PIC16LC58B-04I/JW [MICROCHIP]

8-BIT, UVPROM, 4 MHz, RISC MICROCONTROLLER, CDIP18, 0.300 INCH, WINDOWED, CERDIP-18;
PIC16LC58B-04I/JW
型号: PIC16LC58B-04I/JW
厂家: MICROCHIP    MICROCHIP
描述:

8-BIT, UVPROM, 4 MHz, RISC MICROCONTROLLER, CDIP18, 0.300 INCH, WINDOWED, CERDIP-18

可编程只读存储器 CD
文件: 总158页 (文件大小:1194K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C5X  
EPROM/ROM-Based 8-Bit CMOS Microcontroller Series  
Peripheral Features:  
• 8-bit real time clock/counter (TMR0) with 8-bit  
programmable prescaler  
Devices Included in this Data Sheet:  
• PIC16C54  
• PIC16CR54  
• Power-on Reset (POR)  
• PIC16C55  
• Device Reset Timer (DRT)  
• PIC16C56  
• Watchdog Timer (WDT) with its own on-chip  
RC oscillator for reliable operation  
• PIC16CR56  
• PIC16C57  
• Programmable Code Protection  
• Power saving SLEEP mode  
• Selectable oscillator options:  
• PIC16CR57  
• PIC16C58  
• PIC16CR58  
- RC:  
- XT:  
- HS:  
- LP:  
Low-cost RC oscillator  
Note: 16C5X refers to all revisions of the part  
(i.e., 16C54 refers to 16C54, 16C54A, and  
16C54C), unless specifically called out  
otherwise.  
Standard crystal/resonator  
High-speed crystal/resonator  
Power saving, low-frequency crystal  
CMOS Technology:  
High-Performance RISC CPU:  
• Low-power, high-speed CMOS EPROM/ROM  
technology  
• Only 33 single word instructions to learn  
• All instructions are single cycle (200 ns) except for  
program branches which are two-cycle  
• Fully static design  
• Wide-operating voltage and temperature range:  
- EPROM Commercial/Industrial 2.0V to 6.25V  
- ROM Commercial/Industrial 2.0V to 6.25V  
- EPROM Extended 2.5V to 6.0V  
- ROM Extended 2.5V to 6.0V  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
EPROM/  
ROM  
Device  
Pins I/O  
RAM  
PIC16C54  
18  
18  
18  
18  
18  
28  
28  
18  
18  
18  
28  
28  
28  
18  
18  
12  
12  
12  
12  
12  
20  
20  
12  
12  
12  
20  
20  
20  
12  
12  
512  
512  
512  
512  
512  
512  
512  
1K  
25  
25  
25  
25  
25  
24  
24  
25  
25  
25  
72  
72  
72  
73  
73  
• Low-power consumption  
PIC16C54A  
PIC16C54C  
PIC16CR54A  
PIC16CR54C  
PIC16C55  
- < 2 mA typical @ 5V, 4 MHz  
- 15 µA typical @ 3V, 32 kHz  
- < 0.6 µA typical standby current  
(with WDT disabled) @ 3V, 0°C to 70°C  
PIC16C55A  
PIC16C56  
Note: In this document, figure and table titles  
refer to all varieties of the part number indi-  
cated, (i.e., The title "Figure 14-1: Load  
Conditions - PIC16C54A", also refers to  
PIC16LC54A and PIC16LV54A parts)  
unless specifically called out otherwise.  
PIC16C56A  
PIC16CR56A  
PIC16C57  
1K  
1K  
2K  
PIC16C57C  
PIC16CR57C  
PIC16C58B  
PIC16CR58B  
2K  
2K  
2K  
2K  
• 12-bit wide instructions  
• 8-bit wide data path  
• Seven or eight special function hardware registers  
• Two-level deep hardware stack  
• Direct, indirect and relative addressing modes for  
data and instructions  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 1  
PIC16C5X  
Pin Diagrams  
PDIP, SOIC, Windowed CERDIP  
PDIP, SOIC, Windowed CERDIP  
18  
17  
16  
15  
14  
RA1  
RA0  
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
T0CKI  
1  
2
3
4
5
6
7
8
9
RA2  
RA3  
T0CKI  
1  
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MCLR/VPP  
VDD  
N/C  
VSS  
N/C  
RA0  
RA1  
RA2  
RA3  
OSC1/CLKIN  
3
OSC2/CLKOUT  
RC7  
MCLR/VPP  
VSS  
4
5
RC6  
RB7  
RB6  
RB5  
RB4  
13  
12  
RB0  
RB1  
RB2  
RB3  
6
RC5  
RC4  
RC3  
11  
10  
7
8
RC2  
9
RC1  
RC0  
RB0  
RB1  
RB2  
RB3  
RB4  
10  
11  
12  
13  
14  
RB7  
RB6  
RB5  
SSOP  
SSOP  
VSS  
1  
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MCLR/VPP  
OSC1/CLKIN  
OSC2/CLKOUT  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RA2  
RA3  
T0CKI  
MCLR/VPP  
VSS  
1  
2
3
4
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
RA1  
RA0  
OSC1/CLKIN  
OSC2/CLKOUT  
T0CKI  
VDD  
VDD  
RA0  
RA1  
RA2  
RA3  
RB0  
RB1  
RB2  
RB3  
RB4  
VSS  
5
6
7
8
VDD  
VDD  
RB7  
RB6  
RB5  
RB4  
VSS  
RB0  
RB1  
9
10  
11  
12  
13  
14  
RB2  
RB3  
9
10  
RC0  
RB7  
RB6  
RB5  
DS30453C-page 2  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
Device Differences  
Device  
Oscillator  
Selection  
(Program)  
Process  
Technology  
(Microns)  
Voltage  
Range  
ROM  
Equivalent  
MCLR  
Filter  
Oscillator  
PIC16C54  
2.5-6.25  
2.0-6.25  
2.5-5.5  
2.5-6.25  
2.5-5.5  
2.5-6.25  
2.5-5.5  
2.5-6.25  
2.5-5.5  
2.5-5.5  
2.5-6.25  
2.5-5.5  
2.5-5.5  
2.5-5.5  
2.5-5.5  
Factory  
User  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
1.2  
0.9  
0.7  
1.7  
0.7  
1.7  
0.7  
1.2  
0.7  
0.7  
1.2  
0.7  
0.7  
0.7  
0.7  
PIC16CR54A  
No  
No  
PIC16C54A  
PIC16C54C  
PIC16C55  
User  
PIC16CR54C  
Yes  
No  
Factory  
User  
PIC16C55A  
PIC16C56  
Yes  
No  
Factory  
User  
PIC16CR56A  
PIC16C56A  
PIC16C57  
Yes  
No  
Factory  
User  
PIC16C57C  
PIC16C58B  
PIC16CR54A  
PIC16CR54C  
PIC16CR56A  
PIC16CR57C  
PIC16CR58B  
PIC16CR57C  
PIC16CR58B  
N/A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
User  
Factory  
Factory  
Factory  
Factory  
Factory  
N/A  
N/A  
N/A  
N/A  
Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.  
Note: The table shown above shows the generic names of the PIC16C5X devices. For device varieties,  
please refer to Section 2.0.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 3  
PIC16C5X  
Table of Contents  
1.0 General Description...................................................................................................................................................................... 5  
2.0 PIC16C5X Device Varieties ......................................................................................................................................................... 7  
3.0 Architectural Overview ................................................................................................................................................................. 9  
4.0 Memory Organization................................................................................................................................................................. 15  
5.0 I/O Ports ..................................................................................................................................................................................... 25  
6.0 Timer0 Module and TMR0 Register ........................................................................................................................................... 27  
7.0 Special Features of the CPU...................................................................................................................................................... 31  
8.0 Instruction Set Summary............................................................................................................................................................ 43  
9.0 Development Support................................................................................................................................................................. 55  
10.0 Electrical Characteristics - PIC16C54/55/56/57 ......................................................................................................................... 61  
11.0 DC and AC Characteristics - PIC16C54/55/56/57...................................................................................................................... 73  
12.0 Electrical Characteristics - PIC16CR54A ................................................................................................................................... 81  
13.0 Electrical Characteristics - PIC16C54A...................................................................................................................................... 93  
14.0 DC and AC Characteristics - PIC16C54A ................................................................................................................................ 105  
15.0 Electrical Characteristics - PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B......................................... 115  
16.0 DC and AC Characteristics - PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B ..................................... 127  
17.0 Packaging Information.............................................................................................................................................................. 137  
Appendix A: Compatibility .................................................................................................................................................................. 149  
Index .................................................................................................................................................................................................. 151  
On-Line Support................................................................................................................................................................................. 153  
Reader Response .............................................................................................................................................................................. 154  
PIC16C5X Product Identification System .......................................................................................................................................... 155  
PIC16C54/55/56/57 Product Identification System ........................................................................................................................... 156  
To Our Valued Customers  
Most Current Data Sheet  
To automatically obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended  
workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revi-  
sion of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchips Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure  
that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing  
or appears in error, please:  
Fill out and mail in the reader response form in the back of this data sheet.  
E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
DS30453C-page 4  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
1.1  
Applications  
1.0  
GENERAL DESCRIPTION  
The PIC16C5X from Microchip Technology is a family  
of low-cost, high performance, 8-bit, fully static,  
EPROM/ROM-based CMOS microcontrollers. It  
employs a RISC architecture with only 33 single  
word/single cycle instructions. All instructions are sin-  
gle cycle (200 ns) except for program branches which  
take two cycles. The PIC16C5X delivers performance  
an order of magnitude higher than its competitors in the  
same price category. The 12-bit wide instructions are  
highly symmetrical resulting in 2:1 code compression  
over other 8-bit microcontrollers in its class. The easy  
to use and easy to remember instruction set reduces  
development time significantly.  
The PIC16C5X series fits perfectly in applications rang-  
ing from high-speed automotive and appliance motor  
control to low-power remote transmitters/receivers,  
pointing devices and telecom processors. The EPROM  
technology makes customizing application programs  
(transmitter codes, motor speeds, receiver frequen-  
cies, etc.) extremely fast and convenient. The small  
footprint packages, for through hole or surface mount-  
ing, make this microcontroller series perfect for applica-  
tions with space limitations. Low-cost, low-power, high  
performance, ease of use and I/O flexibility make the  
PIC16C5X series very versatile even in areas where no  
microcontroller use has been considered before (e.g.,  
timer functions, replacement of gluelogic in larger  
systems, co-processor applications).  
The PIC16C5X products are equipped with special fea-  
tures that reduce system cost and power requirements.  
The Power-on Reset (POR) and Device Reset Timer  
(DRT) eliminate the need for external reset circuitry.  
There are four oscillator configurations to choose from,  
including the power-saving LP (Low Power) oscillator  
and cost saving RC oscillator. Power saving SLEEP  
mode, Watchdog Timer and Code Protection features  
improve system cost, power and reliability.  
The UV erasable CERDIP packaged versions are ideal  
for code development, while the cost-effective One  
Time Programmable (OTP) versions are suitable for  
production in any volume. The customer can take full  
advantage of Microchips price leadership in OTP  
microcontrollers, while benefiting from the OTPs  
flexibility.  
The PIC16C5X products are supported by  
a
full-featured macro assembler, a software simulator, an  
in-circuit emulator, a low-cost development program-  
mer and a full featured programmer. All the tools are  
supported on IBM PC and compatible machines.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 5  
PIC16C5X  
TABLE 1-1:  
PIC16C5X FAMILY OF DEVICES  
PIC16C54  
PIC16CR54  
20  
PIC16C55  
PIC16C56  
PIC16CR56  
20  
Maximum Frequency  
of Operation (MHz)  
20  
20  
20  
1K  
Clock  
EPROM Program Memory  
(x12 words)  
512  
512  
Memory  
ROM Program Memory  
(x12 words)  
512  
1K  
RAM Data Memory (bytes)  
Timer Module(s)  
I/O Pins  
25  
25  
24  
25  
25  
Peripherals  
Features  
TMR0  
12  
TMR0  
12  
TMR0  
20  
TMR0  
12  
TMR0  
12  
Number of Instructions  
Packages  
33  
33  
33  
33  
33  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
28-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
20-pin SSOP  
20-pin SSOP  
28-pin SSOP  
20-pin SSOP  
20-pin SSOP  
All PICmicro® Family devices have Power-on Reset, selectable Watchdog Timer, selectable Code Protect and high I/O  
current capability.  
PIC16C57  
20  
PIC16CR57  
20  
PIC16C58  
20  
PIC16CR58  
20  
Maximum Frequency  
of Operation (MHz)  
Clock  
EPROM Program Memory  
(x12 words)  
2K  
2K  
Memory  
ROM Program Memory  
(x12 words)  
2K  
2K  
RAM Data Memory (bytes)  
72  
72  
73  
73  
Peripherals Timer Module(s)  
TMR0  
20  
TMR0  
20  
TMR0  
12  
TMR0  
12  
I/O Pins  
Number of Instructions  
Packages  
33  
33  
33  
33  
Features  
28-pin DIP,  
SOIC;  
28-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
28-pin SSOP 28-pin SSOP  
20-pin SSOP 20-pin SSOP  
All PICmicro® Family devices have Power-on Reset, selectable Watchdog Timer, selectable Code  
Protect and high I/O current capability.  
DS30453C-page 6  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
2.3  
Quick-Turnaround-Production (QTP)  
Devices  
2.0  
PIC16C5X DEVICE VARIETIES  
A variety of frequency ranges and packaging options  
are available. Depending on application and production  
requirements, the proper device option can be selected  
using the information in this section. When placing  
orders, please use the PIC16C5X Product Identifica-  
tion System at the back of this data sheet to specify the  
correct part number.  
Microchip offers a QTP Programming Service for fac-  
tory production orders. This service is made available  
for users who choose not to program a medium to high  
quantity of units and whose code patterns have stabi-  
lized. The devices are identical to the OTP devices but  
with all EPROM locations and configuration bit options  
already programmed by the factory. Certain code and  
prototype verification procedures apply before produc-  
tion shipments are available. Please contact your  
Microchip Technology sales office for more details.  
For the PIC16C5X family of devices, there are four  
device types, as indicated in the device number:  
1. C, as in PIC16C54C. These devices have  
EPROM program memory and operate over the  
standard voltage range.  
2.4  
Serialized  
Quick-Turnaround-Production  
(SQTPSM) Devices  
2. LC, as in PIC16LC54A. These devices have  
EPROM program memory and operate over an  
extended voltage range.  
Microchip offers the unique programming service  
where a few user-defined locations in each device are  
programmed with different serial numbers. The serial  
numbers may be random, pseudo-random or sequen-  
tial. The devices are identical to the OTP devices but  
with all EPROM locations and configuration bit options  
already programmed by the factory.  
3. CR, as in PIC16CR54A. These devices have  
ROM program memory and operate over the  
standard voltage range.  
4. LCR, as in PIC16LCR54A. These devices have  
ROM program memory and operate over an  
extended voltage range.  
2.1  
UV Erasable Devices (EPROM)  
Serial programming allows each device to have a  
unique number which can serve as an entry code,  
password or ID number.  
The UV erasable versions, offered in CERDIP pack-  
ages, are optimal for prototype development and pilot  
programs.  
2.5  
Read Only Memory (ROM) Devices  
UV erasable devices can be programmed for any of the  
four oscillator configurations. Microchips PICSTART  
and PRO MATE programmers both support program-  
ming of the PIC16C5X. Third party programmers also  
are available. Refer to the Third Party Guide for a list of  
sources.  
Microchip offers masked ROM versions of several of  
the highest volume parts, giving the customer a low  
cost option for high volume, mature products.  
2.2  
One-Time-Programmable (OTP)  
Devices  
The availability of OTP devices is especially useful for  
customers expecting frequent code changes and  
updates.  
The OTP devices, packaged in plastic packages, per-  
mit the user to program them once. In addition to the  
program memory, the configuration bits must be pro-  
grammed.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 7  
PIC16C5X  
NOTES:  
DS30453C-page 8  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
The PIC16C5X device contains an 8-bit ALU and work-  
ing register. The ALU is a general purpose arithmetic  
unit. It performs arithmetic and Boolean functions  
between data in the working register and any register  
file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16C5X family can be  
attributed to a number of architectural features com-  
monly found in RISC microprocessors. To begin with,  
the PIC16C5X uses a Harvard architecture in which  
program and data are accessed on separate buses.  
This improves bandwidth over traditional von Neumann  
architecture where program and data are fetched on  
the same bus. Separating program and data memory  
further allows instructions to be sized differently than  
the 8-bit wide data word. Instruction opcodes are  
12-bits wide making it possible to have all single word  
instructions. A 12-bit wide program memory access  
bus fetches a 12-bit instruction in a single cycle. A  
two-stage pipeline overlaps fetch and execution of  
instructions. Consequently, all instructions (33) execute  
in a single cycle (200ns @ 20MHz) except for program  
branches.  
The ALU is 8-bits wide and capable of addition, sub-  
traction, shift and logical operations. Unless otherwise  
mentioned, arithmetic operations are two's comple-  
ment in nature. In two-operand instructions, typically  
one operand is the W (working) register. The other  
operand is either a file register or an immediate con-  
stant. In single operand instructions, the operand is  
either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register. The C and DC bits  
operate as a borrow and digit borrow out bit, respec-  
tively, in subtraction. See the SUBWF and ADDWF  
instructions for examples.  
The PIC16C54/CR54 and PIC16C55 address 512 x 12  
of program memory, the PIC16C56/CR56 address  
1K x 12 of program memory, and the PIC16C57/CR57  
and PIC16C58/CR58 address 2K x 12 of program  
memory. All program memory is internal.  
A simplified block diagram is shown in Figure 3-1, with  
the corresponding device pins described in Table 3-1.  
The PIC16C5X can directly or indirectly address its  
register files and data memory. All special function reg-  
isters including the program counter are mapped in the  
data memory. The PIC16C5X has a highly orthogonal  
(symmetrical) instruction set that makes it possible to  
carry out any operation on any register using any  
addressing mode. This symmetrical nature and lack of  
special optimal situationsmake programming with the  
PIC16C5X simple yet efficient. In addition, the learning  
curve is reduced significantly.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 9  
PIC16C5X  
FIGURE 3-1: PIC16C5X SERIES BLOCK DIAGRAM  
9-11  
T0CKI  
PIN  
OSC1 OSC2 MCLR  
CONFIGURATION WORD  
9-11  
EPROM/ROM  
512 X 12 TO  
2048 X 12  
STACK 1  
STACK2  
DISABLE” “OSC  
PC  
SELECT”  
WATCHDOG  
TIMER  
12  
2
CODE  
OSCILLATOR/  
TIMING &  
CONTROL  
PROTECT”  
INSTRUCTION  
REGISTER  
WDT TIME  
OUT  
CLKOUT  
WDT/TMR0  
PRESCALER  
9
12  
8
SLEEP”  
INSTRUCTION  
DECODER  
6
OPTION”  
OPTION REG.  
FROM W  
DIRECT ADDRESS  
DIRECT RAM  
ADDRESS  
GENERAL  
PURPOSE  
REGISTER  
FILE  
5
5-7  
8
(SRAM)  
24, 25, 72 or  
73 Bytes  
STATUS  
TMR0  
FSR  
8
DATA BUS  
8
W
ALU  
FROM W  
8
FROM W  
4
FROM W  
8
8
4
8
TRIS 5”  
TRIS 6”  
TRIS 7”  
TRISB PORTB  
TRISA PORTA  
TRISC  
PORTC  
8
4
8
RC<7:0>  
(28-Pin  
RA<3:0>  
RB<7:0>  
Devices Only)  
DS30453C-page 10  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
TABLE 3-1:  
Name  
PINOUT DESCRIPTION - PIC16C54s, PIC16CR54, PIC16C56, PIC16CR56,  
PIC16C58, PIC16CR58  
DIP, SOIC SSOP I/O/P Input  
Description  
No.  
No. Type Levels  
RA0  
RA1  
RA2  
RA3  
17  
18  
1
19  
20  
1
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
2
2
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
6
7
8
7
8
9
10  
11  
12  
13  
14  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
9
10  
11  
12  
13  
T0CKI  
3
3
I
ST  
Clock input to Timer0. Must be tied to VSS or VDD, if not in  
use, to reduce current consumption.  
MCLR/VPP  
4
4
I
ST  
Master clear (RESET) input/programming voltage input. This  
pin is an active low RESET to the device. Voltage on the  
MCLR/VPP pin must not exceed VDD to avoid unintended  
entering of programming mode.  
OSC1/CLKIN  
16  
15  
18  
17  
I
ST  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT, which has 1/4 the frequency of OSC1 and denotes  
the instruction cycle rate.  
VDD  
VSS  
14  
5
15,16  
5,6  
P
P
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Legend: I = input, O = output, I/O = input/output, P = power, = Not Used, TTL = TTL input, ST = Schmitt Trigger input  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 11  
PIC16C5X  
TABLE 3-2:  
PINOUT DESCRIPTION - PIC16C55, PIC16C57, PIC16CR57  
DIP, SOIC SSOP I/O/P Input  
Name  
Description  
No.  
No. Type Levels  
RA0  
RA1  
RA2  
RA3  
6
7
8
9
5
6
7
8
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
10  
11  
12  
13  
14  
15  
16  
17  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
10  
11  
12  
13  
15  
16  
17  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
18  
19  
20  
21  
22  
23  
24  
25  
18  
19  
20  
21  
22  
23  
24  
25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
T0CKI  
1
2
I
ST  
Clock input to Timer0. Must be tied to VSS or VDD if not in use  
to reduce current consumption.  
MCLR  
28  
28  
I
ST  
Master clear (RESET) input. This pin is an active low RESET  
to the device.  
OSC1/CLKIN  
27  
26  
27  
26  
I
ST  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and denotes  
the instruction cycle rate.  
VDD  
VSS  
N/C  
2
4
3,4  
1,14  
P
P
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Unused, do not connect.  
3,5  
Legend: I = input, O = output, I/O = input/output, P = power, = Not Used, TTL = TTL input, ST = Schmitt Trigger input  
DS30453C-page 12  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
3.1  
Clocking Scheme/Instruction Cycle  
3.2  
Instruction Flow/Pipelining  
The clock input (OSC1/CLKIN pin) is internally divided  
by four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the pro-  
gram counter is incremented every Q1 and the instruc-  
tion is fetched from program memory and latched into  
the instruction register in Q4. It is decoded and exe-  
cuted during the following Q1 through Q4. The clocks  
and instruction execution flow are shown in Figure 3-2  
and Example 3-1.  
An Instruction Cycle consists of four Q cycles (Q1, Q2,  
Q3 and Q4). The instruction fetch and execute are pipe-  
lined such that fetch takes one instruction cycle, while  
decode and execute takes another instruction cycle.  
However, due to the pipelining, each instruction effec-  
tively executes in one cycle. If an instruction causes the  
program counter to change (e.g., GOTO), then two  
cycles are required to complete the instruction  
(Example 3-1).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register in cycle Q1. This instruc-  
tion is then decoded and executed during the Q2, Q3  
and Q4 cycles. Data memory is read during Q2 (oper-  
and read) and written during Q4 (destination write).  
FIGURE 3-2: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Q4  
PC  
Internal  
phase  
clock  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW  
1. MOVLW 55H  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3  
Flush  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is flushedfrom the pipeline, while the new instruction is being fetched and then executed.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 13  
PIC16C5X  
NOTES:  
DS30453C-page 14  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
FIGURE 4-2: PIC16C56/CR56 PROGRAM  
MEMORY MAP AND STACK  
4.0  
MEMORY ORGANIZATION  
PIC16C5X memory is organized into program memory  
and data memory. For devices with more than 512  
bytes of program memory, a paging scheme is used.  
Program memory pages are accessed using one or two  
STATUS Register bits. For devices with a data memory  
register file of more than 32 registers, a banking  
scheme is used. Data memory banks are accessed  
using the File Selection Register (FSR).  
PC<9:0>  
10  
CALL, RETLW  
Stack Level 1  
Stack Level 2  
000h  
On-chip Program  
0FFh  
Memory (Page 0)  
100h  
4.1  
Program Memory Organization  
1FFh  
200h  
The PIC16C54, PIC16CR54 and PIC16C55 have a  
9-bit Program Counter (PC) capable of addressing a  
512 x 12 program memory space (Figure 4-1). The  
PIC16C56 and PIC16CR56 have a 10-bit Program  
Counter (PC) capable of addressing a 1K x 12 program  
memory space (Figure 4-2). The PIC16CR57,  
PIC16C58 and PIC16CR58 have an 11-bit Program  
Counter capable of addressing a 2K x 12 program  
memory space (Figure 4-3). Accessing a location  
above the physically implemented address will cause a  
wraparound.  
On-chip Program  
2FFh  
Memory (Page 1)  
300h  
RESET Vector  
3FFh  
FIGURE 4-3: PIC16C57/CR57/C58/  
CR58 PROGRAM MEMORY  
MAP AND STACK  
A NOPat the RESET vector location will cause a restart  
at location 000h. The RESET vector for the PIC16C54,  
PIC16CR54 and PIC16C55 is at 1FFh. The RESET  
vector for the PIC16C56 and PIC16CR56 is at 3FFh.  
The RESET vector for the PIC16C57, PIC16CR57,  
PIC16C58, and PIC16CR58 is at 7FFh.  
PC<10:0>  
11  
CALL, RETLW  
Stack Level 1  
Stack Level 2  
000h  
FIGURE 4-1: PIC16C54/CR54/C55  
PROGRAM MEMORY MAP  
AND STACK  
On-chip Program  
0FFh  
Memory (Page 0)  
100h  
1FFh  
200h  
PC<8:0>  
On-chip Program  
2FFh  
9
CALL, RETLW  
Memory (Page 1)  
300h  
Stack Level 1  
