PIC16FF684-E/MLSQTP [MICROCHIP]

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology; 14引脚,基于闪存的8位CMOS微控制器采用纳瓦技术
PIC16FF684-E/MLSQTP
型号: PIC16FF684-E/MLSQTP
厂家: MICROCHIP    MICROCHIP
描述:

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
14引脚,基于闪存的8位CMOS微控制器采用纳瓦技术

闪存 微控制器
文件: 总192页 (文件大小:3274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F684  
Data Sheet  
14-Pin, Flash-Based 8-Bit  
CMOS Microcontrollers  
with nanoWatt Technology  
© 2007 Microchip Technology Inc.  
DS41202F  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
DS41202F-page ii  
© 2007 Microchip Technology Inc.  
PIC16F684  
14-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology  
High-Performance RISC CPU:  
Low-Power Features:  
• Only 35 instructions to learn:  
- All single-cycle instructions except branches  
• Operating speed:  
• Standby Current:  
- 50 nA @ 2.0V, typical  
• Operating Current:  
- DC – 20 MHz oscillator/clock input  
- DC – 200 ns instruction cycle  
- 11 μA @ 32 kHz, 2.0V, typical  
- 220 μA @ 4 MHz, 2.0V, typical  
• Interrupt capability  
• Watchdog Timer Current:  
• 8-level deep hardware stack  
• Direct, Indirect and Relative Addressing modes  
- 1 μA @ 2.0V, typical  
Peripheral Features:  
Special Microcontroller Features:  
• 12 I/O pins with individual direction control:  
• Precision Internal Oscillator:  
- High current source/sink for direct LED drive  
- Interrupt-on-change pin  
- Individually programmable weak pull-ups  
- Ultra Low-Power Wake-Up (ULPWU)  
- Factory calibrated to ±1%, typical  
- Software selectable frequency range of  
8 MHz to 125 kHz  
- Software tunable  
• Analog Comparator module with:  
- Two-Speed Start-up mode  
- Two analog comparators  
- Crystal fail detect for critical applications  
- Clock mode switching during operation for  
power savings  
- Programmable on-chip voltage reference  
(CVREF) module (% of VDD)  
- Comparator inputs and outputs externally  
accessible  
• Software Selectable 31 kHz Internal Oscillator  
• Power-Saving Sleep mode  
• A/D Converter:  
• Wide operating voltage range (2.0V-5.5V)  
• Industrial and Extended Temperature range  
• Power-on Reset (POR)  
- 10-bit resolution and 8 channels  
• Timer0: 8-bit timer/counter with 8-bit  
programmable prescaler  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
• Enhanced Timer1:  
- 16-bit timer/counter with prescaler  
- External Timer1 Gate (count enable)  
- Option to use OSC1 and OSC2 in LP mode  
as Timer1 oscillator if INTOSC mode  
selected  
• Brown-out Reset (BOR) with software control  
option  
• Enhanced low-current Watchdog Timer (WDT)  
with on-chip oscillator (software selectable  
nominal 268 seconds with full prescaler) with  
software enable  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Multiplexed Master Clear with pull-up/input pin  
• Programmable code protection  
• Enhanced Capture, Compare, PWM module:  
- 16-bit Capture, max resolution 12.5 ns  
- Compare, max resolution 200 ns  
- 10-bit PWM with 1, 2 or 4 output channels,  
programmable “dead time”, max frequency  
20 kHz  
• High Endurance Flash/EEPROM cell:  
- 100,000 write Flash endurance  
- 1,000,000 write EEPROM endurance  
- Flash/Data EEPROM retention: > 40 years  
• In-Circuit Serial ProgrammingTM (ICSPTM) via two  
pins  
Program  
Memory  
Data Memory  
10-bit A/D  
(ch)  
Timers  
8/16-bit  
Device  
I/O  
Comparators  
Flash  
(words)  
SRAM  
(bytes)  
EEPROM  
(bytes)  
PIC16F684  
2048  
128  
256  
12  
8
2
2/1  
© 2007 Microchip Technology Inc.  
DS41202F-page 1  
PIC16F684  
14-Pin Diagram (PDIP, SOIC, TSSOP)  
VDD  
RA5/T1CKI/OSC1/CLKIN  
RA4/AN3/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
1
2
3
4
5
6
7
VSS  
14  
13  
12  
11  
10  
9
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
RA1/AN1/C1IN-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RC0/AN4/C2IN+  
RC5/CCP1/P1A  
RC4/C2OUT/P1B  
RC1/AN5/C2IN-  
RC3/AN7/P1C  
RC2/AN6/P1D  
8
TABLE 1:  
DUAL IN-LINE PIN SUMMARY  
I/O  
Pin  
Analog  
Comparators  
Timer  
CCP  
Interrupts Pull-ups  
Basic  
RA0  
13  
12  
11  
AN0  
AN1/VREF  
AN2  
C1IN+  
C1IN-  
IOC  
IOC  
Y
Y
Y
ICSPDAT/ULPWU  
RA1  
ICSPCLK  
RA2  
C1OUT  
T0CKI  
INT/IOC  
RA3(1)  
4
3
AN3  
T1G  
T1CKI  
IOC  
IOC  
IOC  
Y(2)  
Y
MCLR/VPP  
RA4  
RA5  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
OSC2/CLKOUT  
2
Y
OSC1/CLKIN  
10  
9
AN4  
AN5  
AN6  
AN7  
C2IN+  
C2IN-  
8
P1D  
P1C  
P1B  
CCP1/P1A  
7
6
C2OUT  
5
1
VDD  
VSS  
14  
Note 1: Input only.  
2: Only when pin is configured for external MCLR.  
DS41202F-page 2  
© 2007 Microchip Technology Inc.  
PIC16F684  
16-Pin Diagram (QFN)  
RA5/T1CKI/OSC1/CLKIN  
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
12  
11  
10  
9
1
2
3
4
RA4/AN3/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
RA1/AN1/C1IN-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RC0/AN4/C2IN+  
PIC16F684  
RC5/CCP1/P1A  
TABLE 2:  
QFN PIN SUMMARY  
I/O  
Pin  
Analog  
Comparators  
Timers  
CCP  
Interrupts Pull-ups  
Basic  
RA0  
12  
11  
10  
AN0  
AN1/VREF  
AN2  
C1IN+  
C1IN-  
IOC  
IOC  
Y
Y
Y
ICSPDAT/ULPWU  
RA1  
ICSPCLK  
RA2  
C1OUT  
T0CKI  
INT/IOC  
RA3(1)  
3
2
AN3  
T1G  
T1CKI  
IOC  
IOC  
IOC  
Y(2)  
Y
MCLR/VPP  
RA4  
RA5  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
OSC2/CLKOUT  
1
Y
OSC1/CLKIN  
9
AN4  
AN5  
AN6  
AN7  
C2IN+  
C2IN-  
8
7
P1D  
P1C  
P1B  
6
5
C2OUT  
4
CCP1/P1A  
16  
13  
VDD  
VSS  
Note 1: Input only.  
2: Only when pin is configured for external MCLR.  
© 2007 Microchip Technology Inc.  
DS41202F-page 3  
PIC16F684  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 5  
2.0 Memory Organization................................................................................................................................................................... 7  
3.0 Oscillator Module (With Fail-Safe Clock Monitor)....................................................................................................................... 19  
4.0 I/O Ports ..................................................................................................................................................................................... 31  
5.0 Timer0 Module ........................................................................................................................................................................... 43  
6.0 Timer1 Module with Gate Control............................................................................................................................................... 47  
7.0 Timer2 Module ........................................................................................................................................................................... 53  
8.0 Comparator Module.................................................................................................................................................................... 55  
9.0 Analog-to-Digital Converter (ADC) Module ................................................................................................................................ 65  
10.0 Data EEPROM Memory ............................................................................................................................................................. 75  
11.0 Enhanced Capture/Compare/PWM (With Auto-Shutdown and Dead Band) Module................................................................. 79  
12.0 Special Features of the CPU...................................................................................................................................................... 97  
13.0 Instruction Set Summary.......................................................................................................................................................... 115  
14.0 Development Support............................................................................................................................................................... 125  
15.0 Electrical Specifications............................................................................................................................................................ 129  
16.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 151  
17.0 Packaging Information.............................................................................................................................................................. 173  
Appendix A: Data Sheet Revision History.......................................................................................................................................... 179  
Appendix B: Migrating from other PIC® Devices ............................................................................................................................... 179  
Index .................................................................................................................................................................................................. 181  
The Microchip Web Site..................................................................................................................................................................... 187  
Customer Change Notification Service .............................................................................................................................................. 187  
Customer Support.............................................................................................................................................................................. 187  
Reader Response .............................................................................................................................................................................. 188  
Product Identification System............................................................................................................................................................. 189  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of  
silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS41202F-page 4  
© 2007 Microchip Technology Inc.  
PIC16F684  
1.0  
DEVICE OVERVIEW  
The PIC16F684 is covered by this data sheet. It is  
available in 14-pin PDIP, SOIC, TSSOP and 16-pin  
QFN packages. Figure 1-1 shows a block diagram of  
the PIC16F684 device. Table 1-1 shows the pinout  
description.  
FIGURE 1-1:  
PIC16F684 BLOCK DIAGRAM  
INT  
Configuration  
13  
8
PORTA  
Data Bus  
Program Counter  
Flash  
2k X 14  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
Program  
RAM  
128 Bytes  
File  
Registers  
Memory  
8-Level Stack  
(13-Bit)  
Program  
Bus  
14  
RAM Addr  
9
Addr MUX  
Instruction Reg  
PORTC  
Indirect  
Addr  
7
Direct Addr  
8
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
FSR Reg  
STATUS Reg  
8
3
MUX  
Power-up  
Timer  
Instruction  
Decode &  
Control  
Oscillator  
Start-up Timer  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
OSC1/CLKIN  
W Reg  
Brown-out  
Reset  
OSC2/CLKOUT  
Internal  
Oscillator  
Block  
P1B P1C P1D  
CCP1/P1A  
T1G  
VDD  
VSS  
MCLR  
T1CKI  
Timer0  
Timer1  
Timer2  
ECCP  
T0CKI  
2 Analog Comparators  
and Reference  
EEDATA  
256 Bytes  
Data  
Analog-To-Digital Converter  
8
EEPROM  
EEADDR  
VREF  
AN0 AN1 AN2 AN3  
AN4 AN5 AN6 AN7 C1IN- C1IN+ C1OUT C2IN- C2IN+ C2OUT  
© 2007 Microchip Technology Inc.  
DS41202F-page 5  
PIC16F684  
TABLE 1-1:  
PIC16F684 PINOUT DESCRIPTION  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
RA1/AN1/C1IN-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RA0  
AN0  
TTL  
AN  
AN  
TTL  
AN  
TTL  
AN  
AN  
AN  
ST  
CMOS PORTA I/O with prog. pull-up and interrupt-on-change  
A/D Channel 0 input  
C1IN+  
ICSPDAT  
ULPWU  
RA1  
Comparator 1 non-inverting input  
CMOS Serial Programming Data I/O  
Ultra Low-Power Wake-Up input  
CMOS PORTA I/O with prog. pull-up and interrupt-on-change  
AN1  
A/D Channel 1 input  
C1IN-  
VREF  
ICSPCLK  
RA2  
Comparator 1 inverting input  
External Voltage Reference for A/D  
Serial Programming Clock  
ST  
CMOS PORTA I/O with prog. pull-up and interrupt-on-change  
AN2  
AN  
ST  
A/D Channel 2 input  
Timer0 clock input  
External Interrupt  
T0CKI  
INT  
ST  
C1OUT  
RA3  
CMOS Comparator 1 output  
RA3/MCLR/VPP  
TTL  
ST  
PORTA input with interrupt-on-change  
MCLR  
VPP  
Master Clear w/internal pull-up  
Programming voltage  
HV  
TTL  
AN  
ST  
RA4/AN3/T1G/OSC2/CLKOUT  
RA4  
CMOS PORTA I/O with prog. pull-up and interrupt-on-change  
AN3  
A/D Channel 3 input  
T1G  
Timer1 gate (count enable)  
OSC2  
CLKOUT  
RA5  
XTAL Crystal/Resonator  
CMOS FOSC/4 output  
RA5/T1CKI/OSC1/CLKIN  
TTL  
ST  
CMOS PORTA I/O with prog. pull-up and interrupt-on-change  
T1CKI  
OSC1  
CLKIN  
RC0  
Timer1 clock  
XTAL  
ST  
Crystal/Resonator  
External clock input/RC oscillator connection  
RC0/AN4/C2IN+  
RC1/AN5/C2IN-  
RC2/AN6/P1D  
RC3/AN7/P1C  
RC4/C2OUT/P1B  
RC5/CCP1/P1A  
TTL  
AN  
AN  
TTL  
AN  
AN  
TTL  
AN  
CMOS PORTC I/O  
AN4  
A/D Channel 4 input  
Comparator 2 non-inverting input  
C2IN+  
RC1  
CMOS PORTC I/O  
AN5  
A/D Channel 5 input  
Comparator 2 inverting input  
C2IN-  
RC2  
CMOS PORTC I/O  
AN6  
A/D Channel 6 input  
P1D  
CMOS PWM output  
CMOS PORTC I/O  
RC3  
TTL  
AN  
AN7  
A/D Channel 7 input  
P1C  
CMOS PWM output  
CMOS PORTC I/O  
CMOS Comparator 2 output  
CMOS PWM output  
CMOS PORTC I/O  
CMOS Capture input/Compare output  
CMOS PWM output  
RC4  
TTL  
C2OUT  
P1B  
RC5  
TTL  
ST  
CCP1  
P1A  
VDD  
VDD  
Power  
Power  
Positive supply  
VSS  
VSS  
Ground reference  
Legend: AN = Analog input or output  
CMOS= CMOS compatible input or output HV = High Voltage  
ST = Schmitt Trigger input with CMOS levels TTL = TTL compatible input  
XTAL = Crystal  
DS41202F-page 6  
© 2007 Microchip Technology Inc.  
PIC16F684  
2.2  
Data Memory Organization  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The data memory (see Figure 2-2) is partitioned into two  
banks, which contain the General Purpose Registers  
(GPR) and the Special Function Registers (SFR). The  
Special Function Registers are located in the first 32  
locations of each bank. Register locations 20h-7Fh in  
Bank 0 and A0h-BFh in Bank 1 are General Purpose  
Registers, implemented as static RAM. Register  
locations F0h-FFh in Bank 1 point to addresses 70h-7Fh  
in Bank 0. All other RAM is unimplemented and returns  
0’ when read. The RP0 bit of the STATUS register is the  
bank select bit.  
The PIC16F684 has a 13-bit program counter capable  
of addressing an 8k x 14 program memory space. Only  
the first 2k x 14 (0000h-07FFh) for the PIC16F684 is  
physically implemented. Accessing a location above  
these boundaries will cause a wrap around within the  
first 2k x 14 space. The Reset vector is at 0000h and  
the interrupt vector is at 0004h (see Figure 2-1).  
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F684  
RP0  
0
1
Bank 0 is selected  
Bank 1 is selected  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
Note:  
The IRP and RP1 bits of the STATUS  
register are reserved and should always be  
maintained as ‘0’s.  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory  
07FFh  
0800h  
Wraps to 0000h-07FFh  
1FFFh  
© 2007 Microchip Technology Inc.  
DS41202F-page 7  
PIC16F684  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
FIGURE 2-2:  
DATA MEMORY MAP OF  
THE PIC16F684  
The register file is organized as 128 x 8 in the  
PIC16F684. Each register is accessed, either directly  
or indirectly, through the File Select Register (FSR)  
(see Section 2.4 “Indirect Addressing, INDF and  
FSR Registers”).  
File  
Address  
File  
Address  
Indirect Addr.(1)  
Indirect Addr.(1)  
OPTION_REG  
PCL  
00h  
01h  
02h  
80h  
81h  
82h  
TMR0  
PCL  
STATUS  
FSR  
STATUS  
FSR  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral functions for controlling the  
desired operation of the device (see Table 2-1). These  
registers are static RAM.  
PORTA  
TRISA  
PORTC  
TRISC  
The special registers can be classified into two sets:  
core and peripheral. The Special Function Registers  
associated with the “core” are described in this section.  
Those related to the operation of the peripheral features  
are described in the section of that peripheral feature.  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
TMR1L  
TMR1H  
PCON  
OSCCON  
OSCTUNE  
ANSEL  
T1CON  
TMR2  
T2CON  
PR2  
CCPR1L  
CCPR1H  
CCP1CON  
PWM1CON  
ECCPAS  
WDTCON  
CMCON0  
CMCON1  
WPUA  
IOCA  
VRCON  
EEDAT  
EEADR  
EECON1  
EECON2(1)  
ADRESL  
ADRESH  
ADCON0  
ADCON1  
General  
9Fh  
A0h  
Purpose  
Registers  
32 Bytes  
BFh  
General  
Purpose  
Registers  
96 Bytes  
6Fh  
70  
F0h  
FFh  
Accesses 70h-7Fh  
Bank 1  
7Fh  
Bank 0  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
DS41202F-page 8  
© 2007 Microchip Technology Inc.  
PIC16F684  
TABLE 2-1:  
PIC16F684 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module’s Register  
xxxx xxxx 19, 104  
xxxx xxxx 43, 104  
0000 0000 19, 104  
0001 1xxx 13, 104  
xxxx xxxx 19, 104  
--x0 x000 31, 104  
TMR0  
PCL  
Program Counter’s (PC) Least Significant Byte  
STATUS  
IRP(1)  
RP1(1)  
RP0  
TO  
PD  
Z
DC  
RA1  
RC1  
C
FSR  
Indirect Data Memory Address Pointer  
PORTA(2)  
PORTC(2)  
RA5  
RC5  
RA4  
RC4  
RA3  
RC3  
RA2  
RC2  
RA0  
RC0  
Unimplemented  
--xx 0000 40, 104  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIR1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000 19, 104  
0000 0000 15, 104  
GIE  
PEIE  
ADIF  
T0IE  
INTE  
C2IF  
RAIE  
C1IF  
T0IF  
INTF  
RAIF  
EEIF  
CCP1IF  
OSFIF  
TMR2IF  
TMR1IF 0000 0000 17, 104  
Unimplemented  
TMR1L  
TMR1H  
T1CON  
TMR2  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx 47, 104  
xxxx xxxx 47, 104  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS TMR1ON 0000 0000 50, 104  
Timer2 Module Register  
0000 0000 53, 104  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
PWM1CON  
ECCPAS  
WDTCON  
CMCON0  
CMCON1  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 54, 104  
Capture/Compare/PWM Register 1 Low Byte  
Capture/Compare/PWM Register 1 High Byte  
XXXX XXXX 80, 104  
XXXX XXXX 80, 104  
P1M1  
P1M0  
PDC6  
DC1B1  
PDC5  
DC1B0  
PDC4  
CCP1M3  
PDC3  
CCP1M2  
PDC2  
CCP1M1  
PDC1  
CCP1M0 0000 0000 79, 104  
PRSEN  
PDC0  
0000 0000 96, 104  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1  
PSSAC0  
WDTPS1  
CM2  
PSSBD1  
PSSBD0 0000 0000 93, 104  
WDTPS3  
C1INV  
WDTPS2  
CIS  
WDTPS0 SWDTEN ---0 1000 111, 104  
C2OUT  
C1OUT  
C2INV  
CM1  
CM0  
0000 0000 61, 104  
T1GSS  
C2SYNC ---- --10 62, 104  
Unimplemented  
Unimplemented  
Unimplemented  
ADRESH  
ADCON0  
Most Significant 8 bits of the left shifted A/D result or 2 bits of right shifted result  
ADFM VCFG CHS2 CHS1 CHS0 GO/DONE  
xxxx xxxx 71, 104  
00-0 0000 70, 104  
ADON  
Legend:  
Note 1:  
2:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
IRP and RP1 bits are reserved, always maintain these bits clear.  
Port pins with analog functions controlled by the ANSEL register will read ‘0’ immediately after a Reset even though the data latches are  
either undefined (POR) or unchanged (other Resets).  
© 2007 Microchip Technology Inc.  
DS41202F-page 9  
PIC16F684  
TABLE 2-2:  
PIC16F684 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 1  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
xxxx xxxx 19, 104  
1111 1111 14, 104  
0000 0000 19, 104  
0001 1xxx 13, 104  
xxxx xxxx 19, 104  
--11 1111 31, 104  
OPTION_REG  
PCL  
RAPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
Program Counter’s (PC) Least Significant Byte  
STATUS  
FSR  
IRP(1)  
RP1(1)  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
TRISA  
TRISA5  
TRISC5  
TRISA4  
TRISC4  
TRISA3  
TRISC3  
TRISA2  
TRISC2  
TRISA1  
TRISC1  
TRISA0  
TRISC0  
Unimplemented  
TRISC  
--11 1111 40, 104  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIE1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000 19, 104  
0000 0000 15, 104  
GIE  
PEIE  
ADIE  
T0IE  
INTE  
C2IE  
RAIE  
C1IE  
T0IF  
INTF  
RAIF  
EEIE  
CCP1IE  
OSFIE  
TMR2IE  
TMR1IE 0000 0000 16, 104  
Unimplemented  
PCON  
OSCCON  
OSCTUNE  
ANSEL  
PR2  
ULPWUE SBOREN  
POR  
LTS  
BOR  
SCS  
--01 --qq 18, 104  
-110 x000 20, 104  
---0 0000 24, 105  
1111 1111 32, 105  
1111 1111 53, 105  
IRCF2  
IRCF1  
IRCF0  
TUN4  
ANS4  
OSTS(2)  
TUN3  
ANS3  
HTS  
TUN2  
ANS2  
TUN1  
ANS1  
TUN0  
ANS0  
ANS7  
ANS6  
ANS5  
Timer2 Module Period Register  
Unimplemented  
Unimplemented  
WPUA(3)  
WPUA5  
IOCA5  
WPUA4  
IOCA4  
WPUA2  
IOCA2  
WPUA1  
IOCA1  
WPUA0  
IOCA0  
--11 -111 33, 105  
--00 0000 33, 105  
IOCA  
IOCA3  
Unimplemented  
Unimplemented  
VREN  
VRCON  
EEDAT  
EEADR  
EECON1  
EECON2  
ADRESL  
ADCON1  
VRR  
VR3  
VR2  
VR1  
EEDAT1  
EEADR1  
WR  
VR0  
0-0- 0000 63, 105  
EEDAT7  
EEADR7  
EEDAT6  
EEADR6  
EEDAT5  
EEDAT4  
EEDAT3  
EEDAT2  
EEADR2  
WREN  
EEDAT0 0000 0000 75, 105  
EEADR0 0000 0000 75, 105  
EEADR5 EEADR4 EEADR3  
WRERR  
RD  
---- x000 76, 105  
---- ---- 76, 105  
xxxx xxxx 71, 105  
-000 ---- 70, 105  
EEPROM Control Register 2 (not a physical register)  
Least Significant 2 bits of the left shifted result or 8 bits of the right shifted result  
ADCS2 ADCS1 ADCS0 —  
Legend:  
Note 1:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
IRP and RP1 bits are reserved, always maintain these bits clear.  
2:  
3:  
OSTS bit of the OSCCON register reset to ‘0’ with Dual Speed Start-up and LP, HS or XT selected as the oscillator.  
RA3 pull-up is enabled when MCLRE is ‘1’ in the Configuration Word register.  
DS41202F-page 10  
© 2007 Microchip Technology Inc.  
PIC16F684  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not affect-  
ing any Status bits, see Section 13.0 “Instruction Set  
Summary”.  
2.2.2.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
• the bank select bits for data memory (SRAM)  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: Bits IRP and RP1 of the STATUS register  
are not used by the PIC16F684 and  
should be maintained as clear. Use of  
these bits is not recommended, since this  
may affect upward compatibility with  
future products.  
2: The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction. See the SUBLW and SUBWF  
instructions for examples.  
For example, CLRF STATUS,will clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu(where u= unchanged).  
REGISTER 2-1:  
STATUS: STATUS REGISTER  
Reserved  
IRP  
Reserved  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
IRP: This bit is reserved and should be maintained as ‘0’  
RP1: This bit is reserved and should be maintained as ‘0’  
RP0: Register Bank Select bit (used for direct addressing)  
1= Bank 1 (80h – FFh)  
0= Bank 0 (00h – 7Fh)  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions), For Borrow, the polarity is  
reversed.  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
bit 0  
C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the sec-  
ond operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit  
of the source register.  
© 2007 Microchip Technology Inc.  
DS41202F-page 11  
PIC16F684  
2.2.2.2  
OPTION Register  
Note:  
To achieve a 1:1 prescaler assignment for  
Timer0, assign the prescaler to the WDT  
by setting PSA bit to ‘1’ of the OPTION  
register. See Section 5.1.3 “Software  
Programmable Prescaler”.  
The OPTION register is a readable and writable register,  
which contains various control bits to configure:  
• Timer0/WDT prescaler  
• External RA2/INT interrupt  
• Timer0  
• Weak pull-ups on PORTA  
REGISTER 2-2:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RAPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RAPU: PORTA Pull-up Enable bit  
1= PORTA pull-ups are disabled  
0= PORTA pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RA2/INT pin  
0= Interrupt on falling edge of RA2/INT pin  
T0CS: Timer0 Clock Source Select bit  
1= Transition on RA2/T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on RA2/T0CKI pin  
0= Increment on low-to-high transition on RA2/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
BIT VALUE TIMER0 RATE WDT RATE  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 1  
1 : 4  
1 : 2  
1 : 8  
1 : 4  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
DS41202F-page 12  
© 2007 Microchip Technology Inc.  
PIC16F684  
2.2.2.3  
INTCON Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear  
prior to enabling an interrupt.  
The INTCON register is a readable and writable  
register, which contains the various enable and flag bits  
for TMR0 register overflow, PORTA change and  
external RA2/INT pin interrupts.  
REGISTER 2-3:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RAIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-0  
RAIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: RA2/INT External Interrupt Enable bit  
1= Enables the RA2/INT external interrupt  
0= Disables the RA2/INT external interrupt  
RAIE: PORTA Change Interrupt Enable bit(1)  
1= Enables the PORTA change interrupt  
0= Disables the PORTA change interrupt  
T0IF: Timer0 Overflow Interrupt Flag bit(2)  
1= Timer0 register has overflowed (must be cleared in software)  
0= Timer0 register did not overflow  
INTF: RA2/INT External Interrupt Flag bit  
1= The RA2/INT external interrupt occurred (must be cleared in software)  
0= The RA2/INT external interrupt did not occur  
RAIF: PORTA Change Interrupt Flag bit  
1= When at least one of the PORTA <5:0> pins changed state (must be cleared in software)  
0= None of the PORTA <5:0> pins have changed state  
Note 1: IOCA register must also be enabled.  
2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before  
clearing T0IF bit.  
© 2007 Microchip Technology Inc.  
DS41202F-page 13  
PIC16F684  
2.2.2.4  
PIE1 Register  
The PIE1 register contains the peripheral interrupt  
enable bits, as shown in Register 2-4.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 2-4:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
EEIE  
R/W-0  
ADIE  
R/W-0  
R/W-0  
C2IE  
R/W-0  
C1IE  
R/W-0  
OSFIE  
R/W-0  
R/W-0  
CCP1IE  
TMR2IE  
TMR1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
EEIE: EE Write Complete Interrupt Enable bit  
1= Enables the EE write complete interrupt  
0= Disables the EE write complete interrupt  
ADIE: A/D Converter (ADC) Interrupt Enable bit  
1= Enables the ADC interrupt  
0= Disables the ADC interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
C2IE: Comparator 2 Interrupt Enable bit  
1= Enables the Comparator 2 interrupt  
0= Disables the Comparator 2 interrupt  
C1IE: Comparator 1 Interrupt Enable bit  
1= Enables the Comparator 1 interrupt  
0= Disables the Comparator 1 interrupt  
OSFIE: Oscillator Fail Interrupt Enable bit  
1= Enables the oscillator fail interrupt  
0= Disables the oscillator fail interrupt  
TMR2IE: Timer2 to PR2 Match Interrupt Enable bit  
1= Enables the Timer2 to PR2 match interrupt  
0= Disables the Timer2 to PR2 match interrupt  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
DS41202F-page 14  
© 2007 Microchip Technology Inc.  
PIC16F684  
2.2.2.5  
PIR1 Register  
The PIR1 register contains the peripheral interrupt flag  
bits, as shown in Register 2-5.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE of the INTCON register. User  
software should ensure the appropriate  
interrupt flag bits are clear prior to enabling  
an interrupt.  
REGISTER 2-5:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
R/W-0  
EEIF  
R/W-0  
ADIF  
R/W-0  
R/W-0  
C2IF  
R/W-0  
C1IF  
R/W-0  
OSFIF  
R/W-0  
R/W-0  
CCP1IF  
TMR2IF  
TMR1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1= The write operation completed (must be cleared in software)  
0= The write operation has not completed or has not been started  
ADIF: A/D Interrupt Flag bit  
1= A/D conversion complete  
0= A/D conversion has not completed or has not been started  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
C2IF: Comparator 2 Interrupt Flag bit  
1= Comparator 2 output has changed (must be cleared in software)  
0= Comparator 2 output has not changed  
C1IF: Comparator 1 Interrupt Flag bit  
1= Comparator 1 output has changed (must be cleared in software)  
0= Comparator 1 output has not changed  
OSFIF: Oscillator Fail Interrupt Flag bit  
1= System oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= System clock operating  
TMR2IF: Timer2 to PR2 Match Interrupt Flag bit  
1= Timer2 to PR2 match occurred (must be cleared in software)  
0= Timer2 to PR2 match has not occurred  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= Timer1 register overflowed (must be cleared in software)  
0= Timer1 has not overflowed  
© 2007 Microchip Technology Inc.  
DS41202F-page 15  
PIC16F684  
2.2.2.6  
PCON Register  
The Power Control (PCON) register (see Table 12-2)  
contains flag bits to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Watchdog Timer Reset (WDT)  
• External MCLR Reset  
The PCON register also controls the Ultra Low-Power  
Wake-up and software enable of the BOR.  
The PCON register bits are shown in Register 2-6.  
REGISTER 2-6:  
PCON: POWER CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-1  
U-0  
U-0  
R/W-0  
POR  
R/W-x  
BOR  
ULPWUE  
SBOREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
ULPWUE: Ultra Low-Power Wake-Up Enable bit  
1= Ultra Low-Power Wake-up enabled  
0= Ultra Low-Power Wake-up disabled  
bit 4  
SBOREN: Software BOR Enable bit(1)  
1= BOR enabled  
0= BOR disabled  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset  
occurs)  
Note 1: BOREN<1:0> = 01in the Configuration Word register for this bit to control the BOR.  
DS41202F-page 16  
© 2007 Microchip Technology Inc.  
PIC16F684  
2.3.2  
STACK  
2.3  
PCL and PCLATH  
The PIC16F684 Family has an 8-level x 13-bit wide  
hardware stack (see Figure 2-1). The stack space is  
not part of either program or data space and the Stack  
Pointer is not readable or writable. The PC is PUSHed  
onto the stack when a CALLinstruction is executed or  
an interrupt causes a branch. The stack is POPed in  
The Program Counter (PC) is 13 bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<12:8>) is not directly  
readable or writable and comes from PCLATH. On any  
Reset, the PC is cleared. Figure 2-3 shows the two  
situations for the loading of the PC. The upper example  
in Figure 2-3 shows how the PC is loaded on a write to  
PCL (PCLATH<4:0> PCH). The lower example in  
Figure 2-3 shows how the PC is loaded during a CALLor  
GOTOinstruction (PCLATH<4:3> PCH).  
the event of a RETURN,  
RETLW or a RETFIE  
instruction execution. PCLATH is not affected by a  
PUSH or POP operation.  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 2-3:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Instruction with  
Note 1: There are no Status bits to indicate stack  
12  
8
7
0
PCL as  
overflow or stack underflow conditions.  
Destination  
PC  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions or the vectoring to an  
interrupt address.  
8
PCLATH<4:0>  
PCLATH  
5
ALU Result  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO, CALL  
2.4  
Indirect Addressing, INDF and  
FSR Registers  
PCLATH<4:3>  
PCLATH  
11  
2
OPCODE <10:0>  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
Indirect addressing is possible by using the INDF register.  
Any instruction using the INDF register actually accesses  
data pointed to by the File Select Register (FSR).  
Reading INDF itself indirectly will produce 00h. Writing to  
the INDF register indirectly results in a no operation  
(although Status bits may be affected). An effective 9-bit  
address is obtained by concatenating the 8-bit FSR and  
the IRP bit of the STATUS register, as shown in  
Figure 2-4.  
2.3.1  
MODIFYING PCL  
Executing any instruction with the PCL register as the  
destination simultaneously causes the Program  
Counter PC<12:8> bits (PCH) to be replaced by the  
contents of the PCLATH register. This allows the entire  
contents of the program counter to be changed by first  
writing the desired upper 5 bits to the PCLATH register.  
Then, when the lower 8 bits are written to the PCL  
register, all 13 bits of the program counter will change  
to the values contained in the PCLATH register and  
those being written to the PCL register.  
A simple program to clear RAM location 20h-2Fh using  
indirect addressing is shown in Example 2-1.  
EXAMPLE 2-1:  
INDIRECT ADDRESSING  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). Care should be  
exercised when jumping into a look-up table or  
program branch table (computed GOTO) by modifying  
the PCL register. Assuming that PCLATH is set to the  
table start address, if the table length is greater than  
255 instructions or if the lower 8 bits of the memory  
address rolls over from 0xFF to 0x00 in the middle of  
the table, then PCLATH must be incremented for each  
address rollover that occurs between the table  
beginning and the target location within the table.  
MOVLW  
MOVWF  
0x20  
FSR  
;initialize pointer  
;to RAM  
NEXT  
CLRF  
INCF  
BTFSS  
GOTO  
INDF  
;clear INDF register  
FSR, f ;inc pointer  
FSR,4  
NEXT  
;all done?  
;no clear next  
;yes continue  
CONTINUE  
For more information refer to Application Note AN556,  
Implementing a Table Read” (DS00556).  
© 2007 Microchip Technology Inc.  
DS41202F-page 17  
PIC16F684  
FIGURE 2-4:  
DIRECT/INDIRECT ADDRESSING PIC16F684  
Direct Addressing  
From Opcode  
Indirect Addressing  
(1)  
(1)  
7
RP1  
RP0  
6
0
0
IRP  
File Select Register  
Bank Select  
180h  
Location Select  
Bank Select  
Location Select  
00h  
00  
01  
10  
11  
Data  
Memory  
NOT USED  
7Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
For memory map detail, see Figure 2-2.  
Note 1: The RP1 and IRP bits are reserved; always maintain these bits clear.  
DS41202F-page 18  
© 2007 Microchip Technology Inc.  
PIC16F684  
The Oscillator module can be configured in one of eight  
clock modes.  
3.0  
3.1  
OSCILLATOR MODULE (WITH  
FAIL-SAFE CLOCK MONITOR)  
1. EC – External clock with I/O on OSC2/CLKOUT.  
2. LP – 32 kHz Low-Power Crystal mode.  
Overview  
3. XT – Medium Gain Crystal or Ceramic Resonator  
Oscillator mode.  
The Oscillator module has a wide variety of clock  
sources and selection features that allow it to be used  
in a wide range of applications while maximizing perfor-  
mance and minimizing power consumption. Figure 3-1  
illustrates a block diagram of the Oscillator module.  
4. HS – High Gain Crystal or Ceramic Resonator  
mode.  
5. RC – External Resistor-Capacitor (RC) with  
FOSC/4 output on OSC2/CLKOUT.  
Clock sources can be configured from external  
oscillators, quartz crystal resonators, ceramic resonators  
and Resistor-Capacitor (RC) circuits. In addition, the  
system clock source can be configured from one of two  
internal oscillators, with a choice of speeds selectable via  
software. Additional clock features include:  
6. RCIO – External Resistor-Capacitor (RC) with  
I/O on OSC2/CLKOUT.  
7. INTOSC – Internal oscillator with FOSC/4 output  
on OSC2 and I/O on OSC1/CLKIN.  
8. INTOSCIO – Internal oscillator with I/O on  
OSC1/CLKIN and OSC2/CLKOUT.  
• Selectable system clock source between external  
or internal via software.  
Clock Source modes are configured by the FOSC<2:0>  
bits in the Configuration Word register (CONFIG). The  
internal clock can be generated from two internal  
• Two-Speed Start-up mode, which minimizes  
latency between external oscillator start-up and  
code execution.  
oscillators. The HFINTOSC is  
a
calibrated  
high-frequency oscillator. The LFINTOSC is an  
uncalibrated low-frequency oscillator.  
• Fail-Safe Clock Monitor (FSCM) designed to  
detect a failure of the external clock source (LP,  
XT, HS, EC or RC modes) and switch  
automatically to the internal oscillator.  
FIGURE 3-1:  
PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
FOSC<2:0>  
(Configuration Word Register)  
External Oscillator  
SCS<0>  
(OSCCON Register)  
OSC2  
OSC1  
Sleep  
LP, XT, HS, RC, RCIO, EC  
IRCF<2:0>  
(OSCCON Register)  
System Clock  
(CPU and Peripherals)  
8 MHz  
111  
110  
101  
INTOSC  
Internal Oscillator  
4 MHz  
2 MHz  
1 MHz  
HFINTOSC  
8 MHz  
100  
011  
010  
001  
000  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
LFINTOSC  
31 kHz  
Power-up Timer (PWRT)  
Watchdog Timer (WDT)  
Fail-Safe Clock Monitor (FSCM)  
© 2007 Microchip Technology Inc.  
DS41202F-page 19  
PIC16F684  
3.2  
Oscillator Control  
The Oscillator Control (OSCCON) register (Figure 3-1)  
controls the system clock and frequency selection  
options. The OSCCON register contains the following  
bits:  
• Frequency selection bits (IRCF)  
• Frequency Status bits (HTS, LTS)  
• System clock control bits (OSTS, SCS)  
REGISTER 3-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R/W-1  
IRCF2  
R/W-1  
IRCF1  
R/W-0  
IRCF0  
R-1  
OSTS(1)  
R-0  
R-0  
LTS  
R/W-0  
SCS  
HTS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IRCF<2:0>: Internal Oscillator Frequency Select bits  
111=8 MHz  
110=4 MHz (default)  
101=2 MHz  
100=1 MHz  
011=500 kHz  
010=250 kHz  
001=125 kHz  
000=31 kHz (LFINTOSC)  
bit 3  
bit 2  
bit 1  
bit 0  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Device is running from the external clock defined by FOSC<2:0> of the CONFIG register  
0= Device is running from the internal oscillator (HFINTOSC or LFINTOSC)  
HTS: HFINTOSC Status bit (High Frequency – 8 MHz to 125 kHz)  
