PIC16LC923 [MICROCHIP]

8-Bit CMOS Microcontroller with LCD Driver; 8位CMOS微控制器与LCD驱动器
PIC16LC923
型号: PIC16LC923
厂家: MICROCHIP    MICROCHIP
描述:

8-Bit CMOS Microcontroller with LCD Driver
8位CMOS微控制器与LCD驱动器

驱动器 微控制器 CD
文件: 总189页 (文件大小:1493K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C9XX  
8-Bit CMOS Microcontroller with LCD Driver  
Devices included in this data sheet:  
Available in Die Form  
• PIC16C923  
• PIC16C924  
Microcontroller Core Features:  
• High performance RISC CPU  
• Only 35 single word instructions to learn  
• 4K x 14 on-chip EPROM program memory  
• 176 x 8 general purpose registers (SRAM)  
• All single cycle instructions (500 ns) except for  
program branches which are two-cycle  
• Operating speed: DC - 8 MHz clock input  
DC - 500 ns instruction cycle  
• Interrupt capability  
• Eight level deep hardware stack  
• Direct, indirect and relative addressing modes  
Peripheral Features:  
• 25 I/O pins with individual direction control  
• 25-27 input only pins  
• Synchronous Serial Port (SSP) with SPI  
and I C  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
2
• Timer1: 16-bit timer/counter, can be incremented  
during sleep via external crystal/clock  
• 8-bit multi-channel Analog to Digital converter  
(PIC16C924 only)  
• Timer2: 8-bit timer/counter with 8-bit period regis-  
ter, prescaler and postscaler  
Special Microcontroller Features:  
• One pin that can be configured a capture input,  
PWM output, or compare output  
• Power-on Reset (POR)  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
- Capture is 16-bit, max. resolution 31.25 ns  
- Compare is 16-bit, max. resolution 500 ns  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
- PWM max resolution is 10-bits.  
Maximum PWM frequency @ 8-bit resolution  
= 32 kHz, @ 10-bit resolution = 8 kHz  
• Programmable code-protection  
• Power saving SLEEP mode  
• Programmable LCD timing module  
- Multiple LCD timing sources available  
- Can drive LCD panel while in Sleep mode  
- Static, 1/2, 1/3, 1/4 multiplex  
• Selectable oscillator options  
• In-Circuit Serial Programming™ (via two pins)  
CMOS Technology  
- Static drive and 1/3 bias capability  
- 16 bytes of dedicated LCD RAM  
• Low-power, high-speed CMOS EPROM  
technology  
- Up to 32 segments, up to 4 commons  
• Fully static design  
Common  
Segment  
Pixels  
• Wide operating voltage range: 2.5V to 6.0V  
• Commercial and Industrial temperature ranges  
• Low-power consumption:  
1
2
3
4
32  
31  
30  
29  
32  
62  
90  
- < 2 mA @ 5.5V, 4 MHz  
116  
- 22.5 µA typical @ 4V, 32 kHz  
- < 1 µA typical standby current @ 3.0V  
2
ICSP is a trademark of Microchip Technology Inc. I C is a trademark of Philips Corporation. SPI is a trademark of Motorola Corporation.  
1997 Microchip Technology Inc.  
DS30444E - page 1  
 
PIC16C9XX  
Pin Diagrams  
PLCC  
RD5/SEG29/COM3  
RG6/SEG26  
RG5/SEG25  
RG4/SEG24  
RG3/SEG23  
RG2/SEG22  
RG1/SEG21  
RG0/SEG20  
RG7/SEG28  
RF7/SEG19  
RF6/SEG18  
RF5/SEG17  
RF4/SEG16  
RF3/SEG15  
RF2/SEG14  
RF1/SEG13  
RF0/SEG12  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
RA4/T0CKI  
RA5/SS  
RB1  
RB0/INT  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
C1  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
PIC16C923  
C2  
VLCD2  
VLCD3  
VDD  
VDD  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
Shrink PDIP (750 mil)  
MCLR/VPP  
RB3  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RB4  
RB5  
RB2  
RA0  
RB7  
RB6  
VDD  
COM0  
RA1  
VSS  
RA2  
RD7/SEG31/COM1  
RD6/SEG30/COM2  
RD5/SEG29/COM3  
RG6/SEG26  
RG5/SEG25  
RG4/SEG24  
RG3/SEG23  
RG2/SEG22  
RA3  
RA4/T0CKI  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
RA5/SS  
RB1  
RB0/INT  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
C1  
RG1/SEG21  
RG0/SEG20  
RF7/SEG19  
C2  
VLCD2  
VLCD3  
RF6/SEG18  
RF5/SEG17  
RF4/SEG16  
VDD  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RF3/SEG15  
RF2/SEG14  
RF1/SEG13  
RF0/SEG12  
RE6/SEG11  
RE5/SEG10  
RE4/SEG09  
RC2/CCP1  
VLCD1  
VLCDADJ  
RD0/SEG00  
TQFP  
RE3/SEG08  
RE2/SEG07  
RD1/SEG01  
RD2/SEG02  
RD3/SEG03  
RE1/SEG06  
RE0/SEG05  
RD4/SEG04  
1
2
3
4
5
6
7
8
RD5/SEG29/COM3  
RG6/SEG26  
RG5/SEG25  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RA4/T0CKI  
RA5/SS  
RB1  
RB0/INT  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
C1  
RG4/SEG24  
RG3/SEG23  
RG2/SEG22  
RG1/SEG21  
RG0/SEG20  
RF7/SEG19  
RF6/SEG18  
RF5/SEG17  
RF4/SEG16  
RF3/SEG15  
RF2/SEG14  
RF1/SEG13  
RF0/SEG12  
PIC16C923  
9
C2  
VLCD2  
VLCD3  
10  
11  
12  
13  
14  
15  
16  
VDD  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
LEGEND:  
Input Pin  
Output Pin  
Input/Output Pin  
Digital Input/LCD Output Pin  
LCD Output Pin  
DS30444E - page 2  
1997 Microchip Technology Inc.  
PIC16C9XX  
Pin Diagrams (Cont.d)  
PLCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
RA4/T0CKI  
RA5/AN4/SS  
RB1  
RB0/INT  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
C1  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
RD5/SEG29/COM3  
RG6/SEG26  
RG5/SEG25  
RG4/SEG24  
RG3/SEG23  
RG2/SEG22  
RG1/SEG21  
RG0/SEG20  
RG7/SEG28  
RF7/SEG19  
RF6/SEG18  
RF5/SEG17  
RF4/SEG16  
RF3/SEG15  
RF2/SEG14  
RF1/SEG13  
RF0/SEG12  
PIC16C924  
C2  
VLCD2  
VLCD3  
AVDD  
VDD  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
Shrink PDIP (750 mil)  
MCLR/VPP  
RB3  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RB4  
RB5  
RB2  
RA0/AN0  
RB7  
RB6  
VDD  
COM0  
RA1/AN1  
VSS  
RA2/AN2  
RD7/SEG31/COM1  
RD6/SEG30/COM2  
RD5/SEG29/COM3  
RG6/SEG26  
RG5/SEG25  
RG4/SEG24  
RG3/SEG23  
RG2/SEG22  
RA3/AN3/VREF  
RA4/T0CKI  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
RA5/AN4/SS  
RB1  
RB0/INT  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
C1  
RG1/SEG21  
RG0/SEG20  
RF7/SEG19  
C2  
VLCD2  
VLCD3  
RF6/SEG18  
RF5/SEG17  
RF4/SEG16  
VDD  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RF3/SEG15  
RF2/SEG14  
RF1/SEG13  
RF0/SEG12  
RE6/SEG11  
RE5/SEG10  
RE4/SEG09  
RC2/CCP1  
VLCD1  
VLCDADJ  
RD0/SEG00  
RE3/SEG08  
RE2/SEG07  
RD1/SEG01  
RD2/SEG02  
RD3/SEG03  
RE1/SEG06  
RE0/SEG05  
RD4/SEG04  
TQFP  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RD5/SEG29/COM3  
RG6/SEG26  
RG5/SEG25  
RA4/T0CKI  
RA5/AN4/SS  
RB1  
RB0/INT  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
C1  
RG4/SEG24  
RG3/SEG23  
RG2/SEG22  
RG1/SEG21  
RG0/SEG20  
RF7/SEG19  
RF6/SEG18  
RF5/SEG17  
RF4/SEG16  
RF3/SEG15  
RF2/SEG14  
RF1/SEG13  
RF0/SEG12  
PIC16C924  
9
C2  
VLCD2  
VLCD3  
10  
11  
12  
13  
14  
15  
16  
VDD  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
LEGEND:  
Input Pin  
Output Pin  
Input/Output Pin  
Digital Input/LCD Output Pin  
LCD Output Pin  
1997 Microchip Technology Inc.  
DS30444E - page 3  
PIC16C9XX  
Table of Contents  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
General Description..................................................................................................................................................................... 5  
PIC16C9XX Device Varieties...................................................................................................................................................... 7  
Architectural Overview ................................................................................................................................................................ 9  
Memory Organization................................................................................................................................................................ 17  
Ports.......................................................................................................................................................................................... 31  
Overview of Timer Modules....................................................................................................................................................... 43  
Timer0 Module .......................................................................................................................................................................... 45  
Timer1 Module .......................................................................................................................................................................... 51  
Timer2 Module .......................................................................................................................................................................... 55  
10.0 Capture/Compare/PWM (CCP) Module .................................................................................................................................... 57  
11.0 Synchronous Serial Port (SSP) Module .................................................................................................................................... 63  
12.0 Analog-to-Digital Converter (A/D) Module................................................................................................................................. 79  
13.0 LCD Module .............................................................................................................................................................................. 89  
14.0 Special Features of the CPU................................................................................................................................................... 103  
15.0 Instruction Set Summary......................................................................................................................................................... 119  
16.0 Development Support.............................................................................................................................................................. 137  
17.0 Electrical Characteristics......................................................................................................................................................... 141  
18.0 DC and AC Characteristics Graphs and Tables...................................................................................................................... 161  
19.0 Packaging Information............................................................................................................................................................. 171  
Appendix A: ................................................................................................................................................................................... 175  
Appendix B:  
Compatibility ............................................................................................................................................................. 175  
Appendix C: What’s New................................................................................................................................................................ 176  
Appendix D: What’s Changed ........................................................................................................................................................ 176  
Index .................................................................................................................................................................................................. 177  
List of Equations And Examples ........................................................................................................................................................ 181  
List of Figures..................................................................................................................................................................................... 181  
List of Tables...................................................................................................................................................................................... 182  
Reader Response .............................................................................................................................................................................. 186  
PIC16C9XX Product Identification System ........................................................................................................................................ 187  
To Our Valued Customers  
We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional  
amount of time to ensure that these documents are correct. However, we realize that we may have missed a few  
things. If you find any information that is missing or appears in error, please use the reader response form in the  
back of this data sheet to inform us. We appreciate your assistance in making this a better document.  
DS30444E - page 4  
1997 Microchip Technology Inc.  
PIC16C9XX  
mode. The user can wake up the chip from SLEEP  
through several external and internal interrupts and  
reset(s).  
1.0  
GENERAL DESCRIPTION  
The PIC16C9XX is a family of low-cost, high-perfor-  
mance, CMOS, fully-static, 8-bit microcontrollers with  
an integrated LCD Driver module, in the PIC16CXXX  
mid-range family.  
A highly reliable Watchdog Timer with its own on-chip  
RC oscillator provides recovery in the event of a soft-  
ware lock-up.  
All PICmicro™ microcontrollers employ an advanced  
RISC architecture. The PIC16CXXX microcontroller  
family has enhanced core features, eight-level deep  
stack, and multiple internal and external interrupt  
sources.The separate instruction and data buses of the  
Harvard architecture allow a 14-bit wide instruction  
word with the separate 8-bit wide data. The two stage  
instruction pipeline allows all instructions to execute in  
a single cycle, except for program branches (which  
require two cycles). A total of 35 instructions (reduced  
instruction set) are available. Additionally, a large regis-  
ter set gives some of the architectural innovations used  
to achieve a very high performance.  
A UV erasable CERQUAD (compatible with PLCC)  
packaged version is ideal for code development while  
the cost-effective One-Time-Programmable (OTP) ver-  
sion is suitable for production in any volume.  
The PIC16C9XX family fits perfectly in applications  
ranging from handheld meters, thermostats, to home  
security products.The EPROM technology makes cus-  
tomization of application programs (LCD panels, cali-  
bration constants, sensor interfaces, etc.) extremely  
fast and convenient.The small footprint packages make  
this microcontroller series perfect for all applications  
with space limitations. Low cost, low power, high perfor-  
mance, ease of use and I/O flexibility make the  
PIC16C9XX very versatile even in areas where no  
microcontroller use has been considered before (e.g.  
timer functions, capture and compare, PWM functions  
and coprocessor applications).  
PIC16CXXX microcontrollers typically achieve a 2:1  
code compression and a 4:1 speed improvement over  
other 8-bit microcontrollers in their class.  
The PIC16C923 devices have 176 bytes of RAM and  
25 I/O pins. In addition several peripheral features are  
available including: three timer/counters, one Cap-  
ture/Compare/PWM module, one serial port and one  
LCD module.The Synchronous Serial Port can be con-  
figured as either a 3-wire Serial Peripheral Interface  
1.1  
Family and Upward Compatibility  
Users familiar with the PIC16C5X microcontroller family  
will realize that this is an enhanced version of the  
PIC16C5X architecture. Please refer to Appendix A for  
a detailed list of enhancements. Code written for the  
PIC16C5X can be easily ported to the PIC16CXXX  
family of devices (Appendix B).  
2
(SPI) or the two-wire Inter-Integrated Circuit (I C) bus.  
The LCD module features programmable multiplex  
mode (static, 1/2, 1/3 and 1/4) and drive bias (static and  
1/3). It is capable of driving up to 32 segments and up  
to 4 commons. It can also drive the LCD panel while in  
SLEEP mode.  
1.2  
Development Support  
PIC16C9XX devices are supported by the complete  
line of Microchip Development tools.  
The PIC16C924 devices have 176 bytes of RAM and  
25 I/O pins. In addition several peripheral features are  
available including: three timer/counters, one Cap-  
ture/Compare/PWM module, one serial port and one  
LCD module.The Synchronous Serial Port can be con-  
figured as either a 3-wire Serial Peripheral Interface  
Please refer to Section 16.0 for more details about  
Microchip’s development tools.  
2
(SPI) or the two-wire Inter-Integrated Circuit (I C) bus.  
The LCD module features programmable multiplex  
mode (static, 1/2, 1/3 and 1/4) and drive bias (static and  
1/3). It is capable of driving up to 32 segments and up  
to 4 commons. It can also drive the LCD panel while in  
SLEEP mode. The PIC16C924 also has an 5-channel  
high-speed 8-bit A/D. The 8-bit resolution is ideally  
suited for applications requiring low-cost analog inter-  
face, e.g. thermostat control, pressure sensing, and  
meters.  
The PIC16C9XX family has special features to reduce  
external components, thus reducing cost, enhancing  
system reliability and reducing power consumption.  
There are four oscillator options, of which the single pin  
RC oscillator provides a low-cost solution, the LP oscil-  
lator minimizes power consumption, XT is a standard  
crystal, and the HS is for High Speed crystals. The  
SLEEP (power-down) feature provides a power saving  
1997 Microchip Technology Inc.  
DS30444E- page 5  
PIC16C9XX  
TABLE 1-1: PIC16C9XX FAMILY OF DEVICES  
PIC16C923  
PIC16C924  
Clock  
Maximum Frequency of Operation (MHz)  
EPROM Program Memory  
Data Memory (bytes)  
8
8
4K  
176  
4K  
176  
Memory  
Timer Module(s)  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
Capture/Compare/PWM Module(s)  
Serial Port(s)  
(SPI/I C, USART)  
1
1
2
2
SPI/I C  
SPI/I C  
Peripherals  
2
Parallel Slave Port  
5
A/D Converter (8-bit) Channels  
LCD Module  
4 Com,  
32 Seg  
4 Com,  
32 Seg  
Interrupt Sources  
I/O Pins  
8
9
25  
25  
Input Pins  
27  
27  
Voltage Range (Volts)  
In-Circuit Serial Programming  
Brown-out Reset  
Packages  
2.5-6.0  
Yes  
2.5-6.0  
Yes  
Features  
64-pin SDIP,  
TQFP;  
64-pin SDIP,  
TQFP;  
68-pin PLCC,  
Die  
68-pin PLCC,  
Die  
All PICmicro Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capabil-  
ity. All PIC16C9XX Family devices use serial programming with clock pin RB6 and data pin RB7.  
DS30444E - page 6  
1997 Microchip Technology Inc.  
PIC16C9XX  
2.3  
Quick-Turnaround-Production (QTP)  
Devices  
2.0  
PIC16C9XX DEVICE VARIETIES  
A variety of frequency ranges and packaging options  
are available. Depending on application and production  
requirements, the proper device option can be selected  
using the information in the PIC16C9XX Product Iden-  
tification System section at the end of this data sheet.  
When placing orders, please use that page of the data  
sheet to specify the correct part number.  
Microchip offers a QTP Programming Service for fac-  
tory production orders. This service is made available  
for users who choose not to program a medium to high  
quantity of units and whose code patterns have stabi-  
lized. The devices are identical to the OTP devices but  
with all EPROM locations and configuration options  
already programmed by the factory. Certain code and  
prototype verification procedures apply before produc-  
tion shipments are available. Please contact your local  
Microchip Technology sales office for more details.  
For the PIC16C9XX family, there are two device “types”  
as indicated in the device number:  
1. C, as in PIC16C924. These devices have  
EPROM type memory and operate over the  
standard voltage range.  
2.4  
Serialized Quick-Turnaround  
Production (SQTPSM) Devices  
2. LC, as in PIC16LC924. These devices have  
EPROM type memory and operate over an  
extended voltage range.  
Microchip offers a unique programming service where  
a few user-defined locations in each device are pro-  
grammed with different serial numbers.The serial num-  
bers may be random, pseudo-random or sequential.  
2.1  
UV Erasable Devices  
The UV erasable version, offered in CERQUAD pack-  
age, is optimal for prototype development and pilot pro-  
grams.  
Serial programming allows each device to have a  
unique number which can serve as an entry-code,  
password or ID number.  
The UV erasable version can be erased and repro-  
grammed to any of the configuration modes.  
Microchip's PICSTART Plus and PRO MATE II pro-  
grammers both support the PIC16C9XX. Third party  
programmers also are available; refer to the Microchip  
Third Party Guide for a list of sources.  
2.2  
One-Time-Programmable (OTP)  
Devices  
The availability of OTP devices is especially useful for  
customers who need the flexibility for frequent code  
updates and small volume applications.  
The OTP devices, packaged in plastic packages, permit  
the user to program them once. In addition to the pro-  
gram memory, the configuration bits must also be pro-  
grammed.  
1997 Microchip Technology Inc.  
DS30444E - page 7  
PIC16C9XX  
NOTES:  
DS30444E - page 8  
1997 Microchip Technology Inc.  
PIC16C9XX  
PIC16CXXX devices contain an 8-bit ALU and working  
register. The ALU is a general purpose arithmetic unit.  
It performs arithmetic and Boolean functions between  
the data in the working register and any register file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16CXXX family can be  
attributed to a number of architectural features com-  
monly found in RISC microprocessors. To begin with,  
the PIC16CXXX uses a Harvard architecture, in which,  
program and data are accessed from separate memo-  
ries using separate buses. This improves bandwidth  
over traditional von Neumann architecture where pro-  
gram and data are fetched from the same memory  
using the same bus. Separating program and data  
buses further allows instructions to be sized differently  
than the 8-bit wide data word. Instruction opcodes are  
14-bits wide making it possible to have all single word  
instructions.A 14-bit wide program memory access bus  
fetches a 14-bit instruction in a single cycle. A  
two-stage pipeline overlaps fetch and execution of  
instructions (Example 3-1). Consequently, all instruc-  
tions execute in a single cycle (500 ns @ 8 MHz) except  
for program branches.  
The ALU is 8-bits wide and capable of addition, sub-  
traction, shift and logical operations. Unless otherwise  
mentioned, arithmetic operations are two's comple-  
ment in nature. In two-operand instructions, typically  
one operand is the working register (W register). The  
other operand is a file register or an immediate con-  
stant. In single operand instructions, the operand is  
either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register.The C and DC bits  
operate as a borrow bit and a digit borrow out bit,  
respectively, in subtraction. See the SUBLWand SUBWF  
instructions for examples.  
The PIC16C923 and PIC16C924 both address 4K x 14  
of program memory and 176 x 8 of data memory.  
The PIC16CXXX can directly or indirectly address its  
register files or data memory. All special function regis-  
ters, including the program counter, are mapped in the  
data memory. The PIC16CXXX has an orthogonal  
(symmetrical) instruction set that makes it possible to  
carry out any operation on any register using any  
addressing mode. This symmetrical nature and lack of  
‘special optimal situations’ make programming with the  
PIC16CXXX simple yet efficient, thus significantly  
reducing the learning curve.  
1997 Microchip Technology Inc.  
DS30444E - page 9  
PIC16C9XX  
FIGURE 3-1: PIC16C923 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
EPROM  
RA0  
RA1  
RA2  
RA3  
RA4/T0CKI  
Program  
Memory  
RAM  
File  
Registers  
8 Level Stack  
4K x 14  
(13-bit)  
RA5/SS  
176 x 8  
Program  
14  
RAM Addr  
PORTB  
Bus  
9
Addr MUX  
Instruction reg  
RB0/INT  
7
Direct Addr  
Indirect  
Addr  
8
RB1-RB7  
FSR reg  
STATUS reg  
MUX  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
ALU  
Power-on  
Reset  
PORTD  
PORTE  
PORTF  
PORTG  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
RD0-RD4/SEGnn  
OSC1/CLKIN  
OSC2/CLKOUT  
RD5-RD7/SEGnn/COMn  
MCLR  
VDD, VSS  
RE0-RE7/SEGnn  
RF0-RF7/SEGnn  
RG0-RG7/SEGnn  
Timer1, Timer2,  
CCP1  
Timer0  
COM0  
VLCD1  
VLCD2  
VLCD3  
C1  
Synchronous  
Serial Port  
LCD  
C2  
VLCDADJ  
DS30444E - page 10  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 3-2: PIC16C924 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
EPROM  
RA0/AN0  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
Program  
Memory  
RAM  
File  
Registers  
8 Level Stack  
4K x 14  
(13-bit)  
176 x 8  
Program  
14  
RAM Addr  
PORTB  
Bus  
9
Addr MUX  
Instruction reg  
RB0/INT  
7
Direct Addr  
Indirect  
Addr  
8
RB1-RB7  
FSR reg  
STATUS reg  
MUX  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
ALU  
Power-on  
Reset  
PORTD  
PORTE  
PORTF  
PORTG  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
RD0-RD4/SEGnn  
OSC1/CLKIN  
OSC2/CLKOUT  
RD5-RD7/SEGnn/COMn  
MCLR  
VDD, VSS  
RE0-RE7/SEGnn  
RF0-RF7/SEGnn  
RG0-RG7/SEGnn  
Timer1, Timer2,  
CCP1  
Timer0  
A/D  
COM0  
VLCD1  
VLCD2  
VLCD3  
C1  
Synchronous  
Serial Port  
LCD  
C2  
VLCDADJ  
1997 Microchip Technology Inc.  
DS30444E - page 11  
PIC16C9XX  
TABLE 3-1: PIC16C9XX PINOUT DESCRIPTION  
DIP  
Pin#  
PLCC  
Pin#  
TQFP Pin  
Pin# Type  
Buffer  
Type  
Pin Name  
Description  
OSC1/CLKIN  
22  
24  
14  
I
ST/CMOS Oscillator crystal input or external clock source input. This  
buffer is a Schmitt Trigger input when configured in RC  
oscillator mode and a CMOS input otherwise.  
OSC2/CLKOUT  
MCLR/VPP  
23  
25  
15  
O
Oscillator crystal output. Connects to crystal or resonator  
in crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and  
denotes the instruction cycle rate.  
1
2
57  
I/P  
ST  
Master clear (reset) input or programming voltage input.  
This pin is an active low reset to the device.  
PORTA is a bi-directional I/O port. The AN and VREF multi-  
plexed functions are used by the PIC16C924 only.  
RA0/AN0  
4
5
7
8
5
6
8
9
60  
61  
63  
64  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
RA0 can also be Analog input0.  
RA1 can also be Analog input1.  
RA2 can also be Analog input2.  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA3 can also be Analog input3 or A/D Voltage Refer-  
ence.  
RA4/T0CKI  
9
10  
11  
1
2
I/O  
I/O  
ST  
RA4 can also be the clock input to the Timer0  
timer/counter. Output is open drain type.  
RA5/AN4/SS  
10  
TTL  
RA5 can be the slave select for the synchronous serial  
port or Analog input4.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/INT  
12  
13  
4
I/O  
TTL/ST  
RB0 can also be the external interrupt pin. This buffer  
is a Schmitt Trigger input when configured as an exter-  
nal interrupt.  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
11  
3
12  
4
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
59  
58  
56  
55  
53  
2
3
TTL  
64  
63  
61  
68  
67  
65  
TTL  
Interrupt on change pin.  
Interrupt on change pin.  
TTL  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
This buffer is a Schmitt Trigger input when used in  
serial programming mode.  
RB7  
62  
66  
54  
I/O  
TTL/ST  
Interrupt on change pin. Serial programming data.  
This buffer is a Schmitt Trigger input when used in  
serial programming mode.  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
24  
26  
16  
I/O  
ST  
RC0 can also be the Timer1 oscillator output or  
Timer1 clock input.  
RC1/T1OSI  
RC2/CCP1  
25  
26  
27  
28  
17  
18  
I/O  
I/O  
ST  
ST  
RC1 can also be the Timer1 oscillator input.  
RC2 can also be the Capture1 input/Compare1 out-  
put/PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
13  
14  
14  
15  
5
6
I/O  
I/O  
ST  
ST  
ST  
RC3 can also be the synchronous serial clock  
input/output for both SPI and I C modes.  
2
RC4 can also be the SPI Data In (SPI mode) or data  
2
I/O (I C mode).  
RC5/SDO  
C1  
15  
16  
17  
16  
17  
18  
7
8
9
I/O  
P
RC5 can also be the SPI Data Out (SPI mode).  
LCD Voltage Generation.  
C2  
P
LCD Voltage Generation.  
Legend: I = input  
O = output  
P = power  
L = LCD Driver  
— = Not used  
TTL = TTL input  
ST = Schmitt Trigger input  
DS30444E - page 12  
1997 Microchip Technology Inc.  
PIC16C9XX  
TABLE 3-1: PIC16C9XX PINOUT DESCRIPTION (Cont.d)  
DIP  
Pin#  
PLCC  
Pin#  
TQFP Pin  
Pin# Type  
Buffer  
Type  
Pin Name  
Description  
COM0  
59  
63  
51  
L
Common Driver0  
PORTD is a digital input/output port. These pins are also  
used as LCD Segment and/or Common Drivers.  
Segment Driver00/Digital Input/Output.  
Segment Driver01/Digital Input/Output.  
Segment Driver02/Digital Input/Output.  
Segment Driver03/Digital Input/Output.  
Segment Driver04/Digital Input/Output.  
Segment Driver29/Common Driver3/Digital Input.  
Segment Driver30/Common Driver2/Digital Input.  
Segment Driver31/Common Driver1/Digital Input.  
RD0/SEG00  
29  
30  
31  
32  
33  
56  
57  
58  
31  
32  
33  
34  
35  
60  
61  
62  
21  
22  
23  
24  
25  
48  
49  
50  
I/O/L  
I/O/L  
I/O/L  
I/O/L  
I/O/L  
I/L  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
RD1/SEG01  
RD2/SEG02  
RD3/SEG03  
RD4/SEG04  
RD5/SEG29/COM3  
RD6/SEG30/COM2  
RD7/SEG31/COM1  
I/L  
I/L  
PORTE is a digital input or LCD Segment Driver port.  
Segment Driver05.  
RE0/SEG05  
RE1/SEG06  
RE2/SEG07  
RE3/SEG08  
RE4/SEG09  
RE5/SEG10  
RE6/SEG11  
RE7/SEG27  
34  
35  
36  
37  
38  
39  
40  
-
37  
38  
39  
40  
41  
42  
43  
36  
26  
27  
28  
29  
30  
31  
32  
-
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Segment Driver06.  
Segment Driver07.  
Segment Driver08.  
Segment Driver09.  
Segment Driver10.  
Segment Driver11.  
Segment Driver27 (Not available on 64-pin devices).  
PORTF is a digital input or LCD Segment Driver port.  
Segment Driver12.  
RF0/SEG12  
RF1/SEG13  
RF2/SEG14  
RF3/SEG15  
RF4/SEG16  
RF5/SEG17  
RF6/SEG18  
RF7/SEG19  
41  
42  
43  
44  
45  
46  
47  
48  
44  
45  
46  
47  
48  
49  
50  
51  
33  
34  
35  
36  
37  
38  
39  
40  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Segment Driver13.  
Segment Driver14.  
Segment Driver15.  
Segment Driver16.  
Segment Driver17.  
Segment Driver18.  
Segment Driver19.  
PORTG is a digital input or LCD Segment Driver port.  
Segment Driver20.  
RG0/SEG20  
RG1/SEG21  
RG2/SEG22  
RG3/SEG23  
RG4/SEG24  
RG5/SEG25  
RG6/SEG26  
RG7/SEG28  
VLCDADJ  
AVDD  
49  
50  
51  
52  
53  
54  
55  
28  
27  
18  
53  
54  
55  
56  
57  
58  
59  
52  
30  
21  
21  
29  
19  
41  
42  
43  
44  
45  
46  
47  
20  
19  
10  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
P
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Segment Driver21.  
Segment Driver22.  
Segment Driver23.  
Segment Driver24.  
Segment Driver25.  
Segment Driver26.  
Segment Driver28 (Not available on 64-pin devices).  
LCD Voltage Generation.  
Analog Power (PIC16C924 only).  
Power (PIC16C923 only).  
LCD Voltage.  
P
VDD  
P
VLCD1  
P
VLCD2  
P
LCD Voltage.  
Legend: I = input  
O = output  
P = power  
L = LCD Driver  
— = Not used  
TTL = TTL input  
ST = Schmitt Trigger input  
1997 Microchip Technology Inc.  
DS30444E - page 13  
PIC16C9XX  
TABLE 3-1: PIC16C9XX PINOUT DESCRIPTION (Cont.d)  
DIP  
Pin#  
PLCC  
Pin#  
TQFP Pin  
Pin# Type  
Buffer  
Type  
Pin Name  
Description  
VLCD3  
VDD  
VSS  
19  
20  
11  
P
P
LCD Voltage.  
20, 60 22, 64 12, 52  
Digital power.  
6, 21  
7, 23  
1
13, 62  
P
Ground reference.  
NC  
These pins are not internally connected.These pins should  
be left unconnected.  
Legend: I = input  
O = output  
P = power  
L = LCD Driver  
— = Not used  
TTL = TTL input  
ST = Schmitt Trigger input  
DS30444E - page 14  
1997 Microchip Technology Inc.  
PIC16C9XX  
3.1  
Clocking Scheme/Instruction Cycle  
3.2  
Instruction Flow/Pipelining  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks namely Q1, Q2, Q3 and Q4. Internally, the pro-  
gram counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
is shown in Figure 3-3.  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g. GOTO)  
then two cycles are required to complete the instruction  
(Example 3-1).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register" in cycle Q1. This instruc-  
tion is then decoded and executed during the Q2, Q3,  
and Q4 cycles. Data memory is read during Q2 (oper-  
and read) and written during Q4 (destination write).  
FIGURE 3-3: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
phase  
clock  
Q4  
PC  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW  
Tcy0  
Tcy1  
Tcy2  
Tcy3  
Tcy4  
Tcy5  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
1997 Microchip Technology Inc.  
DS30444E - page 15  
 