Stack Level 2  
3FFh  
400h  
On-chip Program  
4FFh  
000h  
Memory (Page 2)  
500h  
On-chip  
Program  
Memory  
5FFh  
600h  
0FFh  
100h  
On-chip Program  
6FFh  
Memory (Page 3)  
700h  
RESET Vector  
7FFh  
RESET Vector  
1FFh  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 15  
PIC16C5X  
4.2  
Data Memory Organization  
FIGURE 4-4: PIC16C54, PIC16CR54,  
PIC16C55, PIC16C56,  
PIC16CR56 REGISTER FILE  
MAP  
Data memory is composed of registers, or bytes of  
RAM. Therefore, data memory for a device is specified  
by its register file. The register file is divided into two  
functional groups: Special Function Registers and  
General Purpose Registers.  
File Address  
INDF(1)  
00h  
The Special Function Registers include the TMR0 reg-  
ister, the Program Counter (PC), the Status Register,  
the I/O registers (ports) and the File Select Register  
(FSR). In addition, Special Purpose Registers are used  
to control the I/O port configuration and prescaler  
options.  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
TMR0  
PCL  
STATUS  
FSR  
PORTA  
PORTB  
The General Purpose Registers are used for data and  
control information under command of the instructions.  
PORTC(2)  
For the PIC16C54, PIC16CR54, PIC16C56 and  
PIC16CR56, the register file is composed of 7 Special  
Function Registers and 25 General Purpose Registers  
(Figure 4-4).  
08h  
General  
Purpose  
Registers  
0Fh  
10h  
For the PIC16C55, the register file is composed of 8  
Special Function Registers and 24 General Purpose  
Registers.  
For the PIC16C57 and PIC16CR57, the register file is  
composed of 8 Special Function Registers, 24 General  
Purpose Registers and up to 48 additional General  
Purpose Registers that may be addressed using a  
banking scheme (Figure 4-5).  
1Fh  
Note 1: Not a physical register. See Section 4.7.  
2: PIC16C55 only, in all other devices this is  
implemented as a a general purpose register.  
For the PIC16C58 and PIC16CR58, the register file is  
composed of 7 Special Function Registers, 25 General  
Purpose Registers and up to 48 additional General  
Purpose Registers that may be addressed using a  
banking scheme (Figure 4-6).  
4.2.1  
GENERAL PURPOSE REGISTER FILE  
The register file is accessed either directly or indirectly  
through the File Select Register (FSR). The FSR Reg-  
ister is described in Section 4.7.  
DS30453C-page 16  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
FIGURE 4-5: PIC16C57/CR57 REGISTER FILE MAP  
FSR<6:5>  
File Address  
00h  
00  
01  
10  
11  
INDF(1)  
TMR0  
PCL  
20h  
40h  
60h  
01h  
02h  
03h  
04h  
05h  
06h  
STATUS  
FSR  
Addresses map back to  
addresses in Bank 0.  
PORTA  
PORTB  
07h  
08h  
PORTC  
General  
Purpose  
Registers  
2Fh  
30h  
4Fh  
50h  
6Fh  
0Fh  
10h  
1Fh  
70h  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
3Fh  
5Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note 1: Not a physical register. See Section 4.7.  
FIGURE 4-6: PIC16C58/CR58 REGISTER FILE MAP  
FSR<6:5>  
File Address  
00h  
00  
01  
10  
11  
INDF(1)  
TMR0  
PCL  
20h  
40h  
60h  
01h  
02h  
03h  
04h  
05h  
STATUS  
FSR  
Addresses map back to  
addresses in Bank 0.  
PORTA  
PORTB  
06h  
07h  
General  
Purpose  
Registers  
2Fh  
30h  
4Fh  
50h  
6Fh  
0Fh  
10h  
1Fh  
70h  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
3Fh  
5Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note 1: Not a physical register. See Section 4.7.  
DS30453C-page 17  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral functions to control the opera-  
tion of the device (Table 4-1).  
The Special Registers can be classified into two sets.  
The Special Function Registers associated with the  
corefunctions are described in this section. Those  
related to the operation of the peripheral features are  
described in the section for each peripheral feature.  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on  
Power-on  
Reset  
Value on  
MCLR and  
WDT Reset  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
N/A  
N/A  
00h  
01h  
TRIS  
I/O Control Registers (TRISA, TRISB, TRISC)  
Contains control bits to configure Timer0 and Timer0/WDT prescaler  
1111 1111  
--11 1111  
1111 1111  
--11 1111  
uuuu uuuu  
uuuu uuuu  
OPTION  
INDF  
Uses contents of FSR to address data memory (not a physical register) xxxx xxxx  
TMR0  
8-bit real-time clock/counter  
Low order 8 bits of PC  
xxxx xxxx  
(1)  
02h  
03h  
04h  
05h  
06h  
PCL  
1111 1111  
0001 1xxx  
1xxx xxxx  
---- xxxx  
xxxx xxxx  
1111 1111  
000q quuu  
STATUS  
FSR  
PA2  
PA1  
PA0  
TO  
PD  
Z
DC  
C
(3)  
(3)  
Indirect data memory address pointer  
1uuu uuuu  
---- uuuu  
uuuu uuuu  
PORTA  
PORTB  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
RB7  
RB6  
RB5  
RB4  
(2)  
07h  
PORTC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx  
uuuu uuuu  
Legend: Shaded boxes = unimplemented or unused, = unimplemented, read as 0(if applicable)  
x= unknown, u= unchanged, q= see the tables in Section 7.7 for possible values.  
Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.5 for an explanation of how to access  
these bits.  
2: File address 07h is a General Purpose Register on the PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16C58 and  
PIC16CR58.  
3: For the PIC16C54 and PIC16C55, the value on RESET is 111x xxxxand for MCLR and WDT Reset, the value is  
111u uuuu.  
DS30453C-page 18  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS Register  
as 000u u1uu(where u= unchanged).  
4.3  
STATUS Register  
This register contains the arithmetic status of the ALU,  
the RESET status, and the page preselect bits for pro-  
gram memories larger than 512 words.  
It is recommended, therefore, that only BCF, BSFand  
MOVWFinstructions be used to alter the STATUS Regis-  
ter because these instructions do not affect the Z, DC  
or C bits from the STATUS Register. For other instruc-  
tions which do affect STATUS Bits, see Section 8.0,  
Instruction Set Summary.  
The STATUS Register can be the destination for any  
instruction, as with any other register. If the STATUS  
Register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS Register as destination may be different than  
intended.  
REGISTER 4-1: STATUS REGISTER (ADDRESS:03h)  
R/W-0  
PA2  
R/W-0  
PA1  
R/W-0  
PA0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
- n = Value at POR reset  
bit7  
6
5
4
3
2
1
bit0  
bit 7:  
PA2: This bit unused at this time.  
Use of the PA2 bit as a general purpose read/write bit is not recommended, since this may affect upward  
compatibility with future products.  
bit 6-5: PA<1:0>: Program page preselect bits (PIC16C56/CR56)(PIC16C57/CR57)(PIC16C58/CR58)  
00= Page 0 (000h - 1FFh) - PIC16C56/CR56, PIC16C57/CR57, PIC16C58/CR58  
01= Page 1 (200h - 3FFh) - PIC16C56/CR56, PIC16C57/CR57, PIC16C58/CR58  
10= Page 2 (400h - 5FFh) - PIC16C57/CR57, PIC16C58/CR58  
11= Page 3 (600h - 7FFh) - PIC16C57/CR57, PIC16C58/CR58  
Each page is 512 words.  
Using the PA<1:0> bits as general purpose read/write bits in devices which do not use them for program  
page preselect is not recommended since this may affect upward compatibility with future products.  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (for ADDWFand SUBWFinstructions)  
ADDWF  
1= A carry from the 4th low order bit of the result occurred  
0= A carry from the 4th low order bit of the result did not occur  
SUBWF  
1= A borrow from the 4th low order bit of the result did not occur  
0= A borrow from the 4th low order bit of the result occurred  
bit 0:  
C: Carry/borrow bit (for ADDWF, SUBWFand RRF, RLFinstructions)  
ADDWF  
SUBWF  
RRF or RLF  
1= A carry occurred  
0= A carry did not occur  
1= A borrow did not occur  
0= A borrow occurred  
Loaded with LSb or MSb, respectively  
DS30453C-page 19  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
4.4  
OPTION Register  
The OPTION Register is a 6-bit wide, write-only regis-  
ter which contains various control bits to configure the  
Timer0/WDT prescaler and Timer0.  
By executing the OPTION instruction, the contents of  
the W Register will be transferred to the OPTION Reg-  
ister. A RESET sets the OPTION<5:0> bits.  
REGISTER 4-2: OPTION REGISTER  
U-0  
U-0  
6
W-1  
T0CS  
5
W-1  
T0SE  
4
W-1  
PSA  
3
W-1  
PS2  
2
W-1  
PS1  
1
W-1  
PS0  
W
U
= Writable bit  
= Unimplemented bit  
bit7  
bit0  
- n = Value at POR reset  
bit 7-6: Unimplemented.  
bit 5:  
bit 4:  
bit 3:  
T0CS: Timer0 clock source select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: Timer0 source edge select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler assignment bit  
1= Prescaler assigned to the WDT  
0= Prescaler assigned to Timer0  
bit 2-0: PS<2:0>: Prescaler rate select bits  
Bit Value  
Timer0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
DS30453C-page 20  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
4.5  
Program Counter  
FIGURE 4-7: LOADING OF PC  
BRANCH INSTRUCTIONS -  
PIC16C54, PIC16CR54,  
PIC16C55  
As a program instruction is executed, the Program  
Counter (PC) will contain the address of the next pro-  
gram instruction to be executed. The PC value is  
increased by one, every instruction cycle, unless an  
instruction changes the PC.  
GOTO Instruction  
8
7
0
For a GOTOinstruction, bits 8:0 of the PC are provided  
by the GOTO instruction word. The PC Latch (PCL) is  
mapped to PC<7:0> (Figure 4-7 and Figure 4-8).  
PCL  
PC  
Instruction Word  
For the PIC16C56, PIC16CR56, PIC16C57,  
PIC16CR57, PIC16C58 and PIC16CR58, a page num-  
ber must be supplied as well. Bit5 and bit6 of the STA-  
TUS Register provide page information to bit9 and  
bit10 of the PC (Figure 4-8 and Figure 4-9).  
CALL or Modify PCL Instruction  
8
7
0
PCL  
PC  
For a CALL instruction, or any instruction where the  
PCL is the destination, bits 7:0 of the PC again are pro-  
vided by the instruction word. However, PC<8> does  
not come from the instruction word, but is always  
cleared (Figure 4-7 and Figure 4-8).  
Reset to 0’  
Instruction Word  
FIGURE 4-8: LOADING OF PC  
BRANCH INSTRUCTIONS -  
PIC16C56/PIC16CR56  
Instructions where the PCL is the destination, or Modify  
PCL instructions, include MOVWF PC, ADDWF PC,and  
BSF PC,5.  
GOTO Instruction  
For the PIC16C56, PIC16CR56, PIC16C57,  
PIC16CR57, PIC16C58 and PIC16CR58, a page num-  
ber again must be supplied. Bit5 and bit6 of the STA-  
TUS Register provide page information to bit9 and  
bit10 of the PC (Figure 4-8 and Figure 4-9).  
10  
9
8
7
0
PC  
PCL  
Instruction Word  
Note: Because PC<8> is cleared in the CALL  
instruction, or any Modify PCL instruction,  
all subroutine calls or computed jumps are  
limited to the first 256 locations of any pro-  
gram memory page (512 words long).  
2
PA<1:0>  
7
0
STATUS  
CALL or Modify PCL Instruction  
10  
9
8
7
0
PC  
PCL  
Instruction Word  
Reset to 0’  
PA<1:0>  
2
7
0
STATUS  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 21  
PIC16C5X  
FIGURE 4-9: LOADING OF PC  
4.6  
Stack  
BRANCH INSTRUCTIONS -  
PIC16C57/PIC16CR57, AND  
PIC16C58/PIC16CR58  
PIC16C5X devices have a 10-bit or 11-bit wide,  
two-level hardware push/pop stack.  
A CALLinstruction will push the current value of stack  
1 into stack 2 and then push the current program  
counter value, incremented by one, into stack level 1. If  
more than two sequential CALLs are executed, only the  
most recent two return addresses are stored.  
GOTO Instruction  
10  
9
8
7
0
PC  
PCL  
A RETLWinstruction will pop the contents of stack level  
1 into the program counter and then copy stack level 2  
contents into level 1. If more than two sequential  
RETLWs are executed, the stack will be filled with the  
address previously stored in level 2. Note that the  
W Register will be loaded with the literal value specified  
in the instruction. This is particularly useful for the  
implementation of data look-up tables within the pro-  
gram memory.  
Instruction Word  
2
PA<1:0>  
7
0
STATUS  
CALL or Modify PCL Instruction  
10  
9
8
7
0
For the RETLW instruction, the PC is loaded with the  
Top of Stack (TOS) contents. All of the devices covered  
in this data sheet have a two-level stack. The stack has  
the same bit width as the device PC.  
PC  
PCL  
Instruction Word  
Reset to 0’  
PA<1:0>  
4.7  
Indirect Data Addressing; INDF and  
FSR Registers  
2
7
0
The INDF Register is not  
a physical register.  
STATUS  
Addressing INDF actually addresses the register  
whose address is contained in the FSR Register (FSR  
is a pointer). This is indirect addressing.  
4.5.1  
PAGING CONSIDERATIONS –  
PIC16C56/CR56, PIC16C57/CR57 AND  
PIC16C58/CR58  
EXAMPLE 4-1: INDIRECT ADDRESSING  
Register file 08 contains the value 10h  
Register file 09 contains the value 0Ah  
Load the value 08 into the FSR Register  
A read of the INDF Register will return the value  
of 10h  
Increment the value of the FSR Register by one  
(FSR = 09h)  
A read of the INDR register now will return the  
value of 0Ah.  
If the Program Counter is pointing to the last address of  
a selected memory page, when it increments it will  
cause the program to continue in the next higher page.  
However, the page preselect bits in the STATUS Reg-  
ister will not be updated. Therefore, the next GOTO,  
CALLor modify PCL instruction will send the program  
to the page specified by the page preselect bits (PA0 or  
PA<1:0>).  
For example, a NOP at location 1FFh (page 0) incre-  
ments the PC to 200h (page 1). A GOTO xxxat 200h  
will return the program to address 0xxh on page 0  
(assuming that PA<1:0> are clear).  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF Register indirectly results in a  
no-operation (although STATUS bits may be affected).  
A simple program to clear RAM locations 10h-1Fh  
using indirect addressing is shown in Example 4-2.  
To prevent this, the page preselect bits must be  
updated under program control.  
4.5.2  
EFFECTS OF RESET  
EXAMPLE 4-2: HOW TO CLEAR RAM  
USING INDIRECT  
The Program Counter is set upon a RESET, which  
means that the PC addresses the last location in the  
last page (e.g., the RESET vector).  
ADDRESSING  
movlw  
movwf  
clrf  
incf  
btfsc  
goto  
0x10  
FSR  
INDF  
FSR,F  
FSR,4  
NEXT  
;initialize pointer  
; to RAM  
;clear INDF Register  
;inc pointer  
;all done?  
;NO, clear next  
The STATUS Register page preselect bits are cleared  
upon  
pre-selected.  
NEXT  
a RESET, which means that page 0 is  
Therefore, upon a RESET, a GOTO instruction at the  
RESET vector location will automatically cause the pro-  
gram to jump to page 0.  
CONTINUE  
:
;YES, continue  
DS30453C-page 22  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
The FSR is either a 5-bit (PIC16C54, PIC16CR54,  
PIC16C55), 6-bit (PIC16C56, PIC16CR56), or 7-bit  
(PIC16C57s, PIC16CR57, PIC16C58, PIC16CR58)  
wide register. It is used in conjunction with the INDF  
Register to indirectly address the data memory area.  
PIC16C54, PIC16CR54, PIC16C55: These do not use  
banking. FSR<6:5> bits are unimplemented and read  
as 1s.  
PIC16C57, PIC16CR57, PIC16C58, PIC16CR58:  
FSR<6:5> are the bank select bits and are used to  
select the bank to be addressed (00 = bank 0,  
01= bank 1, 10= bank 2, 11= bank 3).  
The FSR<4:0> bits are used to select data memory  
addresses 00h to 1Fh.  
FIGURE 4-10: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
(FSR)  
4
(opcode)  
0
5
(FSR)  
0
6
4
5
6
location select  
bank select  
location select  
bank  
00  
01  
10  
11  
00h  
Addresses map back to  
addresses in Bank 0.  
Data  
Memory  
0Fh  
10h  
(1)  
1Fh  
Bank 0  
3Fh  
Bank 1  
5Fh  
Bank 2  
7Fh  
Bank 3  
Note 1: For register map detail see Section 4.2.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 23  
PIC16C5X  
NOTES:  
DS30453C-page 24  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
5.5  
I/O Interfacing  
5.0  
I/O PORTS  
As with any other register, the I/O Registers can be  
written and read under program control. However, read  
instructions (e.g., MOVF PORTB,W) always read the I/O  
pins independent of the pins input/output modes. On  
RESET, all I/O ports are defined as input (inputs are at  
hi-impedance) since the I/O control registers (TRISA,  
TRISB, TRISC) are all set.  
The equivalent circuit for an I/O port pin is shown in  
Figure 5-1. All ports may be used for both input and  
output operation. For input operations these ports are  
non-latching. Any input must be present until read by  
an input instruction (e.g., MOVF PORTB, W). The out-  
puts are latched and remain unchanged until the output  
latch is rewritten. To use a port pin as output, the corre-  
sponding direction control bit (in TRISA, TRISB) must  
be cleared (= 0). For use as an input, the corresponding  
TRIS bit must be set. Any I/O pin can be programmed  
individually as input or output.  
5.1  
PORTA  
PORTA is a 4-bit I/O Register. Only the low order 4 bits  
are used (RA<3:0>). Bits 7-4 are unimplemented and  
read as '0's.  
FIGURE 5-1: EQUIVALENT CIRCUIT  
FOR A SINGLE I/O PIN  
5.2  
PORTB  
Data  
Bus  
PORTB is an 8-bit I/O Register (PORTB<7:0>).  
D
Q
Q
Data  
Latch  
5.3  
PORTC  
VDD  
P
WR  
Port  
CK  
PORTC is an 8-bit I/O Register for PIC16C55,  
PIC16C57 and PIC16CR57.  
PORTC is a General Purpose Register for PIC16C54,  
PIC16CR54, PIC16C56, PIC16C58 and PIC16CR58.  
N
I/O  
pin(1)  
W
Reg  
D
Q
Q
5.4  
TRIS Registers  
TRIS  
Latch  
VSS  
The Output Driver Control Registers are loaded with  
the contents of the W Register by executing the TRIS  
finstruction. A '1' from a TRIS Register bit puts the  
corresponding output driver in a hi-impedance (input)  
mode. A '0' puts the contents of the output data latch  
on the selected pins, enabling the output buffer.  
TRIS f’  
CK  
RESET  
Note:  
A read of the ports reads the pins, not the  
output data latches. That is, if an output  
driver on a pin is enabled and driven high,  
but the external system is holding it low, a  
read of the port will indicate that the pin is  
low.  
RD Port  
Note 1: I/O pins have protection diodes to VDD and VSS.  
The TRIS Registers are write-onlyand are set (output  
drivers disabled) upon RESET.  
TABLE 5-1:  
SUMMARY OF PORT REGISTERS  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
N/A  
05h  
06h  
07h  
TRIS  
PORTA  
I/O Control Registers (TRISA, TRISB, TRISC)  
1111 1111 1111 1111  
---- xxxx ---- uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RA3  
RB3  
RC3  
RA2  
RB2  
RC2  
RA1  
RB1  
RC1  
RA0  
RB0  
RC0  
PORTB  
PORTC  
RB7  
RC7  
RB6  
RC6  
RB5  
RC5  
RB4  
RC4  
Legend: Shaded boxes = unimplemented, read as 0, = unimplemented, read as '0', x= unknown, u= unchanged  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 25  
PIC16C5X  
5.6  
I/O Programming Considerations  
BI-DIRECTIONAL I/O PORTS  
EXAMPLE 5-1: READ-MODIFY-WRITE  
INSTRUCTIONS ON AN  
I/O PORT  
5.6.1  
Some instructions operate internally as read followed  
by write operations. The BCFand BSFinstructions, for  
example, read the entire port into the CPU, execute the  
bit operation and re-write the result. Caution must be  
used when these instructions are applied to a port  
where one or more pins are used as input/outputs. For  
example, a BSFoperation on bit5 of PORTB will cause  
all eight bits of PORTB to be read into the CPU, bit5 to  
be set and the PORTB value to be written to the output  
latches. If another bit of PORTB is used as a bi-direc-  
tional I/O pin (say bit0) and it is defined as an input at  
this time, the input signal present on the pin itself would  
be read into the CPU and rewritten to the data latch of  
this particular pin, overwriting the previous content. As  
long as the pin stays in the input mode, no problem  
occurs. However, if bit0 is switched into output mode  
later on, the content of the data latch may now be  
unknown.  
;Initial PORT Settings  
; PORTB<7:4> Inputs  
; PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-ups and are  
;not connected to other circuitry  
;
;
;
PORT latch PORT pins  
---------- ----------  
BCF  
BCF  
MOVLW 03Fh  
PORTB, 7  
PORTB, 6  
;01pp pppp  
;10pp pppp  
;
11pp pppp  
11pp pppp  
TRIS PORTB  
;10pp pppp  
10pp pppp  
;
;Note that the user may have expected the pin  
;values to be 00pp pppp. The 2nd BCF caused  
;RB7 to be latched as the pin value (High).  
5.6.2  
SUCCESSIVE OPERATIONS ON I/O  
PORTS  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle  
(Figure 5-2). Therefore, care must be exercised if a  
write followed by a read operation is carried out on the  
same I/O port. The sequence of instructions should  
allow the pin voltage to stabilize (load dependent)  
before the next instruction, which causes that file to be  
read into the CPU, is executed. Otherwise, the previous  
state of that pin may be read into the CPU rather than  
the new state. When in doubt, it is better to separate  
these instructions with a NOPor another instruction not  
accessing this I/O port.  
Example 5-1 shows the effect of two sequential  
read-modify-write instructions (e.g., BCF, BSF, etc.) on  
an I/O port.  
A pin actively outputting a high or a low should not be  
driven from external devices at the same time in order  
to change the level on this pin (wired-or, wired-and).  
The resulting high output currents may damage the  
chip.  
FIGURE 5-2: SUCCESSIVE I/O OPERATION  
Q4  
Q4  
Q4  
Q4  
Q3  
Q3  
Q3  
Q3  
Q1 Q2  
PC  
Q1 Q2  
Q1 Q2  
Q1 Q2  
PC + 3  
NOP  
PC + 1  
PC + 2  
NOP  
Instruction  
fetched  
MOVWF PORTB MOVF PORTB,W  
This example shows a write  
to PORTB followed by a read  
from PORTB.  
RB<7:0>  
Port pin  
written here  
Port pin  
sampled here  
Instruction  
executed  
MOVWF PORTB MOVF PORTB,W  
NOP  
(Write to  
PORTB)  
(Read  
PORTB)  
DS30453C-page 26  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
Counter mode is selected by setting the T0CS bit  
(OPTION<5>). In this mode, Timer0 will increment  
either on every rising or falling edge of pin T0CKI. The  
incrementing edge is determined by the source edge  
select bit T0SE (OPTION<4>). Clearing the T0SE bit  
selects the rising edge. Restrictions on the external  
clock input are discussed in detail in Section 6.1.  
6.0  
TIMER0 MODULE AND  
TMR0 REGISTER  
The Timer0 module has the following features:  
8-bit timer/counter register, TMR0  
- Readable and writable  
8-bit software programmable prescaler  
Internal or external clock select  
- Edge select for external clock  
Note: The prescaler may be used by either the  
Timer0 module or the Watchdog Timer, but  
not both.  
Figure 6-1 is a simplified block diagram of the Timer0  
module, while Figure 6-2 shows the electrical structure  
of the Timer0 input.  
The prescaler assignment is controlled in software by  
the control bit PSA (OPTION<3>). Clearing the PSA bit  
will assign the prescaler to Timer0. The prescaler is not  
readable or writable. When the prescaler is assigned to  
the Timer0 module, prescale values of 1:2, 1:4,...,  
1:256 are selectable. Section 6.2 details the operation  
of the prescaler.  
Timer mode is selected by clearing the T0CS bit  
(OPTION<5>). In timer mode, the Timer0 module will  
increment every instruction cycle (without prescaler). If  
TMR0 register is written, the increment is inhibited for  
the following two cycles (Figure 6-3 and Figure 6-4).  
The user can work around this by writing an adjusted  
value to the TMR0 register.  
A summary of registers associated with the Timer0  
module is found in Table 6-1.  
FIGURE 6-1: TIMER0 BLOCK DIAGRAM  
Data Bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
Clocks  
TMR0 reg  
T0CKI  
pin  
Programmable  
PSout  
Sync  
(2)  
Prescaler  
(1)  
(2 cycle delay)  
T0SE  
3
(1)  
(1)  
PS2, PS1, PS0  
PSA  
(1)  
T0CS  
Note 1: Bits T0CS, T0SE, PSA, PS2, PS1 and PS0 are located in the OPTION register.  
2: The prescaler is shared with the Watchdog Timer (Figure 6-6).  
FIGURE 6-2: ELECTRICAL STRUCTURE OF T0CKI PIN  
RIN  
T0CKI  
pin  
(1)  
Schmitt Trigger  
Input Buffer  
N
(1)  
VSS  
VSS  
Note 1: ESD protection circuits.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 27  
PIC16C5X  
FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetch  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
T0  
T0+1  
T0+2  
NT0  
NT0  
NT0  
NT0+1  
NT0+2  
Timer0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
FIGURE 6-4: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
NT0  
Timer0  
Instruction  
Execute  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
TABLE 6-1:  
Address  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
Power-on  
Reset  
Value on  
MCLR and  
WDT Reset  
Name  
Bit 7  
Timer0 - 8-bit real-time clock/counter  
T0CS T0SE PSA  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
N/A  
TMR0  
xxxx xxxx uuuu uuuu  
PS0 --11 1111 --11 1111  
OPTION  
PS2  
PS1  
Legend: Shaded cells: Unimplemented bits, -= unimplemented, x = unknown, u= unchanged.  
DS30453C-page 28  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple counter-type pres-  
caler so that the prescaler output is symmetrical. For  
the external clock to meet the sampling requirement,  
the ripple counter must be taken into account. There-  
fore, it is necessary for T0CKI to have a period of at  
least 4TOSC (and a small RC delay of 40 ns) divided by  
the prescaler value. The only requirement on T0CKI  
high and low time is that they do not violate the mini-  
mum pulse width requirement of 10 ns. Refer to param-  
eters 40, 41 and 42 in the electrical specification of the  
desired device.  
6.1  
Using Timer0 with an External Clock  
When an external clock input is used for Timer0, it must  
meet certain requirements. The external clock require-  
ment is due to internal phase clock (TOSC) synchroniza-  
tion. Also, there is a delay in the actual incrementing of  
Timer0 after synchronization.  
6.1.1  
EXTERNAL CLOCK SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks (Figure 6-5).  
Therefore, it is necessary for T0CKI to be high for at  
least 2TOSC (and a small RC delay of 20 ns) and low for  
at least 2TOSC (and a small RC delay of 20 ns). Refer to  
the electrical specification of the desired device.  
6.1.2  
TIMER0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the Timer0 mod-  
ule is actually incremented. Figure 6-5 shows the delay  
from the external clock edge to the timer incrementing.  
FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
External Clock Input or  
misses sampling  
Prescaler Output (2)  
(1)  
External Clock/Prescaler  
Output After Sampling  
(3)  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc). Therefore,  
the error in measuring the interval between two edges on Timer0 input = ± 4Tosc max.  
2: External clock if no prescaler selected, prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 29  
PIC16C5X  
6.2  
Prescaler  
EXAMPLE 6-1: CHANGING PRESCALER  
(TIMER0WDT)  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer (WDT), respectively (Section 6.1.2). For simplic-  
ity, this counter is being referred to as prescaler”  
throughout this data sheet. Note that the prescaler may  
be used by either the Timer0 module or the WDT, but  