1= HFINTOSC is stable  
0= HFINTOSC is not stable  
LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz)  
1= LFINTOSC is stable  
0= LFINTOSC is not stable  
SCS: System Clock Select bit  
1= Internal oscillator is used for system clock  
0= Clock source defined by FOSC<2:0> of the CONFIG register  
Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe  
mode is enabled.  
DS41202F-page 20  
© 2007 Microchip Technology Inc.  
PIC16F684  
3.3  
Clock Source Modes  
3.4  
External Clock Modes  
Clock Source modes can be classified as external or  
internal.  
3.4.1 OSCILLATOR START-UP TIMER (OST)  
If the Oscillator module is configured for LP, XT or HS  
modes, the Oscillator Start-up Timer (OST) counts  
1024 oscillations from OSC1. This occurs following a  
Power-on Reset (POR) and when the Power-up Timer  
(PWRT) has expired (if configured), or a wake-up from  
Sleep. During this time, the program counter does not  
increment and program execution is suspended. The  
OST ensures that the oscillator circuit, using a quartz  
crystal resonator or ceramic resonator, has started and  
is providing a stable system clock to the Oscillator  
module. When switching between clock sources, a  
delay is required to allow the new clock to stabilize.  
These oscillator delays are shown in Table 3-1.  
• External Clock modes rely on external circuitry for  
the clock source. Examples are: Oscillator mod-  
ules (EC mode), quartz crystal resonators or  
ceramic resonators (LP, XT and HS modes) and  
Resistor-Capacitor (RC) mode circuits.  
• Internal clock sources are contained internally  
within the Oscillator module. The Oscillator  
module has two internal oscillators: the 8 MHz  
High-Frequency Internal Oscillator (HFINTOSC)  
and the 31 kHz Low-Frequency Internal Oscillator  
(LFINTOSC).  
The system clock can be selected between external or  
internal clock sources via the System Clock Select  
(SCS) bit of the OSCCON register. See Section 3.6  
“Clock Switching” for additional information.  
In order to minimize latency between external oscillator  
start-up and code execution, the Two-Speed Clock  
Start-up mode can be selected (see Section 3.7  
“Two-Speed Clock Start-up Mode”).  
TABLE 3-1:  
Switch From  
OSCILLATOR DELAY EXAMPLES  
Switch To  
Frequency  
Oscillator Delay  
LFINTOSC  
HFINTOSC  
31 kHz  
125 kHz to 8 MHz  
DC – 20 MHz  
Sleep/POR  
Oscillator Warm-Up Delay (TWARM)  
Sleep/POR  
EC, RC  
2 cycles  
LFINTOSC (31 kHz)  
Sleep/POR  
EC, RC  
DC – 20 MHz  
1 cycle of each  
1024 Clock Cycles (OST)  
1 μs (approx.)  
LP, XT, HS  
HFINTOSC  
32 kHz to 20 MHz  
125 kHz to 8 MHz  
LFINTOSC (31 kHz)  
3.4.2  
EC MODE  
FIGURE 3-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source. When  
operating in this mode, an external clock source is  
connected to the OSC1 input and the OSC2 is available  
for general purpose I/O. Figure 3-2 shows the pin  
connections for EC mode.  
OSC1/CLKIN  
Clock from  
Ext. System  
PIC® MCU  
(1)  
I/O  
OSC2/CLKOUT  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC MCU design is fully static,  
stopping the external clock input will have the effect of  
halting the device while leaving all data intact. Upon  
restarting the external clock, the device will resume  
operation as if no time had elapsed.  
Note 1: Alternate pin functions are listed in the  
Section 1.0 “Device Overview”.  
© 2007 Microchip Technology Inc.  
DS41202F-page 21  
PIC16F684  
3.4.3  
LP, XT, HS MODES  
Note 1: Quartz crystal characteristics vary according  
to type, package and manufacturer. The  
user should consult the manufacturer data  
sheets for specifications and recommended  
application.  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
OSC1 and OSC2 (Figure 3-3). The mode selects a low,  
medium or high gain setting of the internal  
inverter-amplifier to support various resonator types  
and speed.  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
LP Oscillator mode selects the lowest gain setting of the  
internal inverter-amplifier. LP mode current consumption  
is the least of the three modes. This mode is designed to  
drive only 32.768 kHz tuning-fork type crystals (watch  
crystals).  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
• AN849, “Basic PIC® Oscillator Design”  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is best suited to drive resonators with a  
medium drive level specification.  
Analysis and Design” (DS00943)  
HS Oscillator mode selects the highest gain setting of the  
internal inverter-amplifier. HS mode current consumption  
is the highest of the three modes. This mode is best  
suited for resonators that require a high drive setting.  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
FIGURE 3-4:  
CERAMIC RESONATOR  
OPERATION  
Figure 3-3 and Figure 3-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
(XT OR HS MODE)  
FIGURE 3-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
PIC® MCU  
OSC1/CLKIN  
C1  
PIC® MCU  
To Internal  
Logic  
OSC1/CLKIN  
(3)  
(2)  
RP  
RF  
Sleep  
C1  
To Internal  
Logic  
Quartz  
Crystal  
(2)  
OSC2/CLKOUT  
(1)  
C2  
RF  
Sleep  
RS  
Ceramic  
Resonator  
Note 1: A series resistor (RS) may be required for  
OSC2/CLKOUT  
(1)  
C2  
RS  
ceramic resonators with low drive level.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
Note 1: A series resistor (RS) may be required for  
quartz crystals with low drive level.  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
DS41202F-page 22  
© 2007 Microchip Technology Inc.  
PIC16F684  
3.4.4  
EXTERNAL RC MODES  
3.5  
Internal Clock Modes  
The external Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required. There are two modes: RC and RCIO.  
The Oscillator module has two independent, internal  
oscillators that can be configured or selected as the  
system clock source.  
1. The HFINTOSC (High-Frequency Internal  
Oscillator) is factory calibrated and operates at  
8 MHz. The frequency of the HFINTOSC can be  
user-adjusted via software using the OSCTUNE  
register (Register 3-2).  
In RC mode, the RC circuit connects to OSC1.  
OSC2/CLKOUT outputs the RC oscillator frequency  
divided by 4. This signal may be used to provide a clock  
for external circuitry, synchronization, calibration, test  
or other application requirements. Figure 3-5 shows  
the external RC mode connections.  
2. The LFINTOSC (Low-Frequency Internal  
Oscillator) is uncalibrated and operates at  
31 kHz.  
The system clock speed can be selected via software  
using the Internal Oscillator Frequency Select bits  
IRCF<2:0> of the OSCCON register.  
FIGURE 3-5:  
EXTERNAL RC MODES  
VDD  
PIC® MCU  
The system clock can be selected between external or  
internal clock sources via the System Clock Selection  
(SCS) bit of the OSCCON register. See Section 3.6  
“Clock Switching” for more information.  
REXT  
OSC1/CLKIN  
Internal  
Clock  
CEXT  
VSS  
3.5.1 INTOSC AND INTOSCIO MODES  
The INTOSC and INTOSCIO modes configure the  
internal oscillators as the system clock source when  
the device is programmed using the oscillator selection  
or the FOSC<2:0> bits in the Configuration Word  
register (CONFIG).  
(1)  
FOSC/4 or  
I/O  
OSC2/CLKOUT  
(2)  
Recommended values: 10 kΩ ≤ REXT 100 kΩ, <3V  
3 kΩ ≤ REXT 100 kΩ, 3-5V  
In INTOSC mode, OSC1/CLKIN is available for general  
purpose I/O. OSC2/CLKOUT outputs the selected  
internal oscillator frequency divided by 4. The CLKOUT  
signal may be used to provide a clock for external  
circuitry, synchronization, calibration, test or other  
application requirements.  
CEXT > 20 pF, 2-5V  
Note 1: Alternate pin functions are listed in  
Section 1.0 “Device Overview”.  
2: Output depends upon RC or RCIO Clock  
mode.  
In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT  
In RCIO mode, the RC circuit is connected to OSC1.  
OSC2 becomes an additional general purpose I/O pin.  
are available for general purpose I/O.  
3.5.2  
HFINTOSC  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) values  
and the operating temperature. Other factors affecting  
the oscillator frequency are:  
The High-Frequency Internal Oscillator (HFINTOSC) is  
a factory calibrated 8 MHz internal clock source. The  
frequency of the HFINTOSC can be altered via  
software using the OSCTUNE register (Register 3-2).  
• threshold voltage variation  
• component tolerances  
• packaging variations in capacitance  
The output of the HFINTOSC connects to a postscaler  
and multiplexer (see Figure 3-1). One of seven  
frequencies can be selected via software using the  
IRCF<2:0> bits of the OSCCON register. See  
Section 3.5.4 “Frequency Select Bits (IRCF)” for  
more information.  
The user also needs to take into account variation due  
to tolerance of external RC components used.  
The HFINTOSC is enabled by selecting any frequency  
between 8 MHz and 125 kHz by setting the IRCF<2:0>  
bits of the OSCCON register 000. Then, set the  
System Clock Source (SCS) bit of the OSCCON  
register to ‘1’ or enable Two-Speed Start-up by setting  
the IESO bit in the Configuration Word register  
(CONFIG) to ‘1’.  
The HF Internal Oscillator (HTS) bit of the OSCCON  
register indicates whether the HFINTOSC is stable or not.  
© 2007 Microchip Technology Inc.  
DS41202F-page 23  
PIC16F684  
When the OSCTUNE register is modified, the  
HFINTOSC frequency will begin shifting to the new  
frequency. Code execution continues during this shift.  
There is no indication that the shift has occurred.  
3.5.2.1  
OSCTUNE Register  
The HFINTOSC is factory calibrated but can be  
adjusted in software by writing to the OSCTUNE  
register (Register 3-2).  
OSCTUNE does not affect the LFINTOSC frequency.  
Operation of features that depend on the LFINTOSC  
clock source frequency, such as the Power-up Timer  
(PWRT), Watchdog Timer (WDT), Fail-Safe Clock  
Monitor (FSCM) and peripherals, are not affected by the  
change in frequency.  
The default value of the OSCTUNE register is ‘0’. The  
value is a 5-bit two’s complement number.  
REGISTER 3-2:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
TUN<4:0>: Frequency Tuning bits  
01111= Maximum frequency  
01110=  
00001=  
00000= Oscillator module is running at the calibrated frequency.  
11111=  
10000= Minimum frequency  
DS41202F-page 24  
© 2007 Microchip Technology Inc.  
PIC16F684  
3.5.3  
LFINTOSC  
3.5.5  
HFINTOSC AND LFINTOSC CLOCK  
SWITCH TIMING  
The Low-Frequency Internal Oscillator (LFINTOSC) is  
an uncalibrated 31 kHz internal clock source.  
When switching between the LFINTOSC and the  
HFINTOSC, the new oscillator may already be shut  
down to save power (see Figure 3-6). If this is the case,  
there is a delay after the IRCF<2:0> bits of the  
OSCCON register are modified before the frequency  
selection takes place. The LTS and HTS bits of the  
OSCCON register will reflect the current active status  
of the LFINTOSC and HFINTOSC oscillators. The  
timing of a frequency selection is as follows:  
The output of the LFINTOSC connects to a postscaler  
and multiplexer (see Figure 3-1). Select 31 kHz, via  
software, using the IRCF<2:0> bits of the OSCCON  
register. See Section 3.5.4 “Frequency Select Bits  
(IRCF)” for more information. The LFINTOSC is also the  
frequency for the Power-up Timer (PWRT), Watchdog  
Timer (WDT) and Fail-Safe Clock Monitor (FSCM).  
The LFINTOSC is enabled by selecting 31 kHz  
(IRCF<2:0> bits of the OSCCON register = 000)as the  
system clock source (SCS bit of the OSCCON  
register = 1), or when any of the following are enabled:  
1. IRCF<2:0> bits of the OSCCON register are  
modified.  
2. If the new clock is shut down, a clock start-up  
delay is started.  
• Two-Speed Start-up IESO bit of the Configuration  
Word register = 1and IRCF<2:0> bits of the  
OSCCON register = 000  
3. Clock switch circuitry waits for a falling edge of  
the current clock.  
4. CLKOUT is held low and the clock switch  
circuitry waits for a rising edge in the new clock.  
• Power-up Timer (PWRT)  
• Watchdog Timer (WDT)  
5. CLKOUT is now connected with the new clock.  
LTS and HTS bits of the OSCCON register are  
updated as required.  
• Fail-Safe Clock Monitor (FSCM)  
The LF Internal Oscillator (LTS) bit of the OSCCON  
register indicates whether the LFINTOSC is stable or  
not.  
6. Clock switch is complete.  
See Figure 3-1 for more details.  
3.5.4  
FREQUENCY SELECT BITS (IRCF)  
If the internal oscillator speed selected is between  
8 MHz and 125 kHz, there is no start-up delay before  
the new frequency is selected. This is because the old  
and new frequencies are derived from the HFINTOSC  
via the postscaler and multiplexer.  
The output of the 8 MHz HFINTOSC and 31 kHz  
LFINTOSC connects to a postscaler and multiplexer  
(see Figure 3-1). The Internal Oscillator Frequency  
Select bits IRCF<2:0> of the OSCCON register select  
the frequency output of the internal oscillators. One of  
eight frequencies can be selected via software:  
Start-up delay specifications are located in the  
oscillator tables of Section 15.0 “Electrical  
Specifications”.  
• 8 MHz  
• 4 MHz (Default after Reset)  
• 2 MHz  
• 1 MHz  
• 500 kHz  
• 250 kHz  
• 125 kHz  
• 31 kHz (LFINTOSC)  
Note:  
Following any Reset, the IRCF<2:0> bits of  
the OSCCON register are set to ‘110’ and  
the frequency selection is set to 4 MHz.  
The user can modify the IRCF bits to  
select a different frequency.  
© 2007 Microchip Technology Inc.  
DS41202F-page 25  
PIC16F684  
FIGURE 3-6:  
INTERNAL OSCILLATOR SWITCH TIMING  
HFINTOSC  
LFINTOSC (FSCM and WDT disabled)  
HFINTOSC  
Start-up Time  
2-cycle Sync  
Running  
LFINTOSC  
0  
= 0  
IRCF <2:0>  
System Clock  
HFINTOSC  
LFINTOSC (Either FSCM or WDT enabled)  
HFINTOSC  
2-cycle Sync  
Running  
LFINTOSC  
IRCF <2:0>  
0  
= 0  
System Clock  
LFINTOSC  
HFINTOSC  
LFINTOSC turns off unless WDT or FSCM is enabled  
Running  
LFINTOSC  
Start-up Time 2-cycle Sync  
HFINTOSC  
= 0  
¼ 0  
IRCF <2:0>  
System Clock  
DS41202F-page 26  
© 2007 Microchip Technology Inc.  
PIC16F684  
When the Oscillator module is configured for LP, XT or  
HS modes, the Oscillator Start-up Timer (OST) is  
enabled (see Section 3.4.1 “Oscillator Start-up Timer  
(OST)”). The OST will suspend program execution until  
1024 oscillations are counted. Two-Speed Start-up  
mode minimizes the delay in code execution by  
operating from the internal oscillator as the OST is  
counting. When the OST count reaches 1024 and the  
OSTS bit of the OSCCON register is set, program  
execution switches to the external oscillator.  
3.6  
Clock Switching  
The system clock source can be switched between  
external and internal clock sources via software using  
the System Clock Select (SCS) bit of the OSCCON  
register.  
3.6.1  
SYSTEM CLOCK SELECT (SCS) BIT  
The System Clock Select (SCS) bit of the OSCCON  
register selects the system clock source that is used for  
the CPU and peripherals.  
3.7.1  
TWO-SPEED START-UP MODE  
CONFIGURATION  
• When the SCS bit of the OSCCON register = 0,  
the system clock source is determined by  
configuration of the FOSC<2:0> bits in the  
Configuration Word register (CONFIG).  
Two-Speed Start-up mode is configured by the  
following settings:  
• When the SCS bit of the OSCCON register = 1,  
the system clock source is chosen by the internal  
oscillator frequency selected by the IRCF<2:0>  
bits of the OSCCON register. After a Reset, the  
SCS bit of the OSCCON register is always  
cleared.  
• IESO (of the Configuration Word register) = 1;  
Internal/External Switchover bit (Two-Speed  
Start-up mode enabled).  
• SCS (of the OSCCON register) = 0.  
• FOSC<2:0> bits in the Configuration Word  
register (CONFIG) configured for LP, XT or HS  
mode.  
Note:  
Any automatic clock switch, which may  
occur from Two-Speed Start-up or Fail-Safe  
Clock Monitor, does not update the SCS bit  
of the OSCCON register. The user can  
monitor the OSTS bit of the OSCCON  
register to determine the current system  
clock source.  
Two-Speed Start-up mode is entered after:  
• Power-on Reset (POR) and, if enabled, after  
Power-up Timer (PWRT) has expired, or  
• Wake-up from Sleep.  
If the external clock oscillator is configured to be  
anything other than LP, XT or HS mode, then  
Two-Speed Start-up is disabled. This is because the  
external clock oscillator does not require any  
stabilization time after POR or an exit from Sleep.  
3.6.2  
OSCILLATOR START-UP TIME-OUT  
STATUS (OSTS) BIT  
The Oscillator Start-up Time-out Status (OSTS) bit of  
the OSCCON register indicates whether the system  
clock is running from the external clock source, as  
defined by the FOSC<2:0> bits in the Configuration  
Word register (CONFIG), or from the internal clock  
source. In particular, OSTS indicates that the Oscillator  
Start-up Timer (OST) has timed out for LP, XT or HS  
modes.  
3.7.2  
TWO-SPEED START-UP  
SEQUENCE  
1. Wake-up from Power-on Reset or Sleep.  
2. Instructions begin execution by the internal  
oscillator at the frequency set in the IRCF<2:0>  
bits of the OSCCON register.  
3. OST enabled to count 1024 clock cycles.  
3.7  
Two-Speed Clock Start-up Mode  
4. OST timed out, wait for falling edge of the  
internal oscillator.  
Two-Speed Start-up mode provides additional power  
savings by minimizing the latency between external  
oscillator start-up and code execution. In applications  
that make heavy use of the Sleep mode, Two-Speed  
Start-up will remove the external oscillator start-up  
time from the time spent awake and can reduce the  
overall power consumption of the device.  
5. OSTS is set.  
6. System clock held low until the next falling edge  
of new clock (LP, XT or HS mode).  
7. System clock is switched to external clock  
source.  
This mode allows the application to wake-up from  
Sleep, perform a few instructions using the INTOSC  
as the clock source and go back to Sleep without  
waiting for the primary oscillator to become stable.  
Note:  
Executing a SLEEP instruction will abort  
the oscillator start-up time and will cause  
the OSTS bit of the OSCCON register to  
remain clear.  
© 2007 Microchip Technology Inc.  
DS41202F-page 27  
PIC16F684  
3.7.3  
CHECKING TWO-SPEED CLOCK  
STATUS  
Checking the state of the OSTS bit of the OSCCON  
register will confirm if the microcontroller is running  
from the external clock source, as defined by the  
FOSC<2:0> bits in the Configuration Word register  
(CONFIG), or the internal oscillator.  
FIGURE 3-7:  
TWO-SPEED START-UP  
HFINTOSC  
TOST  
OSC1  
0
1
1022 1023  
OSC2  
PC - N  
PC + 1  
Program Counter  
PC  
System Clock  
DS41202F-page 28  
© 2007 Microchip Technology Inc.  
PIC16F684  
3.8.3  
FAIL-SAFE CONDITION CLEARING  
3.8  
Fail-Safe Clock Monitor  
The Fail-Safe condition is cleared after a Reset,  
executing a SLEEPinstruction or toggling the SCS bit  
of the OSCCON register. When the SCS bit is toggled,  
the OST is restarted. While the OST is running, the  
device continues to operate from the INTOSC selected  
in OSCCON. When the OST times out, the Fail-Safe  
condition is cleared and the device will be operating  
from the external clock source. The Fail-Safe condition  
must be cleared before the OSFIF flag can be cleared.  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue operating should the external oscillator fail.  
The FSCM can detect oscillator failure any time after  
the Oscillator Start-up Timer (OST) has expired. The  
FSCM is enabled by setting the FCMEN bit in the  
Configuration Word register (CONFIG). The FSCM is  
applicable to all external oscillator modes (LP, XT, HS,  
EC, RC and RCIO).  
FIGURE 3-8:  
FSCM BLOCK DIAGRAM  
3.8.4  
RESET OR WAKE-UP FROM SLEEP  
Clock Monitor  
Latch  
The FSCM is designed to detect an oscillator failure  
after the Oscillator Start-up Timer (OST) has expired.  
The OST is used after waking up from Sleep and after  
any type of Reset. The OST is not used with the EC or  
RC Clock modes so that the FSCM will be active as  
soon as the Reset or wake-up has completed. When  
the FSCM is enabled, the Two-Speed Start-up is also  
enabled. Therefore, the device will always be executing  
code while the OST is operating.  
External  
Clock  
S
Q
LFINTOSC  
Oscillator  
÷ 64  
R
Q
31 kHz  
(~32 μs)  
488 Hz  
(~2 ms)  
Note:  
Due to the wide range of oscillator start-up  
times, the Fail-Safe circuit is not active  
during oscillator start-up (i.e., after exiting  
Reset or Sleep). After an appropriate  
amount of time, the user should check the  
OSTS bit of the OSCCON register to verify  
the oscillator start-up and that the system  
Sample Clock  
Clock  
Failure  
Detected  
3.8.1  
FAIL-SAFE DETECTION  
The FSCM module detects a failed oscillator by  
comparing the external oscillator to the FSCM sample  
clock. The sample clock is generated by dividing the  
LFINTOSC by 64. See Figure 3-8. Inside the fail  
detector block is a latch. The external clock sets the  
latch on each falling edge of the external clock. The  
sample clock clears the latch on each rising edge of the  
sample clock. A failure is detected when an entire  
half-cycle of the sample clock elapses before the  
primary clock goes low.  
clock  
completed.  
switchover  
has  
successfully  
3.8.2  
FAIL-SAFE OPERATION  
When the external clock fails, the FSCM switches the  
device clock to an internal clock source and sets the bit  
flag OSFIF of the PIR1 register. Setting this flag will  
generate an interrupt if the OSFIE bit of the PIE1  
register is also set. The device firmware can then take  
steps to mitigate the problems that may arise from a  
failed clock. The system clock will continue to be  
sourced from the internal clock source until the device  
firmware successfully restarts the external oscillator  
and switches back to external operation.  
The internal clock source chosen by the FSCM is  
determined by the IRCF<2:0> bits of the OSCCON  
register. This allows the internal oscillator to be  
configured before a failure occurs.  
© 2007 Microchip Technology Inc.  
DS41202F-page 29  
PIC16F684  
FIGURE 3-9:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
Clock Monitor Output  
(Q)  
Failure  
Detected  
OSCFIF  
Test  
Test  
Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Value on  
Value on:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
POR, BOR  
(1)  
Resets  
(2)  
CONFIG  
CPD  
CP  
IRCF2  
MCLRE PWRTE  
WDTE  
OSTS  
TUN3  
C1IE  
FOSC2  
HTS  
FOSC1  
LTS  
FOSC0  
SCS  
OSCCON  
OSCTUNE  
PIE1  
IRCF1  
IRCF0  
TUN4  
C2IE  
-110 x000 -110 x000  
---0 0000 ---u uuuu  
TUN2  
TUN1  
TUN0  
EEIE  
EEIF  
ADIE  
ADIF  
CCP1IE  
CCP1IF  
OSFIE TMR2IE TMR1IE 0000 0000 0000 0000  
OSFIF TMR2IF TMR1IF 0000 0000 0000 0000  
PIR1  
C2IF  
C1IF  
Legend:  
x= unknown, u= unchanged, = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: See Configuration Word register (Register 12-1) for operation of all register bits.  
DS41202F-page 30  
© 2007 Microchip Technology Inc.  
PIC16F684  
port pins are read, this value is modified and then  
written to the PORT data latch. RA3 reads ‘0’ when  
MCLRE = 1.  
4.0  
I/O PORTS  
There are as many as twelve general purpose I/O pins  
available. Depending on which peripherals are enabled,  
some or all of the pins may not be available as general  
purpose I/O. In general, when a peripheral is enabled,  
the associated pin may not be used as a general  
purpose I/O pin.  
The TRISA register controls the direction of the  
PORTA pins, even when they are being used as analog  
inputs. The user must ensure the bits in the TRISA  
register are maintained set when using them as analog  
inputs. I/O pins configured as analog input always read  
0’.  
4.1  
PORTA and the TRISA Registers  
Note:  
The ANSEL and CMCON0 registers must  
be initialized to configure an analog  
channel as a digital input. Pins configured  
as analog inputs will read ‘0’.  
PORTA is  
a 6-bit wide, bidirectional port. The  
corresponding data direction register is TRISA  
(Register 4-2). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., disable the  
output driver). Clearing a TRISA bit (= 0) will make the  
corresponding PORTA pin an output (i.e., enables output  
driver and puts the contents of the output latch on the  
selected pin). The exception is RA3, which is input only  
and its TRIS bit will always read as ‘1’. Example 4-1  
shows how to initialize PORTA.  
EXAMPLE 4-1:  
INITIALIZING PORTA  
BCF  
CLRF  
STATUS,RP0  
PORTA  
;Bank 0  
;Init PORTA  
MOVLW 07h  
MOVWF CMCON0  
;Set RA<2:0> to  
;digital I/O  
;Bank 1  
;digital I/O  
;Set RA<3:2> as inputs  
;and set RA<5:4,1:0>  
;as outputs  
BSF  
CLRF  
STATUS,RP0  
ANSEL  
Reading the PORTA register (Register 4-1) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
MOVLW 0Ch  
MOVWF TRISA  
BCF  
STATUS,RP0  
;Bank 0  
REGISTER 4-1:  
PORTA: PORTA REGISTER  
U-0  
U-0  
R/W-x  
RA5  
R/W-0  
RA4  
R-x  
R/W-0  
RA2  
R/W-0  
RA1  
R/W-0  
RA0  
RA3  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RA<5:0>: PORTA I/O Pin bit  
1= PORTA pin is > VIH  
0= PORTA pin is < VIL  
REGISTER 4-2:  
TRISA: PORTA TRI-STATE REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R-1  
R/W-1  
R/W-1  
R/W-1  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TRISA<5:0>: PORTA Tri-State Control bit  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
Note 1: TRISA<3> always reads ‘1’.  
2: TRISA<5:4> always reads ‘1’ in XT, HS and LP OSC modes.  
© 2007 Microchip Technology Inc.  
DS41202F-page 31  
PIC16F684  
4.2.3  
INTERRUPT-ON-CHANGE  
4.2  
Additional Pin Functions  
Each of the PORTA pins is individually configurable as  
an interrupt-on-change pin. Control bits IOCAx enable  
or disable the interrupt function for each pin. Refer to  
Register 4-5. The interrupt-on-change is disabled on a  
Power-on Reset.  
Every PORTA pin on the PIC16F684 has an  
interrupt-on-change option and a weak pull-up option.  
RA0 has an Ultra Low-Power Wake-up option. The next  
three sections describe these functions.  
4.2.1  
ANSEL REGISTER  
For enabled interrupt-on-change pins, the values are  
compared with the old value latched on the last read of  
PORTA. The ‘mismatch’ outputs of the last read are  
OR’d together to set the PORTA Change Interrupt Flag  
bit (RAIF) in the INTCON register (Register 2-3).  
The ANSEL register is used to configure the Input  
mode of an I/O pin to analog. Setting the appropriate  
ANSEL bit high will cause all digital reads on the pin to  
be read as ‘0’ and allow analog functions on the pin to  
operate correctly.  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, clears the inter-  
rupt by:  
The state of the ANSEL bits has no affect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
a) Any read or write of PORTA. This will end the  
mismatch condition, then,  
b) Clear the flag bit RAIF.  
A mismatch condition will continue to set flag bit RAIF.  
Reading PORTA will end the mismatch condition and  
allow flag bit RAIF to be cleared. The latch holding the  
last read value is not affected by a MCLR nor  
Brown-out Reset. After these resets, the RAIF flag will  
continue to be set if a mismatch is present.  
4.2.2  
WEAK PULL-UPS  
Each of the PORTA pins, except RA3, has an  
individually configurable internal weak pull-up. Control  
bits WPUAx enable or disable each pull-up. Refer to  
Register 4-4. Each weak pull-up is automatically turned  
off when the port pin is configured as an output. The  
pull-ups are disabled on a Power-on Reset by the  
RAPU bit of the OPTION register). A weak pull-up is  
automatically enabled for RA3 when configured as  
MCLR and disabled when RA3 is an I/O. There is no  
software control of the MCLR pull-up.  
Note:  
If a change on the I/O pin should occur  
when any PORTA operation is being  
executed, then the RAIF interrupt flag may  
not get set.  
REGISTER 4-3:  
ANSEL: ANALOG SELECT REGISTER  
R/W-1  
ANS7  
R/W-1  
ANS6  
R/W-1  
ANS5  
R/W-1  
ANS4  
R/W-1  
ANS3  
R/W-1  
ANS2  
R/W-1  
ANS1  
R/W-1  
ANS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ANS<7:0>: Analog Select bits  
Analog select between analog or digital function on pins AN<7:0>, respectively.  
1= Analog input. Pin is assigned as analog input(1)  
0= Digital I/O. Pin is assigned to port or special function.  
.
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and  
interrupt-on-change, if available. The corresponding TRIS bit must be set to Input mode in order to allow  
external control of the voltage on the pin.  
DS41202F-page 32  
© 2007 Microchip Technology Inc.  
PIC16F684  
REGISTER 4-4:  
WPUA: WEAK PULL-UP PORTA REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
U-0  
R/W-1  
R/W-1  
R/W-1  
WPUA5  
WPUA4  
WPUA2  
WPUA1  
WPUA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
WPUA<5:4>: Weak Pull-up Control bits  
1= Pull-up enabled  
0= Pull-up disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
WPUA<2:0>: Weak Pull-up Control bits  
1= Pull-up enabled  
0= Pull-up disabled  
Note 1: Global RAPU must be enabled for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISA = 0).  
3: The RA3 pull-up is enabled when configured as MCLR and disabled as an I/O in the Configuration Word.  
4: WPUA<5:4> always reads ‘1’ in XT, HS and LP OSC modes.  
REGISTER 4-5:  
IOCA: INTERRUPT-ON-CHANGE PORTA REGISTER  
U-0  
U-0  
R/W-0  
IOCA5  
R/W-0  
IOCA4  
R/W-0  
IOCA3  
R/W-0  
IOCA2  
R/W-0  
IOCA1  
R/W-0  
IOCA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IOCA<5:0>: Interrupt-on-change PORTA Control bit  
1= Interrupt-on-change enabled  
0= Interrupt-on-change disabled  
Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.  
2: IOCA<5:4> always reads ‘1’ in XT, HS and LP OSC modes.  
© 2007 Microchip Technology Inc.  
DS41202F-page 33  
PIC16F684  
4.2.4  
ULTRA LOW-POWER WAKE-UP  
The Ultra Low-Power Wake-Up (ULPWU) on RA0  
Note:  
For more information, refer to AN879,  
Using the Microchip Ultra Low-Power  
Wake-Up Module” Application Note  
(DS00879).  
allows  
a
slow falling voltage to generate an  
interrupt-on-change on RA0 without excess current  
consumption. The mode is selected by setting the  
ULPWUE bit of the PCON register. This enables a small  
current sink which can be used to discharge a capacitor  
on RA0.  
EXAMPLE 4-2:  
ULTRA LOW-POWER  
WAKE-UP INITIALIZATION  
To use this feature, the RA0 pin is first configured to output  
1’ to charge the capacitor. Then interrupt-on-change for  
RA0 is enabled, and RA0 is configured as an input. The  
ULPWUE bit is set to begin the discharge and a SLEEP  
instruction is performed. When the voltage on RA0 drops  
below VIL, the device will wake-up and execute the next  
instruction. If the GIE bit of the INTCON register is set, the  
device will call the interrupt service routine (0004h). See  
BANKSELCMCON0  
;
MOVLW  
MOVWF  
H’7’  
CMCON0  
;Turn off  
;comparators  
;
;RA0 to digital I/O  
;Output high to  
;
;charge capacitor  
;
;
BANKSELANSEL  
BCF  
BCF  
ANSEL,0  
TRISA,0  
BANKSELPORTA  
BSF  
CALL  
PORTA,0  
CapDelay  
Section 4.2.3  
“Interrupt-on-Change”  
and  
BANKSELPCON  
Section 12.4.3 “PORTA Interrupt-on-Change” for  
more information.  
BSF  
PCON,ULPWUE ;Enable ULP Wake-up  
BSF  
IOCA,0  
;Select RA0 IOC  
;RA0 to input  
BSF  
TRISA,0  
This feature provides a low-power technique for  
periodically waking up the device from Sleep. The  
time-out is dependent on the discharge time of the RC  
circuit on RA0. See Example 4-2 for initializing the Ultra  
Low-Power Wake-Up module.  
MOVLW  
MOVWF  
SLEEP  
B’10001000’ ;Enable interrupt  
INTCON  
; and clear flag  
;Wait for IOC  
The series resistor provides overcurrent protection for  
the RA0 pin and can allow for software calibration of  
the time-out (see Figure 4-1). A timer can be used to  
measure the charge time and discharge time of the  
capacitor. The charge time can then be adjusted to  
provide the desired interrupt delay. This technique will  
compensate for the affects of temperature, voltage and  
component accuracy. The Ultra Low-Power Wake-Up  
peripheral can also be configured as a simple  
Programmable Low Voltage Detect or temperature  
sensor.  
DS41202F-page 34  
© 2007 Microchip Technology Inc.  
PIC16F684  
4.2.5  
PIN DESCRIPTIONS AND  
DIAGRAMS  
4.2.5.2  
RA1/AN1/C1IN-/VREF/ICSPCLK  
Figure 4-2 shows the diagram for this pin. The RA1 pin  
is configurable to function as one of the following:  
Each PORTA pin is multiplexed with other functions.  
The pins and their combined functions are briefly  
described here. For specific information about  
individual functions such as the Comparator or the  
ADC, refer to the appropriate section in this data sheet.  
• a general purpose I/O  
• an analog input for the ADC  
• an analog inverting input to the comparator  
• a voltage reference input for the ADC  
• In-Circuit Serial Programming clock  
4.2.5.1  
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
Figure 4-1 shows the diagram for this pin. The RA0 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
• an analog non-inverting input to the comparator  
• In-Circuit Serial Programming data  
• an analog input for the Ultra Low-Power Wake-Up  
FIGURE 4-1:  
BLOCK DIAGRAM OF RA0  
Analog(1)  
Input Mode  
VDD  
Data Bus  
D
Q
Q
Weak  
CK  
WR  
WPUA  
RAPU  
VDD  
RD  
WPUA  
D
Q
Q
I/O Pin  
WR  
CK  
PORTA  
VSS  
-
+
VT  
D
Q
Q
WR  
TRISA  
CK  
IULP  
0
1
RD  
TRISA  
Analog(1)  
Input Mode  
VSS  
ULPWUE  
RD  
PORTA  
D
Q
Q
Q
D
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
Q
EN  
Interrupt-on-  
Change  
RD PORTA  
To Comparator  
To A/D Converter  
Note 1: Comparator mode and ANSEL determines Analog Input mode.  
© 2007 Microchip Technology Inc.  
DS41202F-page 35  
PIC16F684  
FIGURE 4-2:  
BLOCK DIAGRAM OF RA1  
4.2.5.3  
RA2/AN2/T0CKI/INT/C1OUT  
Figure 4-3 shows the diagram for this pin. The RA2 pin  
is configurable to function as one of the following:  
Analog(1)  
Input Mode  
Data Bus  
D
Q
Q
VDD  
Weak  
• a general purpose I/O  
WR  
CK  
• an analog input for the ADC  
• the clock input for TMR0  
WPUA  
RAPU  
RD  
WPUA  
• an external edge triggered interrupt  
• a digital output from Comparator 1  
VDD  
FIGURE 4-3:  
BLOCK DIAGRAM OF RA2  
D
Q
Q
Analog(1)  
Input Mode  
WR  
PORTA  
CK  
Data Bus  
D
Q
Q
VDD  
I/O Pin  
WR  
WPUA  
CK  
D
Q
Q
Weak  
WR  
TRISA  
CK  
VSS  
RAPU  
RD  
WPUA  
Analog(1)  
Input Mode  
RD  
TRISA  
C1OUT  
Enable  
VDD  
D
Q
Q
RD  
PORTA  
WR  
PORTA  
CK  
C1OUT  
1
0
D
Q
Q
Q
D
D
CK  
WR  
IOCA  
I/O Pin  
D
Q
Q
EN  
Q3  
WR  
TRISA  
RD  
IOCA  
CK  
VSS  
Q
Analog(1)  
Input Mode  
RD  
TRISA  
EN  
Interrupt-on-  
Change  
RD  
PORTA  
RD PORTA  
D
Q
Q
To Comparator  
To A/D Converter  
Q
Q
D
CK  
WR  
IOCA  
Q3  
EN  
Note 1: Comparator mode and ANSEL determines Analog  
Input mode.  
RD  
IOCA  
D
EN  
Interrupt-on-  
Change  
RD PORTA  
To Timer0  
To INT  
To A/D Converter  
Note 1: Analog Input mode is generated by ANSEL.  
DS41202F-page 36  
© 2007 Microchip Technology Inc.  
PIC16F684  
4.2.5.4  
RA3/MCLR/VPP  
4.2.5.5  
RA4/AN3/T1G/OSC2/CLKOUT  
Figure 4-4 shows the diagram for this pin. The RA3 pin  
is configurable to function as one of the following:  
Figure 4-5 shows the diagram for this pin. The RA4 pin  
is configurable to function as one of the following:  
• a general purpose input  
• a general purpose I/O  
• as Master Clear Reset with weak pull-up  
• an analog input for the ADC  
• a Timer1 gate (count enable)  
• a crystal/resonator connection  
• a clock output  
FIGURE 4-4:  
BLOCK DIAGRAM OF RA3  
VDD  
MCLRE  
Weak  
FIGURE 4-5:  
BLOCK DIAGRAM OF RA4  
Analog(3)  
Input Mode  
Data Bus  
MCLRE  
Reset  
CLK(1)  
Modes  
VDD  
Input  
Pin  
Data Bus  
D
RD  
TRISA  
VSS  
Q
Q
MCLRE  
VSS  
WR  
CK  
Weak  
RD  
PORTA  
WPUA  
D
Q
Q
RAPU  
RD  
WPUA  
Q
Q
D
Oscillator  
Circuit  
CK  
WR  
IOCA  
OSC1  
Q3  
EN  
VDD  
CLKOUT  
Enable  
RD  
IOCA  
D
FOSC/4  
1
0
D
Q
Q
EN  
Interrupt-on-  
Change  
I/O Pin  
WR  
CK  
PORTA  
CLKOUT  
Enable  
RD PORTA  
VSS  
D
Q
Q
INTOSC/  
RC/EC(2)  
WR  
TRISA  
CK  
CLKOUT  
Enable  
RD  
TRISA  
Analog  
Input Mode  
RD  
PORTA  
D
Q
Q
Q
D
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
Q
EN  
Interrupt-on-  
Change  
RD PORTA  
To T1G  
To A/D Converter  
Note 1: CLK modes are XT, HS, LP, LPTMR1 and CLKOUT  
Enable.  
2: With CLKOUT option.  
3: Analog Input mode comes from ANSEL.  
© 2007 Microchip Technology Inc.  
DS41202F-page 37  
PIC16F684  
4.2.5.6  
RA5/T1CKI/OSC1/CLKIN  
Figure 4-6 shows the diagram for this pin. The RA5 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a Timer1 clock input  
• a crystal/resonator connection  
• a clock input  
FIGURE 4-6:  
BLOCK DIAGRAM OF RA5  
INTOSC  
Mode  
TMR1LPEN(1)  
VDD  
Data Bus  
D
Q
Q
WR  
CK  
Weak  
WPUA  
RAPU  
RD  
WPUA  
Oscillator  
Circuit  
OSC2  
VDD  
D
Q
Q
WR  
PORTA  
CK  
I/O Pin  
D
Q
Q
WR  
TRISA  
CK  
VSS  
INTOSC  
Mode  
RD  
TRISA  
RD  
PORTA  
D
Q
Q
Q
Q
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
D
EN  
Interrupt-on-  
Change  
RD PORTA  
To Timer1  
Note 1: Timer1 LP Oscillator enabled.  
DS41202F-page 38  
© 2007 Microchip Technology Inc.  
PIC16F684  
TABLE 4-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
Value on:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
POR, BOR  
Resets  
ANSEL  
CMCON0  
PCON  
ANS7  
ANS6  
ANS5  
ANS4  
ANS3  
CIS  
ANS2  
CM2  
ANS1  
CM1  
ANS0  
CM0  
1111 1111  
0000 0000  
--01 --qq  
1111 1111  
0000 0000  
--0u --uu  
C2OUT C1OUT C2INV  
C1INV  
GIE  
PEIE  
ULPWUE SBOREN  
POR  
BOR  
INTCON  
IOCA  
T0IE  
INTE  