 
PIC16C9XX  
NOTES:  
DS30444E - page 16  
1997 Microchip Technology Inc.  
PIC16C9XX  
4.2  
Data Memory Organization  
4.0  
MEMORY ORGANIZATION  
The data memory is partitioned into four Banks which  
contain the General Purpose Registers and the Special  
Function Registers. Bits RP1 and RP0 are the bank  
select bits.  
4.1  
Program Memory Organization  
The PIC16C9XX family has a 13-bit program counter  
capable of addressing an 8K x 14 program memory  
space.  
RP1:RP0 (STATUS<6:5>)  
11 = Bank 3 (180h-1FFh)  
10 = Bank 2 (100h-17Fh)  
01 = Bank 1 (80h-FFh)  
00 = Bank 0 (00h-7Fh)  
Only the first 4K x 14 (0000h-0FFFh) is physically  
implemented. Accessing a location above the physi-  
cally implemented addresses will cause a wraparound.  
The reset vector is at 0000h and the interrupt vector is  
at 0004h.  
The lower locations of each Bank are reserved for the  
Special Function Registers. Above the Special Func-  
tion Registers are General Purpose Registers imple-  
mented as static RAM. All four banks contain special  
function registers. Some “high use” special function  
registers are mirrored in other banks for code reduction  
and quicker access.  
FIGURE 4-1: PROGRAM MEMORY MAP  
AND STACK  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
4.2.1  
GENERAL PURPOSE REGISTER FILE  
Stack Level 1  
Stack Level 8  
The register file can be accessed either directly, or indi-  
rectly through the File Select Register FSR  
(Section 4.5).  
The following General Purpose Registers are not phys-  
ically implemented:  
Reset Vector  
0000h  
• F0h-FFh of Bank 1  
• 170h-17Fh of Bank 2  
• 1F0h-1FFh of Bank 3  
Interrupt Vector  
0004h  
0005h  
These locations are used for common access across  
banks.  
On-chip Program  
Memory (Page 0)  
07FFh  
0800h  
On-chip Program  
Memory (Page 1)  
0FFFh  
1000h  
1FFFh  
1997 Microchip Technology Inc.  
DS30444E - page 17  
PIC16C9XX  
FIGURE 4-2: REGISTER FILE MAP  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
(1)  
(1)  
(1)  
(1)  
Indirect addr.  
Indirect addr.  
OPTION  
PCL  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
Indirect addr.  
TMR0  
Indirect addr.  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
OPTION  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
TRISB  
TRISF  
TRISG  
PORTB  
PORTF  
PORTG  
PCLATH  
INTCON  
PCLATH  
INTCON  
PCLATH  
INTCON  
PIE1  
LCDSE  
LCDPS  
TMR1L  
TMR1H  
PCON  
LCDCON  
LCDD00  
LCDD01  
LCDD02  
LCDD03  
LCDD04  
LCDD05  
LCDD06  
LCDD07  
LCDD08  
LCDD09  
LCDD10  
LCDD11  
LCDD12  
LCDD13  
LCDD14  
LCDD15  
T1CON  
TMR2  
T2CON  
PR2  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
SSPADD  
SSPSTAT  
(2)  
ADRES  
(2)  
(2)  
ADCON0  
ADCON1  
1A0h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
1EFh  
1F0h  
EFh  
F0h  
16F  
170  
Mapped in  
Bank 0  
Mapped in  
Bank 0  
Mapped in  
Bank 0  
70h-7Fh  
70h-7Fh  
70h-7Fh  
17F  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as '0'.  
Note 1: Not a physical register.  
2: These registers are not implemented on the PIC16C923.  
DS30444E - page 18  
1997 Microchip Technology Inc.  
 
PIC16C9XX  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The special function registers can be classified into two  
sets (core and peripheral). Those registers associated  
with the “core” functions are described in this section,  
and those related to the operation of the peripheral fea-  
tures are described in the section of that peripheral fea-  
ture.  
The Special Function Registers are registers used by  
the CPU and Peripheral Modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM.  
TABLE 4-1: SPECIAL FUNCTION REGISTER SUMMARY  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh(1)  
1Fh(1)  
Legend:  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
TMR0  
PCL  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
RP1  
RP0  
TO  
PD  
Z
DC  
C
(4)  
(4)  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
xxxx xxxx uuuu uuuu  
--xx xxxx --uu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 000x 0000 000u  
PORTD Data Latch when written: PORTD pins when read  
PORTE pins when read  
T0IE  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PEIE  
ADIF(2)  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
LCDIF  
SSPIF  
CCP1IF  
TMR2IF  
TMR1IF 00-- 0000 00-- 0000  
Unimplemented  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS TMR1ON --00 0000 --uu uuuu  
Timer2 module’s register  
0000 0000 0000 0000  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
Capture/Compare/PWM Register (LSB)  
Capture/Compare/PWM Register (MSB)  
CCP1X  
CCP1Y  
CCP1M3  
CCP1M2  
CCP1M1  
CCP1M0 --00 0000 --00 0000  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADRES  
ADCON0  
A/D Result Register  
ADCS1 ADCS0  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
(5)  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0',  
shaded locations are unimplemented, read as ‘0’.  
Note 1: Registers ADRES, ADCON0, and ADCON1 are not implemented in the PIC16C923, read as '0'.  
2: These bits are reserved on the PIC16C923, always maintain these bits clear.  
3: These pixels do not display, but can be used as general purpose RAM.  
4: PIC16C923 reset values for PORTA: --xx xxxxfor a POR, and --uu uuuufor all other resets,  
PIC16C924 reset values for PORTA: --0x 0000when read.  
5: Bit1 of ADCON0 is reserved on the PIC16C924, always maintain this bit clear.  
1997 Microchip Technology Inc.  
DS30444E - page 19  
PIC16C9XX  
TABLE 4-1: SPECIAL FUNCTION REGISTER SUMMARY (Cont.d)  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 1  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh(1)  
Legend:  
INDF  
OPTION  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
1111 1111 1111 1111  
--11 1111 --11 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
---0 0000 ---0 0000  
0000 000x 0000 000u  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
PORTB Data Direction Register  
PORTC Data Direction Register  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
STATUS  
FSR  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PCLATH  
INTCON  
PIE1  
PD  
Z
DC  
C
PORTD Data Direction Register  
PORTE Data Direction Register  
T0IE  
Write Buffer for the upper 5 bits of the PC  
GIE  
PEIE  
ADIE(2)  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
LCDIE  
SSPIE  
CCP1IE  
TMR2IE  
TMR1IE 00-- 0000 00-- 0000  
Unimplemented  
PCON  
POR  
---- --0- ---- --u-  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
Timer2 Period Register  
Synchronous Serial Port (I2C mode) Address Register  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
SSPADD  
SSPSTAT  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADCON1  
PCFG2  
PCFG1  
PCFG0  
---- -000 ---- -000  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0',  
shaded locations are unimplemented, read as ‘0’.  
Note 1: Registers ADRES, ADCON0, and ADCON1 are not implemented in the PIC16C923, read as '0'.  
2: These bits are reserved on the PIC16C923, always maintain these bits clear.  
3: These pixels do not display, but can be used as general purpose RAM.  
4: PIC16C923 reset values for PORTA: --xx xxxxfor a POR, and --uu uuuufor all other resets,  
PIC16C924 reset values for PORTA: --0x 0000when read.  
5: Bit1 of ADCON0 is reserved on the PIC16C924, always maintain this bit clear.  
DS30444E - page 20  
1997 Microchip Technology Inc.  
PIC16C9XX  
TABLE 4-1: SPECIAL FUNCTION REGISTER SUMMARY (Cont.d)  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 2  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
TMR0  
PCL  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect data memory address pointer  
Unimplemented  
PORTB  
PORTF  
PORTG  
PORTB Data Latch when written: PORTB pins when read  
PORTF pins when read  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
PORTG pins when read  
Unimplemented  
PCLATH  
INTCON  
Write Buffer for the upper 5 bits of the PC  
---0 0000 ---0 0000  
0000 000x 0000 000u  
GIE  
Unimplemented  
SE29  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
LCDSE  
LCDPS  
LCDCON  
SE27  
SE20  
SE16  
SE12  
LP3  
SE9  
LP2  
CS0  
SE5  
LP1  
SE0  
LP0  
1111 1111 1111 1111  
---- 0000 ---- 0000  
00-0 0000 00-0 0000  
LCDEN  
SLPEN  
VGEN  
CS1  
LMUX1  
LMUX0  
SEG07  
COM0  
SEG06  
COM0  
SEG05  
COM0  
SEG04  
COM0  
SEG03  
COM0  
SEG02  
COM0  
SEG01  
COM0  
SEG00  
COM0  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
LCDD00  
LCDD01  
LCDD02  
LCDD03  
LCDD04  
LCDD05  
LCDD06  
LCDD07  
LCDD08  
LCDD09  
LCDD10  
LCDD11  
LCDD12  
LCDD13  
LCDD14  
LCDD15  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SEG15  
COM0  
SEG14  
COM0  
SEG13  
COM0  
SEG12  
COM0  
SEG11  
COM0  
SEG10  
COM0  
SEG09  
COM0  
SEG08  
COM0  
SEG23  
COM0  
SEG22  
COM0  
SEG21  
COM0  
SEG20  
COM0  
SEG19  
COM0  
SEG18  
COM0  
SEG17  
COM0  
SEG16  
COM0  
SEG31  
COM0  
SEG30  
COM0  
SEG29  
COM0  
SEG28  
COM0  
SEG27  
COM0  
SEG26  
COM0  
SEG25  
COM0  
SEG24  
COM0  
SEG07  
COM1  
SEG06  
COM1  
SEG05  
COM1  
SEG04  
COM1  
SEG03  
COM1  
SEG02  
COM1  
SEG01  
COM1  
SEG00  
COM1  
SEG15  
COM1  
SEG14  
COM1  
SEG13  
COM1  
SEG12  
COM1  
SEG11  
COM1  
SEG10  
COM1  
SEG09  
COM1  
SEG08  
COM1  
SEG23  
COM1  
SEG22  
COM1  
SEG21  
COM1  
SEG20  
COM1  
SEG19  
COM1  
SEG18  
COM1  
SEG17  
COM1  
SEG16  
COM1  
SEG31  
SEG30  
COM1  
SEG29  
COM1  
SEG28  
COM1  
SEG27  
COM1  
SEG26  
COM1  
SEG25  
COM1  
SEG24  
COM1  
COM1(3)  
SEG07  
COM2  
SEG06  
COM2  
SEG05  
COM2  
SEG04  
COM2  
SEG03  
COM2  
SEG02  
COM2  
SEG01  
COM2  
SEG00  
COM2  
SEG15  
COM2  
SEG14  
COM2  
SEG13  
COM2  
SEG12  
COM2  
SEG11  
COM2  
SEG10  
COM2  
SEG09  
COM2  
SEG08  
COM2  
SEG23  
COM2  
SEG22  
COM2  
SEG21  
COM2  
SEG20  
COM2  
SEG19  
COM2  
SEG18  
COM2  
SEG17  
COM2  
SEG16  
COM2  
SEG31  
SEG30  
SEG29  
COM2  
SEG28  
COM2  
SEG27  
COM2  
SEG26  
COM2  
SEG25  
COM2  
SEG24  
COM2  
COM2(3)  
COM2(3)  
SEG07  
COM3  
SEG06  
COM3  
SEG05  
COM3  
SEG04  
COM3  
SEG03  
COM3  
SEG02  
COM3  
SEG01  
COM3  
SEG00  
COM3  
SEG15  
COM3  
SEG14  
COM3  
SEG13  
COM3  
SEG12  
COM3  
SEG11  
COM3  
SEG10  
COM3  
SEG09  
COM3  
SEG08  
COM3  
SEG23  
COM3  
SEG22  
COM3  
SEG21  
COM3  
SEG20  
COM3  
SEG19  
COM3  
SEG18  
COM3  
SEG17  
COM3  
SEG16  
COM3  
SEG31  
SEG30  
SEG29  
SEG28  
COM3  
SEG27  
COM3  
SEG26  
COM3  
SEG25  
COM3  
SEG24  
COM3  
11Fh  
COM3(3)  
COM3(3)  
COM3(3)  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0',  
shaded locations are unimplemented, read as ‘0’.  
Note 1: Registers ADRES, ADCON0, and ADCON1 are not implemented in the PIC16C923, read as '0'.  
2: These bits are reserved on the PIC16C923, always maintain these bits clear.  
3: These pixels do not display, but can be used as general purpose RAM.  
4: PIC16C923 reset values for PORTA: --xx xxxxfor a POR, and --uu uuuufor all other resets,  
PIC16C924 reset values for PORTA: --0x 0000when read.  
5: Bit1 of ADCON0 is reserved on the PIC16C924, always maintain this bit clear.  
1997 Microchip Technology Inc.  
DS30444E - page 21  
PIC16C9XX  
TABLE 4-1: SPECIAL FUNCTION REGISTER SUMMARY (Cont.d)  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 3  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
Legend:  
INDF  
OPTION  
PCL  
STATUS  
FSR  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP RP1 RP0 TO  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
PD  
Z
DC  
C
Indirect data memory address pointer  
Unimplemented  
TRISB  
TRISF  
TRISG  
PORTB Data Direction Register  
PORTF Data Direction Register  
PORTG Data Direction Register  
Unimplemented  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
PCLATH  
INTCON  
Write Buffer for the upper 5 bits of the PC  
INTE RBIE T0IF INTF  
---0 0000 ---0 0000  
0000 000x 0000 000u  
GIE  
PEIE  
T0IE  
RBIF  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0',  
shaded locations are unimplemented, read as ‘0’.  
Note 1: Registers ADRES, ADCON0, and ADCON1 are not implemented in the PIC16C923, read as '0'.  
2: These bits are reserved on the PIC16C923, always maintain these bits clear.  
3: These pixels do not display, but can be used as general purpose RAM.  
4: PIC16C923 reset values for PORTA: --xx xxxxfor a POR, and --uu uuuufor all other resets,  
PIC16C924 reset values for PORTA: --0x 0000when read.  
5: Bit1 of ADCON0 is reserved on the PIC16C924, always maintain this bit clear.  
DS30444E - page 22  
1997 Microchip Technology Inc.  
PIC16C9XX  
4.2.2.1  
STATUS REGISTER  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions, not affecting any status bits, see the  
“Instruction Set Summary.”  
The STATUS register, shown in Figure 4-3, contains the  
arithmetic status of the ALU, the RESET status and the  
bank select bits for data memory.  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled.These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
FIGURE 4-3: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
1 = Bank 2, 3 (100h - 1FFh)  
0 = Bank 0, 1 (00h - FFh)  
bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
Z: Zero bit  
1 = The result of an arithmetic or logic operation is zero  
0 = The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions) (for borrow the polarity is reversed)  
1 = A carry-out from the 4th low order bit of the result occurred  
0 = No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions) (for borrow the polarity is reversed)  
1 = A carry-out from the most significant bit of the result occurred  
0 = No carry-out from the most significant bit of the result occurred  
Note: A subtraction is executed by adding the two’s complement of the second operand. For rotate (RRF,  
RLF) instructions, this bit is loaded with either the high or low order bit of the source register.  
1997 Microchip Technology Inc.  
DS30444E - page 23  
 
PIC16C9XX  
4.2.2.2  
OPTION REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION register is a readable and writable regis-  
ter which contains various control bits to configure the  
TMR0/WDT prescaler, the external RB0/INT pin inter-  
rupt, TMR0, and the weak pull-ups on PORTB.  
FIGURE 4-4: OPTION REGISTER (ADDRESS 81h, 181h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
RBPU: PORTB Pull-up Enable bit  
1 = PORTB pull-ups are disabled  
0 = PORTB pull-ups are enabled by individual port latch values  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
INTEDG: Interrupt Edge Select bit  
1 = Interrupt on rising edge of RB0/INT pin  
0 = Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1 = Transition on RA4/T0CKI pin  
0 = Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1 = Increment on high-to-low transition on RA4/T0CKI pin  
0 = Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1 = Prescaler is assigned to the WDT  
0 = Prescaler is assigned to the Timer0 module  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
DS30444E - page 24  
1997 Microchip Technology Inc.  
PIC16C9XX  
4.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
The INTCON Register is a readable and writable regis-  
ter which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and external  
RB0/INT pin interrupts.  
FIGURE 4-5: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
GIE: Global Interrupt Enable bit  
1 = Enables all un-masked interrupts  
0 = Disables all interrupts  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
PEIE: Peripheral Interrupt Enable bit  
1 = Enables all un-masked peripheral interrupts  
0 = Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1 = Enables the TMR0 interrupt  
0 = Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1 = Enables the RB0/INT external interrupt  
0 = Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1 = Enables the RB port change interrupt  
0 = Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1 = TMR0 register has overflowed (must be cleared in software)  
0 = TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1 = The RB0/INT external interrupt occurred (must be cleared in software)  
0 = The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear interrupt)  
0 = None of the RB7:RB4 pins have changed state  
Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the  
global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to  
enabling an interrupt.  
1997 Microchip Technology Inc.  
DS30444E - page 25  
PIC16C9XX  
4.2.2.4  
PIE1 REGISTER  
Note: Bit PEIE (INTCON<6>) must be set to  
This register contains the individual enable bits for the  
peripheral interrupts.  
enable any peripheral interrupt.  
FIGURE 4-6: PIE1 REGISTER (ADDRESS 8Ch)  
R/W-0  
LCDIE  
R/W-0  
U-0  
U-0  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
TMR2IE TMR1IE  
bit0  
R/W-0  
(1)  
ADIE  
CCP1IE  
R
= Readable bit  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
LCDIE: LCD Interrupt Enable bit  
1 = Enables the LCD interrupt  
0 = Disables the LCD interrupt  
bit 6:  
ADIE: A/D Converter Interrupt Enable bit(1)  
1 = Enables the A/D interrupt  
0 = Disables the A/D interrupt  
bit 5-4: Unimplemented: Read as '0'  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1 = Enables the SSP interrupt  
0 = Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1 = Enables the CCP1 interrupt  
0 = Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1 = Enables the TMR2 to PR2 match interrupt  
0 = Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1 = Enables the TMR1 overflow interrupt  
0 = Disables the TMR1 overflow interrupt  
Note 1: Bit ADIE is reserved on the PIC16C923, always maintain this bit clear.  
DS30444E - page 26  
1997 Microchip Technology Inc.  
PIC16C9XX  
4.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the individual flag bits for the  
peripheral interrupts.  
FIGURE 4-7: PIR1 REGISTER (ADDRESS 0Ch)  
R/W-0  
LCDIF  
R/W-0  
U-0  
U-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
TMR2IF TMR1IF  
bit0  
R/W-0  
(1)  
ADIF  
CCP1IF  
R
= Readable bit  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
LCDIF: LCD Interrupt Flag bit  
1 = LCD interrupt occurred (must be cleared in software)  
0 = LCD interrupt did not occur  
bit 6:  
ADIF: A/D Converter Interrupt Flag bit(1)  
1 = An A/D conversion completed (must be cleared in software)  
0 = The A/D conversion is not complete  
bit 5-4: Unimplemented: Read as '0'  
bit 3:  
SSPIF: Synchronous Serial Port Interrupt Flag bit  
1 = The transmission/reception is complete (must be cleared in software)  
0 = Waiting to transmit/receive  
bit 2:  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1 = A TMR1 register capture occurred (must be cleared in software)  
0 = No TMR1 register capture occurred  
Compare Mode  
1 = A TMR1 register compare match occurred (must be cleared in software)  
0 = No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1 = TMR2 to PR2 match occurred (must be cleared in software)  
0 = No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1 = TMR1 register overflowed (must be cleared in software)  
0 = TMR1 register did not overflow  
Note 1: Bit ADIF is reserved on the PIC16C923, always maintain this bit clear.  
Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the  
global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to  
enabling an interrupt.  
1997 Microchip Technology Inc.  
DS30444E - page 27  
PIC16C9XX  
4.2.2.6  
PCON REGISTER  
For various reset conditions see Table 14-4 and  
Table 14-5.  
The Power Control (PCON) register contains a flag bit  
to allow differentiation between a Power-on Reset  
(POR) to an external MCLR Reset or WDT Reset.  
FIGURE 4-8: PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
U-0  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-2: Unimplemented: Read as '0'  
bit 1:  
POR: Power-on Reset Status bit  
1 = No Power-on Reset occurred  
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0:  
Unimplemented: Read as '0'  
DS30444E - page 28  
1997 Microchip Technology Inc.  
PIC16C9XX  
4.3  
PCL and PCLATH  
Note 1: There are no status bits to indicate stack  
The program counter (PC) is 13-bits wide.The low byte  
comes from the PCL register, which is a readable and  
writable register. The upper bits (PC<12:8>) are not  
readable, but are indirectly writable through the  
PCLATH register. On any reset, the upper bits of the PC  
will be cleared. Figure 4-9 shows the two situations for  
the loading of the PC. The upper example in the figure  
shows how the PC is loaded on a write to PCL  
(PCLATH<4:0> PCH). The lower example in the fig-  
ure shows how the PC is loaded during a CALLor GOTO  
instruction (PCLATH<4:3> PCH).  
overflow or stack underflow conditions.  
Note 2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW, and RETFIE  
instructions, or the vectoring to an inter-  
rupt address.  
4.4  
Program Memory Paging  
PIC16C9XX devices are capable of addressing a con-  
tinuous 8K word block of program memory. The CALL  
and GOTOinstructions provide only 11 bits of address  
to allow branching within any 2K program memory  
page. When doing a CALL or GOTO instruction the  
FIGURE 4-9: LOADING OF PC IN  
DIFFERENT SITUATIONS  
upper  
2 bits of the address are provided by  
PCH  
PCL  
PCLATH<4:3>. When doing a CALL or GOTO instruc-  
tion, the user must ensure that the page select bits are  
programmed so that the desired program memory  
page is addressed. If a return from a CALLinstruction  
(or interrupt) is executed, the entire 13-bit PC is pushed  
onto the stack. Therefore, manipulation of the  
PCLATH<4:3> bits are not required for the return  
instructions (which POPs the address from the stack).  
12  
8
7
0
Instruction with  
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU result  
PCH  
12 11 10  
PCL  
Note: The PIC16C9XX ignores paging bit  
PCLATH<4>, which is used to access pro-  
gram memory pages 2 and 3. The use of  
8
7
0
GOTO, CALL  
PC  
PCLATH<4:3>  
PCLATH  
11  
PCLATH<4> as  
a
general purpose  
2
Opcode <10:0>  
read/write bit is not recommended since  
this may affect upward compatibility with  
future products.  
4.3.1  
COMPUTED GOTO  
A computed GOTO is accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 byte block). Refer to the  
application note “Implementing a Table Read” (AN556).  
4.3.2  
STACK  
The PIC16CXXX family has an 8 level deep x 13-bit  
wide hardware stack. The stack space is not part of  
either program or data space and the stack pointer is  
not readable or writable. The PC is PUSHed onto the  
stack when a CALLinstruction is executed or an inter-  
rupt causes a branch. The stack is POPed in the event  
of a RETURN, RETLW or a RETFIE instruction execu-  
tion. PCLATH is not affected by a PUSH or POP oper-  
ation.  
The stack operates as a circular buffer.This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
1997 Microchip Technology Inc.  
DS30444E - page 29  
 
PIC16C9XX  
Example 4-1 shows the calling of a subroutine in  
page 1 of the program memory.This example assumes  
that PCLATH is saved and restored by the interrupt ser-  
vice routine (if interrupts are used).  
4.5  
Indirect Addressing, INDF and FSR  
Registers  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses the register pointed to by the File Select Reg-  
ister (FSR). Reading the INDF register itself indirectly  
(FSR = '0') will produce 00h. Writing to the INDF regis-  
ter indirectly results in a no-operation (although status  
bits may be affected). An effective 9-bit address is  
obtained by concatenating the 8-bit FSR register and  
the IRP bit (STATUS<7>), as shown in Figure 4-10.  
EXAMPLE 4-1: CALL OF A SUBROUTINE IN  
PAGE 1 FROM PAGE 0  
ORG 0x500  
BSF  
PCLATH,3 ;Select page 1 (800h-FFFh)  
CALL  
SUB1_P1  
;Call subroutine in  
;page 1 (800h-FFFh)  
:
:
:
ORG 0x900  
SUB1_P1:  
;called subroutine  
;page 1 (800h-FFFh)  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 4-2.  
:
:
RETURN  
;return to Call subroutine  
;in page 0 (000h-7FFh)  
EXAMPLE 4-2: INDIRECT ADDRESSING  
movlw 0x20  
movwf FSR  
;initialize pointer  
;to RAM  
NEXT  
clrf  
incf  
INDF  
;clear INDF register  
FSR,F ;inc pointer  
btfss FSR,4 ;all done?  
goto  
NEXT  
;no clear next  
CONTINUE  
:
;yes continue  
FIGURE 4-10: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
from opcode  
7
RP1:RP0  
6
0
0
IRP  
FSR register  
bank select  
00h  
location select  
bank select  
location select  
00  
01  
10  
11  
00h  
Data  
Memory  
7Fh  
7Fh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
For memory map detail see Figure 4-2.  
DS30444E - page 30  
1997 Microchip Technology Inc.  
 