not both. Thus, a prescaler assignment for the Timer0  
module means that there is no prescaler for the WDT,  
and vice-versa.  
1.CLRWDT  
2.CLRF  
;Clear WDT  
;Clear TMR0 & Prescaler  
3.MOVLW '00xx1111b ;These 3 lines (5, 6, 7)  
TMR0  
4.OPTION  
; are required only if  
; desired  
;PS<2:0> are 000 or  
;001  
5.CLRWDT  
6.MOVLW '00xx1xxxb ;Set Postscaler to  
7.OPTION ; desired WDT rate  
The PSA and PS<2:0> bits (OPTION<3:0>) determine  
prescaler assignment and prescale ratio.  
To change prescaler from the WDT to the Timer0 mod-  
ule, use the sequence shown in Example 6-2. This  
sequence must be used even if the WDT is disabled. A  
CLRWDTinstruction should be executed before switching  
the prescaler.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF 1,  
MOVWF 1, BSF 1,x, etc.) will clear the prescaler.  
When assigned to WDT, a CLRWDTinstruction will clear  
the prescaler along with the WDT. The prescaler is nei-  
ther readable nor writable. On a RESET, the prescaler  
contains all '0's.  
EXAMPLE 6-2: CHANGING PRESCALER  
(WDTTIMER0)  
CLRWDT  
MOVLW  
;Clear WDT and  
;prescaler  
;Select TMR0, new  
;prescale value and  
;clock source  
6.2.1  
SWITCHING PRESCALER ASSIGNMENT  
'xxxx0xxx'  
The prescaler assignment is fully under software control  
(i.e., it can be changed on the flyduring program exe-  
cution). To avoid an unintended device RESET, the fol-  
lowing instruction sequence (Example 6-1) must be  
executed when changing the prescaler assignment from  
Timer0 to the WDT.  
OPTION  
FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
TCY ( = FOSC/4)  
Data Bus  
8
0
M
U
X
1
0
T0CKI  
pin  
M
U
X
1
Sync  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
PSA  
0
1
8-bit Prescaler  
M
U
X
8
Watchdog  
Timer  
8 - to - 1MUX  
PS<2:0>  
PSA  
1
0
WDT Enable bit  
MUX  
PSA  
WDT  
Time-Out  
Note: T0CS, T0SE, PSA, PS<2:0> are bits in the OPTION register.  
DS30453C-page 30  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
The SLEEP mode is designed to offer a very low cur-  
rent power-down mode. The user can wake-up from  
SLEEP through external RESET or through a Watch-  
dog Timer time-out. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
7.0  
SPECIAL FEATURES OF THE  
CPU  
What sets a microcontroller apart from other proces-  
sors are special circuits that deal with the needs of  
real-time applications. The PIC16C5X family of micro-  
controllers has a host of such features intended to max-  
imize system reliability, minimize cost through  
elimination of external components, provide power sav-  
ing operating modes and offer code protection. These  
features are:  
7.1  
Configuration Bits  
Configuration bits can be programmed to select various  
device configurations. Two bits are for the selection of  
the oscillator type and one bit is the Watchdog Timer  
Oscillator selection  
RESET  
enable bit.  
Nine bits are code protection bits  
Power-on Reset (POR)  
Device Reset Timer (DRT)  
Watchdog Timer (WDT)  
SLEEP  
(Figure 7-1 and Figure 7-2) for the PIC16C54,  
PIC16CR54, PIC16C56, PIC16CR56, PIC16C58, and  
PIC16CR58 devices.  
QTP or ROM devices have the oscillator configuration  
programmed at the factory and these parts are tested  
accordingly (see "Product Identification System" dia-  
grams in the back of this data sheet).  
Code Protection  
ID locations  
The PIC16C5X Family has a Watchdog Timer, which  
can be shut off only through configuration bit WDTE. It  
runs off of its own RC oscillator for added reliability.  
There is an 18 ms delay provided by the Device Reset  
Timer (DRT), intended to keep the chip in RESET until  
the crystal oscillator is stable. With this timer on-chip,  
most applications need no external RESET circuitry.  
FIGURE 7-1: CONFIGURATION WORD FOR PIC16CR54A/C54C/CR54C/C55A/C56A/CR56A/C57C/  
CR57C/C58B/CR58B  
CP  
CP  
10  
CP  
9
CP  
8
CP  
7
CP  
6
CP  
5
CP  
4
CP  
3
WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
(1)  
Address  
:
FFFh  
bit11  
2
1
bit 11-3: CP: Code protection bits  
1= Code protection off  
0= Code protection on  
bit 2:  
WDTE: Watchdog timer enable bit  
1= WDT enabled  
0= WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Refer to the PIC16C5X Programming Specification (Literature Number DS30190) to determine how to access the  
configuration word.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 31  
PIC16C5X  
FIGURE 7-2: CONFIGURATION WORD FOR PIC16C54/C54A/C55/C56/C57  
CP  
3
WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
(1)  
Address  
:
FFFh  
bit11  
10  
9
8
7
6
5
4
2
1
bit 11-4: Unimplemented: Read as 0’  
bit 3:  
CP: Code protection bit.  
1= Code protection off  
0= Code protection on  
bit 2:  
WDTE: Watchdog timer enable bit  
1= WDT enabled  
0= WDT disabled  
(2)  
bit 1-0: FOSC1:FOSC0: Oscillator selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Refer to the PIC16C5X Programming Specifications (Literature Number DS30190) to determine how to access the  
configuration word.  
2: PIC16LV54A supports XT, RC and LP oscillator only.  
PIC16LV58A supports XT, RC and LP oscillator only.  
DS30453C-page 32  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
7.2  
Oscillator Configurations  
FIGURE 7-4: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
7.2.1  
OSCILLATOR TYPES  
OSC CONFIGURATION)  
PIC16C5Xs can be operated in four different oscillator  
modes. The user can program two configuration bits  
(FOSC<1:0>) to select one of these four modes:  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16C5X  
LP:  
XT:  
HS:  
RC:  
Low Power Crystal  
Open  
Crystal/Resonator  
High Speed Crystal/Resonator  
Resistor/Capacitor  
TABLE 7-1:  
CAPACITOR SELECTION  
FOR CERAMIC RESONATORS  
- PIC16C5X, PIC16CR5X  
Note: Not all oscillator selections available for all  
parts. See Section 7.1.  
Osc  
Type  
Resonator Cap. Range Cap. Range  
7.2.2  
CRYSTAL OSCILLATOR / CERAMIC  
RESONATORS  
Freq  
C1  
C2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
22-100 pF  
15-68 pF  
15-68 pF  
22-100 pF  
15-68 pF  
15-68 pF  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 7-3). The  
PIC16C5X oscillator design requires the use of a paral-  
lel cut crystal. Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturers specifications.  
When in XT, LP or HS modes, the device can have an  
external clock source drive the OSC1/CLKIN pin  
(Figure 7-4).  
HS  
4.0 MHz  
8.0 MHz  
16.0 MHz  
15-68 pF  
10-68 pF  
10-22 pF  
15-68 pF  
10-68 pF  
10-22 pF  
Note: These values are for design guidance only.  
Since each resonator has its own charac-  
teristics, the user should consult the reso-  
nator manufacturer for appropriate values  
of external components.  
FIGURE 7-3: CRYSTAL OPERATION  
(OR CERAMIC RESONATOR)  
(HS, XT OR LP OSC  
TABLE 7-2:  
CAPACITOR SELECTION  
FOR CRYSTAL OSCILLATOR  
- PIC16C5X, PIC16CR5X  
CONFIGURATION)  
(1)  
C1  
Osc  
Type  
Resonator Cap.Range Cap. Range  
OSC1  
PIC16C5X  
Freq  
C1  
C2  
SLEEP  
LP  
32 kHz(1)  
100 kHz  
200 kHz  
15 pF  
15-30 pF  
15-30 pF  
15 pF  
30-47 pF  
15-82 pF  
XTAL  
(3)  
RF  
To internal  
logic  
OSC2  
(2)  
RS  
XT  
100 kHz  
200 kHz  
455 kHz  
1 MHz  
2 MHz  
4 MHz  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
15-47 pF  
200-300 pF  
100-200 pF  
15-100 pF  
15-30 pF  
15-30 pF  
15-47 pF  
(1)  
C2  
Note 1: See Capacitor Selection tables for  
recommended values of C1 and C2.  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
HS  
4 MHz  
8 MHz  
20 MHz  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
3: RF varies with the crystal chosen  
(approx. value = 10 M).  
Note 1: For VDD > 4.5V, C1 = C2 30 pF is  
recommended.  
2: These values are for design guidance only.  
Rs may be required in HS mode, as well as  
XT mode, to avoid overdriving crystals with  
low drive level specification. Since each  
crystal has its own characteristics, the user  
should consult the crystal manufacturer for  
appropriate values of external components.  
Note: If you change from one device to another  
device, please verify oscillator characteris-  
tics in your application.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 33  
PIC16C5X  
7.2.3  
EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
FIGURE 7-6: EXTERNAL SERIES  
RESONANT CRYSTAL  
OSCILLATOR CIRCUIT  
(USING XT, HS OR LP  
OSCILLATOR MODE)  
Either a prepackaged oscillator or a simple oscillator  
circuit with TTL gates can be used as an external crys-  
tal oscillator circuit. Prepackaged oscillators provide a  
wide operating range and better stability.  
A
To Other  
Devices  
well-designed crystal oscillator will provide good perfor-  
mance with TTL gates. Two types of crystal oscillator  
circuits can be used: one with parallel resonance or  
one with series resonance.  
330  
330  
PIC16C5X  
74AS04  
74AS04  
74AS04  
OSC1  
0.1 µF  
Figure 7-5 shows implementation of a parallel resonant  
oscillator circuit. The circuit is designed to use the fun-  
damental frequency of the crystal. The 74AS04 inverter  
performs the 180-degree phase shift that a parallel  
oscillator requires. The 4.7 kresistor provides the  
negative feedback for stability. The 10 kpotentiome-  
ters bias the 74AS04 in the linear region. This circuit  
could be used for external oscillator designs.  
OSC2  
XTAL  
100k  
Note: If you change from one device to another  
device, please verify oscillator characteris-  
tics in your application.  
FIGURE 7-5: EXTERNAL PARALLEL  
RESONANT CRYSTAL  
7.2.4  
RC OSCILLATOR  
For timing insensitive applications, the RC device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used.  
OSCILLATOR CIRCUIT  
(USING XT, HS OR LP  
OSCILLATOR MODE)  
+5V  
To Other  
Devices  
10k  
74AS04  
PIC16C5X  
4.7k  
74AS04  
OSC1  
OSC2  
10k  
100k  
XTAL  
Figure 7-7 shows how the R/C combination is con-  
nected to the PIC16C5X. For REXT values below  
2.2 k, the oscillator operation may become unstable,  
or stop completely. For very high REXT values  
(e.g., 1 M) the oscillator becomes sensitive to noise,  
humidity and leakage. Thus, we recommend keeping  
REXT between 3 kand 100 k.  
10k  
20 pF  
20 pF  
Note: If you change from one device to another  
device, please verify oscillator characteris-  
tics in your application.  
Although the oscillator will operate with no external  
capacitor (CEXT = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or pack-  
age lead frame capacitance.  
This circuit is also designed to use the fundamental fre-  
quency of the crystal. The inverter performs a  
180-degree phase shift in a series resonant oscillator  
circuit. The 330 resistors provide the negative feed-  
back to bias the inverters in their linear region.  
DS30453C-page 34  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
The Electrical Specification sections show RC fre-  
quency variation from part to part due to normal pro-  
cess variation.  
7.3  
RESET  
PIC16C5X devices may be RESET in one of the follow-  
ing ways:  
Also, see the Electrical Specification sections for varia-  
tion of oscillator frequency due to VDD for given  
REXT/CEXT values, as well as frequency variation due  
to operating temperature for given R, C and VDD val-  
ues.  
Power-on Reset (POR)  
MCLR Reset (normal operation)  
MCLR Wake-up Reset (from SLEEP)  
WDT Reset (normal operation)  
WDT Wake-up Reset (from SLEEP)  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin, and can be used for test pur-  
poses or to synchronize other logic.  
Table 7-3 shows these RESET conditions for the PCL  
and STATUS registers.  
FIGURE 7-7: RC OSCILLATOR MODE  
Some registers are not affected in any RESET condi-  
tion. Their status is unknown on POR and unchanged  
in any other RESET. Most other registers are reset to a  
RESET stateon Power-on Reset (POR), MCLR or  
WDT Reset. A MCLR or WDT Wake-up from SLEEP  
also results in a device RESET, and not a continuation  
of operation before SLEEP.  
VDD  
REXT  
Internal  
clock  
OSC1  
N
CEXT  
VSS  
PIC16C5X  
The TO and PD bits (STATUS <4:3>) are set or cleared  
depending on the different RESET conditions  
(Section 7.7). These bits may be used to determine the  
nature of the RESET.  
FOSC/4  
OSC2/CLKOUT  
Table 7-4 lists a full description of RESET states of all  
registers. Figure 7-8 shows a simplified block diagram  
of the on-chip RESET circuit.  
Note: If you change from one device to another  
device, please verify oscillator characteris-  
tics in your application.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 35  
PIC16C5X  
TABLE 7-3:  
RESET CONDITIONS FOR SPECIAL REGISTERS  
PCL  
Addr: 02h  
STATUS  
Addr: 03h  
Condition  
Power-on Reset  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
0001 1xxx  
000u uuuu(1)  
0001 0uuu  
0000 uuuu(2)  
0000 0uuu  
MCLR Reset (normal operation)  
MCLR Wake-up (from SLEEP)  
WDT Reset (normal operation)  
WDT Wake-up (from SLEEP)  
Legend: u= unchanged, x= unknown, -= unimplemented read as 0.  
Note 1: TO and PD bits retain their last value until one of the other RESET conditions occur.  
2: The CLRWDTinstruction will set the TO and PD bits.  
TABLE 7-4:  
Register  
RESET CONDITIONS FOR ALL REGISTERS  
Address  
Power-on Reset  
MCLR or WDT Reset  
W
N/A  
N/A  
xxxx xxxx  
1111 1111  
--11 1111  
xxxx xxxx  
xxxx xxxx  
1111 1111  
0001 1xxx  
1xxx xxxx  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
1111 1111  
--11 1111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
000q quuu  
1uuu uuuu  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
TRIS  
OPTION  
N/A  
INDF  
00h  
TMR0  
PCL(1)  
STATUS(1)  
01h  
02h  
03h  
FSR  
04h  
PORTA  
05h  
PORTB  
PORTC(2)  
06h  
07h  
General Purpose Register Files  
07-7Fh  
Legend: u= unchanged, x= unknown, -= unimplemented, read as 0,  
q= see tables in Section 7.7 for possible values.  
Note 1: See Table 7-3 for RESET value for specific conditions.  
2: General purpose register file on PIC16C54/CR54/C56/CR56/C58/CR58.  
FIGURE 7-8: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
Power-up  
Detect  
POR (Power-on Reset)  
VDD  
MCLR/VPP pin  
WDT Time-out  
RESET  
8-bit Asynch  
S
R
Q
WDT  
On-Chip  
RC OSC  
Ripple Counter  
Q
(Start-Up Timer)  
CHIP RESET  
DS30453C-page 36  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
7.4  
Power-on Reset (POR)  
FIGURE 7-9: EXAMPLE OF EXTERNAL  
POWER-ON RESET CIRCUIT  
The PIC16C5X family incorporates on-chip Power-on  
Reset (POR) circuitry which provides an internal chip  
RESET for most power-up situations. To use this fea-  
ture, the user merely ties the MCLR/VPP pin to VDD. A  
simplified block diagram of the on-chip Power-on Reset  
circuit is shown in Figure 7-8.  
(FOR SLOW VDD POWER-UP)  
VDD  
VDD  
D
R
R1  
MCLR  
The Power-on Reset circuit and the Device Reset  
Timer (Section 7.5) circuit are closely related. On  
power-up, the Reset Latch is set and the DRT is  
RESET. The DRT timer begins counting once it detects  
MCLR to be high. After the time-out period, which is  
typically 18 ms, it will reset the Reset Latch and thus  
end the on-chip RESET signal.  
PIC16C5X  
C
External Power-on Reset circuit is required  
only if VDD power-up is too slow. The diode D  
helps discharge the capacitor quickly when  
VDD powers down.  
A power-up example where MCLR is not tied to VDD is  
shown in Figure 7-10. VDD is allowed to rise and stabi-  
lize before bringing MCLR high. The chip will actually  
come out of RESET TDRT msec after MCLR goes high.  
R < 40 kis recommended to make sure that  
voltage drop across R does not violate the  
device electrical specification.  
In Figure 7-11, the on-chip Power-on Reset feature is  
being used (MCLR and VDD are tied together). The VDD  
is stable before the start-up timer times out and there is  
no problem in getting a proper RESET. However,  
Figure 7-12 depicts a problem situation where VDD  
rises too slowly. The time between when the DRT  
senses a high on the MCLR/VPP pin, and when the  
MCLR/VPP pin (and VDD) actually reach their full value,  
is too long. In this situation, when the start-up timer  
times out, VDD has not reached the VDD (min) value and  
the chip is, therefore, not guaranteed to function cor-  
rectly. For such situations, we recommend that external  
(RESET) BOR circuits or external RC circuits be used  
to achieve longer POR delay times (Figure 7-9).  
R1 = 100to 1 kwill limit any current flow-  
ing into MCLR from external capacitor C in the  
event of MCLR pin breakdown due to Electro-  
static Discharge (ESD) or Electrical Over-  
stress (EOS).  
Note: When the device starts normal operation  
(exits the RESET condition), device oper-  
ating parameters (voltage, frequency, tem-  
perature, etc.) must be met to ensure  
operation. If these conditions are not met,  
the device must be held in RESET until the  
operating conditions are met.  
For more information on PIC16C5X POR, see  
Power-Up Considerations - AN522 in the Embedded  
Control Handbook.  
The POR circuit does not produce an internal RESET  
when VDD declines.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 37  
PIC16C5X  
FIGURE 7-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
FIGURE 7-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
FIGURE 7-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME  
V1  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
When VDD rises slowly, the TDRT time-out expires long before VDD has reached its final value. In  
this example, the chip will RESET properly if, and only if, V1 VDD min.  
DS30453C-page 38  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
7.5  
Device Reset Timer (DRT)  
7.6  
Watchdog Timer (WDT)  
The Device Reset Timer (DRT) provides a fixed 18 ms  
nominal time-out on RESET. The DRT operates on an  
internal RC oscillator. The processor is kept in RESET  
as long as the DRT is active. The DRT delay allows VDD  
to rise above VDD min., and for the oscillator to stabi-  
lize.  
The Watchdog Timer (WDT) is a free running on-chip  
RC oscillator which does not require any external com-  
ponents. This RC oscillator is separate from the RC  
oscillator of the OSC1/CLKIN pin. That means that the  
WDT will run even if the clock on the OSC1/CLKIN and  
OSC2/CLKOUT pins have been stopped, for example,  
by execution of a SLEEP instruction. During normal  
operation or SLEEP, a WDT Reset or Wake-up Reset  
generates a device RESET.  
Oscillator circuits based on crystals or ceramic resona-  
tors require a certain time after power-up to establish a  
stable oscillation. The on-chip DRT keeps the device in  
a RESET condition for approximately 18 ms after the  
voltage on the MCLR/VPP pin has reached a logic high  
(VIH) level. Thus, external RC networks connected to  
the MCLR input are not required in most cases, allow-  
ing for savings in cost-sensitive and/or space restricted  
applications.  
The TO bit (STATUS<4>) will be cleared upon a Watch-  
dog Timer Reset.  
The WDT can be permanently disabled by program-  
ming the configuration bit WDTE as a 0(Section 7.1).  
Refer to the PIC16C5X Programming Specifications  
(Literature Number DS30190) to determine how to  
access the configuration word.  
The Device Reset time delay will vary from device to  
device due to VDD, temperature, and process variation.  
See AC parameters for details.  
7.6.1  
WDT PERIOD  
The DRT will also be triggered upon a Watchdog Timer  
time-out. This is particularly important for applications  
using the WDT to wake the PIC16C5X from SLEEP  
mode automatically.  
The WDT has a nominal time-out period of 18 ms (with  
no prescaler). If a longer time-out period is desired, a  
prescaler with a division ratio of up to 1:128 can be  
assigned to the WDT (under software control) by writ-  
ing to the OPTION register. Thus, a time-out period of  
a nominal 2.3 seconds can be realized. These periods  
vary with temperature, VDD and part-to-part process  
variations (see DC specs).  
Under worst case conditions (VDD = Min., Temperature  
= Max., max. WDT prescaler), it may take several sec-  
onds before a WDT time-out occurs.  
7.6.2  
WDT PROGRAMMING CONSIDERATIONS  
The CLRWDT instruction clears the WDT and the  
postscaler, if assigned to the WDT, and prevents it from  
timing out and generating a device RESET.  
The SLEEP instruction resets the WDT and the  
postscaler, if assigned to the WDT. This gives the max-  
imum SLEEP time before a WDT Wake-up Reset.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 39  
PIC16C5X  
FIGURE 7-13: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
0
M
Postscaler  
1
Watchdog  
Timer  
U
X
8 - to - 1 MUX  
PS<2:0>  
PSA  
WDT Enable  
EPROM Bit  
To TMR0  
1
0
PSA  
MUX  
Note: T0CS, T0SE, PSA, PS<2:0>  
are bits in the OPTION register.  
WDT  
Time-out  
TABLE 7-5:  
SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER  
Value on  
Power-on  
Reset  
Value on  
MCLR and  
WDT Reset  
Address  
Name  
OPTION  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
N/A  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
--11 1111 --11 1111  
Legend: Shaded boxes = Not used by Watchdog Timer, - = unimplemented, read as '0', u= unchanged  
DS30453C-page 40  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
7.7  
Time-Out Sequence and Power-down  
Status Bits (TO/PD)  
7.8  
RESET on Brown-Out  
A brown-out is a condition where device power (VDD)  
dips below its minimum value, but not to zero, and then  
recovers. The device should be reset in the event of a  
brown-out.  
The TO and PD bits in the STATUS register can be  
tested to determine if a RESET condition has been  
caused by a power-up condition, a MCLR or Watchdog  
Timer (WDT) Reset, or a MCLR or WDT Wake-up  
Reset.  
To reset PIC16C5X devices when a brown-out occurs,  
external brown-out protection circuits may be built, as  
shown in Figure 7-14 and Figure 7-15.  
TABLE 7-6:  
TO/PD STATUS AFTER  
RESET  
FIGURE 7-14: BROWN-OUT PROTECTION  
CIRCUIT 1  
TO  
PD  
RESET was caused by  
VDD  
1
u
1
u
Power-up (POR)  
MCLR Reset (normal operation)(1)  
MCLR Wake-up Reset (from SLEEP)  
WDT Reset (normal operation)  
VDD  
33k  
1
0
0
0
1
0
Q1  
10k  
WDT Wake-up Reset (from SLEEP)  
MCLR  
Legend: u= unchanged  
40k  
PIC16C5X  
Note 1: The TO and PD bits maintain their status  
(u) until a RESET occurs. A low-pulse on  
the MCLR input does not change the TO  
and PD status bits.  
This circuit will activate RESET when VDD goes  
below Vz + 0.7V (where Vz = Zener voltage).  
These STATUS bits are only affected by events listed  
in Table 7-7.  
FIGURE 7-15: BROWN-OUT PROTECTION  
CIRCUIT 2  
TABLE 7-7:  
EVENTS AFFECTING TO/PD  
STATUS BITS  
VDD  
Event  
TO PD  
Remarks  
VDD  
1
0
1
1
1
u
0
1
Power-up  
R1  
WDT Time-out  
No effect on PD  
Q1  
SLEEPinstruction  
CLRWDTinstruction  
Legend: u= unchanged  
MCLR  
R2  
40k  
PIC16C5X  
Note: A WDT time-out will occur regardless of  
the status of the TO bit. A SLEEPinstruc-  
tion will be executed, regardless of the sta-  
tus of the PD bit.  
This brown-out circuit is less expensive, although  
less accurate. Transistor Q1 turns off when VDD is  
below a certain level such that:  
R1  
Table 7-3 lists the RESET conditions for the Special  
Function Registers, while Table 7-4 lists the RESET  
conditions for all the registers.  
= 0.7V  
VDD •  
R1 + R2  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 41  
PIC16C5X  
FIGURE 7-16: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 3  
7.10  
Program Verification/Code Protection  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
VDD  
MCP809  
VDD  
bypass  
capacitor  
Note: Microchip does not recommend code pro-  
Vss  
VDD  
tecting windowed devices.  
RST  
MCLR  
7.11  
ID Locations  
PIC16C62X  
Four memory locations are designated as ID locations,  
where the user can store checksum or other  
code-identification numbers. These locations are not  
accessible during normal execution but are readable  
and writable during program/verify.  
This brown-out protection circuit employs Micro-  
chip Technologys MCP809 microcontroller super-  
visor. The MCP8XX and MCP1XX families of  
supervisors provide push-pull and open collector  
outputs with both "active high and active low"  
RESET pins. There are 7 different trip point selec-  
tions to accommodate 5V and 3V systems.  
Use only the lower 4 bits of the ID locations and always  
program the upper 8 bits as 1s.  
Note: Microchip will assign a unique pattern  
number for QTP and SQTP requests and  
for ROM devices. This pattern number will  
be unique and traceable to the submitted  
code.  
7.9  
Power-down Mode (SLEEP)  
A device may be powered down (SLEEP) and later  
powered up (wake-up from SLEEP).  
7.9.1  
SLEEP  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the TO bit (STATUS<4>) is set, the PD  
bit (STATUS<3>) is cleared and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, driving low, or hi-impedance).  
It should be noted that a RESET generated by a WDT  
time-out does not drive the MCLR/VPP pin low.  
For lowest current consumption while powered down,  
the T0CKI input should be at VDD or VSS and the  
MCLR/VPP pin must be at a logic high level.  
7.9.2  
WAKE-UP FROM SLEEP  
The device can wake-up from SLEEP through one of  
the following events:  
1. An external RESET input on MCLR/VPP pin.  
2. A Watchdog Timer time-out RESET (if WDT was  
enabled).  
Both of these events cause a device RESET. The TO  
and PD bits can be used to determine the cause of  
device RESET. The TO bit is cleared if a WDT time-out  
occurred (and caused wake-up). The PD bit, which is  
set on power-up, is cleared when SLEEPis invoked.  
The WDT is cleared when the device wakes from  
SLEEP, regardless of the wake-up source.  
DS30453C-page 42  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles.  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time would be 1 µs. If a condi-  
tional test is true or the program counter is changed as  
a result of an instruction, the instruction execution time  
would be 2 µs.  
8.0  
INSTRUCTION SET SUMMARY  
Each PIC16C5X instruction is a 12-bit word divided into an  
OPCODE, which specifies the instruction type, and one or  
more operands which further specify the operation of the  
instruction. The PIC16C5X instruction set summary in  
Table 8-2 groups the instructions into byte-oriented, bit-ori-  
ented, and literal and control operations. Table 8-1 shows  
the opcode field descriptions.  
For byte-oriented instructions, frepresents a file register  
designator and drepresents a destination designator. The  
file register designator is used to specify which one of the  
32 file registers in that bank is to be used by the instruction.  
Figure 8-1 shows the three general formats that the  
instructions can have. All examples in the figure use  
the following format to represent a hexadecimal  
number:  
The destination designator specifies where the result of  
the operation is to be placed. If dis 0, the result is  
placed in the W register. If dis 1, the result is placed  
in the file register specified in the instruction.  
0xhhh  
where hsignifies a hexadecimal digit.  