IOCA4  
T0SE  
RA4  
RAIE  
IOCA3  
T0IF  
IOCA2  
INTF  
IOCA1  
RAIF  
IOCA0  
0000 0000  
--00 0000  
0000 0000  
--00 0000  
IOCA5  
OPTION_REG RAPU INTEDG T0CS  
PSA  
RA3  
PS2  
RA2  
PS1  
RA1  
PS0  
RA0  
1111 1111  
--x0 x000  
1111 1111  
--uu uu00  
--11 1111  
--11 -111  
PORTA  
TRISA  
RA5  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 --11 1111  
WPUA5 WPUA4 WPUA2 WPUA1 WPUA0 --11 -111  
WPUA  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
© 2007 Microchip Technology Inc.  
DS41202F-page 39  
PIC16F684  
EXAMPLE 4-3:  
BANKSELPORTC  
INITIALIZING PORTC  
4.3  
PORTC  
;
PORTC is a general purpose I/O port consisting of 6  
bidirectional pins. The pins can be configured for either  
digital I/O or analog input to A/D Converter (ADC) or  
Comparator. For specific information about individual  
functions such as the Enhanced CCP or the ADC, refer  
to the appropriate section in this data sheet.  
CLRF  
MOVLW  
MOVWF  
BANKSELANSEL  
CLRF  
PORTC  
07h  
CMCON0  
;Init PORTC  
;Set RC<4,1:0> to  
;digital I/O  
;
;digital I/O  
;Set RC<3:2> as inputs  
;and set RC<5:4,1:0>  
;as outputs  
;Bank 0  
ANSEL  
0Ch  
TRISC  
MOVLW  
MOVWF  
Note:  
The ANSEL and CMCON0 registers must  
be initialized to configure an analog chan-  
nel as a digital input. Pins configured as  
analog inputs will read ‘0’.  
BCF  
STATUS,RP0  
REGISTER 4-6:  
PORTC: PORTC REGISTER  
U-0  
U-0  
R/W-x  
RC5  
R/W-x  
RC4  
R/W-0  
RC3  
R/W-0  
RC2  
R/W-0  
RC1  
R/W-0  
RC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RC<5:0>: PORTC I/O Pin bit  
1= PORTC pin is > VIH  
0= PORTC pin is < VIL  
REGISTER 4-7:  
TRISC: PORTC TRI-STATE REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TRISC<5:0>: PORTC Tri-State Control bit  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
DS41202F-page 40  
© 2007 Microchip Technology Inc.  
PIC16F684  
4.3.1  
RC0/AN4/C2IN+  
4.3.3  
RC2/AN6/P1D  
The RC0 is configurable to function as one of the  
following:  
The RC2 is configurable to function as one of the  
following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input for the ADC  
• an analog input for the ADC  
• a digital output from the Enhanced CCP  
• an analog non-inverting input to the comparator  
4.3.2  
RC1/AN5/C2IN-  
4.3.4  
RC3/AN7/P1C  
The RC1 is configurable to function as one of the  
following:  
The RC3 is configurable to function as one of the  
following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input for the ADC  
• an analog input for the ADC  
• a digital output from the Enhanced CCP  
• an analog inverting input to the comparator  
FIGURE 4-7:  
BLOCK DIAGRAM OF RC0  
AND RC1  
FIGURE 4-8:  
BLOCK DIAGRAM OF RC2  
AND RC3  
Data Bus  
Data Bus  
CCPOUT  
Enable  
VDD  
VDD  
D
Q
Q
D
CK  
Q
Q
WR  
PORTC  
CK  
WR  
PORTC  
CCPOUT  
1
0
I/O Pin  
I/O Pin  
D
Q
Q
D
Q
Q
WR  
WR  
TRISC  
CK  
CK  
VSS  
Analog Input  
TRISC  
VSS  
Analog Input  
Mode(1)  
Mode(1)  
RD  
RD  
TRISC  
TRISC  
RD  
RD  
PORTC  
PORTC  
To Comparators  
To A/D Converter  
To A/D Converter  
Note 1: Analog Input mode comes from ANSEL.  
Note 1: Analog Input mode comes from ANSEL or  
Comparator mode.  
© 2007 Microchip Technology Inc.  
DS41202F-page 41  
PIC16F684  
4.3.5  
RC4/C2OUT/P1B  
4.3.6  
RC5/CCP1/P1A  
The RC4 is configurable to function as one of the  
following:  
The RC5 is configurable to function as one of the  
following:  
• a general purpose I/O  
• a general purpose I/O  
• a digital input/output for the Enhanced CCP  
• a digital output from the comparator  
• a digital output from the Enhanced CCP  
FIGURE 4-10:  
BLOCK DIAGRAM OF RC5  
PIN  
Note:  
Enabling both C2OUT and P1B will cause  
a conflict on RC4 and create unpredictable  
results. Therefore, if C2OUT is enabled,  
the ECCP can not be used in Half-Bridge  
or Full-Bridge mode and vice-versa.  
Data bus  
VDD  
CCP1OUT  
Enable  
D
Q
Q
WR  
PORTC  
CK  
FIGURE 4-9:  
BLOCK DIAGRAM OF RC4  
CCP1OUT  
1
0
I/O Pin  
C2OUT EN  
CCPOUT EN  
D
Q
Q
VDD  
WR  
TRISC  
C2OUT EN  
C2OUT  
CK  
VSS  
1
CCPOUT EN  
CCPOUT  
RD  
0
TRISC  
Data Bus  
D
I/O Pin  
Q
Q
RD  
PORTC  
WR  
PORTC  
CK  
VSS  
To Enhanced CCP  
D
Q
Q
WR  
TRISC  
CK  
RD  
TRISC  
RD  
PORTC  
Note 1:  
Port/Peripheral Select signals selects between  
port data and peripheral output.  
TABLE 4-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSEL  
ANS7  
ANS6  
C1OUT  
ANS5  
C2INV  
RC5  
ANS4  
C1INV  
RC4  
ANS3  
CIS  
ANS2  
CM2  
RC2  
ANS1  
CM1  
ANS0  
CM0  
RC0  
1111 1111 1111 1111  
0000 0000 0000 0000  
--xx 0000 --uu uu00  
CMCON0 C2OUT  
PORTC  
TRISC  
RC3  
RC1  
TRISC5 TRISC4 TRISC3 TRISC2  
TRISC1  
TRISC0 --11 1111 --11 1111  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTC.  
DS41202F-page 42  
© 2007 Microchip Technology Inc.  
PIC16F684  
5.1  
Timer0 Operation  
5.0  
TIMER0 MODULE  
When used as a timer, the Timer0 module can be used  
as either an 8-bit timer or an 8-bit counter.  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
• 8-bit timer/counter register (TMR0)  
5.1.1  
8-BIT TIMER MODE  
• 8-bit prescaler (shared with Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
When used as a timer, the Timer0 module will  
increment every instruction cycle (without prescaler).  
Timer mode is selected by clearing the T0CS bit of the  
OPTION register to ‘0’.  
Figure 5-1 is a block diagram of the Timer0 module.  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
Note:  
The value written to the TMR0 register can  
be adjusted, in order to account for the two  
instruction cycle delay when TMR0 is  
written.  
5.1.2  
8-BIT COUNTER MODE  
When used as a counter, the Timer0 module will  
increment on every rising or falling edge of the T0CKI  
pin. The incrementing edge is determined by the T0SE  
bit of the OPTION register. Counter mode is selected by  
setting the T0CS bit of the OPTION register to ‘1’.  
FIGURE 5-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
FOSC/4  
Data Bus  
0
1
8
1
Sync 2  
TMR0  
cycles  
T0CKI  
pin  
0
0
1
Set Flag bit T0IF  
on Overflow  
T0CS  
T0SE  
8-bit  
Prescaler  
PSA  
8
PSA  
WDTE  
3
SWDTEN  
1
PS<2:0>  
WDT  
Time-out  
16-bit  
Prescaler  
0
16  
31 kHz  
INTOSC  
Watchdog  
Timer  
PSA  
WDTPS<3:0>  
Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register.  
2: SWDTEN and WDTPS<3:0> are bits in the WDTCON register.  
3: WDTE bit is in the Configuration Word register.  
© 2007 Microchip Technology Inc.  
DS41202F-page 43  
PIC16F684  
When changing the prescaler assignment from the  
WDT to the Timer0 module, the following instruction  
sequence must be executed (see Example 5-2).  
5.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
A single software programmable prescaler is available  
for use with either Timer0 or the Watchdog Timer  
(WDT), but not both simultaneously. The prescaler  
assignment is controlled by the PSA bit of the OPTION  
register. To assign the prescaler to Timer0, the PSA bit  
must be cleared to a ‘0’.  
EXAMPLE 5-2:  
CHANGING PRESCALER  
(WDT TIMER0)  
CLRWDT  
;Clear WDT and  
;prescaler  
;
BANKSEL OPTION_REG  
There are 8 prescaler options for the Timer0 module  
ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION register.  
In order to have a 1:1 prescaler value for the Timer0  
module, the prescaler must be assigned to the WDT  
module.  
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11110000’ ;Mask TMR0 select and  
OPTION_REG,W ; prescaler bits  
b’00000011’ ;Set prescale to 1:16  
OPTION_REG  
;
5.1.4  
TIMER0 INTERRUPT  
The prescaler is not readable or writable. When  
assigned to the Timer0 module, all instructions writing to  
the TMR0 register will clear the prescaler.  
Timer0 will generate an interrupt when the TMR0  
register overflows from FFh to 00h. The T0IF interrupt  
flag bit of the INTCON register is set every time the  
TMR0 register overflows, regardless of whether or not  
the Timer0 interrupt is enabled. The T0IF bit must be  
cleared in software. The Timer0 interrupt enable is the  
T0IE bit of the INTCON register.  
When the prescaler is assigned to WDT, a CLRWDT  
instruction will clear the prescaler along with the WDT.  
5.1.3.1  
Switching Prescaler Between  
Timer0 and WDT Modules  
Note:  
The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
As a result of having the prescaler assigned to either  
Timer0 or the WDT, it is possible to generate an  
unintended device Reset when switching prescaler  
values. When changing the prescaler assignment from  
Timer0 to the WDT module, the instruction sequence  
shown in Example 5-1 must be executed.  
5.1.5  
USING TIMER0 WITH AN  
EXTERNAL CLOCK  
When Timer0 is in Counter mode, the synchronization  
of the T0CKI input and the Timer0 register is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, the  
high and low periods of the external clock source must  
meet the timing requirements as shown in  
Section 15.0 “Electrical Specifications”.  
EXAMPLE 5-1:  
CHANGING PRESCALER  
(TIMER0 WDT)  
BANKSEL TMR0  
CLRWDT  
;
;Clear WDT  
;Clear TMR0 and  
CLRF  
TMR0  
;
;
prescaler  
BANKSEL OPTION_REG  
BSF  
OPTION_REG,PSA ;Select WDT  
CLRWDT  
;
;
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11111000’  
OPTION_REG,W  
b’00000101’  
OPTION_REG  
;Mask prescaler  
bits  
;Set WDT prescaler  
to 1:32  
;
;
DS41202F-page 44  
© 2007 Microchip Technology Inc.  
PIC16F684  
REGISTER 5-1:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RAPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RAPU: PORTA Pull-up Enable bit  
1= PORTA pull-ups are disabled  
0= PORTA pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
BIT VALUE TMR0 RATE  
WDT RATE  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 1  
1 : 4  
1 : 2  
1 : 8  
1 : 4  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Note 1: A dedicated 16-bit WDT postscaler is available. See Section 12.6 “Watchdog Timer (WDT)” for more  
information.  
TABLE 5-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0  
Timer0 Module Register  
GIE PEIE T0IE  
xxxx xxxx uuuu uuuu  
INTCON  
INTE  
T0SE  
RAIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RAIF 0000 0000 0000 0000  
PS0 1111 1111 1111 1111  
OPTION_REG RAPU INTEDG T0CS  
TRISA  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 --11 1111 --11 1111  
Legend: – = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the  
Timer0 module.  
© 2007 Microchip Technology Inc.  
DS41202F-page 45  
PIC16F684  
NOTES:  
DS41202F-page 46  
© 2007 Microchip Technology Inc.  
PIC16F684  
6.1  
Timer1 Operation  
6.0  
TIMER1 MODULE WITH GATE  
CONTROL  
The Timer1 module is a 16-bit incrementing counter  
which is accessed through the TMR1H:TMR1L register  
pair. Writes to TMR1H or TMR1L directly update the  
counter.  
The Timer1 module is a 16-bit timer/counter with the  
following features:  
• 16-bit timer/counter register pair (TMR1H:TMR1L)  
• Programmable internal or external clock source  
• 3-bit prescaler  
When used with an internal clock source, the module is  
a timer. When used with an external clock source, the  
module can be used as either a timer or counter.  
• Optional LP oscillator  
• Synchronous or asynchronous operation  
6.2  
Clock Source Selection  
• Timer1 gate (count enable) via comparator or  
T1G pin  
The TMR1CS bit of the T1CON register is used to select  
the clock source. When TMR1CS = 0, the clock source  
is FOSC/4. When TMR1CS = 1, the clock source is  
supplied externally.  
• Interrupt on overflow  
• Wake-up on overflow (external clock,  
Asynchronous mode only)  
• Time base for the Capture/Compare function  
• Special Event Trigger (with ECCP)  
Clock Source  
TMR1CS  
• Comparator output synchronization to Timer1  
clock  
FOSC/4  
0
1
T1CKI pin  
Figure 6-1 is a block diagram of the Timer1 module.  
FIGURE 6-1:  
TIMER1 BLOCK DIAGRAM  
TMR1GE  
T1GINV  
TMR1ON  
Set flag bit  
To C2 Comparator Module  
Timer1 Clock  
TMR1IF on  
Overflow  
(1)  
TMR1  
TMR1H  
Synchronized  
clock input  
0
EN  
*
TMR1L  
1
Oscillator  
T1SYNC  
OSC1/T1CKI  
1
Synchronize  
Prescaler  
1, 2, 4, 8  
(2)  
FOSC/4  
Internal  
Clock  
det  
0
OSC2/T1G  
2
T1CKPS<1:0>  
TMR1CS  
1
0
T1OSCEN  
C2OUT  
FOSC = 100  
FOSC = 000  
T1GSS  
Sleep  
*
ST Buffer is low power type when using LP osc, or high speed type when using T1CKI.  
Note 1: Timer1 register increments on rising edge.  
2: Synchronize does not operate while in Sleep.  
© 2007 Microchip Technology Inc.  
DS41202F-page 47  
PIC16F684  
TRISA5 and TRISA4 bits are set when the Timer1  
oscillator is enabled. RA5 and RA4 bits read as ‘0’ and  
TRISA5 and TRISA4 bits read as ‘1’.  
6.2.1  
INTERNAL CLOCK SOURCE  
When the internal clock source is selected, the  
TMR1H:TMR1L register pair will increment on multiples  
of FOSC as determined by the Timer1 prescaler.  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to enabling Timer1.  
6.2.2  
EXTERNAL CLOCK SOURCE  
When the external clock source is selected, the Timer1  
module may work as a timer or a counter.  
6.5  
Timer1 Operation in  
Asynchronous Counter Mode  
When counting, Timer1 is incremented on the rising  
edge of the external clock input T1CKI. In addition, the  
Counter mode clock can be synchronized to the  
microcontroller system clock or run asynchronously.  
If control bit T1SYNC of the T1CON register is set, the  
external clock input is not synchronized. The timer  
increments asynchronously to the internal phase  
clocks. If external clock source is selected then the  
timer will continue to run during Sleep and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in  
software are needed to read/write the timer (see  
Section 6.5.1 “Reading and Writing Timer1 in  
Asynchronous Counter Mode”).  
If an external clock oscillator is needed (and the  
microcontroller is using the INTOSC without CLKOUT),  
Timer1 can use the LP oscillator as a clock source.  
Note:  
In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge after any one or  
more of the following conditions:  
• Timer1 enabled after POR reset  
• Write to TMR1H or TMR1L  
• Timer1 is disabled  
Note:  
When switching from synchronous to  
asynchronous operation, it is possible to  
skip an increment. When switching from  
asynchronous to synchronous operation,  
it is possible to produce an additional  
increment.  
• Timer1 is disabled (TMR1ON 0) when  
T1CKI is high then Timer1 is enabled  
(TMR1ON=1) when T1CKI is low.  
See Figure 6-2  
6.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
6.3  
Timer1 Prescaler  
Timer1 has four prescaler options allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits of the  
T1CON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMR1H or TMR1L.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow or carry out of TMR1L to TMR1H  
between the reads.  
6.4  
Timer1 Oscillator  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMR1H:TMR1L register pair.  
A low-power 32.768 kHz crystal oscillator is built-in  
between pins OSC1 (input) and OSC2 (amplifier  
output). The oscillator is enabled by setting the  
T1OSCEN control bit of the T1CON register. The  
oscillator will continue to run during Sleep.  
The Timer1 oscillator is shared with the system LP  
oscillator. Thus, Timer1 can use this mode only when  
the primary system clock is derived from the internal  
oscillator or when the oscillator is in the LP mode. The  
user must provide a software time delay to ensure  
proper oscillator start-up.  
DS41202F-page 48  
© 2007 Microchip Technology Inc.  
PIC16F684  
6.6  
Timer1 Gate  
6.9  
ECCP Capture/Compare Time Base  
Timer1 gate source is software configurable to be the  
T1G pin or the output of Comparator 2. This allows the  
device to directly time external events using T1G or  
analog events using Comparator 2. See the CMCON1  
register (Register 8-2) for selecting the Timer1 gate  
source. This feature can simplify the software for a  
Delta-Sigma A/D converter and many other applications.  
For more information on Delta-Sigma A/D converters,  
see the Microchip web site (www.microchip.com).  
The ECCP module uses the TMR1H:TMR1L register  
pair as the time base when operating in Capture or  
Compare mode.  
In Capture mode, the value in the TMR1H:TMR1L  
register pair is copied into the CCPR1H:CCPR1L  
register pair on a configured event.  
In Compare mode, an event is triggered when the value  
CCPR1H:CCPR1L register pair matches the value in  
the TMR1H:TMR1L register pair. This event can be a  
Special Event Trigger.  
Note:  
TMR1GE bit of the T1CON register must  
be set to use either T1G or C2OUT as the  
Timer1 gate source. See the CMCON1  
register (Register 8-2) for more informa-  
tion on selecting the Timer1 gate source.  
For more information, see Section 11.0 “Enhanced  
Capture/Compare/PWM (With Auto-Shutdown and  
Dead Band) Module”.  
Timer1 gate can be inverted using the T1GINV bit of  
the T1CON register, whether it originates from the T1G  
pin or Comparator 2 output. This configures Timer1 to  
measure either the active-high or active-low time  
between events.  
6.10 ECCP Special Event Trigger  
When the ECCP is configured to trigger a special  
event, the trigger will clear the TMR1H:TMR1L register  
pair. This special event does not cause a Timer1  
interrupt. The ECCP module may still be configured to  
generate a ECCP interrupt.  
6.7  
Timer1 Interrupt  
In this mode of operation, the CCPR1H:CCPR1L  
register pair effectively becomes the period register for  
Timer1.  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit of the PIR1 register is  
set. To enable the interrupt on rollover, you must set  
these bits:  
Timer1 should be synchronized to the FOSC to utilize  
the Special Event Trigger. Asynchronous operation of  
Timer1 can cause a Special Event Trigger to be  
missed.  
• TMR1ON bit or the T1CON register  
• TMR1IE bit of the PIE1 register  
• PEIE bit of the INTCON register  
• GIE bit of the INTCON register  
In the event that a write to TMR1H or TMR1L coincides  
with a Special Event Trigger from the ECCP, the write  
will take precedence.  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
For more information, see Section 11.2.4 “Special  
Event Trigger”.  
Note:  
The TMR1H:TTMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
6.11 Comparator Synchronization  
The same clock used to increment Timer1 can also be  
used to synchronize the comparator output. This  
feature is enabled in the Comparator module.  
6.8  
Timer1 Operation During Sleep  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
When using the comparator for Timer1 gate, the  
comparator output should be synchronized to Timer1.  
This ensures Timer1 does not miss an increment if the  
comparator changes.  
• TMR1ON bit of the T1CON register must be set  
• TMR1IE bit of the PIE1 register must be set  
• PEIE bit of the INTCON register must be set  
• T1SYNC bit of the T1CON register  
For more information, see Section 8.9 “Synchronizing  
Comparator C2 Output to Timer1”.  
• TMR1CS bit of the T1CON register  
• T1OSCEN bit of the T1CON register (can be set)  
The device will wake-up on an overflow and execute  
the next instruction. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine (0004h).  
© 2007 Microchip Technology Inc.  
DS41202F-page 49  
PIC16F684  
FIGURE 6-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.  
6.12 Timer1 Control Register  
The Timer1 Control register (T1CON), shown in  
Register 6-1, is used to control Timer1 and select the  
various features of the Timer1 module.  
REGISTER 6-1:  
T1CON: TIMER 1 CONTROL REGISTER  
R/W-0  
T1GINV(1)  
R/W-0  
TMR1GE(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
T1GINV: Timer1 Gate Invert bit(1)  
1= Timer1 gate is active high (Timer1 counts when gate is high)  
0= Timer1 gate is active low (Timer1 counts when gate is low)  
TMR1GE: Timer1 Gate Enable bit(2)  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 is on if Timer1 gate is not active  
0= Timer1 is on  
bit 5-4  
bit 3  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale Value  
10= 1:4 Prescale Value  
01= 1:2 Prescale Value  
00= 1:1 Prescale Value  
T1OSCEN: LP Oscillator Enable Control bit  
If INTOSC without CLKOUT oscillator is active:  
1= LP oscillator is enabled for Timer1 clock  
0= LP oscillator is off  
Else:  
This bit is ignored  
DS41202F-page 50  
© 2007 Microchip Technology Inc.  
PIC16F684  
REGISTER 6-1:  
T1CON: TIMER 1 CONTROL REGISTER (CONTINUED)  
bit 2  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from T1CKI pin (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Note 1: T1GINV bit inverts the Timer1 gate logic, regardless of source.  
2: TMR1GE bit must be set to use either T1G pin or C2OUT, as selected by the T1GSS bit of the CMCON1  
register, as a Timer1 gate source.  
TABLE 6-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON1  
INTCON  
PIE1  
T1GSS  
INTF  
C2SYNC  
RAIF  
---- --10  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
---- --10  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
INTE  
C2IE  
C2IF  
RAIE  
C1IE  
C1IF  
T0IF  
EEIE  
EEIF  
CCP1IE  
CCP1IF  
OSFIE  
OSFIF  
TMR2IE  
TMR2IF  
TMR1IE  
TMR1IF  
PIR1  
TMR1H  
TMR1L  
T1CON  
Legend:  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS  
TMR1ON  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
© 2007 Microchip Technology Inc.  
DS41202F-page 51  
PIC16F684  
NOTES:  
DS41202F-page 52  
© 2007 Microchip Technology Inc.  
PIC16F684  
The TMR2 and PR2 registers are both fully readable  
and writable. On any Reset, the TMR2 register is set to  
00h and the PR2 register is set to FFh.  
7.0  
TIMER2 MODULE  
The Timer2 module is an eight-bit timer with the  
following features:  
Timer2 is turned on by setting the TMR2ON bit in the  
T2CON register to a ‘1’. Timer2 is turned off by clearing  
the TMR2ON bit to a ‘0’.  
• 8-bit timer register (TMR2)  
• 8-bit period register (PR2)  
• Interrupt on TMR2 match with PR2  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
The Timer2 prescaler is controlled by the T2CKPS bits  
in the T2CON register. The Timer2 postscaler is  
controlled by the TOUTPS bits in the T2CON register.  
The prescaler and postscaler counters are cleared  
when:  
See Figure 7-1 for a block diagram of Timer2.  
• A write to TMR2 occurs.  
• A write to T2CON occurs.  
7.1  
Timer2 Operation  
The clock input to the Timer2 module is the system  
instruction clock (FOSC/4). The clock is fed into the  
Timer2 prescaler, which has prescale options of 1:1,  
1:4 or 1:16. The output of the prescaler is then used to  
increment the TMR2 register.  
• Any device Reset occurs (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset, or Brown-out  
Reset).  
Note:  
TMR2 is not cleared when T2CON is  
written.  
The values of TMR2 and PR2 are constantly compared  
to determine when they match. TMR2 will increment  
from 00h until it matches the value in PR2. When a  
match occurs, two things happen:  
• TMR2 is reset to 00h on the next increment cycle.  
• The Timer2 postscaler is incremented  
The match output of the Timer2/PR2 comparator is fed  
into the Timer2 postscaler. The postscaler has  
postscale options of 1:1 to 1:16 inclusive. The output of  
the Timer2 postscaler is used to set the TMR2IF  
interrupt flag bit in the PIR1 register.  
FIGURE 7-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
bit TMR2IF  
TMR2  
Output  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS<1:0>  
4
TOUTPS<3:0>  
© 2007 Microchip Technology Inc.  
DS41202F-page 53  
PIC16F684  
REGISTER 7-1:  
T2CON: TIMER 2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3  
TOUTPS2  
TOUTPS1  
TOUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
TOUTPS<3:0>: Timer2 Output Postscaler Select bits  
0000= 1:1 Postscaler  
0001= 1:2 Postscaler  
0010= 1:3 Postscaler  
0011= 1:4 Postscaler  
0100= 1:5 Postscaler  
0101= 1:6 Postscaler  
0110= 1:7 Postscaler  
0111= 1:8 Postscaler  
1000= 1:9 Postscaler  
1001= 1:10 Postscaler  
1010= 1:11 Postscaler  
1011= 1:12 Postscaler  
1100= 1:13 Postscaler  
1101= 1:14 Postscaler  
1110= 1:15 Postscaler  
1111= 1:16 Postscaler  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
TABLE 7-1:  
SUMMARY OF ASSOCIATED TIMER2 REGISTERS  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
INTE  
C2IE  
C2IF  
RAIE  
C1IE  
C1IF  
T0IF  
INTF  
RAIF  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
1111 1111  
0000 0000  
-000 0000  
CCP1IE  
CCP1IF  
OSFIE  
OSFIF  
TMR2IE  
TMR2IF  
TMR1IE 0000 0000  
TMR1IF 0000 0000  
1111 1111  
PIR1  
PR2  
Timer2 Module Period Register  
Holding Register for the 8-bit TMR2 Register  
TMR2  
T2CON  
Legend:  
0000 0000  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000  
x= unknown, u= unchanged, = unimplemented read as ‘0’. Shaded cells are not used for Timer2 module.  
DS41202F-page 54  
© 2007 Microchip Technology Inc.  
PIC16F684  
8.1  
Comparator Overview  
8.0  
COMPARATOR MODULE  
A comparator is shown in Figure 8-1 along with the  
relationship between the analog input levels and the  
digital output. When the analog voltage at VIN+ is less  
than the analog voltage at VIN-, the output of the  
comparator is a digital low level. When the analog  
voltage at VIN+ is greater than the analog voltage at  
VIN-, the output of the comparator is a digital high level.  
Comparators are used to interface analog circuits to a  
digital circuit by comparing two analog voltages and  
providing a digital indication of their relative magnitudes.  
The comparators are very useful mixed signal building  
blocks because they provide analog functionality  
independent of the device program execution. The  
analog Comparator module includes the following  
features:  
FIGURE 8-1:  
SINGLE COMPARATOR  
• Dual comparators  
• Multiple comparator configurations  
VIN+  
VIN-  
• Comparator outputs are available internally/  
externally  
+
Output  
• Programmable output polarity  
• Interrupt-on-change  
• Wake-up from Sleep  
• Timer1 gate (count enable)  
• Output synchronization to Timer1 clock input  
• Programmable voltage reference  
VIN-  
VIN+  
Note:  
Only Comparator C2 can be linked to  
Timer1.  
Output  
Note:  
The black areas of the output of the  
comparator represents the uncertainty  
due to input offsets and response time.  
This device contains two comparators as shown in  
Figure 8-2 and Figure 8-3. The comparators are not  
independently configurable.  
© 2007 Microchip Technology Inc.  
DS41202F-page 55  
PIC16F684  
FIGURE 8-2:  
COMPARATOR C1 OUTPUT BLOCK DIAGRAM  
C1INV  
To C1OUT pin  
To Data Bus  
C1  
D
Q
Q
Q1  
EN  
RD CMCON0  
Set C1IF bit  
D
Q3*RD CMCON0  
EN  
CL  
Reset  
Note 1: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
2: Q1 is held high during Sleep mode.  
FIGURE 8-3:  
COMPARATOR C2 OUTPUT BLOCK DIAGRAM  
C2SYNC  
To Timer1 Gate  
To C2OUT pin  
C2INV  
0
1
C2  
D
Q
Timer1  
clock source  
(1)  
To Data Bus  
Set C2IF bit  
D
Q
Q
Q1  
EN  
RD CMCON0  
D
Q3*RD CMCON0  
EN  
CL  
Reset  
Note 1: Comparator output is latched on falling edge of Timer1 clock source.  
2: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
3: Q1 is held high during Sleep mode.  
DS41202F-page 56  
© 2007 Microchip Technology Inc.  
PIC16F684  
8.1.1  
ANALOG INPUT CONNECTION  
CONSIDERATIONS  
Note 1: When reading a PORT register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert as an analog input, according to  
the input specification.  
A simplified circuit for an analog input is shown in  
Figure 8-4. Since the analog input pins share their con-  
nection with a digital input, they have reverse biased  
ESD protection diodes to VDD and VSS. The analog  
input, therefore, must be between VSS and VDD. If the  
input voltage deviates from this range by more than  
0.6V in either direction, one of the diodes is forward  
biased and a latch-up may occur.  
2: Analog levels on any pin defined as a  
digital input, may cause the input buffer to  
consume more current than is specified.  
A maximum source impedance of 10 kΩ is recommended  
for the analog sources. Also, any external component  
connected to an analog input pin, such as a capacitor or  
a Zener diode, should have very little leakage current to  
minimize inaccuracies introduced.  
FIGURE 8-4:  
ANALOG INPUT MODEL  
VDD  
VT 0.6V  
RIC  
Rs < 10K  
To ADC Input  
AIN  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT 0.6V  
Vss  
Legend: CPIN  
= Input Capacitance  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
VT  
= Threshold Voltage  
© 2007 Microchip Technology Inc.  
DS41202F-page 57  
PIC16F684  
The port pins denoted as “A” will read as a ‘0’  
regardless of the state of the I/O pin or the I/O control  
TRIS bit. Pins used as analog inputs should also have  
the corresponding TRIS bit set to ‘1’ to disable the  
digital output driver. Pins denoted as “D” should have  
the corresponding TRIS bit set to ‘0’ to enable the  
digital output driver.  
8.2  
Comparator Configuration  
There are eight modes of operation for the comparator.  
The CM<2:0> bits of the CMCON0 register are used to  
select these modes as shown in Figure 8-5. I/O lines  
change as a function of the mode and are designated  
as follows:  
• Analog function (A): digital input buffer is disabled  
• Digital function (D): comparator digital output,  
overrides port function  
• Normal port function (I/O): independent of  
comparator  
Note:  
Comparator interrupts should be disabled  
during a Comparator mode change to  
prevent unintended interrupts.  
FIGURE 8-5:  
COMPARATOR I/O OPERATING MODES  
Two Independent Comparators  
Comparators Reset (POR Default Value)  
CM<2:0> = 100  
CM<2:0> = 000  
A
VIN-  
A
A
VIN-  
C1IN-  
C1IN-  
(1)  
(1)  
Off  
C1  
C2  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
VIN+  
C1IN+  
C1IN+  
A
A
A
A
VIN-  
VIN-  
C2IN-  
C2IN+  
C2IN-  
C2IN+  
Off  
VIN+  
VIN+  
Three Inputs Multiplexed to Two Comparators  
One Independent Comparator  
CM<2:0> = 001  
CM<2:0> = 101  
A
I/O  
VIN-  
C1IN-  
C1IN-  
CIS = 0 VIN-  
(1)  
A
CIS = 1  
Off  
C1  
VIN+  
I/O  
C1IN+  
C1OUT  
C2OUT  
C1  
C2  
C1IN+  
VIN+  
A
A
A
A
VIN-  
VIN-  
C2IN-  
C2IN+  
C2IN-  
C2IN+  
C2OUT  
C2  
VIN+  
VIN+  
Four Inputs Multiplexed to Two Comparators  
CM<2:0> = 010  
Two Common Reference Comparators with Outputs  
CM<2:0> = 110  
A
A
VIN-  
C1IN-  
C1IN-  
CIS = 0  
CIS = 1  
VIN-  
C1OUT  
C2OUT  
C1  
C2  
A
VIN+  
C1IN+  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
D
C1OUT(pin)  
A
A
C2IN-  
C2IN+  
CIS = 0  
CIS = 1  
VIN-  
A
A
VIN-  
C2IN-  
C2IN+  
VIN+  
VIN+  
D
C2OUT(pin)  
From CVREF Module  
Comparators Off (Lowest Power)  
CM<2:0> = 111  
Two Common Reference Comparators  
CM<2:0> = 011  
A
I/O  
VIN-  
VIN-  
C1IN-  
C1IN-  
(1)  
C1OUT  
C2OUT  
Off  
C1  
C1  
VIN+  
VIN+  
I/O  
I/O  
C1IN+  
C1IN+  
A
A
I/O  
I/O  
VIN-  
VIN-  
C2IN-  
C2IN+  
C2IN-  
C2IN+  
(1)  
Off  
C2  
C2  
VIN+  
VIN+  
Legend: A = Analog Input, ports always reads ‘0’  
CIS = Comparator Input Switch (CMCON0<3>)  
D = Comparator Digital Output  
I/O = Normal port I/O  
Note 1: Reads as ‘0’, unless CxINV = 1.  
DS41202F-page 58  
© 2007 Microchip Technology Inc.  
PIC16F684  
8.3  
Comparator Control  
8.4  
Comparator Response Time  
The CMCON0 register (Register 8-1) provides access  
to the following comparator features:  
The comparator output is indeterminate for a period of  
time after the change of an input source or the selection  
of a new reference voltage. This period is referred to as  
the response time. The response time of the  
comparator differs from the settling time of the voltage  
reference. Therefore, both of these times must be  
considered when determining the total response time  
to a comparator input change. See Comparator and  
Voltage Reference specifications of Section 15.0  
“Electrical Specifications” for more details.  
• Mode selection  
• Output state  
• Output polarity  
• Input switch  
8.3.1  
COMPARATOR OUTPUT STATE  
Each comparator state can always be read internally  
via the associated CxOUT bit of the CMCON0 register.  
The comparator outputs are directed to the CxOUT  
pins when CM<2:0> = 110. When this mode is  
selected, the TRIS bits for the associated CxOUT pins  
must be cleared to enable the output drivers.  
8.5  
Comparator Interrupt Operation  
The comparator interrupt flag is set whenever there is  
a change in the output value of the comparator.  
Changes are recognized by means of a mismatch  
circuit which consists of two latches and an exclusive-  
or gate (see Figure 8-2 and Figure 8-3). One latch is  
updated with the comparator output level when the  
CMCON0 register is read. This latch retains the value  
until the next read of the CMCON0 register or the  
occurrence of a reset. The other latch of the mismatch  
circuit is updated on every Q1 system clock. A  
mismatch condition will occur when a comparator  
output change is clocked through the second latch on  
the Q1 clock cycle. The mismatch condition will persist,  
holding the CxIF bit of the PIR1 register true, until either  
the CMCON0 register is read or the comparator output  
returns to the previous state.  
8.3.2  
COMPARATOR OUTPUT POLARITY  
Inverting the output of a comparator is functionally  
equivalent to swapping the comparator inputs. The  
polarity of a comparator output can be inverted by set-  
ting the CxINV bits of the CMCON0 register. Clearing  
CxINV results in a non-inverted output. A complete  
table showing the output state versus input conditions  
and the polarity bit is shown in Table 8-1.  
TABLE 8-1:  
OUTPUT STATE VS. INPUT  
CONDITIONS  
Input Conditions  
CxINV  
CxOUT  
Note:  
A write operation to the CMCON0 register  
will also clear the mismatch condition  
VIN- > VIN+  
VIN- < VIN+  
VIN- > VIN+  
VIN- < VIN+  
0
0
1
1
0
1
1
0
because all writes include  
a
read  
operation at the beginning of the write  
cycle.  
Note:  
CxOUT refers to both the register bit and  
output pin.  
Software will need to maintain information about the  
status of the comparator output to determine the actual  
change that has occurred.  
8.3.3  
COMPARATOR INPUT SWITCH  
The CxIF bit of the PIR1 register is the comparator  
interrupt flag. This bit must be reset in software by  
clearing it to ‘0’. Since it is also possible to write a ‘1’ to  
this register, a simulated interrupt may be initiated.  
The inverting input of the comparators may be switched  
between two analog pins in the following modes:  
• CM<2:0> = 001(Comparator C1 only)  
The CxIE bit of the PIE1 register and the PEIE and GIE  
bits of the INTCON register must all be set to enable  
comparator interrupts. If any of these bits are cleared,  
the interrupt is not enabled, although the CxIF bit of the  
PIR1 register will still be set if an interrupt condition  
occurs.  
• CM<2:0> = 010(Comparators C1 and C2)  
In the above modes, both pins remain in Analog mode  
regardless of which pin is selected as the input. The CIS  
bit of the CMCON0 register controls the comparator  
input switch.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON0. This will end the  
mismatch condition.  
b) Clear the CxIF interrupt flag.  
© 2007 Microchip Technology Inc.  
DS41202F-page 59  
PIC16F684  
A persistent mismatch condition will preclude clearing  
the CxIF interrupt flag. Reading CMCON0 will end the  
mismatch condition and allow the CxIF bit to be  
cleared.  
8.6  
Operation During Sleep  
The comparator, if enabled before entering Sleep mode,  
remains active during Sleep. The additional current  
consumed by the comparator is shown separately in  
Section 15.0 “Electrical Specifications”. If the  
comparator is not used to wake the device, power  
consumption can be minimized while in Sleep mode by  
turning off the comparator. The comparator is turned off  
by selecting mode CM<2:0> = 000or CM<2:0> = 111  
of the CMCON0 register.  
FIGURE 8-6:  
COMPARATOR  
INTERRUPT TIMING W/O  
CMCON0 READ  
Q1  
Q3  
CxIN+  
CxOUT  
Set CMIF (level)  
CMIF  
TRT  
A change to the comparator output can wake-up the  
device from Sleep. To enable the comparator to wake  
the device from Sleep, the CxIE bit of the PIE1 register  
and the PEIE bit of the INTCON register must be set.  
The instruction following the Sleep instruction always  
executes following a wake from Sleep. If the GIE bit of  
the INTCON register is also set, the device will then  
execute the interrupt service routine.  
reset by software  
FIGURE 8-7:  
COMPARATOR  
INTERRUPT TIMING WITH  
CMCON0 READ  
8.7  
Effects of a Reset  
Q1  
A device Reset forces the CMCON0 and CMCON1  
registers to their Reset states. This forces the Compar-  
ator module to be in the Comparator Reset mode  
(CM<2:0> = 000). Thus, all comparator inputs are  
analog inputs with the comparator disabled to consume  
the smallest current possible.  
Q3  
CxIN+  
CxOUT  
Set CMIF (level)  
CMIF  
TRT  
cleared by CMCON0 read  
reset by software  
Note 1: If a change in the CM1CON0 register  
(CxOUT) should occur when a read oper-  
ation is being executed (start of the Q2  
cycle), then the CxIF Interrupt Flag bit of  
the PIR1 register may not get set.  
2: When either comparator is first enabled,  
bias circuitry in the Comparator module  
may cause an invalid output from the  
comparator until the bias circuitry is stable.  
Allow about 1 μs for bias settling then clear  
the mismatch condition and interrupt flags  
before enabling comparator interrupts.  
DS41202F-page 60  
© 2007 Microchip Technology Inc.  
PIC16F684  
REGISTER 8-1:  
