  
SUBWF..................................................................... 249  
SWAPF..................................................................... 249  
XORLW .................................................................... 249  
XORWF .................................................................... 249  
Summary Table ........................................................ 242  
INTCON Register................................................................ 34  
F
Fail-Safe Clock Monitor....................................................... 97  
Fail-Safe Condition Clearing....................................... 97  
Fail-Safe Detection ..................................................... 97  
Fail-Safe Operation..................................................... 97  
Reset or Wake-up from Sleep..................................... 97  
Firmware Instructions........................................................ 241  
Flash Program Memory .................................................... 187  
Fuses. See Configuration Bits  
2
2
Inter-Integrated Circuit (I C). See I C Mode  
Internal Oscillator Block  
INTOSC  
Specifications ........................................... 266, 267  
Internal Sampling Switch (RSS) Impedance ..................... 183  
Internet Address ............................................................... 325  
Interrupts .......................................................................... 230  
ADC.......................................................................... 179  
Associated Registers................................................ 232  
Comparator............................................................... 114  
Context Saving ......................................................... 233  
Interrupt-on-change.................................................... 53  
PORTB Interrupt-on-Change.................................... 231  
RB0/INT/SEG0 ......................................................... 231  
TMR0........................................................................ 231  
TMR1........................................................................ 104  
INTOSC Specifications............................................. 266, 267  
IOCB Register..................................................................... 54  
G
General Purpose Register File............................................ 24  
I
I/O Ports.............................................................................. 43  
2
I C Mode  
Addressing................................................................ 203  
Associated Registers ................................................ 209  
Master Mode............................................................. 208  
Mode Selection ......................................................... 202  
Multi-Master Mode .................................................... 208  
Operation .................................................................. 202  
Reception.................................................................. 204  
Slave Mode  
L
LCD  
SCL and SDA pins............................................ 202  
Transmission............................................................. 206  
ID Locations...................................................................... 238  
In-Circuit Debugger........................................................... 239  
In-Circuit Serial Programming (ICSP)............................... 238  
Indirect Addressing, INDF and FSR Registers ................... 41  
Instruction Format............................................................. 241  
Instruction Set................................................................... 241  
ADDLW..................................................................... 243  
ADDWF..................................................................... 243  
ANDLW..................................................................... 243  
ANDWF..................................................................... 243  
BCF........................................................................... 243  
BSF........................................................................... 243  
BTFSC ...................................................................... 243  
BTFSS ...................................................................... 244  
CALL......................................................................... 244  
CLRF......................................................................... 244  
CLRW ....................................................................... 244  
CLRWDT................................................................... 244  
COMF ....................................................................... 244  
DECF ........................................................................ 244  
DECFSZ.................................................................... 245  
GOTO ....................................................................... 245  
INCF.......................................................................... 245  
INCFSZ..................................................................... 245  
IORLW ...................................................................... 245  
IORWF...................................................................... 245  
MOVF........................................................................ 246  
MOVLW .................................................................... 246  
MOVWF .................................................................... 246  
NOP .......................................................................... 246  
RETFIE ..................................................................... 247  
RETLW ..................................................................... 247  
RETURN................................................................... 247  
RLF ........................................................................... 248  
RRF........................................................................... 248  
Associated Registers................................................ 168  
Bias Types................................................................ 148  
Clock Source Selection ............................................ 148  
Configuring the Module ............................................ 167  
Disabling the Module................................................ 167  
Frame Frequency ..................................................... 149  
Interrupts .................................................................. 164  
LCDCON Register.................................................... 143  
LCDDATA Register .................................................. 143  
LCDPS Register ....................................................... 143  
Multiplex Types......................................................... 149  