FIGURE 8-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, brepresents a bit field  
designator which selects the number of the bit affected  
by the operation, while frepresents the number of the  
file in which the bit is located.  
Byte-oriented file register operations  
11  
6
5
d
4
0
For literal and control operations, krepresents an  
8 or 9-bit constant or literal value.  
OPCODE  
f (FILE #)  
d = 0 for destination W  
d = 1 for destination f  
TABLE 8-1:  
OPCODE FIELD  
DESCRIPTIONS  
f = 5-bit file register address  
Bit-oriented file register operations  
11 8 7  
b (BIT #)  
Field  
Description  
5
4
0
f
W
b
k
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 5-bit file register address  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Dont care location (= 0 or 1)  
Literal and control operations (except GOTO)  
11  
The assembler will generate code with x = 0. It is  
the recommended form of use for compatibility  
with all Microchip software tools.  
x
d
8
7
0
OPCODE  
k (literal)  
Destination select;  
k = 8-bit immediate value  
d = 0 (store result in W)  
d = 1 (store result in file register f)  
Default is d = 1  
Literal and control operations - GOTOinstruction  
11 0  
9
8
label Label name  
OPCODE  
k (literal)  
TOS  
PC  
Top of Stack  
Program Counter  
Watchdog Timer Counter  
Time-out bit  
k = 9-bit immediate value  
WDT  
TO  
PD  
Power-down bit  
Destination, either the W register or the specified  
register file location  
dest  
[ ]  
( )  
Options  
Contents  
Assigned to  
< >  
Register bit field  
In the set of  
italics  
User defined term (font is courier)  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 43  
PIC16C5X  
TABLE 8-2:  
INSTRUCTION SET SUMMARY  
12-Bit Opcode  
Mnemonic,  
Operands  
Status  
Description  
Cycles MSb  
LSb Affected Notes  
1
1
1
1
1
1
0001 11df ffff  
C,DC,Z 1,2,4  
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
Move W to f  
No Operation  
Rotate left f through Carry  
Rotate right f through Carry  
Subtract W from f  
Swap f  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f,d  
f,d  
f
0001 01df ffff  
0000 011f ffff  
0000 0100 0000  
0010 01df ffff  
0000 11df ffff  
Z
Z
Z
2,4  
4
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
Z
None  
Z
None  
Z
Z
None  
None  
C
2,4  
2,4  
2,4  
2,4  
2,4  
2,4  
1,4  
1(2) 0010 11df ffff  
0010 10df ffff  
1(2) 0011 11df ffff  
1
1
1
1
1
1
1
1
1
1
0001 00df ffff  
0010 00df ffff  
0000 001f ffff  
0000 0000 0000  
0011 01df ffff  
0011 00df ffff  
0000 10df ffff  
0011 10df ffff  
0001 10df ffff  
2,4  
2,4  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
C
C,DC,Z 1,2,4  
None  
Z
2,4  
2,4  
Exclusive OR W with f  
BIT-ORIENTED FILE REGISTER OPERATIONS  
1
1
0100 bbbf ffff  
0101 bbbf ffff  
None  
None  
None  
None  
2,4  
2,4  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
1 (2) 0110 bbbf ffff  
1 (2) 0111 bbbf ffff  
LITERAL AND CONTROL OPERATIONS  
1
2
1
2
1
1
1
2
1
1
1
1110 kkkk kkkk  
1001 kkkk kkkk  
0000 0000 0100  
101k kkkk kkkk  
1101 kkkk kkkk  
1100 kkkk kkkk  
0000 0000 0010  
1000 kkkk kkkk  
0000 0000 0011  
0000 0000 0fff  
1111 kkkk kkkk  
Z
AND literal with W  
Call subroutine  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
OPTION  
RETLW  
SLEEP  
TRIS  
k
k
k
k
k
k
k
k
f
None  
TO, PD  
None  
Z
None  
None  
None  
TO, PD  
None  
Z
1
Clear Watchdog Timer  
Unconditional branch  
Inclusive OR Literal with W  
Move Literal to W  
Load OPTION register  
Return, place Literal in W  
Go into standby mode  
Load TRIS register  
3
Exclusive OR Literal to W  
XORLW  
k
Note 1: The 9th bit of the program counter will be forced to a 0by any instruction that writes to the PC except for  
GOTO. (See individual device data sheets, Memory Section/Indirect Data Addressing, INDF and FSR Regis-  
ters)  
2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that  
value present on the pins themselves. For example, if the data latch is 1for a pin configured as input and is  
driven low by an external device, the data will be written back with a 0.  
3: The instruction TRIS f, where f = 5 or 6 causes the contents of the W register to be written to the tristate  
latches of PORTA or B respectively. A 1forces the pin to a hi-impedance state and disables the output buff-  
ers.  
4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be  
cleared (if assigned to TMR0).  
DS30453C-page 44  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
ADDWF  
Syntax:  
Add W and f  
[ label ] ADDWF f,d  
0 f 31  
ANDWF  
Syntax:  
AND W with f  
[ label ] ANDWF f,d  
Operands:  
Operands:  
0 f 31  
d
[0,1]  
d
[0,1]  
Operation:  
(W) + (f) (dest)  
Operation:  
(W) .AND. (f) (dest)  
Status Affected: C, DC, Z  
Status Affected:  
Encoding:  
Z
0001  
11df  
ffff  
0001  
01df  
ffff  
Encoding:  
Add the contents of the W register and  
register f. If dis 0 the result is stored  
in the W register. If dis 1the result is  
stored back in register f.  
The contents of the W register are  
ANDed with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
'1' the result is stored back in register 'f'.  
Description:  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Example:  
Cycles:  
Example:  
ADDWF  
FSR, 0  
ANDWF  
FSR,  
1
Before Instruction  
Before Instruction  
W
=
0x17  
W
= 0x17  
FSR = 0xC2  
TEMP_REG = 0xC2  
After Instruction  
After Instruction  
W
=
0xD9  
W
= 0x17  
FSR = 0xC2  
TEMP_REG = 0x2  
ANDLW  
And literal with W  
[ label ] ANDLW  
0 k 255  
BCF  
Bit Clear f  
Syntax:  
k
Syntax:  
Operands:  
[ label ] BCF f,b  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 f 31  
0 b 7  
(W).AND. (k) (W)  
Operation:  
0 (f<b>)  
Z
Status Affected: None  
1110  
kkkk  
kkkk  
0100  
bbbf  
ffff  
Encoding:  
Description:  
Words:  
The contents of the W register are  
ANDed with the eight-bit literal 'k'. The  
result is placed in the W register.  
Bit 'b' in register 'f' is cleared.  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Example:  
BCF  
FLAG_REG,  
7
Example:  
ANDLW  
0x5F  
Before Instruction  
Before Instruction  
FLAG_REG = 0xC7  
W
=
0xA3  
After Instruction  
After Instruction  
FLAG_REG = 0x47  
W
=
0x03  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 45  
PIC16C5X  
BSF  
Bit Set f  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
Operands:  
[ label ] BSF f,b  
Syntax:  
[ label ] BTFSS f,b  
0 f 31  
0 b 7  
Operands:  
0 f 31  
0 b < 7  
Operation:  
1 (f<b>)  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
Status Affected: None  
0101  
bbbf  
ffff  
0111  
bbbf  
ffff  
Encoding:  
Description:  
Words:  
Encoding:  
Bit bin register fis set.  
If bit bin register fis 1then the next  
instruction is skipped.  
Description:  
1
1
If bit bis 1, then the next instruction  
fetched during the current instruction  
execution, is discarded and a NOPis  
executed instead, making this a  
2-cycle instruction.  
Cycles:  
BSF  
FLAG_REG,  
7
Example:  
Before Instruction  
FLAG_REG = 0x0A  
Words:  
1
After Instruction  
Cycles:  
Example:  
1(2)  
FLAG_REG = 0x8A  
HERE  
FALSE GOTO  
TRUE  
BTFSS FLAG,1  
PROCESS_CODE  
BTFSC  
Bit Test f, Skip if Clear  
Syntax:  
[ label ] BTFSC f,b  
Operands:  
0 f 31  
0 b 7  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If FLAG<1>  
PC  
Operation:  
skip if (f<b>) = 0  
=
=
=
=
0,  
Status Affected: None  
address (FALSE);  
1,  
address (TRUE)  
bbbf  
ffff  
if FLAG<1>  
PC  
Encoding:  
0110  
If bit bin register fis 0 then the next  
instruction is skipped.  
Description:  
If bit bis 0 then the next instruction  
fetched during the current instruction  
execution is discarded, and a NOPis  
executed instead, making this a  
2-cycle instruction.  
Words:  
1
Cycles:  
Example:  
1(2)  
HERE  
FALSE  
TRUE  
BTFSC  
GOTO  
FLAG,1  
PROCESS_CODE  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
if FLAG<1>  
PC  
=
=
=
=
0,  
address (TRUE);  
1,  
address(FALSE)  
if FLAG<1>  
PC  
DS30453C-page 46  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
CALL  
Subroutine Call  
[ label ] CALL  
0 k 255  
CLRW  
Clear W  
Syntax:  
k
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
Operands:  
Operation:  
None  
(PC) + 1Top of Stack;  
k PC<7:0>;  
00h (W);  
1 Z  
(STATUS<6:5>) PC<10:9>;  
0 PC<8>  
Status Affected:  
Encoding:  
Z
0000  
0100  
0000  
Status Affected: None  
The W register is cleared. Zero bit (Z)  
is set.  
Description:  
1001  
kkkk  
kkkk  
Encoding:  
Subroutine call. First, return address  
(PC+1) is pushed onto the stack. The  
eight bit immediate address is loaded  
into PC bits <7:0>. The upper bits  
PC<10:9> are loaded from  
Description:  
Words:  
1
Cycles:  
Example:  
1
CLRW  
Before Instruction  
STATUS<6:5>, PC<8> is cleared.  
CALLis a two-cycle instruction.  
W
=
0x5A  
After Instruction  
Words:  
1
2
W
=
0x00  
Cycles:  
Example:  
Z
=
1
HERE  
CALL  
THERE  
Before Instruction  
CLRWDT  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
PC  
=
address (HERE)  
Syntax:  
After Instruction  
PC  
=
address (THERE)  
Operands:  
Operation:  
TOS =  
address (HERE + 1)  
00h WDT;  
0 WDT prescaler (if assigned);  
1 TO;  
1 PD  
CLRF  
Clear f  
Syntax:  
[ label ] CLRF  
0 f 31  
f
Status Affected: TO, PD  
Operands:  
Operation:  
0000  
0000  
0100  
Encoding:  
00h (f);  
1 Z  
The CLRWDTinstruction resets the  
WDT. It also resets the prescaler, if the  
prescaler is assigned to the WDT and  
not Timer0. Status bits TO and PD are  
set.  
Description:  
Status Affected:  
Encoding:  
Z
0000  
011f  
ffff  
The contents of register fare cleared  
and the Z bit is set.  
Description:  
Words:  
1
Cycles:  
Example:  
1
Words:  
1
1
CLRWDT  
Cycles:  
Example:  
Before Instruction  
CLRF  
FLAG_REG  
WDT counter  
=
=
?
Before Instruction  
FLAG_REG  
After Instruction  
WDT counter  
=
0x5A  
0x00  
After Instruction  
WDT prescale =  
0
1
1
FLAG_REG  
Z
=
=
0x00  
1
TO  
PD  
=
=
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 47  
PIC16C5X  
COMF  
Complement f  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 31  
Syntax:  
Operands:  
[ label ] COMF f,d  
0 f 31  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(f) (dest)  
Operation:  
(f) 1 d; skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected: None  
0010  
01df  
ffff  
0010  
11df  
ffff  
Encoding:  
The contents of register fare comple-  
mented. If dis 0 the result is stored in  
the W register. If dis 1 the result is  
stored back in register f.  
The contents of register fare decre-  
mented. If dis 0 the result is placed in  
the W register. If dis 1 the result is  
placed back in register f.  
Description:  
Description:  
If the result is 0, the next instruction,  
which is already fetched, is discarded  
and a NOPis executed instead making  
it a two-cycle instruction.  
Words:  
1
1
Cycles:  
Example:  
COMF  
REG1,0  
Words:  
1
Before Instruction  
REG1  
=
0x13  
0x13  
Cycles:  
Example:  
1(2)  
After Instruction  
HERE  
DECFSZ  
GOTO  
CNT, 1  
LOOP  
REG1  
=
W
=
0xEC  
CONTINUE •  
DECF  
Decrement f  
[ label ] DECF f,d  
0 f 31  
Before Instruction  
PC  
=
address (HERE)  
Syntax:  
After Instruction  
Operands:  
CNT  
if CNT  
PC  
if CNT  
PC  
=
=
=
=
CNT - 1;  
0,  
address (CONTINUE);  
0,  
d
[0,1]  
Operation:  
(f) 1 (dest)  
Status Affected:  
Encoding:  
Z
address (HERE+1)  
0000  
11df  
ffff  
Decrement register f. If dis 0 the  
result is stored in the W register. If dis  
1 the result is stored back in register f.  
Description:  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 511  
Syntax:  
Words:  
1
1
Operands:  
Operation:  
Cycles:  
Example:  
k PC<8:0>;  
STATUS<6:5> PC<10:9>  
DECF  
CNT,  
1
Before Instruction  
Status Affected: None  
CNT  
=
0x01  
0
101k  
kkkk  
kkkk  
Encoding:  
Z
=
GOTOis an unconditional branch. The  
9-bit immediate value is loaded into PC  
bits <8:0>. The upper bits of PC are  
loaded from STATUS<6:5>. GOTOis a  
two-cycle instruction.  
Description:  
After Instruction  
CNT  
=
0x00  
1
Z
=
Words:  
1
Cycles:  
Example:  
2
GOTO THERE  
After Instruction  
PC  
=
address (THERE)  
DS30453C-page 48  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
INCF  
Increment f  
IORLW  
Inclusive OR literal with W  
Syntax:  
Operands:  
[ label ] INCF f,d  
Syntax:  
[ label ] IORLW k  
0 k 255  
0 f 31  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
(W) .OR. (k) (W)  
Z
Operation:  
(f) + 1 (dest)  
Status Affected:  
Encoding:  
Z
1101  
kkkk  
kkkk  
0010  
10df  
ffff  
The contents of the W register are  
ORed with the eight bit literal 'k'. The  
result is placed in the W register.  
The contents of register fare incre-  
mented. If dis 0 the result is placed in  
the W register. If dis 1 the result is  
placed back in register f.  
Description:  
Words:  
1
1
Cycles:  
Example:  
Words:  
1
1
IORLW  
0x35  
Cycles:  
Example:  
Before Instruction  
INCF  
CNT,  
1
W
=
0x9A  
Before Instruction  
After Instruction  
CNT  
=
0xFF  
0
W
=
0xBF  
Z
=
Z
=
0
After Instruction  
CNT  
Z
=
=
0x00  
1
IORWF  
Inclusive OR W with f  
[ label ] IORWF f,d  
0 f 31  
Syntax:  
Operands:  
INCFSZ  
Increment f, Skip if 0  
[ label ] INCFSZ f,d  
0 f 31  
d
[0,1]  
Syntax:  
Operation:  
(W).OR. (f) (dest)  
Operands:  
Status Affected:  
Encoding:  
Z
d
[0,1]  
0001  
00df  
ffff  
Operation:  
(f) + 1 (dest), skip if result = 0  
Inclusive OR the W register with regis-  
ter 'f'. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Status Affected: None  
0011  
11df  
ffff  
Encoding:  
The contents of register fare incre-  
mented. If dis 0 the result is placed in  
the W register. If dis 1 the result is  
placed back in register f.  
Description:  
Words:  
1
1
Cycles:  
Example:  
If the result is 0, then the next instruc-  
tion, which is already fetched, is dis-  
carded and a NOPis executed instead  
making it a two-cycle instruction.  
IORWF  
RESULT, 0  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
Words:  
1
After Instruction  
RESULT =  
Cycles:  
Example:  
1(2)  
0x13  
0x93  
0
W
Z
=
=
HERE  
INCFSZ  
GOTO  
CNT,  
LOOP  
1
CONTINUE •  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
CNT  
if CNT  
PC  
if CNT  
PC  
=
=
=
=
CNT + 1;  
0,  
address (CONTINUE);  
0,  
address (HERE +1)  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 49  
PIC16C5X  
MOVF  
Move f  
MOVWF  
Syntax:  
Move W to f  
[ label ] MOVWF  
0 f 31  
Syntax:  
Operands:  
[ label ] MOVF f,d  
f
0 f 31  
Operands:  
Operation:  
d
[0,1]  
(W) (f)  
Operation:  
(f) (dest)  
Status Affected: None  
Status Affected:  
Encoding:  
Z
0000  
001f  
ffff  
Encoding:  
0010  
00df  
ffff  
Move data from the W register to regis-  
ter 'f'.  
Description:  
The contents of register fis moved to  
destination d. If dis 0, destination is  
the W register. If dis 1, the destination  
is file register f. dis 1 is useful to test  
a file register since status flag Z is  
affected.  
Description:  
Words:  
1
1
Cycles:  
Example:  
MOVWF  
TEMP_REG  
Before Instruction  
Words:  
1
1
TEMP_REG  
W
=
=
0xFF  
0x4F  
Cycles:  
Example:  
MOVF  
FSR,  
0
After Instruction  
TEMP_REG  
W
=
=
0x4F  
0x4F  
After Instruction  
W
=
value in FSR register  
NOP  
No Operation  
[ label ] NOP  
None  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
No operation  
k (W)  
Status Affected: None  
0000  
0000  
0000  
Status Affected: None  
Encoding:  
Description:  
Words:  
1100  
kkkk  
kkkk  
Encoding:  
No operation.  
The eight bit literal kis loaded into the  
W register. The dont cares will assem-  
ble as 0s.  
Description:  
1
Cycles:  
1
NOP  
Example:  
Words:  
1
1
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
DS30453C-page 50  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
OPTION  
Syntax:  
Load OPTION Register  
[ label ] OPTION  
None  
RLF  
Rotate Left f through Carry  
Syntax:  
Operands:  
[ label ] RLF f,d  
Operands:  
Operation:  
0 f 31  
d
[0,1]  
(W) OPTION  
Status Affected: None  
Operation:  
See description below  
C
0000  
0000  
0010  
Encoding:  
Status Affected:  
Encoding:  
The content of the W register is loaded  
into the OPTION register.  
Description:  
0011  
01df  
ffff  
The contents of register fare rotated  
one bit to the left through the Carry  
Flag. If dis 0 the result is placed in the  
W register. If dis 1 the result is stored  
back in register f.  
Description:  
Words:  
Cycles:  
Example  
1
1
OPTION  
Before Instruction  
register f’  
C
W
=
0x07  
0x07  
After Instruction  
OPTION =  
Words:  
1
1
Cycles:  
Example:  
RLF  
REG1,0  
RETLW  
Return with Literal in W  
Before Instruction  
Syntax:  
[ label ] RETLW  
0 k 255  
k
REG1  
C
=
=
1110 0110  
0
Operands:  
Operation:  
After Instruction  
k (W);  
TOS PC  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
Status Affected: None  
1000  
kkkk  
kkkk  
Encoding:  
The W register is loaded with the eight  
bit literal k. The program counter is  
loaded from the top of the stack (the  
return address). This is a two-cycle  
instruction.  
Description:  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 31  
Syntax:  
Operands:  
d
[0,1]  
Words:  
1
2
Operation:  
See description below  
C
Cycles:  
Example:  
Status Affected:  
Encoding:  
CALL TABLE ;W contains  
;table offset  
;value.  
0011  
00df  
ffff  
The contents of register fare rotated  
one bit to the right through the Carry  
Flag. If dis 0 the result is placed in the  
W register. If dis 1 the result is placed  
back in register f.  
Description:  
;W now has table  
;value.  
TABLE  
ADDWF PC  
RETLW k1  
RETLW k2  
;W = offset  
;Begin table  
;
register f’  
C
Words:  
1
Cycles:  
Example:  
1
RETLW kn  
; End of table  
RRF  
REG1,0  
Before Instruction  
W
=
0x07  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
W
=
value of k8  
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 51  
PIC16C5X  
SLEEP  
Enter SLEEP Mode  
SUBWF  
Subtract W from f  
Syntax:  
Syntax:  
[label]  
[label] SUBWF f,d  
0 f 31  
SLEEP  
Operands:  
Operands:  
Operation:  
None  
d
[0,1]  
00h WDT;  
0 WDT prescaler;  
1 TO;  
Operation:  
(f) (W) → (dest)  
Status Affected: C, DC, Z  
0 PD  
0000  
10df  
ffff  
Encoding:  
Status Affected: TO, PD  
Subtract (2s complement method) the  
W register from register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
0000  
0000  
0011  
Encoding:  
Time-out status bit (TO) is set. The  
power-down status bit (PD) is cleared.  
The WDT and its prescaler are  
cleared.  
Description:  
Words:  
1
1
Cycles:  
The processor is put into SLEEP mode  
with the oscillator stopped. See sec-  
tion on SLEEP for more details.  
SUBWF  
REG1, 1  
Example 1:  
Before Instruction  
Words:  
1
REG1  
W
C
=
=
=
3
2
?
Cycles:  
Example:  
1
SLEEP  
After Instruction  
REG1  
W
C
=
=
=
1
2
1
; result is positive  
Example 2:  
Before Instruction  
REG1  
W
C
=
=
=
2
2
?
After Instruction  
REG1  
W
C
=
=
=
0
2
1
; result is zero  
Example 3:  
Before Instruction  
REG1  
W
C
=
=
=
1
2
?
After Instruction  
REG1  
W
C
=
=
=
FF  
2
0
; result is negative  
DS30453C-page 52  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ] SWAPF f,d  
0 f 31  
XORLW  
Exclusive OR literal with W  
Syntax:  
[label] XORLW k  
0 k 255  
Operands:  
Operands:  
d
[0,1]  
Operation:  
(W) .XOR. k → (W)  
Z
Operation:  
(f<3:0>) (dest<7:4>);  
(f<7:4>) (dest<3:0>)  
Status Affected:  
Encoding:  
1111  
kkkk  
kkkk  
Status Affected: None  
The contents of the W register are  
XORed with the eight bit literal 'k'. The  
result is placed in the W register.  
Description:  
0011  
10df  
ffff  
Encoding:  
The upper and lower nibbles of register  
fare exchanged. If dis 0 the result is  
placed in W register. If dis 1 the result  
is placed in register f.  
Description:  
Words:  
1
Cycles:  
Example:  
1
Words:  
Cycles:  
Example  
1
1
XORLW 0xAF  
Before Instruction  
W
=
0xB5  
SWAPF  
REG1,  
0
After Instruction  
Before Instruction  
W
=
0x1A  
REG1  
=
0xA5  
After Instruction  
REG1  
W
=
=
0xA5  
0X5A  
XORWF  
Exclusive OR W with f  
[ label ] XORWF f,d  
0 f 31  
Syntax:  
Operands:  
TRIS  
Load TRIS Register  
d
[0,1]  
Syntax:  
[ label ] TRIS  
f
Operation:  
(W) .XOR. (f) → (dest)  
Operands:  
Operation:  
f = 5, 6 or 7  
Status Affected:  
Encoding:  
Z
(W) TRIS register f  
0001  
10df  
ffff  
Status Affected: None  
Exclusive OR the contents of the W  
register with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
0000  
0000  
0fff  
Encoding:  
TRIS register f(f = 5, 6, or 7) is loaded  
with the contents of the W register.  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
TRIS  
PORTA  
REG,1  
XORWF  
Before Instruction  
Before Instruction  
W
=
0XA5  
0XA5  
REG  
=
0xAF  
0xB5  
W
=
After Instruction  
TRISA  
=
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 53  
PIC16C5X  
NOTES:  
DS30453C-page 54  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
MPLAB allows you to:  
9.0  
DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
Edit your source files (either assembly or C)  
One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
Integrated Development Environment  
- MPLAB® IDE Software  
Debug using:  
- source files  
Assemblers/Compilers/Linkers  
- MPASM Assembler  
- absolute listing file  
- object code  
- MPLAB-C17 and MPLAB-C18 C Compilers  
- MPLINK/MPLIB Linker/Librarian  
Simulators  
The ability to use MPLAB with Microchips simulator,  
MPLAB-SIM, allows a consistent platform and the abil-  
ity to easily switch from the cost-effective simulator to  
the full featured emulator with minimal retraining.  
- MPLAB-SIM Software Simulator  
Emulators  
- MPLAB-ICE Real-Time In-Circuit Emulator  
- ICEPIC™  
9.2  
MPASM Assembler  
In-Circuit Debugger  
MPASM is a full featured universal macro assembler for  
all PICmicro MCUs. It can produce absolute code  
directly in the form of HEX files for device program-  
mers, or it can generate relocatable objects for  
MPLINK.  
- MPLAB-ICD for PIC16F87  
Device Programmers  
- PRO MATE II Universal Programmer  
- PICSTART Plus Entry-Level Prototype  
Programmer  
MPASM has a command line interface and a Windows  
shell and can be used as a standalone application on a  
Windows 3.x or greater system. MPASM generates  
relocatable object files, Intel standard HEX files, MAP  
files to detail memory usage and symbol reference, an  
absolute LST file which contains source lines and gen-  
erated machine code, and a COD file for MPLAB  
debugging.  
Low-Cost Demonstration Boards  
- PICDEM-1  
- PICDEM-2  
- PICDEM-3  
- PICDEM-17  
- KEELOQ  
MPASM features include:  
9.1  
MPLAB Integrated Development  
Environment Software  
MPASM and MPLINK are integrated into MPLAB  
projects.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. MPLAB is a Windows -based applica-  
tion which contains:  
MPASM allows user defined macros to be created  
for streamlined assembly.  
MPASM allows conditional assembly for multi pur-  
pose source files.  
Multiple functionality  
- editor  
MPASM directives allow complete control over the  
assembly process.  
- simulator  
9.3  
MPLAB-C17 and MPLAB-C18  
C Compilers  
- programmer (sold separately)  
- emulator (sold separately)  
A full featured editor  
A project manager  
Customizable tool bar and key mapping  
A status bar  
The MPLAB-C17 and MPLAB-C18 Code Development  
Systems are complete ANSI Ccompilers and inte-  
grated development environments for Microchips  
PIC17CXXX and PIC18CXXX family of microcontrol-  
lers, respectively. These compilers provide powerful  
integration capabilities and ease of use not found with  
other compilers.  
On-line help  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 55  
PIC16C5X  
Interchangeable processor modules allow the system  
to be easily reconfigured for emulation of different pro-  
cessors. The universal architecture of the MPLAB-ICE  
allows expansion to support new PICmicro microcon-  
trollers.  
9.4  
MPLINK/MPLIB Linker/Librarian  
MPLINK is a relocatable linker for MPASM and  
MPLAB-C17 and MPLAB-C18. It can link relocatable  
objects from assembly or C source files along with pre-  
compiled libraries using directives from a linker script.  
The MPLAB-ICE Emulator System has been designed  
as a real-time emulation system with advanced fea-  
tures that are generally found on more expensive devel-  
opment tools. The PC platform and Microsoft® Windows  
3.x/95/98 environment were chosen to best make these  
features available to you, the end user.  
MPLIB is a librarian for pre-compiled code to be used  
with MPLINK. When a routine from a library is called  
from another source file, only the modules that contains  
that routine will be linked in with the application. This  
allows large libraries to be used efficiently in many dif-  
ferent applications. MPLIB manages the creation and  
modification of library files.  
MPLAB-ICE 2000 is a full-featured emulator system  
with enhanced trace, trigger, and data monitoring fea-  
tures. Both systems use the same processor modules  
and will operate across the full operating speed range  
of the PICmicro MCU.  
MPLINK features include:  
MPLINK works with MPASM and MPLAB-C17  
and MPLAB-C18.  
MPLINK allows all memory areas to be defined as  
sections to provide link-time flexibility.  
9.7  
ICEPIC  
ICEPIC is a low-cost in-circuit emulation solution for the  
Microchip Technology PIC16C5X, PIC16C6X,  
MPLIB features include:  
MPLIB makes linking easier because single librar-  
ies can be included instead of many smaller files.  
PIC16C7X, and PIC16CXXX families of 8-bit one-time-  
programmable (OTP) microcontrollers. The modular  
system can support different subsets of PIC16C5X or  
PIC16CXXX products through the use of interchange-  
able personality modules or daughter boards. The  
emulator is capable of emulating without target applica-  
tion circuitry being present.  
MPLIB helps keep code maintainable by grouping  
related modules together.  
MPLIB commands allow libraries to be created  
and modules to be added, listed, replaced,  
deleted, or extracted.  
9.5  
MPLAB-SIM Software Simulator  
9.8  
MPLAB-ICD In-Circuit Debugger  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment by simulating  
the PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file or user-defined key press to any of the pins. The  
execution can be performed in single step, execute until  
break, or trace mode.  
Microchips In-Circuit Debugger, MPLAB-ICD, is a pow-  
erful, low-cost run-time development tool. This tool is  
based on the flash PIC16F877 and can be used to  
develop for this and other PICmicro microcontrollers  
from the PIC16CXXX family. MPLAB-ICD utilizes the  
In-Circuit Debugging capability built into the  
PIC16F87X. This feature, along with Microchips In-Cir-  
cuit Serial Programming protocol, offers cost-effective  
in-circuit flash programming and debugging from the  
graphical user interface of the MPLAB Integrated  
Development Environment. This enables a designer to  
develop and debug source code by watching variables,  
single-stepping and setting break points. Running at  
full speed enables testing hardware in real-time. The  
MPLAB-ICD is also a programmer for the flash  