CMCON0: COMPARATOR CONFIGURATION REGISTER  
R-0  
C2OUT  
bit 7  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
C1OUT  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 Output inverted  
0= C1 Output not inverted  
CIS: Comparator Input Switch bit  
When CM<2:0> = 010:  
1= C1IN+ connects to C1 VIN-  
C2IN+ connects to C2 VIN-  
0= C1IN- connects to C1 VIN-  
C2IN- connects to C2 VIN-  
When CM<2:0> = 001:  
1= C1IN+ connects to C1 VIN-  
0= C1IN- connects to C1 VIN-  
bit 2-0  
CM<2:0>: Comparator Mode bits (See Figure 8-5)  
000= Comparators off. CxIN pins are configured as analog  
001= Three inputs multiplexed to two comparators  
010= Four inputs multiplexed to two comparators  
011= Two common reference comparators  
100= Two independent comparators  
101= One independent comparator  
110= Two common reference comparators with outputs  
111= Comparators off. CxIN pins are configured as digital I/O  
© 2007 Microchip Technology Inc.  
DS41202F-page 61  
PIC16F684  
8.8  
Comparator C2 Gating Timer1  
8.9  
Synchronizing Comparator C2  
Output to Timer1  
This feature can be used to time the duration or interval  
of analog events. Clearing the T1GSS bit of the  
CMCON1 register will enable Timer1 to increment  
based on the output of Comparator C2. This requires  
that Timer1 is on and gating is enabled. See  
Section 6.0 “Timer1 Module with Gate Control” for  
details.  
The output of Comparator C2 can be synchronized with  
Timer1 by setting the C2SYNC bit of the CMCON1  
register. When enabled, the comparator output is  
latched on the falling edge of the Timer1 clock source.  
If a prescaler is used with Timer1, the comparator  
output is latched after the prescaling function. To  
prevent a race condition, the comparator output is  
latched on the falling edge of the Timer1 clock source  
and Timer1 increments on the rising edge of its clock  
source. Reference the comparator block diagrams  
(Figure 8-2 and Figure 8-3) and the Timer1 Block  
Diagram (Figure 6-1) for more information.  
It is recommended to synchronize Comparator C2 with  
Timer1 by setting the C2SYNC bit when the comparator  
is used as the Timer1 gate source. This ensures Timer1  
does not miss an increment if the comparator changes  
during an increment.  
REGISTER 8-2:  
CMCON1: COMPARATOR CONFIGURATION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
T1GSS  
C2SYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
T1GSS: Timer1 Gate Source Select bit(1)  
1= Timer1 gate source is T1G pin (pin should be configured as digital input)  
0= Timer1 gate source is Comparator C2 output  
bit 0  
C2SYNC: Comparator C2 Output Synchronization bit(2)  
1= Output is synchronized with falling edge of Timer1 clock  
0= Output is asynchronous  
Note 1: Refer to Section 6.6 “Timer1 Gate”.  
2: Refer to Figure 8-3.  
DS41202F-page 62  
© 2007 Microchip Technology Inc.  
PIC16F684  
EQUATION 8-1:  
CVREF OUTPUT VOLTAGE  
8.10 Comparator Voltage Reference  
VRR = 1 (low range):  
CVREF = (VR<3:0>/24) × VDD  
VRR = 0 (high range):  
CVREF = (VDD/4) +  
The comparator voltage reference module provides an  
internally generated voltage reference for the compara-  
tors. The following features are available:  
• Independent from Comparator operation  
• Two 16-level voltage ranges  
• Output clamped to VSS  
(VR<3:0> × VDD/32)  
The full range of VSS to VDD cannot be realized due to  
the construction of the module. See Figure 8-8.  
• Ratiometric with VDD  
The VRCON register (Register ) controls the voltage  
reference module shown in Figure 8-8.  
8.10.3  
OUTPUT CLAMPED TO VSS  
The CVREF output voltage can be set to Vss with no  
power consumption by configuring VRCON as follows:  
8.10.1  
INDEPENDENT OPERATION  
• VREN = 0  
The comparator voltage reference is independent of  
the comparator configuration. Setting the VREN bit of  
the VRCON register will enable the voltage reference.  
• VRR = 1  
• VR<3:0> = 0000  
This allows the comparator to detect a zero-crossing  
while not consuming additional CVREF module current.  
8.10.2  
OUTPUT VOLTAGE SELECTION  
The CVREF voltage reference has 2 ranges with 16  
voltage levels in each range. Range selection is  
controlled by the VRR bit of the VRCON register. The  
16 levels are set with the VR<3:0> bits of the VRCON  
register.  
8.10.4  
OUTPUT RATIOMETRIC TO VDD  
The comparator voltage reference is VDD derived and  
therefore, the CVREF output changes with fluctuations in  
VDD. The tested absolute accuracy of the Comparator  
Voltage Reference can be found in Section 15.0  
“Electrical Specifications”.  
The CVREF output voltage is determined by the following  
equations:  
VRCON: VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
VREN  
U-0  
R/W-0  
VRR  
U-0  
R/W-0  
VR3  
R/W-0  
VR2  
R/W-0  
VR1  
R/W-0  
VR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
VREN: CVREF Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down, no IDD drain and CVREF = VSS.  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
VRR: CVREF Range Selection bit  
1= Low range  
0= High range  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
VR<3:0>: CVREF Value Selection bits (0 VR<3:0> 15)  
When VRR = 1: CVREF = (VR<3:0>/24) * VDD  
When VRR = 0: CVREF = VDD/4 + (VR<3:0>/32) * VDD  
© 2007 Microchip Technology Inc.  
DS41202F-page 63  
PIC16F684  
FIGURE 8-8:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
16 Stages  
8R  
R
R
R
R
VDD  
VRR  
8R  
16-1 Analog  
MUX  
VREN  
15  
14  
CVREF to  
Comparator  
Input  
2
1
0
(1)  
VR<3:0>  
VREN  
VR<3:0> = 0000  
VRR  
Note 1: Care should be taken to ensure VREF remains  
within the comparator common mode input range.  
See Section 15.0 “Electrical Specifications” for  
more detail.  
TABLE 8-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND VOLTAGE  
REFERENCE MODULES  
Value on  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
ANSEL  
CMCON0  
CMCON1  
INTCON  
PIE1  
ANS7  
C2OUT  
ANS6  
C1OUT  
ANS5  
C2INV  
ANS4  
C1INV  
ANS3  
CIS  
ANS2  
CM2  
ANS1  
CM1  
ANS0  
CM0  
1111 1111 1111 1111  
0000 0000 0000 0000  
---- --10 ---- --10  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
--x0 x000 --uu uu00  
--xx 0000 --uu uu00  
--11 1111 --11 1111  
--11 1111 --11 1111  
0-0- 0000 0-0- 0000  
T1GSS  
INTF  
C2SYNC  
RAIF  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
INTE  
C2IE  
C2IF  
RA4  
RAIE  
C1IE  
C1IF  
RA3  
RC3  
T0IF  
CCP1IE  
CCP1IF  
RA5  
OSFIE TMR2IE  
OSFIF TMR2IF  
TMR1IE  
TMR1IF  
RA0  
PIR1  
PORTA  
PORTC  
TRISA  
RA2  
RC2  
RA1  
RC1  
RC5  
RC4  
RC0  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1  
TRISC5 TRISC4 TRISC3 TRISC2 TRISC1  
TRISA0  
TRISC0  
VR0  
TRISC  
VRCON  
VREN  
VRR  
VR3  
VR2  
VR1  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used for comparator.  
DS41202F-page 64  
© 2007 Microchip Technology Inc.  
PIC16F684  
9.0  
ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 10-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates a 10-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result registers (ADRESL and ADRESH).  
The ADC voltage reference is software selectable to  
either VDD or a voltage applied to the external reference  
pins.  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
Figure 9-1 shows the block diagram of the ADC.  
FIGURE 9-1:  
ADC BLOCK DIAGRAM  
VDD  
VCFG = 0  
VCFG = 1  
VREF  
RA0/AN0  
RA1/AN1/VREF  
A/D  
RA2/AN2  
RA4/AN3  
RC0/AN4  
RC1/AN5  
RC2/AN6  
RC3/AN7  
10  
GO/DONE  
0= Left Justify  
1= Right Justify  
ADFM  
ADON  
10  
ADRESH ADRESL  
VSS  
4
CHS <3:0>  
© 2007 Microchip Technology Inc.  
DS41202F-page 65  
PIC16F684  
9.1.4  
CONVERSION CLOCK  
9.1  
ADC Configuration  
The source of the conversion clock is software select-  
able via the ADCS bits of the ADCON1 register. There  
are seven possible clock options:  
When configuring and using the ADC the following  
functions must be considered:  
• Port configuration  
• FOSC/2  
• Channel selection  
• FOSC/4  
• ADC voltage reference selection  
• ADC conversion clock source  
• Interrupt control  
• FOSC/8  
• FOSC/16  
• FOSC/32  
• Results formatting  
• FOSC/64  
9.1.1  
PORT CONFIGURATION  
• FRC (dedicated internal oscillator)  
The ADC can be used to convert both analog and digital  
signals. When converting analog signals, the I/O pin  
should be configured for analog by setting the associated  
TRIS and ANSEL bits. See the corresponding port  
section for more information.  
The time to complete one bit conversion is defined as  
TAD. One full 10-bit conversion requires 11 TAD periods  
as shown in Figure 9-3.  
For correct conversion, the appropriate TAD specification  
must be met. See A/D conversion requirements in  
Section 15.0 “Electrical Specifications” for more  
information. Table 9-1 gives examples of appropriate  
ADC clock selections.  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input  
buffer to conduct excess current.  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
9.1.2  
CHANNEL SELECTION  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
When changing channels, a delay is required before  
starting the next conversion. Refer to Section 9.2  
“ADC Operation” for more information.  
9.1.3  
ADC VOLTAGE REFERENCE  
The VCFG bit of the ADCON0 register provides control  
of the positive voltage reference. The positive voltage  
reference can be either VDD or an external voltage  
source. The negative voltage reference is always  
connected to the ground reference.  
TABLE 9-1:  
ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES (VDD > 3.0V)  
ADC Clock Period (TAD)  
Device Frequency (FOSC)  
ADC Clock Source  
ADCS<2:0>  
20 MHz  
8 MHz  
4 MHz  
1 MHz  
FOSC/2  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/32  
FOSC/64  
FRC  
000  
100  
001  
101  
010  
110  
x11  
100 ns(2)  
200 ns(2)  
400 ns(2)  
800 ns(2)  
1.6 μs  
250 ns(2)  
500 ns(2)  
1.0 μs(2)  
2.0 μs  
500 ns(2)  
1.0 μs(2)  
2.0 μs  
2.0 μs  
4.0 μs  
8.0 μs(3)  
16.0 μs(3)  
32.0 μs(3)  
64.0 μs(3)  
2-6 μs(1,4)  
4.0 μs  
4.0 μs  
8.0 μs(3)  
16.0 μs(3)  
2-6 μs(1,4)  
3.2 μs  
2-6 μs(1,4)  
8.0 μs(3)  
2-6 μs(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The FRC source has a typical TAD time of 4 μs for VDD > 3.0V.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the  
conversion will be performed during Sleep.  
DS41202F-page 66  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 9-2:  
ANALOG-TO-DIGITAL CONVERSION TAD CYCLES  
TCY to TAD  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
b9 b8 b7 b6 b5 b4 b3 b2 b1 b0  
Conversion Starts  
Holding Capacitor is Disconnected from Analog Input (typically 100 ns)  
Set GO/DONE bit  
ADRESH and ADRESL registers are loaded,  
GO bit is cleared,  
ADIF bit is set,  
Holding capacitor is connected to analog input  
9.1.5  
INTERRUPTS  
9.1.6  
RESULT FORMATTING  
The ADC module allows for the ability to generate an  
interrupt upon completion of an analog-to-digital  
conversion. The ADC interrupt flag is the ADIF bit in the  
PIR1 register. The ADC interrupt enable is the ADIE bit  
in the PIE1 register. The ADIF bit must be cleared in  
software.  
The 10-bit A/D conversion result can be supplied in two  
formats, left justified or right justified. The ADFM bit of  
the ADCON0 register controls the output format.  
Figure 9-4 shows the two output formats.  
Note:  
The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEP  
instruction is always executed. If the user is attempting  
to wake-up from Sleep and resume in-line code  
execution, the global interrupt must be disabled. If the  
global interrupt is enabled, execution will switch to the  
interrupt service routine.  
Please see Section 9.1.5 “Interrupts” for more  
information.  
FIGURE 9-3:  
10-BIT A/D CONVERSION RESULT FORMAT  
ADRESH  
ADRESL  
LSB  
(ADFM = 0)  
MSB  
bit 7  
bit 0  
bit 0  
bit 7  
bit 7  
bit 0  
10-bit A/D Result  
Unimplemented: Read as ‘0’  
(ADFM = 1)  
MSB  
LSB  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
10-bit A/D Result  
© 2007 Microchip Technology Inc.  
DS41202F-page 67  
PIC16F684  
9.2.5  
SPECIAL EVENT TRIGGER  
9.2  
ADC Operation  
The ECCP Special Event Trigger allows periodic ADC  
measurements without software intervention. When  
this trigger occurs, the GO/DONE bit is set by hardware  
and the Timer1 counter resets to zero.  
9.2.1  
STARTING A CONVERSION  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the  
GO/DONE bit of the ADCON0 register to a ‘1’ will start  
the analog-to-digital conversion.  
Using the Special Event Trigger does not ensure  
proper ADC timing. It is the user’s responsibility to  
ensure that the ADC timing requirements are met.  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 9.2.6 “A/D Conversion  
Procedure”.  
See  
Section 11.0  
“Enhanced  
Capture/Com-  
pare/PWM (With Auto-Shutdown and Dead Band)  
Module” for more information.  
9.2.2  
COMPLETION OF A CONVERSION  
9.2.6  
A/D CONVERSION PROCEDURE  
When the conversion is complete, the ADC module will:  
This is an example procedure for using the ADC to  
perform an Analog-to-Digital conversion:  
• Clear the GO/DONE bit  
• Set the ADIF flag bit  
1. Configure Port:  
• Disable pin output driver (See TRIS register)  
• Configure pin as analog  
• Update the ADRESH:ADRESL registers with new  
conversion result  
2. Configure the ADC module:  
• Select ADC conversion clock  
• Configure voltage reference  
• Select ADC input channel  
• Select result format  
9.2.3  
TERMINATING A CONVERSION  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared in software. The  
ADRESH:ADRESL registers will not be updated with  
the partially complete analog-to-digital conversion  
sample. Instead, the ADRESH:ADRESL register pair  
will retain the value of the previous conversion. Addi-  
tionally, a 2 TAD delay is required before another acqui-  
sition can be initiated. Following this delay, an input  
acquisition is automatically started on the selected  
channel.  
• Turn on ADC module  
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
• Enable ADC interrupt  
• Enable peripheral interrupt  
• Enable global interrupt(1)  
4. Wait the required acquisition time(2)  
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
.
5. Start conversion by setting the GO/DONE bit.  
6. Wait for ADC conversion to complete by one of  
the following:  
9.2.4  
ADC OPERATION DURING SLEEP  
• Polling the GO/DONE bit  
• Waiting for the ADC interrupt (interrupts  
enabled)  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. When the FRC clock source is selected, the  
ADC waits one additional instruction before starting the  
conversion. This allows the SLEEP instruction to be  
executed, which can reduce system noise during the  
conversion. If the ADC interrupt is enabled, the device  
will wake-up from Sleep when the conversion  
completes. If the ADC interrupt is disabled, the ADC  
module is turned off after the conversion completes,  
although the ADON bit remains set.  
7. Read ADC Result  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: See Section 9.3 “A/D Acquisition  
Requirements”.  
When the ADC clock source is something other than  
FRC, a SLEEP instruction causes the present conver-  
sion to be aborted and the ADC module is turned off,  
although the ADON bit remains set.  
DS41202F-page 68  
© 2007 Microchip Technology Inc.  
PIC16F684  
EXAMPLE 9-1:  
A/D CONVERSION  
;This code block configures the ADC  
;for polling, Vdd reference, Frc clock  
;and AN0 input.  
;
;Conversion start & polling for completion  
; are included.  
;
BANKSEL  
MOVLW  
MOVWF  
BANKSEL  
BSF  
BANKSEL  
BSF  
BANKSEL  
MOVLW  
MOVWF  
CALL  
BSF  
BTFSC  
GOTO  
BANKSEL  
MOVF  
MOVWF  
BANKSEL  
MOVF  
ADCON1  
;
B’01110000’ ;ADC Frc clock  
ADCON1  
TRISA  
TRISA,0  
ANSEL  
ANSEL,0  
ADCON0  
B’10000001’ ;Right justify,  
ADCON0  
SampleTime  
ADCON0,GO  
ADCON0,GO  
$-1  
;
;
;Set RA0 to input  
;
;Set RA0 to analog  
;
; Vdd Vref, AN0, On  
;Acquisiton delay  
;Start conversion  
;Is conversion done?  
;No, test again  
;
;Read upper 2 bits  
;store in GPR space  
;
ADRESH  
ADRESH,W  
RESULTHI  
ADRESL  
ADRESL,W  
RESULTLO  
;Read lower 8 bits  
;Store in GPR space  
MOVWF  
© 2007 Microchip Technology Inc.  
DS41202F-page 69  
PIC16F684  
9.2.7  
ADC REGISTER DEFINITIONS  
The following registers are used to control the operation of the ADC.  
REGISTER 9-1:  
ADCON0: A/D CONTROL REGISTER 0  
R/W-0  
ADFM  
R/W-0  
VCFG  
U-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
ADFM: A/D Conversion Result Format Select bit  
1= Right justified  
0= Left justified  
VCFG: Voltage Reference bit  
1= VREF pin  
0= VDD  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-2  
CHS<2:0>: Analog Channel Select bits  
000= AN0  
001= AN1  
010= AN2  
011= AN3  
100= AN4  
101= AN5  
110= AN6  
111= AN7  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
REGISTER 9-2:  
ADCON1: A/D CONTROL REGISTER 1  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADCS<2:0>: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
x11= FRC (clock derived from a dedicated internal oscillator = 500 kHz max)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
bit 3-0  
Unimplemented: Read as ‘0’  
DS41202F-page 70  
© 2007 Microchip Technology Inc.  
PIC16F684  
REGISTER 9-3:  
ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0  
R/W-x  
ADRES9  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES8  
ADRES7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADRES<9:2>: ADC Result Register bits  
Upper 8 bits of 10-bit conversion result  
REGISTER 9-4:  
ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0  
R/W-x  
ADRES1  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
ADRES<1:0>: ADC Result Register bits  
Lower 2 bits of 10-bit conversion result  
Reserved: Do not use.  
REGISTER 9-5:  
ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES9  
ADRES8  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1-0  
Reserved: Do not use.  
ADRES<9:8>: ADC Result Register bits  
Upper 2 bits of 10-bit conversion result  
REGISTER 9-6:  
ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1  
R/W-x  
ADRES7  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
ADRES1  
ADRES0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
Lower 8 bits of 10-bit conversion result  
© 2007 Microchip Technology Inc.  
DS41202F-page 71  
PIC16F684  
9.3  
A/D Acquisition Requirements  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The Analog  
Input model is shown in Figure 9-4. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge the  
capacitor CHOLD. The sampling switch (RSS) impedance  
varies over the device voltage (VDD), see Figure 9-4.  
The maximum recommended impedance for analog  
sources is 10 kΩ. As the source impedance is  
decreased, the acquisition time may be decreased.  
After the analog input channel is selected (or changed),  
an A/D acquisition must be done before the conversion  
can be started. To calculate the minimum acquisition  
time, Equation 9-1 may be used. This equation  
assumes that 1/2 LSb error is used (1024 steps for the  
ADC). The 1/2 LSb error is the maximum error allowed  
for the ADC to meet its specified resolution.  
EQUATION 9-1:  
ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10kΩ 5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 5µs + TC + [(Temperature - 25°C)(0.05µs/°C)]  
The value for TC can be approximated with the following equations:  
1
2047  
= VCHOLD  
-----------  
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED 1 –  
TC  
---------  
VAPPLIED 1 e RC = VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
Tc  
--------  
1
2047  
VAPPLIED 1 eRC = VAPPLIED 1 –  
;combining [1] and [2]  
-----------  
Solving for TC:  
TC = CHOLD(RIC + RSS + RS) ln(1/2047)  
= 10pF(1kΩ + 7kΩ + 10kΩ) ln(0.0004885)  
= 1.37µs  
Therefore:  
TACQ = 5µS + 1.37µS + [(50°C- 25°C)(0.05µS/°C)]  
= 7.67µS  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin  
leakage specification.  
DS41202F-page 72  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 9-4:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
Rss  
Rs  
CPIN  
5 pF  
VA  
I LEAKAGE  
± 500 nA  
CHOLD = 10 pF  
VSS/VREF-  
VT = 0.6V  
6V  
5V  
RSS  
VDD 4V  
3V  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
2V  
I LEAKAGE = Leakage current at the pin due to  
various junctions  
RIC  
SS  
CHOLD  
= Interconnect Resistance  
= Sampling Switch  
= Sample/Hold Capacitance  
5 6 7 8 9 1011  
Sampling Switch  
(kΩ)  
FIGURE 9-5:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
3FFh  
3FEh  
3FDh  
3FCh  
3FBh  
1 LSB ideal  
Full-Scale  
Transition  
004h  
003h  
002h  
001h  
000h  
Analog Input Voltage  
1 LSB ideal  
Zero-Scale  
Transition  
VDD/VREF+  
VSS/VREF-  
© 2007 Microchip Technology Inc.  
DS41202F-page 73  
PIC16F684  
TABLE 9-2:  
SUMMARY OF ASSOCIATED ADC REGISTERS  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ADCON1  
ANSEL  
ADFM  
VCFG  
ADCS2  
ANS6  
CHS2  
ADCS0  
ANS4  
CHS1  
CHS0  
GO/DONE ADON 0000 0000 0000 0000  
ADCS1  
ANS5  
-000 ---- -000 ----  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
ANS7  
ANS3  
ANS2  
ANS1  
ANS0  
ADRESH A/D Result Register High Byte  
ADRESL A/D Result Register Low Byte  
INTCON  
PIE1  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
CCPIE  
CCPIF  
RA5  
INTE  
C2IE  
C2IF  
RA4  
RC4  
RAIE  
C1IE  
C1IF  
RA3  
T0IF  
OSFIE  
OSFIF  
RA2  
INTF  
TMR2IE  
TMR2IF  
RA1  
RAIF  
TMR1IE 0000 0000 0000 0000  
TMR1IF 0000 0000 0000 0000  
PIR1  
PORTA  
PORTC  
TRISA  
TRISC  
Legend:  
RA0  
RC0  
--x0 x000 --uu uuuu  
--xx 0000 --uu uuuu  
RC5  
RC3  
RC2  
RC1  
TRISA5 TRISA4 TRISA3 TRISA2  
TRISC5 TRISC4 TRISC3 TRISC2  
TRISA1  
TRISC1  
TRISA0 --11 1111 --11 1111  
TRISC0 --11 1111 --11 1111  
x= unknown, u= unchanged, = unimplemented read as ‘0’. Shaded cells are not used for ADC module.  
DS41202F-page 74  
© 2007 Microchip Technology Inc.  
PIC16F684  
The EEPROM data memory allows byte read and write.  
A byte write automatically erases the location and  
writes the new data (erase before write). The EEPROM  
data memory is rated for high erase/write cycles. The  
write time is controlled by an on-chip timer. The write  
time will vary with voltage and temperature as well as  
from chip-to-chip. Please refer to AC Specifications in  
Section 15.0 “Electrical Specifications” for exact  
limits.  
10.0 DATA EEPROM MEMORY  
The EEPROM data memory is readable and writable  
during normal operation (full VDD range). This memory  
is not directly mapped in the register file space.  
Instead, it is indirectly addressed through the Special  
Function Registers. There are four SFRs used to read  
and write this memory:  
• EECON1  
• EECON2 (not a physically implemented register)  
When the data memory is code-protected, the CPU  
may continue to read and write the data EEPROM  
memory. The device programmer can no longer access  
the data EEPROM data and will read zeroes.  
• EEDAT  
• EEADR  
EEDAT holds the 8-bit data for read/write, and EEADR  
holds the address of the EEPROM location being  
accessed. PIC16F684 has 256 bytes of data EEPROM  
with an address range from 0h to FFh.  
REGISTER 10-1: EEDAT: EEPROM DATA REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDAT7  
EEDAT6  
EEDAT5  
EEDAT4  
EEDAT3  
EEDAT2  
EEDAT1  
EEDAT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
EEDATn: Byte Value to Write To or Read From Data EEPROM bits  
REGISTER 10-2: EEADR: EEPROM ADDRESS REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEADR7  
EEADR6  
EEADR5  
EEADR4  
EEADR3  
EEADR2  
EEADR1  
EEADR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
EEADR: Specifies One of 256 Locations for EEPROM Read/Write Operation bits  
© 2007 Microchip Technology Inc.  
DS41202F-page 75  
PIC16F684  
operation. In these situations, following Reset, the user  
can check the WRERR bit, clear it and rewrite the  
location. The data and address will be cleared.  
Therefore, the EEDAT and EEADR registers will need  
to be re-initialized.  
10.1 EECON1 and EECON2 Registers  
EECON1 is the control register with four low-order bits  
physically implemented. The upper four bits are  
non-implemented and read as ‘0’s.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set in  
software. They are cleared in hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
Interrupt flag, EEIF bit of the PIR1 register, is set when  
write is complete. This bit must be cleared in software.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the data EEPROM write sequence.  
Note:  
The EECON1, EEDAT and EEADR  
registers should not be modified during a  
data EEPROM write (WR bit = 1).  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset, or a WDT Time-out Reset during normal  
REGISTER 10-3: EECON1: EEPROM CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
WRERR  
bit 7  
bit 0  
Legend:  
S = Bit can only be set  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during  
normal operation or BOR Reset)  
0= The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the data EEPROM  
WR: Write Control bit  
1= Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only  
be set, not cleared, in software.)  
0= Write cycle to the data EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only  
be set, not cleared, in software.)  
0= Does not initiate an EEPROM read  
DS41202F-page 76  
© 2007 Microchip Technology Inc.  
PIC16F684  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit will  
be inhibited from being set unless the WREN bit is set.  
10.2 Reading the EEPROM Data  
Memory  
To read a data memory location, the user must write the  
address to the EEADR register and then set control bit  
RD of the EECON1 register, as shown in Example 10-1.  
The data is available, at the very next cycle, in the  
EEDAT register. Therefore, it can be read in the next  
instruction. EEDAT holds this value until another read, or  
until it is written to by the user (during a write operation).  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. The EEIF bit of the  
PIR1 register must be cleared by software.  
10.4 Write Verify  
Depending on the application, good programming  
practice may dictate that the value written to the data  
EEPROM should be verified (see Example 10-3) to the  
desired value to be written.  
EXAMPLE 10-1:  
DATA EEPROM READ  
BANKSEL  
MOVLW  
MOVWF  
BSF  
EEADR  
;
CONFIG_ADDR;  
EEADR  
;Address to read  
EECON1,RD ;EE Read  
MOVF  
EEDAT,W  
;Move data to W  
EXAMPLE 10-3:  
WRITE VERIFY  
BANKSELEEDAT  
;
10.3 Writing to the EEPROM Data  
Memory  
MOVF  
BSF  
EEDAT,W  
;EEDAT not changed  
;from previous write  
;YES, Read the  
EECON1,RD  
;value written  
To write an EEPROM data location, the user must first  
write the address to the EEADR register and the data  
to the EEDAT register. Then the user must follow a  
specific sequence to initiate the write for each byte, as  
shown in Example 10-2.  
XORWF  
BTFSS  
GOTO  
:
EEDAT,W  
STATUS,Z  
WRITE_ERR  
;Is data the same  
;No, handle error  
;Yes, continue  
10.4.1  
USING THE DATA EEPROM  
high-endurance, byte  
EXAMPLE 10-2:  
DATA EEPROM WRITE  
BANKSEL EECON1  
;
The data EEPROM is  
a
BSF  
EECON1,WREN ;Enable write  
addressable array that has been optimized for the  
storage of frequently changing information (e.g.,  
program variables or other data that are updated often).  
When variables in one section change frequently, while  
variables in another section do not change, it is possible  
to exceed the total number of write cycles to the  
EEPROM (specification D124) without exceeding the  
BCF  
INTCON,GIE  
INTCON,GIE  
$-2  
55h  
EECON2  
AAh  
EECON2  
EECON1,WR  
INTCON,GIE  
;Disable INTs  
;See AN576  
;
;Unlock write  
;
;
;
BTFSC  
GOTO  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
;Start the write  
;Enable INTS  
total number of write cycles to  
a single byte  
BSF  
(specifications D120 and D120A). If this is the case,  
then a refresh of the array must be performed. For this  
reason, variables that change infrequently (such as  
constants, IDs, calibration, etc.) should be stored in  
Flash program memory.  
The write will not initiate if the above sequence is not  
exactly followed (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. We strongly  
recommend that interrupts be disabled during this  
code segment. A cycle count is executed during the  
required sequence. Any number that is not equal to the  
required cycles to execute the required sequence will  
prevent the data from being written into the EEPROM.  
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating EEPROM. The WREN bit is not cleared  
by hardware.  
© 2007 Microchip Technology Inc.  
DS41202F-page 77  
PIC16F684  
10.5 Protection Against Spurious Write  
10.6 Data EEPROM Operation During  
Code-Protect  
There are conditions when the user may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built in. On power-up, WREN is cleared. Also, the  
Data memory can be code-protected by programming  
the CPD bit in the Configuration Word register  
(Register 12-1) to ‘0’.  
Power-up  
Timer  
(64 ms  
duration)  
prevents  
When the data memory is code-protected, the CPU is  
able to read and write data to the data EEPROM. It is  
recommended to code-protect the program memory  
when code-protecting data memory. This prevents  
anyone from programming zeroes over the existing  
code (which will execute as NOPs) to reach an added  
routine, programmed in unused program memory,  
which outputs the contents of data memory.  
Programming unused locations in program memory to  
0’ will also help prevent data memory code protection  
from becoming breached.  
EEPROM write.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during:  
• Brown-out  
• Power Glitch  
• Software Malfunction  
TABLE 10-1: SUMMARY OF ASSOCIATED DATA EEPROM REGISTERS  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE  
EEIF  
EEIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
C2IF  
C2IE  
RAIE  
C1IF  
C1IE  
T0IF  
INTF  
RAIF  
0000 0000 0000 0000  
CCP1IF  
CCP1IE  
OSFIF  
OSFIE  
TMR2IF TMR1IF 0000 0000 0000 0000  
TMR2IE TMR1IE 0000 0000 0000 0000  
PIE1  
EEDAT  
EEADR  
EECON1  
EECON2  
Legend:  
EEDAT7 EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0 0000 0000 0000 0000  
EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 0000 0000 0000 0000  
WRERR  
WREN  
WR  
RD  
---- x000 ---- q000  
---- ---- ---- ----  
(1)  
EEPROM Control Register 2  
x= unknown, u= unchanged, – = unimplemented read as ‘0’, q= value depends upon condition. Shaded cells are not used by the Data  
EEPROM module.  
Note 1: EECON2 is not a physical register.  
DS41202F-page 78  
© 2007 Microchip Technology Inc.  
PIC16F684  
Table 11-1 shows the timer resources required by the  
ECCP module.  
11.0 ENHANCED  
CAPTURE/COMPARE/PWM  
(WITH AUTO-SHUTDOWN AND  
DEAD BAND) MODULE  
TABLE 11-1: ECCP MODE – TIMER  
RESOURCES REQUIRED  
The Enhanced Capture/Compare/PWM module is a  
peripheral which allows the user to time and control  
different events. In Capture mode, the peripheral  
allows the timing of the duration of an event. The  
Compare mode allows the user to trigger an external  
event when a predetermined amount of time has  
expired. The PWM mode can generate a Pulse-Width  
Modulated signal of varying frequency and duty cycle.  
ECCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
REGISTER 11-1: CCP1CON: ENHANCED CCP1 CONTROL REGISTER  
R/W-0  
P1M1  
R/W-0  
P1M0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCP1M1  
R/W-0  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2  
CCP1M0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
P1M<1:0>: PWM Output Configuration bits  
If CCP1M<3:2> = 00, 01, 10:  
xx= P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins  
If CCP1M<3:2> = 11:  
00= Single output; P1A modulated; P1B, P1C, P1D assigned as port pins  
01= Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive  
10= Half-bridge output; P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins  
11= Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive  
bit 5-4  
DC1B<1:0>: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0  
CCP1M<3:0>: ECCP Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCP module)  
0001= Unused (reserved)  
0010= Compare mode, toggle output on match (CCP1IF bit is set)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCP1IF bit is set)  
1001= Compare mode, clear output on match (CCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is  
unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1 or TMR2, and starts  
an A/D conversion, if the ADC module is enabled)  
1100= PWM mode; P1A, P1C active-high; P1B, P1D active-high  
1101= PWM mode; P1A, P1C active-high; P1B, P1D active-low  
1110= PWM mode; P1A, P1C active-low; P1B, P1D active-high  
1111= PWM mode; P1A, P1C active-low; P1B, P1D active-low  
© 2007 Microchip Technology Inc.  
DS41202F-page 79  
PIC16F684  
11.1.2  
TIMER1 MODE SELECTION  
11.1 Capture Mode  
Timer1 must be running in Timer mode or Synchronized  
Counter mode for the CCP module to use the capture  
feature. In Asynchronous Counter mode, the capture  
operation may not work.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin CCP1. An event is defined as one of the  
following and is configured by the CCP1M<3:0> bits of  
the CCP1CON register:  
11.1.3  
SOFTWARE INTERRUPT  
• Every falling edge  
• Every rising edge  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCP1IE interrupt enable bit of the PIE1 register clear to  
avoid false interrupts. Additionally, the user should  
clear the CCP1IF interrupt flag bit of the PIR1 register  
following any change in operating mode.  
• Every 4th rising edge  
• Every 16th rising edge  
When a capture is made, the Interrupt Request Flag bit  
CCP1IF of the PIR1 register is set. The interrupt flag  
must be cleared in software. If another capture occurs  
before the value in the CCPR1H, CCPR1L register pair  
is read, the old captured value is overwritten by the new  
captured value (see Figure 11-1).  
11.1.4  
CCP PRESCALER  
There are four prescaler settings specified by the  
CCP1M<3:0> bits of the CCP1CON register.  
Whenever the CCP module is turned off, or the CCP  
module is not in Capture mode, the prescaler counter  
is cleared. Any Reset will clear the prescaler counter.  
11.1.1  
CCP1 PIN CONFIGURATION  
In Capture mode, the CCP1 pin should be configured  
as an input by setting the associated TRIS control bit.  
Switching from one capture prescaler to another does not  
clear the prescaler and may generate a false interrupt. To  
avoid this unexpected operation, turn the module off by  
clearing the CCP1CON register before changing the  
prescaler (see Example 11-1).  
Note:  
If the CCP1 pin is configured as an output,  
a write to the port can cause a capture  
condition.  
FIGURE 11-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
EXAMPLE 11-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
BANKSELCCP1CON  
;Set Bank bits to point  
;to CCP1CON  
;Turn CCP module off  
Set Flag bit CCP1IF  
(PIR1 register)  
Prescaler  
÷ 1, 4, 16  
CLRF  
CCP1CON  
MOVLW  
NEW_CAPT_PS;Load the W reg with  
; the new prescaler  
CCP1  
pin  
CCPR1H  
CCPR1L  
; move value and CCP ON  
Capture  
Enable  
MOVWF  
CCP1CON  
;Load CCP1CON with this  
; value  
and  
Edge Detect  
TMR1H  
TMR1L  
CCP1CON<3:0>  
System Clock (FOSC)  
DS41202F-page 80  
© 2007 Microchip Technology Inc.  
PIC16F684  
11.2.2  
TIMER1 MODE SELECTION  
11.2 Compare Mode  
In Compare mode, Timer1 must be running in either  
Timer mode or Synchronized Counter mode. The  
compare operation may not work in Asynchronous  
Counter mode.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the CCP module may:  
Toggle the CCP1 output  
• Set the CCP1 output  
11.2.3  
SOFTWARE INTERRUPT MODE  
• Clear the CCP1 output  
When Generate Software Interrupt mode is chosen  
(CCP1M<3:0> = 1010), the CCP module does not  
assert control of the CCP1 pin (see the CCP1CON  
register).  
• Generate a Special Event Trigger  
• Generate a Software Interrupt  
The action on the pin is based on the value of the  
CCP1M<3:0> control bits of the CCP1CON register.  
11.2.4  
SPECIAL EVENT TRIGGER  
All Compare modes can generate an interrupt.  
When Special Event Trigger mode is chosen  
(CCP1M<3:0> = 1011), the CCP module does the  
following:  
FIGURE 11-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
• Resets Timer1  
• Starts an ADC conversion if ADC is enabled  
CCP1CON<3:0>  
Mode Select  
The CCP module does not assert control of the CCP1  
pin in this mode (see the CCP1CON register).  
Set CCP1IF Interrupt Flag  
The Special Event Trigger output of the CCP occurs  
immediately upon a match between the TMR1H,  
TMR1L register pair and the CCPR1H, CCPR1L  
register pair. The TMR1H, TMR1L register pair is not  
reset until the next rising edge of the Timer1 clock. This  
allows the CCPR1H, CCPR1L register pair to  
effectively provide a 16-bit programmable period  
register for Timer1.  
(PIR1)  
4
CCP1  
Pin  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
Match  
TMR1H TMR1L  
TRIS  
Output Enable  
Special Event Trigger  
Note 1: The Special Event Trigger from the CCP  
module does not set interrupt flag bit  
TMR1IF of the PIR1 register.  
Special Event Trigger will:  
Clear TMR1H and TMR1L registers.  
NOT set interrupt flag bit TMR1IF of the PIR1 register.  
Set the GO/DONE bit to start the ADC conversion.  