Operation During Sleep............................................ 165  
Pixel Control ............................................................. 149  
Prescaler .................................................................. 148  
Segment Enables ..................................................... 149  
Waveform Generation .............................................. 153  
LCDCON Register.................................................... 143, 145  
LCDDATA Register........................................................... 143  
LCDDATAx Registers....................................................... 147  
LCDPS Register ....................................................... 143, 146  
LP Bits ...................................................................... 148  
LCDSEn Registers............................................................ 147  
Liquid Crystal Display (LCD) Driver.................................. 143  
Load Conditions................................................................ 264  
M
MCLR ............................................................................... 222  
Internal...................................................................... 222  
Memory Organization ......................................................... 23  
Data............................................................................ 24  
Program...................................................................... 23  
Microchip Internet Web Site.............................................. 325  
Migrating from other PIC Microcontroller Devices ............ 315  
MPLAB ASM30 Assembler, Linker, Librarian................... 252  
MPLAB ICD 2 In-Circuit Debugger................................... 253  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator.................................................... 253  
© 2007 Microchip Technology Inc.  
DS41250F-page 319  
PIC16F917/916/914/913  
MPLAB Integrated Development Environment Software ..251  
MPLAB PM3 Device Programmer.....................................253  
MPLAB REAL ICE In-Circuit Emulator System.................253  
MPLINK Object Linker/MPLIB Object Librarian ................252  
RA6............................................................................. 51  
RA7............................................................................. 52  
Registers .................................................................... 44  
Specifications ........................................................... 267  
PORTA Register................................................................. 44  
PORTB  
O
OPCODE Field Descriptions.............................................241  
OPTION Register................................................................33  
OPTION_REG Register ....................................................101  
OSCCON Register..............................................................88  
Oscillator  
Additional Pin Functions ............................................. 53  
Weak Pull-up ...................................................... 53  
Associated Registers.................................................. 61  
Interrupt-on-change .................................................... 53  
Pin Descriptions and Diagrams .................................. 56  
RB0............................................................................. 56  
RB1............................................................................. 56  
RB2............................................................................. 56  
RB3............................................................................. 56  
RB4............................................................................. 57  
RB5............................................................................. 58  
RB6............................................................................. 59  
RB7............................................................................. 60  
Registers .................................................................... 53  
PORTB Register................................................................. 54  
PORTC  
Associated Registers.................................................. 70  
Pin Descriptions and Diagrams .................................. 63  
RC0 ............................................................................ 63  
RC1 ............................................................................ 63  
RC2 ............................................................................ 63  
RC3 ............................................................................ 65  
RC4 ............................................................................ 66  
RC5 ............................................................................ 67  
RC6 ............................................................................ 68  
RC7 ............................................................................ 69  
Registers .................................................................... 62  
Specifications ........................................................... 267  
PORTC Register................................................................. 62  
PORTD  
Associated Registers.................................................. 75  
Pin Descriptions and Diagrams .................................. 72  
RD0 ............................................................................ 72  
RD1 ............................................................................ 72  
RD2 ............................................................................ 72  
RD3 ............................................................................ 72  
RD4 ............................................................................ 72  
RD5 ............................................................................ 72  
RD6 ............................................................................ 72  
RD7 ............................................................................ 72  
Registers .................................................................... 71  
PORTD Register................................................................. 71  
PORTE  
Associated Registers.................................................. 80  
Pin Descriptions and Diagrams .................................. 77  
RE0............................................................................. 77  
RE1............................................................................. 77  
RE2............................................................................. 77  
RE3............................................................................. 77  
RE4............................................................................. 77  
RE5............................................................................. 77  