PIC16F87X family.  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C17 and MPLAB-C18 and MPASM. The Soft-  
ware Simulator offers the flexibility to develop and  
debug code outside of the laboratory environment mak-  
ing it an excellent multi-project software development  
tool.  
9.6  
MPLAB-ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLAB-ICE Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers (MCUs). Software control of  
MPLAB-ICE is provided by the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
makeand download, and source debugging from a  
single environment.  
DS30453C-page 56  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
9.9  
PRO MATE II Universal Programmer  
9.12  
PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode. PRO MATE II is CE  
compliant.  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The MPLAB-ICE emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
usage of the I2C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for instructions and error messages,  
keys to enter commands and a modular detachable  
socket assembly to support various package types. In  
stand-alone mode the PRO MATE II can read, verify or  
program PICmicro devices. It can also set code-protect  
bits in this mode.  
9.10  
PICSTART Plus Entry Level  
Development System  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient.  
9.13  
PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The MPLAB-ICE emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
PICSTART Plus supports all PICmicro devices with up  
to 40 pins. Larger pin count devices such as the  
PIC16C92X, and PIC17C76X may be supported with  
an adapter socket. PICSTART Plus is CE compliant.  
9.11  
PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchips microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
the PICDEM-1 board, on  
a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the MPLAB-ICE emulator and download the  
firmware to the emulator for testing. Additional proto-  
type area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 57  
PIC16C5X  
9.14  
PICDEM-17  
The PICDEM-17 is an evaluation board that demon-  
strates the capabilities of several Microchip microcon-  
trollers,  
including  
PIC17C752,  
PIC17C756,  
PIC17C762, and PIC17C766. All necessary hardware  
is included to run basic demo programs, which are sup-  
plied on a 3.5-inch disk. A programmed sample is  
included, and the user may erase it and program it with  
the other sample programs using the PRO MATE II or  
PICSTART Plus device programmers and easily debug  
and test the sample code. In addition, PICDEM-17 sup-  
ports down-loading of programs to and executing out of  
external FLASH memory on board. The PICDEM-17 is  
also usable with the MPLAB-ICE or PICMASTER emu-  
lator, and all of the sample programs can be run and  
modified using either emulator. Additionally, a gener-  
ous prototype area is available for user hardware.  
9.15  
KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
DS30453C-page 58  
Preliminary  
2000 Microchip Technology Inc.  
®
MPLAB Integrated  
Development Environment  
®
MPLAB C17 Compiler  
®
MPLAB C18 Compiler  
MPASM/MPLINK  
®
MPLAB -ICE  
**  
ICEPIC Low-Cost  
In-Circuit Emulator  
®
MPLAB -ICD In-Circuit  
*
*
Debugger  
PICSTART Plus  
Low-Cost Universal Dev. Kit  
**  
**  
PRO MATE II  
Universal Programmer  
PICDEM-1  
PICDEM-2  
PICDEM-3  
PICDEM-14A  
PICDEM-17  
K
EE  
L
OQ® Evaluation Kit  
K
EE  
LOQ Transponder Kit  
microIDProgrammers Kit  
125 kHz microID Developers Kit  
125 kHz Anticollision microID  
Developers Kit  
13.56 MHz Anticollision microID  
Developers Kit  
MCP2510 CAN Developers Kit  
®
* Contact the Microchip Technology Inc. web site at www.microchip.com for information on how to use the MPLAB -ICD In-Circuit Debugger (DV164001) with PIC16C62, 63, 64, 65, 72, 73, 74, 76, 77  
** Contact Microchip Technology Inc. for availability date.  
Development tool is available on select devices.  
PIC16C5X  
NOTES:  
DS30453C-page 60  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
10.0 ELECTRICAL CHARACTERISTICS - PIC16C54/55/56/57  
Absolute Maximum Ratings†  
Ambient Temperature under bias...........................................................................................................55°C to +125°C  
Storage Temperature .............................................................................................................................65°C to +150°C  
Voltage on VDD with respect to VSS ............................................................................................................... 0V to +7.5V  
Voltage on MCLR with respect to VSS(2)......................................................................................................... 0V to +14V  
Voltage on all other pins with respect to VSS ................................................................................. 0.6V to (VDD + 0.6V)  
Total Power Dissipation(1) ....................................................................................................................................800 mW  
Max. Current out of VSS pin ..................................................................................................................................150 mA  
Max. Current into VDD pin .....................................................................................................................................100 mA  
Max. Current into an input pin (T0CKI only) ....................................................................................................................±500 µA  
Input Clamp Current, IIK (VI < 0 or VI > VDD).................................................................................................................... ±20 mA  
Output Clamp Current, IOK (VO < 0 or VO > VDD) ............................................................................................................ ±20 mA  
Max. Output Current sunk by any I/O pin................................................................................................................25 mA  
Max. Output Current sourced by any I/O pin...........................................................................................................20 mA  
Max. Output Current sourced by a single I/O port (PORTA, B or C).......................................................................40 mA  
Max. Output Current sunk by a single I/O port (PORTA, B or C)............................................................................50 mA  
Note 1: Power Dissipation is calculated as follows: Pdis = VDD x {IDD IOH} + {(VDD VOH) x IOH} + (VOL x IOL)  
2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,  
a series resistor of 50 to 100 should be used when applying a lowlevel to the MCLR pin rather than  
pulling this pin directly to VSS.  
NOTICE: Stresses above those listed under Maximum Ratingsmay cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in  
the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 61  
PIC16C5X  
PIC16C54/55/56/57  
10.1  
DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C  
Typ(1)  
Characteristic  
Sym Min  
Max Units  
Conditions  
Supply Voltage  
PIC16C5X-RC  
PIC16C5X-XT  
PIC16C5X-10  
PIC16C5X-HS  
PIC16C5X-LP  
VDD  
3.0  
3.0  
4.5  
4.5  
2.5  
6.25  
6.25  
5.5  
5.5  
6.25  
V
V
V
V
V
FOSC = DC to 4 MHz  
FOSC = DC to 4 MHz  
FOSC = DC to 10 MHz  
FOSC = DC to 20 MHz  
FOSC = DC to 40 kHz  
RAM Data Retention Voltage(2)  
1.5*  
VSS  
V
V
Device in SLEEP Mode  
VDR  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
Supply Current(3)  
IDD  
1.8  
1.8  
4.8  
4.8  
9.0  
15  
3.3  
3.3  
10  
10  
20  
32  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
FOSC = 32 kHz, VDD = 3.0V,  
WDT disabled  
PIC16C5X-RC(4)  
PIC16C5X-XT  
PIC16C5X-10  
PIC16C5X-HS  
PIC16C5X-LP  
Power-down Current(5)  
IPD  
4.0  
0.6  
12  
9
µA  
µA  
VDD = 3.0V, WDT enabled  
VDD = 3.0V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the  
current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through REXT. The current through the resistor can be estimated by the  
formula: IR = VDD/2REXT (mA) with REXT in k.  
5: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453C-page 62  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
10.2  
DC Characteristics: PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 40°C TA +85°C  
Typ(1)  
Characteristic  
Sym Min  
Max Units  
Conditions  
Supply Voltage  
PIC16C5X-RCI  
PIC16C5X-XTI  
PIC16C5X-10I  
PIC16C5X-HSI  
PIC16C5X-LPI  
VDD  
3.0  
3.0  
4.5  
4.5  
2.5  
6.25  
6.25  
5.5  
5.5  
6.25  
V
V
V
V
V
FOSC = DC to 4 MHz  
FOSC = DC to 4 MHz  
FOSC = DC to 10 MHz  
FOSC = DC to 20 MHz  
FOSC = DC to 40 kHz  
RAM Data Retention Voltage(2)  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
Supply Current(3)  
IDD  
1.8  
1.8  
4.8  
4.8  
9.0  
15  
3.3  
3.3  
10  
10  
20  
40  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
FOSC = 32 kHz, VDD = 3.0V,  
WDT disabled  
PIC16C5X-RCI(4)  
PIC16C5X-XTI  
PIC16C5X-10I  
PIC16C5X-HSI  
PIC16C5X-LPI  
Power-down Current(5)  
IPD  
4.0  
0.6  
14  
12  
µA  
µA  
VDD = 3.0V, WDT enabled  
VDD = 3.0V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the  
current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through REXT. The current through the resistor can be estimated by the  
formula: IR = VDD/2REXT (mA) with REXT in k.  
5: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 63  
PIC16C5X  
PIC16C54/55/56/57  
10.3  
DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 40°C TA +125°C  
Typ (1)  
Characteristic  
Sym Min  
Max Units  
Conditions  
Supply Voltage  
PIC16C5X-RCE  
PIC16C5X-XTE  
PIC16C5X-10E  
PIC16C5X-HSE  
PIC16C5X-LPE  
VDD  
3.25  
3.25  
4.5  
4.5  
2.5  
6.0  
6.0  
5.5  
5.5  
6.0  
V
V
V
V
V
FOSC = DC to 4 MHz  
FOSC = DC to 4 MHz  
FOSC = DC to 10 MHz  
FOSC = DC to 16 MHz  
FOSC = DC to 40 kHz  
RAM Data Retention Voltage(2)  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
Supply Current(3)  
IDD  
1.8  
1.8  
4.8  
4.8  
9.0  
19  
3.3  
3.3  
10  
10  
20  
55  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 16 MHz, VDD = 5.5V  
FOSC = 32 kHz, VDD = 3.25V,  
WDT disabled  
PIC16C5X-RCE(4)  
PIC16C5X-XTE  
PIC16C5X-10E  
PIC16C5X-HSE  
PIC16C5X-LPE  
Power-down Current(5)  
IPD  
5.0  
0.8  
22  
18  
µA  
µA  
VDD = 3.25V, WDT enabled  
VDD = 3.25V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the  
current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through REXT. The current through the resistor can be estimated by the  
formula: IR = VDD/2REXT (mA) with REXT in k.  
5: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453C-page 64  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
10.4  
DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial)  
PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
All Pins Except  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
Power Supply Pins  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and  
Section 10.3.  
Typ(1)  
Characteristic  
Sym  
Min  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
PIC16C5X-RC only(4)  
PIC16C5X-XT, 10, HS, LP  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
4.0V < VDD 5.5V(5)  
VDD > 5.5V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
PIC16C5X-RC only(4)  
PIC16C5X-XT, 10, HS, LP  
Hysteresis of Schmitt  
Trigger inputs  
VHYS  
IIL  
0.15VDD*  
V
Input Leakage Current(2,3)  
I/O ports  
For VDD 5.5V  
1  
5  
0.5  
+1  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
VPIN = VSS + 0.25V  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
PIC16C5X-XT, 10, HS, LP  
µA  
µA  
µA  
µA  
MCLR  
0.5  
0.5  
0.5  
+5  
+3  
+3  
3  
3  
T0CKI  
OSC1  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
VOH  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
PIC16C5X-RC  
Output High Voltage  
I/O ports(3)  
OSC2/CLKOUT  
VDD 0.7  
VDD 0.7  
V
V
IOH = 5.4 mA, VDD = 4.5V  
IOH = 1.0 mA, VDD = 4.5V,  
PIC16C5X-RC  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input volt-  
age.  
3: Negative current is defined as coming out of the pin.  
4: For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C5X be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 65  
PIC16C5X  
PIC16C54/55/56/57  
10.5  
DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Extended)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 40°C TA +125°C  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and  
Section 10.3.  
DC Characteristics  
All Pins Except  
Power Supply Pins  
Typ(1)  
Characteristic  
Sym  
Min  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
VIL  
Vss  
Vss  
Vss  
Vss  
Vss  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
PIC16C5X-RC only(4)  
PIC16C5X-XT, 10, HS, LP  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
4.0V < VDD 5.5V(5)  
VDD > 5.5 V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
PIC16C5X-RC only(4)  
PIC16C5X-XT, 10, HS, LP  
Hysteresis of Schmitt  
Trigger inputs  
VHYS  
IIL  
0.15VDD*  
V
Input Leakage Current (2,3)  
I/O ports  
For VDD 5.5 V  
1  
5  
0.5  
+1  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
VPIN = VSS + 0.25V  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
PIC16C5X-XT, 10, HS, LP  
µA  
µA  
µA  
µA  
MCLR  
0.5  
0.5  
0.5  
+5  
+3  
+3  
3  
3  
T0CKI  
OSC1  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
VOH  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
PIC16C5X-RC  
Output High Voltage  
I/O ports(3)  
OSC2/CLKOUT  
VDD 0.7  
VDD 0.7  
V
V
IOH = 5.4 mA, VDD = 4.5V  
IOH = 1.0 mA, VDD = 4.5V,  
PIC16C5X-RC  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C5X be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
DS30453C-page 66  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
10.6  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
oscillator  
OSC1  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 10-1: LOAD CONDITIONS - PIC16C54/55/56/57  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
modes when external clock  
is used to drive OSC1  
VSS  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 67  
PIC16C5X  
PIC16C54/55/56/57  
10.7  
Timing Diagrams and Specifications  
FIGURE 10-2: EXTERNAL CLOCK TIMING - PIC16C54/55/56/57  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 10-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and Section 10.3  
Parameter  
No.  
Sym  
Characteristic  
Min Typ(1)  
Max Units  
Conditions  
External CLKIN Frequency(2)  
FOSC  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
MHz XT osc mode  
MHz 10 MHz mode  
10  
20  
16  
40  
4
MHz HS osc mode (Com/Indust)  
MHz HS osc mode (Extended)  
kHz LP osc mode  
Oscillator Frequency(2)  
MHz RC osc mode  
4
MHz XT osc mode  
10  
20  
16  
40  
MHz 10 MHz mode  
4
MHz HS osc mode (Com/Indust)  
MHz HS osc mode (Extended)  
kHz LP osc mode  
4
DC  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard oper-  
ating conditions with the device executing code. Exceeding these specified limits may result in an unstable  
oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the maxcycle time limit is DC(no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453C-page 68  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
TABLE 10-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57 (CONT)  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and Section 10.3  
Parameter  
No.  
Sym  
Characteristic  
Min Typ(1)  
Max Units  
Conditions  
External CLKIN Period(2)  
1
TOSC  
250  
100  
50  
ns XT osc mode  
ns 10 MHz mode  
ns HS osc mode (Com/Indust)  
ns HS osc mode (Extended)  
µs LP osc mode  
62.5  
25  
Oscillator Period(2)  
250  
250  
100  
50  
ns RC osc mode  
10,000 ns XT osc mode  
250  
250  
250  
ns 10 MHz mode  
ns HS osc mode (Com/Indust)  
ns HS osc mode (Extended)  
µs LP osc mode  
62.5  
25  
Instruction Cycle Time(3)  
2
3
TCY  
4/FOSC  
TosL, TosH Clock in (OSC1) Low or High  
Time  
85*  
20*  
2*  
ns XT oscillator  
ns HS oscillator  
µs LP oscillator  
ns XT oscillator  
ns HS oscillator  
ns LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall  
Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard oper-  
ating conditions with the device executing code. Exceeding these specified limits may result in an unstable  
oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the maxcycle time limit is DC(no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 69  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 10-3: CLKOUT AND I/O TIMING - PIC16C54/55/56/57  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
13  
12  
16  
18  
14  
19  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.  
TABLE 10-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54/55/56/57  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and  
Section 10.3  
Parameter  
No.  
10  
11  
Sym  
TosH2ckL  
TosH2ckH  
TckR  
Characteristic  
OSC1to CLKOUT(2)  
Min  
Typ(1)  
15  
15  
5
Max  
30**  
30**  
15**  
15**  
40**  
Units  
ns  
OSC1to CLKOUT(2)  
ns  
CLKOUT rise time(2)  
12  
13  
14  
15  
16  
17  
18  
ns  
CLKOUT fall time(2)  
TckF  
5
ns  
CLKOUTto Port out valid(2)  
Port in valid before CLKOUT(2)  
Port in hold after CLKOUT(2)  
OSC1(Q1 cycle) to Port out valid(3)  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
ns  
0.25 TCY+30*  
ns  
0*  
ns  
100*  
ns  
OSC1(Q2 cycle) to Port input invalid  
TBD  
ns  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
Port output rise time(3)  
Port output fall time(3)  
20  
21  
TioR  
TioF  
10  
10  
25**  
25**  
ns  
ns  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (Typ) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 10-1 for loading conditions.  
DS30453C-page 70  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 10-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING -  
PIC16C54/55/56/57  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 10-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54/55/56/57  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and Section 10.3  
Parameter  
No.  
Typ(1)  
Sym Characteristic  
Min  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
100*  
9*  
ns VDD = 5.0V  
Twdt Watchdog Timer Time-out Period  
(No Prescaler)  
18*  
30*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
9*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
ns  
TioZ I/O Hi-impedance from MCLR Low  
100*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 71  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 10-5: TIMER0 CLOCK TIMINGS - PIC16C54/55/56/57  
T0CKI  
40  
41  
42  
TABLE 10-4: TIMER0 CLOCK REQUIREMENTS - PIC16C54/55/56/57  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 10.1, Section 10.2 and  
Section 10.3  
Parameter  
Typ(1)  
Max Units Conditions  
Sym Characteristic  
Min  
No.  
40  
Tt0H T0CKI High Pulse Width- No Prescaler 0.5 TCY + 20*  
ns  
ns  
ns  
ns  
- With Prescaler  
Tt0L T0CKI Low Pulse Width- No Prescaler  
- With Prescaler  
10*  
0.5 TCY + 20*  
10*  
41  
42  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453C-page 72  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
11.0 DC AND AC CHARACTERISTICS - PIC16C54/55/56/57  
The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables, the  
data presented is outside specified operating range (e.g., outside specified VDD range). This is for information only and  
devices will operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period of  
time. Typicalrepresents the mean of the distribution while maxor minrepresents (mean + 3σ) and (mean 3σ)  
respectively, where σ is standard deviation.  
FIGURE 11-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE  
FOSC  
Frequency normalized to +25°C  
FOSC (25°C)  
1.10  
REXT 10 kΩ  
CEXT = 100 pF  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
VDD = 5.5 V  
VDD = 3.5 V  
0.92  
0.90  
0.88  
0
10  
20  
25  
30  
40  
50  
60  
70  
T(°C)  
TABLE 11-1: RC OSCILLATOR FREQUENCIES  
Average  
FOSC @ 5 V, 25°C  
CEXT  
REXT  
20 pF  
3.3 k  
5 k  
4.973 MHz  
3.82 MHz  
2.22 MHz  
262.15 kHz  
1.63 MHz  
1.19 MHz  
684.64 kHz  
71.56 kHz  
660 kHz  
± 27%  
± 21%  
± 21%  
± 31%  
± 13%  
± 13%  
± 18%  
± 25%  
± 10%  
± 14%  
± 15%  
± 19%  
10 k  
100 k  
3.3 k  
5 k  
100 pF  
300 pF  
10 k  
100 k  
3.3 k  
5.0 k  
10 k  
160 k  
484.1 kHz  
267.63 kHz  
29.44 kHz  
The frequencies are measured on DIP packages.  
The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation  
indicated is ±3 standard deviations from the average value for VDD = 5 V.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 73  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 11-2: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD,  
FIGURE 11-3: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD,  
CEXT = 20 PF  
CEXT = 100 PF  
5.5  
1.8  
R = 3.3k  
R = 3.3k  
5.0  
1.6  
4.5  
1.4  
R = 5k  
R = 5k  
4.0  
1.2  
1.0  
3.5  
3.0  
0.8  
R = 10k  
R = 10k  
2.5  
0.6  
Measured on DIP Packages, T = 25°C  
2.0  
0.4  
Measured on DIP Packages, T = 25°C  
0.2  
1.5  
R = 100k  
0.0  
1.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
R = 100k  
0.5  
FIGURE 11-4: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD,  
0.0  
CEXT = 300 PF  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
800  
700  
R = 3.3k  
600  
R = 5k  
500  
400  
300  
200  
100  
0
R = 10k  
Measured on DIP Packages, T = 25°C  
R = 100k  
5.5 6.0  
3.0  
3.5  
4.0  
4.5  
5.0  
VDD (Volts)  
DS30453C-page 74  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 11-5: TYPICAL IPD vs. VDD,  
WATCHDOG DISABLED  
FIGURE 11-7: TYPICAL IPD vs. VDD,  
WATCHDOG ENABLED  
2.5  
20  
18  
16  
2.0  
14  
12  
T = 25°C  
T = 25°C  
1.5  
10  
8
1.0  
0.5  
6
4
2
0
0.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
VDD (Volts)  
VDD (Volts)  
FIGURE 11-6: MAXIMUM IPD vs. VDD,  
WATCHDOG DISABLED  
FIGURE 11-8: MAXIMUM IPD vs. VDD,  
WATCHDOG ENABLED  
60  
100  
50  
+125°C  
+85°C  
10  
40  
55°C  
+70°C  
0°C  
+85°C  
30  
40°C  
+125°C  
40°C  
+70°C  
55°C  
1
20  
10  
0
0°C  
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
VDD (Volts)  
VDD (Volts)  
IPD, with WDT enabled, has two components:  
The leakage current, which increases with higher tempera-  
ture, and the operating current of the WDT logic, which  
increases with lower temperature. At 40°C, the latter domi-  
nates explaining the apparently anomalous behavior.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 75  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 11-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS vs. VDD  
2.00  
)
1.80  
1.60  
1.40  
1.20  
C
°
5
8
+
o
t
C
°
0
4
(
x
a
M
)
C
°
5
2
+
(
p
y
T
)
C
°
5
8
+
1.00  
0.80  
o
t
C
°
0
4
(
n
i
M
0.60  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 11-10: VIH, VIL OF MCLR, T0CKI AND OSC1 (IN RC MODE) vs. VDD  
4.5  
)
4.0  
C
°
5
8
+
o
t
C
°
0
4
(
3.5  
3.0  
2.5  
2.0  
1.5  
x
a
H m  
VI  
)
C
°
5
8
+
o
t
C
°
0
4
(
n
i
H m  
VI  
L
I
H
I
1.0  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
Note: These input pins have Schmitt Trigger input buffers.  
FIGURE 11-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT  
(IN XT, HS, AND LP MODES) vs. VDD  
3.4  
3.2  
3.0  
)
2.8  
2.6  
2.4  
2.2  
2.0  
C
°
5
8
+
o
t
C
°
0
4
(
x
a
M
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
DS30453C-page 76  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 11-12: TYPICAL IDD vs. FREQUENCY (EXTERNAL CLOCK, 25°C)  
10  
1.0  
0.1  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
0.01  
10k  
100k  
1M  
10M  
100M  
External Clock Frequency (Hz)  
FIGURE 11-13: MAXIMUM IDD vs. FREQUENCY (EXTERNAL CLOCK, 40°C TO +85°C)  
10  
1.0  
7.0  
6.5  
6.0  
0.1  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
0.01  
10k  
100k  
1M  
10M  
100M  
External Clock Frequency (Hz)  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 77  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 11-14: MAXIMUM IDD vs. FREQUENCY (EXTERNAL CLOCK 55°C TO +125°C)  
10  
1.0  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
0.1  
2.5  
0.01  
10k  
100k  
1M  
10M  
100M  
External Clock Frequency (Hz)  
FIGURE 11-15: WDT TIMER TIME-OUT  
PERIOD vs. VDD  
FIGURE 11-16: TRANSCONDUCTANCE (gm)  
OF HS OSCILLATOR vs. VDD  
50  
45  
40  
9000  
8000  
Max 40°C  
7000  
6000  
35  
30  
5000  
Max +85°C  
Typ +25°C  
25  
4000  
3000  
Max +70°C  
20  
Typ +25°C  
Min +85°C  
15  
2000  
MIn 0°C  
10  
100  
0
MIn 40°C  
5
2
3
4
5
6
7
2
3
4
5
6
7
VDD (Volts)  
VDD (Volts)  
DS30453C-page 78  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 11-17: TRANSCONDUCTANCE (gm)  
OF LP OSCILLATOR vs. VDD  
FIGURE 11-19: TRANSCONDUCTANCE (gm)  
OF XT OSCILLATOR vs. VDD  
45  
2500  
40  
Max 40°C  
Max 40°C  
2000  
35  
30  
1500  
25  
Typ +25°C  
Typ +25°C  
20  
1000  
15  
Min +85°C  
500  
10  
Min +85°C  
5
0
0
2
3
4
5
6
7
2
3
4
5
6
7
VDD (Volts)  
VDD (Volts)  
FIGURE 11-18: IOH vs. VOH, VDD = 3 V  
FIGURE 11-20: IOH vs. VOH, VDD = 5 V  
0
0
Min +85°C  
5  
10  
Min +85°C  
10  
20  
Typ +25°C  
Typ +25°C  
15  
Max 40°C  
30  
Max 40°C  
20  
40  
25  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
0.5 1.0 1.5 2.0  
VOH (Volts)  
2.5 3.0  
VOH (Volts)  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 79  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 11-21: IOL vs. VOL, VDD = 3 V  
FIGURE 11-22: IOL vs. VOL, VDD = 5 V  
90  
80  
70  
45  
Max 40°C  
Max 40°C  
40  
35  
60  
50  
30  
25  
Typ +25°C  
Typ +25°C  
Min +85°C  
40  
20  
Min +85°C  
30  
20  
15  
10  
10  
0
5
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
0.0  
0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
VOL (Volts)  
TABLE 11-2: INPUT CAPACITANCE FOR  
PIC16C54/56  
TABLE 11-3: INPUT CAPACITANCE FOR  
PIC16C55/57  
Typical Capacitance (pF)  
Pin  
Typical Capacitance (pF)  
Pin  
18L PDIP  
18L SOIC  
28L PDIP  
(600 mil)  
28L SOIC  
RA port  
RB port  
5.0  
4.3  
RA port  
RB port  
5.2  
5.6  
5.0  
17.0  
6.6  
4.6  
4.5  
4.8  
4.7  
4.1  
17.0  
3.5  
3.5  
3.5  
5.0  
4.3  
MCLR  
17.0  
4.0  
17.0  
3.5  
RC port  
OSC1  
MCLR  
OSC2/CLKOUT  
T0CKI  
4.3  
3.5  
OSC1  
3.2  
2.8  
OSC2/CLKOUT  
T0CKI  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
DS30453C-page 80  
Preliminary  
2000 Microchip Technology Inc.  
PIC16CR54A  
PIC16C5X  
12.0 ELECTRICAL CHARACTERISTICS - PIC16CR54A  
Absolute Maximum Ratings†  
Ambient Temperature under bias...........................................................................................................55°C to +125°C  
Storage Temperature .............................................................................................................................65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V  
Voltage on MCLR with respect to VSS(2)............................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ................................................................................. 0.6V to (VDD + 0.6V)  
Total Power Dissipation(1) ....................................................................................................................................800 mW  