 
 
PIC16C9XX  
FIGURE 5-1: BLOCK DIAGRAM OF PINS  
RA3:RA0 AND RA5  
5.0  
PORTS  
Some pins for these ports are multiplexed with an alter-  
nate function for the peripheral features on the device.  
In general, when a peripheral is enabled, that pin may  
not be used as a general purpose I/O pin.  
Data  
bus  
D
Q
Q
VDD  
P
WR  
Port  
5.1  
PORTA and TRISA Register  
CK  
The RA4/T0CKI pin is a Schmitt Trigger input and an  
open drain output. All other RA port pins have TTL input  
levels and full CMOS output drivers. All RA pins have  
data direction bits (TRISA register) which can configure  
these pins as output or input.  
Data Latch  
I/O pin(1)  
N
D
Q
WR  
TRIS  
VSS  
Analog  
Q
Setting a bit in the TRISA register puts the correspond-  
ing output driver in a hi-impedance mode. Clearing a bit  
in the TRISA register puts the contents of the output  
latch on the selected pin.  
CK  
input  
mode  
TRIS Latch  
Reading the PORTA register reads the status of the  
pins whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, this value is modified, and then written to the port  
data latch.  
TTL  
input  
buffer  
RD TRIS  
Q
D
EN  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin.  
RD PORT  
For the PIC16C924 only, other PORTA pins are multi-  
plexed with analog inputs and the analog VREF input.  
The operation of each pin is selected by clearing/set-  
ting the control bits in the ADCON1 register (A/D Con-  
trol Register1).  
To A/D Converter (PIC16C924 only)  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs and read as '0'.  
FIGURE 5-2: BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Data  
bus  
D
Q
Q
WR  
PORT  
CK  
I/O pin(1)  
EXAMPLE 5-1: INITIALIZING PORTA  
N
Data Latch  
BCF  
BCF  
CLRF  
BSF  
STATUS, RP0 ; Select Bank0  
STATUS, RP1  
D
Q
VSS  
WR  
TRIS  
PORTA  
; Initialize PORTA  
;
Schmitt  
Trigger  
input  
STATUS, RP0  
Q
CK  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
TRIS Latch  
buffer  
MOVWF TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; RA<7:6> are always  
; read as '0'.  
RD TRIS  
Q
D
EN  
RD PORT  
TMR0 clock input  
Note 1: I/O pin has protection diodes to VSS only.  
1997 Microchip Technology Inc.  
DS30444E - page 31  
PIC16C9XX  
TABLE 5-1: PORTA FUNCTIONS  
Name  
Bit#  
Buffer Function  
RA0/AN0(1)  
RA1/AN1(1)  
RA2/AN2(1)  
RA3/AN3/VREF  
RA4/T0CKI  
bit0  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input  
Input/output or analog input  
Input/output or analog input  
Input/output or analog input or VREF  
(1)  
Input/output or external clock input for Timer0  
Output is open drain type  
RA5/AN4/SS (1) bit5  
TTL  
Input/output or analog input or slave select input for synchronous serial port  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: The AN and VREF functions are for the A/D module and are only implemented on the PIC16C924.  
TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
Power-on  
Reset  
Value on  
all other  
resets  
Address Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
85h  
9Fh  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
(2)  
(2)  
PORTA Data Direction Control Register  
--11 1111 --11 1111  
(1)  
ADCON1  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
Note 1: The ADCON1 register is implemented on the PIC16C924 only.  
2: PIC16C923 reset values for PORTA: --xx xxxxfor a POR, and --uu uuuufor all other resets,  
PIC16C924 reset values for PORTA: --0x 0000when read.  
DS30444E - page 32  
1997 Microchip Technology Inc.  
PIC16C9XX  
PORTB. The “mismatch” outputs of RB7:RB4 are  
OR’ed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
5.2  
PORTB and TRISB Register  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a bit  
in the TRISB register puts the corresponding output  
driver in a hi-impedance input mode. Clearing a bit in  
the TRISB register puts the contents of the output latch  
on the selected pin(s).  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
EXAMPLE 5-2: INITIALIZING PORTB  
b) Clear flag bit RBIF.  
BCF  
BCF  
CLRF  
BSF  
STATUS, RP0 ; Select Bank0  
STATUS, RP1  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition, and  
allow flag bit RBIF to be cleared.  
PORTB  
STATUS, RP0  
; Initialize PORTB  
;
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
This interrupt on mismatch feature, together with soft-  
ware configurable pull-ups on these four pins allow  
easy interface to a keypad and make it possible for  
wake-up on key-depression. Refer to the Embedded  
Control Handbook, "Implementing Wake-Up on Key  
Stroke" (AN552).  
MOVWF TRISB  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit RBPU (OPTION<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output.The pull-ups are also dis-  
abled on a Power-on Reset.  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
FIGURE 5-3: BLOCK DIAGRAM OF  
FIGURE 5-4: BLOCK DIAGRAM OF  
RB7:RB4 PINS  
RB3:RB0 PINS  
VDD  
RBPU(2)  
VDD  
weak  
P
RBPU(2)  
pull-up  
weak  
pull-up  
P
Data Latch  
Data bus  
D
Q
Data Latch  
Data bus  
D
Q
I/O  
pin(1)  
WR Port  
CK  
TRIS Latch  
I/O  
pin(1)  
WR Port  
CK  
TRIS Latch  
D
Q
TTL  
Input  
Buffer  
D
Q
WR TRIS  
CK  
WR TRIS  
TTL  
CK  
Input  
Buffer  
ST  
Buffer  
RD TRIS  
RD Port  
RD TRIS  
RD Port  
Q
D
Latch  
Q
D
EN  
EN  
Q1  
Set RBIF  
RB0/INT  
Schmitt Trigger  
Buffer  
RD Port  
Q
D
From other  
RD Port  
Q3  
RB7:RB4 pins  
Note 1: I/O pins have diode protection to VDD and VSS.  
EN  
2: To enable weak pull-ups, set the appropriate TRIS bit  
and clear the RBPU bit (OPTION<7>).  
RB7:RB6 in serial programming mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e. any RB7:RB4 pin con-  
figured as an output is excluded from the interrupt on  
change comparison). The input pins (of RB7:RB4) are  
compared with the old value latched on the last read of  
2: To enable weak pull-ups, set the appropriate TRIS bit  
and clear the RBPU bit (OPTION<7>).  
1997 Microchip Technology Inc.  
DS30444E - page 33  
PIC16C9XX  
TABLE 5-3: PORTB FUNCTIONS  
Name  
Bit#  
bit0  
Buffer  
TTL/ST  
Function  
RB0/INT  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up. This buffer is a Schmitt Trigger input when  
configured as the external interrupt.  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
RB5  
RB6  
bit5  
bit6  
TTL  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
TTL/ST  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming clock. This buffer is a Schmitt Trigger  
input when used in serial programming mode.  
RB7  
bit7  
TTL/ST  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming data.This buffer is a Schmitt Trigger input  
when used in serial programming mode.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
06h, 106h PORTB  
86h, 186h TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
PORTB Data Direction Control Register  
T0SE  
81h, 181h OPTION RBPU INTEDG T0CS  
PSA  
PS2  
PS1  
PS0  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS30444E - page 34  
1997 Microchip Technology Inc.  
PIC16C9XX  
5.3  
PORTC and TRISC Register  
FIGURE 5-5: PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
PORTC is an 6-bit bi-directional port. Each pin is indi-  
vidually configurable as an input or output through the  
TRISC register. PORTC is multiplexed with several  
peripheral functions (Table 5-5). PORTC pins have  
Schmitt Trigger input buffers.  
OVERRIDE)  
VDD  
RBPU(2)  
weak  
pull-up  
P
Data Latch  
Data bus  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-mod-  
ify-write instructions (BSF, BCF, XORWF) with TRISC  
as destination should be avoided.The user should refer  
to the corresponding peripheral section for the correct  
TRIS bit settings.  
D
Q
I/O  
pin(1)  
WR Port  
CK  
TRIS Latch  
D
Q
TTL  
Input  
Buffer  
WR TRIS  
CK  
RD TRIS  
RD Port  
Q
D
EXAMPLE 5-3: INITIALIZING PORTC  
EN  
BCF  
BCF  
CLRF  
BSF  
STATUS,RP0 ; Select Bank0  
STATUS,RP1  
PORTC  
; Initialize PORTC  
RB0/INT  
STATUS,RP0 ;  
Schmitt Trigger  
Buffer  
RD Port  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> always read 0  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION<7>).  
MOVWF TRISC  
TABLE 5-5: PORTC FUNCTIONS  
Name  
Bit# Buffer Type  
Function  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
bit0  
bit1  
bit2  
bit3  
ST  
ST  
ST  
ST  
Input/output port pin or Timer1 oscillator output or Timer1 clock input  
Input/output port pin or Timer1 oscillator input  
RC2/CCP1  
Input/output port pin or Capture input/Compare output/PWM output  
Input/output port pin or the synchronous serial clock for both SPI and  
RC3/SCK/SCL  
2
I C modes.  
2
RC4/SDI/SDA  
bit4  
ST  
ST  
Input/output port pin or the SPI Data In (SPI mode) or data I/O (I C  
mode).  
RC5/SDO  
bit5  
Input/output port pin or Synchronous Serial Port data out  
Legend: ST = Schmitt Trigger input  
TABLE 5-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
07h  
87h  
PORTC  
TRISC  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
--xx xxxx --uu uuuu  
--11 1111 --11 1111  
PORTC Data Direction Control Register  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by PORTC.  
1997 Microchip Technology Inc.  
DS30444E - page 35  
 
PIC16C9XX  
5.4  
PORTD and TRISD Registers  
FIGURE 5-6: PORTD<4:0> BLOCK  
DIAGRAM  
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. The first five pins are configurable as general pur-  
pose I/O pins or LCD segment drivers. Pins RD5, RD6  
and RD7 can be digital inputs or LCD segment or com-  
mon drivers.  
LCD  
Segment Data  
LCD Segment  
Output Enable  
TRISD controls the direction of pins RD0 through RD4  
when PORTD is configured as a digital port.  
Data Bus  
D
Q
Note: On a Power-on Reset these pins are con-  
WR  
I/O pin  
figured as LCD segment drivers.  
PORT  
CK  
Data Latch  
Note: To configure the pins as a digital port, the  
corresponding bits in the LCDSE register  
must be cleared. Any bit set in the LCDSE  
register overrides any bit settings in the  
corresponding TRIS register.  
D
Q
WR  
TRIS  
CK  
Schmitt  
Trigger  
input  
TRIS Latch  
EXAMPLE 5-4: INITIALIZING PORTD  
buffer  
RD TRIS  
BCF  
BSF  
BCF  
BCF  
BSF  
BCF  
STATUS,RP0  
STATUS,RP1  
LCDSE,SE29  
LCDSE,SE0  
STATUS,RP0  
STATUS,RP1  
;Select Bank2  
;
;Make RD<7:5> digital  
;Make RD<4:0> digital  
;Select Bank1  
;
LCDSE<n>  
Q
D
MOVLW 0x07  
MOVWF TRISD  
;Make RD<4:0> outputs  
;Make RD<7:5> inputs  
EN  
RD  
PORT  
DS30444E - page 36  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 5-7: PORTD<7:5> BLOCK  
DIAGRAM  
LCD  
Segment Data  
LCD Segment  
Output Enable  
LCD  
Common Data  
LCD Common  
Output Enable  
Digital Input/  
LCD Output pin  
LCDSE<n>  
Schmitt  
Trigger  
input  
buffer  
Data Bus  
Q
D
EN  
RD PORT  
RD TRIS  
VDD  
TABLE 5-7: PORTD FUNCTIONS  
Buffer  
Name  
Bit#  
Function  
Type  
RD0/SEG00  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output port pin or Segment Driver00  
Input/output port pin or Segment Driver01  
Input/output port pin or Segment Driver02  
Input/output port pin or Segment Driver03  
Input/output port pin or Segment Driver04  
RD1/SEG01  
RD2/SEG02  
RD3/SEG03  
RD4/SEG04  
RD5/SEG29/COM3  
RD6/SEG30/COM2  
RD7/SEG31/COM1  
Digital input pin or Segment Driver29 or Common Driver3  
Digital input pin or Segment Driver30 or Common Driver2  
Digital input pin or Segment Driver31 or Common Driver1  
Legend: ST = Schmitt Trigger input  
TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
PORTD  
TRISD  
LCDSE  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
88h  
PORTD Data Direction Control Register  
SE29 SE27 SE20 SE16  
10Dh  
SE12  
SE9  
SE5  
SE0  
Legend: Shaded cells are not used by PORTD.  
1997 Microchip Technology Inc.  
DS30444E - page 37  
PIC16C9XX  
5.5  
PORTE and TRISE Register  
FIGURE 5-8: PORTE BLOCK DIAGRAM  
PORTE is an digital input only port. Each pin is multi-  
plexed with an LCD segment driver. These pins have  
Schmitt Trigger input buffers.  
LCD  
Segment Data  
LCD Segment  
Output Enable  
Note 1: On a Power-on Reset these pins are con-  
LCD  
Common Data  
figured as LCD segment drivers.  
Note 2: To configure the pins as a digital port, the  
corresponding bits in the LCDSE register  
must be cleared. Any bit set in the LCDSE  
register overrides any bit settings in the  
corresponding TRIS register.  
LCD Common  
Output Enable  
Digital Input/  
LCD Output pin  
LCDSE<n>  
EXAMPLE 5-5: INITIALIZING PORTE  
Schmitt  
Trigger  
input  
BCF STATUS,RP0  
BSF STATUS,RP1  
BCF LCDSE,SE27  
BCF LCDSE,SE5  
BCF LCDSE,SE9  
;Select Bank2  
;
;Make all PORTE  
;and PORTG<7>  
;digital inputs  
buffer  
Data Bus  
Q
D
EN  
RD PORT  
RD TRIS  
VDD  
TABLE 5-9: PORTE FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RE0/SEG05  
RE1/SEG06  
RE2/SEG07  
RE3/SEG08  
RE4/SEG09  
RE5/SEG10  
RE6/SEG11  
RE7/SEG27  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Digital input or Segment Driver05  
Digital input or Segment Driver06  
Digital input or Segment Driver07  
Digital input or Segment Driver08  
Digital input or Segment Driver09  
Digital input or Segment Driver10  
Digital input or Segment Driver11  
Digital input or Segment Driver27 (not available on 64-pin devices)  
Legend: ST = Schmitt Trigger input  
TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
09h  
PORTE  
TRISE  
LCDSE  
RE7  
RE6  
RE5  
RE4  
RE3  
RE2  
RE1  
RE0  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
89h  
PORTE Data Direction Control Register  
SE29 SE27 SE20 SE16  
10Dh  
SE12  
SE9  
SE5  
SE0  
Legend: Shaded cells are not used by PORTE.  
DS30444E - page 38  
1997 Microchip Technology Inc.  
PIC16C9XX  
5.6  
PORTF and TRISF Register  
FIGURE 5-9: PORTF BLOCK DIAGRAM  
PORTF is an digital input only port. Each pin is multi-  
plexed with an LCD segment driver. These pins have  
Schmitt Trigger input buffers.  
LCD  
Segment Data  
LCD Segment  
Output Enable  
Note 1: On a Power-on Reset these pins are con-  
figured as LCD segment drivers.  
LCD  
Common Data  
Note 2: To configure the pins as a digital port, the  
corresponding bits in the LCDSE register  
must be cleared. Any bit set in the LCDSE  
register overrides any bit settings in the  
corresponding TRIS register.  
LCD Common  
Output Enable  
Digital Input/  
LCD Output pin  
LCDSE<n>  
EXAMPLE 5-6: INITIALIZING PORTF  
Schmitt  
Trigger  
input  
BCF STATUS,RP0  
BSF STATUS,RP1  
BCF LCDSE,SE16  
BCF LCDSE,SE12  
;Select Bank2  
;
;Make all PORTF  
;digital inputs  
buffer  
Data Bus  
Q
D
EN  
RD PORT  
RD TRIS  
VDD  
TABLE 5-11: PORTF FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RF0/SEG12  
RF1/SEG13  
RF2/SEG14  
RF3/SEG15  
RF4/SEG16  
RF5/SEG17  
RF6/SEG18  
RF7/SEG19  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Digital input or Segment Driver12  
Digital input or Segment Driver13  
Digital input or Segment Driver14  
Digital input or Segment Driver15  
Digital input or Segment Driver16  
Digital input or Segment Driver17  
Digital input or Segment Driver18  
Digital input or Segment Driver19  
Legend: ST = Schmitt Trigger input  
TABLE 5-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
107h  
187h  
10Dh  
PORTF  
TRISF  
RF7  
RF6  
RF5  
RF4  
RF3  
RF2  
RF1  
RF0  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
PORTF Data Direction Control Register  
SE29 SE27 SE20 SE16  
LCDSE  
SE12  
SE9  
SE5  
SE0  
Legend: Shaded cells are not used by PORTF.  
1997 Microchip Technology Inc.  
DS30444E - page 39  
PIC16C9XX  
5.7  
PORTG and TRISG Register  
FIGURE 5-10: PORTG BLOCK DIAGRAM  
PORTG is an digital input only port. Each pin is multi-  
plexed with an LCD segment driver. These pins have  
Schmitt Trigger input buffers.  
LCD  
Segment Data  
LCD Segment  
Output Enable  
Note 1: On a Power-on Reset these pins are con-  
figured as LCD segment drivers.  
LCD  
Common Data  
Note 2: To configure the pins as a digital port, the  
corresponding bits in the LCDSE register  
must be cleared. Any bit set in the LCDSE  
register overrides any bit settings in the  
corresponding TRIS register.  
LCD Common  
Output Enable  
Digital Input/  
LCD Output pin  
LCDSE<n>  
EXAMPLE 5-7: INITIALIZING PORTG  
Schmitt  
Trigger  
input  
BCF STATUS,RP0  
BSF STATUS,RP1  
BCF LCDSE,SE27  
BCF LCDSE,SE20  
;Select Bank2  
;
;Make all PORTG  
;and PORTE<7>  
;digital inputs  
buffer  
Data Bus  
Q
D
EN  
RD PORT  
RD TRIS  
VDD  
TABLE 5-13: PORTG FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RG0/SEG20  
RG1/SEG21  
RG2/SEG22  
RG3/SEG23  
RG4/SEG24  
RG5/SEG25  
RG6/SEG26  
RG7/SEG28  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Digital input or Segment Driver20  
Digital input or Segment Driver21  
Digital input or Segment Driver22  
Digital input or Segment Driver23  
Digital input or Segment Driver24  
Digital input or Segment Driver25  
Digital input or Segment Driver26  
Digital input or Segment Driver28 (not available on 64-pin devices)  
Legend: ST = Schmitt Trigger input  
TABLE 5-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
108h  
188h  
10Dh  
PORTG  
TRISG  
LCDSE  
RG7  
RG6  
RG5  
RG4  
RG3  
RG2  
RG1  
RG0  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
PORTG Data Direction Control Register  
SE29 SE27 SE20 SE16  
SE12  
SE9  
SE5  
SE0  
Legend: Shaded cells are not used by PORTG.  
DS30444E - page 40  
1997 Microchip Technology Inc.  
PIC16C9XX  
5.8  
I/O Programming Considerations  
EXAMPLE 5-8: READ-MODIFY-WRITE  
INSTRUCTIONS ON AN I/O  
PORT  
5.8.1  
BI-DIRECTIONAL I/O PORTS  
;Initial PORT settings: PORTB<7:4> Inputs  
Any instruction which writes, operates internally as a  
read followed by a write operation. The BCF and BSF  
instructions, for example, read the register into the  
CPU, execute the bit operation and write the result back  
to the register. Caution must be used when these  
instructions are applied to a port with both inputs and  
outputs defined. For example, a BSFoperation on bit5  
of PORTB will cause all eight bits of PORTB to be read  
into the CPU. Then the BSF operation takes place on  
bit5 and PORTB is written to the output latches. If  
another bit of PORTB is used as a bi-directional I/O pin  
(e.g., bit0) and it is defined as an input at this time, the  
input signal present on the pin itself would be read into  
the CPU and rewritten to the data latch of this particular  
pin, overwriting the previous content. As long as the pin  
stays in the input mode, no problem occurs. However, if  
bit0 is switched into output mode later on, the contents  
of the data latch may now be unknown.  
;
PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-ups and are  
;not connected to other circuitry  
;
;
;
PORT latch PORT pins  
---------- ---------  
BCF PORTB, 7  
BCF PORTB, 6  
BCF STATUS, RP1 ;  
BSF STATUS, RP0 ;  
BCF TRISB, 7  
BCF TRISB, 6  
; 01pp pppp  
; 10pp pppp  
11pp pppp  
11pp pppp  
; 10pp pppp  
; 10pp pppp  
11pp pppp  
10pp pppp  
;
;Note that the user may have expected the  
;pin values to be 00pp ppp. The 2nd BCF  
;caused RB7 to be latched as the pin value  
;(high).  
A pin actively outputting a Low or High should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”, “wired-and”).  
The resulting high output currents may damage the  
chip.  
Reading the port register, reads the values of the port  
pins. Writing to the port register writes the value to the  
port latch. When using read-modify-write instructions  
(ex. BCF, BSF) on a port, the value of the port pins is  
read, the desired operation is done to this value, and  
this value is then written to the port latch.  
5.8.2  
SUCCESSIVE OPERATIONS ON I/O PORTS  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle  
(Figure 5-11). Therefore, care must be exercised if a  
write followed by a read operation is carried out on the  
same I/O port. The sequence of instructions should be  
such to allow the pin voltage to stabilize (load depen-  
dent) before the next instruction which causes that file  
to be read into the CPU is executed. Otherwise, the  
previous state of that pin may be read into the CPU  
rather than the new state. When in doubt, it is better to  
separate these instructions with a NOP or another  
instruction not accessing this I/O port.  
Example 5-8 shows the effect of two sequential  
read-modify-write instructions on an I/O port.  
FIGURE 5-11: SUCCESSIVE I/O OPERATION  
Q4  
Q4  
Q4  
Q1 Q2  
Q4  
Q3  
Q3  
Q3  
Q3  
Q1 Q2  
PC  
Q1 Q2  
Q1 Q2  
Note:  
This example shows a write to PORTB  
followed by a read from PORTB.  
PC + 3  
NOP  
PC  
Instruction  
fetched  
PC + 1  
PC + 2  
NOP  
MOVWF PORTB MOVF PORTB,W  
write to  
PORTB  
Note that:  
data setup time = (0.25TCY - TPD)  
RB7:RB0  
where TCY = instruction cycle  
TPD = propagation delay  
Port pin  
sampled here  
TPD  
Therefore, at higher clock frequencies,  
a write followed by a read may be prob-  
lematic.  
Instruction  
executed  
NOP  
MOVWF PORTB  
write to  
MOVF PORTB,W  
PORTB  
1997 Microchip Technology Inc.  
DS30444E - page 41  
 
 
PIC16C9XX  
NOTES:  
DS30444E - page 42  
1997 Microchip Technology Inc.  
PIC16C9XX  
chronous Serial Port (SSP). The prescaler option  
allows Timer2 to increment at the following rates: 1:1,  
1:4, 1:16.  
6.0  
OVERVIEW OF TIMER  
MODULES  
Each module can generate an interrupt to indicate that  
an event has occurred (e.g. timer overflow). Each of  
these modules is explained in full detail in the following  
sections. The timer modules are:  
The postscaler allows the TMR2 register to match the  
period register (PR2) a programmable number of times  
before generating an interrupt. The postscaler can be  
programmed from 1:1 to 1:16 (inclusive).  
• Timer0 Module (Section 7.0)  
• Timer1 Module (Section 8.0)  
• Timer2 Module (Section 9.0)  
6.4  
CCP Overview  
The CCP module can operate in one of these three  
modes: 16-bit capture, 16-bit compare, or up to 10-bit  
Pulse Width Modulation (PWM).  
6.1  
Timer0 Overview  
The Timer0 module is a simple 8-bit timer/counter. The  
clock source can be either the internal system clock  
(Fosc/4) or an external clock. When the clock source is  
an external clock, the Timer0 module can be selected  
to increment on either the rising or falling edge.  
Capture mode captures the 16-bit value of TMR1 into  
the CCPR1H:CCPR1L register pair. The capture event  
can be programmed for either the falling edge, rising  
edge, fourth rising edge, or the sixteenth rising edge of  
the CCP1 pin.  
TheTimer0 module also has a programmable prescaler  
option. This prescaler can be assigned to either the  
Timer0 module or the Watchdog Timer. Bit PSA  
(OPTION<3>) assigns the prescaler, and bits PS2:PS0  
(OPTION<2:0>) determine the prescaler value. Timer0  
can increment at the following rates: 1:1 when pres-  
caler assigned to Watchdog timer, 1:2, 1:4, 1:8, 1:16,  
1:32, 1:64, 1:128, and 1:256.  
Compare mode compares the TMR1H:TMR1L register  
pair to the CCPR1H:CCPR1L register pair. When a  
match occurs an interrupt can be generated, and the  
output pin CCP1 can be forced to given state (High or  
Low), TMR1 can be reset and start A/D conversion.  
This depends on the control bits CCP1M3:CCP1M0.  
PWM mode compares the TMR2 register to a 10-bit  
duty cycle register (CCPR1H:CCPR1L<5:4>) as well  
as to an 8-bit period register (PR2). When the TMR2  
register = Duty Cycle register, the CCP1 pin will be  
forced low.WhenTMR2 = PR2, TMR2 is cleared to 00h,  
an interrupt can be generated, and the CCP1 pin (if an  
output) will be forced high.  
Synchronization of the external clock occurs after the  
prescaler. When the prescaler is used, the external  
clock frequency may be higher then the device’s fre-  
quency. The maximum frequency is 50 MHz, given the  
high and low time requirements of the clock.  
6.2  
Timer1 Overview  
Timer1 is a 16-bit timer/counter. The clock source can  
be either the internal system clock (Fosc/4), an external  
clock, or an external crystal. Timer1 can operate as  
either a timer or a counter.When operating as a counter  
(external clock source), the counter can either operate  
synchronized to the device or asynchronously to the  
device. Asynchronous operation allows Timer1 to oper-  
ate during sleep, which is useful for applications that  
require a real-time clock as well as the power savings  
of SLEEP mode.  
Timer1 also has a prescaler option which allowsTimer1  
to increment at the following rates: 1:1, 1:2, 1:4, and  
1:8. Timer1 can be used in conjunction with the Cap-  
ture/Compare/PWM module. When used with a CCP  
module, Timer1 is the time-base for 16-bit capture or  
the 16-bit compare and must be synchronized to the  
device. Timer1 oscillator is also one of the clock  
sources for the LCD module.  
6.3  
Timer2 Overview  
Timer2 is an 8-bit timer with a programmable prescaler  
and postscaler, as well as an 8-bit period register  
(PR2). Timer2 can be used with the CCP1 module (in  
PWM mode) as well as the clock source for the Syn-  
1997 Microchip Technology Inc.  
DS30444E - page 43  
PIC16C9XX  
NOTES:  
DS30444E - page 44  
1997 Microchip Technology Inc.  
PIC16C9XX  
bit T0SE selects the rising edge. Restrictions on the  
external clock input are discussed in detail in  
Section 7.2.  
7.0  
TIMER0 MODULE  
The Timer0 module has the following features:  
• 8-bit timer/counter  
The prescaler is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. The pres-  
caler assignment is controlled in software by control bit  
PSA (OPTION<3>). Clearing bit PSA will assign the  
prescaler to the Timer0 module. The prescaler is not  
readable or writable.When the prescaler is assigned to  
the Timer0 module, prescale values of 1:2, 1:4, ...,  
1:256 are selectable. Section 7.3 details the operation  
of the prescaler.  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
Figure 7-1 is a simplified block diagram of the Timer0  
module.  
Timer mode is selected by clearing bit T0CS  
(OPTION<5>). In timer mode, the Timer0 module will  
increment every instruction cycle (without prescaler). If  
the TMR0 register is written, the increment is inhibited  
for the following two instruction cycles (Figure 7-2 and  
Figure 7-3). The user can work around this by writing  
an adjusted value to the TMR0 register.  
7.1  
Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module interrupt ser-  
vice routine before re-enabling this interrupt.The TMR0  
interrupt cannot awaken the processor from SLEEP  
since the timer is shut off during SLEEP. Figure 7-4 dis-  
plays the Timer0 interrupt timing.  
Counter mode is selected by setting bit T0CS  
(OPTION<5>). In counter mode Timer0 will increment  
either on every rising or falling edge of pin RA4/T0CKI.  
The incrementing edge is determined by the Timer0  
Source Edge Select bit T0SE (OPTION<4>). Clearing  
FIGURE 7-1: TIMER0 BLOCK DIAGRAM  
Data bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
RA4/T0CKI  
pin  
PSout  
(2 cycle delay)  
T0SE  
3
Set interrupt  
flag bit T0IF  
on overflow  
PS2, PS1, PS0  
PSA  
T0CS  
Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION<5:0>).  
2: The prescaler is shared with Watchdog Timer (refer to Figure 7-6 for detailed block diagram).  
FIGURE 7-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetch  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
T0  
T0+1  
T0+2  
NT0  
NT0  
NT0  
NT0+1  
NT0+2  
TMR0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
1997 Microchip Technology Inc.  
DS30444E - page 45  
 
 
PIC16C9XX  
FIGURE 7-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
6  
NT0  
TMR0  
Instruction  
Execute  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
FIGURE 7-4: TIMER0 INTERRUPT TIMING  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
OSC1  
CLKOUT(3)  
Timer0  
FEh  
FFh  
00h  
01h  
02h  
1
1
T0IF bit  
(INTCON<2>)  
GIE bit  
(INTCON<7>)  
INSTRUCTION  
FLOW  
PC  
PC  
PC +1  
PC +1  
0004h  
0005h  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Instruction  
executed  
Inst (PC-1)  
Dummy cycle  
Dummy cycle  
Inst (0004h)  
Inst (PC)  
Note 1: Interrupt flag bit T0IF is sampled here (every Q1).  
2: Interrupt latency = 4TCY where TCY = instruction cycle time.  
3: CLKOUT is available only in RC oscillator mode.  
DS30444E - page 46  
1997 Microchip Technology Inc.  
PIC16C9XX  
caler so that the prescaler output is symmetrical. For  
the external clock to meet the sampling requirement,  
the ripple-counter must be taken into account. There-  
fore, it is necessary for T0CKI to have a period of at  
least 4Tosc (and a small RC delay of 40 ns) divided by  
the prescaler value. The only requirement on T0CKI  
high and low time is that they do not violate the mini-  
mum pulse width requirement of 10 ns. Refer to param-  
eters 40, 41 and 42 in the electrical specification of the  
desired device.  
7.2  
Using Timer0 with an External Clock  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
7.2.1  
EXTERNAL CLOCK SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks (Figure 7-5).  
Therefore, it is necessary for T0CKI to be high for at  
least 2Tosc (and a small RC delay of 20 ns) and low for  
at least 2Tosc (and a small RC delay of 20 ns). Refer to  
the electrical specification of the desired device.  
7.2.2  
TMR0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the Timer0 mod-  
ule is actually incremented. Figure 7-5 shows the delay  
from the external clock edge to the timer incrementing.  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple-counter type pres-  
FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
misses sampling  
External Clock Input or  
(2)  
Prescaler output  
(1)  
(3)  
External Clock/Prescaler  
Output after sampling  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc).  
Therefore, the error in measuring the interval between two edges on Timer0 input = ±4Tosc max.  
2: External clock if no prescaler selected, Prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
1997 Microchip Technology Inc.  
DS30444E - page 47  
 
PIC16C9XX  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF 1, MOVWF 1,  
BSF 1,x....etc.) will clear the prescaler count. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler count along with the Watchdog Timer. The  
prescaler is not readable or writable.  
7.3  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer (Figure 7-6). For simplicity, this counter is being  
referred to as “prescaler” throughout this data sheet.  
Note that the prescaler may be used by either the  
Timer0 module or the WDT but not both. Thus, a pres-  
caler assignment for the Timer0 module means that  
there is no prescaler for the Watchdog Timer, and  
vice-versa.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
The PSA and PS2:PS0 bits (OPTION<3:0>) determine  
the prescaler assignment and prescale ratio.  
FIGURE 7-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (=Fosc/4)  
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION<5:0>).  
DS30444E - page 48  
1997 Microchip Technology Inc.  
 