RE6............................................................................. 77  
RE7............................................................................. 77  
Registers .................................................................... 76  
PORTE Register................................................................. 76  
PORTF  
Associated registers............................................ 98, 106  
Oscillator Module ................................................................87  
EC ...............................................................................87  
HFINTOSC..................................................................87  
HS...............................................................................87  
INTOSC ......................................................................87  
INTOSCIO...................................................................87  
LFINTOSC ..................................................................87  
LP................................................................................87  
RC...............................................................................87  
RCIO...........................................................................87  
XT ...............................................................................87  
Oscillator Parameters........................................................266  
Oscillator Specifications....................................................265  
Oscillator Start-up Timer (OST)  
Specifications............................................................269  
Oscillator Switching  
Fail-Safe Clock Monitor...............................................97  
Two-Speed Clock Start-up..........................................95  
OSCTUNE Register ............................................................92  
P
P (Stop) bit ........................................................................194  
Packaging .........................................................................305  
Marking ............................................................. 305, 306  
PDIP Details..............................................................307  
Paging, Program Memory ...................................................40  
PCL and PCLATH...............................................................40  
Computed GOTO........................................................40  
Stack...........................................................................40  
PCON Register ........................................................... 39, 224  
PICSTART Plus Development Programmer .....................254  
PIE1 Register......................................................................35  
PIE2 Register......................................................................36  
Pin Diagram  
PIC16F913/916, 28-pin.................................................4  
PIC16F914/917, 40-pin.................................................2  
PIC16F914/917, 44-pin.................................................7  
PIC16F946, 64-Pin .....................................................10  
Pinout Description...............................................................18  
PIR1 Register......................................................................37  
PIR2 Register......................................................................38  
PLVD  
Associated Registers ................................................173  
PORTA  
Additional Pin Functions  
ANSEL Register..................................................43  
Associated Registers ..................................................52  
Pin Descriptions and Diagrams...................................45  
RA0 .............................................................................45  
RA1 .............................................................................46  
RA2 .............................................................................47  
RA3 .............................................................................48  
RA4 .............................................................................49  
RA5 .............................................................................50  
Associated Registers.................................................. 83  
Pin Descriptions and Diagrams .................................. 82  
Registers .................................................................... 81  
DS41250F-page 320  
© 2007 Microchip Technology Inc.  
PIC16F917/916/914/913  
RF0 ............................................................................. 82  
RF1 ............................................................................. 82  
RF2 ............................................................................. 82  
RF3 ............................................................................. 82  
RF4 ............................................................................. 82  
RF5 ............................................................................. 82  
RF6 ............................................................................. 82  
RF7 ............................................................................. 82  
PORTF Register ................................................................. 81  
PORTG  
Associated Registers .................................................. 86  
Pin Descriptions and Diagrams................................... 85  
Registers..................................................................... 84  
RG0............................................................................. 85  
RG1............................................................................. 85  
RG2............................................................................. 85  
RG3............................................................................. 85  
RG4............................................................................. 85  
RG5............................................................................. 85  
PORTG Register................................................................. 84  
Power-Down Mode (Sleep)............................................... 236  
Power-on Reset ................................................................ 222  
Power-up Timer (PWRT) .................................................. 222  
Specifications............................................................ 269  
Precision Internal Oscillator Parameters........................... 267  
Prescaler  
LCDSEn (LCD Segment Enable) ............................. 147  
LVDCON (Low-Voltage Detect Control) ................... 173  
OPTION_REG (OPTION)................................... 33, 101  
OSCCON (Oscillator Control)..................................... 88  
OSCTUNE (Oscillator Tuning).................................... 92  
PCON (Power Control Register)................................. 39  