2: Removing the match condition by  
changing the contents of the CCPR1H  
and CCPR1L register pair, between the  
clock edge that generates the Special  
Event Trigger and the clock edge that  
generates the Timer1 Reset, will preclude  
the Reset from occurring.  
11.2.1  
CCP1 PIN CONFIGURATION  
The user must configure the CCP1 pin as an output by  
clearing the associated TRIS bit.  
Note:  
Clearing the CCP1CON register will force  
the CCP1 compare output latch to the  
default low level. This is not the port I/O  
data latch.  
© 2007 Microchip Technology Inc.  
DS41202F-page 81  
PIC16F684  
The PWM output (Figure 11-4) has a time base  
(period) and a time that the output stays high (duty  
cycle).  
11.3 PWM Mode  
The PWM mode generates a Pulse-Width Modulated  
signal on the CCP1 pin. The duty cycle, period and  
resolution are determined by the following registers:  
FIGURE 11-4:  
CCP PWM OUTPUT  
• PR2  
Period  
• T2CON  
• CCPR1L  
• CCP1CON  
Pulse Width  
TMR2 = PR2  
TMR2 = CCPR1L:CCP1CON<5:4>  
In Pulse-Width Modulation (PWM) mode, the CCP  
module produces up to a 10-bit resolution PWM output  
on the CCP1 pin. Since the CCP1 pin is multiplexed  
with the PORT data latch, the TRIS for that pin must be  
cleared to enable the CCP1 pin output driver.  
TMR2 = 0  
Note:  
Clearing the CCP1CON register will  
relinquish CCP1 control of the CCP1 pin.  
Figure 11-3 shows a simplified block diagram of PWM  
operation.  
Figure 11-4 shows a typical waveform of the PWM  
signal.  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 11.3.7  
“Setup for PWM Operation”.  
FIGURE 11-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
CCPR1H(2) (Slave)  
Comparator  
CCP1  
R
S
Q
(1)  
TMR2  
TRIS  
Comparator  
PR2  
Clear Timer2,  
toggle CCP1 pin and  
latch duty cycle  
Note 1: The 8-bit timer TMR2 register is concatenated  
with the 2-bit internal system clock (FOSC), or  
2 bits of the prescaler, to create the 10-bit time  
base.  
2: In PWM mode, CCPR1H is a read-only register.  
DS41202F-page 82  
© 2007 Microchip Technology Inc.  
PIC16F684  
11.3.1  
PWM PERIOD  
EQUATION 11-2: PULSE WIDTH  
The PWM period is specified by the PR2 register of  
Timer2. The PWM period can be calculated using the  
formula of Equation 11-1.  
Pulse Width = (CCPR1L:CCP1CON<5:4>) •  
TOSC (TMR2 Prescale Value)  
EQUATION 11-1: PWM PERIOD  
EQUATION 11-3: DUTY CYCLE RATIO  
PWM Period = [(PR2) + 1] • 4 TOSC •  
(TMR2 Prescale Value)  
(CCPR1L:CCP1CON<5:4>)  
Duty Cycle Ratio = -----------------------------------------------------------------------  
4(PR2 + 1)  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
• TMR2 is cleared  
• The CCP1 pin is set. (Exception: If the PWM duty  
cycle = 0%, the pin will not be set.)  
The 8-bit timer TMR2 register is concatenated with  
either the 2-bit internal system clock (FOSC), or 2 bits of  
the prescaler, to create the 10-bit time base. The system  
clock is used if the Timer2 prescaler is set to 1:1.  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H.  
Note:  
The Timer2 postscaler (see Section 7.1  
“Timer2 Operation”) is not used in the  
determination of the PWM frequency.  
When the 10-bit time base matches the CCPR1H and  
2-bit latch, then the CCP1 pin is cleared (see  
Figure 11-3).  
11.3.2  
PWM DUTY CYCLE  
11.3.3  
PWM RESOLUTION  
The PWM duty cycle is specified by writing a 10-bit  
value to multiple registers: CCPR1L register and  
CCP1<1:0> bits of the CCP1CON register. The  
CCPR1L contains the eight MSbs and the CCP1<1:0>  
bits of the CCP1CON register contain the two LSbs.  
CCPR1L and CCP1<1:0> bits of the CCP1CON  
register can be written to at any time. The duty cycle  
value is not latched into CCPR1H until after the period  
completes (i.e., a match between PR2 and TMR2  
registers occurs). While using the PWM, the CCPR1H  
register is read-only.  
The resolution determines the number of available duty  
cycles for a given period. For example, a 10-bit resolution  
will result in 1024 discrete duty cycles, whereas an 8-bit  
resolution will result in 256 discrete duty cycles.  
The maximum PWM resolution is 10 bits when PR2 is  
255. The resolution is a function of the PR2 register  
value as shown by Equation 11-4.  
EQUATION 11-4: PWM RESOLUTION  
log[4(PR2 + 1)]  
Equation 11-2 is used to calculate the PWM pulse  
width.  
Resolution = ----------------------------------------- bits  
log(2)  
Equation 11-3 is used to calculate the PWM duty cycle  
ratio.  
Note:  
If the pulse width value is greater than the  
period the assigned PWM pin(s) will  
remain unchanged.  
TABLE 11-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)  
PWM Frequency  
1.22 kHz  
4.88 kHz  
19.53 kHz  
78.12 kHz  
156.3 kHz  
208.3 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
6.6  
Maximum Resolution (bits)  
TABLE 11-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)  
PWM Frequency  
1.22 kHz  
4.90 kHz  
19.61 kHz  
76.92 kHz  
153.85 kHz 200.0 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0x65  
8
4
0x65  
8
1
0x65  
8
1
0x19  
6
1
0x0C  
5
1
0x09  
5
Maximum Resolution (bits)  
© 2007 Microchip Technology Inc.  
DS41202F-page 83  
PIC16F684  
11.3.4  
OPERATION IN SLEEP MODE  
11.3.7  
SETUP FOR PWM OPERATION  
In Sleep mode, the TMR2 register will not increment  
and the state of the module will not change. If the CCP1  
pin is driving a value, it will continue to drive that value.  
When the device wakes up, TMR2 will continue from its  
previous state.  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Disable the PWM pin (CCP1) output driver by  
setting the associated TRIS bit.  
2. Set the PWM period by loading the PR2 register.  
3. Configure the CCP module for the PWM mode  
by loading the CCP1CON register with the  
appropriate values.  
11.3.5  
CHANGES IN SYSTEM CLOCK  
FREQUENCY  
The PWM frequency is derived from the system clock  
frequency. Any changes in the system clock frequency  
will result in changes to the PWM frequency. See  
Section 3.0 “Oscillator Module (With Fail-Safe  
Clock Monitor)” for additional details.  
4. Set the PWM duty cycle by loading the CCPR1L  
register and CCP1 bits of the CCP1CON register.  
5. Configure and start Timer2:  
• Clear the TMR2IF interrupt flag bit of the  
PIR1 register.  
11.3.6  
EFFECTS OF RESET  
• Set the Timer2 prescale value by loading the  
T2CKPS bits of the T2CON register.  
Any Reset will force all ports to Input mode and the  
CCP registers to their Reset states.  
• Enable Timer2 by setting the TMR2ON bit of  
the T2CON register.  
6. Enable PWM output after a new PWM cycle has  
started:  
• Wait until Timer2 overflows (TMR2IF bit of  
the PIR1 register is set).  
• Enable the CCP1 pin output driver by clearing  
the associated TRIS bit.  
DS41202F-page 84  
© 2007 Microchip Technology Inc.  
PIC16F684  
The PWM outputs are multiplexed with I/O pins and are  
designated P1A, P1B, P1C and P1D. The polarity of the  
PWM pins is configurable and is selected by setting the  
CCP1M bits in the CCP1CON register appropriately.  
11.4 PWM (Enhanced Mode)  
The Enhanced PWM Mode can generate a PWM signal  
on up to four different output pins with up to 10-bits of  
resolution. It can do this through four different PWM  
output modes:  
Table 11-4 shows the pin assignments for each  
Enhanced PWM mode.  
• Single PWM  
Figure 11-5 shows an example of a simplified block  
diagram of the Enhanced PWM module.  
• Half-Bridge PWM  
• Full-Bridge PWM, Forward mode  
• Full-Bridge PWM, Reverse mode  
Note:  
To prevent the generation of an  
incomplete waveform when the PWM is  
first enabled, the ECCP module waits until  
the start of a new PWM period before  
generating a PWM signal.  
To select an Enhanced PWM mode, the P1M bits of the  
CCP1CON register must be set appropriately.  
FIGURE 11-5:  
EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE  
CCP1<1:0>  
P1M<1:0>  
CCP1M<3:0>  
4
Duty Cycle Registers  
2
CCPR1L  
CCP1/P1A  
CCP1/P1A  
TRIS  
TRIS  
TRIS  
TRIS  
CCPR1H (Slave)  
Comparator  
P1B  
P1B  
P1C  
Output  
Controller  
R
S
Q
P1C  
(1)  
TMR2  
P1D  
P1D  
Comparator  
PR2  
Clear Timer2,  
toggle PWM pin and  
latch duty cycle  
PWM1CON  
Note 1: The 8-bit timer TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit  
time base.  
Note 1: The TRIS register value for each PWM output must be configured appropriately.  
2: Clearing the CCP1CON register will relinquish ECCP control of all PWM output pins.  
3: Any pin not used by an Enhanced PWM mode is available for alternate pin functions  
TABLE 11-4: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES  
ECCP Mode  
P1M  
CCP1/P1A  
P1B  
P1C  
P1D  
Single  
00  
10  
01  
11  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Half-Bridge  
Full-Bridge, Forward  
Full-Bridge, Reverse  
Yes  
Yes  
Yes  
Yes  
© 2007 Microchip Technology Inc.  
DS41202F-page 85  
PIC16F684  
FIGURE 11-6:  
EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH  
STATE)  
PR2+1  
Pulse  
Width  
0
Signal  
P1M<1:0>  
Period  
P1A Modulated  
(Single Output)  
00  
10  
Delay(1)  
Delay(1)  
P1A Modulated  
P1B Modulated  
P1A Active  
(Half-Bridge)  
P1B Inactive  
(Full-Bridge,  
Forward)  
01  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (PWM1CON<6:0>)  
Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.4.6 “Programmable Dead-Band Delay  
mode”).  
DS41202F-page 86  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 11-7:  
EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)  
PR2+1  
Pulse  
Width  
0
Signal  
P1M<1:0>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
00  
10  
Delay(1)  
Delay(1)  
(Half-Bridge)  
(Full-Bridge,  
Forward)  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
01  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (PWM1CON<6:0>)  
Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.4.6 “Programmable Dead-Band Delay  
mode”).  
© 2007 Microchip Technology Inc.  
DS41202F-page 87  
PIC16F684  
Since the P1A and P1B outputs are multiplexed with  
the PORT data latches, the associated TRIS bits must  
be cleared to configure P1A and P1B as outputs.  
11.4.1  
HALF-BRIDGE MODE  
In Half-Bridge mode, two pins are used as outputs to  
drive push-pull loads. The PWM output signal is output  
on the CCP1/P1A pin, while the complementary PWM  
output signal is output on the P1B pin (see  
Figure 11-16). This mode can be used for half-bridge  
applications, as shown in Figure 11-17, or for  
full-bridge applications, where four power switches are  
being modulated with two PWM signals.  
FIGURE 11-8:  
EXAMPLE OF  
HALF-BRIDGE PWM  
OUTPUT  
Period  
Period  
Pulse Width  
In Half-Bridge mode, the programmable dead-band delay  
can be used to prevent shoot-through current in  
half-bridge power devices. The value of the PDC<6:0>  
bits of the PWM1CON register sets the number of  
instruction cycles before the output is driven active. If the  
value is greater than the duty cycle, the corresponding  
output remains inactive during the entire cycle. See  
Section 11.4.6 “Programmable Dead-Band Delay  
mode” for more details of the dead-band delay  
operations.  
(2)  
(2)  
P1A  
td  
td  
P1B  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
2: Output signals are shown as active-high.  
FIGURE 11-9:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
-
P1A  
Load  
FET  
Driver  
+
-
P1B  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
FET  
Driver  
FET  
Driver  
P1A  
Load  
FET  
FET  
Driver  
Driver  
P1B  
DS41202F-page 88  
© 2007 Microchip Technology Inc.  
PIC16F684  
11.4.2  
FULL-BRIDGE MODE  
In Full-Bridge mode, all four pins are used as outputs.  
An example of full-bridge application is shown in  
Figure 11-10.  
In the Forward mode, pin CCP1/P1A is driven to its active  
state, pin P1D is modulated, while P1B and P1C will be  
driven to their inactive state as shown in Figure 11-11.  
In the Reverse mode, P1C is driven to its active state,  
pin P1B is modulated, while P1A and P1D will be driven  
to their inactive state as shown Figure 11-11.  
P1A, P1B, P1C and P1D outputs are multiplexed with  
the PORT data latches. The associated TRIS bits must  
be cleared to configure the P1A, P1B, P1C and P1D  
pins as outputs.  
FIGURE 11-10:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
QC  
QA  
FET  
Driver  
FET  
Driver  
P1A  
P1B  
Load  
FET  
Driver  
FET  
Driver  
P1C  
P1D  
QD  
QB  
V-  
© 2007 Microchip Technology Inc.  
DS41202F-page 89  
PIC16F684  
FIGURE 11-11:  
EXAMPLE OF FULL-BRIDGE PWM OUTPUT  
Forward Mode  
Period  
(2)  
P1A  
Pulse Width  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Reverse Mode  
Period  
Pulse Width  
(2)  
P1A  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
2: Output signal is shown as active-high.  
DS41202F-page 90  
© 2007 Microchip Technology Inc.  
PIC16F684  
The Full-Bridge mode does not provide dead-band  
delay. As one output is modulated at a time, dead-band  
delay is generally not required. There is a situation  
where dead-band delay is required. This situation  
occurs when both of the following conditions are true:  
11.4.2.1  
Direction Change in Full-Bridge  
Mode  
In the Full-Bridge mode, the P1M1 bit in the CCP1CON  
register allows users to control the forward/reverse  
direction. When the application firmware changes this  
direction control bit, the module will change to the new  
direction on the next PWM cycle.  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn off time of the power switch, including  
the power device and driver circuit, is greater  
than the turn on time.  
A direction change is initiated in software by changing  
the P1M1 bit of the CCP1CON register. The following  
sequence occurs four Timer2 cycles prior to the end of  
the current PWM period:  
Figure 11-13 shows an example of the PWM direction  
changing from forward to reverse, at a near 100% duty  
cycle. In this example, at time t1, the output P1A and  
P1D become inactive, while output P1C becomes  
active. Since the turn off time of the power devices is  
longer than the turn on time, a shoot-through current  
will flow through power devices QC and QD (see  
Figure 11-10) for the duration of ‘t’. The same  
phenomenon will occur to power devices QA and QB  
for PWM direction change from reverse to forward.  
• The modulated outputs (P1B and P1D) are placed  
in their inactive state.  
• The associated unmodulated outputs (P1A and  
P1C) are switched to drive in the opposite  
direction.  
• PWM modulation resumes at the beginning of the  
next period.  
See Figure 11-12 for an illustration of this sequence.  
If changing PWM direction at high duty cycle is required  
for an application, two possible solutions for eliminating  
the shoot-through current are:  
1. Reduce PWM duty cycle for one PWM period  
before changing directions.  
2. Use switch drivers that can drive the switches off  
faster than they can drive them on.  
Other options to prevent shoot-through current may  
exist.  
FIGURE 11-12:  
EXAMPLE OF PWM DIRECTION CHANGE  
(1)  
Period  
Period  
Signal  
P1A (Active-High)  
P1B (Active-High)  
Pulse Width  
P1C (Active-High)  
P1D (Active-High)  
(2)  
Pulse Width  
Note 1: The direction bit P1M1 of the CCP1CON register is written any time during the PWM cycle.  
2: When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle. The  
modulated P1B and P1D signals are inactive at this time. The length of this time is four Timer2 counts.  
© 2007 Microchip Technology Inc.  
DS41202F-page 91  
PIC16F684  
FIGURE 11-13:  
EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
Forward Period  
Reverse Period  
t1  
P1A  
P1B  
DC  
P1C  
P1D  
PW  
TON  
External Switch C  
External Switch D  
TOFF  
Potential  
T = TOFF TON  
Shoot-Through Current  
Note 1: All signals are shown as active-high.  
2: TON is the turn on delay of power switch QC and its driver.  
3: TOFF is the turn off delay of power switch QD and its driver.  
11.4.3  
START-UP CONSIDERATIONS  
When any PWM mode is used, the application  
hardware must use the proper external pull-up and/or  
pull-down resistors on the PWM output pins.  
Note:  
When the microcontroller is released from  
Reset, all of the I/O pins are in the  
high-impedance state. The external cir-  
cuits must keep the power switch devices  
in the OFF state until the microcontroller  
drives the I/O pins with the proper signal  
levels or activates the PWM output(s).  
The CCP1M<1:0> bits of the CCP1CON register allow  
the user to choose whether the PWM output signals are  
active-high or active-low for each pair of PWM output pins  
(P1A/P1C and P1B/P1D). The PWM output polarities  
must be selected before the PWM pin output drivers are  
enabled. Changing the polarity configuration while the  
PWM pin output drivers are enabled is not recommended  
since it may result in damage to the application circuits.  
The P1A, P1B, P1C and P1D output latches may not be  
in the proper states when the PWM module is  
initialized. Enabling the PWM pin output drivers at the  
same time as the Enhanced PWM modes may cause  
damage to the application circuit. The Enhanced PWM  
modes must be enabled in the proper Output mode and  
complete a full PWM cycle before enabling the PWM  
pin output drivers. The completion of a full PWM cycle  
is indicated by the TMR2IF bit of the PIR1 register  
being set as the second PWM period begins.  
DS41202F-page 92  
© 2007 Microchip Technology Inc.  
PIC16F684  
A shutdown condition is indicated by the ECCPASE  
(Auto-Shutdown Event Status) bit of the ECCPAS  
register. If the bit is a ‘0’, the PWM pins are operating  
normally. If the bit is a ‘1’, the PWM outputs are in the  
shutdown state.  
11.4.4  
ENHANCED PWM  
AUTO-SHUTDOWN MODE  
The PWM mode supports an Auto-Shutdown mode that  
will disable the PWM outputs when an external  
shutdown event occurs. Auto-Shutdown mode places  
the PWM output pins into a predetermined state. This  
mode is used to help prevent the PWM from damaging  
the application.  
When a shutdown event occurs, two things happen:  
The ECCPASE bit is set to ‘1’. The ECCPASE will  
remain set until cleared in firmware or an auto-restart  
occurs (see Section 11.4.5 “Auto-Restart Mode”).  
The auto-shutdown sources are selected using the  
ECCPASx bits of the ECCPAS register. A shutdown  
event may be generated by:  
The enabled PWM pins are asynchronously placed in  
their shutdown states. The PWM output pins are  
grouped into pairs [P1A/P1C] and [P1B/P1D]. The state  
of each pin pair is determined by the PSSAC and  
PSSBD bits of the ECCPAS register. Each pin pair may  
be placed into one of three states:  
• A logic ‘0’ on the INT pin  
• Comparator 1  
• Comparator 2  
• Setting the ECCPASE bit in firmware  
• Drive logic ‘1’  
• Drive logic ‘0’  
• Tri-state (high-impedance)  
REGISTER 11-2: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN  
CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ECCPASE  
ECCPAS2  
ECCPAS1  
ECCPAS0  
PSSAC1  
PSSAC0  
PSSBD1  
PSSBD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
ECCPASE: ECCP Auto-Shutdown Event Status bit  
1= A shutdown event has occurred; ECCP outputs are in shutdown state  
0= ECCP outputs are operating  
bit 6-4  
ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits  
000= Auto-Shutdown is disabled  
001= Comparator 1 output change  
010= Comparator 2 output change  
011= Either Comparator 1 or 2 change  
100= VIL on INT pin  
101= VIL on INT pin or Comparator 1 change  
110= VIL on INT pin or Comparator 2 change  
111= VIL on INT pin or Comparator 1 or 2 change  
bit 3-2  
bit 1-0  
PSSACn: Pins P1A and P1C Shutdown State Control bits  
00= Drive pins P1A and P1C to ‘0’  
01= Drive pins P1A and P1C to ‘1’  
1x= Pins P1A and P1C tri-state  
PSSBDn: Pins P1B and P1D Shutdown State Control bits  
00= Drive pins P1B and P1D to ‘0’  
01= Drive pins P1B and P1D to ‘1’  
1x= Pins P1B and P1D tri-state  
© 2007 Microchip Technology Inc.  
DS41202F-page 93  
PIC16F684  
Note 1: The auto-shutdown condition is  
a
level-based signal, not an edge-based  
signal. As long as the level is present, the  
auto-shutdown will persist.  
2: Writing to the ECCPASE bit is disabled  
while an auto-shutdown condition  
persists.  
3: Once the auto-shutdown condition has  
been removed and the PWM restarted  
(either through firmware or auto-restart)  
the PWM signal will always restart at the  
beginning of the next PWM period.  
FIGURE 11-14:  
PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PRSEN = 0)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
ECCPASE  
Cleared by  
Firmware  
Start of  
Shutdown  
Shutdown  
PWM  
PWM Period  
Event Occurs Event Clears  
Resumes  
11.4.5  
AUTO-RESTART MODE  
The Enhanced PWM can be configured to automati-  
cally restart the PWM signal once the auto-shutdown  
condition has been removed. Auto-restart is enabled by  
setting the PRSEN bit in the PWM1CON register.  
If auto-restart is enabled, the ECCPASE bit will remain  
set as long as the auto-shutdown condition is active.  
When the auto-shutdown condition is removed, the  
ECCPASE bit will be cleared via hardware and normal  
operation will resume.  
FIGURE 11-15:  
PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
Start of  
PWM Period  
Shutdown  
Event Occurs Event Clears  
Shutdown  
PWM  
Resumes  
DS41202F-page 94  
© 2007 Microchip Technology Inc.  
PIC16F684  
11.4.6  
PROGRAMMABLE DEAD-BAND  
DELAY MODE  
FIGURE 11-16:  
EXAMPLE OF  
HALF-BRIDGE PWM  
OUTPUT  
In half-bridge applications where all power switches are  
modulated at the PWM frequency, the power switches  
normally require more time to turn off than to turn on. If  
both the upper and lower power switches are switched  
at the same time (one turned on, and the other turned  
off), both switches may be on for a short period of time  
until one switch completely turns off. During this brief  
interval, a very high current (shoot-through current) will  
flow through both power switches, shorting the bridge  
supply. To avoid this potentially destructive  
shoot-through current from flowing during switching,  
turning on either of the power switches is normally  
delayed to allow the other switch to completely turn off.  
Period  
Period  
Pulse Width  
(2)  
(2)  
P1A  
td  
td  
P1B  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
In Half-Bridge mode,  
a
digitally programmable  
PR2 register.  
dead-band delay is available to avoid shoot-through  
current from destroying the bridge power switches. The  
delay occurs at the signal transition from the non-active  
state to the active state. See Section FIGURE 11-17:  
“Example of Half-Bridge Applications” for  
illustration. The lower seven bits of the associated  
PWM1CON register (Register 11-3) sets the delay  
period in terms of microcontroller instruction cycles  
(TCY or 4 TOSC).  
2: Output signals are shown as active-high.  
FIGURE 11-17:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
V
-
P1A  
Load  
FET  
Driver  
+
V
-
P1B  
V-  
© 2007 Microchip Technology Inc.  
DS41202F-page 95  
PIC16F684  
REGISTER 11-3: PWM1CON: ENHANCED PWM CONTROL REGISTER  
R/W-0  
R/W-0  
PDC6  
R/W-0  
PDC5  
R/W-0  
PDC4  
R/W-0  
PDC3  
R/W-0  
PDC2  
R/W-0  
PDC1  
R/W-0  
PDC0  
PRSEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
PRSEN: PWM Restart Enable bit  
1= Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes  
away; the PWM restarts automatically  
0= Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM  
bit 6-0  
PDC<6:0>: PWM Delay Count bits  
PDCn = Number of FOSC/4 (4 * TOSC) cycles between the scheduled time when a PWM signal  
should transition active and the actual time it transitions active  
Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe  
mode is enabled.  
TABLE 11-5: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND PWM  
Value on  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
CCPR1L  
CCPR1H  
CCP1CON  
CMCON0  
CMCON1  
ECCPAS  
INTCON  
PIE1  
Capture/Compare/PWM Register 1 Low Byte  
Capture/Compare/PWM Register 1 High Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
P1M1  
C2OUT  
P1M0  
C1OUT  
DC1B1  
C2INV  
DC1B0  
C1INV  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
CIS  
CM2  
CM1  
CM0  
0000 0000 0000 0000  
T1GSS C2SYNC ---- --10 ---- --10  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 0000 0000 0000 0000  
GIE  
EEIE  
EEIF  
PEIE  
ADIE  
ADIF  
T0IE  
INTE  
C2IE  
C2IF  
RAIE  
C1IE  
C1IF  
T0IF  
INTF  
RAIF  
0000 0000 0000 0000  
CCP1IE  
CCP1IF  
OSFIE  
OSFIF  
TMR2IE TMR1IE 0000 0000 0000 0000  
TMR2IF TMR1IF 0000 0000 0000 0000  
1111 1111 1111 1111  
PIR1  
PR2  
Timer2 Module Period Register  
PDC6 PDC5  
PWM1CON PRSEN  
PDC4  
PDC3  
PDC2  
PDC1  
PDC0  
0000 0000 0000 0000  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
0000 0000 uuuu uuuu  
T1CON  
T2CON  
TMR1L  
TMR1H  
TMR2  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Timer2 Module Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
TRISA  
TRISC  
TRISA5  
TRISC5  
TRISA4  
TRISC4  
TRISA3  
TRISC3  
TRISA2  
TRISA1  
TRISA0 --11 1111 --11 1111  
TRISC2 TRISC1 TRISC0 --11 1111 --11 1111  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Capture,  
Compare and PWM.  
DS41202F-page 96  
© 2007 Microchip Technology Inc.  
PIC16F684  
12.1 Configuration Bits  
12.0 SPECIAL FEATURES OF THE  
CPU  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’) to select various  
device configurations as shown in Register 12-1.  
These bits are mapped in program memory location  
2007h.  
The PIC16F684 has a host of features intended to  
maximize system reliability, minimize cost through  
elimination of external components, provide power  
saving features and offer code protection.  
These features are:  
Note:  
Address 2007h is beyond the user program  
memory space. It belongs to the special  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
configuration  
(2000h-3FFFh), which can be accessed  
only during programming. See  
“PIC12F6XX/16F6XX Memory Program-  
ming Specification” (DS41204) for more  
information.  
memory  
space  
• Watchdog Timer (WDT)  
• Oscillator selection  
• Sleep  
• Code protection  
• ID Locations  
• In-Circuit Serial Programming  
The PIC16F684 has two timers that offer necessary  
delays on power-up. One is the Oscillator Start-up  
Timer (OST), intended to keep the chip in Reset until  
the crystal oscillator is stable. The other is the  
Power-up Timer (PWRT), which provides a fixed delay  
of 64 ms (nominal) on power-up only, designed to keep  
the part in Reset while the power supply stabilizes.  
There is also circuitry to reset the device if a brown-out  
occurs, which can use the Power-up Timer to provide  
at least  
a
64 ms Reset. With these three  
functions-on-chip, most applications need no external  
Reset circuitry.  
The Sleep mode is designed to offer a very low-current  
Power-Down mode. The user can wake-up from Sleep  
through:  
• External Reset  
• Watchdog Timer Wake-up  
• An interrupt  
Several oscillator options are also made available to  
allow the part to fit the application. The INTOSC option  
saves system cost while the LP crystal option saves  
power. A set of configuration bits are used to select  
various options (see Register 12-1).  
© 2007 Microchip Technology Inc.  
DS41202F-page 97  
PIC16F684  
REGISTER 12-1: CONFIG: CONFIGURATION WORD REGISTER  
FCMEN  
IESO  
BOREN1  
FOSC1  
BOREN0  
bit 8  
bit 15  
bit 7  
CPD  
CP  
MCLRE  
PWRTE  
WDTE  
FOSC2  
FOSC0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
P = Programmable’  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
bit 15-12  
bit 11  
Unimplemented: Read as ‘1’  
FCMEN: Fail-Safe Clock Monitor Enabled bit  
1= Fail-Safe Clock Monitor is enabled  
0= Fail-Safe Clock Monitor is disabled  
bit 10  
IESO: Internal External Switchover bit  
1= Internal External Switchover mode is enabled  
0= Internal External Switchover mode is disabled  
(1)  
bit 9-8  
BOREN<1:0>: Brown-out Reset Selection bits  
11= BOR enabled  
10= BOR enabled during operation and disabled in Sleep  
01= BOR controlled by SBOREN bit of the PCON register  
00= BOR disabled  
(2)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
CPD: Data Code Protection bit  
1= Data memory code protection is disabled  
0= Data memory code protection is enabled  
(3)  
CP: Code Protection bit  
1= Program memory code protection is disabled  
0= Program memory code protection is enabled  
(4)  
MCLRE: RA3/MCLR pin function select bit  
1= RA3/MCLR pin function is MCLR  
0= RA3/MCLR pin function is digital input, MCLR internally tied to VDD  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled and can be enabled by SWDTEN bit of the WDTCON register  
FOSC<2:0>: Oscillator Selection bits  
111= RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN  
110= RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN  
101= INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN  
100= INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN  
011= EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN  
010= HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN  
001= XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN  
000= LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN  
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.  
2: The entire data EEPROM will be erased when the code protection is turned off.  
3: The entire program memory will be erased when the code protection is turned off.  
4: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  
DS41202F-page 98  
© 2007 Microchip Technology Inc.  
PIC16F684  
Some registers are not affected in any Reset condition;  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
12.2 Calibration Bits  
Brown-out Reset (BOR), Power-on Reset (POR) and  
8 MHz internal oscillator (HFINTOSC) are factory cali-  
brated. These calibration values are stored in fuses  
located in the Calibration Word (2009h). The Calibra-  
tion Word is not erased when using the specified bulk  
erase sequence in the “PIC12F6XX/16F6XX Memory  
Programming Specification” (DS41244) and thus, does  
not require reprogramming.  
• Power-on Reset  
• MCLR Reset  
• MCLR Reset during Sleep  
• WDT Reset  
• Brown-out Reset (BOR)  
WDT wake-up does not cause register resets in the  
same manner as a WDT Reset since wake-up is  
viewed as the resumption of normal operation. TO and  
PD bits are set or cleared differently in different Reset  
situations, as indicated in Table 12-2. Software can use  
these bits to determine the nature of the Reset. See  
Table 12-4 for a full description of Reset states of all  
registers.  
12.3 Reset  
The PIC16F684 differentiates between various kinds of  
Reset:  
a) Power-on Reset (POR)  
b) WDT Reset during normal operation  
c) WDT Reset during Sleep  
d) MCLR Reset during normal operation  
e) MCLR Reset during Sleep  
f) Brown-out Reset (BOR)  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 12-1.  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Section 15.0 “Electrical  
Specifications” for pulse-width specifications.  
FIGURE 12-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR/VPP pin  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out(1)  
Reset  
BOREN  
SBOREN  
S
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
R
Q
OSC1/  
CLKI pin  
PWRT  
11-bit Ripple Counter  
LFINTOSC  
Enable PWRT  
Enable OST  
Note 1: Refer to the Configuration Word register (Register 12-1).  
© 2007 Microchip Technology Inc.  
DS41202F-page 99  
PIC16F684  
12.3.1  
POWER-ON RESET (POR)  
FIGURE 12-2:  
RECOMMENDED MCLR  
CIRCUIT  
The on-chip POR circuit holds the chip in Reset until  
VDD has reached a high enough level for proper  
operation. To take advantage of the POR, simply  
connect the MCLR pin through a resistor to VDD. This  
will eliminate external RC components usually needed  
to create Power-on Reset. A maximum rise time for  
VDD is required. See Section 15.0 “Electrical  
Specifications” for details. If the BOR is enabled, the  
maximum rise time specification does not apply. The  
BOR circuitry will keep the device in Reset until VDD  
reaches VBOR (see Section 12.3.4 “Brown-Out Reset  
(BOR)”).  
VDD  
PIC®  
MCU  
R1  
1 kΩ (or greater)  
R2  
MCLR  
100 Ω  
(needed with capacitor)  
SW1  
(optional)  
C1  
0.1 μF  
(optional, not critical)  
Note:  
The POR circuit does not produce an  
internal Reset when VDD declines. To  
re-enable the POR, VDD must reach Vss  
for a minimum of 100 μs.  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (i.e.,  
voltage, frequency, temperature, etc.) must be met to  
ensure proper operation. If these conditions are not  
met, the device must be held in Reset until the  
operating conditions are met.  
12.3.3  
POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 64 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates from the 31 kHz  
LFINTOSC oscillator. For more information, see  
Section 3.5 “Internal Clock Modes”. The chip is kept  
in Reset as long as PWRT is active. The PWRT delay  
allows the VDD to rise to an acceptable level. A  
Configuration bit, PWRTE, can disable (if set) or enable  
(if cleared or programmed) the Power-up Timer. The  
Power-up Timer should be enabled when Brown-out  
Reset is enabled, although it is not required.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
12.3.2  
MCLR  
PIC16F684 has a noise filter in the MCLR Reset path.  
The filter will detect and ignore small pulses.  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
The Power-up Timer delay will varies from chip-to-chip  
due to:  
Voltages applied to the MCLR pin that exceed its  
specification can result in both MCLR Resets and  
excessive current beyond the device specification  
during the ESD event. For this reason, Microchip  
recommends that the MCLR pin no longer be tied  
directly to VDD. The use of an RC network, as shown in  
Figure 12-2, is suggested.  
• VDD variation  
Temperature variation  
• Process variation  
See DC parameters for details (Section 15.0  
“Electrical Specifications”).  
An internal MCLR option is enabled by clearing the  
MCLRE bit in the Configuration Word register. When  
MCLRE = 0, the Reset signal to the chip is generated  
internally. When the MCLRE = 1, the RA3/MCLR pin  
becomes an external Reset input. In this mode, the  
RA3/MCLR pin has a weak pull-up to VDD.  
Note:  
Voltage spikes below VSS at the MCLR  
pin, inducing currents greater than 80 mA,  
may cause latch-up. Thus, a series resis-  
tor of 50-100 Ω should be used when  
applying a “low” level to the MCLR pin,  
rather than pulling this pin directly to VSS.  
DS41202F-page 100  
© 2007 Microchip Technology Inc.  
PIC16F684  
If VDD drops below VBOR while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOR, the Power-up Timer will execute a  
64 ms Reset.  
12.3.4  
BROWN-OUT RESET (BOR)  
The BOREN0 and BOREN1 bits in the Configuration  
Word register select one of four BOR modes. Two  
modes have been added to allow software or hardware  
control of the BOR enable. When BOREN<1:0> = 01,  
the SBOREN bit of the PCON register enables/disables  
the BOR, allowing it to be controlled in software. By  
selecting BOREN<1:0> = 10, the BOR is automatically  
disabled in Sleep to conserve power and enabled on  
wake-up. In this mode, the SBOREN bit is disabled.  
See Register 12-1 for the Configuration Word  
definition.  
12.3.5  
BOR CALIBRATION  
The PIC16F684 stores the BOR calibration values in  
fuses located in the Calibration Word register (2008h).  
The Calibration Word register is not erased when using  
the specified bulk erase sequence in the  
“PIC12F6XX/16F6XX Memory Programming Specifi-  
cation” (DS41204) and thus, does not require  
reprogramming.  
A brown-out occurs when VDD falls below VBOR for  
greater than parameter TBOR (see Section 15.0  
“Electrical Specifications”). The brown-out condition  
will reset the device. This will occur regardless of VDD  
slew rate. A Brown-out Reset may not occur if VDD falls  
below VBOR for less than parameter TBOR.  
Note:  
Address 2008h is beyond the user pro-  
gram memory space. It belongs to the  
special configuration memory space  
(2000h-3FFFh), which can be accessed  
only  
during  
programming.  
See  
On any Reset (Power-on, Brown-out Reset, Watchdog  
Timer, etc.), the chip will remain in Reset until VDD rises  
above VBOR (see Figure 12-3). If enabled, the  
Power-up Timer will be invoked by the Reset and keep  
the chip in Reset an additional 64 ms.  
“PIC12F6XX/16F6XX Memory Program-  
ming Specification” (DS41204) for more  
information.  
Note:  
The Power-up Timer is enabled by the  
PWRTE bit in the Configuration Word  
register.  
FIGURE 12-3:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
< 64 ms  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
Note 1: 64 ms delay only if PWRTE bit is programmed to ‘0’.  
© 2007 Microchip Technology Inc.  
DS41202F-page 101  
PIC16F684  
12.3.6  
TIME-OUT SEQUENCE  
12.3.7  
POWER CONTROL (PCON)  
REGISTER  
On power-up, the time-out sequence is as follows:  
• PWRT time-out is invoked after POR has expired.  
The Power Control register PCON (address 8Eh) has  
two Status bits to indicate what type of Reset occurred  
last.  
• OST is activated after the PWRT time-out has  
expired.  
Bit 0 is BOR (Brown-out). BOR is unknown on  
Power-on Reset. It must then be set by the user and  
checked on subsequent Resets to see if BOR = 0,  
indicating that a Brown-out has occurred. The BOR  