PIC16C9XX  
7.3.1  
SWITCHING PRESCALER ASSIGNMENT  
Note: To avoid an unintended device RESET, the  
following instruction sequence (shown in  
Example 7-1) must be executed when  
changing the prescaler assignment from  
Timer0 to the WDT. This precaution must  
be followed even if the WDT is disabled.  
The prescaler assignment is fully under software con-  
trol, i.e., it can be changed “on the fly” during program  
execution.  
EXAMPLE 7-1: CHANGING PRESCALER (TIMER0WDT)  
1) BSF  
STATUS, RP0  
;Select Bank1  
2) MOVLW b'xx0x0xxx'  
3) MOVWF OPTION_REG  
;Select clock source and prescale value of  
Lines 2 and 3 do NOT have to  
be included if the final desired  
prescale value is other than 1:1.  
If 1:1 is final desired value, then  
a temporary prescale value is  
set in lines 2 and 3 and the final  
prescale value will be set in lines  
10 and 11.  
;other than 1:1  
4) BCF  
5) CLRF  
6) BSF  
STATUS, RP0  
TMR0  
;Select Bank0  
;Clear TMR0 and prescaler  
STATUS, RP1  
;Select Bank1  
7) MOVLW b'xxxx1xxx'  
8) MOVWF OPTION_REG  
9) CLRWDT  
;Select WDT, do not change prescale value  
;
;Clears WDT and prescaler  
10) MOVLW b'xxxx1xxx'  
11) MOVWF OPTION_REG  
;Select new prescale value and WDT  
;
12) BCF  
STATUS, RP0  
;Select Bank0  
To change prescaler from the WDT to the Timer0 mod-  
ule use the precaution shown in Example 7-2.  
EXAMPLE 7-2: CHANGING PRESCALER (WDTTIMER0)  
CLRWDT  
BSF  
;Clear WDT and prescaler  
STATUS, RP0 ;Select Bank1  
MOVLW  
MOVWF  
BCF  
b'xxxx0xxx' ;Select TMR0, new prescale value and  
OPTION_REG ;clock source  
STATUS, RP0 ;Select Bank0  
TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER0  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h, 101h  
TMR0  
Timer0 module’s register  
xxxx xxxx uuuu uuuu  
RBIF 0000 000x 0000 000u  
0Bh, 8Bh,  
10Bh, 18Bh  
INTCON GIE  
PEIE  
T0IE  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
81h, 181h  
85h  
OPTION RBPU INTEDG  
TRISA  
T0CS  
PS0  
1111 1111 1111 1111  
--11 1111 --11 1111  
PORTA Data Direction Control Register  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
1997 Microchip Technology Inc.  
DS30444E - page 49  
 
 
PIC16C9XX  
NOTES:  
DS30444E - page 50  
1997 Microchip Technology Inc.  
PIC16C9XX  
Timer1 can be turned on and off using the control bit  
TMR1ON (T1CON<0>).  
8.0  
TIMER1 MODULE  
Timer1 is a 16-bit timer/counter consisting of two 8-bit  
registers (TMR1H and TMR1L) which are readable and  
writable. The TMR1 Register pair (TMR1H:TMR1L)  
increments from 0000h to FFFFh and rolls over to  
0000h.The TMR1 Interrupt, if enabled, is generated on  
overflow which is latched in interrupt flag bit TMR1IF  
(PIR1<0>). This interrupt can be enabled/disabled by  
setting/clearing TMR1 interrupt enable bit TMR1IE  
(PIE1<0>).  
Timer1 also has an internal “reset input”.This reset can  
be generated by the CCP module (Section 10.0).  
Figure 8-1 shows the Timer1 control register.  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs.  
Timer1 can operate in one of two modes:  
• As a timer  
• As a counter  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
In timer mode, Timer1 increments every instruction  
cycle. In counter mode, it increments on every rising  
edge of the external clock input.  
FIGURE 8-1: T1CON:TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit0  
R
= Readable bit  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3:  
bit 2:  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1 = Oscillator is enabled  
0 = Oscillator is shut off  
Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1  
1 = Do not synchronize external clock input  
0 = Synchronize external clock input  
TMR1CS = 0  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1:  
bit 0:  
TMR1CS: Timer1 Clock Source Select bit  
1 = External clock from pin T1CKI (on the rising edge)  
0 = Internal clock (Fosc/4)  
TMR1ON: Timer1 On bit  
1 = Enables Timer1  
0 = Stops Timer1  
1997 Microchip Technology Inc.  
DS30444E - page 51  
 
PIC16C9XX  
8.2.1  
EXTERNAL CLOCK INPUT TIMING FOR  
SYNCHRONIZED COUNTER MODE  
8.1  
Timer1 Operation in Timer Mode  
Timer mode is selected by clearing the TMR1CS  
(T1CON<1>) bit. In this mode, the input clock to the  
timer is Fosc/4. The synchronize control bit T1SYNC  
(T1CON<2>) has no effect since the internal clock is  
always in sync.  
When an external clock input is used for Timer1 in syn-  
chronized counter mode, it must meet certain require-  
ments. The external clock requirement is due to  
internal phase clock (Tosc) synchronization. Also, there  
is a delay in the actual incrementing of TMR1 after syn-  
chronization.  
8.2  
Timer1 Operation in Synchronized  
Counter Mode  
When the prescaler is 1:1, the external clock input is  
the same as the prescaler output. The synchronization  
of T1CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T1CKI to be high for at least 2Tosc (and  
a small RC delay of 20 ns) and low for at least 2Tosc  
(and a small RC delay of 20 ns). Refer to the appropri-  
ate electrical specifications, parameters 45, 46, and 47.  
Counter mode is selected by setting bit TMR1CS. In  
this mode the timer increments on every rising edge of  
clock input on pin RC1/T1OSI when bit T1OSCEN is  
set or pin RC0/T1OSO/T1CKI when bit T1OSCEN is  
cleared.  
If T1SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The pres-  
caler is an asynchronous ripple-counter.  
When a prescaler other than 1:1 is used, the external  
clock input is divided by the asynchronous rip-  
ple-counter type prescaler so that the prescaler output  
is symmetrical. In order for the external clock to meet  
the sampling requirement, the ripple-counter must be  
taken into account.Therefore, it is necessary for T1CKI  
to have a period of at least 4Tosc (and a small RC delay  
of 40 ns) divided by the prescaler value. The only  
requirement on T1CKI high and low time is that they do  
not violate the minimum pulse width requirements of  
10 ns). Refer to the appropriate electrical specifica-  
tions, parameters 40, 42, 45, 46, and 47.  
In this configuration, during SLEEP mode, Timer1 will  
not increment even if the external clock is present,  
since the synchronization circuit is shut off. The pres-  
caler however will continue to increment.  
FIGURE 8-2: TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
clock input  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
Fosc/4  
Internal  
0
(1)  
Clock  
2
SLEEP input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS30444E - page 52  
1997 Microchip Technology Inc.  
PIC16C9XX  
8.3  
Timer1 Operation in Asynchronous  
Counter Mode  
EXAMPLE 8-1: READING A 16-BIT  
FREE-RUNNING TIMER  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during SLEEP and can  
generate an interrupt on overflow which will wake-up  
the processor. However, special precautions in soft-  
ware are needed to read-from or write-to the Timer1  
register pair (TMR1H:TMR1L) (Section 8.3.2).  
; All interrupts are disabled  
MOVF TMR1H, W ;Read high byte  
MOVWF TMPH  
MOVF TMR1L, W ;Read low byte  
MOVWF TMPL  
MOVF TMR1H, W ;Read high byte  
SUBWF TMPH,  
;
;
W
;Sub 1st read  
; with 2nd read  
BTFSC STATUS,Z ;Is result = 0  
GOTO CONTINUE ;Good 16-bit read  
In asynchronous counter mode, Timer1 cannot be used  
as a time-base for capture or compare operations.  
;
; TMR1L may have rolled over between the read  
; of the high and low bytes. Reading the high  
; and low bytes now will read a good value.  
;
8.3.1  
EXTERNAL CLOCK INPUT TIMING WITH  
UNSYNCHRONIZED CLOCK  
If control bit T1SYNC is set, the timer will increment  
completely asynchronously. The input clock must meet  
certain minimum high time and low time requirements,  
as specified in timing parameters 45, 46, and 47.  
MOVF  
MOVWF TMPH  
MOVF TMR1L, W ;Read low byte  
MOVWF TMPL  
; Re-enable the Interrupt (if required)  
CONTINUE ;Continue with your code  
TMR1H, W ;Read high byte  
;
;
8.3.2  
READING AND WRITING TMR1 IN  
ASYNCHRONOUS COUNTER MODE  
8.4  
Timer1 Oscillator  
Reading TMR1H or TMR1L while the timer is running,  
from an external asynchronous clock, will ensure a  
valid read (taken care of in hardware). However, the  
user should keep in mind that reading the 16-bit timer  
in two 8-bit values itself poses certain problems since  
the timer may overflow between the reads.  
A crystal oscillator circuit is built in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>).The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 8-1 shows the capacitor  
selection for the Timer1 oscillator.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers while the  
register is incrementing. This may produce an unpre-  
dictable value in the timer register.  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
Reading the 16-bit value requires some care.  
Example 8-1 is an example routine to read the 16-bit  
timer value. This is useful if the timer cannot be  
stopped.  
TABLE 8-1: CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
These values are for design guidance only.  
Crystals Tested:  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P  
STD XTL 200.000 kHz  
± 20 PPM  
± 20 PPM  
Note 1: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
1997 Microchip Technology Inc.  
DS30444E - page 53  
 
 
 
PIC16C9XX  
8.5  
Resetting Timer1 using the CCP  
Trigger Output  
8.6  
Resetting of Timer1 Register Pair  
(TMR1H:TMR1L)  
If the CCP1 module is configured in compare mode to  
generate a “special event trigger" (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer1.  
TMR1H and TMR1L registers are not reset on a POR  
or any other reset except by the CCP1 special event  
trigger.  
T1CON register is reset to 00h on a Power-on Reset. In  
any other reset, the register is unaffected.  
Note: The special event trigger from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
8.7  
Timer1 Prescaler  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature. If  
Timer1 is running in asynchronous counter mode, this  
reset operation may not work.  
The prescaler counter is cleared on writes to the  
TMR1H or TMR1L registers.  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1, the write will take prece-  
dence.  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair effectively becomes the period register for  
Timer1.  
TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
Power-on  
Reset  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh, 18Bh  
00-- 0000 00-- 0000  
00-- 0000 00-- 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
0Ch  
PIR1  
LCDIF ADIF(1)  
LCDIE ADIE(1)  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
8Ch  
PIE1  
0Eh  
TMR1L  
TMR1H  
T1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
0Fh  
10h  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by theTimer1 module.  
Note 1: Bits ADIE and ADIF are reserved on the PIC16C923, always maintain these bits clear.  
DS30444E - page 54  
1997 Microchip Technology Inc.  
PIC16C9XX  
9.1  
Timer2 Prescaler and Postscaler  
9.0  
TIMER2 MODULE  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 is an 8-bit timer with a prescaler and a  
postscaler. It can be used as the PWM time-base for  
the PWM mode of the CCP module.The TMR2 register  
is readable and writable, and is cleared on any device  
reset.  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device reset (Power-on Reset, MCLR Reset,  
or Watchdog Timer Reset)  
The input clock (FOSC/4) has a prescale option of 1:1,  
1:4  
or  
1:16  
(selected  
by  
control  
bits  
TMR2 will not clear when T2CON is written.  
T2CKPS1:T2CKPS0 (T2CON<1:0>)).  
9.2  
Output of TMR2  
The Timer2 module has an 8-bit period register, PR2.  
TMR2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register.The PR2 register is set  
during RESET.  
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module which optionally uses  
it to generate shift clock.  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
FIGURE 9-1: TIMER2 BLOCK DIAGRAM  
Sets flag  
TMR2  
output (1)  
bit TMR2IF  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
Prescaler  
1:1, 1:4, 1:16  
Reset  
TMR2 reg  
Fosc/4  
Figure 9-2 shows the Timer2 control register.  
Postscaler  
to 1:1  
2
Comparator  
1:16  
EQ  
4
PR2 reg  
Note 1: TMR2 register output can be software selected  
by the SSP Module as the source clock.  
FIGURE 9-2: T2CON:TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit0  
R
= Readable bit  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6-3: TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2:  
TMR2ON: Timer2 On bit  
1 = Timer2 is on  
0 = Timer2 is off  
bit 1-0: T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
1997 Microchip Technology Inc.  
DS30444E - page 55  
 
PIC16C9XX  
TABLE 9-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
Power-on  
Reset  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh, 18Bh  
ADIF(1)  
ADIE(1)  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
00-- 0000 00-- 0000  
00-- 0000 00-- 0000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Ch  
PIR1  
LCDIF  
LCDIE  
8Ch  
PIE1  
11h  
TMR2  
T2CON  
PR2  
Timer2 module’s register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
12h  
92h  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer2 module.  
Note 1: Bits ADIE and ADIF are reserved on the PIC16C923, always maintain these bits clear.  
DS30444E - page 56  
1997 Microchip Technology Inc.  
PIC16C9XX  
For use of the CCP module, refer to the Embedded  
Control Handbook, "Using the CCP Modules" (AN594).  
10.0 CAPTURE/COMPARE/PWM  
(CCP) MODULE  
The CCP (Capture/Compare/PWM) module contains a  
16-bit register which can operate as a 16-bit capture  
register, as a 16-bit compare register, or as a PWM  
master/slave duty cycle register. Table 10-1 shows the  
timer resources used by the CCP module.  
TABLE 10-1: CCP MODE - TIMER RESOURCE  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All three are readable and writ-  
able.  
Figure 10-1 shows the CCP1CON register.  
FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
- n =Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: CCP1X:CCP1Y: PWM Least Significant bits  
Capture Mode  
Unused  
Compare Mode  
Unused  
PWM Mode  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0: CCP1M3:CCP1M0: CCP1 Mode Select bits  
0000= Capture/Compare/PWM off (resets CCP1 module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (bit CCP1IF is set)  
1001= Compare mode, clear output on match (bit CCP1IF is set)  
1010= Compare mode, generate software interrupt on match (bit CCP1IF is set, CCP1 pin is unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1)  
11xx= PWM mode  
1997 Microchip Technology Inc.  
DS30444E - page 57  
 
 
PIC16C9XX  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore the first capture may be from  
a non-zero prescaler. Example 10-1 shows the recom-  
mended method for switching between capture prescal-  
ers.This example also clears the prescaler counter and  
will not generate the “false” interrupt.  
10.1  
Capture Mode  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1 (Figure 10-2).An event is defined as:  
• Every falling edge  
• Every rising edge  
• Every 4th rising edge  
• Every 16th rising edge  
EXAMPLE 10-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value will be lost.  
CLRF  
CCP1CON  
; Turn CCP module off  
MOVLW NEW_CAPT_PS ; Load the W reg with  
; the new prescaler  
; mode value and CCP ON  
MOVWF CCP1CON  
; Load CCP1CON with  
; this value  
10.1.1 CCP PIN CONFIGURATION  
10.2  
Compare Mode  
In capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
Note: If the RC2/CCP1 pin is configured as an  
output, a write to the port can cause a cap-  
ture condition.  
• Driven High  
• Driven Low  
• Remains Unchanged  
FIGURE 10-2: CAPTURE MODE OPERATION  
BLOCK DIAGRAM  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, a compare interrupt is also generated.  
Set CCP1IF  
PIR1<2>  
CCP  
Prescaler  
FIGURE 10-3: COMPARE MODE  
OPERATION BLOCK DIAGRAM  
÷ 1, 4, 16  
RC2/CCP1  
pin  
CCPR1H  
CCPR1L  
TMR1L  
Capture  
Enable  
Special event trigger will reset Timer1, but not  
set interrupt flag bit TMR1IF (PIR1<0>).  
and  
edge detect  
TMR1H  
Set CCP1IF  
PIR1<2>  
CCP1CON<3:0>  
Q’s  
CCPR1H CCPR1L  
Q
S
R
10.1.2 TIMER1 MODE SELECTION  
Output  
Logic  
Comparator  
match  
RC2/CCP1  
Timer1 must be running in timer mode or synchronized  
counter mode for the CCP module to use the capture  
feature. In asynchronous counter mode the capture  
operation may not work.  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
10.1.3 SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep  
enable bit CCP1IE (PIE1<2>) clear to avoid false inter-  
rupts and should clear flag bit CCP1IF following any  
such change in operating mode.  
10.2.1 CCP PIN CONFIGURATION  
The user must configure the RC2/CCP1 pin as an out-  
put by clearing the TRISC<2> bit.  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
10.1.4 CCP PRESCALER  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
reset will clear the prescaler counter.  
DS30444E - page 58  
1997 Microchip Technology Inc.  
 
 
PIC16C9XX  
10.2.1 TIMER1 MODE SELECTION  
FIGURE 10-4: SIMPLIFIED PWM BLOCK  
DIAGRAM  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
CCP1CON<5:4>  
Duty cycle registers  
CCPR1L  
10.2.2 SOFTWARE INTERRUPT MODE  
When Generate Software Interrupt is chosen, the  
CCP1 pin is not affected. Only a CCP interrupt is gen-  
erated (if enabled).  
CCPR1H (Slave)  
Q
R
S
Comparator  
TMR2  
10.2.3 SPECIAL EVENT TRIGGER  
RC1/CCP1  
(Note 1)  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
TRISC<2>  
Comparator  
The special event trigger output of CCP1 resets the  
TMR1 register pair and starts an A/D conversion. This  
allows the CCPR1H:CCPR1L register pair to effectively  
be a 16-bit programmable period register for Timer1.  
Clear Timer,  
CCP1 pin and  
latch D.C.  
PR2  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock  
or 2 bits of the prescaler to create 10-bit time-base.  
Note: The "special event trigger" from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
A PWM output (Figure 10-5) has a time-base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
10.3  
PWM Mode  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
FIGURE 10-5: PWM OUTPUT  
Period  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
TMR2 = PR2  
Duty Cycle  
Figure 10-4 shows a simplified block diagram of the  
CCP module in PWM mode.  
TMR2 = Duty Cycle  
TMR2 = PR2  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 10.3.3.  
10.3.1 PWM PERIOD  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
PWM period = [ (PR2) + 1 ] • 4 • TOSC •  
(TMR2 prescale value)  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
• TMR2 is cleared  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
1997 Microchip Technology Inc.  
DS30444E - page 59  
 
 
PIC16C9XX  
EXAMPLE 10-2: PWM PERIOD AND DUTY  
CYCLE CALCULATION  
Note: The Timer2 postscaler (Section 9.0) is not  
used in the determination of the PWM fre-  
quency. The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
Desired PWM frequency is 31.25 kHz,  
Fosc = 8 MHz  
TMR2 prescale = 1  
1/31.25 kHz = [ (PR2) + 1 ] 4 1/8 MHz 1  
10.3.2 PWM DUTY CYCLE  
32 µs  
= [ (PR2) + 1 ] 4 125 ns 1  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available: the CCPR1L contains  
the eight MSbs and CCP1CON<5:4> contains the two  
LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
PR2  
= 63  
Find the maximum resolution of the duty cycle that can  
be used with a 31.25 kHz frequency and 8 MHz oscilla-  
tor:  
1/31.25 kHz = 2PWM RESOLUTION 1/8 MHz 1  
32 µs  
256  
= 2PWM RESOLUTION 125 ns 1  
= 2PWM RESOLUTION  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
Tosc • (TMR2 prescale value)  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
log(256)  
8.0  
= (PWM Resolution) log(2)  
= PWM Resolution  
At most, an 8-bit resolution duty cycle can be obtained  
from a 31.25 kHz frequency and a 8 MHz oscillator, i.e.,  
0 CCPR1L:CCP1CON<5:4> 255. Any value greater  
than 255 will result in a 100% duty cycle.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
In order to achieve higher resolution, the PWM fre-  
quency must be decreased. In order to achieve higher  
PWM frequency, the resolution must be decreased.  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
Table 10-2 lists example PWM frequencies and resolu-  
tions for Fosc = 8 MHz. TMR2 prescaler and PR2 val-  
ues are also shown.  
Maximum PWM resolution (bits) for a given PWM fre-  
quency:  
10.3.3 SET-UP FOR PWM OPERATION  
FOSC  
log( FPWM )  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
=
bits  
log(2)  
1. Set the PWM period by writing to the PR2 regis-  
ter.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
Note: If the PWM duty cycle value is longer than  
the PWM period the CCP1 pin will not be  
cleared.  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP module for PWM operation.  
TABLE 10-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 8 MHz  
PWM Frequency  
Timer Prescaler (1, 4, 16)  
488 Hz 1.95 kHz 7.81 kHz 31.25 kHz 62.5 kHz  
250 kHz  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0x07  
5
PR2 Value  
0xFF  
10  
0xFF  
10  
Maximum Resolution (bits)  
DS30444E - page 60  
1997 Microchip Technology Inc.  
 
PIC16C9XX  
TABLE 10-3: REGISTERS ASSOCIATED WITH TIMER1, CAPTURE AND COMPARE  
Value on  
Power-on  
Reset  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh, 18Bh  
00-- 0000 00-- 0000  
00-- 0000 00-- 0000  
0Ch  
8Ch  
87h  
0Eh  
0Fh  
10h  
15h  
16h  
PIR1  
LCDIF ADIF(1)  
LCDIE ADIE(1)  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
PIE1  
TRISC  
PORTC Data Direction Control Register  
--11 1111 --11 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --00 0000  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
CCPR1H  
CCP1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Capture/Compare/PWM1 (LSB)  
Capture/Compare/PWM1 (MSB)  
17h  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as '0’. Shaded cells are not used in these modes.  
Note 1: Bits ADIE and ADIF reserved on the PIC16C923, always maintain these bits clear.  
TABLE 10-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
Power-on  
Reset  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh, 18Bh  
0Ch  
8Ch  
87h  
11h  
92h  
12h  
15h  
16h  
PIR1  
LCDIF  
LCDIE  
ADIF(1)  
ADIE(1)  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF 00-- 0000 00-- 0000  
TMR1IE 00-- 0000 00-- 0000  
--11 1111 --11 1111  
PIE1  
TRISC  
TMR2  
PORTC Data Direction Control Register  
Timer2 module’s register  
0000 0000 0000 0000  
PR2  
Timer2 module’s Period register  
1111 1111 1111 1111  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Capture/Compare/PWM1 (LSB)  
Capture/Compare/PWM1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
17h  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as '0’. Shaded cells are not used in this mode.  
Note 1: Bits ADIE and ADIF reserved on the PIC16C923, always maintain these bits clear.  
1997 Microchip Technology Inc.  
DS30444E - page 61  
PIC16C9XX  
NOTES:  
DS30444E - page 62  
1997 Microchip Technology Inc.  
PIC16C9XX  
play drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
11.0 SYNCHRONOUS SERIAL  
PORT (SSP) MODULE  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
• Serial Peripheral Interface (SPI)  
2
• Inter-Integrated Circuit (I C)  
Refer to Application Note AN578, "Use of the SSP  
2
Module in the I C Multi-Master Environment."  
FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)  
R/W-0 R/W-0  
SMP CKE  
bit7  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit0  
- n =Value at POR reset  
bit 7:  
bit 6:  
SMP: SPI data input sample phase  
SPI Master Mode  
1 = Input data sampled at end of data output time  
0 = Input data sampled at middle of data output time  
SPI Slave Mode  
SMP must be cleared when SPI is used in slave mode  
CKE: SPI Clock Edge Select (Figure 11-5, Figure 11-6, and Figure 11-7)  
CKP = 0  
1 = Data transmitted on rising edge of SCK  
0 = Data transmitted on falling edge of SCK  
CKP = 1  
1 = Data transmitted on falling edge of SCK  
0 = Data transmitted on rising edge of SCK  
2
bit 5:  
bit 4:  
D/A: Data/Address bit (I C mode only)  
1 = Indicates that the last byte received or transmitted was data  
0 = Indicates that the last byte received or transmitted was address  
2
P: Stop bit (I C mode only. This bit is cleared when the SSP module is disabled, or when the Start bit was  
detected last)  
1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET)  
0 = Stop bit was not detected last  
2
bit 3:  
bit 2:  
S: Start bit (I C mode only. This bit is cleared when the SSP module is disabled, or when the Stop bit was  
detected last)  
1 = Indicates that a start bit has been detected last (this bit is '0' on RESET)  
0 = Start bit was not detected last  
2
R/W: Read/Write bit information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next start bit, stop bit, or ACK bit.  
1 = Read  
0 = Write  
2
bit 1:  
bit 0:  
UA: Update Address (10-bit I C mode only)  
1 = Indicates that the user needs to update the address in the SSPADD register  
0 = Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes)  
1 = Receive complete, SSPBUF is full  
0 = Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only)  
1 = Transmit in progress, SSPBUF is full  
0 = Transmit complete, SSPBUF is empty  
1997 Microchip Technology Inc.  
DS30444E - page 63  
PIC16C9XX  
FIGURE 11-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WCOL SSPOV SSPEN  
bit7  
SSPM3 SSPM2 SSPM1 SSPM0  
bit0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7:  
WCOL: Write Collision Detect bit  
1 = The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0 = No collision  
bit 6:  
SSPOV: Receive Overflow Indicator bit  
In SPI mode  
1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow,  
the data in SSPSR is lost. Overflow can only occur in slave mode.The user must read the SSPBUF, even  
if only transmitting data, to avoid setting overflow. In master mode the overflow bit is not set since each  
new reception (and transmission) is initiated by writing to the SSPBUF register.  
0 = No overflow  
2
In I C mode  
1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don’t care"  
in transmit mode. SSPOV must be cleared in software in either mode.  
0 = No overflow  
bit 5:  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode  
1 = Enables serial port and configures SCK, SDO, and SDI as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
2
In I C mode  
1 = Enables the serial port and configures the SDA and SCL pins as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
In both modes, when enabled, these pins must be properly configured as input or output.  
bit 4:  
CKP: Clock Polarity Select bit  
In SPI mode  
1 = Idle state for clock is a high level  
0 = Idle state for clock is a low level  
2
In I C mode  
SCK release control  
1 = Enable clock  
0 = Holds clock low (clock stretch) (Used to ensure data setup time)  
bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI master mode, clock = FOSC/4  
0001= SPI master mode, clock = FOSC/16  
0010= SPI master mode, clock = FOSC/64  
0011= SPI master mode, clock = TMR2 output/2  
0100= SPI slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin  
2
0110= I C slave mode, 7-bit address  
2
0111= I C slave mode, 10-bit address  
2
1011= I C Firmware controlled master mode (slave idle)  
2
1110= I C slave mode, 7-bit address with start and stop bit interrupts enabled  
2
1111= I C slave mode, 10-bit address with start and stop bit interrupts enabled  
DS30444E - page 64  
1997 Microchip Technology Inc.  
PIC16C9XX  
11.1  
SPI Mode  
EXAMPLE 11-1: LOADING THE SSPBUF  
(SSPSR) REGISTER  
The SPI mode allows 8-bits of data to be synchro-  
nously transmitted and received simultaneously. To  
accomplish communication, typically three pins are  
used:  
BCF  
BSF  
STATUS, RP1  
STATUS, RP0  
;Select Bank1  
;
LOOP BTFSS SSPSTAT, BF  
;Has data been  
;received  
• Serial Data Out (SDO) RC5/SDO  
• Serial Data In (SDI) RC4/SDI  
• Serial Clock (SCK) RC3/SCK  
;(transmit  
;complete)?  
;No  
GOTO LOOP  
BCF  
STATUS, RP0  
;Select Bank0  
;W reg = contents  
; of SSPBUF  
;Save in user RAM  
Additionally a fourth pin may be used when in a slave  
mode of operation:  
MOVF SSPBUF, W  
• Slave Select (SS) RA5/AN4/SS (the AN4 function  
is implemented on the PIC16C924 only)  
MOVWF RXDATA  
MOVF TXDATA, W  
;W reg = contents  
; of TXDATA  
;New data to xmit  
When initializing the SPI, several options need to be  
specified.This is done by programming the appropriate  
control bits in the SSPCON register (SSPCON<5:0>)  
and SSPSTAT<7:6>. These control bits allow the fol-  
lowing to be specified:  
MOVWF SSPBUF  
The block diagram of the SSP module, when in SPI  
mode (Figure 11-3), shows that the SSPSR is not  
directly readable or writable, and can only be accessed  
from addressing the SSPBUF register. Additionally, the  
SSP status register (SSPSTAT) indicates the various  
status conditions.  
• Master Mode (SCK is the clock output)  
• Slave Mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
• Clock edge (output data on rising/falling edge of  
SCK)  
FIGURE 11-3: SSP BLOCK DIAGRAM  
(SPI MODE)  
• Clock Rate (Master mode only)  
Internal  
data bus  
• Slave Select Mode (Slave mode only)  
The SSP consists of a transmit/receive Shift Register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR,  
until the received data is ready. Once the 8-bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then the buffer full detect bit BF  
(SSPSTAT<0>) and interrupt flag bit SSPIF (PIR1<3>)  
are set. This double buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
reading the data that was just received. Any write to the  
SSPBUF register during transmission/reception of data  
will be ignored, and the write collision detect bit WCOL  
(SSPCON<7>) will be set. User software must clear the  
WCOL bit so that it can be determined if the following  
write(s) to the SSPBUF register completed success-  
fully. When the application software is expecting to  
receive valid data, the SSPBUF should be read before  
the next byte of data to transfer is written to the  
SSPBUF. Buffer full bit BF (SSPSTAT<0>) indicates  
when SSPBUF has been loaded with the received data  
(transmission is complete). When the SSPBUF is read,  
bit BF is cleared. This data may be irrelevant if the SPI  
is only a transmitter. Generally the SSP Interrupt is  
used to determine when the transmission/reception  
has completed.The SSPBUF must be read and/or writ-  
ten. If the interrupt method is not going to be used, then  
software polling can be done to ensure that a write col-  
lision does not occur. Example 11-1 shows the loading  
of the SSPBUF (SSPSR) for data transmission. The  
shaded instruction is only required if the received data  
is meaningful.  
Read  
Write  
SSPBUF reg  
SSPSR reg  
shift  
clock  
RC4/SDI/SDA  
RC5/SDO  
bit0  
Control  
Enable  
SS  
RA5/AN4/SS  
Edge  
Select  
2
Clock Select  
SSPM3:SSPM0  
4
TMR2 output  
2
Edge  
Select  
TCY  
Prescaler  
4, 16, 64  
RC3/SCK/  
SCL  
TRISC<3>  
1997 Microchip Technology Inc.  
DS30444E - page 65  
 
 
PIC16C9XX  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON<5>) must be set.To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
ister, and then set bit SSPEN. This configures the SDI,  
SDO, SCK, and SS pins as serial port pins. For the pins  
to behave as the serial port function, they must have  
their data direction bits (in the TRISC register) appro-  
priately programmed. That is:  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2) is to broadcast data by  
the firmware protocol.  
In master mode the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SCK output could be disabled  
(programmed as an input). The SSPSR register will  
continue to shift in the signal present on the SDI pin at  
the programmed clock rate. As each byte is received, it  
will be loaded into the SSPBUF register as if a normal  
received byte (interrupts and status bits appropriately  
set). This could be useful in receiver applications as a  
“line activity monitor” mode.  
• SDI must have TRISC<4> set  
• SDO must have TRISC<5> cleared  
• SCK (Master mode) must have TRISC<3>  
cleared  
• SCK (Slave mode) must have TRISC<3> set  
• SS must have TRISA<5> set  
In slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK.When the last  
bit is latched the interrupt flag bit SSPIF (PIR1<3>) is  
set.  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value. An example  
would be in master mode where you are only sending  
data (to a display driver), then both SDI and SS could  
be used as general purpose outputs by clearing their  
corresponding TRIS register bits.  
The clock polarity is selected by appropriately program-  
ming bit CKP (SSPCON<4>). This then would give  
waveforms for SPI communication as shown in  
Figure 11-5, Figure 11-6, and Figure 11-7 where the  
MSB is transmitted first. In master mode, the SPI clock  
rate (bit rate) is user programmable to be one of the fol-  
lowing:  
Figure 11-4 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge, and latched on the opposite edge  
of the clock. Both processors should be programmed to  
same Clock Polarity (CKP), then both controllers would  
send and receive data at the same time. Whether the  
data is meaningful (or dummy data) depends on the  
application software. This leads to three scenarios for  
data transmission:  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
This allows a maximum bit clock frequency (at 8 MHz)  
of 2 MHz. When in slave mode the external clock must  
meet the minimum high and low times.  
• Master sends data — Slave sends dummy data  
• Master sends data — Slave sends data  
In sleep mode, the slave can transmit and receive data  
and wake the device from sleep.  
• Master sends dummy data — Slave sends data  
FIGURE 11-4: SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM3:SSPM0 = 00xxb  
SPI Slave SSPM3:SSPM0 = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
Shift Register  
(SSPSR)  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
DS30444E - page 66  
1997 Microchip Technology Inc.  
 