PCON (Power Control)............................................. 224  
PIE1 (Peripheral Interrupt Enable 1) .......................... 35  
PIE2 (Peripheral Interrupt Enable 2) .......................... 36  
PIR1 (Peripheral Interrupt Register 1)........................ 37  
PIR2 (Peripheral Interrupt Request 2)........................ 38  
PORTA ....................................................................... 44  
PORTB ....................................................................... 54  
PORTC....................................................................... 62  
PORTD....................................................................... 71  
PORTE ....................................................................... 76  
PORTF ....................................................................... 81  
PORTG....................................................................... 84  
RCSTA (Receive Status and Control) ...................... 131  
Reset Values ............................................................ 226  
Reset Values (Special Registers)............................. 229  
Special Function Register Map  
PIC16F913/916 .................................................. 25  
PIC16F914/917 .................................................. 26  
PIC16F946 ......................................................... 27  
Special Register Summary  
Shared WDT/Timer0................................................. 100  
Switching Prescaler Assignment............................... 100  
Product Identification System ........................................... 327  
Program Memory ................................................................ 23  
Map and Stack (PIC16F913/914) ............................... 23  
Map and Stack (PIC16F916/917/946) ........................ 23  
Paging......................................................................... 40  
Programmable Low-Voltage Detect (PLVD) Module ........ 171  
PLVD Operation........................................................ 171  
Programming, Device Instructions .................................... 241  
Bank 0 ................................................................ 28  
Bank 1 ................................................................ 29  
Bank 2 ................................................................ 30  
Bank 3 ................................................................ 31  
SSPCON (Sync Serial Port Control) Register .......... 195  
SSPSTAT (Sync Serial Port Status) Register .......... 194  
STATUS ..................................................................... 32  
T1CON ..................................................................... 105  
T2CON ..................................................................... 108  
TRISA (Tri-State PORTA) .......................................... 44  
TRISB (Tri-State PORTB) .......................................... 54  
TRISC (Tri-State PORTC).......................................... 62  
TRISD (Tri-State PORTD).......................................... 71  
TRISE (Tri-State PORTE) .......................................... 76  
TRISF (Tri-State PORTF)........................................... 81  
TRISG (Tri-State PORTG).......................................... 84  
TXSTA (Transmit Status and Control)...................... 130  
VRCON (Voltage Reference Control)....................... 118  
WDTCON (Watchdog Timer Control)....................... 235  
WPUB (Weak Pull-up PORTB)................................... 55  
Reset ................................................................................ 221  
Revision History................................................................ 315  
R
R/W bit .............................................................................. 194  
RCREG............................................................................. 128  
RCSTA Register ............................................................... 131  
Reader Response............................................................. 326  
Read-Modify-Write Operations ......................................... 241  
Receive Overflow Indicator bit (SSPOV) .......................... 195  
Registers  
ADCON0 (ADC Control 0) ........................................ 180  
ADCON1 (ADC Control 1) ........................................ 181  
ADRESH (ADC Result High) with ADFM = 0)........... 182  
ADRESH (ADC Result High) with ADFM = 1)........... 182  
ADRESL (ADC Result Low) with ADFM = 0)............ 182  
ADRESL (ADC Result Low) with ADFM = 1)............ 182  
ANSEL (Analog Select)............................................... 43  
CCPxCON (CCP Operation)..................................... 212  
CMCON0 (Comparator Control 0) ............................ 116  
CMCON1 (Comparator Control 1) ............................ 117  
CONFIG1 (Configuration Word Register 1) .............. 220  
EEADRH (EEPROM Address High Byte) ................. 188  
EEADRL (EEPROM Address Low Byte)................... 188  
EECON1 (EEPROM Control 1)................................. 189  
EEDATH (EEPROM Data High Byte) ....................... 188  
EEDATL (EEPROM Data Low Byte)......................... 188  
INTCON (Interrupt Control)......................................... 34  
IOCB (PORTB Interrupt-on-change)........................... 54  
LCDCON (LCD Control)............................................ 145  
LCDDATAx (LCD Data) ............................................ 147  
LCDPS (LCD Prescaler Select) ................................ 146  
S
S (Start) bit ....................................................................... 194  
Slave Select Synchronization ........................................... 199  
SMP bit............................................................................. 194  
Software Simulator (MPLAB SIM) .................................... 252  
SPBRG ............................................................................. 132  
Special Event Trigger ....................................................... 178  
Special Function Registers................................................. 24  
SPI Mode.................................................................. 193, 199  
Associated Registers................................................ 201  
Bus Mode Compatibility............................................ 201  
Effects of a Reset ..................................................... 201  
Enabling SPI I/O....................................................... 197  
Master Mode............................................................. 198  
Master/Slave Connection ......................................... 197  
Serial Clock (SCK pin).............................................. 193  
Serial Data In (SDI pin)............................................. 193  
© 2007 Microchip Technology Inc.  
DS41250F-page 321  
PIC16F917/916/914/913  