Status bit is a “don’t care” and is not necessarily  
predictable if the brown-out circuit is disabled  
The total time-out will vary based on oscillator  
configuration and PWRTE bit status. For example, in EC  
mode with PWRTE bit erased (PWRT disabled), there  
will be no time-out at all. Figure 12-4, Figure 12-5 and  
Figure 12-6 depict time-out sequences. The device can  
execute code from the INTOSC while OST is active by  
enabling Two-Speed Start-up or Fail-Safe Monitor (see  
Section 3.7.2 “Two-speed Start-up Sequence” and  
Section 3.8 “Fail-Safe Clock Monitor”).  
(BOREN<1:0>  
register).  
= 00 in the Configuration Word  
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
1’ to this bit following a Power-on Reset. On a subse-  
quent Reset, if POR is ‘0’, it will indicate that a  
Power-on Reset has occurred (i.e., VDD may have  
gone too low).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then,  
bringing MCLR high will begin execution immediately  
(see Figure 12-5). This is useful for testing purposes or  
to synchronize more than one PIC16F684 device  
operating in parallel.  
For more information, see Section 4.2.4 “Ultra  
Low-Power  
“Brown-Out Reset (BOR)”.  
Wake-up”  
and  
Section 12.3.4  
Table 12-5 shows the Reset conditions for some  
special registers, while Table 12-4 shows the Reset  
conditions for all the registers.  
TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Brown-out Reset  
Wake-up from  
Sleep  
Oscillator Configuration  
PWRTE = 0  
PWRTE = 1  
PWRTE = 0  
PWRTE = 1  
1024 • TOSC  
XT, HS, LP  
TPWRT + 1024 •  
TOSC  
1024 • TOSC  
TPWRT + 1024 •  
TOSC  
1024 • TOSC  
RC, EC, INTOSC  
TPWRT  
TPWRT  
TABLE 12-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
Condition  
0
u
u
u
x
0
u
u
1
1
0
0
1
1
u
0
Power-on Reset  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
u
u
u
u
u
1
u
0
MCLR Reset during normal operation  
MCLR Reset during Sleep  
Legend: u= unchanged, x= unknown  
TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET  
Value on:  
Value on  
all other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
Resets(1)  
PCON  
ULPWUE SBOREN  
RP0 TO  
Z
POR  
DC  
BOR --01 --qq --0u --uu  
0001 1xxx 000q quuu  
STATUS  
IRP  
RP1  
PD  
C
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Shaded cells are not used by BOR.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
DS41202F-page 102  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 12-4:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 12-5:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 12-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
© 2007 Microchip Technology Inc.  
DS41202F-page 103  
PIC16F684  
TABLE 12-4: INITIALIZATION CONDITION FOR REGISTERS  
Wake-up from Sleep through  
Interrupt  
Wake-up from Sleep through  
WDT Time-out  
MCLR Reset  
Power-on  
Register  
Address  
WDT Reset  
Reset  
Brown-out Reset(1)  
W
00h/80h  
01h  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--x0 x000  
--xx 0000  
---0 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
-000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
---0 1000  
0000 0000  
---- --10  
xxxx xxxx  
00-0 0000  
1111 1111  
--11 1111  
--11 1111  
0000 0000  
--01 --0x  
-110 x000  
uuuu uuuu  
xxxx xxxx  
uuuu uuuu  
0000 0000  
000q quuu(4)  
uuuu uuuu  
--u0 u000  
--uu 0000  
---0 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
---0 1000  
0000 0000  
---- --10  
uuuu uuuu  
00-0 0000  
1111 1111  
--11 1111  
--11 1111  
0000 0000  
--0u --uq(1, 5)  
-110 q000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
PC + 1(3)  
INDF  
TMR0  
PCL  
02h/82h  
03h/83h  
04h/84h  
05h  
STATUS  
uuuq quuu(4)  
uuuu uuuu  
--uu uuuu  
--uu uuuu  
---u uuuu  
uuuu uuuu(2)  
uuuu uuuu(2)  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uu-u uuuu  
uuuu uuuu  
--uu uuuu  
--uu uuuu  
uuuu uuuu  
--uu --uu  
-uuu uuuu  
FSR  
PORTA(6)  
PORTC(6)  
PCLATH  
INTCON  
PIR1  
07h  
0Ah/8Ah  
0Bh/8Bh  
0Ch  
TMR1L  
0Eh  
TMR1H  
T1CON  
TMR2  
0Fh  
10h  
11h  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
PWM1CON  
ECCPAS  
WDTCON  
CMCON0  
CMCON1  
ADRESH  
ADCON0  
OPTION_REG  
TRISA  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Eh  
1Fh  
81h  
85h  
TRISC  
87h  
PIE1  
8Ch  
PCON  
8Eh  
OSCCON  
8Fh  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 12-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: Port pins with analog functions controlled by the ANSEL register will read ‘0’ immediately after a Reset  
even though the data latches are either undefined (POR) or unchanged (other Resets).  
DS41202F-page 104  
© 2007 Microchip Technology Inc.  
PIC16F684  
TABLE 12-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)  
Wake-up from Sleep through  
Interrupt  
Wake-up from Sleep through  
WDT Time-out (Continued)  
MCLR Reset  
Power-on  
Reset  
Register  
Address  
WDT Reset (Continued)  
Brown-out Reset(1)  
OSCTUNE  
ANSEL  
PR2  
90h  
91h  
92h  
95h  
96h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
---0 0000  
1111 1111  
1111 1111  
--11 -111  
--00 0000  
0-0- 0000  
0000 0000  
0000 0000  
---- x000  
---- ----  
xxxx xxxx  
-000 ----  
---u uuuu  
1111 1111  
1111 1111  
--11 -111  
--00 0000  
0-0- 0000  
0000 0000  
0000 0000  
---- q000  
---- ----  
uuuu uuuu  
-000 ----  
---u uuuu  
uuuu uuuu  
1111 1111  
uuuu uuuu  
--uu uuuu  
u-u- uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
---- ----  
uuuu uuuu  
-uuu ----  
WPUA  
IOCA  
VRCON  
EEDAT  
EEADR  
EECON1  
EECON2  
ADRESL  
ADCON1  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 12-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: Port pins with analog functions controlled by the ANSEL register will read ‘0’ immediately after a Reset  
even though the data latches are either undefined (POR) or unchanged (other Resets).  
TABLE 12-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
Status  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
--01 --0x  
--0u --uu  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
000h  
000h  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
--0u --uu  
--0u --uu  
--uu --uu  
--01 --u0  
--uu --uu  
WDT Wake-up  
PC + 1  
000h  
PC + 1(1)  
Brown-out Reset  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with  
the interrupt vector (0004h) after execution of PC + 1.  
© 2007 Microchip Technology Inc.  
DS41202F-page 105  
PIC16F684  
For external interrupt events, such as the INT pin or  
PORTA change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends upon when the interrupt event occurs (see  
Figure 12-8). The latency is the same for one or  
two-cycle instructions. Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be  
determined by polling the interrupt flag bits. The  
interrupt flag bit(s) must be cleared in software before  
re-enabling interrupts to avoid multiple interrupt  
requests.  
12.4 Interrupts  
The PIC16F684 has 11 sources of interrupt:  
• External Interrupt RA2/INT  
• Timer0 Overflow Interrupt  
• PORTA Change Interrupts  
• 2 Comparator Interrupts  
• A/D Interrupt  
• Timer1 Overflow Interrupt  
• Timer2 Match Interrupt  
• EEPROM Data Write Interrupt  
• Fail-Safe Clock Monitor Interrupt  
• Enhanced CCP Interrupt  
Note 1: Individual interrupt flag bits are set,  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The interrupts, which were  
ignored, are still pending to be serviced  
when the GIE bit is set again.  
The Interrupt Control register (INTCON) and Peripheral  
Interrupt Request Register 1 (PIR1) record individual  
interrupt requests in flag bits. The INTCON register  
also has individual and global interrupt enable bits.  
The Global Interrupt Enable bit, GIE of the INTCON  
register, enables (if set) all unmasked interrupts, or  
disables (if cleared) all interrupts. Individual interrupts  
can be disabled through their corresponding enable  
bits in the INTCON register and PIE1 register. GIE is  
cleared on Reset.  
For additional information on Timer1, Timer2,  
comparators, ADC, data EEPROM or Enhanced CCP  
modules, refer to the respective peripheral section.  
12.4.1  
RA2/INT INTERRUPT  
When an interrupt is serviced, the following actions  
occur automatically:  
The external interrupt on the RA2/INT pin is  
edge-triggered; either on the rising edge if the INTEDG  
bit of the OPTION register is set, or the falling edge, if  
the INTEDG bit is clear. When a valid edge appears on  
the RA2/INT pin, the INTF bit of the INTCON register is  
set. This interrupt can be disabled by clearing the INTE  
control bit of the INTCON register. The INTF bit must  
be cleared by software in the Interrupt Service Routine  
before re-enabling this interrupt. The RA2/INT interrupt  
can wake-up the processor from Sleep, if the INTE bit  
was set prior to going into Sleep. See Section 12.7  
“Power-Down Mode (Sleep)” for details on Sleep and  
Figure 12-10 for timing of wake-up from Sleep through  
RA2/INT interrupt.  
• The GIE is cleared to disable any further interrupt.  
• The return address is pushed onto the stack.  
• The PC is loaded with 0004h.  
The Return from Interrupt instruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables unmasked interrupts.  
The following interrupt flags are contained in the  
INTCON register:  
• INT Pin Interrupt  
• PORTA Change Interrupt  
• Timer0 Overflow Interrupt  
Note:  
The ANSEL and CMCON0 registers must  
be initialized to configure an analog  
channel as a digital input. Pins configured  
as analog inputs will read ‘0’ and cannot  
generate an interrupt.  
The peripheral interrupt flags are contained in the PIR1  
register. The corresponding interrupt enable bit is  
contained in the PIE1 register.  
The following interrupt flags are contained in the PIR1  
register:  
• EEPROM Data Write Interrupt  
• A/D Interrupt  
• 2 Comparator Interrupts  
• Timer1 Overflow Interrupt  
• Timer2 Match Interrupt  
• Fail-Safe Clock Monitor Interrupt  
• Enhanced CCP Interrupt  
DS41202F-page 106  
© 2007 Microchip Technology Inc.  
PIC16F684  
12.4.2  
TIMER0 INTERRUPT  
12.4.3  
PORTA INTERRUPT-ON-CHANGE  
An overflow (FFh 00h) in the TMR0 register will set  
the T0IF bit of the INTCON register. The interrupt can  
be enabled/disabled by setting/clearing T0IE bit of the  
INTCON register. See Section 5.0 “Timer0 Module”  
for operation of the Timer0 module.  
An input change on PORTA sets the RAIF bit of the  
INTCON register. The interrupt can be  
enabled/disabled by setting/clearing the RAIE bit of the  
INTCON register. Plus, individual pins can be  
configured through the IOCA register.  
Note:  
If a change on the I/O pin should occur  
when any PORTA operation is being  
executed, then the RAIF interrupt flag may  
not get set.  
FIGURE 12-7:  
INTERRUPT LOGIC  
IOC-RA0  
IOCA0  
IOC-RA1  
IOCA1  
IOC-RA2  
IOCA2  
IOC-RA3  
IOCA3  
IOC-RA4  
IOCA4  
IOC-RA5  
IOCA5  
(1)  
Wake-up (If in Sleep mode)  
T0IF  
T0IE  
TMR2IF  
TMR2IE  
INTF  
INTE  
RAIF  
Interrupt to CPU  
TMR1IF  
TMR1IE  
RAIE  
C1IF  
C1IE  
PEIE  
GIE  
C2IF  
C2IE  
ADIF  
ADIE  
EEIF  
EEIE  
Note 1: Some peripherals depend upon the system clock for  
operation. Since the system clock is suspended during Sleep, only  
those peripherals which do not depend upon the system clock will wake  
the part from Sleep. See Section 12.7.1 “Wake-up from Sleep”.  
OSFIF  
OSFIE  
CCP1IF  
CCP1IE  
© 2007 Microchip Technology Inc.  
DS41202F-page 107  
PIC16F684  
FIGURE 12-8:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(2)  
(5)  
Interrupt Latency  
INTF flag  
(INTCON reg.)  
GIE bit  
(INTCON reg.)  
INSTRUCTION FLOW  
PC  
PC + 1  
0004h  
0005h  
PC  
Inst (PC)  
PC + 1  
Instruction  
Fetched  
Inst (PC + 1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC – 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency  
is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in INTOSC and RC Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 15.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS  
Value on  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
INTCON  
IOCA  
PIR1  
GIE  
PEIE  
T0IE  
INTE  
RAIE  
T0IF  
INTF  
RAIF  
0000 0000 0000 0000  
IOCA5 IOCA4 IOCA3 IOCA2  
IOCA1  
IOCA0 --00 0000 --00 0000  
EEIF  
EEIE  
ADIF CCP1IF C2IF  
ADIE CCP1IE C2IE  
C1IF OSFIF TMR2IF TMR1IF 0000 0000 0000 0000  
C1IE OSFIE TMR2IE TMR1IE 0000 0000 0000 0000  
PIE1  
Legend: x= unknown, u= unchanged, – = unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by the interrupt module.  
DS41202F-page 108  
© 2007 Microchip Technology Inc.  
PIC16F684  
12.5 Context Saving During Interrupts  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key  
registers during an interrupt (e.g., W and STATUS  
registers). This must be implemented in software.  
Temporary  
holding  
registers  
W_TEMP  
and  
STATUS_TEMP should be placed in the last 16 bytes  
of GPR (see Figure 2-2). These 16 locations are  
common to all banks and do not require banking. This  
makes context save and restore operations simpler.  
The code shown in Example 12-1 can be used to:  
• Store the W register  
• Store the STATUS register  
• Execute the ISR code  
• Restore the Status (and Bank Select Bit register)  
• Restore the W register  
Note:  
The PIC16F684 does not require saving  
the PCLATH. However, if computed  
GOTOs are used in both the ISR and the  
main code, the PCLATH must be saved  
and restored in the ISR.  
EXAMPLE 12-1:  
SAVING STATUS AND W REGISTERS IN RAM  
MOVWF  
SWAPF  
W_TEMP  
STATUS,W  
;Copy W to TEMP register  
;Swap status to be saved into W  
;Swaps are used because they do not affect the status bits  
;Save status to bank zero STATUS_TEMP register  
MOVWF  
:
STATUS_TEMP  
:(ISR)  
:
;Insert user code here  
SWAPF  
STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
© 2007 Microchip Technology Inc.  
DS41202F-page 109  
PIC16F684  
12.6.2  
WDT CONTROL  
12.6 Watchdog Timer (WDT)  
The WDTE bit is located in the Configuration Word  
register. When set, the WDT runs continuously.  
The WDT has the following features:  
• Operates from the LFINTOSC (31 kHz)  
• Contains a 16-bit prescaler  
When the WDTE bit in the Configuration Word register  
is set, the SWDTEN bit of the WDTCON register has no  
effect. If WDTE is clear, then the SWDTEN bit can be  
used to enable and disable the WDT. Setting the bit will  
enable it and clearing the bit will disable it.  
• Shares an 8-bit prescaler with Timer0  
• Time-out period is from 1 ms to 268 seconds  
• Configuration bit and software controlled  
WDT is cleared under certain conditions described in  
Table 12-7.  
The PSA and PS<2:0> bits of the OPTION register  
have the same function as in previous versions of the  
PIC16F684  
Family  
of  
microcontrollers.  
See  
12.6.1  
WDT OSCILLATOR  
Section 5.0 “Timer0 Module” for more information.  
The WDT derives its time base from the 31 kHz  
LFINTOSC. The LTS bit of the OSCCON register does  
not reflect that the LFINTOSC is enabled.  
The value of WDTCON is ‘---0 1000’ on all Resets.  
This gives a nominal time base of 17 ms.  
Note:  
When the Oscillator Start-up Timer (OST)  
is invoked, the WDT is held in Reset,  
because the WDT Ripple Counter is used  
by the OST to perform the oscillator delay  
count. When the OST count has expired,  
the WDT will begin counting (if enabled).  
FIGURE 12-9:  
WATCHDOG TIMER BLOCK DIAGRAM  
0
1
From Timer0 Clock Source  
Prescaler(1)  
16-bit WDT Prescaler  
8
PSA  
PS<2:0>  
31 kHz  
LFINTOSC Clock  
WDTPS<3:0>  
To Timer0  
1
0
PSA  
WDTE from the Configuration Word Register  
SWDTEN from WDTCON  
WDT Time-out  
Note 1: This is the shared Timer0/WDT prescaler. See Section 5.0 “Timer0 Module” for more information.  
TABLE 12-7: WDT STATUS  
Conditions  
WDT  
WDTE = 0  
CLRWDTCommand  
Oscillator Fail Detected  
Cleared  
Exit Sleep + System Clock = T1OSC, EXTRC, INTRC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
DS41202F-page 110  
© 2007 Microchip Technology Inc.  
PIC16F684  
REGISTER 12-2: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
SWDTEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-1  
Unimplemented: Read as ‘0’  
WDTPS<3:0>: Watchdog Timer Period Select bits  
Bit Value = Prescale Rate  
0000 = 1:32  
0001 = 1:64  
0010 = 1:128  
0011 = 1:256  
0100 = 1:512 (Reset value)  
0101 = 1:1024  
0110 = 1:2048  
0111 = 1:4096  
1000 = 1:8192  
1001 = 1:16384  
1010 = 1:32768  
1011 = 1:65536  
1100 = Reserved  
1101 = Reserved  
1110 = Reserved  
1111 = Reserved  
bit 0  
SWDTEN: Software Enable or Disable the Watchdog Timer(1)  
1= WDT is turned on  
0= WDT is turned off (Reset value)  
Note 1: If WDTE Configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTE  
Configuration bit = 0, then it is possible to turn WDT on/off with this control bit.  
TABLE 12-8: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WDTCON  
WDTPS3 WDTPS2 WSTPS1 WDTPS0 SWDTEN ---0 1000 ---0 1000  
OPTION_REG RAPU INTEDG T0CS  
T0SE  
MCLRE PWRTE WDTE  
Shaded cells are not used by the Watchdog Timer.  
PSA  
PS2  
PS1  
PS0  
1111 1111 1111 1111  
CONFIG  
CPD  
CP  
FOSC2 FOSC1  
FOSC0  
Legend:  
Note 1: See Register 12-1 for operation of all Configuration Word register bits.  
© 2007 Microchip Technology Inc.  
DS41202F-page 111  
PIC16F684  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up  
occurs regardless of the state of the GIE bit. If the GIE  
bit is clear (disabled), the device continues execution at  
the instruction after the SLEEPinstruction. If the GIE bit  
is set (enabled), the device executes the instruction  
after the SLEEPinstruction, then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
12.7 Power-Down Mode (Sleep)  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
If the Watchdog Timer is enabled:  
• WDT will be cleared but keeps running.  
• PD bit in the STATUS register is cleared.  
• TO bit is set.  
• Oscillator driver is turned off.  
• I/O ports maintain the status they had before SLEEP  
was executed (driving high, low or high-impedance).  
Note:  
If the global interrupts are disabled (GIE is  
cleared) and any interrupt source has both  
its interrupt enable bit and the correspond-  
ing interrupt flag bits set, the device will  
immediately wake-up from Sleep.  
For lowest current consumption in this mode, all I/O pins  
should be either at VDD or VSS, with no external circuitry  
drawing current from the I/O pin and the comparators  
and CVREF should be disabled. I/O pins that are  
high-impedance inputs should be pulled high or low  
externally to avoid switching currents caused by floating  
inputs. The T0CKI input should also be at VDD or VSS for  
lowest current consumption. The contribution from  
on-chip pull-ups on PORTA should be considered.  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
12.7.2  
WAKE-UP USING INTERRUPTS  
The MCLR pin must be at a logic high level.  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
Note:  
It should be noted that a Reset generated  
by a WDT time-out does not drive MCLR  
pin low.  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP. Therefore, the WDT and WDT  
prescaler and postscaler (if enabled) will not be  
cleared, the TO bit will not be set and the PD bit  
will not be cleared.  
12.7.1  
WAKE-UP FROM SLEEP  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin.  
• If the interrupt occurs during or after the  
execution of a SLEEPinstruction, the device will  
Immediately wake-up from Sleep. The SLEEP  
instruction is executed. Therefore, the WDT and  
WDT prescaler and postscaler (if enabled) will be  
cleared, the TO bit will be set and the PD bit will  
be cleared.  
2. Watchdog Timer wake-up (if WDT was  
enabled).  
3. Interrupt from RA2/INT pin, PORTA change or a  
peripheral interrupt.  
The first event will cause a device Reset. The two latter  
events are considered a continuation of program  
execution. The TO and PD bits in the STATUS register  
can be used to determine the cause of a device Reset.  
The PD bit, which is set on power-up, is cleared when  
Sleep is invoked. TO bit is cleared if WDT wake-up  
occurred.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
The following peripheral interrupts can wake the device  
from Sleep:  
To ensure that the WDT is cleared, a CLRWDTinstruction  
should be executed before a SLEEP instruction. See  
Figure 12-10 for more details.  
1. Timer1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
2. ECCP Capture mode interrupt.  
3. A/D conversion (when A/D clock source is FRC).  
4. EEPROM write operation completion.  
5. Comparator output changes state.  
6. Interrupt-on-change.  
7. External Interrupt from INT pin.  
Other peripherals cannot generate interrupts since  
during Sleep, no on-chip clocks are present.  
DS41202F-page 112  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 12-10:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTF flag  
(INTCON reg.)  
Interrupt Latency(3)  
GIE bit  
(INTCON reg.)  
Processor in  
Sleep  
Instruction Flow  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Sleep  
Inst(PC + 1)  
Inst(PC – 1)  
Inst(0004h)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC, INTOSC and RC Oscillator modes.  
3: GIE = ‘1’ assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = ‘0’, execution will continue in-line.  
4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.  
12.8 Code Protection  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out using ICSPfor verification purposes.  
Note:  
The entire data EEPROM and Flash pro-  
gram memory will be erased when the  
code protection is turned off. See the  
“PIC12F6XX/16F6XX Memory  
Programming Specification” (DS41204)  
for more information.  
12.9 ID Locations  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution but are  
readable and writable during Program/Verify mode.  
Only the Least Significant 7 bits of the ID locations are  
used.  
© 2007 Microchip Technology Inc.  
DS41202F-page 113  
PIC16F684  
12.10 In-Circuit Serial Programming  
12.11 In-Circuit Debugger  
The PIC16F684 microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with five connections for:  
Since in-circuit debugging requires access to three  
pins, MPLAB® ICD 2 development with a 14-pin device  
is not practical. A special 20-pin PIC16F684 ICD device  
is used with MPLAB ICD 2 to provide separate clock,  
data and MCLR pins and frees all normally available  
pins to the user.  
• clock  
• data  
• power  
A special debugging adapter allows the ICD device to  
be used in place of a PIC16F684 device. The  
debugging adapter is the only source of the ICD device.  
• ground  
• programming voltage  
This allows customers to manufacture boards with  
unprogrammed devices and then program the micro-  
controller just before shipping the product. This also  
allows the most recent firmware or a custom firmware  
to be programmed.  
When the ICD pin on the PIC16F684 ICD device is held  
low, the In-Circuit Debugger functionality is enabled.  
This function allows simple debugging functions when  
used with MPLAB ICD 2. When the microcontroller has  
this feature enabled, some of the resources are not  
available for general use. Table 12-9 shows which  
features are consumed by the background debugger.  
The device is placed into a Program/Verify mode by  
holding the RA0 and RA1 pins low, while raising the  
MCLR (VPP) pin from VIL to VIHH. See the  
“PIC12F6XX/16F6XX  
Memory  
Programming  
TABLE 12-9: DEBUGGER RESOURCES  
Specification” (DS41204) for more information. RA0  
becomes the programming data and RA1 becomes the  
programming clock. Both RA0 and RA1 are Schmitt  
Trigger inputs in Program/Verify mode.  
Resource  
Description  
I/O pins  
Stack  
ICDCLK, ICDDATA  
1 level  
A typical In-Circuit Serial Programming connection is  
shown in Figure 12-11.  
Program Memory Address 0h must be NOP  
700h-7FFh  
For more information, see “MPLAB® ICD 2 In-Circuit  
Debugger User’s Guide” (DS51331), available on  
Microchip’s web site (www.microchip.com).  
FIGURE 12-11:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
To Normal  
FIGURE 12-12:  
20-Pin PDIP  
20-PIN ICD PINOUT  
Connections  
External  
Connector  
Signals  
In-Circuit Debug Device  
*
PIC16F684  
NC  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
ICDCLK  
ICDDATA  
+5V  
0V  
VDD  
ICDMCLR/VPP  
VSS  
VDD  
RA5  
RA4  
3
Vss  
RA0  
RA1  
RA2  
VPP  
MCLR/VPP/RA3  
4
5
RA1  
RA0  
CLK  
6
RA3  
RC5  
Data I/O  
7
RC0  
RC1  
RC2  
NC  
RC4  
8
9
RC3  
ICD  
10  
*
*
*
To Normal  
Connections  
* Isolation devices (as required)  
DS41202F-page 114  
© 2007 Microchip Technology Inc.  
PIC16F684  
TABLE 13-1: OPCODE FIELD  
13.0 INSTRUCTION SET SUMMARY  
DESCRIPTIONS  
The PIC16F684 instruction set is highly orthogonal and  
is comprised of three basic categories:  
Field  
Description  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
k
Each PIC16 instruction is a 14-bit word divided into an  
opcode, which specifies the instruction type and one or  
more operands, which further specify the operation of  
the instruction. The formats for each of the categories  
is presented in Figure 13-1, while the various opcode  
fields are summarized in Table 13-1.  
x
Don’t care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
Table 13-2 lists the instructions recognized by the  
MPASMTM assembler.  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
PC  
TO  
C
Program Counter  
Time-out bit  
Carry bit  
DC  
Z
Digit carry bit  
Zero bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
PD  
Power-down bit  
FIGURE 13-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ‘b’ represents a bit field  
designator, which selects the bit affected by the  
operation, while ‘f’ represents the address of the file in  
which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
For literal and control operations, ‘k’ represents an  
8-bit or 11-bit constant, or literal value.  
OPCODE  
d
f (FILE #)  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a  
nominal instruction execution time of 1 μs. All  
instructions are executed within a single instruction  
cycle, unless a conditional test is true, or the program  
counter is changed as a result of an instruction. When  
this occurs, the execution takes two instruction cycles,  
with the second cycle executed as a NOP.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
Literal and control operations  
General  
13  
8
7
0
0
13.1 Read-Modify-Write Operations  
OPCODE  
k (literal)  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion, or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
For example, a CLRF PORTA instruction will read  
PORTA, clear all the data bits, then write the result back  
to PORTA. This example would have the unintended  
consequence of clearing the condition that set the RAIF  
flag.  
© 2007 Microchip Technology Inc.  
DS41202F-page 115  
PIC16F684  
TABLE 13-2: PIC16F684 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Description  
Operands  
Status  
Affected  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
1, 2  
1, 2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1, 2  
1, 2  
1, 2, 3  
1, 2  
1, 2, 3  
1, 2  
1, 2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
Move W to f  
No Operation  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
00 0010 dfff ffff C, DC, Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1, 2  
1, 2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Call Subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C, DC, Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO, PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO, PD  
11 110x kkkk kkkk C, DC, Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
DS41202F-page 116  
© 2007 Microchip Technology Inc.  
PIC16F684  
13.2 Instruction Descriptions  
BCF  
Bit Clear f  
ADDLW  
Add literal and W  
Syntax:  
[ label ] BCF f,b  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) + k (W)  
C, DC, Z  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal ‘k’  
and the result is placed in the  
W register.  
Bit ‘b’ in register ‘f’ is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
1(f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit ‘b’ in register ‘f’ is set.  
Description:  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If  
‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
BTFSC  
Bit Test, Skip if Clear  
ANDLW  
AND literal with W  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 0  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
If bit ‘b’, in register ‘f’, is ‘0’, the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a 2-cycle instruction.  
ANDWF  
AND W with f  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
AND the W register with register  
‘f’. If ‘d’ is ‘0’, the result is stored in  
the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
© 2007 Microchip Technology Inc.  
DS41202F-page 117  
PIC16F684  
CLRWDT  
Clear Watchdog Timer  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[ label ] CLRWDT  
Syntax:  
[ label ] BTFSS f,b  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
0 b < 7  
00h WDT  
0WDT prescaler,  
1TO  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
1PD  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
Status Affected: TO, PD  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOP  
is executed instead, making this a  
2-cycle instruction.  
Status bits TO and PD are set.  
CALL  
Call Subroutine  
COMF  
Complement f  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in  
register ‘f’.  
Description:  
Call Subroutine. First, return  
address (PC + 1) is pushed onto  
the stack. The eleven-bit  
immediate address is loaded into  
PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two-cycle instruction.  
CLRF  
Clear f  
DECF  
Decrement f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are  
cleared and the Z bit is set.  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
DS41202F-page 118  
© 2007 Microchip Technology Inc.  
PIC16F684  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, then a NOPis  
executed instead, making it a  
2-cycle instruction.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, a NOPis executed  
instead, making it a 2-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the  
W register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a  
two-cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
© 2007 Microchip Technology Inc.  
DS41202F-page 119  
PIC16F684  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
MOVF  
Move f  
Syntax:  
f
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
0 f 127  
d [0,1]  
Operation:  
(f) (dest)  
None  
Status Affected:  
Description:  
Z
Move data from W register to  
register ‘f’.  
The contents of register f is  
moved to a destination dependent  
upon the status of d. If d = 0,  
destination is W register. If d = 1,  
the destination is file register f  
itself. d = 1is useful to test a file  
register since status flag Z is  
affected.  
Words:  
1
1
Cycles:  
Example:  
MOVW  
F
OPTION  
Before Instruction  
OPTION = 0xFF  
Words:  
1
1
W
=
0x4F  
After Instruction  
Cycles:  
Example:  
OPTION = 0x4F  
W
MOVF  
FSR, 0  
=
0x4F  
After Instruction  
W
=
value in FSR  
register  
Z
=
1
MOVLW  
Syntax:  
Move literal to W  
NOP  
No Operation  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] NOP  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
k (W)  
No operation  
Status Affected: None  
None  
Description:  
The eight-bit literal ‘k’ is loaded into  
W register. The “don’t cares” will  
assemble as ‘0’s.  
No operation.  
1
Cycles:  
1
Words:  
1
1
NOP  
Example:  
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
DS41202F-page 120  
© 2007 Microchip Technology Inc.  
PIC16F684  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RETLW  
Return with literal in W  
Syntax:  
Syntax:  
[ label ] RETLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC,  
1GIE  
k (W);  
TOS PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
Return from Interrupt. Stack is  
POPed and Top-of-Stack (TOS) is  
loaded in the PC. Interrupts are  
enabled by setting Global  
Interrupt Enable bit, GIE  
The W register is loaded with the  
eight bit literal ‘k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
(INTCON<7>). This is a two-cycle  
instruction.  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
CALL TABLE;W contains  
table  
Cycles:  
Example:  
2
;offset value  
RETFIE  
;W now has table value  
TABLE  
After Interrupt  
PC = TOS  
GIE =  
1
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
RETLW k2  
;
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
RETURN  
Return from Subroutine  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
TOS PC  
Status Affected: None  
Description: Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
© 2007 Microchip Technology Inc.  
DS41202F-page 121  
PIC16F684  
RLF  
Rotate Left f through Carry  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0PD  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
C
Register f  
Words:  
1
1
Cycles:  
Example:  
RLF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
SUBLW  
Subtract W from literal  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Syntax:  
[ label ] RRF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
k - (W) → (W)  
Operation:  
See description below  
C
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Description: The W register is subtracted (2’s  
complement method) from the  
eight-bit literal ‘k’. The result is  
placed in the W register.  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is placed  
back in register ‘f’.  
C = 0  
W > k  
C = 1  
W k  
DC = 0  
DC = 1  
W<3:0> > k<3:0>  
W<3:0> k<3:0>  
C
Register f  
DS41202F-page 122  
© 2007 Microchip Technology Inc.  
PIC16F684  
SUBWF  
Subtract W from f  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k → (W)  
Z
Operation:  
(f) - (W) → (destination)  
Status Affected: C, DC, Z  
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
Description:  
Subtract (2’s complement method)  
W register from register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f.  
C = 0  
W > f  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> > f<3:0>  
W<3:0> f<3:0>  
SWAPF  
Swap Nibbles in f  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Operation:  
(W) .XOR. (f) → (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Description: The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in the W  
register. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
© 2007 Microchip Technology Inc.  
DS41202F-page 123  
PIC16F684  
NOTES:  
DS41202F-page 124  
© 2007 Microchip Technology Inc.  
PIC16F684  
14.1 MPLAB Integrated Development  
Environment Software  
14.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2007 Microchip Technology Inc.  
DS41202F-page 125  
PIC16F684  
14.2 MPASM Assembler  
14.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
14.6 MPLAB SIM Software Simulator  
14.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcontrol-  
lers and the dsPIC30 and dsPIC33 family of digital sig-  
nal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
14.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS41202F-page 126  
© 2007 Microchip Technology Inc.  
PIC16F684  
14.7 MPLAB ICE 2000  
High-Performance  
14.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
14.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
14.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC® and MCU devices. It debugs and  
programs PIC® and dsPIC® Flash microcontrollers with  
the easy-to-use, powerful graphical user interface of the  
MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high speed, noise tolerant, low-  
voltage differential signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2007 Microchip Technology Inc.  
DS41202F-page 127  
PIC16F684  
14.11 PICSTART Plus Development  
Programmer  
14.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
14.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart® battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
and the latest “Product Selector Guide” (DS00148) for  
the complete list of demonstration, development and  
evaluation kits.  
DS41202F-page 128  
© 2007 Microchip Technology Inc.  
PIC16F684  
15.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias..........................................................................................................-40° to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS ................................................................................................... -0.3V to +6.5V  
Voltage on MCLR with respect to Vss ............................................................................................... -0.3V to +13.5V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ............................................................................................................................... 800 mW  
Maximum current out of VSS pin ...................................................................................................................... 95 mA  
Maximum current into VDD pin ......................................................................................................................... 95 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)............................................................................................................... 20 mA  