PIC16C9XX  
The SS pin allows a synchronous slave mode. The  
SPI must be in slave mode (SSPCON<3:0> = 04h)  
and the TRISA<5> bit must be set for the synchro-  
nous slave mode to be enabled. When the SS pin is  
low, transmission and reception are enabled and the  
SDO pin is driven. When the SS pin goes high, the  
SDO pin is no longer driven, even if in the middle of  
a transmitted byte, and becomes a floating output.  
External pull-up/ pull-down resistors may be desirable,  
depending on the application.  
Note: When the SPI is in Slave Mode with SS pin  
control enabled, (SSPCON<3:0> = 0100)  
the SPI module will reset if the SS pin is set  
to VDD.  
Note: If the SPI is used in Slave Mode with  
CKE = '1', then the SS pin control must be  
enabled.  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver the SDO pin can be configured as  
an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
FIGURE 11-5: SPI MODE TIMING, MASTER MODE  
SCK (CKP = 0,  
CKE = 0)  
SCK (CKP = 0,  
CKE = 1)  
SCK (CKP = 1,  
CKE = 0)  
SCK (CKP = 1,  
CKE = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SDI (SMP = 1)  
SSPIF  
bit7  
bit0  
FIGURE 11-6: SPI MODE TIMING (SLAVE MODE WITH CKE = 0)  
SS (optional)  
SCK (CKP = 0)  
SCK (CKP = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SSPIF  
1997 Microchip Technology Inc.  
DS30444E - page 67  
PIC16C9XX  
FIGURE 11-7: SPI MODE TIMING (SLAVE MODE WITH CKE = 1)  
SS  
(not optional)  
SCK (CKP = 0)  
SCK (CKP = 1)  
bit2  
SDO  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDI (SMP = 0)  
SSPIF  
bit7  
bit0  
TABLE 11-1: REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 000u  
10Bh, 18Bh  
0Ch  
8Ch  
13h  
14h  
85h  
87h  
PIR1  
LCDIF  
ADIF(1)  
SSPIF  
SSPIE  
CCP1IF  
TMR2IF  
TMR1IF  
TMR1IE  
00-- 0000  
00-- 0000  
xxxx xxxx  
0000 0000  
--11 1111  
--11 1111  
0000 0000  
00-- 0000  
00-- 0000  
uuuu uuuu  
0000 0000  
--11 1111  
--11 1111  
0000 0000  
PIE1  
LCDIE ADIE(1)  
CCP1IE TMR2IE  
SSPBUF  
SSPCON  
TRISA  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3 SSPM2  
SSPM1  
SSPM0  
PORTA Data Direction Control Register  
PORTC Data Direction Control Register  
TRISC  
SSPSTAT  
94h  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.  
Note 1: Bits ADIE and ADIF are reserved on the PIC16C923, always maintain these bits clear.  
DS30444E - page 68  
1997 Microchip Technology Inc.  
PIC16C9XX  
2
The output stages of the clock (SCL) and data (SDA)  
lines must have an open-drain or open-collector in  
order to perform the wired-AND function of the bus.  
External pull-up resistors are used to ensure a high  
level when no device is pulling the line down.The num-  
11.2  
I C Overview  
This section provides an overview of the Inter-Inte-  
grated Circuit (I C) bus, with Section 11.3 discussing  
the operation of the SSP module in I C mode.  
2
2
2
2
The I C bus is a two-wire serial interface developed by  
ber of devices that may be attached to the I C bus is  
the Philips Corporation. The original specification, or  
standard mode, was for data transfers of up to 100  
Kbps. An enhanced specification, or fast mode is not  
supported. This device will communicate with fast  
mode devices if attached to the same bus.  
limited only by the maximum bus loading specification  
of 400 pF.  
11.2.1 INITIATING AND TERMINATING DATA  
TRANSFER  
2
The I C interface employs a comprehensive protocol to  
During times of no data transfer (idle time), both the  
clock line (SCL) and the data line (SDA) are pulled high  
through the external pull-up resistors. The START and  
STOP conditions determine the start and stop of data  
transmission.The START condition is defined as a high  
to low transition of the SDA when the SCL is high. The  
STOP condition is defined as a low to high transition of  
the SDA when the SCL is high. Figure 11-8 shows the  
START and STOP conditions. The master generates  
these conditions for starting and terminating data trans-  
fer. Due to the definition of the START and STOP con-  
ditions, when data is being transmitted, the SDA line  
can only change state when the SCL line is low.  
ensure reliable transmission and reception of data.  
When transmitting data, one device is the “master”  
which initiates transfer on the bus and generates the  
clock signals to permit that transfer, while the other  
device(s) acts as the “slave.All portions of the slave  
protocol are implemented in the SSP module’s hard-  
ware, except general call support, while portions of the  
master protocol need to be addressed in the  
PIC16CXXX software. Table 11-2 defines some of the  
I C bus terminology. For additional information on the  
I C interface specification, refer to the Philips docu-  
ment “The I C bus and how to use it.#939839340011,  
which can be obtained from the Philips Corporation.  
2
2
2
2
In the I C interface protocol each device has an  
FIGURE 11-8: START AND STOP  
CONDITIONS  
address.When a master wishes to initiate a data trans-  
fer, it first transmits the address of the device that it  
wishes to “talk” to. All devices “listen” to see if this is  
their address. Within this address, a bit specifies if the  
master wishes to read-from/write-to the slave device.  
The master and slave are always in opposite modes  
(transmitter/receiver) of operation during a data trans-  
fer.That is they can be thought of as operating in either  
of these two relations:  
SDA  
S
SCL  
P
Change  
of Data  
Allowed  
Change  
of Data  
Allowed  
Start  
Condition  
Stop  
Condition  
• Master-transmitter and Slave-receiver  
• Slave-transmitter and Master-receiver  
In both cases the master generates the clock signal.  
2
TABLE 11-2: I C BUS TERMINOLOGY  
Term  
Description  
Transmitter  
Receiver  
Master  
The device that sends the data to the bus.  
The device that receives the data from the bus.  
The device which initiates the transfer, generates the clock and terminates the transfer.  
The device addressed by a master.  
Slave  
Multi-master  
More than one master device in a system. These masters can attempt to control the bus at the  
same time without corrupting the message.  
Arbitration  
Procedure that ensures that only one of the master devices will control the bus. This ensure that  
the transfer data does not get corrupted.  
Synchronization  
Procedure where the clock signals of two or more devices are synchronized.  
1997 Microchip Technology Inc.  
DS30444E - page 69  
 
 
PIC16C9XX  
2
11.2.2 ADDRESSING I C DEVICES  
FIGURE 11-11: SLAVE-RECEIVER  
ACKNOWLEDGE  
There are two address formats.The simplest is the 7-bit  
address format with a R/W bit (Figure 11-9). The more  
complex is the 10-bit address with a R/W bit  
(Figure 11-10). For 10-bit address format, two bytes  
must be transmitted with the first five bits specifying this  
to be a 10-bit address.  
Data  
Output by  
Transmitter  
Data  
Output by  
Receiver  
not acknowledge  
acknowledge  
SCL from  
Master  
9
8
2
1
FIGURE 11-9: 7-BIT ADDRESS FORMAT  
S
MSb  
LSb  
Clock Pulse for  
Acknowledgment  
Start  
Condition  
R/W ACK  
S
slave address  
Sent by  
Slave  
If the master is receiving the data (master-receiver), it  
generates an acknowledge signal for each received  
byte of data, except for the last byte. To signal the end  
of data to the slave-transmitter, the master does not  
generate an acknowledge (not acknowledge). The  
slave then releases the SDA line so the master can  
generate the STOP condition. The master can also  
generate the STOP condition during the acknowledge  
pulse for valid termination of data transfer.  
S
R/W  
ACK  
Start Condition  
Read/Write pulse  
Acknowledge  
2
FIGURE 11-10: I C 10-BIT ADDRESS  
FORMAT  
If the slave needs to delay the transmission of the next  
byte, holding the SCL line low will force the master into  
a wait state. Data transfer continues when the slave  
releases the SCL line.This allows the slave to move the  
received data or fetch the data it needs to transfer  
before allowing the clock to start. This wait state tech-  
nique can also be implemented at the bit level,  
Figure 11-12.The slave will inherently stretch the clock,  
when it is a transmitter, but will not when it is a receiver.  
The slave will have to clear the SSPCON<4> bit to  
enable clock stretching when it is a receiver.  
S
1 1 1 1 0 A9 A8 R/W ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK  
sent by slave  
= 0 for write  
S
- Start Condition  
R/W - Read/Write Pulse  
ACK - Acknowledge  
11.2.3 TRANSFER ACKNOWLEDGE  
All data must be transmitted per byte, with no limit to the  
number of bytes transmitted per data transfer. After  
each byte, the slave-receiver generates an acknowl-  
edge bit (ACK) (Figure 11-11). When a slave-receiver  
doesn’t acknowledge the slave address or received  
data, the master must abort the transfer. The slave  
must leave SDA high so that the master can generate  
the STOP condition (Figure 11-8).  
FIGURE 11-12: DATA TRANSFER WAIT STATE  
SDA  
MSB  
acknowledgment  
signal from receiver  
acknowledgment  
signal from receiver  
byte complete  
interrupt with receiver  
clock line held low while  
interrupts are serviced  
SCL  
S
1
2
7
8
9
1
2
3 8  
9
P
Start  
Condition  
Stop  
Condition  
Address  
R/W ACK Wait  
State  
Data  
ACK  
DS30444E - page 70  
1997 Microchip Technology Inc.  
 
 
 
 
PIC16C9XX  
Figure 11-13 and Figure 11-14 show Master-transmit-  
ter and Master-receiver data transfer sequences.  
is high), but occurs after a data transfer acknowledge  
pulse (not the bus-free state). This allows a master to  
send “commands” to the slave and then receive the  
requested information or to address a different slave  
device. This sequence is shown in Figure 11-15.  
When a master does not wish to relinquish the bus (by  
generating a STOP condition), a repeated START con-  
dition (Sr) must be generated.This condition is identical  
to the start condition (SDA goes high-to-low while SCL  
FIGURE 11-13: MASTER-TRANSMITTER SEQUENCE  
For 7-bit address:  
For 10-bit address:  
S Slave AddressR/W A1Slave Address A2  
S Slave AddressR/W A Data A Data A/A P  
First 7 bits  
Second byte  
'0' (write)  
data transferred  
(n bytes - acknowledge)  
(write)  
A master transmitter addresses a slave receiver with a  
7-bit address. The transfer direction is not changed.  
Data A  
Data A/A P  
A = acknowledge (SDA low)  
A = not acknowledge (SDA high)  
From master to slave  
S = Start Condition  
A master transmitter addresses a slave receiver  
with a 10-bit address.  
From slave to master  
P = Stop Condition  
FIGURE 11-14: MASTER-RECEIVER SEQUENCE  
For 10-bit address:  
S Slave AddressR/W A1Slave Address A2  
First 7 bits Second byte  
(write)  
For 7-bit address:  
S Slave AddressR/W A Data A Data A  
P
'1' (read) data transferred  
(n bytes - acknowledge)  
A master reads a slave immediately after the first byte.  
SrSlave AddressR/W A3 Data A Data A P  
First 7 bits  
A = acknowledge (SDA low)  
A = not acknowledge (SDA high)  
From master to slave  
(read)  
S = Start Condition  
A master transmitter addresses a slave receiver  
with a 10-bit address.  
From slave to master  
P = Stop Condition  
FIGURE 11-15: COMBINED FORMAT  
(read or write)  
(n bytes + acknowledge)  
S Slave AddressR/W A Data A/A Sr Slave Address R/W A Data A/A P  
(write)  
Direction of transfer  
may change at this point  
(read)  
Sr = repeated  
Start Condition  
Transfer direction of data and acknowledgment bits depends on R/W bits.  
Combined format:  
SrSlave Address R/W A Slave Address A Data A  
First 7 bits Second byte  
Data A/A Sr Slave Address R/W A Data A  
First 7 bits  
Data A P  
(read)  
(write)  
Combined format - A master addresses a slave with a 10-bit address, then transmits  
data to this slave and reads data from this slave.  
A = acknowledge (SDA low)  
A = not acknowledge (SDA high)  
From master to slave  
S = Start Condition  
From slave to master  
P = Stop Condition  
1997 Microchip Technology Inc.  
DS30444E - page 71  
 
 
 
PIC16C9XX  
11.2.4 MULTI-MASTER  
11.2.4.2 Clock Synchronization  
Clock synchronization occurs after the devices have  
2
The I C protocol allows a system to have more than  
started arbitration. This is performed using  
a
one master. This is called multi-master. When two or  
more masters try to transfer data at the same time, arbi-  
tration and synchronization occur.  
wired-AND connection to the SCL line. A high to low  
transition on the SCL line causes the concerned  
devices to start counting off their low period. Once a  
device clock has gone low, it will hold the SCL line low  
until its SCL high state is reached.The low to high tran-  
sition of this clock may not change the state of the SCL  
line, if another device clock is still within its low period.  
The SCL line is held low by the device with the longest  
low period. Devices with shorter low periods enter a  
high wait-state, until the SCL line comes high.When the  
SCL line comes high, all devices start counting off their  
high periods.The first device to complete its high period  
will pull the SCL line low. The SCL line high time is  
determined by the device with the shortest high period,  
Figure 11-17.  
11.2.4.1 ARBITRATION  
Arbitration takes place on the SDA line, while the SCL  
line is high.The master which transmits a high when the  
other master transmits  
(Figure 11-16), and turns off its data output stage. A  
master which lost arbitration can generate clock pulses  
until the end of the data byte where it lost arbitration.  
When the master devices are addressing the same  
device, arbitration continues into the data.  
a low loses arbitration  
FIGURE 11-16: MULTI-MASTER  
ARBITRATION  
(TWO MASTERS)  
FIGURE 11-17: CLOCK SYNCHRONIZATION  
transmitter 1 loses arbitration  
DATA 1 SDA  
start counting  
HIGH period  
wait  
state  
DATA 1  
DATA 2  
SDA  
CLK  
1
counter  
reset  
CLK  
2
SCL  
SCL  
Masters that also incorporate the slave function, and  
have lost arbitration must immediately switch over to  
slave-receiver mode.This is because the winning mas-  
ter-transmitter may be addressing it.  
Arbitration is not allowed between:  
• A repeated START condition  
• A STOP condition and a data bit  
• A repeated START condition and a STOP condi-  
tion  
Care needs to be taken to ensure that these conditions  
do not occur.  
DS30444E - page 72  
1997 Microchip Technology Inc.  
 
 
PIC16C9XX  
2
2
The SSPCON register allows control of the I C opera-  
11.3  
SSP I C Operation  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I C modes to be selected:  
2
The SSP module in I C mode fully implements all slave  
functions, except general call support, and provides  
interrupts on start and stop bits in hardware to facilitate  
firmware implementations of the master functions. The  
SSP module implements the standard mode specifica-  
tions as well as 7-bit and 10-bit addressing. Two pins  
are used for data transfer.These are the RC3/SCK/SCL  
pin, which is the clock (SCL), and the RC4/SDI/SDA  
pin, which is the data (SDA). The user must configure  
these pins as inputs or outputs through the  
TRISC<4:3> bits. The SSP module functions are  
enabled by setting SSP Enable bit SSPEN (SSP-  
CON<5>).  
2
2
• I C Slave mode (7-bit address)  
2
• I C Slave mode (10-bit address)  
2
• I C Slave mode (7-bit address), with start and  
stop bit interrupts enabled  
2
• I C Slave mode (10-bit address), with start and  
stop bit interrupts enabled  
2
• I C Firmware controlled Master Mode, slave is  
idle  
2
Selection of any I C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits.  
FIGURE 11-18: SSP BLOCK DIAGRAM  
2
(I C MODE)  
The SSPSTAT register gives the status of the data  
transfer.This information includes detection of a START  
or STOP bit, specifies if the received byte was data or  
address if the next byte is the completion of 10-bit  
address, and if this will be a read or write data transfer.  
The SSPSTAT register is read only.  
Internal  
data bus  
Read  
Write  
The SSPBUF is the register to which transfer data is  
written to or read from. The SSPSR register shifts the  
data in or out of the device. In receive operations, the  
SSPBUF and SSPSR create a doubled buffered  
receiver.This allows reception of the next byte to begin  
before reading the last byte of received data. When the  
complete byte is received, it is transferred to the  
SSPBUF register and flag bit SSPIF is set. If another  
complete byte is received before the SSPBUF register  
is read, a receiver overflow has occurred and bit  
SSPOV (SSPCON<6>) is set and the byte in the  
SSPSR is lost.  
SSPBUF reg  
SSPSR reg  
RC3/SCK/SCL  
shift  
clock  
RC4/  
SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match detect  
SSPADD reg  
The SSPADD register holds the slave address. In 10-bit  
mode, the user needs to write the high byte of the  
address (1111 0 A9 A8 0). Following the high byte  
address match, the low byte of the address needs to be  
loaded (A7:A0).  
Set, Reset  
S, P bits  
Start and  
Stop bit detect  
(SSPSTAT reg)  
2
The SSP module has five registers for I C operation.  
These are the:  
• SSP Control Register (SSPCON)  
• SSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• SSP Shift Register (SSPSR) - Not directly acces-  
sible  
• SSP Address Register (SSPADD)  
1997 Microchip Technology Inc.  
DS30444E - page 73  
PIC16C9XX  
11.3.1 SLAVE MODE  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
In slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The SSP module will  
override the input state with the output data when  
required (slave-transmitter).  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
b) The buffer full bit, BF is set.  
c) An ACK pulse is generated.  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the acknowledge (ACK) pulse, and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) - on the falling  
edge of the ninth SCL pulse.  
In 10-bit address mode, two address bytes need to be  
received by the slave (Figure 11-10).The five Most Sig-  
nificant bits (MSbs) of the first address byte specify if  
this is a 10-bit address. Bit R/W (SSPSTAT<2>) must  
specify a write so the slave device will receive the sec-  
ond address byte. For a 10-bit address the first byte  
would equal ‘1111 0 A9 A8 0’, where A9 and A8 are  
the two MSbs of the address. The sequence of events  
for a 10-bit address is as follows, with steps 7- 9 for  
slave-transmitter:  
There are certain conditions that will cause the SSP  
module not to give this ACK pulse. These are if either  
(or both):  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
In this case, the SSPSR register value is not loaded into  
the SSPBUF, but bit SSPIF (PIR1<3>) is set.Table 11-3  
shows what happens when a data transfer byte is  
received, given the status of bits BF and SSPOV. The  
shaded cells show the condition where user software  
did not properly clear the overflow condition. Flag bit BF  
is cleared by reading the SSPBUF register while bit  
SSPOV is cleared through software.  
1. Receive first (high) byte of Address (bits SSPIF,  
BF, and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
The SCL clock input must have a minimum high and  
low time for proper operation.The high and low times of  
4. Receive second (low) byte of Address (bits  
SSPIF, BF, and UA are set).  
2
the I C specification as well as the requirement of the  
SSP module is shown in timing parameter #100 and  
parameter #101.  
5. Update the SSPADD register with the first (high)  
byte of Address, if match releases SCL line, this  
will clear bit UA.  
11.3.1.1 ADDRESSING  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
Once the SSP module has been enabled, it waits for a  
START condition to occur. Following the START condi-  
tion, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
7. Receive repeated START condition.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
TABLE 11-3: DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
(SSP Interrupt occurs  
if enabled)  
Generate ACK  
Pulse  
BF  
SSPOV  
SSPSR SSPBUF  
0
1
1
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
DS30444E - page 74  
1997 Microchip Technology Inc.  
 
PIC16C9XX  
11.3.1.2 RECEPTION  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT reg-  
ister is cleared.The received address is loaded into the  
SSPBUF register.  
When the address byte overflow condition exists, then  
no acknowledge (ACK) pulse is given. An overflow con-  
dition is defined as either bit BF (SSPSTAT<0>) is set  
or bit SSPOV (SSPCON<6>) is set.  
2
FIGURE 11-19: I C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4  
R/W=0  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
ACK  
9
SDA  
SCL  
A3 A2 A1  
D5  
D2  
D0  
8
D5  
D2  
D0  
8
D7 D6  
D4 D3  
D7 D6  
D4 D3  
D1  
7
D1  
7
3
7
1
2
4
5
4
3
6
5
6
1
2
3
6
1
2
4
8
5
P
S
SSPIF (PIR1<3>)  
Cleared in software  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
1997 Microchip Technology Inc.  
DS30444E - page 75  
PIC16C9XX  
11.3.1.3 TRANSMISSION  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF must be cleared in software, and  
the SSPSTAT register is used to determine the status of  
the byte. Flag bit SSPIF is set on the falling edge of the  
ninth clock pulse.  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register.The ACK pulse will be  
sent on the ninth bit, and pin RC3/SCK/SCL is held low.  
The transmit data must be loaded into the SSPBUF  
register, which also loads the SSPSR register.Then pin  
RC3/SCK/SCL should be enabled by setting bit CKP  
(SSPCON<4>). The master must monitor the SCL pin  
prior to asserting another clock pulse. The slave  
devices may be holding off the master by stretching the  
clock. The eight data bits are shifted out on the falling  
edge of the SCL input.This ensures that the SDA signal  
is valid during the SCL high time (Figure 11-20).  
As a slave-transmitter, the ACK pulse from the mas-  
ter-receiver is latched on the rising edge of the ninth  
SCL input pulse. If the SDA line was high (not ACK),  
then the data transfer is complete. When the ACK is  
latched by the slave, the slave logic is reset and the  
slave then monitors for another occurrence of the  
START bit. If the SDA line was low (ACK), the transmit  
data must be loaded into the SSPBUF register, which  
also loads the SSPSR register. Then pin  
RC3/SCK/SCL should be enabled by setting bit CKP.  
2
FIGURE 11-20: I C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
ACK  
9
SDA  
SCL  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
cleared in software  
SSPIF (PIR1<3>)  
BF (SSPSTAT<0>)  
From SSP interrupt  
service routine  
SSPBUF is written in software  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written-to  
before the CKP bit can be set)  
DS30444E - page 76  
1997 Microchip Technology Inc.  
 