Serial Data Out (SDO pin) ........................................193  
Slave Select..............................................................193  
Slave Select Synchronization ...................................199  
Sleep Operation ........................................................201  
SPI Clock ..................................................................198  
Typical Connection ...................................................197  
SSP  
Asynchronous Transmission..................................... 124  
Asynchronous Transmission (Back-to-Back)............ 124  
Brown-out Reset (BOR)............................................ 268  
Brown-out Reset Situations ...................................... 223  
Capture/Compare/PWM ........................................... 276  
CLKOUT and I/O ...................................................... 267  
Clock Synchronization .............................................. 209  
Clock Timing............................................................. 265  
Comparator Output................................................... 109  
Fail-Safe Clock Monitor (FSCM)................................. 98  
Overview  
SPI Master/Slave Connection ...................................197  
2
SSP I C Operation............................................................202  
2
Slave Mode...............................................................202  
SSP Module  
I C Bus Data............................................................. 281  
2
I C Bus Start/Stop Bits ............................................. 280  
2
Clock Synchronization and the CKP Bit....................208  
SPI Master Mode ......................................................198  
SPI Slave Mode ........................................................199  
SSPBUF....................................................................198  
SSPSR......................................................................198  
SSPCON Register.............................................................195  
SSPEN bit .........................................................................195  
SSPM bits .........................................................................195  
SSPOV bit.........................................................................195  
SSPSTAT Register ...........................................................194  
STATUS Register................................................................32  
Synchronous Serial Port Enable bit (SSPEN)...................195  
Synchronous Serial Port Mode Select bits (SSPM) ..........195  
Synchronous Serial Port. See SSP  
I C Reception (7-bit Address)................................... 204  
2
I C Slave Mode (Transmission, 10-bit Address)....... 207  
2
I C Slave Mode with SEN = 0 (Reception,  
10-bit Address) ................................................. 205  
I C Transmission (7-bit Address).............................. 206  
2
INT Pin Interrupt ....................................................... 232  
Internal Oscillator Switch Timing ................................ 94  
LCD Interrupt Timing in Quarter-Duty Cycle Drive ... 164  
LCD Sleep Entry/Exit when SLPEN = 1 or CS = 00 . 166  
Reset, WDT, OST and Power-up Timer................... 268  
Slave Synchronization .............................................. 199  
SPI Master Mode (CKE = 1, SMP = 1) ..................... 278  
SPI Mode (Master Mode).......................................... 198  
SPI Mode (Slave Mode with CKE = 0)...................... 200  
SPI Mode (Slave Mode with CKE = 1)...................... 200  
SPI Slave Mode (CKE = 0)....................................... 279  
SPI Slave Mode (CKE = 1)....................................... 279  
Synchronous Reception (Master Mode, SREN) ....... 138  
Synchronous Transmission ...................................... 136  
Synchronous Transmission (Through TXEN)........... 136  
Time-out Sequence  
T
T1CON Register................................................................105  
T2CON Register................................................................108  
Thermal Considerations....................................................263  
Time-out Sequence...........................................................224  
Timer0.................................................................................99  
Associated Registers ................................................101  
External Clock...........................................................100  
Interrupt.....................................................................101  
Operation ............................................................ 99, 102  
Specifications............................................................270  
T0CKI........................................................................100  
Timer1...............................................................................102  
Associated registers..................................................106  
Asynchronous Counter Mode ...................................103  
Reading and Writing .........................................103  
Interrupt.....................................................................104  
Modes of Operation ..................................................102  
Operation During Sleep ............................................104  
Oscillator...................................................................103  
Prescaler...................................................................103  
Specifications............................................................270  
Timer1 Gate  
Case 1 .............................................................. 225  
Case 2 .............................................................. 225  
Case 3 .............................................................. 225  
Timer0 and Timer1 External Clock ........................... 270  
Timer1 Incrementing Edge ....................................... 104  
Two Speed Start-up.................................................... 96  
Type-A in 1/2 Mux, 1/2 Bias Drive ............................ 154  
Type-A in 1/2 Mux, 1/3 Bias Drive ............................ 156  
Type-A in 1/3 Mux, 1/2 Bias Drive ............................ 158  
Type-A in 1/3 Mux, 1/3 Bias Drive ............................ 160  
Type-A in 1/4 Mux, 1/3 Bias Drive ............................ 162  
Type-A/Type-B in Static Drive .................................. 153  
Type-B in 1/2 Mux, 1/2 Bias Drive ............................ 155  
Type-B in 1/2 Mux, 1/3 Bias Drive ............................ 157  
Type-B in 1/3 Mux, 1/2 Bias Drive ............................ 159  
Type-B in 1/3 Mux, 1/3 Bias Drive ............................ 161  
Type-B in 1/4 Mux, 1/3 Bias Drive ............................ 163  
USART Synchronous Receive (Master/Slave) ......... 275  
USART Synchronous Transmission (Master/Slave). 275  