Output clamp current, IOK (Vo < 0 or Vo >VDD)......................................................................................................... 20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sunk by PORTA and PORTC (combined) ........................................................................... 90 mA  
Maximum current sourced PORTA and PORTC (combined)........................................................................... 90 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for  
extended periods may affect device reliability.  
© 2007 Microchip Technology Inc.  
DS41202F-page 129  
PIC16F684  
FIGURE 15-1:  
PIC16F684 VOLTAGE-FREQUENCY GRAPH,  
-40°C TA +125°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
0
8
10  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 15-2:  
HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE  
125  
85  
60  
25  
0
± 5%  
± 2%  
± 1%  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
DS41202F-page 130  
© 2007 Microchip Technology Inc.  
PIC16F684  
15.1 DC Characteristics: PIC16F684-I (Industrial)  
PIC16F684-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Unit  
s
Sym  
Characteristic  
Min Typ† Max  
Conditions  
VDD  
Supply Voltage  
2.0  
2.0  
3.0  
4.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
FOSC < = 8 MHz: HFINTOSC, EC  
FOSC < = 4 MHz  
FOSC < = 10 MHz  
D001  
D001C  
D001D  
FOSC < = 20 MHz  
D002* VDR  
RAM Data Retention  
Voltage(1)  
1.5  
V
Device in Sleep mode  
D003 VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See Section 12.3.1 “Power-On Reset  
(POR)” for details.  
D004* SVDD  
VDD Rise Rate to ensure  
internal Power-on Reset  
signal  
0.05  
V/ms See Section 12.3.1 “Power-On Reset  
(POR)” for details.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
© 2007 Microchip Technology Inc.  
DS41202F-page 131  
PIC16F684  
15.2 DC Characteristics: PIC16F684-I (Industrial)  
PIC16F684-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Units  
Device Characteristics  
Min  
Typ†  
Max  
No.  
VDD  
Note  
D010  
Supply Current (IDD)(1, 2)  
11  
18  
16  
28  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
mA  
μA  
μA  
mA  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32 kHz  
LP Oscillator mode  
35  
54  
D011*  
D012  
D013*  
D014  
D015  
D016*  
D017  
D018  
D019  
140  
220  
380  
260  
420  
0.8  
240  
380  
550  
360  
650  
1.1  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
130  
215  
360  
220  
375  
0.65  
8
220  
360  
520  
340  
550  
1.0  
FOSC = 1 MHz  
EC Oscillator mode  
FOSC = 4 MHz  
EC Oscillator mode  
20  
FOSC = 31 kHz  
LFINTOSC mode  
16  
40  
31  
65  
340  
500  
0.8  
450  
700  
1.2  
FOSC = 4 MHz  
HFINTOSC mode  
410  
700  
1.30  
230  
400  
0.63  
2.6  
650  
950  
1.65  
400  
680  
1.1  
FOSC = 8 MHz  
HFINTOSC mode  
FOSC = 4 MHz  
EXTRC mode(3)  
3.25  
3.35  
FOSC = 20 MHz  
HS Oscillator mode  
2.8  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave,  
from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.  
DS41202F-page 132  
© 2007 Microchip Technology Inc.  
PIC16F684  
15.3 DC Characteristics: PIC16F684-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Conditions  
Note  
Param  
No.  
Device Characteristics  
Min  
Typ†  
Max  
Units  
VDD  
D020  
Power-down Base  
Current(IPD)(2)  
0.05  
0.15  
0.35  
150  
1.0  
2.0  
3.0  
42  
1.2  
1.5  
1.8  
500  
2.2  
4.0  
7.0  
60  
μA  
μA  
μA  
nA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
3.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOR, Comparators, VREF and  
T1OSC disabled  
-40°C TA +25°C  
WDT Current(1)  
D021  
D022  
D023  
BOR Current(1)  
85  
122  
45  
32  
Comparator Current(1), both  
comparators enabled  
60  
78  
120  
30  
160  
36  
D024  
D025*  
D026  
D027  
CVREF Current(1) (high range)  
CVREF Current(1) (low range)  
T1OSC Current(1), 32.768 kHz  
45  
55  
75  
95  
39  
47  
59  
72  
98  
124  
7.0  
8.0  
12  
4.5  
5.0  
6.0  
0.30  
0.36  
1.6  
1.9  
A/D Current(1), no conversion in  
progress  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
© 2007 Microchip Technology Inc.  
DS41202F-page 133  
PIC16F684  
15.4 DC Characteristics: PIC16F684-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C for extended  
Conditions  
Units  
Param  
No.  
Device Characteristics Min  
Typ†  
Max  
VDD  
Note  
D020E Power-down Base  
0.05  
0.15  
0.35  
1
9
11  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOR, Comparators, VREF and  
T1OSC disabled  
Current (IPD)(2)  
15  
D021E  
17.5  
19  
WDT Current(1)  
BOR Current(1)  
2
3
22  
D022E  
D023E  
42  
85  
32  
60  
120  
30  
45  
75  
39  
59  
98  
4.5  
5
65  
127  
45  
Comparator Current(1), both  
comparators enabled  
78  
160  
70  
D024E  
D025E*  
D026E  
D027E  
CVREF Current(1) (high range)  
CVREF Current(1) (low range)  
T1OSC Current(1), 32.768 kHz  
90  
120  
91  
117  
156  
25  
30  
6
40  
0.30  
0.36  
12  
A/D Current(1), no conversion in  
progress  
16  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41202F-page 134  
© 2007 Microchip Technology Inc.  
PIC16F684  
15.5 DC Characteristics: PIC16F684-I (Industrial)  
PIC16F684-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O Port:  
D030  
D030A  
D031  
D032  
D033  
D033A  
with TTL buffer  
Vss  
Vss  
Vss  
VSS  
VSS  
VSS  
0.8  
V
V
V
V
V
V
4.5V VDD 5.5V  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3  
2.0V VDD 4.5V  
2.0V VDD 5.5V  
with Schmitt Trigger buffer  
(1)  
MCLR, OSC1 (RC mode)  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
Input High Voltage  
I/O ports:  
0.3 VDD  
VIH  
D040  
with TTL buffer  
2.0  
0.25 VDD + 0.8  
0.8 VDD  
0.8 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
4.5V VDD 5.5V  
2.0V VDD 4.5V  
2.0V VDD 5.5V  
D040A  
D041  
with Schmitt Trigger buffer  
MCLR  
D042  
D043  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
D043A  
D043B  
0.7 VDD  
0.9 VDD  
OSC1 (RC mode)  
(Note 1)  
(2)  
IIL  
Input Leakage Current  
D060  
I/O ports  
0.1  
1
μA VSS VPIN VDD,  
Pin at high-impedance  
(3)  
D061  
D063  
MCLR  
0.1  
0.1  
5
5
μA VSS VPIN VDD  
OSC1  
μA VSS VPIN VDD, XT, HS and  
LP oscillator configuration  
D070* IPUR  
VOL  
PORTA Weak Pull-up Current  
50  
250  
400  
0.6  
μA VDD = 5.0V, VPIN = VSS  
(5)  
Output Low Voltage  
D080  
I/O ports  
V
V
IOL = 8.5 mA, VDD = 4.5V (Ind.)  
IOH = -3.0 mA, VDD = 4.5V (Ind.)  
(5)  
VOH  
Output High Voltage  
D090  
I/O ports  
VDD – 0.7  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 10.4.1 “Using the Data EEPROM” for additional information.  
5: Including OSC2 in CLKOUT mode.  
© 2007 Microchip Technology Inc.  
DS41202F-page 135  
PIC16F684  
15.5 DC Characteristics: PIC16F684-I (Industrial)  
PIC16F684-E (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
D100  
IULP  
Ultra Low-Power Wake-Up  
Current  
200  
nA See Application Note AN879,  
Using the Microchip Ultra  
Low-Power Wake-up Module”  
(DS00879)  
Capacitive Loading Specs on  
Output Pins  
D101* COSC2 OSC2 pin  
15  
50  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101A* CIO  
All I/O pins  
pF  
Data EEPROM Memory  
Byte Endurance  
Byte Endurance  
VDD for Read/Write  
D120  
ED  
100K  
10K  
1M  
100K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D120A ED  
D121  
VDRW  
VMIN  
5.5  
V
Using EECON1 to read/write  
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW  
Erase/Write Cycle Time  
Characteristic Retention  
5
6
ms  
TRETD  
40  
Year Provided no other specifications  
are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh  
1M  
10M  
E/W -40°C TA +85°C  
(4)  
Program Flash Memory  
Cell Endurance  
D130  
EP  
10K  
1K  
100K  
10K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D130A ED  
Cell Endurance  
D131  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
D134  
VPEW  
TPEW  
TRETD  
VDD for Erase/Write  
4.5  
2
5.5  
2.5  
V
Erase/Write cycle time  
Characteristic Retention  
ms  
40  
Year Provided no other specifications  
are violated  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 10.4.1 “Using the Data EEPROM” for additional information.  
5: Including OSC2 in CLKOUT mode.  
DS41202F-page 136  
© 2007 Microchip Technology Inc.  
PIC16F684  
15.6 Thermal Considerations  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Typ  
Units  
Conditions  
TH01  
θJA  
Thermal Resistance  
Junction to Ambient  
69.8  
85.0  
100.4  
46.3  
32.5  
31.0  
31.7  
2.6  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C
14-pin PDIP package  
14-pin SOIC package  
14-pin TSSOP package  
16-pin QFN 4x0.9mm package  
14-pin PDIP package  
TH02  
θJC  
Thermal Resistance  
Junction to Case  
14-pin SOIC package  
14-pin TSSOP package  
16-pin QFN 4x0.9mm package  
For derated power calculations  
PD = PINTERNAL + PI/O  
TH03  
TH04  
TH05  
TJ  
Junction Temperature  
Power Dissipation  
150  
PD  
W
PINTERNAL Internal Power Dissipation  
W
PINTERNAL = IDD x VDD  
(NOTE 1)  
TH06  
TH07  
PI/O  
I/O Power Dissipation  
Derated Power  
W
W
PI/O = Σ (IOL * VOL) + Σ (IOH * (VDD - VOH))  
PDER = (TJ - TA)/θJA  
(NOTE 2, 3)  
PDER  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient Temperature.  
3: Maximum allowable power dissipation is the lower value of either the absolute maximum total power  
dissipation or derated power (PDER).  
© 2007 Microchip Technology Inc.  
DS41202F-page 137  
PIC16F684  
15.7  
Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O PORT  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 15-3:  
LOAD CONDITIONS  
Load Condition  
Pin  
CL  
VSS  
Legend: CL  
=
50 pF for all pins  
15 pF for OSC2 output  
DS41202F-page 138  
© 2007 Microchip Technology Inc.  
PIC16F684  
15.8 AC Characteristics: PIC16F684 (Industrial, Extended)  
FIGURE 15-4:  
CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1/CLKIN  
OS02  
OS04  
OS04  
OS03  
OSC2/CLKOUT  
(LP,XT,HS Modes)  
OSC2/CLKOUT  
(CLKOUT Mode)  
TABLE 15-1: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
(1)  
OS01  
OS02  
OS03  
FOSC  
TOSC  
TCY  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
37  
kHz LP Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz EC Oscillator mode  
kHz LP Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz RC Oscillator mode  
4
20  
20  
(1)  
Oscillator Frequency  
32.768  
0.1  
1
4
20  
DC  
27  
250  
50  
50  
4
(1)  
External CLKIN Period  
μs  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
EC Oscillator mode  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
RC Oscillator mode  
TCY = 4/FOSC  
(1)  
Oscillator Period  
30.5  
250  
50  
250  
200  
2
10,000  
1,000  
DC  
(1)  
Instruction Cycle Time  
TCY  
OS04* TosH, External CLKIN High,  
TosL External CLKIN Low  
LP oscillator  
100  
20  
0
XT oscillator  
HS oscillator  
OS05* TosR, External CLKIN Rise,  
TosF External CLKIN Fall  
LP oscillator  
0
XT oscillator  
0
HS oscillator  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at ‘min’ values with an external clock  
applied to OSC1 pin. When an external clock input is used, the ‘max’ cycle time limit is ‘DC’ (no clock) for all  
devices.  
© 2007 Microchip Technology Inc.  
DS41202F-page 139  
PIC16F684  
TABLE 15-2: OSCILLATOR PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Freq  
Tolerance  
Characteristic  
Min  
Typ†  
Max  
Units  
TOSC Slowest clock  
ms LFINTOSC/64  
Conditions  
OS06  
OS07  
OS08  
TWARM  
Internal Oscillator Switch  
2
(3)  
when running  
TSC  
Fail-Safe Sample Clock  
21  
(1)  
Period  
HFOSC  
Internal Calibrated  
HFINTOSC Frequency  
1%  
2%  
7.92  
7.84  
8.0  
8.0  
8.08  
8.16  
MHz VDD = 3.5V, 25°C  
(2)  
MHz 2.5V VDD 5.5V,  
0°C TA +85°C  
5%  
7.60  
15  
8.0  
31  
8.40  
45  
MHz 2.0V VDD 5.5V,  
-40°C TA +85°C (Ind.),  
-40°C TA +125°C (Ext.)  
OS09*  
OS10*  
LFOSC  
Internal Uncalibrated  
LFINTOSC Frequency  
kHz  
TIOSC  
ST  
HFINTOSC Oscillator  
Wake-up from Sleep  
Start-up Time  
5.5  
3.5  
3
12  
7
24  
14  
11  
μs  
μs  
μs  
VDD = 2.0V, -40°C to +85°C  
VDD = 3.0V, -40°C to +85°C  
VDD = 5.0V, -40°C to +85°C  
6
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at ‘min’ values with an external  
clock applied to the OSC1 pin. When an external clock input is used, the ‘max’ cycle time limit is ‘DC’ (no clock)  
for all devices.  
2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the  
device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
3: By design.  
DS41202F-page 140  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 15-5:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
Fosc  
OS12  
OS18  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
TABLE 15-3: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
OS11  
OS12  
OS13  
OS14  
OS15  
OS16  
TOSH2CKL FOSCto CLKOUT(1)  
TOSH2CKH FOSCto CLKOUT(1)  
70  
72  
20  
ns VDD = 5.0V  
50  
ns VDD = 5.0V  
ns  
TCKL2IOV  
CLKOUTto Port out valid(1)  
TIOV2CKH Port input valid before CLKOUT(1)  
TOSC + 200 ns  
ns  
TOSH2IOV FOSC(Q1 cycle) to Port out valid  
70*  
ns VDD = 5.0V  
ns VDD = 5.0V  
TOSH2IOI  
FOSC(Q2 cycle) to Port input invalid  
(I/O in hold time)  
50  
OS17  
OS18  
OS19  
TIOV2OSH Port input valid to FOSC(Q2 cycle)  
20  
ns  
(I/O in setup time)  
TIOR  
TIOF  
Port output rise time(2)  
15  
40  
72  
32  
ns VDD = 2.0V  
VDD = 5.0V  
Port output fall time(2)  
28  
15  
55  
30  
ns VDD = 2.0V  
VDD = 5.0V  
OS20* TINP  
OS21* TRAP  
INT pin input high or low time  
25  
ns  
ns  
PORTA interrupt-on-change new input  
level time  
TCY  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
2: Includes OSC2 in CLKOUT mode.  
© 2007 Microchip Technology Inc.  
DS41202F-page 141  
PIC16F684  
FIGURE 15-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Start-Up Time  
(1)  
Internal Reset  
Watchdog Timer  
(1)  
Reset  
31  
34  
34  
I/O pins  
Note 1: Asserted low.  
FIGURE 15-7:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR + VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
37  
Reset  
(due to BOR)  
33*  
*
64 ms delay only if PWRTE bit in the Configuration Word register is programmed to ‘0’.  
DS41202F-page 142  
© 2007 Microchip Technology Inc.  
PIC16F684  
TABLE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
TMCL  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
MCLR Pulse Width (low)  
2
5
μs VDD = 5V, -40°C to +85°C  
μs VDD = 5V  
31  
32  
TWDT  
TOST  
Watchdog Timer Time-out  
Period (No Prescaler)  
10  
10  
16  
16  
29  
31  
ms VDD = 5V, -40°C to +85°C  
ms VDD = 5V  
Oscillation Start-up Timer  
Period(1, 2)  
1024  
TOSC (NOTE 3)  
33*  
34*  
TPWRT Power-up Timer Period  
40  
65  
140  
2.0  
ms  
TIOZ  
I/O High-impedance from  
MCLR Low or Watchdog Timer  
Reset  
μs  
35  
VBOR  
VHYST  
TBOR  
Brown-out Reset Voltage  
2.0  
50  
2.2  
V
(NOTE 4)  
36*  
37*  
Brown-out Reset Hysteresis  
mV  
Brown-out Reset Minimum  
Detection Period  
100  
μs VDD VBOR  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator oper-  
ation and/or higher than expected current consumption. All devices are tested to operate at ‘min’ values  
with an external clock applied to the OSC1 pin. When an external clock input is used, the ‘max’ cycle time  
limit is ‘DC’ (no clock) for all devices.  
2: By design.  
3: Period of the slower clock.  
4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
© 2007 Microchip Technology Inc.  
DS41202F-page 143  
PIC16F684  
FIGURE 15-8:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
TABLE 15-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
40*  
41*  
42*  
TT0H  
TT0L  
TT0P  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45*  
46*  
47*  
TT1H  
TT1L  
T1CKI High Synchronous, No Prescaler  
0.5 TCY + 20  
15  
ns  
ns  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
0.5 TCY + 20  
15  
ns  
ns  
ns  
T1CKI Low Synchronous, No Prescaler  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
ns  
TT1P  
FT1  
T1CKI Input Synchronous  
Period  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
ns  
48  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
32.768  
kHz  
49*  
TCKEZTMR1 Delay from External Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
Timers in Sync  
mode  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS41202F-page 144  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 15-9:  
CAPTURE/COMPARE/PWM TIMINGS (ECCP)  
CCP1  
(Capture mode)  
CC01  
CC02  
CC03  
Note:  
Refer to Figure 15-3 for load conditions.  
TABLE 15-6: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
CC01* TccL  
CC02* TccH  
CC03* TccP  
CCP1 Input Low Time  
CCP1 Input High Time  
CCP1 Input Period  
No Prescaler  
0.5TCY + 20  
20  
ns  
ns  
ns  
ns  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
20  
3TCY + 40  
N
ns N = prescale  
value (1, 4 or  
16)  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
© 2007 Microchip Technology Inc.  
DS41202F-page 145  
PIC16F684  
TABLE 15-7: COMPARATOR SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristics  
Min Typ†  
Max  
Units  
Comments  
CM01 VOS  
CM02 VCM  
CM03* CMRR  
CM04* TRT  
Input Offset Voltage  
0
5.0  
10  
VDD – 1.5  
mV (VDD - 1.5)/2  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time  
V
+55  
dB  
Falling  
Rising  
150  
200  
600  
ns  
ns  
μs  
(NOTE 1)  
1000  
10  
CM05* TMC2COV Comparator Mode Change to  
Output Valid  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.  
TABLE 15-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristics  
Min  
Typ†  
Max  
Units  
Comments  
CV01* CLSB  
Step Size(2)  
Absolute Accuracy  
VDD/24  
VDD/32  
V
V
Low Range (VRR = 1)  
High Range (VRR = 0)  
CV02* CACC  
1/2  
1/2  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
CV03* CR  
CV04* CST  
Unit Resistor Value (R)  
Settling Time(1)  
2k  
Ω
μs  
10  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from ‘0000’ to ‘1111’.  
2: See Section 8.10 “Comparator Voltage Reference” for more information.  
DS41202F-page 146  
© 2007 Microchip Technology Inc.  
PIC16F684  
TABLE 15-9: PIC16F684 A/D CONVERTER (ADC) CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
AD01 NR  
AD02 EIL  
AD03 EDL  
Resolution  
10 bits  
bit  
Integral Error  
1
1
LSb VREF = 5.12V  
Differential Error  
LSb No missing codes to 10 bits  
VREF = 5.12V  
AD04 EOFF Offset Error  
AD07 EGN Gain Error  
AD06 VREF Reference Voltage(3)  
1
1
LSb VREF = 5.12V  
LSb VREF = 5.12V  
2.2  
2.7  
VDD  
V
AD06A  
Absolute minimum to ensure 1 LSb  
accuracy  
AD07 VAIN Full-Scale Range  
VSS  
VREF  
10  
V
AD08 ZAIN Recommended  
Impedance of Analog  
Voltage Source  
kΩ  
AD09* IREF  
VREF Input Current(3)  
10  
1000  
50  
μA During VAIN acquisition.  
Based on differential of VHOLD to VAIN.  
μA During A/D conversion cycle.  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.  
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing  
codes.  
3: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.  
4: When ADC is off, it will not consume any current other than leakage current. The power-down current  
specification includes any such leakage from the ADC module.  
© 2007 Microchip Technology Inc.  
DS41202F-page 147  
PIC16F684  
TABLE 15-10: PIC16F684 A/D CONVERSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
A/D Clock Period  
Min  
Typ†  
Max Units  
Conditions  
AD130* TAD  
1.6  
3.0  
9.0  
9.0  
μs TOSC-based, VREF 3.0V  
μs TOSC-based, VREF full range  
A/D Internal RC  
Oscillator Period  
ADCS<1:0> = 11(ADRC mode)  
μs At VDD = 2.5V  
3.0  
1.6  
6.0  
4.0  
11  
9.0  
6.0  
μs At VDD = 5.0V  
AD131 TCNV Conversion Time  
(not including  
TAD Set GO/DONE bit to new data in A/D  
Result register  
Acquisition Time)(1)  
AD132* TACQ Acquisition Time  
11.5  
5
μs  
μs  
AD133* TAMP Amplifier Settling Time  
AD134 TGO Q4 to A/D Clock Start  
TOSC/2  
TOSC/2 + TCY  
If the A/D clock source is selected as  
RC, a time of TCY is added before the  
A/D clock starts. This allows the SLEEP  
instruction to be executed.  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.  
2: See Section 9.3 “A/D Acquisition Requirements” for minimum conditions.  
DS41202F-page 148  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 15-10:  
PIC16F684 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
AD134  
1 TCY  
(1)  
(TOSC/2  
)
AD131  
Q4  
AD130  
A/D CLK  
A/D Data  
9
8
7
6
3
2
1
0
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
FIGURE 15-11:  
PIC16F684 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
AD134  
Q4  
(1)  
(TOSC/2 + TCY  
)
1 TCY  
AD131  
AD130  
A/D CLK  
A/D Data  
9
8
7
3
2
1
0
6
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
© 2007 Microchip Technology Inc.  
DS41202F-page 149  
PIC16F684  
NOTES:  
DS41202F-page 150  
© 2007 Microchip Technology Inc.  
PIC16F684  
16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
The graphs and tables provided in this section are for design guidance and are not tested.  
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are ensured to operate properly only within the specified range.  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents  
(mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.  
FIGURE 16-1:  
TYPICAL IDD vs. FOSC OVER VDD (EC MODE)  
3.5  
Typical: Statistical Mean @25°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
4.0V  
3.0V  
2.0V  
1 MHz  
2 MHz  
4 MHz  
6 MHz  
8 MHz  
10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz  
FOSC  
© 2007 Microchip Technology Inc.  
DS41202F-page 151  
PIC16F684  
FIGURE 16-2:  
MAXIMUM IDD vs. FOSC OVER VDD (EC MODE)  
4.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0V  
3.0V  
2.0V  
1 MHz  
2 MHz  
4 MHz  
6 MHz  
8 MHz  
10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz  
FOSC  
FIGURE 16-3:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
Typical IDD vs FOSC Over Vdd  
4.0  
Typical: Statistical Mean @25°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
4 MHz  
10 MHz  
16 MHz  
20 MHz  
FOSC  
DS41202F-page 152  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 16-4:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
5.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
4 MHz  
10 MHz  
16 MHz  
20 MHz  
FOSC  
FIGURE 16-5:  
TYPICAL IDD vs. VDD OVER FOSC (XT MODE)  
XT Mode  
900  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
800  
700  
600  
500  
400  
300  
200  
100  
0
4 MHz  
1 MHz  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41202F-page 153  
PIC16F684  
FIGURE 16-6:  
MAXIMUM IDD vs. VDD OVER FOSC (XT MODE)  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
4 MHz  
1 MHz  
600  
400  
200  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-7:  
TYPICAL IDD vs. VDD OVER FOSC (EXTRC MODE)  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
700  
600  
500  
400  
300  
200  
100  
0
4 MHz  
1 MHz  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41202F-page 154  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 16-8:  
MAXIMUM IDD vs. VDD OEVXETRRCFMOoSdCe(EXTRC MODE)  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
4 MHz  
1 MHz  
600  
400  
200  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-9:  
IDD vs. VDD OVER FOSC (LFINTOSC MODE, 31 kHz)  
LFINTOSC Mode, 31KHZ  
80  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
70  
60  
50  
40  
30  
20  
10  
0
Maximum  
Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41202F-page 155  
PIC16F684  
FIGURE 16-10:  
IDD vs. VDD OVER FOSC (LP MODE)  
70  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
60  
50  
40  
30  
20  
10  
0
32 kHz Maximum  
32 kHz Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-11:  
TYPICAL IDD vs. FOSC OVER VDD (HFINTOSC MODE)  
1,600  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
1,400  
1,200  
1,000  
800  
5.0V  
4.0V  
3.0V  
2.0V  
600  
400  
200  
0
125 kHz  
250 kHz  
500 kHz  
1 MHz  
2 MHz  
4 MHz  
8 MHz  
FOSC  
DS41202F-page 156  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 16-12:  
MAXIMUM IDD vs. FOSC OVER VDD (HFINTOSC MODE)  
HFINTOSC  
2,000  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
4.0V  
3.0V  
600  
2.0V  
400  
200  
0
125 kHz  
250 kHz  
500 kHz  
1 MHz  
2 MHz  
4 MHz  
8 MHz  
FOSC  
FIGURE 16-13:  
TYPICAL IPD vs. VDD (SLETEyPpiMcaOl DE, ALL PERIPHERALS DISABLED)  
0.45  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41202F-page 157  
PIC16F684  
FIGURE 16-14:  
MAXIMUM IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
18.0  
Typical: Statistical Mean @25°C  
16.0  
14.0  
12.0  
10.0  
8.0  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
6.0  
4.0  
Max. 85°C  
3.5  
2.0  
0.0  
2.0  
2.5  
3.0  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-15:  
COMPARATOR IPD vs. VDD (BOTH COMPARATORS ENABLED)  
180  
160  
140  
120  
100  
80  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Maximum  
Typical  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41202F-page 158  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 16-16:  
BOR IPD vs. VDD OVER TEMPERATURE  
160  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
140  
120  
100  
80  
Maximum  
Typical  
60  
40  
20  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-17:  
TYPICAL WDT IPD vs. VDD OVER TEMPERATURE  
Typical  
3.0  
Typical:StatisticalMean@25°C
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41202F-page 159  
PIC16F684  
FIGURE 16-18:  
MAXIMUM WDT IPD vs. VDD OVER TEMPERATURE  
Maximum  
25.0  
20.0  
15.0  
10.0  
5.0  
Max. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 85°C  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-19:  
WDT PERIOD vs. VDD OVER TEMPERATURE  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
Max. (125°C)  
Max. (85°C)  
Typical  
Minimum  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41202F-page 160  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 16-20:  
WDT PERIOD vs. TEMPERVAdTdU=R5EV OVER VDD (5.0V)  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
Maximum  
Typical  
Minimum  
-40°C  
25°C  
85°C  
125°C  
Temperature (°C)  
FIGURE 16-21:  
CVREF IPD vs. VDD OVERHTigEhMRPaEngReATURE (HIGH RANGE)  
140  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
120  
100  
80  
60  
40  
20  
0
Max. 125°C  
Max. 85°C  
Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41202F-page 161  
PIC16F684  
FIGURE 16-22:  
CVREF IPD vs. VDD OVER TEMPERATURE (LOW RANGE)  
180  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
160  
140  
120  
100  
80  
Max. 125°C  
Max. 85°C  
Typical  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-23:  
VOL vs. IOL OVER TEMPERATURE (VDD = 3.0V)  
(VDD = 3V, -40×C TO 125×C)  
0.8  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Max. 125°C  
Max. 85°C  
Typical 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
DS41202F-page 162  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 16-24:  
VOL vs. IOL OVER TEMPERATURE (VDD = 5.0V)  
0.45  
Typical: Statistical Mean @25°C  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
FIGURE 16-25:  
VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V)  
3.5  
3.0  
2.5  
2.0  
1.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
1.0  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
IOH (mA)  
© 2007 Microchip Technology Inc.  
DS41202F-page 163  
PIC16F684  
FIGURE 16-26:  
VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V)  
5.5  
5.0  
4.5  
4.0  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
3.5  
3.0  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-4.5  
-5.0  
IOH (mA)  
FIGURE 16-27:  
TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
1.7  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41202F-page 164  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 16-28:  
SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VIH Max. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
VIH Min. -40°C  
VIL Max. -40°C  
VIL Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-29:  
T1OSC IPD vs. VDD OVER TEMPERATURE (32 kHz)  
45.0  
Typical: Statistical Mean @25°C  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
3.5  
0.0  
2.0  
2.5  
3.0  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41202F-page 165  
PIC16F684  
FIGURE 16-30:  
COMPARATOR RESPONSE TIME (RISING EDGE)  
531  
806  
1000  
900  
800  
700  
Max. 125°C  
Max. 85°C  
VCM = VDD - 1.5V)/2  
V+ input = VCM  
V- input = Transition from VCM + 100MV to VCM - 20MV  
Note:  
600  
500  
400  
300  
200  
100  
Typ. 25°C  
Min. -40°C  
0
2.0  
2.5  
4.0  
5.5  
VDD (V)  
FIGURE 16-31:  
COMPARATOR RESPONSE TIME (FALLING EDGE)  
1000  
900  
800  
700  
Max. 125°C  
Max. 85°C  
VCM = VDD - 1.5V)/2  
600  
500  
400  
300  
200  
100  
0
Note:  
V+ input = VCM  
V- input = Transition from VCM - 100MV to VCM + 20MV  
Typ. 25°C  
Min. -40°C  
2.0  
2.5  
4.0  
5.5  
VDD (V)  
DS41202F-page 166  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 16-32:  
LFINTOSC FREQUENCY vs. VDD OVER TEMPERATURE (31 kHz)  
LFINTOSC 31Khz  
45,000  
40,000  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5,000  
Max. -40°C  
Typ. 25°C  
Min. 85°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-33:  
ADC CLOCK PERIOD vs. VDD OVER TEMPERATURE  
8
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
125°C  
85°C  
6
4
2
0
25°C  
-40°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41202F-page 167  
PIC16F684  
FIGURE 16-34:  
TYPICAL HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
16  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
14  
85°C  
12  
25°C  
10  
-40°C  
8
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-35:  
MAXIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
-40C to +85C  
25  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
20  
15  
10  
5
85°C  
25°C  
-40°C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41202F-page 168  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 16-36:  
MINIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
10  
9
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
8
7
85°C  
6
25°C  
5
-40°C  
4
3
2
1
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-37:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41202F-page 169  
PIC16F684  
FIGURE 16-38:  
TYPICAL HFINTOSC FREQUENCY CHANGE OVER DEVICE VDD (85°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-39:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (125°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41202F-page 170  
© 2007 Microchip Technology Inc.  
PIC16F684  
FIGURE 16-40:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (-40°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41202F-page 171  
PIC16F684  
NOTES:  
DS41202F-page 172  
© 2007 Microchip Technology Inc.  
PIC16F684  
17.0 PACKAGING INFORMATION  
17.1 Package Marking Information  
14-Lead PDIP  
Example  
Example  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
PIC16F684  
e
3
-I/P  
0510017  
YYWWNNN  
14-Lead SOIC (.150”)  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16F684-E  
e
3
YYWWNNN  
0510017  
14-Lead TSSOP  
Example  
XXXXXXXX  
YYWW  
XXXX/ST  
0510  
NNN  
017  
16-Lead QFN  
Example  
XXXXXX  
XXXXXX  
YWWNNN  
16F684-I  
/ML  
510017  
e
3
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
*
Standard PIC device marking consists of Microchip part number, year code, week code, and traceability  
code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip  
Sales Office. For QTP devices, any special marking adders are included in QTP price.  
© 2007 Microchip Technology Inc.  
DS41202F-page 173  
PIC16F684  
17.2 Package Details  
The following sections give the technical details of the packages.  
14-Lead Plastic Dual In-Line (P or PD) – 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
Units  
INCHES  
NOM  
14  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
.100 BSC  
Top to Seating Plane  
A
.210  
.195  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.290  
.240  
.735  
.115  
.008  
.045  
.014  
.130  
.310  
.250  
.750  
.130  
.010  
.060  
.018  
.325  
.280  
.775  
.150  
.015  
.070  
.022  
.430  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located with the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-005B  
DS41202F-page 174  
© 2007 Microchip Technology Inc.  
PIC16F684  
14-Lead Plastic Small Outline (SL or OD) – Narrow, 3.90 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
14  
1.27 BSC  
Overall Height  
A
1.75  
Molded Package Thickness  
Standoff §  
A2  
A1  
E
1.25  
0.10  
0.25  
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
E1  
D
h
3.90 BSC  
8.65 BSC  
Chamfer (optional)  
Foot Length  
0.25  
0.40  
0.50  
1.27  
L
Footprint  
L1  
φ
1.04 REF  
Foot Angle  
0°  
0.17  
0.31  
5°  
8°  
Lead Thickness  
Lead Width  
c
0.25  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-065B  
© 2007 Microchip Technology Inc.  
DS41202F-page 175  
PIC16F684  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
14  
0.65 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
A
1.20  
1.05  
0.15  
A2  
A1  
E
0.80  
0.05  
1.00  
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
6.40 BSC  
E1  
D
4.30  
4.90  
0.45  
4.40  
4.50  
5.10  
0.75  
5.00  
L
0.60  
Footprint  
L1  
φ
1.00 REF  
Foot Angle  
0°  
8°  
Lead Thickness  
Lead Width  
c
0.09  
0.20  
0.30  
b
0.19  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-087B  
DS41202F-page 176  
© 2007 Microchip Technology Inc.  
PIC16F684  
16-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D2  
EXPOSED  
PAD  
e
E
E2  
2
1
2
b
1
K
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A3  
A
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
16  
MAX  
Number of Pins  
N
e
Pitch  
0.65 BSC  
0.90  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
E
0.02  
Contact Thickness  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
0.20 REF  
4.00 BSC  
2.65  
E2  
D
2.50  
2.80  
4.00 BSC  
2.65  
D2  
b
2.50  
0.25  
0.30  
0.20  
2.80  
0.35  
0.50  
0.30  
L
0.40  
Contact-to-Exposed Pad  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-127B  
© 2007 Microchip Technology Inc.  
DS41202F-page 177  
PIC16F684  
NOTES:  
DS41202F-page 178  
© 2007 Microchip Technology Inc.  
PIC16F684  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: MIGRATING FROM  
OTHER PIC®  
DEVICES  
Revision A  
This discusses some of the issues in migrating from  
other PIC devices to the PIC16F6XX Family of devices.  
This is a new data sheet.  
Revision B  
B.1  
PIC16F676 to PIC16F684  
Rewrites of the Oscillator and Special Features of the  
CPU Sections. General corrections to Figures and  
formatting.  
TABLE B-1:  
Feature  
FEATURE COMPARISON  
PIC16F676  
PIC16F684  
Max Operating  
Speed  
20 MHz  
20 MHz  
Revision C  
Revision D  
Max Program  
Memory (Words)  
1024  
2048  
SRAM (bytes)  
A/D Resolution  
64  
128  
10-bit  
256  
Added Characterization Data. Updated Electrical  
Specifications. Incorporated Golden Chapter Sections  
for the following:  
10-bit  
128  
Data EEPROM  
(Bytes)  
Section 3.0 “Oscillator Module (With Fail-Safe  
Clock Monitor)”  
Timers (8/16-bit)  
Oscillator Modes  
Brown-out Reset  
Internal Pull-ups  
1/1  
8
2/1  
8
Section 5.0 “Timer0 Module”  
Section 6.0 “Timer1 Module with Gate Control”  
Section 7.0 “Timer2 Module”  
Y
Y
RA0/1/2/4/5 RA0/1/2/4/5,  
MCLR  
Section 8.0 “Comparator Module”  
Section 9.0 “Analog-to-Digital Converter (ADC)  
Module”  
Interrupt-on-change RA0/1/2/3/4/5 RA0/1/2/3/4/5  
Comparator  
ECCP  
1
N
N
2
Y
Y
Section 11.0 “Enhanced Capture/Compare/PWM  
(With Auto-Shutdown and Dead Band) Module”  
Ultra Low-Power  
Wake-Up  
Revision E  
Extended WDT  
N
N
Y
Y
Updated Package Drawings; Replace PICmicro with  
PIC.  
Software Control  
Option of WDT/BOR  
INTOSC  
Frequencies  
4 MHz  
N
32 kHz-  
8 MHz  
Revision F (03/2007)  
Replaced Package Drawings (Rev. AM); Replaced  
Development Support Section.  
Clock Switching  
Y
Note: This device has been designed to perform  
to the parameters of its data sheet. It has  
been tested to an electrical specification  
designed to determine its conformance  
with these parameters. Due to process  
differences in the manufacture of this  
device, this device may have different  
performance characteristics than its earlier  
version. These differences may cause this  
device to perform differently in your  
application than the earlier version of this  
device.  
© 2007 Microchip Technology Inc.  
DS41202F-page 179  
PIC16F684  
NOTES:  
DS41202F-page 180  
© 2007 Microchip Technology Inc.  
PIC16F684  
INDEX  
RA4 Pin ...................................................................... 37  
RA5 Pin ...................................................................... 38  
RC0 and RC1 Pins ..................................................... 41  
RC2 and RC3 Pins ..................................................... 41  
RC4 Pin ...................................................................... 42  
RC5 Pin ...................................................................... 42  
Resonator Operation .................................................. 22  
Timer1 ........................................................................ 47  
Timer2 ........................................................................ 53  
TMR0/WDT Prescaler ................................................ 43  
Watchdog Timer (WDT)............................................ 110  
Brown-out Reset (BOR).................................................... 101  
Associated................................................................ 102  
Calibration ................................................................ 101  