Max. Current out of VSS pin ..................................................................................................................................150 mA  
Max. Current into VDD pin .......................................................................................................................................50 mA  
Max. Current into an input pin (T0CKI only) ....................................................................................................................±500 µA  
Input Clamp Current, IIK (VI < 0 or VI > VDD) ................................................................................................................... ±20 mA  
Output Clamp Current, IOK (V0 < 0 or V0 > VDD).............................................................................................................±20 mA  
Max. Output Current sunk by any I/O pin................................................................................................................25 mA  
Max. Output Current sourced by any I/O pin...........................................................................................................20 mA  
Max. Output Current sourced by a single I/O port (PORTA or B) ...........................................................................40 mA  
Max. Output Current sunk by a single I/O port (PORTA or B).................................................................................50 mA  
Note 1: Power Dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA may cause latch-up. Thus,  
a series resistor of 50 to 100should be used when applying a low level to the MCLR pin rather than pulling  
this pin directly to Vss.  
NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indi-  
cated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 81  
PIC16C5X  
PIC16CR54A  
12.1  
DC Characteristics: PIC16CR54A-04, 10, 20 (Commercial)  
PIC16CR54A-04I, 10I, 20I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
Typ(1)  
Characteristic  
Sym  
Min  
Max Units  
Conditions  
Supply Voltage  
RC and XT options  
HS option  
VDD  
2.5  
4.5  
6.25  
5.5  
V
V
RAM Data Retention Voltage(2)  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
IDD  
V/ms See Section 7.4 for details on  
Power-on Reset  
Supply Current(3)  
2.0  
0.8  
90  
4.8  
9.0  
3.6  
1.8  
350  
10  
mA  
mA  
µA  
mA  
mA  
FOSC = 4.0 MHz, VDD = 6.0V  
FOSC = 4.0 MHz, VDD = 3.0V  
FOSC = 200 kHz, VDD = 2.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
RC(4) and XT options  
HS option  
20  
Power-down Current(5)  
Commercial  
IPD  
IPD  
1.0  
2.0  
3.0  
5.0  
6.0  
8.0*  
15  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
25  
Power-down Current(5)  
Industrial  
1.0  
2.0  
3.0  
3.0  
5.0  
8.0  
10*  
20*  
18  
µA  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 4.0V, WDT enabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
45  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the  
current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through REXT. The current through the resistor can be estimated by the  
formula: IR = VDD/2REXT (mA) with REXT in k.  
5: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453C-page 82  
Preliminary  
2000 Microchip Technology Inc.  
PIC16CR54A  
PIC16C5X  
12.2  
DC Characteristics: PIC16CR54A-04E, 10E, 20E (Extended)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 40°C TA +125°C (extended)  
Typ(1)  
Characteristic  
Sym  
Min  
Max Units  
Conditions  
Supply Voltage  
RC, XT and LP options  
HS options  
VDD  
3.25  
4.5  
6.0  
5.5  
V
V
RAM Data Retention Voltage(2)  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
Supply Current(3)  
RC(4) and XT options  
IDD  
1.8  
4.8  
9.0  
3.3  
10  
20  
mA  
mA  
mA  
FOSC = 4.0 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 16 MHz, VDD = 5.5V  
HS option  
Power-down Current(5)  
IPD  
5.0  
0.8  
22  
18  
µA  
µA  
VDD = 3.25V, WDT enabled  
VDD = 3.25V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through REXT. The current through the resistor can be estimated by the  
formula: IR = VDD/2REXT (mA) with REXT in k.  
5: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 83  
PIC16C5X  
PIC16CR54A  
12.3  
DC Characteristics: PIC16LCR54A-04 (Commercial)  
PIC16LCR54A-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C (commercial)  
DC Characteristics  
Power Supply Pins  
40°C TA +85°C (industrial)  
Typ(1)  
Characteristic  
Sym  
Min  
Max Units  
Conditions  
Supply Voltage  
VDD  
VDR  
2.0  
6.25  
V
V
LP Option  
RAM Data Retention Voltage(2)  
1.5*  
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
VSS  
V
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
Supply Current(3)  
IDD  
IPD  
10  
20  
70  
µA  
µA  
FOSC = 32 kHz, VDD = 2.0V  
FOSC = 32 kHz, VDD = 6.0V  
Power-down Current(5)  
Commercial  
1.0  
2.0  
3.0  
5.0  
6.0  
8.0*  
15  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
25  
Power-down Current(5)  
IPD  
Industrial  
1.0  
2.0  
3.0  
3.0  
5.0  
8.0  
10*  
20*  
18  
µA  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 4.0V, WDT enabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
45  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through REXT. The current through the resistor can be estimated by the  
formula: IR = VDD/2REXT (mA) with REXT in k.  
5: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453C-page 84  
Preliminary  
2000 Microchip Technology Inc.  
PIC16CR54A  
PIC16C5X  
12.4  
DC Characteristics: PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial)  
PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
Operating Voltage VDD range is described in Section 12.1 and Section 12.3.  
Typ(1)  
Characteristic  
Sym  
Min  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
V
V
V
V
V
Pin at hi-impedance  
RC option only(4)  
XT, HS and LP options  
Input High Voltage  
I/O ports  
VIH  
VDD = 3.0V to 5.5V(5)  
Full VDD range(5)  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
0.6 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
RC option only(4)  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS 0.15VDD*  
V
Input Leakage Current(3)  
I/O ports  
IIL  
For VDD 5.5V  
VSS VPIN VDD,  
Pin at hi-impedance  
1.0  
+1.0  
µA  
5.0  
µA  
µA  
µA  
µA  
MCLR  
VPIN = VSS + 0.25V(2)  
0.5  
0.5  
0.5  
+5.0  
+3.0  
+3.0  
(2)  
VPIN = VDD  
3.0  
3.0  
T0CKI  
OSC1  
VSS VPIN VDD  
VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
0.5  
0.5  
V
V
IOL = 10 mA, VDD = 6.0V  
IOL = 1.9 mA, VDD = 6.0V,  
RC option only  
Output High Voltage(3)  
I/O ports  
VOH  
VDD 0.5  
VDD 0.5  
V
V
IOH = 4.0 mA, VDD = 6.0V  
IOH = 0.8 mA, VDD = 6.0V,  
RC option only  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 85  
PIC16C5X  
PIC16CR54A  
12.5  
DC Characteristics: PIC16CR54A-04E, 10E, 20E (Extended)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 40°C TA +125°C  
Operating Voltage VDD range is described in Section 12.2.  
Typ(1)  
Characteristic  
Sym  
Min  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
VIL  
Vss  
Vss  
Vss  
Vss  
Vss  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
RC option only(4)  
XT, HS and LP options  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
4.0V < VDD 5.5V(5)  
VDD > 5.5V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
RC option only(4)  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS 0.15VDD*  
V
Input Leakage Current(3)  
I/O ports  
IIL  
For VDD 5.5V  
VSS VPIN VDD,  
Pin at hi-impedance  
1.0  
0.5  
+1.0  
µA  
VPIN = VSS + 0.25V(2)  
5.0  
µA  
µA  
µA  
µA  
MCLR  
0.5  
0.5  
0.5  
+5.0  
+3.0  
+3.0  
(2)  
VPIN = VDD  
3.0  
3.0  
T0CKI  
OSC1  
VSS VPIN VDD  
VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC option only  
Output High Voltage (3)  
I/O ports  
VOH  
VDD 0.7  
VDD 0.7  
V
V
IOH = 5.4 mA, VDD = 4.5V  
IOH = 1.0 mA, VDD = 4.5V,  
RC option only  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
DS30453C-page 86  
Preliminary  
2000 Microchip Technology Inc.  
PIC16CR54A  
PIC16C5X  
12.6  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
oscillator  
OSC1  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 12-1: LOAD CONDITIONS  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
options when external clock  
is used to drive OSC1  
VSS  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 87  
PIC16C5X  
PIC16CR54A  
12.7  
Timing Diagrams and Specifications  
FIGURE 12-2: EXTERNAL CLOCK TIMING - PIC16CR54A  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 12.1, Section 12.2 and Section 12.3.  
Parameter  
No.  
Sym  
Characteristic  
Min Typ(1) Max Units  
Conditions  
External CLKIN Frequency(2)  
FOSC  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4.0  
4.0  
4.0  
5.0  
4.0 MHz XT osc mode  
4.0 MHz HS osc mode (04)  
10  
20  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
200 kHz LP osc mode  
4.0 MHz RC osc mode  
4.0 MHz XT osc mode  
4.0 MHz HS osc mode (04)  
Oscillator Frequency(2)  
10  
20  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
200 kHz LP osc mode  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard oper-  
ating conditions with the device executing code. Exceeding these specified limits may result in an unstable  
oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the maxcycle time limit is DC(no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453C-page 88  
Preliminary  
2000 Microchip Technology Inc.  
PIC16CR54A  
PIC16C5X  
TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A (CONT)  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 12.1, Section 12.2 and Section 12.3.  
Parameter  
No.  
Sym  
Characteristic  
Min Typ(1) Max Units  
Conditions  
External CLKIN Period(2)  
1
TOSC  
250  
250  
100  
50  
ns XT osc mode  
ns HS osc mode (04)  
ns HS osc mode (10)  
ns HS osc mode (20)  
µs LP osc mode  
5.0  
Oscillator Period(2)  
250  
250  
ns RC osc mode  
10,00 ns XT osc mode  
0
250  
100  
50  
250  
250  
250  
200  
ns HS osc mode (04)  
ns HS osc mode (10)  
ns HS osc mode (20)  
µs LP osc mode  
5.0  
Instruction Cycle Time(3)  
2
3
TCY  
4/FOS  
C
TosL, TosH Clock in (OSC1) Low or High  
Time  
50*  
20*  
2.0*  
ns XT oscillator  
ns HS oscillator  
µs LP oscillator  
ns XT oscillator  
ns HS oscillator  
ns LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall  
Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard oper-  
ating conditions with the device executing code. Exceeding these specified limits may result in an unstable  
oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the maxcycle time limit is DC(no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 89  
PIC16C5X  
PIC16CR54A  
FIGURE 12-3: CLKOUT AND I/O TIMING - PIC16CR54A  
Q1  
Q4  
Q2  
Q3  
OSC1  
10  
11  
CLKOUT  
12  
13  
18  
19  
16  
14  
I/O Pin  
(input)  
15  
17  
I/O Pin  
Old Value  
(output)  
New Value  
20, 21  
Note: All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.  
TABLE 12-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16CR54A  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 12.1, Section 12.2 and  
Section 12.3.  
Parameter  
No.  
10  
11  
Sym  
TosH2ckL  
TosH2ckH  
TckR  
Characteristic  
OSC1to CLKOUT(2)  
Min  
Typ(1)  
15  
Max  
30**  
30**  
15**  
15**  
40**  
Units  
ns  
OSC1to CLKOUT(2)  
15  
ns  
CLKOUT rise time(2)  
12  
13  
14  
15  
16  
17  
18  
5.0  
5.0  
ns  
CLKOUT fall time(2)  
TckF  
ns  
CLKOUTto Port out valid(2)  
Port in valid before CLKOUT(2)  
Port in hold after CLKOUT(2)  
OSC1(Q1 cycle) to Port out valid(3)  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
ns  
0.25 TCY+30*  
ns  
0*  
ns  
100*  
ns  
OSC1(Q2 cycle) to Port input invalid  
TBD  
ns  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
Port output rise time(3)  
Port output fall time(3)  
20  
21  
TioR  
TioF  
10  
10  
25**  
25**  
ns  
ns  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (Typ) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 12-1 for loading conditions.  
DS30453C-page 90  
Preliminary  
2000 Microchip Technology Inc.  
PIC16CR54A  
PIC16C5X  
FIGURE 12-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16CR54A  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 12-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16CR54A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 12.1, Section 12.2 and Section 12.3.  
Parameter  
No.  
Typ(1)  
Sym Characteristic  
Min  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
1.0*  
7.0*  
µs VDD = 5.0V  
Twdt Watchdog Timer Time-out Period  
(No Prescaler)  
18*  
40*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
7.0*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
TioZ I/O Hi-impedance from MCLR Low  
1.0*  
µs  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 91  
PIC16C5X  
PIC16CR54A  
FIGURE 12-5: TIMER0 CLOCK TIMINGS - PIC16CR54A  
T0CKI  
40  
41  
42  
TABLE 12-4: TIMER0 CLOCK REQUIREMENTS - PIC16CR54A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 12.1, Section 12.2 and  
Section 12.3.  
Param  
No.  
Typ(1)  
Max Units Conditions  
Sym Characteristic  
Min  
40  
41  
42  
Tt0H T0CKI High Pulse Width- No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453C-page 92  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
13.0 ELECTRICAL CHARACTERISTICS - PIC16C54A  
Absolute Maximum Ratings†  
Ambient temperature under bias............................................................................................................55°C to +125°C  
Storage temperature............................................................................................................................. 65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V  
Voltage on MCLR with respect to VSS ...............................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ................................................................................. 0.6V to (VDD + 0.6V)  
Total power dissipation(1) .....................................................................................................................................800 mW  
Max. current out of VSS pin ...................................................................................................................................150 mA  
Max. current into VDD pin......................................................................................................................................100 mA  
Max. current into an input pin (T0CKI only) .....................................................................................................................±500 µA  
Input clamp current, IIK (VI < 0 or VI > VDD).................................................................................................................... ±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. ±20 mA  
Max. output current sunk by any I/O pin .................................................................................................................25 mA  
Max. output current sourced by any I/O pin............................................................................................................20 mA  
Max. output current sourced by a single I/O port (PORTA or B).............................................................................50 mA  
Max. output current sunk by a single I/O port (PORTA or B) ..................................................................................50 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indi-  
cated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 93  
PIC16C5X  
PIC16C54A  
13.1  
DC Characteristics: PIC16C54A-04, 10, 20 (Commercial)  
PIC16C54A-04I, 10I, 20I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
Characteristic  
Sym Min Typ(1) Max Units  
Conditions  
Supply Voltage  
XT, RC and LP options  
HS option  
VDD  
3.0  
4.5  
6.25  
5.5  
V
V
RAM Data Retention Voltage(2) VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-on Reset  
VPOR  
SVDD  
IDD  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-on Reset  
Supply Current(3)  
XT and RC(4) options  
HS option  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
1.8  
2.4  
4.5  
14  
2.4 mA FOSC = 4.0 MHz, VDD = 5.5V  
8.0 mA FOSC = 10 MHz, VDD = 5.5V  
16  
29  
37  
mA FOSC = 20 MHz, VDD = 5.5V  
µA FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
µA FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
LP option, Commercial  
LP option, Industrial  
17  
Power-down Current(5)  
IPD  
Commercial  
4.0  
0.25 4.0  
5.0  
0.3  
12  
µA VDD = 3.0V, WDT enabled  
µA VDD = 3.0V, WDT disabled  
µA VDD = 3.0V, WDT enabled  
µA VDD = 3.0V, WDT disabled  
Industrial  
14  
5.0  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through REXT. The current through the resistor can be estimated by the  
formula: IR = VDD/2REXT (mA) with REXT in k.  
5: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453C-page 94  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
13.2  
DC Characteristics: PIC16C54A-04E, 10E, 20E (Extended)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
40°C TA +125°C (extended)  
Characteristic  
Sym Min Typ(1) Max Units  
Conditions  
Supply Voltage  
XT and RC options  
HS option  
VDD  
3.5  
4.5  
5.5  
5.5  
V
V
RAM Data Retention Voltage(2) VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-on Reset  
VPOR  
SVDD  
IDD  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-on Reset  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
Supply Current(3)  
XT and RC(4) options  
HS option  
1.8  
4.8  
9.0  
3.3 mA FOSC = 4.0 MHz, VDD = 5.5V  
10  
20  
mA FOSC = 10 MHz, VDD = 5.5V  
mA FOSC = 20 MHz, VDD = 5.5V  
Power-down Current(5)  
IPD  
XT and RC options  
5.0  
0.8  
4.0  
22  
18  
22  
18  
µA VDD = 3.5V, WDT enabled  
µA VDD = 3.5V, WDT disabled  
µA VDD = 3.5V, WDT enabled  
µA VDD = 3.5V, WDT disabled  
HS option  
0.25  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through REXT. The current through the resistor can be estimated by the  
formula: IR = VDD/2REXT (mA) with REXT in k.  
5: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 95  
PIC16C5X  
PIC16C54A  
13.3  
DC Characteristics: PIC16LC54A-04 (Commercial)  
PIC16LC54A-04I (Industrial))  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
Characteristic  
Sym Min Typ(1) Max Units  
Conditions  
Supply Voltage  
XT and RC options  
LP options  
VDD  
3.0  
2.5  
6.25  
6.25  
V
V
RAM Data Retention Voltage(2) VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-on Reset  
VPOR  
SVDD  
IDD  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-on Reset  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
Supply Current(3)  
XT and RC(4) options  
LP option, Commercial  
LP option, Industrial  
LP option, Extended  
0.5  
11  
11  
11  
2.5 mA FOSC = 4.0 MHz, VDD = 5.5V  
27  
35  
37  
µA FOSC = 32 kHz, VDD = 2.5V WDT disabled  
µA FOSC = 32 kHz, VDD = 2.5V WDT disabled  
µA FOSC = 32 kHz, VDD = 2.5V WDT disabled  
Power-down Current(5)  
IPD  
Commercial  
2.5  
12  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
0.25 4.0  
2.5 14  
0.25 5.0  
2.5 15  
0.25 7.0  
Industrial  
Extended  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through REXT. The current through the resistor can be estimated by the  
formula: IR = VDD/2REXT (mA) with REXT in k.  
5: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453C-page 96  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
13.4  
DC Characteristics: PIC16C54A-04, 10, 20, PIC16LC54A-04, PIC16LV54A-02 (Commercial)  
PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial)  
PIC16C54A-04E, 10E, 20E (Extended)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
40°C TA +85°C (industrial)  
20°C TA +85°C (industrial - PIC16LV54A-02I)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 13.1, Section 13.2 and  
Section 13.3.  
Characteristic  
Sym  
Min  
Typ(1)  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
Pin at hi-impedance  
RC option only(4)  
XT, HS and LP options  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.2 VDD+1V  
2.0  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
For all VDD  
4.0V < VDD 5.5V(5)  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
RC option only(4)  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS 0.15VDD*  
V
Input Leakage Current(3)  
IIL  
For VDD 5.5V  
I/O ports  
-1.0  
-5.0  
0.5  
0.5  
0.5  
0.5  
+1.0  
+5.0  
+3.0  
+3.0  
µA VSS VPIN VDD,  
Pin at hi-impedance  
MCLR  
µA VPIN = VSS +0.25V(2)  
(2)  
µA VPIN = VDD  
T0CKI  
OSC1  
-3.0  
-3.0  
µA VSS VPIN VDD  
µA VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
VOH  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC option only  
Output High Voltage  
I/O ports(3)  
OSC2/CLKOUT  
VDD-0.7  
VDD-0.7  
V
V
IOH = -5.4 mA, VDD = 4.5V  
IOH = -1.0 mA, VDD = 4.5V,  
RC option only  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input volt-  
age.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 97  
PIC16C5X  
PIC16C54A  
13.5  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
oscillator  
OSC1  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 13-1: LOAD CONDITIONS - PIC16C54A  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
options when external clock  
is used to drive OSC1  
VSS  
DS30453C-page 98  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
13.6  
Timing Diagrams and Specifications  
FIGURE 13-2: EXTERNAL CLOCK TIMING - PIC16C54A  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
20°C TA +85°C (industrial - PIC16LV54A-02I)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 13.1, Section 13.2 and Section 13.3.  
Parameter  
No.  
Sym  
Characteristic  
Min Typ(1) Max Units  
Conditions  
FOSC  
External CLKIN Frequency(2) DC  
4.0 MHz XT osc mode  
DC  
DC  
DC  
DC  
DC  
2.0 MHz XT osc mode (PIC16LV54A)  
4.0 MHz HS osc mode (04)  
10  
20  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
200 kHz LP osc mode  
Oscillator Frequency(2)  
DC  
DC  
0.1  
0.1  
4
4.0 MHz RC osc mode  
2.0 MHz RC osc mode (PIC16LV54A)  
4.0 MHz XT osc mode  
2.0 MHz XT osc mode (PIC16LV54A)  
4.0 MHz HS osc mode (04)  
4
10  
20  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
4
5
200 kHz LP osc mode  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard oper-  
ating conditions with the device executing code. Exceeding these specified limits may result in an unstable  
oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the maxcycle time limit is DC(no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 99  
PIC16C5X  
PIC16C54A  
TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A (CONT)  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
20°C TA +85°C (industrial - PIC16LV54A-02I)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 13.1, Section 13.2 and Section 13.3.  
Parameter  
No.  
Sym  
Characteristic  
Min Typ(1) Max Units  
Conditions  
1
TOSC  
External CLKIN Period(2)  
250  
500  
250  
100  
50  
ns XT osc mode  
ns XT osc mode (PIC16LV54A)  
ns HS osc mode (04)  
ns HS osc mode (10)  
ns HS osc mode (20)  
µs LP osc mode  
5.0  
Oscillator Period(2)  
250  
500  
250  
ns RC osc mode  
ns RC osc mode (PIC16LV54A)  
10,00 ns XT osc mode  
0
500  
250  
100  
50  
ns XT osc mode (PIC16LV54A)  
250  
250  
250  
200  
ns HS osc mode (04)  
ns HS osc mode (10)  
ns HS osc mode (20)  
µs LP osc mode  
5.0  
2
3
TCY  
Instruction Cycle Time(3)  
4/FOS  
C
TosL, TosH Clock in (OSC1) Low or High 85*  
ns XT oscillator  
ns HS oscillator  
µs LP oscillator  
ns XT oscillator  
ns HS oscillator  
ns LP oscillator  
Time  
20*  
2.0*  
4
TosR, TosF Clock in (OSC1) Rise or Fall  
Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard oper-  
ating conditions with the device executing code. Exceeding these specified limits may result in an unstable  
oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the maxcycle time limit is DC(no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453C-page 100  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
FIGURE 13-3: CLKOUT AND I/O TIMING - PIC16C54A  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
13  
12  
16  
18  
14  
19  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.  
TABLE 13-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54A  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
20°C TA +85°C (industrial - PIC16LV54A-02I)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 13.1, Section 13.2 and  
Section 13.3.  
Parameter  
No.  
Sym  
Characteristic  
OSC1to CLKOUT(2)  
Min  
Typ(1)  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
15  
15  
5.0  
5.0  
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OSC1to CLKOUT(2)  
CLKOUT rise time(2)  
TckF  
CLKOUT fall time(2)  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
CLKOUTto Port out valid(2)  
Port in valid before CLKOUT(2)  
Port in hold after CLKOUT(2)  
OSC1(Q1 cycle) to Port out valid(3)  
0.25 TCY+30*  
0*  
100*  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
20  
21  
TioR  
TioF  
Port output rise time(3)  
Port output fall time(3)  
10  
10  
25**  
25**  
ns  
ns  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (Typ) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 14-1 for loading conditions.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 101  
PIC16C5X  
PIC16C54A  
FIGURE 13-4: RESET, WATCHDOG TIMER, AND  
DEVICE RESET TIMER TIMING - PIC16C54A  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 13-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
20°C TA +85°C (industrial - PIC16LV54A-02I)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 13.1, Section 13.2 and Section 13.3.  
Parameter  
No.  
Sym Characteristic  
Min Typ(1) Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
100*  
1µs  
ns VDD = 5.0V  
VDD = 5.0V (PIC16LV54A only)  
31  
Twdt Watchdog Timer Time-out  
Period (No Prescaler)  
9.0*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
9.0*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
ns  
TioZ I/O Hi-impedance from MCLR  
Low  
100*  
1µs  
(PIC16LV54A only)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453C-page 102  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
FIGURE 13-5: TIMER0 CLOCK TIMINGS - PIC16C54A  
T0CKI  
40  
41  
42  
TABLE 13-4: TIMER0 CLOCK REQUIREMENTS - PIC16C54A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
20°C TA +85°C (industrial - PIC16LV54A-02I)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 13.1, Section 13.2 and  
Section 13.3.  
Param  
No.  
Sym Characteristic  
Min  
Typ(1) Max Units Conditions  
40  
41  
42  
Tt0H T0CKI High Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5V, 25°C unless otherwise stated. These parameters are for design guid-  
ance only and are not tested.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 103  
PIC16C5X  
PIC16C54A  
NOTES:  
DS30453C-page 104  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
14.0 DC AND AC CHARACTERISTICS - PIC16C54A  
The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables,  
the data presented is outside specified operating range (e.g., outside specified VDD range). This is for information only  
and devices will operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period of  
time. Typicalrepresents the mean of the distribution, while maxor minrepresents (mean + 3σ) and (mean 3σ)  