PIC16C9XX  
11.3.2 MASTER MODE  
11.3.3 MULTI-MASTER MODE  
Master mode of operation is supported, in firmware,  
using interrupt generation on the detection of the  
START and STOP conditions. The STOP (P) and  
START (S) bits are cleared from a reset or when the  
SSP module is disabled.The STOP and START bits will  
toggle based on the start and stop conditions. Control  
In multi-master mode, the interrupt generation on the  
detection of the START and STOP conditions allows the  
determination of when the bus is free. The STOP (P)  
and START (S) bits are cleared from a reset or when  
the SSP module is disabled.The STOP and START bits  
will toggle based on the start and stop conditions. Con-  
2
2
of the I C bus may be taken when the P bit is set, or the  
trol of the I C bus may be taken when bit P (SSP-  
bus is idle with both the S and P bits clear.  
STAT<4>) is set, or the bus is idle with both the S and  
P bits clear. When the bus is busy, enabling the SSP  
Interrupt will generate the interrupt when the STOP  
condition occurs.  
In master mode the SCL and SDA lines are manipu-  
lated by clearing the corresponding TRISC<4:3> bit(s).  
The output level is always low, irrespective of the  
value(s) in PORTC<4:3>. So when transmitting data, a  
'1' data bit must have the TRISC<4> bit set (input) and  
a '0' data bit must have the TRISC<4> bit cleared (out-  
put).The same scenario is true for the SCL line with the  
TRISC<3> bit.  
In multi-master operation, the SDA line must be moni-  
tored to see if the signal level is the expected output  
level. This check only needs to be done when a high  
level is output. If a high level is expected and a low level  
is present, the device needs to release the SDA and  
SCL lines (set TRISC<4:3>). There are two stages  
where this arbitration can be lost, they are:  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP Interrupt if enabled):  
• Address Transfer  
• Data Transfer  
• START condition  
• STOP condition  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address trans-  
fer stage, communication to the device may be in  
progress. If addressed an ACK pulse will be generated.  
If arbitration was lost during the data transfer stage, the  
device will need to re-transfer the data at a later time.  
• Data transfer byte transmitted/received  
Master mode of operation can be done with either the  
slave mode idle (SSPM3:SSPM0 = 1011) or with the  
slave active. When both master and slave modes are  
enabled, the software needs to differentiate the  
source(s) of the interrupt.  
2
TABLE 11-4: REGISTERS ASSOCIATED WITH I C OPERATION  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x  
0000 000u  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh, 18Bh  
00-- 0000  
00-- 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
--11 1111  
00-- 0000  
00-- 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
--11 1111  
0Ch  
8Ch  
13h  
93h  
14h  
94h  
PIR1  
LCDIF  
LCDIE  
ADIF(1)  
ADIE(1)  
SSPIF  
CCP1IF TMR2IF TMR1IF  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE  
SSPBUF  
SSPADD  
SSPCON  
SSPSTAT  
TRISC  
Synchronous Serial Port Receive Buffer/Transmit Register  
Synchronous Serial Port (I2C mode) Address Register  
WCOL  
SMP  
SSPOV SSPEN  
CKP  
P
SSPM3 SSPM2 SSPM1  
R/W UA  
SSPM0  
BF  
CKE  
D/A  
S
87h  
PORTC Data Direction Control Register  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by SSP in I2C mode.  
Note 1: Bits ADIE and ADIF are reserved on the PIC16C923, always maintain these bits clear.  
1997 Microchip Technology Inc.  
DS30444E - page 77  
PIC16C9XX  
2
FIGURE 11-21: OPERATION OF THE I C MODULE IN IDLE_MODE, RCV_MODE OR XMIT_MODE  
IDLE_MODE (7-bit):  
if (Addr_match)  
{
Set interrupt;  
if (R/W = 1)  
{
}
Send ACK = 0;  
set XMIT_MODE;  
else if (R/W = 0) set RCV_MODE;  
}
RCV_MODE:  
if ((SSPBUF=Full) OR (SSPOV = 1))  
{
Set SSPOV;  
Do not acknowledge;  
}
{
else  
transfer SSPSR SSPBUF;  
send ACK = 0;  
}
Receive 8-bits in SSPSR;  
Set interrupt;  
XMIT_MODE:  
While ((SSPBUF = Empty) AND (CKP=0)) Hold SCL Low;  
Send byte;  
Set interrupt;  
if ( ACK Received = 1)  
{
}
End of transmission;  
Go back to IDLE_MODE;  
else if ( ACK Received = 0) Go back to XMIT_MODE;  
IDLE_MODE (10-Bit):  
If (High_byte_addr_match AND (R/W = 0))  
{
PRIOR_ADDR_MATCH = FALSE;  
Set interrupt;  
if ((SSPBUF = Full) OR ((SSPOV = 1))  
{
Set SSPOV;  
Do not acknowledge;  
}
{
else  
Set UA = 1;  
Send ACK = 0;  
While (SSPADD not updated) Hold SCL low;  
Clear UA = 0;  
Receive Low_addr_byte;  
Set interrupt;  
Set UA = 1;  
If (Low_byte_addr_match)  
{
PRIOR_ADDR_MATCH = TRUE;  
Send ACK = 0;  
while (SSPADD not updated) Hold SCL low;  
Clear UA = 0;  
Set RCV_MODE;  
}
}
}
else if (High_byte_addr_match AND (R/W = 1)  
if (PRIOR_ADDR_MATCH)  
{
{
send ACK = 0;  
set XMIT_MODE;  
}
else PRIOR_ADDR_MATCH = FALSE;  
}
DS30444E - page 78  
1997 Microchip Technology Inc.  
PIC16C9XX  
The A/D module has three registers. These registers  
are:  
12.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
• A/D Result Register (ADRES)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
This section applies to the PIC16C924 only.  
The analog-to-digital (A/D) converter module has five  
inputs.  
The ADCON0 register, shown in Figure 12-1, controls  
the operation of the A/D module. The ADCON1 regis-  
ter, shown in Figure 12-2, configures the functions of  
the port pins. The port pins can be configured as ana-  
log inputs (RA3 can also be a voltage reference) or as  
digital I/O.  
The A/D allows conversion of an analog input signal to  
a corresponding 8-bit digital number (refer to Applica-  
tion Note AN546 for use of A/D Converter). The output  
of the sample and hold is the input into the converter,  
which generates the result via successive approxima-  
tion. The analog reference voltage is software select-  
able to either the device’s AVDD pin or the voltage level  
on the RA3/AN3/VREF pin. The A/D converter has a  
unique feature of being able to operate while the device  
is in SLEEP mode.  
To operate in sleep, the A/D conversion clock must be  
derived from the A/D’s internal RC oscillator.  
FIGURE 12-1: ADCON0 REGISTER (ADDRESS 1Fh)  
R/W-0 R/W-0 R/W-0  
ADCS1 ADCS0 CHS2  
bit7  
R/W-0  
CHS1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADON  
CHS0 GO/DONE  
R =Readable bit  
W = Writable bit  
U =Unimplemented bit,  
read as ‘0’  
bit0  
- n = Value at POR reset  
bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from an RC oscillation)  
bit 5-3: CHS2:CHS0: Analog Channel Select bits  
000= channel 0, (RA0/AN0)  
001= channel 1, (RA1/AN1)  
010= channel 2, (RA2/AN2)  
011= channel 3, (RA3/AN3)  
100= channel 4, (RA5/AN4)  
bit 2:  
GO/DONE: A/D Conversion Status bit  
If ADON = 1  
1 = A/D conversion in progress (setting this bit starts the A/D conversion)  
0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion  
is complete)  
bit 1:  
bit 0:  
Reserved: Always maintain this bit clear  
ADON: A/D On bit  
1 = A/D converter module is operating  
0 = A/D converter module is shutoff and consumes no operating current  
1997 Microchip Technology Inc.  
DS30444E - page 79  
 
PIC16C9XX  
FIGURE 12-2: ADCON1 REGISTER (ADDRESS 9Fh)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PCFG2  
PCFG1  
PCFG0  
R =Readable bit  
W = Writable bit  
U =Unimplemented  
bit, read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7-3: Unimplemented: Read as '0'  
bit 2-0: PCFG2:PCFG0: A/D Port Configuration Control bits  
PCFG2:PCFG0  
RA0  
RA1  
RA2  
RA5  
RA3  
VREF  
000  
001  
010  
011  
100  
111  
A
A
A
A
A
AVDD  
RA3  
AVDD  
RA3  
AVDD  
A
A
A
A
D
A
A
A
A
D
A
A
A
D
D
A
A
A
D
D
VREF  
A
VREF  
A
D
A = Analog input  
D = Digital I/O  
The ADRES register contains the result of the A/D con-  
version. When the A/D conversion is complete, the  
result is loaded into the ADRES register, the GO/DONE  
bit (ADCON0<2>) is cleared, and A/D interrupt flag bit  
ADIF is set. The block diagram of the A/D module is  
shown in Figure 12-3.  
3. Wait the required acquisition time.  
4. Start conversion:  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 12.1.  
After this acquisition time has elapsed the A/D conver-  
sion can be started. The following steps should be fol-  
lowed for doing an A/D conversion:  
• Waiting for the A/D interrupt  
6. Read A/D Result register (ADRES), clear bit  
ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
1. Configure the A/D module:  
• Configure analog pins / voltage reference /  
and digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
DS30444E - page 80  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 12-3: A/D BLOCK DIAGRAM  
CHS2:CHS0  
100  
011  
010  
001  
000  
RA5/AN4  
RA3/AN3/VREF  
RA2/AN2  
VAIN  
(Input voltage)  
A/D  
Converter  
RA1/AN1  
AVDD  
RA0/AN0  
000or  
010or  
100  
VREF  
(Reference  
voltage)  
001or  
011  
PCFG2:PCFG0  
1997 Microchip Technology Inc.  
DS30444E - page 81  
PIC16C9XX  
12.1  
A/D Acquisition Requirements  
Note 1: The reference voltage (VREF) has no  
effect on the equation, since it cancels  
itself out.  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 12-4.The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD.The sampling switch (RSS) imped-  
ance varies over the device voltage (VDD),  
(Figure 12-4). The source impedance affects the offset  
voltage at the analog input (due to pin leakage current).  
The maximum recommended impedance for ana-  
log sources is 10 k. After the analog input channel is  
selected (changed) this acquisition must be done  
before the conversion can be started.  
Note 2: The charge holding capacitor (CHOLD) is  
not discharged after each conversion.  
Note 3: The maximum recommended impedance  
for analog sources is 10 k. This is  
required to meet the pin leakage specifi-  
cation.  
Note 4: After a conversion has completed, a  
2.0 TAD delay must complete before  
acquisition can begin again. During this  
time the holding capacitor is not con-  
nected to the selected A/D input channel.  
To calculate the minimum acquisition time,  
Equation 12-1 may be used. This equation calculates  
the acquisition time to within 1/2 LSb error (512 steps  
for the A/D). The 1/2 LSb error is the maximum error  
allowed for the A/D to meet its specified accuracy.  
EXAMPLE 12-1: CALCULATING THE  
MINIMUM REQUIRED  
SAMPLE TIME  
TACQ = Amplifier Settling Time +  
Holding Capacitor Charging Time +  
Temperature Coefficient  
EQUATION 12-1: A/D MINIMUM CHARGING  
TIME  
TACQ = 5 µs + Tc + [(Temp - 25°C)(0.05 µs/°C)]  
(-Tc/CHOLD(RIC + RSS + RS))  
VHOLD = (VREF - (VREF/512)) • (1 - e  
)
TC =  
-CHOLD (RIC + RSS + RS) ln(1/511)  
-51.2 pF (1 k+ 7 k+ 10 k) ln(0.0020)  
-51.2 pF (18 k) ln(0.0020)  
-0.921 µs (-6.2364)  
Given: VHOLD = (VREF/512), for 1/2 LSb resolution  
The above equation reduces to:  
TC = -(51.2 pF)(1 k- RSS + RS) ln(1/511)  
Example 12-1 shows the calculation of the minimum  
required acquisition time (TACQ). This calculation is  
based on the following system assumptions.  
5.747 µs  
TACQ = 5 µs + 5.747 µs + [(50°C - 25°C)(0.05 µs/°C)]  
CHOLD = 51.2 pF  
10.747 µs + 1.25 µs  
11.997 µs  
Rs = 10 kΩ  
1/2 LSb error  
VDD = 5V Rss = 7 kΩ  
Temp (system max.) = 50°C  
VHOLD = 0 @ t = 0  
FIGURE 12-4: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
RAx  
SS  
RIC 1k  
RSS  
Rs  
CHOLD  
= DAC capacitance  
= 51.2 pF  
CPIN  
5 pF  
VA  
I leakage  
± 500 nA  
VT = 0.6V  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
I leakage = leakage current at the pin due to  
various junctions  
VDD 4V  
3V  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 10 11  
Sampling Switch  
( k)  
DS30444E - page 82  
1997 Microchip Technology Inc.  
 
 
 
PIC16C9XX  
12.2  
Selecting the A/D Conversion Clock  
12.3  
Configuring Analog Port Pins  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 9.5 TAD per 8-bit conversion.  
The source of the A/D conversion clock is software  
selected. The four possible options for TAD are:  
The ADCON1 and TRISA registers control the opera-  
tion of the A/D port pins. The port pins that are desired  
as analog inputs must have their corresponding TRIS  
bits set (input). If the TRIS bit is cleared (output), the  
digital output level (VOH or VOL) will be converted.  
• 2TOSC  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
• 8TOSC  
• 32TOSC  
• Internal RC oscillator  
Note 1: When reading the port register, all pins  
configured as analog inputs will read as  
cleared (a low level). Pins configured as  
digital inputs, will convert an analog input.  
Analog levels on a digitally configured  
input will not affect the conversion accu-  
racy.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
Table 12-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
Note 2: Analog levels on any pin that is defined as  
a digital input (including the AN4:AN0  
pins), may cause the input buffer to con-  
sume current that is out of the devices  
specification.  
TABLE 12-1: TAD vs. DEVICE OPERATING FREQUENCIES  
A/D Clock Source (TAD)  
Device Frequency  
5 MHz 1.25 MHz  
Operation  
ADCS1:ADCS0  
8 MHz  
333.33 kHz  
(2)  
(2)  
2TOSC  
8TOSC  
32TOSC  
RC  
00  
01  
10  
11  
250 ns  
1 µs  
400 ns  
1.6 µs  
6.4 µs  
6 µs  
(3)  
1.6 µs  
6.4 µs  
24 µs  
(3)  
(3)  
4 µs  
25.6 µs  
96 µs  
(1,4)  
(1,4)  
(1,4)  
(1)  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When derived frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for  
sleep mode only  
5: For extended voltage devices (LC), please refer to the electrical specifications section.  
1997 Microchip Technology Inc.  
DS30444E - page 83  
 
PIC16C9XX  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The ADRES register will  
NOT be updated with the partially completed A/D con-  
version sample. That is, the ADRES register will con-  
tinue to contain the value of the last completed  
conversion (or the last value written to the ADRES reg-  
ister). After the A/D conversion is aborted, a 2TAD wait  
is required before the next acquisition is started. After  
this 2TAD wait, an acquisition is automatically started on  
the selected channel.  
12.4  
A/D Conversions  
Example 12-2 show how to perform an A/D conversion.  
The RA pins are configured as analog inputs.The ana-  
log reference (VREF) is the device VDD. The A/D inter-  
rupt is enabled, and the A/D conversion clock is FRC.  
The conversion is performed on the RA0 pin  
(channel0).  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
EXAMPLE 12-2: DOING AN A/D CONVERSION  
BCF  
BSF  
CLRF  
BSF  
BCF  
MOVLW  
MOVWF  
BCF  
BSF  
BSF  
STATUS, RP1  
STATUS, RP0  
ADCON1  
; Select Bank1  
;
; Configure A/D inputs  
; Enable A/D interrupts  
; Select Bank0  
; RC Clock, A/D is on, Channel 0 is selected  
;
; Clear A/D interrupt flag bit  
; Enable peripheral interrupts  
; Enable all interrupts  
PIE1,  
ADIE  
STATUS, RP0  
0xC1  
ADCON0  
PIR1,  
ADIF  
INTCON, PEIE  
INTCON, GIE  
;
;
;
;
Ensure that the required acquisition time for the selected input channel has elapsed.  
Then the conversion may be started.  
BSF  
:
ADCON0, GO  
; Start A/D Conversion  
; The ADIF bit will be set and the GO/DONE bit  
:
;
is cleared upon completion of the A/D Conversion.  
DS30444E - page 84  
1997 Microchip Technology Inc.  
 
PIC16C9XX  
12.4.1 FASTER CONVERSION - LOWER  
RESOLUTION TRADE-OFF  
Since the TAD is based from the device oscillator, the  
user must use some method (a timer, software loop,  
etc.) to determine when the A/D oscillator may be  
changed. Example 12-3 shows a comparison of time  
required for a conversion with 4-bits of resolution, ver-  
sus the 8-bit resolution conversion. The example is for  
devices operating at 8 MHz (The A/D clock is pro-  
grammed for 32TOSC), and assumes that immediately  
after 6TAD, the A/D clock is programmed for 2TOSC.  
Not all applications require a result with 8-bits of reso-  
lution, but may instead require a faster conversion time.  
The A/D module allows users to make the trade-off of  
conversion speed to resolution. Regardless of the res-  
olution required, the acquisition time is the same. To  
speed up the conversion, the clock source of the A/D  
module may be switched so that the TAD time violates  
the minimum specified time (see the applicable electri-  
cal specification). Once the TAD time violates the mini-  
mum specified time, all the following A/D result bits are  
not valid (see A/D Conversion Timing in the Electrical  
Specifications section.) The clock sources may only be  
switched between the three oscillator versions (cannot  
be switched from/to RC). The equation to determine  
the time before the oscillator can be switched is as fol-  
lows:  
The 2TOSC violates the minimum TAD time, therefore  
the last 4-bits will not be converted to correct values.  
Conversion time = 2TAD + N • TAD + (8 - N)(2TOSC)  
Where: N = number of bits of resolution required.  
EXAMPLE 12-3: 4-BIT vs. 8-BIT CONVERSION TIMES  
Resolution  
Freq. (MHz)  
4-bit  
8-bit  
TAD  
8
8
8
1.6 µs  
12.5 ns  
10.6 µs  
1.6 µs  
125 ns  
16 µs  
TOSC  
2TAD + N • TAD + (8 - N)(2TOSC)  
1997 Microchip Technology Inc.  
DS30444E - page 85  
 
PIC16C9XX  
scale error is that full scale does not take offset error  
into account. Gain error can be calibrated out in soft-  
ware.  
12.5  
A/D Operation During Sleep  
The A/D module can operate during SLEEP mode.This  
requires that the A/D clock source be set to RC  
(ADCS1:ADCS0 = 11). When the RC clock source is  
selected, the A/D module waits one instruction cycle  
before starting the conversion. This allows the SLEEP  
instruction to be executed, which eliminates all digital  
switching noise from the conversion. When the conver-  
sion is completed the GO/DONE bit will be cleared, and  
the result loaded into the ADRES register. If the A/D  
interrupt is enabled, the device will wake-up from  
SLEEP. If the A/D interrupt is not enabled, the A/D mod-  
ule will then be turned off, although the ADON bit will  
remain set.  
Linearity error refers to the uniformity of the code  
changes. Linearity errors cannot be calibrated out of  
the system. Integral non-linearity error measures the  
actual code transition versus the ideal code transition  
adjusted by the gain error for each code.  
Differential non-linearity measures the maximum actual  
code width versus the ideal code width. This measure  
is unadjusted.  
The maximum pin leakage current is ± 1 µA.  
In systems where the device frequency is low, use of  
the A/D RC clock is preferred. At moderate to high fre-  
quencies, TAD should be derived from the device oscil-  
lator. TAD must not violate the minimum and should be  
8 µs for preferred operation. This is because TAD,  
when derived from TOSC, is kept away from on-chip  
phase clock transitions.This reduces, to a large extent,  
the effects of digital switching noise.This is not possible  
with the RC derived clock. The loss of accuracy due to  
digital switching noise can be significant if many I/O  
pins are active.  
When the A/D clock source is another clock option (not  
RC), a SLEEPinstruction will cause the present conver-  
sion to be aborted and the A/D module to be turned off,  
though the ADON bit will remain set.  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be set to RC  
(ADCS1:ADCS0 = 11). To perform an A/D  
conversion in SLEEP, ensure the SLEEP  
instruction immediately follows the instruc-  
tion that sets the GO/DONE bit.  
In systems where the device will enter SLEEP mode  
after the start of the A/D conversion, the RC clock  
source selection is required. In this mode, the digital  
noise from the modules in SLEEP are stopped. This  
method gives high accuracy.  
12.6  
A/D Accuracy/Error  
The absolute accuracy specified for the A/D converter  
includes the sum of all contributions for quantization  
error, integral error, differential error, full scale error, off-  
set error, and monotonicity. It is defined as the maxi-  
mum deviation from an actual transition versus an ideal  
transition for any code. The absolute error of the A/D  
converter is specified at < ±1 LSb for VDD = VREF (over  
the device’s specified operating range). However, the  
accuracy of the A/D converter will degrade as VDD  
diverges from VREF.  
12.7  
Effects of a RESET  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off, and any  
conversion is aborted.  
The value that is in the ADRES register is not modified  
for a Power-on Reset. The ADRES register will contain  
unknown data after a Power-on Reset.  
For a given range of analog inputs, the output digital  
code will be the same.This is due to the quantization of  
the analog input to a digital code. Quantization error is  
typically ± 1/2 LSb and is inherent in the analog to dig-  
ital conversion process.The only way to reduce quanti-  
zation error is to increase the resolution of the A/D  
converter.  
Offset error measures the first actual transition of a  
code versus the first ideal transition of a code. Offset  
error shifts the entire transfer function. Offset error can  
be calibrated out of a system or introduced into a sys-  
tem through the interaction of the total leakage current  
and source impedance at the analog input.  
Gain error measures the maximum deviation of the last  
actual transition and the last ideal transition adjusted for  
offset error. This error appears as a change in slope of  
the transfer function. The difference in gain error to full  
DS30444E - page 86  
1997 Microchip Technology Inc.  
PIC16C9XX  
12.8  
Use of the CCP Trigger  
12.10 Transfer Function  
An A/D conversion can be started by the “special event  
trigger” of the CCP1 module. This requires that the  
CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be pro-  
grammed as 1011and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the  
GO/DONE bit will be set, starting the A/D conversion,  
and the Timer1 counter will be reset to zero. Timer1 is  
reset to automatically repeat the A/D acquisition period  
with minimal software overhead (moving the ADRES to  
the desired location). The appropriate analog input  
channel must be selected and the minimum acquisition  
done before the “special event trigger” sets the  
GO/DONE bit (starts a conversion).  
The ideal transfer function of the A/D converter is as fol-  
lows: the first transition occurs when the analog input  
voltage (VAIN) is Analog VREF / 256 (Figure 12-5).  
FIGURE 12-5: A/D TRANSFER FUNCTION  
FFh  
FEh  
If the A/D module is not enabled (ADON is cleared),  
then the “special event trigger” will be ignored by the  
A/D module, but will still reset the Timer1 counter.  
04h  
03h  
02h  
01h  
00h  
12.9  
Connection Considerations  
If the input voltage exceeds the rail values (VSS or VDD)  
by greater than 0.2V, then the accuracy of the conver-  
sion is out of specification.  
An external RC filter is sometimes added for anti-alias-  
ing of the input signal. The R component should be  
selected to ensure that the total source impedance is  
kept under the 10 krecommended specification. Any  
external components connected (via hi-impedance) to  
an analog input pin (capacitor, zener diode, etc.) should  
have very little leakage current at the pin.  
Analog input voltage  
1997 Microchip Technology Inc.  
DS30444E - page 87  
 
PIC16C9XX  
FIGURE 12-6: FLOWCHART OF A/D OPERATION  
ADON = 0  
Yes  
ADON = 0?  
No  
Acquire  
Selected Channel  
Yes  
GO = 0?  
No  
Yes  
Yes  
Start of A/D  
Conversion Delayed  
1 Instruction Cycle  
Finish Conversion  
SLEEP  
Instruction?  
A/D Clock  
= RC?  
GO = 0  
ADIF = 1  
No  
No  
Yes  
Yes  
Abort Conversion  
GO = 0  
Wake-up  
From Sleep?  
Finish Conversion  
Device in  
SLEEP?  
Wait 2 TAD  
GO = 0  
ADIF = 1  
ADIF = 0  
No  
No  
SLEEP  
Power-down A/D  
Finish Conversion  
Stay in Sleep  
Power-down A/D  
Wait 2 TAD  
GO = 0  
ADIF = 1  
Wait 2 TAD  
TABLE 12-2: SUMMARY OF A/D REGISTERS  
Value on  
Power-on  
Reset  
Value on all  
other Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x  
0000 000u  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh, 18Bh  
00-- 0000  
00-- 0000  
xxxx xxxx  
0000 0000  
---- -000  
--0x 0000  
--11 1111  
00-- 0000  
00-- 0000  
uuuu uuuu  
0000 0000  
---- -000  
--0u 0000  
--11 1111  
0Ch  
8Ch  
1Eh  
1Fh  
9Fh  
05h  
PIR1  
LCDIF  
LCDIE  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
PIE1  
ADRES  
ADCON0  
ADCON1  
PORTA  
TRISA  
A/D Result Register  
ADCS1 ADCS0  
(1)  
CHS2  
CHS1  
CHS0  
GO/DONE  
PCFG2  
RA2  
ADON  
PCFG1  
RA1  
PCFG0  
RA0  
RA5  
RA4  
RA3  
85h  
PORTA Data Direction Control Register  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: Bit1 of ADCON0 is reserved, always maintain this bit clear.  
DS30444E - page 88  
1997 Microchip Technology Inc.  
PIC16C9XX  
Once the module is initialized for the LCD panel, the  
individual bits of the LCD data registers are cleared/set  
to represent a clear/dark pixel respectively.  
13.0 LCD MODULE  
The LCD module generates the timing control to drive  
a static or multiplexed LCD panel, with support for up to  
32 segments multiplexed with up to 4 commons. It also  
provides control of the LCD pixel data.  
Once the module is configured, the LCDEN  
(LCDCON<7>) bit is used to enable or disable the LCD  
module. The LCD panel can also operate during sleep  
by clearing the SLPEN (LCDCON<6>) bit.  
The interface to the module consists of 3 control regis-  
ters (LCDCON, LCDSE, and LCDPS) used to define  
the timing requirements of the LCD panel and up to 16  
LCD data registers (LCD00-LCD15) that represent the  
array of the pixel data. In normal operation, the control  
registers are configured to match the LCD panel being  
used. Primarily, the initialization information consists of  
selecting the number of commons required by the LCD  
panel, and then specifying the LCD Frame clock rate to  
be used by the panel.  
Figure 13-4 through Figure 13-7 provides waveforms  
for Static, 1/2, 1/3, and 1/4 MUX drives.  
FIGURE 13-1: LCDCON REGISTER (ADDRESS 10Fh)  
R/W-0  
R/W-0  
U-0  
R/W-0  
VGEN  
R/W-0 R/W-0  
CS1 CS0  
R/W-0  
R/W-0  
LCDEN SLPEN  
bit7  
LMUX1 LMUX0  
bit0  
R =Readable bit  
W =Writable bit  
U =Unimplemented bit,  
Read as ‘0’  
-n =Value at POR reset  
bit 7:  
bit 6:  
LCDEN: Module drive enable bit  
1 = LCD drive enabled  
0 = LCD drive disabled  
SLPEN: LCD display sleep enable  
1 = LCD module will stop operating during SLEEP  
0 = LCD module will continue to display during SLEEP  
bit 5:  
bit 4:  
Unimplemented: Read as '0'  
VGEN: Voltage Generator Enable  
1 = Internal LCD Voltage Generator Enabled, (powered-up)  
0 = Internal LCD Voltage Generator powered-down, voltage is expected to be provided externally  
bit 3-2: CS1:CS0: Clock Source Select bits  
00 = Fosc/256  
01 = T1CKI (Timer1)  
1x = Internal RC oscillator  
bit 1-0: LMUX1:LMUX0: Common Selection bits  
Specifies the number of commons and the bias method  
LMUX1:LMUX0  
MULTIPLEX  
BIAS  
Max # of Segments  
00  
01  
10  
11  
Static (COM0)  
Static  
1/3  
1/3  
32  
31  
30  
29  
1/2  
1/3  
1/4  
(COM0, 1)  
(COM0, 1, 2)  
(COM0, 1, 2, 3) 1/3  
1997 Microchip Technology Inc.  
DS30444E - page 89  
 
PIC16C9XX  
FIGURE 13-2: LCD MODULE BLOCK DIAGRAM  
128  
to  
LCD  
RAM  
32 x 4  
SEG<31:0>  
Data Bus  
TO I/O PADS  
32  
MUX  
Timing Control  
LCDCON  
LCDPS  
LCDSE  
COM3:COM0  
TO I/O PADS  
Internal RC osc  
T1CKI  
Clock  
Source  
Select  
and  
Fosc/4  
Divide  
FIGURE 13-3: LCDPS REGISTER (ADDRESS 10Eh)  
U-0  
U-0  
U-0  
U-0  
R/W-0 R/W-0 R/W-0 R/W-0  
LP3 LP2 LP1 LP0  
bit0  
R =Readable bit  
W =Writable bit  
U =Unimplemented bit, Read as ‘0’  
-n =Value at POR reset  
bit7  
bit 7-4: Unimplemented, read as '0'  
bit 3-0: LP3:LP0: Frame Clock Prescale Selection bits  
LMUX1:LMUX0  
Multiplex  
Frame Frequency =  
00  
01  
10  
11  
Static  
1/2  
Clock source / (128 * (LP3:LP0 + 1))  
Clock source / (128 * (LP3:LP0 + 1))  
Clock source / (96 * (LP3:LP0 + 1))  
Clock source / (128 * (LP3:LP0 + 1))  
1/3  
1/4  
DS30444E - page 90  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 13-4: WAVEFORMS IN STATIC DRIVE  
V1  
COM0  
V0  
V1  
COM0  
SEG0  
SEG1  
V0  
V1  
V0  
V1  
V0  
COM0-SEG0  
COM0-SEG1  
-V1  
V0  
1 Frame  
1997 Microchip Technology Inc.  
DS30444E - page 91  
PIC16C9XX  
FIGURE 13-5: WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM0  
COM1  
COM0  
COM1  
SEG0  
SEG1  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
-V3  
1 Frame  
DS30444E - page 92  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 13-6: WAVEFORMS IN 1/3 MUX, 1/3 BIAS  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM0  
COM2  
COM1  
COM1  
COM0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
COM2  
SEG0  
SEG1  
COM0-SEG0  
V3  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
-V3  
1 Frame  
1997 Microchip Technology Inc.  
DS30444E - page 93  
PIC16C9XX  
FIGURE 13-7: WAVEFORMS IN 1/4 MUX, 1/3 BIAS  
COM3  
V3  
V2  
V1  
V0  
COM2  
COM0  
COM1  
V3  
V2  
V1  
V0  
COM1  
COM0  
V3  
V2  
V1  
V0  
COM2  
COM3  
SEG0  
SEG1  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM0-SEG0  
COM0-SEG1  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
1 Frame  
DS30444E - page 94  
1997 Microchip Technology Inc.  
PIC16C9XX  
The second source is the Timer1 external oscillator.  
This oscillator provides a lower speed clock which may  
be used to continue running the LCD while the proces-  
sor is in sleep. It is assumed that the frequency pro-  
vided on this oscillator will be 32 kHz. To use the  
Timer1 oscillator as a LCD module clock source, it is  
only necessary to set the T1OSCEN (T1CON<3>) bit.  
13.1  
LCD Timing  
The LCD module has 3 possible clock source inputs  
and supports static, 1/2, 1/3, and 1/4 multiplexing.  
13.1.1 TIMING CLOCK SOURCE SELECTION  
The clock sources for the LCD timing generation are:  
The third source is the system clock divided by 256.  
This divider ratio is chosen to provide about 32 kHz  
output when the external oscillator is 8 MHz. The  
divider is not programmable. Instead the LCDPS regis-  
ter is used to set the LCD frame clock rate.  
• Internal RC oscillator  
• Timer1 oscillator  
• System clock divided by 256  
The first timing source is an internal RC oscillator which  
runs at a nominal frequency of 14 kHz. This oscillator  
provides a lower speed clock which may be used to  
continue running the LCD while the processor is in  
sleep. The RC oscillator will power-down when it is not  
selected or when the LCD module is disabled.  
All of the clock sources are selected with bits CS1:CS0  
(LCDCON<3:2>). Refer to Figure 13-1 for details of the  
register programming.  
FIGURE 13-8: LCD CLOCK GENERATION  
FOSC  
÷256  
TMR1 32 kHz  
crystal oscillator  
Static  
1/2  
÷4  
÷2  
÷1,2,3,4  
Ring Counter  
÷32  
4-bit Programmable  
Prescaler  
1/3  
1/4  
Internal RC oscillator  
Nominal FRC = 14 kHz  
LCDPS<3:0>  
LMUX1:LMUX0  
LMUX1:LMUX0  
CS1:CS0  
internal  
data bus  
1997 Microchip Technology Inc.  
DS30444E - page 95  
PIC16C9XX  
13.1.2 MULTIPLEX TIMING GENERATION  
TABLE 13-2: APPROX. FRAME FREQ IN Hz  
USINGTIMER1 @ 32.768 kHz OR  
Fosc @ 8 MHz  
The timing generation circuitry will generate 1 to 4 com-  
mon clocks based on the display mode selected. The  
mode is specified by bits LMUX1:LMUX0  
(LCDCON<1:0>). Table 13-1 shows the formulas for  
calculating the frame frequency.  
LP3:LP0  
Static  
1/2  
1/3  
1/4  
2
3
4
5
6
7
85  
64  
51  
43  
37  
32  
85  
64  
51  
43  
37  
32  
114  
85  
68  
57  
49  
43  
85  
64  
51  
43  
37  
32  
TABLE 13-1: FRAME FREQUENCY  
FORMULAS  
Multiplex Frame Frequency =  
Static  
1/2  
Clock source / (128 * (LP3:LP0 + 1))  
Clock source / (128 * (LP3:LP0 + 1))  
Clock source / (96 * (LP3:LP0 + 1))  
Clock source / (128 * (LP3:LP0 + 1))  
1/3  
TABLE 13-3: APPROX. FRAME FREQ IN Hz  
USING INTERNAL RC OSC @  
14 kHz  
1/4  
LP3:LP0  
Static  
1/2  
1/3  
1/4  
0
1
2
3
109  
55  
109  
55  
146  
73  
109  
55  
36  
36  
49  
36  
27  
27  
36  
27  
DS30444E - page 96  
1997 Microchip Technology Inc.  
 