Wake-up from Interrupt............................................. 237  
Timing Parameter Symbology .......................................... 264  
Timing Requirements  
Inverting Gate ...................................................103  
Selecting Source.......................................103, 117  
Synchronizing COUT w/Timer1 ........................117  
TMR1H Register .......................................................102  
TMR1L Register........................................................102  
Timer2  
2
I C Bus Data............................................................. 282  
Associated registers..................................................108  
Timers  
I2C Bus Start/Stop Bits............................................. 281  
SPI Mode.................................................................. 280  
TRISA  
Timer1  
T1CON..............................................................105  
Timer2  
T2CON..............................................................108  
Timing Diagrams  
Registers .................................................................... 44  
TRISA Register................................................................... 44  
TRISB  
Registers .................................................................... 53  
TRISB Register................................................................... 54  
TRISC  
A/D Conversion.........................................................274  
A/D Conversion (Sleep Mode) ..................................274  
Asynchronous Reception ..........................................128  
DS41250F-page 322  
© 2007 Microchip Technology Inc.  
PIC16F917/916/914/913  
Registers..................................................................... 62  
TRISC Register................................................................... 62  
TRISD  
Registers..................................................................... 71  
TRISD Register................................................................... 71  
TRISE  
Registers..................................................................... 76  
TRISE Register ................................................................... 76  
TRISF  
Registers..................................................................... 81  
TRISF Register ................................................................... 81  
TRISG  
Registers..................................................................... 84  
TRISG Register................................................................... 84  
Two-Speed Clock Start-up Mode........................................ 95  
TXREG.............................................................................. 123  
TXSTA Register................................................................ 130  
BRGH Bit .................................................................. 132  
U
UA..................................................................................... 194  
Update Address bit, UA .................................................... 194  
USART  
Synchronous Master Mode  
Requirements, Synchronous Receive .............. 275  
Requirements, Synchronous Transmission ...... 275  
Timing Diagram, Synchronous Receive ........... 275  
Timing Diagram, Synchronous Transmission ... 275  
V
Voltage Reference. See Comparator Voltage  
Reference (CVREF)  
Voltage References  
Associated registers.................................................. 119  
VREF. SEE ADC Reference Voltage  
W
Wake-up Using Interrupts ................................................. 236  
Watchdog Timer (WDT).................................................... 234  
Associated Registers ................................................ 235  
Clock Source............................................................. 234  
Modes ....................................................................... 234  
Period........................................................................ 234  
Specifications............................................................ 269  
WCOL bit .......................................................................... 195  
WDTCON Register ........................................................... 235  
WPUB Register................................................................... 55  
Write Collision Detect bit (WCOL)..................................... 195  
WWW Address.................................................................. 325  
WWW, On-Line Support ..................................................... 13  
© 2007 Microchip Technology Inc.  
DS41250F-page 323  
PIC16F917/916/914/913  
NOTES:  
DS41250F-page 324  
© 2007 Microchip Technology Inc.  
PIC16F913/914/916/917/946  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2007 Microchip Technology Inc.  
DS41250F-page 325  
PIC16F913/914/916/917/946  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC16F913/914/916/917/946  
DS41250F  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41250F-page 326  
© 2007 Microchip Technology Inc.  
PIC16F917/916/914/913  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
PIC16F913-E/SP 301 = Extended Temp.,  
skinny PDIP package, 20 MHz, QTP pattern  
#301  
b)  
PIC16F913-I/SO  
package, 20 MHz  
= Industrial Temp., SOIC  
Device:  
PIC16F913, PIC16F913T(1)  
PIC16F914, PIC16F914T(1)  
PIC16F916, PIC16F916T(1)  
PIC16F917, PIC16F917T(1)  
PIC16F946, PIC16F946T(1)  
Temperature  
Range:  
I
E
=
=
-40°C to +85°C  
-40°C to +125°C  
Package:  
ML  
P
PT  
SO  
SP  
SS  
=
=
=
=
=
=
Micro Lead Frame (QFN)  
Plastic DIP  
TQFP (Thin Quad Flatpack)  
SOIC  
Skinny Plastic DIP  
SSOP  
Note 1:  
T
= In tape and reel.  
Pattern:  
3-Digit Pattern Code for QTP (blank otherwise)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type.  
© 2007 Microchip Technology Inc.  
DS41250F-page 327  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS41250F-page 328  
© 2007 Microchip Technology Inc.  

相关型号:

PIC16F914T-E/P

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
MICROCHIP

PIC16F914T-E/PQTP

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
MICROCHIP

PIC16F914T-E/PT

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
MICROCHIP

PIC16F914T-E/PTQTP

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
MICROCHIP

PIC16F914T-E/SO

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
MICROCHIP

PIC16F914T-E/SOQTP

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
MICROCHIP

PIC16F914T-E/SP

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
MICROCHIP

PIC16F914T-E/SPQTP

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
MICROCHIP

PIC16F914T-E/SS

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
MICROCHIP

PIC16F914T-E/SSQTP

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
MICROCHIP

PIC16F914T-I/ML

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
MICROCHIP

PIC16F914T-I/MLQTP

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
MICROCHIP