respectively, where σ is standard deviation.  
FIGURE 14-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE  
FOSC  
Frequency normalized to +25°C  
FOSC (25°C)  
1.10  
REXT 10 kΩ  
CEXT = 100 pF  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
VDD = 5.5 V  
VDD = 3.5 V  
0.92  
0.90  
0.88  
0
10  
20  
25  
30  
40  
50  
60  
70  
T(°C)  
TABLE 14-1: RC OSCILLATOR FREQUENCIES  
Average  
Fosc @ 5 V, 25°C  
CEXT  
REXT  
20 pF  
3.3 k  
5 k  
4.973 MHz  
3.82 MHz  
2.22 MHz  
262.15 kHz  
1.63 MHz  
1.19 MHz  
684.64 kHz  
71.56 kHz  
660 kHz  
± 27%  
± 21%  
± 21%  
± 31%  
± 13%  
± 13%  
± 18%  
± 25%  
± 10%  
± 14%  
± 15%  
± 19%  
10 k  
100 k  
3.3 k  
5 k  
100 pF  
300 pF  
10 k  
100 k  
3.3 k  
5.0 k  
10 k  
160 k  
484.1 kHz  
267.63 kHz  
29.44 kHz  
The frequencies are measured on DIP packages.  
The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation  
indicated is ±3 standard deviation from average value for VDD = 5 V.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 105  
PIC16C5X  
PIC16C54A  
FIGURE 14-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF  
6.00  
R=3.3K  
5.00  
R=5.0K  
4.00  
3.00  
R=10K  
2.00  
CEXT=20pF, T=25°C  
1.00  
R=100K  
0.00  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD (Volts)  
FIGURE 14-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 100 PF  
1.80  
R=3.3K  
1.60  
1.40  
R=5.0K  
1.20  
1.00  
0.80  
R=10K  
0.60  
CEXT=100pF, T=25°C  
0.40  
0.20  
R=100K  
0.00  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD (Volts)  
DS30453C-page 106  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
FIGURE 14-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF  
700.00  
R=3.3K  
600.00  
500.00  
R=5.0K  
400.00  
300.00  
R=10K  
200.00  
CEXT=300pF, T=25°C  
100.00  
R=100K  
0.00  
2.5  
3
3.5  
4
4.5  
6
5.5  
5
VDD (Volts)  
FIGURE 14-5: TYPICAL IPD vs. VDD, WATCHDOG DISABLED (25°C)  
2.50  
2.00  
1.50  
1.00  
0.50  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 107  
PIC16C5X  
PIC16C54A  
FIGURE 14-6: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS vs. VDD  
2.00  
)
1.80  
1.60  
1.40  
1.20  
C
°
5
8
+
o
t
C
°
0
4
(
x
a
M
)
C
°
5
2
+
(
p
y
T
)
C
°
5
8
+
1.00  
0.80  
o
t
C
°
0
4
(
n
i
M
0.60  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 14-7: VIH, VIL OF MCLR, T0CKI AND OSC1 (IN RC MODE) vs. VDD  
4.5  
)
4.0  
C
°
5
8
+
o
t
C
°
0
4
(
3.5  
3.0  
2.5  
2.0  
1.5  
x
a
H m  
VI  
)
C
°
5
8
+
o
t
C
°
0
4
(
n
i
H m  
VI  
L
I
H
I
1.0  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
Note: These input pins have Schmitt Trigger input buffers.  
FIGURE 14-8: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT  
(IN XT, HS, AND LP MODES) vs. VDD  
3.4  
3.2  
3.0  
)
2.8  
2.6  
2.4  
2.2  
2.0  
C
°
5
8
+
o
t
C
°
0
4
(
x
a
M
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
DS30453C-page 108  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
FIGURE 14-9: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 20 PF, 25°C)  
10000  
1000  
6.0V  
5.5V  
5.0V  
100  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
10  
0.1  
1
10  
Freq (MHz)  
FIGURE 14-10: MAXIMUM IDD vs. FREQUENCY (WDT DIS, RC MODE @ 20 PF, 40°C TO +85°C)  
10000  
1000  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
100  
10  
0.1  
1
10  
Freq (MHz)  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 109  
PIC16C5X  
PIC16C54A  
FIGURE 14-11: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 100 PF, 25°C)  
10000  
1000  
6.0V  
5.5V  
5.0V  
100  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
10  
0.01  
1
10  
0.1  
Freq (MHz)  
FIGURE 14-12: MAXIMUM IDD vs. FREQUENCY (WDT DIS, RC MODE @ 100 PF, 40°C TO +85°C)  
10000  
1000  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
100  
10  
0.01  
0.1  
1
10  
Freq (MHz)  
DS30453C-page 110  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
FIGURE 14-13: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 300 PF, 25°C)  
10000  
1000  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
100  
10  
0.01  
0.1  
1
Freq (MHz)  
FIGURE 14-14: MAXIMUM IDD vs. FREQUENCY (WDT DIS, RC MODE @ 300 PF, 40°C TO +85°C)  
10000  
1000  
6.0V  
5.5V  
5.0V  
100  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
10  
0.01  
0.1  
1
Freq (MHz)  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 111  
PIC16C5X  
PIC16C54A  
FIGURE 14-15: WDT TIMER TIME-OUT  
PERIOD vs. VDD  
TABLE 14-2: INPUT CAPACITANCE FOR  
PIC16C54A/C58A  
Typical Capacitance (pF)  
Pin  
50  
45  
40  
18L PDIP  
18L SOIC  
RA port  
RB port  
5.0  
4.3  
5.0  
4.3  
MCLR  
17.0  
4.0  
17.0  
3.5  
OSC1  
35  
OSC2/CLKOUT  
T0CKI  
4.3  
3.5  
30  
3.2  
2.8  
Max +85°C  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
25  
Max +70°C  
20  
Typ +25°C  
15  
MIn 0°C  
10  
MIn 40°C  
5
2
3
4
5
6
7
VDD (Volts)  
DS30453C-page 112  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
FIGURE 14-18: TRANSCONDUCTANCE (gm)  
OF XT OSCILLATOR vs. VDD  
FIGURE 14-16: TRANSCONDUCTANCE (gm)  
OF HS OSCILLATOR vs. VDD  
2500  
9000  
8000  
Max 40°C  
Max 40°C  
2000  
7000  
6000  
1500  
5000  
Typ +25°C  
Typ +25°C  
1000  
4000  
3000  
Min +85°C  
500  
Min +85°C  
2000  
100  
0
0
2
3
4
5
6
7
VDD (Volts)  
2
3
4
5
6
7
VDD (Volts)  
FIGURE 14-17: TRANSCONDUCTANCE (gm)  
OF LP OSCILLATOR vs. VDD  
45  
40  
Max 40°C  
35  
30  
25  
Typ +25°C  
20  
15  
10  
Min +85°C  
5
0
2
3
4
5
6
7
VDD (Volts)  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 113  
PIC16C5X  
PIC16C54A  
FIGURE 14-19: IOH vs. VOH, VDD = 3 V  
FIGURE 14-21: IOL vs. VOL, VDD = 3 V  
0
45  
40  
35  
Max 40°C  
5  
Min +85°C  
30  
25  
10  
Typ +25°C  
Typ +25°C  
Min +85°C  
15  
20  
Max 40°C  
15  
10  
20  
5
0
25  
0
0.5 1.0 1.5 2.0 2.5 3.0  
VOH (Volts)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
FIGURE 14-20: IOH vs. VOH, VDD = 5 V  
FIGURE 14-22: IOL vs. VOL, VDD = 5 V  
90  
0
Max 40°C  
80  
Min +85°C  
70  
60  
10  
Typ +25°C  
50  
20  
Typ +25°C  
40  
Min +85°C  
30  
30  
Max 40°C  
20  
10  
40  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOH (Volts)  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
DS30453C-page 114  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
15.0 ELECTRICAL CHARACTERISTICS -  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
Absolute Maximum Ratings†  
Ambient temperature under bias............................................................................................................55°C to +125°C  
Storage temperature............................................................................................................................. 65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V  
Voltage on MCLR with respect to VSS ...............................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ................................................................................. 0.6V to (VDD + 0.6V)  
Total power dissipation(1) .....................................................................................................................................800 mW  
Max. current out of VSS pin ...................................................................................................................................150 mA  
Max. current into VDD pin......................................................................................................................................100 mA  
Max. current into an input pin (T0CKI only) .....................................................................................................................±500 µA  
Input clamp current, IIK (VI < 0 or VI > VDD).................................................................................................................... ±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. ±20 mA  
Max. output current sunk by any I/O pin .................................................................................................................25 mA  
Max. output current sourced by any I/O pin............................................................................................................20 mA  
Max. output current sourced by a single I/O (Port A, B or C) .................................................................................50 mA  
Max. output current sunk by a single I/O (Port A, B or C).......................................................................................50 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indi-  
cated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 115  
PIC16C5X  
FIGURE 15-1: PIC16C54C VOLTAGE-FREQUENCY GRAPH, 0°C TA +70°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
FIGURE 15-2: PIC16C54C VOLTAGE-FREQUENCY GRAPH, -40°C TA < 0°C, +70°C < TA +125°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
DS30453C-page 116  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
15.1  
DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial)  
PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial)  
PIC16C54C/C55A/C56A/C57C/C58B-04I, 20I (Industrial)  
PIC16CR54B/CR/54C/CR56A/CR57C/CR58B-04I, 20I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
Power Supply Pins  
Characteristic  
Sym Min Typ(1) Max Units  
Conditions  
Supply Voltage  
VDD  
XT, RC, LP and HS options  
HS option  
3.0  
4.5  
5.5  
5.5  
V
V
HS Option from 0 - 10MHz  
HS Option from 0 - 20MHz  
RAM Data Retention Voltage(2) VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-on Reset  
VPOR  
SVDD  
IDD  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-on Reset  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
Supply Current(3)(4)  
1.8  
2.6  
4.5  
14  
2.4 mA FOSC = 4 MHz, VDD = 5.5V, XT mode  
3.6 mA FOSC = 10 MHz, VDD = 3.0V, HS mode  
16  
32  
mA FOSC = 20 MHz, VDD = 5.5V, HS mode  
µA FOSC = 32 kHz, VDD = 3.0V, LP mode,  
Commercial  
17  
40  
µA FOSC = 32 kHz, VDD = 3.0V, LP mode,  
Industrial  
Power-down Current(5)  
Watchdog Timer Current  
IPD  
0.25 4.0  
0.25 5.0  
µA VDD = 3.0V, WDT disabled, Commercial  
µA VDD = 3.0V, WDT disabled, Industrial  
µA VDD = 5.5V, WDT disabled, Commercial  
µA VDD = 5.5V, WDT disabled, Industrial  
1.8  
2.0  
7.0  
8.0  
IWDT  
3.75 8.0  
3.75 9.0  
µA VDD = 3.0V, Commercial  
µA VDD = 3.0V, Industrial  
µA VDD = 5.5V*, Commercial  
µA VDD = 5.5V*, Industrial  
8
10  
20  
22  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through REXT. The current through the resistor can be estimated by the  
formula: IR = VDD/2REXT (mA) with REXT in k.  
5: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 117  
PIC16C5X  
15.2  
DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E (Extended)  
PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
40°C TA +125°C (extended)  
Characteristic  
Sym Min Typ(1) Max Units  
Conditions  
Supply Voltage  
VDD  
XT, RC, LP and HS options  
HS option  
3.0  
4.5  
5.5  
5.5  
V
V
HS Option from 0 - 10MHz  
HS Option from 0 - 20MHz  
RAM Data Retention Voltage(2) VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-on Reset  
VPOR  
SVDD  
IDD  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-on Reset  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
Supply Current(3)  
XT and RC(4) options  
HS option  
1.8  
9.0  
3.3 mA FOSC = 4.0 MHz, VDD = 5.5V  
20  
mA FOSC = 20 MHz, VDD = 5.5V  
Power-down Current(5)  
IPD  
0.3  
10  
12  
17  
50  
60  
µA VDD = 3.0V, WDT disabled  
µA VDD = 4.5V, WDT disabled  
µA VDD = 5.5V, WDT disabled  
Watchdog Timer Current  
IWDT  
4.5  
8
14  
14  
18  
30  
µA VDD = 3.0V  
µA VDD = 4.5V*  
µA VDD = 5.5V*  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through REXT. The current through the resistor can be estimated by the  
formula: IR = VDD/2REXT (mA) with REXT in k.  
5: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453C-page 118  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
15.3  
DC Characteristics: PIC16LC5X-04, PIC16LCR5X-04 (Commercial)  
PIC16LC5X-04I, PIC16LCR5X-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
Power Supply Pins  
Characteristic  
Sym Min Typ(1) Max Units  
Conditions  
Supply Voltage  
XT and RC options  
LP options  
VDD  
3.0  
2.5  
5.5  
5.5  
V
V
RAM Data Retention Voltage(2) VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-on Reset  
VPOR  
SVDD  
IDD  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-on Reset  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
Supply Current(3)(4)  
0.4  
0.5  
11  
0.6 mA FOSC = 4.0 MHz, VDD = 2.5V, XT mode  
2.4 mA FOSC = 4.0 MHz, VDD = 5.5V, XT mode  
27  
µA FOSC = 32 kHz, VDD = 2.5V, LP mode,  
Commercial  
14  
35  
µA FOSC = 32 kHz, VDD = 2.5V, LP mode,  
Industrial  
Power-down Current(5)  
Watchdog Timer Current  
IPD  
0.25  
0.25  
2
3
µA VDD = 2.5V, WDT disabled, Commercial  
µA VDD = 2.5V, WDT disabled, Industrial  
IWDT  
0.8  
1
3
5
µA VDD = 2.5V, Commercial  
µA VDD = 2.5V, Industrial  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through REXT. The current through the resistor can be estimated by the  
formula: IR = VDD/2REXT (mA) with REXT in k.  
5: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 119  
PIC16C5X  
15.4  
DC Characteristics: PIC16C54B/C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial,  
Extended)  
PIC16LC54B/LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial)  
PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial, Extended)  
PIC16LCR54B/LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
Operating Voltage VDD range is described in Section 15.1, Section 15.2 and  
Section 15.3.  
Characteristic  
Sym  
Min  
Typ(1)  
Max  
Units  
Conditions  
Input Low Voltage  
I/O Ports  
I/O Ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.8 V  
V
V
V
V
V
4.5V <VDD 5.5V  
Otherwise  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
RC option only(4)  
XT, HS and LP options  
Input High Voltage  
VIH  
2.0  
0.25 VDD+0.8V  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
4.5V < VDD 5.5V  
Otherwise  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
RC option only(4)  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS  
0.15VDD*  
V
Input Leakage Current(3) IIL  
For VDD 5.5V  
I/O ports  
-1.0  
-5.0  
0.5  
+1.0  
µA VSS VPIN VDD,  
Pin at hi-impedance  
MCLR  
+5.0  
+3.0  
+3.0  
µA VPIN = VSS +0.25V(2)  
(2)  
0.5  
0.5  
0.5  
µA VPIN = VDD  
T0CKI  
OSC1  
-3.0  
-3.0  
µA VSS VPIN VDD  
µA VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC option only  
Output High Voltage  
I/O ports(3)  
OSC2/CLKOUT  
VOH  
VDD-0.7  
VDD-0.7  
V
V
IOH = -5.4 mA, VDD = 4.5V  
IOH = -1.0 mA, VDD = 4.5V,  
RC option only  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified lev-  
els represent normal operating conditions. Higher leakage current may be measured at different input voltage.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be  
driven with external clock in RC mode.  
DS30453C-page 120  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
15.5  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
oscillator  
OSC1  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 15-3: LOAD CONDITIONS -  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B, PIC16CR5X  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
options when external clock  
is used to drive OSC1  
VSS  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 121  
PIC16C5X  
15.6  
Timing Diagrams and Specifications  
FIGURE 15-4: EXTERNAL CLOCK TIMING - PIC16C5X, PIC16CR5X  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 15.1, Section 15.2 and Section 15.3.  
Parameter  
No.  
Sym  
Characteristic  
Min Typ(1) Max Units  
Conditions  
FOSC  
External CLKIN Frequency(2)  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
250  
250  
50  
4.0 MHz XT osc mode  
4.0 MHz HS osc mode (04)  
20 MHz HS osc mode (20)  
200 kHz LP osc mode  
4.0 MHz RC osc mode  
4.0 MHz XT osc mode  
4.0 MHz HS osc mode (04)  
Oscillator Frequency(2)  
20  
MHz HS osc mode (20)  
200 kHz LP osc mode  
1
TOSC  
External CLKIN Period(2)  
ns XT osc mode  
ns HS osc mode (04)  
ns HS osc mode (20)  
µs LP osc mode  
5.0  
250  
250  
250  
50  
Oscillator Period(2)  
ns RC osc mode  
2,200 ns XT osc mode  
250  
250  
200  
ns HS osc mode (04)  
ns HS osc mode (20)  
µs LP osc mode  
5.0  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5V, 25°C unless otherwise stated. These parameters are for design guid-  
ance only and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard oper-  
ating conditions with the device executing code. Exceeding these specified limits may result in an unstable  
oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the maxcycle time limit is DC(no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453C-page 122  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X (CONT)  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 15.1, Section 15.2 and Section 15.3.  
Parameter  
No.  
Sym  
Characteristic  
Min Typ(1) Max Units  
Conditions  
2
3
TCY  
Instruction Cycle Time(3)  
50*  
20*  
2.0*  
4/FOSC  
TosL, TosH Clock in (OSC1) Low or High  
Time  
ns XT oscillator  
ns HS oscillator  
µs LP oscillator  
ns XT oscillator  
ns HS oscillator  
ns LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall  
Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5V, 25°C unless otherwise stated. These parameters are for design guid-  
ance only and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard oper-  
ating conditions with the device executing code. Exceeding these specified limits may result in an unstable  
oscillator operation and/or higher than expected current consumption.  
When an external clock input is used, the maxcycle time limit is DC(no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 123  
PIC16C5X  
FIGURE 15-5: CLKOUT AND I/O TIMING - PIC16C5X, PIC16CR5X  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
13  
12  
18  
14  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: Refer to Figure 19-1 for load conditions.  
TABLE 15-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 15.1, Section 15.2 and Section 15.3.  
Parameter  
No.  
Sym  
Characteristic  
OSC1to CLKOUT(2)  
Min  
Typ(1)  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
15  
15  
5.0  
5.0  
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OSC1to CLKOUT(2)  
CLKOUT rise time(2)  
TckF  
CLKOUT fall time(2)  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
CLKOUTto Port out valid(2)  
Port in valid before CLKOUT(2)  
Port in hold after CLKOUT(2)  
OSC1(Q1 cycle) to Port out valid(3)  
0.25 TCY+30*  
0*  
100*  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
20  
21  
TioR  
TioF  
Port output rise time(3)  
Port output fall time(3)  
10  
10  
25**  
25**  
ns  
ns  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (Typ) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 15-3 for loading conditions.  
DS30453C-page 124  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
FIGURE 15-6: RESET, WATCHDOG TIMER, AND  
DEVICE RESET TIMER TIMING - PIC16C5X, PIC16CR5X  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 15-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C5X, PIC16CR5X  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 15.1, Section 15.2 and Section 15.3.  
Parameter  
No.  
Sym Characteristic  
Min Typ(1) Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
1000*  
9.0*  
ns VDD = 5.0V  
Twdt Watchdog Timer Time-out Period  
(No Prescaler)  
18*  
30*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
9.0*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
ns  
TioZ I/O Hi-impedance from MCLR Low 100* 300* 1000*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5V, 25°C unless otherwise stated. These parameters are for design guid-  
ance only and are not tested.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 125  
PIC16C5X  
FIGURE 15-7: TIMER0 CLOCK TIMINGS - PIC16C5X, PIC16CR5X  
T0CKI  
40  
41  
42  
TABLE 15-4: TIMER0 CLOCK REQUIREMENTS - PIC16C5X, PIC16CR5X  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
40°C TA +85°C (industrial)  
40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 15.1, Section 15.2 and  
Section 15.3.  
Param  
No.  
Sym Characteristic  
Min  
Typ(1) Max Units Conditions  
40  
41  
42  
Tt0H T0CKI High Pulse Width- No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453C-page 126  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
16.0 DC AND AC CHARACTERISTICS -  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables,  
the data presented is outside specified operating range (e.g., outside specified VDD range). This is for information only  
and devices will operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period of  
time. Typicalrepresents the mean of the distribution, while maxor minrepresents (mean + 3σ) and (mean 3σ)  
respectively, where σ is standard deviation.  
FIGURE 16-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE  
FOSC  
Frequency normalized to +25°C  
FOSC (25°C)  
1.10  
REXT 10 kΩ  
CEXT = 100 pF  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
VDD = 5.5 V  
VDD = 3.5 V  
0.92  
0.90  
0.88  
0
10  
20  
25  
30  
40  
50  
60  
70  
T(°C)  
TABLE 16-1: RC OSCILLATOR FREQUENCIES  
Average  
Fosc @ 5 V, 25°C  
CEXT  
REXT  
20 pF  
3.3 k  
5 k  
4.973 MHz  
3.82 MHz  
2.22 MHz  
262.15 kHz  
1.63 MHz  
1.19 MHz  
684.64 kHz  
71.56 kHz  
660 kHz  
± 27%  
± 21%  
± 21%  
± 31%  
± 13%  
± 13%  
± 18%  
± 25%  
± 10%  
± 14%  
± 15%  
± 19%  
10 k  
100 k  
3.3 k  
5 k  
100 pF  
300 pF  
10 k  
100 k  
3.3 k  
5.0 k  
10 k  
160 k  
484.1 kHz  
267.63 kHz  
29.44 kHz  
The frequencies are measured on DIP packages.  
The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation  
indicated is ±3 standard deviation from average value for VDD = 5 V.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 127  
PIC16C5X  
FIGURE 16-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF  
6.00  
R=3.3K  
5.00  
R=5.0K  
4.00  
3.00  
R=10K  
2.00  
CEXT=20pF, T=25C  
1.00  
R=100K  
0
2.5  
3
3.5  
5
5.5  
6
4
4.5  
VDD (Volts)  
FIGURE 16-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 100 PF  
1.80  
R=3.3K  
1.60  
1.40  
R=5.0K  
1.00  
R=10K  
0.60  
CEXT=20pF, T=25C  
0.20  
R=100K  
0
2.5  
3
3.5  
5
5.5  
4
4.5  
VDD (Volts)  
DS30453C-page 128  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
FIGURE 16-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF  
700.0  
R=3.3K  
600.0  
500.0  
R=5.0K  
400.0  
300.0  
R=10K  
CEXT=20pF, T=25C  
200.0  
100.0  
R=100K  
0
2.5  
3
3.5  
5
5.5  
6
4
4.5  
VDD (Volts)  
FIGURE 16-5: TYPICAL IPD vs. VDD, WATCHDOG DISABLED (25°C)  
25  
20  
15  
10  
5
0
2.5  
3
3.5  
5
5.5  
6
4
4.5  
VDD (Volts)  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 129  
PIC16C5X  
FIGURE 16-6: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (25°C)  
25  
20  
15  
10  
5
0
2.5  
3
3.5  
5
5.5  
6
4
4.5  
VDD (Volts)  
FIGURE 16-7: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (40°C, 85°C)  
35  
30  
25  
20  
15  
10  
5
0
2.5  
3
3.5  
5
5.5  
6
4
4.5  
VDD (Volts)  
DS30453C-page 130  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
FIGURE 16-8: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF I/O PINS vs. VDD  
2.00  
1.80  
1.60  
)
C
°
1.40  
1.20  
5
2
+
(
p
y
T
1.00  
0.80  
0.60  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 16-9: VIH, VIL OF MCLR, T0CKI AND OSC1 (IN RC MODE) vs. VDD  
4.5  
)
4.0  
C
°
5
8
+
o
t
C
°
0
4
(
3.5  
3.0  
2.5  
2.0  
1.5  
x
a
H m  
VI  
)
C
°
5
8
+
o
t
C
°
0
4
(
n
i
H m  
VI  
L
I
IL  
1.0  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
Note: These input pins have Schmitt Trigger input buffers.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 131  
PIC16C5X  
FIGURE 16-10: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT  
(IN XT, HS AND LP MODES) vs. VDD  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 16-11: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 20 PF, 25°C)  
10000  
1000  
5.5V  
100  
4.5V  
3.5V  
2.5V  
10  
0.1  
1
10  
Freq(MHz)  
DS30453C-page 132  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
FIGURE 16-12: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 100 PF, 25°C)  
10000  
1000  
5.5V  
100  
4.5V  
3.5V  
2.5V  
10  
0.01  
0.1  
1
10  
Freq(MHz)  
FIGURE 16-13: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 300 PF, 25°C)  
10000  
1000  
100  
5.5V  
4.5V  
3.5V  
2.5V  
10  
0.01  
0.1  
1
Freq(MHz)  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 133  
PIC16C5X  
FIGURE 16-14: WDT TIMER TIME-OUT  
PERIOD vs. VDD  
TABLE 16-2: INPUT CAPACITANCE  
Typical Capacitance (pF)  
Pin  
50  
45  
40  
18L PDIP  
5.0  
18L SOIC  
4.3  
RA port  
RB port  
5.0  
4.3  
MCLR  
17.0  
4.0  
17.0  
3.5  
OSC1  
35  
30  
OSC2/CLKOUT  
T0CKI  
4.3  
3.5  
3.2  
2.8  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
Typ +125°C  
25  
Typ +85°C  
20  
15  
Typ +25°C  
Typ 40°C  
10  
5
2
3
4
5
6
7
VDD (Volts)  
DS30453C-page 134  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
FIGURE 16-15: IOH vs. VOH, VDD = 3 V  
FIGURE 16-17: IOL vs. VOL, VDD = 3 V  
0
45  
Max 40°C  
40  
35  
5  
Min +85°C  
30  
25  
10  
Typ +25°C  
Typ +25°C  
Min +85°C  
15  
20  
Max 40°C  
15  
10  
20  
5
0
25  
0
0.5 1.0 1.5 2.0 2.5 3.0  
VOH (Volts)  
0.0  
0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
FIGURE 16-16: IOH vs. VOH, VDD = 5 V  
FIGURE 16-18: IOL vs. VOL, VDD = 5 V  
90  
0
Max 40°C  
80  
70  
10  
60  
50  
Typ +125°C  
Typ +25°C  
20  
Typ +85°C  
40  
Typ +25°C  
Min +85°C  
Typ 40°C  
30  
20  
30  
40  
10  
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOH (Volts)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 135  
PIC16C5X  
NOTES:  
DS30453C-page 136  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
17.0 PACKAGING INFORMATION  
18-Lead Plastic Dual In-line (P) 300 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
A
L
c
A1  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.890  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
22.61  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.898  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.905  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
22.80  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
22.99  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-007  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 137  
PIC16C5X  
28-Lead Skinny Plastic Dual In-line (SP) 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
L
A
c
B1  
β
A1  
eB  
B
p
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.150  
.130  
2.54  
3.81  
3.30  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
A2  
A1  
E
.140  
.160  
3.56  
4.06  
.125  
.015  
.300  
.275  
1.345  
.125  
.008  
.040  
.016  
.320  
.135  
3.18  
0.38  
7.62  
6.99  
34.16  
3.18  
0.20  
1.02  
3.43  
.310  
.285  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.295  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.87  
7.24  
8.26  
7.49  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
34.67  
3.30  
Tip to Seating Plane  
Lead Thickness  
L
c
0.29  
Upper Lead Width  
B1  
B
1.33  
Lower Lead Width  
0.41  
8.13  
5
0.48  
8.89  