PIC16C9XX  
A new frame is defined to begin at the leading edge of  
the COM0 common signal. The interrupt will be set  
immediately after the LCD controller completes  
accessing all pixel data required for a frame. This will  
occur at a certain fixed time before the frame boundary  
as shown in Figure 13-9. The LCD controller will begin  
to access data for the next frame within TFWR after the  
interrupt.  
13.2  
LCD Interrupts  
The LCD timing generation provides an interrupt that  
defines the LCD frame timing. This interrupt can be  
used to coordinate the writing of the pixel data with the  
start of a new frame. Writing pixel data at the frame  
boundary allows a visually crisp transition of the image.  
This interrupt can also be used to synchronize external  
events to the LCD. For example, the interface to an  
external segment driver, such as a Microchip AY0438,  
can be synchronized for segment data update to the  
LCD frame.  
FIGURE 13-9: EXAMPLE WAVEFORMS IN 1/4 MUX DRIVE  
LCD  
Interrupt  
occurs  
Controller accesses  
next frame data  
V3  
V2  
V1  
V0  
COM0  
COM1  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM2  
COM3  
V3  
V2  
V1  
V0  
1 Frame  
TFINT  
Frame  
Boundary  
Frame  
Boundary  
TFWR  
TFWR = TFRAME/(LMUX1:LMUX0 + 1)  
TFINT = (TFWR /2 - (2TCY + 40 ns)) min.  
(TFWR /2 - (1TCY + 40 ns)) max.  
1997 Microchip Technology Inc.  
DS30444E - page 97  
 
 
PIC16C9XX  
Table 13-4 shows the correlation of each bit in the  
LCDD registers to the respective common and seg-  
ment signals.  
13.3  
Pixel Control  
13.3.1 LCDD (PIXEL DATA) REGISTERS  
Any LCD pixel location not being used for display can  
be used as general purpose RAM.  
The pixel registers contain bits which define the state of  
each pixel. Each bit defines one unique pixel.  
FIGURE 13-10:GENERIC LCDD REGISTER LAYOUT  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SEGs  
COMc  
SEGs  
COMc  
SEGs  
COMc  
SEGs  
COMc  
SEGs  
COMc  
SEGs  
COMc  
SEGs  
COMc  
SEGs  
COMc  
R =Readable bit  
W =Writable bit  
U =Unimplemented bit,  
Read as ‘0’  
bit7  
bit0  
-n =Value at POR reset  
bit 7-0: SEGsCOMc: Pixel Data Bit for segment s and common c  
1 = Pixel on (dark)  
0 = Pixel off (clear)  
DS30444E - page 98  
1997 Microchip Technology Inc.  
PIC16C9XX  
The LCD interrupt can be used to determine the frame  
boundary. See Section 13.2 for the formulas to calcu-  
late the delay.  
13.4  
Operation During Sleep  
The LCD module can operate during sleep. The selec-  
tion is controlled by bit SLPEN (LCDCON<6>). Setting  
the SLPEN bit allows the LCD module to go to sleep.  
Clearing the SLPEN bit allows the module to continue  
to operate during sleep.  
If a SLEEPinstruction is executed and SLPEN = '0', the  
module will continue to display the current contents of  
the LCDD registers. To allow the module to continue  
operation while in sleep, the clock source must be  
either the internal RC oscillator or Timer1 external  
oscillator. While in sleep, the LCD data cannot be  
changed. The LCD module current consumption will  
not decrease in this mode, however the overall con-  
sumption of the device will be lower due to shutdown of  
the core and other peripheral functions.  
If a SLEEPinstruction is executed and SLPEN = '1', the  
LCD module will cease all functions and go into a very  
low current consumption mode. The module will stop  
operation immediately and drive the minimum LCD  
voltage on both segment and common lines. Figure  
13-11 shows this operation. To ensure that the LCD  
completes the frame, the SLEEPinstruction should be  
executed immediately after a LCD frame boundary.  
Note: The internal RC oscillator or external  
Timer1 oscillator must be used to operate  
the LCD module during sleep.  
FIGURE 13-11:SLEEP ENTRY/EXIT WHEN SLPEN = 1 OR CS1:CS0 = 00  
3/3V  
2/3V  
1/3V  
Pin  
COM0  
0/3V  
3/3V  
2/3V  
1/3V  
0/3V  
3/3V  
2/3V  
1/3V  
0/3V  
Pin  
COM1  
Pin  
COM3  
3/3V  
2/3V  
Pin  
SEG0  
1/3V  
0/3V  
interrupted  
frame  
Wake-up  
SLEEPinstruction execution  
1997 Microchip Technology Inc.  
DS30444E - page 99  
 
PIC16C9XX  
13.4.1 SEGMENT ENABLES  
EXAMPLE 13-1: STATIC MUX WITH 32  
SEGMENTS  
The LCDSE register is used to select the pin function  
for groups of pins. The selection allows each group of  
pins to operate as either LCD drivers or digital only  
pins. To configure the pins as a digital port, the corre-  
sponding bits in the LCDSE register must be cleared.  
BCF  
BSF  
BCF  
BCF  
STATUS,RP0  
STATUS,RP1  
LCDCON,LMUX1 ;Select Static MUX  
LCDCON,LMUX0 ;  
;Select Bank 2  
;
MOVLW 0xFF  
MOVWF LCDSE  
. . .  
;Make PortD,E,F,G  
;LCD pins  
;configure rest of LCD  
If the pin is a digital I/O the correspondingTRIS bit con-  
trols the data direction. Any bit set in the LCDSE regis-  
ter overrides any bit settings in the corresponding TRIS  
register.  
EXAMPLE 13-2: 1/3 MUX WITH 13  
SEGMENTS  
Note 1: On a Power-on Reset these pins are con-  
figured as LCD drivers.  
BCF  
BSF  
BSF  
BCF  
MOVLW 0x87  
MOVWF LCDSE  
. . .  
STATUS,RP0  
STATUS,RP1  
LCDCON,LMUX1 ;Select 1/3 MUX  
LCDCON,LMUX0 ;  
;Select Bank 2  
;
Note 2: The LMUX1:LMUX0 takes precedence  
over the LCDSE bit settings for pins RD7,  
RD6 and RD5.  
;Make PORTD<7:0> &  
;PORTE<6:0> LCD pins  
;configure rest of LCD  
FIGURE 13-12:LCDSE REGISTER (ADDRESS 10Dh)  
R/W-1  
SE29  
R/W-1  
SE27  
R/W-1  
SE20  
R/W-1  
SE16  
R/W-1 R/W-1  
SE12 SE9  
R/W-1  
SE5  
R/W-1  
SE0  
bit0  
R =Readable bit  
W =Writable bit  
U =Unimplemented bit,  
Read as ‘0’  
bit7  
-n =Value at POR reset  
bit 7:  
SE29: Pin function select RD7/COM1/SEG31 - RD5/COM3/SEG29  
1 = pins have LCD drive function  
0 = pins have digital Input function  
The LMUX1:LMUX0 setting takes precedence over the LCDSE register.  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
SE27: Pin function select RG7/SEG28 and RE7/SEG27  
1 = pins have LCD drive function  
0 = pins have digital Input function  
SE20: Pin function select RG6/SEG26 - RG0/SEG20  
1 = pins have LCD drive function  
0 = pins have digital Input function  
SE16: Pin function select RF7/SEG19 - RF4/SEG16  
1 = pins have LCD drive function  
0 = pins have digital Input function  
SE12: Pin function select RF3/SEG15 - RF0/SEG12  
1 = pins have LCD drive function  
0 = pins have digital Input function  
SE9: Pin function select RE6/SEG11 - RE4/SEG09  
1 = pins have LCD drive function  
0 = pins have digital Input function  
SE5: Pin function select RE3/SEG08 - RE0/SEG05  
1 = pins have LCD drive function  
0 = pins have digital Input function  
SE0: Pin function select RD4/SEG04 - RD0/SEG00  
1 = pins have LCD drive function  
0 = pins have digital I/O function  
DS30444E - page 100  
1997 Microchip Technology Inc.  
PIC16C9XX  
2*VLCD1 and VLCD3 = 3 * VLCD1.When the charge pump  
is not operating, Vlcd3 will be internally tied to VDD. See  
the Electrical Specifications section for charge pump  
capacitor and potentiometer values.  
13.5  
Voltage Generation  
There are two methods for LCD voltage generation,  
internal charge pump, or external resistor ladder.  
13.5.1 CHARGE PUMP  
13.5.2 EXTERNAL R-LADDER  
The LCD charge pump is shown in Figure 13-13. The  
1.0V - 2.3V regulator will establish a stable base volt-  
age from the varying battery voltage. This regulator is  
adjustable through the range by connecting a variable  
external resistor from VLCDADJ to ground.The poten-  
tiometer provides contrast adjustment for the LCD.This  
base voltage is connected to VLCD1 on the charge  
pump. The charge pump boosts VLCD1 into VLCD2 =  
The LCD module can also use an external resistor lad-  
der (R-Ladder) to generate the LCD voltages.  
Figure 13-13 shows external connections for static and  
1/3 bias.The VGEN (LCDCON<4>) bit must be cleared  
to use an external R-Ladder.  
FIGURE 13-13:CHARGE PUMP AND RESISTOR LADDER  
VDD  
10 µA  
nominal  
LCDEN  
SLPEN  
Charge Pump  
VLCD3  
VLCD2  
VLCD1  
C1 C2  
VLCDADJ  
100k*  
130k*  
0.47 µF*  
0.47 µF*  
0.47 µF*  
Connections for  
internal charge  
pump, VGEN = 1  
0.47 µF*  
Connections for  
external R-ladder,  
1/3 Bias,  
10k*  
10k*  
10k*  
10k*  
5k*  
5k*  
VGEN = 0  
VDD  
VDD  
Connections for  
external R-ladder,  
Static Bias,  
VGEN = 0  
* These values are provided for design guidance only and should be  
optimized to the application by the designer.  
1997 Microchip Technology Inc.  
DS30444E - page 101  
 
PIC16C9XX  
- Timing source, bits CS1:CS0  
- Voltage generation, bit VGEN  
- Sleep mode, bit SLPEN  
13.6  
Configuring the LCD Module  
The following is the sequence of steps to follow to con-  
figure the LCD module.  
4. Write initial values to pixel data registers,  
LCDD00 through LCDD15.  
1. Select the frame clock prescale using bits  
LP3:LP0 (LCDPS<3:0>).  
5. Clear LCD interrupt flag, LCDIF (PIR1<7>), and  
if desired, enable the interrupt by setting bit  
LCDIE (PIE1<7>).  
2. Configure the appropriate pins to function as  
segment drivers using the LCDSE register.  
3. Configure the LCD module for the following  
using the LCDCON register.  
6. Enable the LCD module, by setting bit LCDEN  
(LCDCON<7>).  
- Multiplex mode and Bias, bits  
LMUX1:LMUX0  
TABLE 13-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE LCD MODULE  
Value on  
Power-on  
Reset  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
10Bh, 18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
PIR1  
LCDIF  
LCDIE  
ADIF(1)  
ADIE(1)  
SSPIF  
SSPIE  
CCP1IF TMR2IF  
CCP1IE TMR2IE  
TMR1IF 00-- 0000 00-- 0000  
TMR1IE 00-- 0000 00-- 0000  
8Ch  
PIE1  
10h  
T1CON  
LCDSE  
LCDPS  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
10Dh  
10Eh  
10Fh  
SE29  
SE27  
SE20  
SE16  
SE12  
LP3  
SE9  
LP2  
CS0  
SE5  
LP1  
SE0  
LP0  
1111 1111 1111 1111  
---- 0000 ---- 0000  
LCDCON LCDEN  
SLPEN  
VGEN  
CS1  
LMUX1  
LMUX0 00-0 0000 00-0 0000  
SEG07  
LCDD00  
SEG06  
COM0  
SEG05  
COM0  
SEG04  
COM0  
SEG03  
COM0  
SEG02  
COM0  
SEG01  
COM0  
SEG00  
COM0  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
xxxx xxxx uuuu uuuu  
COM0  
SEG15  
LCDD01  
SEG14  
COM0  
SEG13  
COM0  
SEG12  
COM0  
SEG11  
COM0  
SEG10  
COM0  
SEG09  
COM0  
SEG08  
COM0  
xxxx xxxx uuuu uuuu  
COM0  
SEG23  
LCDD02  
SEG22  
COM0  
SEG21  
COM0  
SEG20  
COM0  
SEG19  
COM0  
SEG18  
COM0  
SEG17  
COM0  
SEG16  
COM0  
xxxx xxxx uuuu uuuu  
COM0  
SEG31  
LCDD03  
SEG30  
COM0  
SEG29  
COM0  
SEG28  
COM0  
SEG27  
COM0  
SEG26  
COM0  
SEG25  
COM0  
SEG24  
COM0  
xxxx xxxx uuuu uuuu  
COM0  
SEG07  
LCDD04  
SEG06  
COM1  
SEG05  
COM1  
SEG04  
COM1  
SEG03  
COM1  
SEG02  
COM1  
SEG01  
COM1  
SEG00  
COM1  
xxxx xxxx uuuu uuuu  
COM1  
SEG15  
LCDD05  
SEG14  
COM1  
SEG13  
COM1  
SEG12  
COM1  
SEG11  
COM1  
SEG10  
COM1  
SEG09  
COM1  
SEG08  
COM1  
xxxx xxxx uuuu uuuu  
COM1  
SEG23  
LCDD06  
SEG22  
COM1  
SEG21  
COM1  
SEG20  
COM1  
SEG19  
COM1  
SEG18  
COM1  
SEG17  
COM1  
SEG16  
COM1  
xxxx xxxx uuuu uuuu  
COM1  
SEG31  
LCDD07  
SEG30  
COM1  
SEG29  
COM1  
SEG28  
COM1  
SEG27  
COM1  
SEG26  
COM1  
SEG25  
COM1  
SEG24  
COM1  
xxxx xxxx uuuu uuuu  
COM1(2)  
SEG07  
LCDD08  
SEG06  
COM2  
SEG05  
COM2  
SEG04  
COM2  
SEG03  
COM2  
SEG02  
COM2  
SEG01  
COM2  
SEG00  
COM2  
xxxx xxxx uuuu uuuu  
COM2  
SEG15  
LCDD09  
SEG14  
COM2  
SEG13  
COM2  
SEG12  
COM2  
SEG11  
COM2  
SEG10  
COM2  
SEG09  
COM2  
SEG08  
COM2  
xxxx xxxx uuuu uuuu  
COM2  
SEG23  
LCDD10  
SEG22  
COM2  
SEG21  
COM2  
SEG20  
COM2  
SEG19  
COM2  
SEG18  
COM2  
SEG17  
COM2  
SEG16  
COM2  
xxxx xxxx uuuu uuuu  
COM2  
SEG31  
SEG30  
SEG29  
COM2  
SEG28  
COM2  
SEG27  
COM2  
SEG26  
COM2  
SEG25  
COM2  
SEG24  
COM2  
LCDD11  
xxxx xxxx uuuu uuuu  
COM2(2) COM2(2)  
SEG07  
COM3  
SEG06  
COM3  
SEG05  
COM3  
SEG04  
COM3  
SEG03  
COM3  
SEG02  
COM3  
SEG01  
COM3  
SEG00  
COM3  
LCDD12  
LCDD13  
LCDD14  
LCDD15  
xxxx xxxx uuuu uuuu  
SEG15  
COM3  
SEG14  
COM3  
SEG13  
COM3  
SEG12  
COM3  
SEG11  
COM3  
SEG10  
COM3  
SEG09  
COM3  
SEG08  
COM3  
xxxx xxxx uuuu uuuu  
SEG23  
COM3  
SEG22  
COM3  
SEG21  
COM3  
SEG20  
COM3  
SEG19  
COM3  
SEG18  
COM3  
SEG17  
COM3  
SEG16  
COM3  
xxxx xxxx uuuu uuuu  
SEG31  
SEG30  
SEG29  
SEG28  
COM3  
SEG27  
COM3  
SEG26  
COM3  
SEG25  
COM3  
SEG24  
COM3  
11Fh  
xxxx xxxx uuuu uuuu  
COM3(2) COM3(2) COM3(2)  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the LCD Module.  
Note 1: These bits are reserved on the PIC16C923, always maintain these bits clear.  
2: These pixels do not display, but can be used as general purpose RAM.  
DS30444E - page 102  
1997 Microchip Technology Inc.  
PIC16C9XX  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in reset until the crystal oscillator is stable.The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 72 ms (nominal) on power-up only,  
designed to keep the part in reset while the power sup-  
ply stabilizes. With these two timers on-chip, most  
applications need no external reset circuitry.  
14.0 SPECIAL FEATURES OF THE  
CPU  
What sets a microcontroller apart from other proces-  
sors are special circuits to deal with the needs of  
real-time applications. The PIC16CXXX family has a  
host of such features intended to maximize system reli-  
ability, minimize cost through elimination of external  
components, provide power saving operating modes  
and offer code protection. These are:  
SLEEP mode is designed to offer a very low current  
power-down mode.The user can wake-up from SLEEP  
through external reset, Watchdog Timer Wake-up or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
• Oscillator selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
• Interrupts  
14.1  
Configuration Bits  
• Watchdog Timer (WDT)  
• SLEEP  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
• Code protection  
• ID locations  
The user will note that address 2007h is beyond the  
user program memory space. In fact, it belongs to the  
special test/configuration memory space (2000h -  
3FFFh), which can be accessed only during program-  
ming.  
• In-circuit serial programming  
The PIC16CXXX has a Watchdog Timer which can be  
shut off only through configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
FIGURE 14-1: CONFIGURATION WORD  
CP1  
CP0  
CP1  
CP0  
CP1  
CP0  
CP1  
CP0 PWRTE WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
Address 2007h  
bit13  
(1)  
bit 13-8 CP1:CP0 Code protection bits  
5-4: 11 = Code protection off  
10 = Upper half of program memory code protected  
01 = Upper 3/4 of program memory code protected  
00 = All memory is code protected  
bit 6:  
bit 3:  
Unimplemented: Read as '1'  
PWRTE: Power-up Timer Enable bit  
1 = PWRT disabled  
0 = PWRT enabled  
bit 2:  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: All of the CP1:CP0 bits have to be given the same value to enable the code protection scheme listed.  
1997 Microchip Technology Inc.  
DS30444E - page 103  
 
 
PIC16C9XX  
14.2  
Oscillator Configurations  
TABLE 14-1: CERAMIC RESONATORS  
Ranges Tested:  
14.2.1 OSCILLATOR TYPES  
The PIC16CXXX can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
Mode  
XT  
Freq  
OSC1  
OSC2  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
HS  
8.0 MHz  
10 - 68 pF  
10 - 68 pF  
Crystal/Resonator  
These values are for design guidance only. See  
notes at bottom of page.  
High Speed Crystal/Resonator  
Resistor/Capacitor  
Resonators Used:  
455 kHz Panasonic EFO-A455K04B ± 0.3%  
14.2.2 CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
2.0 MHz Murata Erie CSA2.00MG  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
± 0.5%  
± 0.5%  
± 0.5%  
In XT, LP or HS modes a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 14-2). The  
PIC16CXXX oscillator design requires the use of a par-  
allel cut crystal. Use of a series cut crystal may give a  
frequency out of the crystal manufacturers specifica-  
tions. When in XT, LP or HS modes, the device can  
have an external clock source to drive the OSC1/CLKIN  
pin (Figure 14-3).  
All resonators used did not have built-in capacitors.  
TABLE 14-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
Osc Type  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
FIGURE 14-2: CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(HS, XT OR LP  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
OSC CONFIGURATION)  
4 MHz  
15 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
OSC1  
8 MHz  
15-33 pF  
15-33 pF  
To internal  
logic  
C1  
C2  
These values are for design guidance only. See  
notes at bottom of page.  
XTAL  
OSC2  
SLEEP  
RF  
Crystals Used  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
8 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
RS  
Note1  
PIC16CXXX  
ECS ECS-40-20-1  
See Table 14-1 and Table 14-2 for recommended  
values of C1 and C2.  
EPSON CA-301 8.000M-C  
Note 1: A series resistor may be required for AT  
strip cut crystals.  
Note 1: Recommended values of C1 and C2 are  
identical to the ranges tested (Table 14-1).  
2: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
FIGURE 14-3: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
OSC CONFIGURATION)  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
4: Rs may be required in HS mode as well as  
XT mode to avoid overdriving crystals with  
low drive level specification.  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16CXXX  
Open  
DS30444E - page 104  
1997 Microchip Technology Inc.  
 
 
 
 
PIC16C9XX  
14.2.3 EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
14.2.4 RC OSCILLATOR  
For timing insensitive applications the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 14-6 shows how the R/C combina-  
tion is connected to the PIC16CXXX. For REXT values  
below 2.2 k, the oscillator operation may become  
unstable, or stop completely. For very high REXT values  
(e.g. 1 M), the oscillator becomes sensitive to noise,  
humidity and leakage. Thus, we recommend to keep  
Rext between 3 kand 100 k.  
Either a prepackaged oscillator can be used or a simple  
oscillator circuit with TTL gates can be built. Prepack-  
aged oscillators provide a wide operating range and  
better stability. A well-designed crystal oscillator will  
provide good performance with TTL gates.Two types of  
crystal oscillator circuits can be used; one with series  
resonance, or one with parallel resonance.  
Figure 14-4 shows implementation of a parallel reso-  
nant oscillator circuit. The circuit is designed to use the  
fundamental frequency of the crystal. The 74AS04  
inverter performs the 180-degree phase shift that a par-  
allel oscillator requires.The 4.7 kresistor provides the  
negative feedback for stability.The 10 kpotentiometer  
biases the 74AS04 in the linear region. This could be  
used for external oscillator designs.  
FIGURE 14-4: EXTERNAL PARALLEL  
RESONANT CRYSTAL  
Although the oscillator will operate with no external  
capacitor (CEXT = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or pack-  
age lead frame capacitance.  
OSCILLATOR CIRCUIT  
+5V  
To Other  
Devices  
10k  
74AS04  
4.7k  
PIC16CXXX  
74AS04  
CLKIN  
See characterization data for desired device for RC fre-  
quency variation from part to part due to normal pro-  
cess variation.The variation is larger for larger R (since  
leakage current variation will affect RC frequency more  
for large R) and for smaller C (since variation of input  
capacitance will affect RC frequency more).  
10k  
XTAL  
10k  
See characterization data for desired device for varia-  
tion of oscillator frequency due to VDD for given  
REXT/CEXT values as well as frequency variation due to  
operating temperature for given R, C, and VDD values.  
20 pF  
20 pF  
Figure 14-5 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental fre-  
quency of the crystal. The inverter performs a  
180-degree phase shift in a series resonant oscillator  
circuit. The 330 kresistors provide the negative feed-  
back to bias the inverters in their linear region.  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin, and can be used for test pur-  
poses or to synchronize other logic (see Figure 3-3 for  
waveform).  
FIGURE 14-6: RC OSCILLATOR MODE  
FIGURE 14-5: EXTERNAL SERIES  
RESONANT CRYSTAL  
VDD  
OSCILLATOR CIRCUIT  
REXT  
Internal  
OSC1  
clock  
To Other  
Devices  
330 kΩ  
330 kΩ  
CEXT  
VSS  
PIC16CXXX  
74AS04  
74AS04  
74AS04  
CLKIN  
OSC2/CLKOUT  
0.1 µF  
Fosc/4  
XTAL  
PIC16CXXX  
1997 Microchip Technology Inc.  
DS30444E - page 105  
 
 
 
PIC16C9XX  
the resumption of normal operation. The TO and PD  
bits are set or cleared differently in different reset situ-  
ations as indicated in Table 14-4. These bits are used  
in software to determine the nature of the reset. See  
Table 14-6 for a full description of reset states of all reg-  
isters.  
14.3  
Reset  
The PIC16CXX differentiates between various kinds of  
reset:  
• Power-on Reset (POR)  
• MCLR Reset during normal operation  
• MCLR Reset during SLEEP  
• WDT Reset (normal operation)  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 14-7.  
Some registers are not affected in any reset condition;  
their status is unknown on POR and unchanged in any  
other reset. Most other registers are reset to a “reset  
state” on Power-on Reset (POR), on the MCLR and  
WDT Reset, and on MCLR Reset during SLEEP. They  
are not affected by a WDT Wake-up, which is viewed as  
The devices all have a MCLR noise filter in the MCLR  
reset path.The filter will detect and ignore small pulses.  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
FIGURE 14-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
VDD rise  
detect  
Power-on Reset  
VDD  
S
R
OST/PWRT  
OST  
Chip_Reset  
Q
10-bit Ripple counter  
OSC1  
(1)  
PWRT  
On-chip  
RC OSC  
10-bit Ripple counter  
(2)  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
2: See Table 14-3 for time-out situations.  
DS30444E - page 106  
1997 Microchip Technology Inc.  
 
PIC16C9XX  
14.4.3 OSCILLATOR START-UP TIMER (OST)  
14.4  
Power-on Reset (POR), Power-up  
Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over.This ensures that the crystal oscil-  
lator or resonator has started and stabilized.  
14.4.1 POWER-ON RESET (POR)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.5V - 2.1V). To  
take advantage of the POR, just tie the MCLR pin  
directly (or through a resistor) to VDD. This will elimi-  
nate external RC components usually needed to create  
a Power-on Reset. A maximum rise time for VDD is  
specified. See Electrical Specifications for details.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
14.4.4 TIME-OUT SEQUENCE  
On power-up the time-out sequence is as follows: First  
PWRT time-out is invoked after the POR time delay has  
expired. Then OST is activated. The total time-out will  
vary based on oscillator configuration and the status of  
the PWRT. For example, in RC mode with the PWRT  
disabled, there will be no time-out at all. Figure 14-8,  
Figure 14-9, and Figure 14-10 depict time-out  
sequences on power-up.  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature, ...) must be met to ensure  
operation. If these conditions are not met, the device  
must be held in reset until the operating conditions are  
met.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting.”  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(Figure 14-9). This is useful for testing purposes or to  
synchronize more than one PIC16CXXX device operat-  
ing in parallel.  
14.4.2 POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up only, from the POR. The  
Power-up Timer operates on an internal RC oscillator.  
The chip is kept in reset as long as the PWRT is active.  
The PWRT’s time delay allows VDD to rise to an accept-  
able level. A configuration bit is provided to enable/dis-  
able the PWRT.  
Table 14-5 shows the reset conditions for some special  
function registers, while Table 14-6 shows the reset  
conditions for all the registers.  
14.4.5 POWER CONTROL/STATUS REGISTER  
(PCON)  
The power-up time delay will vary from chip to chip due  
to VDD, temperature, and process variation. See DC  
parameters for details.  
Bit1 is Power-on Reset Status bit POR. It is cleared on  
a Power-on Reset and unaffected otherwise. The user  
must set this bit following a Power-on Reset.  
TABLE 14-3: TIME-OUT IN VARIOUS SITUATIONS  
Oscillator Configuration  
PWRTE = 1  
Power-up  
Wake-up from SLEEP  
PWRTE = 0  
72 ms + 1024TOSC  
72 ms  
XT, HS, LP  
RC  
1024TOSC  
1024 TOSC  
1997 Microchip Technology Inc.  
DS30444E - page 107  
PIC16C9XX  
TABLE 14-4: STATUS BITS AND THEIR SIGNIFICANCE  
POR  
TO  
PD  
0
0
0
1
1
1
1
1
0
x
0
0
u
1
1
x
0
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
Legend: u= unchanged, x= unknown  
TABLE 14-5: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
uuu1 0uuu  
---- --0-  
---- --u-  
---- --u-  
---- --u-  
---- --u-  
---- --u-  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
000h  
WDT Wake-up  
PC + 1  
PC + 1  
(1)  
Interrupt wake-up from SLEEP  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded  
with the interrupt vector (0004h).  
TABLE 14-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Register  
Applicable Devices  
Power-on Reset  
MCLR Resets  
WDT Reset  
Wake-up via  
WDT or  
Interrupt  
W
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
PCL  
xxxx xxxx  
0000h  
uuuu uuuu  
0000h  
uuuu uuuu  
(2)  
PC + 1  
(3)  
(3)  
STATUS  
FSR  
0001 1xxx  
xxxx xxxx  
--xx xxxx  
000q quuu  
uuuq quuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
--uu uuuu  
--uu uuuu  
uuuu uuuu  
--uu uuuu  
PORTA  
PORTA  
PORTB  
PORTC  
(5)  
(5)  
--0x 0000  
--0u 0000  
xxxx xxxx  
--xx xxxx  
uuuu uuuu  
--uu uuuu  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 14-5 for reset value for specific condition.  
4: Bits PIE1<6> and PIR1<6> are reserved on the PIC16C923, always maintain these bits clear.  
5: PORTA values when read.  
DS30444E - page 108  
1997 Microchip Technology Inc.  
 