Specifications ........................................................... 143  
Timing and Characteristics....................................... 142  
A
A/D  
Specifications.................................................... 147, 148  
Absolute Maximum Ratings .............................................. 129  
AC Characteristics  
Industrial and Extended ............................................ 139  
Load Conditions........................................................ 138  
ADC .................................................................................... 65  
Acquisition Requirements ........................................... 72  
Associated registers.................................................... 74  
Block Diagram............................................................. 65  
Calculating Acquisition Time....................................... 72  
Channel Selection....................................................... 66  
Configuration............................................................... 66  
Configuring Interrupt ................................................... 68  
Conversion Clock........................................................ 66  
Conversion Procedure ................................................ 68  
Internal Sampling Switch (RSS) Impedance................ 72  
Interrupts..................................................................... 67  
Operation .................................................................... 68  
Operation During Sleep .............................................. 68  
Port Configuration....................................................... 66  
Reference Voltage (VREF)........................................... 66  
Result Formatting........................................................ 67  
Source Impedance...................................................... 72  
Special Event Trigger.................................................. 68  
Starting an A/D Conversion ........................................ 67  
ADCON0 Register............................................................... 70  
ADCON1 Register............................................................... 70  
ADRESH Register (ADFM = 0)........................................... 71  
ADRESH Register (ADFM = 1)........................................... 71  
ADRESL Register (ADFM = 0)............................................ 71  
ADRESL Register (ADFM = 1)............................................ 71  
Analog Input Connection Considerations............................ 57  
Analog-to-Digital Converter. See ADC  
C
C Compilers  
MPLAB C18.............................................................. 126  
MPLAB C30.............................................................. 126  
Calibration Bits.................................................................... 99  
Capture Module. See Enhanced Capture/  
Compare/PWM (ECCP)  
Capture/Compare/PWM (CCP)  
Associated registers w/ Capture/Compare/PWM ....... 96  
Capture Mode............................................................. 80  
CCP1 Pin Configuration ............................................. 80  
Compare Mode........................................................... 81  
CCP1 Pin Configuration ..................................... 81  
Software Interrupt Mode............................... 80, 81  
Special Event Trigger......................................... 81  
Timer1 Mode Selection................................. 80, 81  
Prescaler .................................................................... 80  
PWM Mode................................................................. 82  
Duty Cycle .......................................................... 83  
Effects of Reset.................................................. 84  
Example PWM Frequencies and  
ANSEL Register.................................................................. 32  
Assembler  
MPASM Assembler................................................... 126  
Resolutions, 20 MHZ.................................. 83  
Example PWM Frequencies and  
B
Resolutions, 8 MHz .................................... 83  
Operation in Sleep Mode.................................... 84  
Setup for Operation ............................................ 84  
System Clock Frequency Changes .................... 84  
PWM Period ............................................................... 83  
Setup for PWM Operation .......................................... 84  
CCP1CON (Enhanced) Register ........................................ 79  
Clock Sources  
External Modes........................................................... 21  
EC ...................................................................... 21  
HS ...................................................................... 22  
LP....................................................................... 22  
OST .................................................................... 21  
RC ...................................................................... 23  
XT....................................................................... 22  
Internal Modes............................................................ 23  
Frequency Selection........................................... 25  
HFINTOSC ......................................................... 23  
HFINTOSC/LFINTOSC Switch Timing............... 25  
INTOSC.............................................................. 23  
INTOSCIO .......................................................... 23  
LFINTOSC.......................................................... 25  
Clock Switching .................................................................. 27  
CMCON0 Register.............................................................. 61  
Block Diagrams  
(CCP) Capture Mode Operation ................................. 80  
ADC ............................................................................ 65  
ADC Transfer Function ............................................... 73  
Analog Input Model............................................... 57, 73  
CCP PWM................................................................... 82  
Clock Source............................................................... 19  
Comparator 1.............................................................. 56  
Comparator 2.............................................................. 56  
Comparator Modes ..................................................... 58  
Compare ..................................................................... 81  
Crystal Operation........................................................ 22  
External RC Mode....................................................... 23  
Fail-Safe Clock Monitor (FSCM)................................. 29  
In-Circuit Serial Programming Connections.............. 114  
Interrupt Logic........................................................... 107  
MCLR Circuit............................................................. 100  
On-Chip Reset Circuit................................................. 99  
PIC16F684.................................................................... 5  
PWM (Enhanced)........................................................ 85  
RA0 Pins..................................................................... 35  
RA1 Pins..................................................................... 36  
RA2 Pin....................................................................... 36  
RA3 Pin....................................................................... 37  
© 2007 Microchip Technology Inc.  
DS41202F-page 181  
PIC16F684  
CMCON1 Register ..............................................................62  
Code Examples  
Reading ...................................................................... 77  
Write Verify................................................................. 77  
Writing ........................................................................ 77  
A/D Conversion...........................................................69  
Assigning Prescaler to Timer0 ....................................44  
Assigning Prescaler to WDT .......................................44  
Changing Between Capture Prescalers......................80  
Data EEPROM Read ..................................................77  
Data EEPROM Write ..................................................77  
Indirect Addressing .....................................................19  
Initializing PORTA.......................................................31  
Initializing PORTC.......................................................40  
Saving Status and W Registers in RAM ...................109  
Ultra Low-Power Wake-Up Initialization......................34  
Write Verify .................................................................77  
Code Protection ................................................................113  
Comparator .........................................................................55  
C2OUT as T1 Gate .....................................................62  
Configurations.............................................................58  
Interrupts.....................................................................59  
Operation ....................................................................59  
Operation During Sleep ..............................................60  
Overview .....................................................................55  
Response Time...........................................................59  
Synchronizing COUT w/Timer1 ..................................62  
Comparator Module  
Effects of Reset  
PWM mode................................................................. 84  
Electrical Specifications.................................................... 129  
Enhanced Capture/Compare/PWM .................................... 79  
Enhanced Capture/Compare/PWM (ECCP)  
Enhanced PWM Mode................................................ 85  
Auto-Restart ....................................................... 94  
Auto-shutdown.................................................... 93  
Direction Change in Full-Bridge Output Mode.... 91  
Full-Bridge Application........................................ 89  
Full-Bridge Mode ................................................ 89  
Half-Bridge Application....................................... 88  
Half-Bridge Application Examples ...................... 95  
Half-Bridge Mode................................................ 88  
Output Relationships (Active-High and  
Active-Low)................................................ 86  
Output Relationships Diagram............................ 87  
Programmable Dead-Band Delay....................... 95  
Shoot-through Current........................................ 95  
Start-up Considerations...................................... 92  
Specifications ........................................................... 145  
Timer Resources ........................................................ 79  
Errata.................................................................................... 4  
Associated Registers ..................................................64  
Comparator Voltage Reference (CVREF)  
F
Response Time...........................................................59  
Comparator Voltage Reference (CVREF) ............................63  
Effects of a Reset........................................................60  
Specifications............................................................146  
Comparators  
C2OUT as T1 Gate .....................................................49  
Effects of a Reset........................................................60  
Specifications............................................................146  
Compare Module. See Enhanced Capture/  
Fail-Safe Clock Monitor ...................................................... 29  
Fail-Safe Condition Clearing....................................... 29  
Fail-Safe Detection ..................................................... 29  
Fail-Safe Operation..................................................... 29  
Reset or Wake-up from Sleep .................................... 29  
Firmware Instructions ....................................................... 115  
Fuses. See Configuration Bits  
G
Compare/PWM (ECCP)  
General Purpose Register File ............................................. 8  
CONFIG Register................................................................98  
Configuration Bits................................................................97  
CPU Features .....................................................................97  
Customer Change Notification Service .............................187  
Customer Notification Service...........................................187  
Customer Support.............................................................187  
I
ID Locations...................................................................... 113  
In-Circuit Debugger........................................................... 114  
In-Circuit Serial Programming (ICSP)............................... 114  
Indirect Addressing, INDF and FSR registers..................... 19  
Instruction Format............................................................. 115  
Instruction Set................................................................... 115  
ADDLW..................................................................... 117  
ADDWF..................................................................... 117  
ANDLW..................................................................... 117  
ANDWF..................................................................... 117  
BCF .......................................................................... 117  
BSF........................................................................... 117  
BTFSC...................................................................... 117  
BTFSS ...................................................................... 118  
CALL......................................................................... 118  
CLRF ........................................................................ 118  
CLRW ....................................................................... 118  
CLRWDT .................................................................. 118  
COMF ....................................................................... 118  
DECF........................................................................ 118  
DECFSZ ................................................................... 119  
GOTO ....................................................................... 119  
INCF ......................................................................... 119  
INCFSZ..................................................................... 119  
IORLW...................................................................... 119  
IORWF...................................................................... 119  
D
Data EEPROM Memory  
Associated Registers ..................................................78  
Code Protection .................................................... 75, 78  
Data Memory.........................................................................7  
DC and AC Characteristics  
Graphs and Tables ...................................................151  
DC Characteristics  
Extended and Industrial ............................................135  
Industrial and Extended ............................................131  
Development Support .......................................................125  
Device Overview ...................................................................5  
E
ECCP. See Enhanced Capture/Compare/PWM  
ECCPAS Register...............................................................93  
EEADR Register .................................................................75  
EECON1 Register...............................................................76  
EECON2 Register...............................................................76  
EEDAT Register..................................................................75  
EEPROM Data Memory  
Avoiding Spurious Write..............................................78  
DS41202F-page 182  
© 2007 Microchip Technology Inc.  
PIC16F684  
MOVF........................................................................ 120  
MOVLW .................................................................... 120  
MOVWF .................................................................... 120  
NOP .......................................................................... 120  
RETFIE ..................................................................... 121  
RETLW ..................................................................... 121  
RETURN................................................................... 121  
RLF ........................................................................... 122  
RRF........................................................................... 122  
SLEEP ...................................................................... 122  
SUBLW ..................................................................... 122  
SUBWF..................................................................... 123  
SWAPF ..................................................................... 123  
XORLW..................................................................... 123  
XORWF..................................................................... 123  
Summary Table......................................................... 116  
INTCON Register................................................................ 15  
Internal Oscillator Block  
HS............................................................................... 19  
INTOSC...................................................................... 19  
INTOSCIO .................................................................. 19  
LFINTOSC.................................................................. 19  
LP ............................................................................... 19  
RC .............................................................................. 19  
RCIO........................................................................... 19  
XT............................................................................... 19  
Oscillator Parameters ....................................................... 140  
Oscillator Specifications.................................................... 139  
Oscillator Start-up Timer (OST)  
Specifications ........................................................... 143  
Oscillator Switching  
Fail-Safe Clock Monitor .............................................. 29  
Two-Speed Clock Start-up ......................................... 27  
OSCTUNE Register............................................................ 24  
P
P1A/P1B/P1C/P1D.See Enhanced Capture/  
INTOSC  
Compare/PWM (ECCP).............................................. 85  
Packaging......................................................................... 173  
Marking..................................................................... 173  
PDIP Details ............................................................. 174  
PCL and PCLATH............................................................... 19  
Stack........................................................................... 19  
PCON Register........................................................... 18, 102  
PICSTART Plus Development Programmer..................... 128  
PIE1 Register ..................................................................... 16  
Pin Diagram  
Specifications............................................ 140, 141  
Internal Sampling Switch (RSS) Impedance........................ 72  
Internet Address................................................................ 187  
Interrupts........................................................................... 106  
ADC ............................................................................ 68  
Associated Registers ................................................ 108  
Comparator................................................................. 59  
Context Saving.......................................................... 109  
Data EEPROM Memory Write .................................... 76  
Interrupt-on-Change.................................................... 32  
PORTA Interrupt-on-Change .................................... 107  
RA2/INT .................................................................... 106  
Timer0....................................................................... 107  
TMR1 .......................................................................... 49  
INTOSC Specifications ............................................. 140, 141  
IOCA Register..................................................................... 33  
PDIP, SOIC, TSSOP .................................................... 2  
QFN.............................................................................. 3  
Pinout Descriptions  
PIC16F684 ................................................................... 6  
PIR1 Register ..................................................................... 17  
PORTA ............................................................................... 31  
Additional Pin Functions............................................. 32  
ANSEL Register ................................................. 32  
Interrupt-on-Change ........................................... 32  
Ultra Low-Power Wake-Up........................... 32, 34  
Weak Pull-up ...................................................... 32  
Associated registers ................................................... 39  
Pin Descriptions and Diagrams .................................. 35  
RA0............................................................................. 35  
RA1............................................................................. 35  
RA2............................................................................. 36  
RA3............................................................................. 37  
RA4............................................................................. 37  
RA5............................................................................. 38  
Specifications ........................................................... 141  
PORTA Register................................................................. 31  
PORTC ............................................................................... 40  
Associated registers ................................................... 42  
P1A/P1B/P1C/P1D.See Enhanced Capture/  
Compare/PWM (ECCP)...................................... 40  
Specifications ........................................................... 141  
PORTC Register................................................................. 40  
Power-Down Mode (Sleep)............................................... 112  
Power-on Reset (POR)..................................................... 100  
Power-up Timer (PWRT).................................................. 100  
Specifications ........................................................... 143  
Precision Internal Oscillator Parameters .......................... 141  
Prescaler  
L
Load Conditions................................................................ 138  
M
MCLR................................................................................ 100  
Internal...................................................................... 100  
Memory Organization............................................................ 7  
Data .............................................................................. 7  
Data EEPROM Memory.............................................. 75  
Program ........................................................................ 7  
Microchip Internet Web Site.............................................. 187  
Migrating from other PICmicro Devices ............................ 179  
MPLAB ASM30 Assembler, Linker, Librarian ................... 126  
MPLAB ICD 2 In-Circuit Debugger ................................... 127  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator .................................................... 127  
MPLAB Integrated Development Environment Software .. 125  
MPLAB PM3 Device Programmer .................................... 127  
MPLAB REAL ICE In-Circuit Emulator System................. 127  
MPLINK Object Linker/MPLIB Object Librarian ................ 126  
O
OPCODE Field Descriptions............................................. 115  
OPTION Register.......................................................... 14, 45  
OSCCON Register.............................................................. 20  
Oscillator  
Associated registers.............................................. 30, 51  
Oscillator Module ................................................................ 19  
EC............................................................................... 19  
HFINTOSC.................................................................. 19  
Shared WDT/Timer0................................................... 44  
Switching Prescaler Assignment ................................ 44  
Program Memory.................................................................. 7  
Map and Stack.............................................................. 7  
© 2007 Microchip Technology Inc.  
DS41202F-page 183  
PIC16F684  
Programming, Device Instructions ....................................115  
PWM Mode. See Enhanced Capture/Compare/PWM ........85  
PWM1CON Register...........................................................96  
Thermal Considerations.................................................... 137  
Time-out Sequence .......................................................... 102  
Timer0................................................................................. 43  
Associated Registers.................................................. 45  
External Clock............................................................. 44  
Interrupt ...................................................................... 45  
Operation.............................................................. 43, 47  
Specifications ........................................................... 144  
T0CKI ......................................................................... 44  
Timer1................................................................................. 47  
Associated registers ................................................... 51  
Asynchronous Counter Mode ..................................... 48  
Reading and Writing........................................... 48  
Interrupt ...................................................................... 49  
Modes of Operation .................................................... 47  
Operation During Sleep .............................................. 49  
Oscillator..................................................................... 48  
Prescaler .................................................................... 48  
Specifications ........................................................... 144  
Timer1 Gate  
R
Reader Response .............................................................188  
Read-Modify-Write Operations..........................................115  
Registers  
ADCON0 (ADC Control 0) ..........................................70  
ADCON1 (ADC Control 1) ..........................................70  
ADRESH (ADC Result High) with ADFM = 0).............71  
ADRESH (ADC Result High) with ADFM = 1).............71  
ADRESL (ADC Result Low) with ADFM = 0)..............71  
ADRESL (ADC Result Low) with ADFM = 1)..............71  
ANSEL (Analog Select)...............................................32  
CCP1CON (Enhanced CCP1 Control)........................79  
CMCON0 (Comparator Control 0) ..............................61  
CMCON1 (Comparator Control 1) ..............................62  
CONFIG (Configuration Word)....................................98  
Data Memory Map ........................................................8  
ECCPAS (Enhanced CCP Auto-shutdown Control) ...93  
EEADR (EEPROM Address) ......................................75  
EECON1 (EEPROM Control 1)...................................76  
EECON2 (EEPROM Control 2)...................................76  
EEDAT (EEPROM Data) ............................................75  
INTCON (Interrupt Control).........................................15  
IOCA (Interrupt-on-Change PORTA) ..........................33  
OPTION_REG (OPTION) ..................................... 14, 45  
OSCCON (Oscillator Control) .....................................20  
OSCTUNE (Oscillator Tuning)....................................24  
PCON (Power Control Register).................................18  
PCON (Power Control) .............................................102  
PIE1 (Peripheral Interrupt Enable 1)...........................16  
PIR1 (Peripheral Interrupt Register 1) ........................17  
PORTA........................................................................31  
PORTC .......................................................................40  
PWM1CON (Enhanced PWM Control) .......................96  
Reset Values.............................................................104  
Reset Values (Special Registers) .............................105  
Special Function Registers ...........................................8  
Special Register Summary .........................................11  
STATUS......................................................................13  
T1CON........................................................................50  
T2CON........................................................................54  
TRISA (Tri-State PORTA)...........................................31  
TRISC (Tri-State PORTC) ..........................................40  
VRCON (Voltage Reference Control) .........................63  
WDTCON (Watchdog Timer Control)........................111  
WPUA (Weak Pull-Up PORTA) ..................................33  
Reset...................................................................................99  
Revision History ................................................................179  
Inverting Gate..................................................... 49  
Selecting Source .......................................... 49, 62  
Synchronizing COUT w/Timer1.......................... 62  
TMR1H Register......................................................... 47  
TMR1L Register.......................................................... 47  
Timer2  
Associated registers ................................................... 54  
Timers  
Timer1  
T1CON ............................................................... 50  
Timer2  
T2CON ............................................................... 54  
Timing Diagrams  
A/D Conversion......................................................... 149  
A/D Conversion (Sleep Mode).................................. 149  
Brown-out Reset (BOR)............................................ 142  
Brown-out Reset Situations ...................................... 101  
CLKOUT and I/O ...................................................... 141  
Clock Timing............................................................. 139  
Comparator Output..................................................... 55  
Enhanced Capture/Compare/PWM (ECCP)............. 145  
Fail-Safe Clock Monitor (FSCM)................................. 30  
Full-Bridge PWM Output............................................. 90  
Half-Bridge PWM Output ...................................... 88, 95  
INT Pin Interrupt ....................................................... 108  
Internal Oscillator Switch Timing ................................ 26  
PWM Auto-shutdown  
Auto-restart Enabled........................................... 94  
Firmware Restart................................................ 94  
PWM Direction Change .............................................. 91  
PWM Direction Change at Near 100% Duty Cycle..... 92  
PWM Output (Active-High) ......................................... 86  
PWM Output (Active-Low).......................................... 87  
Reset, WDT, OST and Power-up Timer................... 142  
Time-out Sequence  
S
Shoot-through Current ........................................................95  
Sleep  
Power-Down Mode ...................................................112  
Wake-up....................................................................112  
Wake-up Using Interrupts .........................................112  
Software Simulator (MPLAB SIM).....................................126  
Special Event Trigger..........................................................68  
Special Function Registers ...................................................8  
STATUS Register................................................................13  
Case 1 .............................................................. 103  
Case 2 .............................................................. 103  
Case 3 .............................................................. 103  
Timer0 and Timer1 External Clock ........................... 144  
Two Speed Start-up.................................................... 28  
Wake-up from Interrupt............................................. 113  
Timing Parameter Symbology .......................................... 138  
TRISA Register................................................................... 31  
TRISC Register................................................................... 40  
Two-Speed Clock Start-up Mode........................................ 27  
T
T1CON Register..................................................................50  
T2CON Register..................................................................54  
DS41202F-page 184  
© 2007 Microchip Technology Inc.  
PIC16F684  
U
Ultra Low-Power Wake-Up ....................................... 6, 32, 34  
V
Voltage Reference. See Comparator Voltage Reference  
(CVREF)  
Voltage References  
Associated Registers .................................................. 64  
VREF. SEE ADC Reference Voltage  
W
Wake-up Using Interrupts ................................................. 112  
Watchdog Timer (WDT) .................................................... 110  
Associated Registers ................................................ 111  
Clock Source............................................................. 110  
Modes ....................................................................... 110  
Period........................................................................ 110  
Specifications............................................................ 143  
WDTCON Register ........................................................... 111  
WPUA Register................................................................... 33  
WWW Address.................................................................. 187  
WWW, On-Line Support ....................................................... 4  
© 2007 Microchip Technology Inc.  
DS41202F-page 185  
PIC16F684  
NOTES:  
DS41202F-page 186  
© 2007 Microchip Technology Inc.  
PIC16F684  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2007 Microchip Technology Inc.  
DS41202F-page 187  
PIC16F684  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC16F684  
DS41202F  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41202F-page 188  
© 2007 Microchip Technology Inc.  
PIC16F684  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
PIC16F684-E/P 301 = Extended Temp., PDIP  
package, 20 MHz, QTP pattern #301  
b)  
PIC16F684-I/SO  
package, 20 MHz  
= Industrial Temp., SOIC  
Device:  
PIC16F684, PIC16F684T(1)  
VDD range 2.0V to 5.5V  
Temperature  
Range:  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
Package:  
ML  
P
SL  
ST  
=
Quad Flat No Leads (QFN)  
Plastic DIP  
14-lead Small Outline (3.90 mm)  
Thin Shrink Small Outline (4.4 mm)  
=
=
=
Note 1:  
T
=
in tape and reel TSSOP, SOIC and  
QFN packages only.  
Pattern:  
QTP, SQTPSM or ROM Code; Special Requirements  
(blank otherwise)  
© 2007 Microchip Technology Inc.  
DS41202F-page 189  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS41202F-page 190  
© 2007 Microchip Technology Inc.  

相关型号:

PIC16FF684-E/P

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16FF684-E/PQTP

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16FF684-E/PSQTP

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16FF684-E/SL

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16FF684-E/SLQTP

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16FF684-E/SLSQTP

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16FF684-E/ST

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16FF684-E/STQTP

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16FF684-E/STSQTP

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16FF684-I/ML

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16FF684-I/MLQTP

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP

PIC16FF684-I/MLSQTP

14-Pin, Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
MICROCHIP