10  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
5
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
DS30453C-page 138  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
28-Lead Plastic Dual In-line (P) 600 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
B1  
β
A1  
p
B
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.100  
.175  
.150  
2.54  
4.45  
3.81  
Top to Seating Plane  
A
.160  
.190  
4.06  
4.83  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.140  
.015  
.595  
.505  
1.395  
.120  
.008  
.030  
.014  
.620  
5
.160  
3.56  
0.38  
15.11  
12.83  
35.43  
3.05  
0.20  
0.76  
0.36  
15.75  
5
4.06  
.600  
.545  
1.430  
.130  
.012  
.050  
.018  
.650  
10  
.625  
.560  
1.465  
.135  
.015  
.070  
.022  
.680  
15  
15.24  
13.84  
36.32  
3.30  
0.29  
1.27  
0.46  
16.51  
10  
15.88  
14.22  
37.21  
3.43  
0.38  
1.78  
0.56  
17.27  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MO-011  
Drawing No. C04-079  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 139  
PIC16C5X  
18-Lead Plastic Small Outline (SO) Wide, 300 mil (SOIC)  
E
p
E1  
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.050  
.099  
.091  
.008  
.407  
.295  
.454  
.020  
.033  
4
1.27  
Overall Height  
A
.093  
.104  
2.36  
2.24  
2.50  
2.31  
0.20  
10.34  
7.49  
11.53  
0.50  
0.84  
4
2.64  
2.39  
0.30  
10.67  
7.59  
11.73  
0.74  
1.27  
8
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.291  
.446  
.010  
.016  
0
.094  
.012  
.420  
.299  
.462  
.029  
.050  
8
§
0.10  
10.01  
7.39  
11.33  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.012  
.020  
15  
0.23  
0.36  
0
0.27  
0.42  
12  
0.30  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-051  
DS30453C-page 140  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
28-Lead Plastic Small Outline (SO) Wide, 300 mil (SOIC)  
E
E1  
p
D
B
2
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.050  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle Top  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 141  
PIC16C5X  
20-Lead Plastic Shrink Small Outline (SS) 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
1
n
α
c
A2  
A
φ
L
A1  
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
Number of Pins  
Pitch  
20  
.026  
.073  
.068  
.006  
.309  
.207  
.284  
.030  
.007  
4
0.65  
Overall Height  
A
.068  
.078  
1.73  
1.63  
1.85  
1.73  
0.15  
7.85  
5.25  
7.20  
0.75  
0.18  
101.60  
0.32  
5
1.98  
1.83  
0.25  
8.18  
5.38  
7.34  
0.94  
0.25  
203.20  
0.38  
10  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.064  
.002  
.299  
.201  
.278  
.022  
.004  
0
.072  
.010  
.322  
.212  
.289  
.037  
.010  
8
§
0.05  
7.59  
5.11  
7.06  
0.56  
0.10  
0.00  
0.25  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MO-150  
Drawing No. C04-072  
DS30453C-page 142  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
28-Lead Plastic Shrink Small Outline (SS) 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
n
1
α
A
c
A2  
A1  
φ
L
β
Units  
INCHES  
NOM  
MILLIMETERS*  
NOM MAX  
Dimension Limits  
MIN  
MAX  
MIN  
n
p
Number of Pins  
Pitch  
28  
28  
.026  
.073  
.068  
.006  
.309  
.207  
.402  
.030  
.007  
4
0.65  
1.85  
1.73  
0.15  
7.85  
5.25  
10.20  
0.75  
0.18  
101.60  
0.32  
5
Overall Height  
A
.068  
.078  
1.73  
1.98  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.064  
.002  
.299  
.201  
.396  
.022  
.004  
0
.072  
.010  
.319  
.212  
.407  
.037  
.010  
8
1.63  
0.05  
7.59  
5.11  
10.06  
0.56  
0.10  
0.00  
0.25  
0
1.83  
0.25  
8.10  
5.38  
10.34  
0.94  
0.25  
203.20  
0.38  
10  
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
β
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-150  
Drawing No. C04-073  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 143  
PIC16C5X  
18-Lead Ceramic Dual In-line with Window (JW) 300 mil (CERDIP)  
E1  
D
W2  
2
1
n
W1  
E
A2  
A
c
L
A1  
B1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.183  
.160  
.023  
.313  
.290  
.900  
.138  
.010  
.055  
.019  
.385  
.140  
.200  
2.54  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.170  
.195  
4.32  
3.94  
4.64  
4.06  
0.57  
7.94  
7.37  
22.86  
3.49  
0.25  
1.40  
0.47  
9.78  
3.56  
5.08  
4.95  
A2  
A1  
.155  
.015  
.300  
.285  
.880  
.125  
.008  
.050  
.016  
.345  
.130  
.190  
.165  
.030  
.325  
.295  
.920  
.150  
.012  
.060  
.021  
.425  
.150  
.210  
4.19  
0.76  
8.26  
7.49  
23.37  
3.81  
0.30  
1.52  
0.53  
10.80  
3.81  
5.33  
0.38  
7.62  
7.24  
22.35  
3.18  
0.20  
1.27  
0.41  
8.76  
3.30  
4.83  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
Tip to Seating Plane  
Lead Thickness  
c
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Width  
B1  
B
§
eB  
W1  
W2  
Window Length  
* Controlling Parameter  
§ Significant Characteristic  
JEDEC Equivalent: MO-036  
Drawing No. C04-010  
DS30453C-page 144  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
28-Lead Ceramic Dual In-line with Window (JW) 600 mil (CERDIP)  
E1  
W
D
2
n
1
E
A2  
A
L
c
B1  
eB  
A1  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.100  
.185  
.160  
.038  
.600  
.520  
1.460  
.138  
.010  
.058  
.020  
.660  
.280  
2.54  
4.70  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.170  
.200  
.165  
.060  
.625  
.526  
1.490  
.150  
.012  
.065  
.023  
.710  
.290  
4.32  
5.08  
A2  
A1  
.155  
.015  
.595  
.514  
1.430  
.125  
.008  
.050  
.016  
.610  
.270  
3.94  
0.38  
4.06  
4.19  
1.52  
0.95  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
15.11  
13.06  
36.32  
3.18  
15.24  
13.21  
37.08  
3.49  
15.88  
13.36  
37.85  
3.81  
Tip to Seating Plane  
Lead Thickness  
c
0.20  
0.25  
0.30  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Diameter  
B1  
B
1.27  
1.46  
1.65  
0.41  
0.51  
0.58  
§
eB  
W
15.49  
6.86  
16.76  
7.11  
18.03  
7.37  
* Controlling Parameter  
§ Significant Characteristic  
JEDEC Equivalent: MO-103  
Drawing No. C04-013  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 145  
PIC16C5X  
17.1  
Package Marking Information  
18-Lead PDIP  
XXXXXXXXXXXXXXXXX  
Example  
PIC16C56A-  
XXXXXXXXXXXXXXXXX  
04I/P456  
YYWWNNN  
0023CBA  
Example  
Example  
28-Lead Skinny PDIP (.300")  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC16C55A-  
04I/P456  
YYWWNNN  
0023CBA  
28-Lead PDIP (.600")  
XXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXX  
YYWWNNN  
PIC16C55A-  
04/P126  
0042CDA  
18-Lead SOIC  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C54C-  
04/S0218  
YYWWNNN  
0018CDK  
28-Lead SOIC  
Example  
PIC16C57C-  
04/SO  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
YYWWNNN  
0015CBK  
Example  
20-Lead SSOP  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16C54C  
04/218  
0020CBP  
YYWWNNN  
28-Lead SSOP  
Example  
PIC16C57C-  
04/SS123  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
0025CBK  
YYWWNNN  
DS30453C-page 146  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
18-Lead CERDIP Windowed  
Example  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
PIC16C54C  
/JW  
0001CBA  
28-Lead CERDIP Windowed  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16C57C  
/JW  
0038CBA  
YYWWNNN  
Legend: XX...X Customer specific information*  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week 01)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask  
rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with  
your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 147  
PIC16C5X  
NOTES:  
DS30453C-page 148  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
APPENDIX A: COMPATIBILITY  
To convert code written for PIC16CXX to PIC16C5X,  
the user should take the following steps:  
1. Check any CALL, GOTO or instructions that  
modify the PC to determine if any program  
memory page select operations (PA2, PA1, PA0  
bits) need to be made.  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
3. Eliminate any special function register page  
switching. Redefine data variables to reallocate  
them.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
5. Change Reset vector to proper value for  
processor used.  
6. Remove any use of the ADDLW and SUBLW  
instructions.  
7. Rewrite any code segments that use interrupts.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 149  
PIC16C5X  
NOTES:  
DS30453C-page 150  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
F
INDEX  
Family of Devices  
A
PIC16C5X .................................................................... 6  
FSR ................................................................................... 36  
FSR Register ..................................................................... 22  
Absolute Maximum Ratings ........................... 61, 81, 93, 115  
ALU ...................................................................................... 9  
Applications .......................................................................... 5  
Architectural Overview ......................................................... 9  
Assembler  
H
High-Performance RISC CPU ............................................. 1  
MPASM Assembler .................................................... 55  
I
B
I/O Interfacing .................................................................... 25  
I/O Ports ............................................................................ 25  
I/O Programming Considerations ...................................... 26  
ID Locations ................................................................. 31, 42  
INDF .................................................................................. 36  
INDF Register .................................................................... 22  
Indirect Data Addressing ................................................... 22  
Instruction Cycle ................................................................ 13  
Instruction Flow/Pipelining ................................................. 13  
Instruction Set Summary ................................................... 43  
Block Diagram  
On-Chip Reset Circuit ................................................ 36  
PIC16C5X Series ....................................................... 10  
Timer0 ........................................................................ 27  
TMR0/WDT Prescaler ................................................ 30  
Watchdog Timer ......................................................... 40  
Brown-out Protection Circuit .............................................. 41  
C
Carry bit ............................................................................... 9  
Clocking Scheme ............................................................... 13  
CMOS Technology ............................................................... 1  
Code Protection ........................................................... 31, 42  
Configuration Bits ............................................................... 31  
Configuration Word ............................................................ 31  
PIC16C54/C54A/C55/C56/C57 .................................. 32  
PIC16CR54A/C54C/CR54C/C55A/C56A/  
K
KeeLoq Evaluation and Programming Tools .................. 58  
L
Loading of PC .............................................................. 21, 22  
M
MCLR ................................................................................ 36  
Memory Map ...................................................................... 15  
PIC16C54/CR54/C55 ................................................ 15  
PIC16C56/CR56 ........................................................ 15  
PIC16C57/CR57/C58/CR58 ...................................... 15  
Memory Organization ........................................................ 15  
Data Memory ............................................................. 16  
Program Memory ....................................................... 15  
MPLAB Integrated Development Environment Software ... 55  
CR56A/C57C/CR57C/C58B/CR58B .......................... 31  
D
DC and AC Characteristics - PIC16C54/55/56/57 ............. 73  
DC and AC Characteristics - PIC16C54A ........................ 105  
DC and AC Characteristics - PIC16C54C/CR54C/  
C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B ............ 127  
DC Characteristics ............................................... 82, 94, 117  
PIC16C54/55/56/57 ........................... 62, 63, 64, 65, 66  
PIC16C54A ................................................................ 94  
PIC16CR54A ............................................................. 82  
Development Support ........................................................ 55  
Device Varieties ................................................................... 7  
Digit Carry bit ....................................................................... 9  
O
One-Time-Programmable (OTP) Devices ........................... 7  
OPTION ............................................................................. 36  
OPTION Register ............................................................... 20  
OSC selection .................................................................... 31  
Oscillator Configurations .................................................... 33  
Oscillator Types  
E
Electrical Characteristics  
HS .............................................................................. 33  
LP .............................................................................. 33  
RC ............................................................................. 33  
XT .............................................................................. 33  
PIC16C54/55/56/57 ................................................... 61  
PIC16C54A ................................................................ 93  
PIC16C54C/CR54C/C55A/C56A/CR56A/  
C57C/CR57C/C58B/CR58B .................................... 115  
PIC16CR54A ............................................................. 81  
Errata ................................................................................... 4  
External Power-on Reset Circuit ........................................ 37  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 151  
PIC16C5X  
P
S
Package Marking Information ..........................................146  
Packaging Information .....................................................137  
PC ......................................................................................21  
PCL ....................................................................................36  
Peripheral Features ..............................................................1  
PIC16C54/55/56/57 Product Identification System ..........156  
PIC16C5X Product Identification System .........................155  
PICDEM-1 Low-Cost PICmicro Demo Board .....................57  
PICDEM-2 Low-Cost PIC16CXX Demo Board ..................57  
PICDEM-3 Low-Cost PIC16CXXX Demo Board ................57  
PICSTART Plus Entry Level Development System ........57  
Pin Configurations ................................................................2  
Pinout Description - PIC16C54s,  
PIC16CR54, PIC16C56, PIC16CR56,  
PIC16C58, PIC16CR58 .....................................................11  
Pinout Description - PIC16C55, PIC16C57,  
PIC16CR57 ........................................................................12  
POR  
Device Reset Timer (DRT) ................................... 31, 39  
PD ........................................................................ 35, 41  
Power-on Reset (POR) .................................. 31, 36, 37  
TO ........................................................................ 35, 41  
PORTA ......................................................................... 25, 36  
PORTB ......................................................................... 25, 36  
PORTC ......................................................................... 25, 36  
Power-down Mode (SLEEP) ..............................................42  
Prescaler ............................................................................30  
PRO MATE II Universal Programmer ..............................57  
Program Counter ................................................................21  
Serialized Quick-Turnaround-Production (SQTP)  
Devices ................................................................................ 7  
SLEEP ......................................................................... 31, 42  
Software Simulator (MPLAB-SIM) ..................................... 56  
Special Features of the CPU ............................................. 31  
Special Function Registers ................................................ 18  
Stack .................................................................................. 22  
STATUS ............................................................................. 36  
STATUS Register .......................................................... 9, 19  
T
Timer0  
Switching Prescaler Assignment ............................... 30  
Timer0 (TMR0) Module .............................................. 27  
TMR0 with External Clock ......................................... 29  
Timing Diagrams and Specifications ............. 68, 88, 99, 122  
Timing Parameter Symbology and  
Load Conditions ............................................. 67, 87, 98, 121  
TMR0 ................................................................................. 36  
TRIS ................................................................................... 36  
TRIS Registers .................................................................. 25  
U
UV Erasable Devices ........................................................... 7  
W
W Register ......................................................................... 36  
Wake-up from SLEEP ........................................................ 42  
Watchdog Timer (WDT) ............................................... 31, 39  
Period ........................................................................ 39  
Programming Considerations .................................... 39  
WWW, On-Line Support ...................................................... 4  
Q
Q cycles .............................................................................13  
Quick-Turnaround-Production (QTP) Devices .....................7  
Z
R
Zero bit ................................................................................. 9  
RC Oscillator ......................................................................34  
Read Only Memory (ROM) Devices .....................................7  
Read-Modify-Write .............................................................26  
Register File Map  
PIC16C54, PIC16CR54, PIC16C55,  
PIC16C56, PIC16CR56 .............................................16  
PIC16C57/CR57 ........................................................17  
PIC16C58/CR58 ........................................................17  
Registers  
Special Function ........................................................18  
RESET ...............................................................................35  
Reset ..................................................................................31  
RESET on Brown-out .........................................................41  
DS30453C-page 152  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchips development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-786-7302 for the rest of the world.  
991103  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
Users Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICSTART, PICMASTER, PRO MATE and MPLAB are  
registered trademarks of Microchip Technology Incorpo-  
rated in the U.S.A. and other countries. FlexROM and  
fuzzyLAB are trademarks and SQTP is a service mark of  
Microchip in the U.S.A.  
Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
Design Tips  
Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
Job Postings  
Microchip Consultant Program Member Listing  
Links to other useful web sites related to  
Microchip Products  
Conferences for products, Development Sys-  
tems, technical information and more  
Listing of seminars and events  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 153  
PIC16C5X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30453C  
Device:  
PIC16C5X  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30453C-page 154  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
PIC16C5X PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature Package  
Range  
Pattern  
a) PIC16C54A -04/P 301 = Commercial  
temp., PDIP package, 4MHz, normal VDD  
limitis, QTP pattern #301.  
(2)  
(2)  
(3)  
Device  
PIC16C5X , PIC16C5XT  
b) PIC16LC58A - 04I/SO = Industrial temp.,  
SOIC package, 4MHz, Extended VDD  
limits.  
(3)  
PIC16LC5X , PIC16LC5XT  
(2)  
(3)  
PIC16CR5X , PIC16CR5XT  
(2)  
(3)  
PIC16LCR5X , PIC16LCR5XT  
(2)  
(3)  
c) PIC16CR54A - 10I/P355 = ROM program  
memory, Industrial temp., PDIP package,  
10MHz, normal VDD limits.  
PIC16LV5X , PIC16LV5XT  
(1)  
Temperature  
Range  
b
I
=
0°C to +70°C (Commercial)  
= -40°C to +85°C (Industrial)  
= -40°C to +125°C (Automotive)  
E
Note 1: b = blank  
Package  
JW  
P
SO  
SP  
SS  
= Windowed CERDIP  
= PDIP  
= SOIC (Gull Wing, 300 mil body)  
= Skinny PDIP (28-pin, 300 mil body)  
= SSOP (209 mil body)  
2:  
C
= Standard VDD range  
LC = Extended VDD range  
CR = ROM Version, Standard VDD  
range  
LCR = ROM Version, Extended VDD  
range  
Pattern  
3-digit Pattern Code for QTP, ROM (blank otherwise)  
LV = Low Voltage VDD range  
3: T = in tape and reel - SOIC, SSOP  
packages only.  
4: UV erasable devices are tested to all  
available voltage/frequency options.  
Erased devices are oscillator type 04.  
The user can select 04, 10 or 20 oscil-  
lators by programmng the appropriate  
configuration bits.  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 155  
PIC16C5X  
PIC16C54/55/56/57 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information (e.g., on pricing or delivery) refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
-XX  
Oscillator Temperature Package  
Type Range  
Pattern  
Examples:  
a) PIC16C54 - XT/PXXX = "XT" oscillator,  
commercial temp., PDIP, QTP pattern.  
(2)  
(2)  
(2)  
(2)  
Device  
PIC16C54, PIC16C54T  
PIC16C55, PIC16C55T  
PIC16C56, PIC16C56T  
PIC16C57, PIC16C57T  
b) PIC16C55 - XTI/SO = "XT" oscillator,  
industrial temp., SOIC (OTP device)  
c) PIC16C55 /JW  
= Commercial temp.  
CERDIP with window.  
Oscillator Type  
RC  
LP  
XT  
HS  
10  
= Resistor Capacitor  
= Low Power Crystal  
= Standard Crystal/Resonator  
= High Speed Crystal  
= 10 MHz Crystal  
d) PIC16C57 - RC/S = "RC" oscillator, com-  
mercial temp., dice in waffle pack.  
(1)  
(3)  
b
= No type for JW devices  
Note 1: b = blank  
(1)  
Temperature  
Range  
b
I
=
0°C to +70°C (Commercial)  
2: T = in tape and reel - SOIC, SSOP  
packages only.  
= -40°C to +85°C (Industrial)  
= -40°C to +125°C (Automotive)  
E
3: UV erasable devices are tested to all  
available voltage/frequency options.  
Erased devices are oscillator type RC.  
The user can select RC, LP, XT or HS  
oscillators by programming the appro-  
priate configuration bits.  
Package  
JW  
P
S
SO  
SP  
SS  
= Windowed CERDIP  
= PDIP  
= Die in Waffle Pack  
= SOIC (Gull Wing, 300 mil body)  
= Skinny PDIP (28 pin, 300 mil body)  
= SSOP (209 mil body)  
Pattern  
3-digit Pattern Code for QTP (blank otherwise)  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 786-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
DS30453C-page 156  
Preliminary  
2000 Microchip Technology Inc.  
PIC16C5X  
NOTES:  
2000 Microchip Technology Inc.  
Preliminary  
DS30453C-page 157  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Microchip Technology Inc.  
Microchip Technology Inc.  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
Tel: 65-334-8870 Fax: 65-334-8850  
ASIA/PACIFIC  
China - Beijing  
Taiwan  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Atlanta  
Microchip Technology, Beijing  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing, 100027, P.R.C.  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Microchip Technology Inc.  
2 LAN Drive, Suite 120  
Westford, MA 01886  
China - Shanghai  
Denmark  
Microchip Technology  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Unit B701, Far East International Plaza,  
No. 317, Xianxia Road  
Tel: 508-480-9990 Fax: 508-480-8575  
Shanghai, 200051, P.R.C.  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
France  
Arizona Microchip Technology SARL  
Parc dActivite du Moulin de Massy  
43 Rue du Saule Trapu  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Tel: 972-818-7423 Fax: 972-818-2924  
India  
Germany  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore, 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Italy  
Japan  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Los Angeles  
Korea  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 949-263-1888 Fax: 949-263-1338  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
New York  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
05/16/00  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 7/00  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates.  
It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by  
Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights  
arising from such use or otherwise. Use of Microchips products as critical components in life support systems is not authorized except with express written  
approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property  
rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other  
trademarks mentioned herein are the property of their respective companies.  
DS30453C-page 158  
Preliminary  
2000 Microchip Technology Inc.  

相关型号:

PIC16LC58B-04I/SO

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, MS-013, SO-18
MICROCHIP

PIC16LC58B-04I/SS

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, 5.30 MM WIDTH, PLASTIC, MO-150, SSOP-20
MICROCHIP

PIC16LC58B-04I/SSVAO

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, MO-150, SSOP-20
MICROCHIP

PIC16LC58B-20/P

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18
MICROCHIP

PIC16LC58B-20/SO

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SO-18
MICROCHIP

PIC16LC58B-20/SS

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO20, 5.30 MM, PLASTIC, SSOP-20
MICROCHIP

PIC16LC58B-20I/P

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18
MICROCHIP

PIC16LC58B-20I/SO

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SO-18
MICROCHIP

PIC16LC58B-I/JW

8-BIT, UVPROM, 10 MHz, RISC MICROCONTROLLER, CDIP18, 0.300 INCH, WINDOWED, CERDIP-18
MICROCHIP

PIC16LC58BT-04/SO

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, MS-013, SO-18
MICROCHIP

PIC16LC58BT-04/SS

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO20, 0.209 INCH, PLASTIC, MO-150, SSOP-20
MICROCHIP

PIC16LC58BT-04I/SO

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, MS-013, SO-18
MICROCHIP