PIC16C9XX  
TABLE 14-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.d)  
Register  
Applicable Devices  
Power-on Reset  
MCLR Resets  
WDT Reset  
Wake-up via  
WDT or  
Interrupt  
PORTD  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
923  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
924  
0000 0000  
0000 0000  
---0 0000  
0000 000x  
00-- 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
00-- 0000  
---- --0-  
1111 1111  
0000 0000  
0000 0000  
---- -000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---0 0000  
0000 000u  
00-- 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
00-- 0000  
---- --u-  
1111 1111  
0000 0000  
0000 0000  
---- -000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
PORTE  
PCLATH  
INTCON  
(1)  
uuuu uuuu  
(4)  
(1)  
PIR1  
uu-- uuuu  
TMR1L  
TMR1H  
T1CON  
TMR2  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uu-- uuuu  
---- --u-  
1111 1111  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
ADRES  
ADCON0  
OPTION  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
(4)  
PIE1  
PCON  
PR2  
SSPADD  
SSPSTAT  
ADCON1  
PORTF  
PORTG  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 14-5 for reset value for specific condition.  
4: Bits PIE1<6> and PIR1<6> are reserved on the PIC16C923, always maintain these bits clear.  
5: PORTA values when read.  
1997 Microchip Technology Inc.  
DS30444E - page 109  
PIC16C9XX  
TABLE 14-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.d)  
Register  
Applicable Devices  
Power-on Reset  
MCLR Resets  
WDT Reset  
Wake-up via  
WDT or  
Interrupt  
LCDSE  
923  
923  
923  
923  
924  
924  
924  
924  
1111 1111  
---- 0000  
00-0 0000  
xxxx xxxx  
1111 1111  
---- 0000  
00-0 0000  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
uu-u uuuu  
uuuu uuuu  
LCDPS  
LCDCON  
LCDD00  
to  
LCDD15  
TRISF  
TRISG  
923  
923  
924  
924  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
uuuu uuuu  
uuuu uuuu  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 14-5 for reset value for specific condition.  
4: Bits PIE1<6> and PIR1<6> are reserved on the PIC16C923, always maintain these bits clear.  
5: PORTA values when read.  
DS30444E - page 110  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 14-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 14-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 14-10:TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
1997 Microchip Technology Inc.  
DS30444E - page 111  
PIC16C9XX  
FIGURE 14-11:EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
FIGURE 14-12:EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 1  
VDD  
VDD  
33k  
VDD  
10k  
MCLR  
D
R
R1  
40k  
PIC16CXXX  
MCLR  
PIC16CXXX  
C
Note 1: This circuit will activate reset when VDD  
goes below (Vz + 0.7V) where Vz = Zener  
voltage.  
Note 1: External Power-on Reset circuit is required  
only if VDD power-up slope is too slow.The  
diode D helps discharge the capacitor  
quickly when VDD powers down.  
2: Resistors should be adjusted for the char-  
acteristics of the transistors.  
2: R < 40 kis recommended to make sure  
that voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
(ESD) or Electrical Overstress (EOS).  
FIGURE 14-13:EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 2  
VDD  
VDD  
R1  
R2  
Q1  
MCLR  
40k  
PIC16CXXX  
Note 1: This brown-out circuit is less expensive,  
albeit less accurate. Transistor Q1 turns  
off when VDD is below a certain level  
such that:  
R1  
= 0.7V  
VDD •  
R1 + R2  
2: Resistors should be adjusted for the  
characteristics of the transistors.  
DS30444E - page 112  
1997 Microchip Technology Inc.  
PIC16C9XX  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupt’s flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in various  
registers. Individual interrupt bits are set regardless of  
the status of the GIE bit.The GIE bit is cleared on reset.  
14.5  
Interrupts  
The PIC16C9XX family has up to 9 sources of interrupt:  
Applicable  
Devices  
Interrupt Sources  
External interrupt RB0/INT  
TMR0 overflow interrupt  
923 924  
923 924  
923 924  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine as well as sets the GIE bit, which  
re-enables interrupts.  
PORTB change interrupts  
(pins RB7:RB4)  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
A/D Interrupt  
923 924  
923 924  
923 924  
923 924  
923 924  
923 924  
TMR1 overflow interrupt  
TMR2 matches period interrupt  
CCP1 interrupt  
The peripheral interrupt flags are contained in the spe-  
cial function register PIR1.The corresponding interrupt  
enable bits are contained in special function register  
PIE1, and the peripheral interrupt enable bit is con-  
tained in special function register INTCON.  
Synchronous serial port interrupt  
LCD Module interrupt  
The interrupt control register (INTCON) records individ-  
ual interrupt requests in flag bits. It also has individual  
and global interrupt enable bits.  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupts, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the interrupt service routine the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
Note: Individual interrupt flag bits are set regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
For external interrupt events, such as the RB0/INT pin  
or RB Port change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs  
(Figure 14-15). The latency is the same for one or two  
cycle instructions. Individual interrupt flag bits are set  
regardless of the status of their corresponding mask bit  
or the GIE bit.  
1997 Microchip Technology Inc.  
DS30444E - page 113  
PIC16C9XX  
FIGURE 14-14:INTERRUPT LOGIC  
TMR1IF  
TMR1IE  
Wake-up (If in SLEEP mode)  
Interrupt to CPU  
T0IF  
T0IE  
INTF  
INTE  
TMR2IF  
TMR2IE  
RBIF  
RBIE  
LCDIF  
LCDIE  
PEIF  
PEIE  
GIE  
CCP1IF  
CCP1IE  
SSPIF  
SSPIE  
ADIF  
ADIE  
The A/D module interrupt is implemented on the PIC16C924 only.  
FIGURE 14-15:INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT  
3
4
INT pin  
1
1
Interrupt Latency  
INTF flag  
(INTCON<1>)  
5
2
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
0004h  
PC+1  
PC+1  
0005h  
PC  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC-1)  
Note  
1: INTF flag is sampled here (every Q1).  
2: Interrupt latency = 3-4 TCY where TCY = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in RC oscillator mode.  
4: For minimum width of INT pulse, refer to AC specs.  
5: INTF can be set anytime during the Q4-Q1 cycles.  
DS30444E - page 114  
1997 Microchip Technology Inc.  
PIC16C9XX  
14.5.1 INT INTERRUPT  
14.6  
Context Saving During Interrupts  
During an interrupt, only the return PC value is saved  
on the stack.Typically, users may wish to save key reg-  
isters during an interrupt i.e., W register and STATUS  
register. This will have to be implemented in software.  
External interrupt on RB0/INT pin is edge triggered:  
either rising if bit INTEDG (OPTION<6>) is set, or fall-  
ing, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the interrupt service rou-  
tine before re-enabling this interrupt. The INT interrupt  
can wake-up the processor from SLEEP, if bit INTE was  
set prior to going into SLEEP.The status of global inter-  
rupt enable bit GIE decides whether or not the proces-  
sor branches to the interrupt vector following wake-up.  
See Section 14.8 for details on SLEEP mode.  
Example 14-1 stores and restores the STATUS, W, and  
PCLATH registers. The register, W_TEMP, must be  
defined in each bank and must be defined at the same  
offset from the bank base address (i.e., if W_TEMP is  
defined at 0x20 in bank 0, it must also be defined at  
0xA0 in bank 1).  
The example:  
a) Stores the W register.  
b) Stores the STATUS register in bank 0.  
c) Stores the PCLATH register.  
d) Executes the ISR code.  
14.5.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>). (Section 7.0)  
e) Restores the STATUS register (and bank select  
bit).  
f) Restores the W and PCLATH registers.  
14.5.3 PORTB INTCON CHANGE  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>).  
(Section 5.2)  
EXAMPLE 14-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
MOVF  
MOVWF  
CLRF  
BCF  
W_TEMP  
STATUS,W  
STATUS  
STATUS_TEMP  
PCLATH, W  
PCLATH_TEMP  
PCLATH  
STATUS, IRP  
FSR, W  
;Copy W to TEMP register, could be bank one or zero  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
;Only required if using pages 1, 2 and/or 3  
;Save PCLATH into W  
;Page zero, regardless of current page  
;Return to Bank 0  
;Copy FSR to W  
MOVF  
MOVWF  
:
FSR_TEMP  
;Copy FSR from W to FSR_TEMP  
:(ISR)  
:
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP, W  
PCLATH  
STATUS_TEMP,W  
;Restore PCLATH  
;Move W into PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
1997 Microchip Technology Inc.  
DS30444E - page 115  
 
PIC16C9XX  
assigned to the WDT under software control by writing  
to the OPTION register. Thus, time-out periods up to  
2.3 seconds can be realized.  
14.7  
Watchdog Timer (WDT)  
The Watchdog Timer is as a free running on-chip RC  
oscillator which does not require any external compo-  
nents.This RC oscillator is separate from the RC oscil-  
lator of the OSC1/CLKIN pin.That means that the WDT  
will run, even if the clock on the OSC1/CLKIN and  
OSC2/CLKOUT pins of the device has been stopped,  
for example, by execution of a SLEEPinstruction. Dur-  
ing normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The WDT can be permanently  
disabled by clearing configuration bit WDTE  
(Section 14.1).  
The CLRWDT and SLEEP instructions clear the WDT  
and the postscaler, if assigned to the WDT, and prevent  
it from timing out and generating a device RESET con-  
dition.  
The TO bit in the STATUS register will be cleared upon  
a Watchdog Timer time-out.  
14.7.2 WDT PROGRAMMING CONSIDERATIONS  
It should also be taken into account that under worst  
case conditions (VDD = Min., Temperature = Max., and  
max. WDT prescaler) it may take several seconds  
before a WDT time-out occurs.  
14.7.1 WDT PERIOD  
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
The WDT has a nominal time-out period of 18 ms, (with  
no prescaler). The time-out periods vary with tempera-  
DD  
ture, V and process variations from part to part (see  
DC specs). If longer time-out periods are desired, a  
prescaler with a division ratio of up to 1:128 can be  
FIGURE 14-16:WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 7-6)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 7-6)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION register.  
FIGURE 14-17:SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
2007h  
Config. bits  
(1)  
(1)  
CP1  
CP0  
PWRTE  
PSA  
WDTE  
PS2  
FOSC1  
PS1  
FOSC0  
PS0  
81h, 181h OPTION  
RBPU  
INTEDG  
T0CS T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Figure 14-1 for operation of these bits.  
DS30444E - page 116  
1997 Microchip Technology Inc.  
PIC16C9XX  
Other peripherals can not generate interrupts since  
during SLEEP, no on-chip Q clocks are present.  
14.8  
Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD, or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D, disable external clocks. Pull all I/O pins, that  
are hi-impedance inputs, high or low externally to avoid  
switching currents caused by floating inputs.TheT0CKI  
input should also be at VDD or VSS for lowest current  
consumption.The contribution from on-chip pull-ups on  
PORTB should be considered.  
14.8.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The MCLR pin must be at a logic high level (VIHMC).  
14.8.1 WAKE-UP FROM SLEEP  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
The device can wake up from SLEEP through one of  
the following events:  
1. External reset input on MCLR pin.  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will immedi-  
ately wake up from sleep. The SLEEPinstruction  
will be completely executed before the wake-up.  
Therefore, the WDT and WDT postscaler will be  
cleared, the TO bit will be set and the PD bit will  
be cleared.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from RB0/INT pin, RB port change, or  
some peripheral interrupts.  
External MCLR Reset will cause a device reset. All  
other events are considered a continuation of program  
execution and cause a “wake-up”. The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device reset. The PD bit, which is set on  
power-up is cleared when SLEEPis invoked.The TO bit  
is cleared if a WDT time-out occurred (and caused  
wake-up).  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes.To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEPinstruction was  
executed as a NOP.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. TMR1 interrupt.Timer1 must be operating as an  
asynchronous counter.  
2. SSP (Start/Stop) bit detect interrupt.  
2
3. SSP transmit or receive in slave mode (SPI/I C).  
4. CCP capture mode interrupt.  
5. A/D conversion (when A/D clock source is RC).  
6. Special event trigger (Timer1 in asynchronous  
mode using an external clock).  
7. LCD module.  
1997 Microchip Technology Inc.  
DS30444E - page 117  
PIC16C9XX  
FIGURE 14-18:WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
TOST(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
After reset, to place the device into program/verify  
mode, the program counter (PC) is at location 00h. A  
6-bit command is then supplied to the device. Depend-  
ing on the command, 14-bits of program data are then  
supplied to or from the device, depending if the com-  
mand was a load or a read. For complete details of  
serial programming, please refer to the PIC16C6X/7X  
Programming Specifications (Literature #DS30228).  
14.9  
Program Verification/Code Protection  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
Note: Microchip does not recommend code pro-  
tecting windowed devices.  
14.10 ID Locations  
FIGURE 14-19:TYPICAL IN-CIRCUIT SERIAL  
PROGRAMMING  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 least significant bits of the ID  
location are used.  
CONNECTION  
To Normal  
Connections  
External  
Connector  
Signals  
PIC16CXXX  
14.11 In-Circuit Serial Programming  
+5V  
0V  
VDD  
PIC16CXXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
VSS  
VPP  
MCLR/VPP  
RB6  
RB7  
CLK  
Data I/O  
VDD  
To Normal  
Connections  
The device is placed into a program/verify mode by  
holding the RB6 and RB7 pins low while raising the  
MCLR (VPP) pin from VIL to VIHH (see programming  
specification). RB6 becomes the programming clock  
and RB7 becomes the programming data. Both RB6  
and RB7 are Schmitt Trigger inputs in this mode.  
DS30444E - page 118  
1997 Microchip Technology Inc.  
PIC16C9XX  
TABLE 15-1: OPCODE FIELD DESCRIPTIONS  
15.0 INSTRUCTION SET SUMMARY  
Each PIC16CXXX instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CXX instruction  
set summary in Table 15-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 15-1  
shows the opcode field descriptions.  
Field  
Description  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Don't care location (= 0 or 1)  
For byte-oriented instructions, 'f' represents a file reg-  
ister designator and 'd' represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the W register. If 'd' is one, the result is placed  
in the file register specified in the instruction.  
label  
TOS  
Label name  
Top of Stack  
PC  
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the number of the  
file in which the bit is located.  
Program Counter  
Program Counter High Latch  
Global Interrupt Enable bit  
Watchdog Timer/Counter  
Time-out bit  
PCLATH  
GIE  
WDT  
TO  
For literal and control operations, 'k' represents an  
eight or eleven bit constant or literal value.  
PD  
Power-down bit  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
dest Destination either the W register or the specified  
register file location  
Byte-oriented operations  
Bit-oriented operations  
[ ] Options  
Contents  
( )  
Literal and control operations  
Assigned to  
FIGURE 15-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
Register bit field  
In the set of  
< >  
Byte-oriented file register operations  
User defined term (font is courier)  
italics  
13  
8
7
6
0
0
OPCODE  
d
f (FILE #)  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction. In  
this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods.Thus, for an  
oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Table 15-2 lists the instructions recognized by the  
MPASM assembler.  
Literal and control operations  
Figure 15-1 shows the general formats that the instruc-  
tions can have.  
General  
13  
8
7
0
0
Note: To maintain upward compatibility with  
future PIC16CXXX products, do not use  
the OPTIONand TRISinstructions.  
OPCODE  
k (literal)  
k = 8-bit immediate value  
All examples use the following format to represent a  
hexadecimal number:  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
0xhh  
k (literal)  
where h signifies a hexadecimal digit.  
1997 Microchip Technology Inc.  
DS30444E - page 119  
 
PIC16C9XX  
TABLE 15-2: PIC16CXXX INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Operands  
Description  
Cycles  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff  
0101 dfff ffff  
0001 lfff ffff  
0001 0xxx xxxx  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
0010 dfff ffff  
1110 dfff ffff  
0110 dfff ffff  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
C,DC,Z  
1,2  
1,2  
2
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
C,DC,Z  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
10bb bfff ffff  
11bb bfff ffff  
1,2  
1,2  
3
1 (2) 01  
1 (2) 01  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11  
11  
10  
00  
10  
11  
11  
00  
11  
00  
00  
11  
11  
111x kkkk kkkk C,DC,Z  
1001 kkkk kkkk  
0kkk kkkk kkkk  
Z
0000 0110 0100 TO,PD  
1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
1000 kkkk kkkk  
00xx kkkk kkkk  
0000 0000 1001  
01xx kkkk kkkk  
0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
0000 0110 0011 TO,PD  
110x kkkk kkkk C,DC,Z  
1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external  
device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS30444E - page 120  
1997 Microchip Technology Inc.  
PIC16C9XX  
15.1  
Instruction Descriptions  
Add Literal and W  
ADDWF  
Syntax:  
Add W and f  
ADDLW  
[label] ADDWF f,d  
Syntax:  
[label] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
(W) + k (W)  
C, DC, Z  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Encoding:  
C, DC, Z  
11  
111x  
kkkk  
kkkk  
00  
0111  
dfff  
ffff  
The contents of the W register are  
added to the eight bit literal 'k' and the  
result is placed in the W register.  
Description:  
Add the contents of the W register with  
register 'f'. If 'd' is 0 the result is stored  
in the W register. If 'd' is 1 the result is  
stored back in register 'f'.  
Words:  
1
1
Cycles:  
Words:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Cycles:  
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
W
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
ADDLW  
0x15  
Example:  
Before Instruction  
ADDWF  
FSR,  
W
=
0x10  
0x25  
0
Example  
After Instruction  
Before Instruction  
W
=
W
=
0x17  
0xC2  
FSR =  
After Instruction  
W
FSR =  
=
0xD9  
0xC2  
1997 Microchip Technology Inc.  
DS30444E - page 121  
PIC16C9XX  
ANDWF  
Syntax:  
AND W with f  
[label] ANDWF f,d  
0 f 127  
ANDLW  
AND Literal with W  
Syntax:  
[label] ANDLW  
k
Operands:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
d
[0,1]  
(W) .AND. (k) (W)  
Operation:  
(W) .AND. (f) (destination)  
Z
Status Affected:  
Encoding:  
Z
11  
1001  
kkkk  
kkkk  
00  
0101  
dfff  
ffff  
The contents of W register are  
Description:  
AND the W register with register 'f'. If 'd'  
is 0 the result is stored in the W regis-  
ter. If 'd' is 1 the result is stored back in  
register 'f'.  
AND’ed with the eight bit literal 'k'.The  
result is placed in the W register.  
Words:  
1
1
Cycles:  
Words:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Cycles:  
Decode  
Read  
literal "k"  
Process  
data  
Write to  
W
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
ANDLW  
0x5F  
Example  
Before Instruction  
ANDWF  
FSR,  
1
Example  
W
=
0xA3  
0x03  
After Instruction  
Before Instruction  
W
=
W
=
0x17  
0xC2  
FSR =  
After Instruction  
W
FSR =  
=
0x17  
0x02  
BCF  
Bit Clear f  
Syntax:  
Operands:  
[label] BCF f,b  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
0 (f<b>)  
None  
01  
00bb  
bfff  
ffff  
Description:  
Words:  
Bit 'b' in register 'f' is cleared.  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
BCF  
FLAG_REG, 7  
Example  
Before Instruction  
FLAG_REG = 0xC7  
After Instruction  
FLAG_REG = 0x47  
DS30444E - page 122  
1997 Microchip Technology Inc.  
PIC16C9XX  
BTFSC  
Bit Test, Skip if Clear  
BSF  
Bit Set f  
Syntax:  
[label] BTFSC f,b  
Syntax:  
Operands:  
[label] BSF f,b  
Operands:  
0 f 127  
0 b 7  
0 f 127  
0 b 7  
Operation:  
skip if (f<b>) = 0  
None  
Operation:  
Status Affected:  
Encoding:  
1 (f<b>)  
Status Affected:  
Encoding:  
None  
01  
10bb  
bfff  
ffff  
01  
01bb  
bfff  
ffff  
If bit 'b' in register 'f' is '1' then the next  
instruction is executed.  
If bit 'b', in register 'f', is '0' then the next  
instruction is discarded, and a NOP is  
executed instead, making this a 2TCY  
instruction.  
Description:  
Bit 'b' in register 'f' is set.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
1
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
Cycles:  
1(2)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
BSF  
FLAG_REG,  
7
Example  
Decode  
Read  
register 'f'  
Process  
data  
No-  
Operation  
Before Instruction  
FLAG_REG = 0x0A  
After Instruction  
If Skip:  
(2nd Cycle)  
Q1  
Q2  
Q3  
Q4  
FLAG_REG = 0x8A  
No-  
No-  
No-  
No-  
Operation Operation Operation Operation  
HERE  
FALSE  
TRUE  
BTFSC  
GOTO  
FLAG,1  
PROCESS_CODE  
Example  
Before Instruction  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
address TRUE  
if FLAG<1>=1,  
PC =  
address FALSE  
1997 Microchip Technology Inc.  
DS30444E - page 123  
PIC16C9XX  
BTFSS  
Bit Test f, Skip if Set  
CALL  
Call Subroutine  
[ label ] CALL k  
0 k 2047  
Syntax:  
[label] BTFSS f,b  
Syntax:  
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
(PC)+ 1TOS,  
Operation:  
skip if (f<b>) = 1  
None  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
None  
01  
11bb  
bfff  
ffff  
10  
0kkk  
kkkk  
kkkk  
If bit 'b' in register 'f' is '0' then the next  
instruction is executed.  
If bit 'b' is '1', then the next instruction is  
discarded and a NOP is executed  
instead, making this a 2TCY instruction.  
Description:  
Call Subroutine. First, return address  
(PC+1) is pushed onto the stack. The  
eleven bit immediate address is loaded  
into PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH. CALL  
is a two cycle instruction.  
Description:  
Words:  
1
Cycles:  
1(2)  
Words:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Cycles:  
Decode  
Read  
register 'f'  
Process  
data  
No-  
Operation  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
data  
Write to  
PC  
If Skip:  
(2nd Cycle)  
literal 'k',  
Push PC  
to Stack  
Q1  
Q2  
Q3  
Q4  
No-  
No-  
No-  
No-  
No-  
No-  
No-  
No-  
2nd Cycle  
Example  
Operation Operation Operation Operation  
Operation Operation Operation Operation  
HERE  
FALSE  
TRUE  
BTFSC  
GOTO  
FLAG,1  
PROCESS_CODE  
HERE  
CALL  
Example  
THERE  
Before Instruction  
PC  
=
Address HERE  
After Instruction  
PC  
= Address THERE  
Before Instruction  
TOS = Address HERE+1  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
address FALSE  
if FLAG<1> = 1,  
PC =  
address TRUE  
DS30444E - page 124  
1997 Microchip Technology Inc.  
PIC16C9XX  
CLRF  
Clear f  
CLRW  
Clear W  
Syntax:  
[label] CLRF  
0 f 127  
f
Syntax:  
[ label ] CLRW  
None  
Operands:  
Operation:  
Operands:  
Operation:  
00h (f)  
1 Z  
00h (W)  
1 Z  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
Z
00  
0001  
1fff  
ffff  
00  
0001  
0xxx  
xxxx  
The contents of register 'f' are cleared  
and the Z bit is set.  
Description:  
W register is cleared. Zero bit (Z) is  
set.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
Decode  
No-  
Operation  
Process  
data  
Write to  
W
CLRW  
Example  
CLRF  
FLAG_REG  
Example  
Before Instruction  
Before Instruction  
FLAG_REG  
After Instruction  
W
=
0x5A  
=
0x5A  
After Instruction  
W
=
0x00  
1
FLAG_REG  
Z
=
=
0x00  
1
Z
=
1997 Microchip Technology Inc.  
DS30444E - page 125  
PIC16C9XX  
COMF  
Complement f  
[ label ] COMF f,d  
0 f 127  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
Syntax:  
Operands:  
[ label ] CLRWDT  
None  
Operands:  
Operation:  
d
[0,1]  
00h WDT  
0 WDT prescaler,  
1 TO  
Operation:  
(f) (destination)  
Status Affected:  
Encoding:  
Z
1 PD  
00  
1001  
dfff  
ffff  
Status Affected:  
Encoding:  
TO, PD  
The contents of register 'f' are comple-  
mented. If 'd' is 0 the result is stored in  
W. If 'd' is 1 the result is stored back in  
register 'f'.  
Description:  
00  
0000  
0110  
0100  
CLRWDTinstruction resets the Watch-  
dog Timer. It also resets the prescaler  
of the WDT. Status bits TO and PD are  
set.  
Description:  
Words:  
1
1
Cycles:  
Words:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Cycles:  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No-  
Operation  
Process  
data  
Clear  
WDT  
COMF  
REG1,0  
Counter  
Example  
Before Instruction  
CLRWDT  
REG1  
After Instruction  
REG1  
=
0x13  
Example  
Before Instruction  
After Instruction  
=
=
0x13  
0xEC  
WDT counter  
=
=
?
W
WDT counter  
WDT prescaler=  
TO  
PD  
0x00  
DECF  
Decrement f  
[label] DECF f,d  
0 f 127  
0
1
1
=
=
Syntax:  
Operands:  
d
[0,1]  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Encoding:  
Z
00  
0011  
dfff  
ffff  
Description:  
Decrement register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
DECF  
CNT,  
1
Example  
Before Instruction  
CNT  
=
0x01  
Z
=
0
After Instruction  
CNT  
Z
=
=
0x00  
1
DS30444E - page 126  
1997 Microchip Technology Inc.  
PIC16C9XX  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 127  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 2047  
Syntax:  
Operands:  
Operands:  
Operation:  
d
[0,1]  
k PC<10:0>  
Operation:  
(f) - 1 (destination);  
PCLATH<4:3> PC<12:11>  
skip if result = 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
10  
1kkk  
kkkk  
kkkk  
00  
1011  
dfff  
ffff  
GOTOis an unconditional branch. The  
eleven bit immediate value is loaded  
into PC bits <10:0>. The upper bits of  
PC are loaded from PCLATH<4:3>.  
GOTOis a two cycle instruction.  
Description:  
The contents of register 'f' are decre-  
mented. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is placed  
back in register 'f'.  
Description:  
If the result is 1, the next instruction, is  
executed. If the result is 0, then a NOP is  
executed instead making it a 2TCY instruc-  
tion.  
Words:  
1
2
Cycles:  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Words:  
1
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
PC  
Cycles:  
1(2)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No-  
No-  
No-  
No-  
2nd Cycle  
Operation Operation Operation Operation  
Decode  
Read  
register 'f'  
Process  
data  
Write to  
destination  
GOTO THERE  
Example  
If Skip:  
(2nd Cycle)  
Q1  
Q2  
Q3  
Q4  
After Instruction  
PC  
=
Address THERE  
No-  
No-  
No-  
No-  
Operation Operation Operation Operation  
HERE  
DECFSZ  
GOTO  
CNT, 1  
LOOP  
Example  
CONTINUE •  
Before Instruction  
PC  
=
address HERE  
After Instruction  
CNT  
if CNT =  
PC  
if CNT ≠  
PC  
=
CNT - 1  
0,  
address CONTINUE  
0,  
address HERE+1  
=
=
1997 Microchip Technology Inc.  
DS30444E - page 127  
PIC16C9XX  
INCF  
Increment f  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
[ label ] INCFSZ f,d  
0 f 127  
Syntax:  
Operands:  
[ label ] INCF f,d  
0 f 127  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(f) + 1 (destination)  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
1010  
dfff  
ffff  
00  
1111  
dfff  
ffff  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
If the result is 1, the next instruction is  
executed. If the result is 0, a NOP is  
executed instead making it a 2TCY  
instruction.  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
1
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Cycles:  
1(2)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
data  
Write to  
destination  
INCF  
CNT,  
1
Example  
Before Instruction  
If Skip:  
(2nd Cycle)  
CNT  
Z
=
=
0xFF  
0
Q1  
Q2  
Q3  
Q4  
After Instruction  
No-  
No-  
No-  
No-  
Operation Operation Operation Operation  
CNT  
Z
=
=
0x00  
1
HERE  
INCFSZ  
GOTO  
CNT, 1  
LOOP  
Example  
CONTINUE •  
Before Instruction  
PC  
=
address HERE  
After Instruction  
CNT  
=
CNT + 1  
if CNT=  
0,  
PC  
if CNT≠  
=
address CONTINUE  
0,  
PC  
=
address HERE +1  
DS30444E - page 128  
1997 Microchip Technology Inc.  
PIC16C9XX  
IORLW  
Inclusive OR Literal with W  
[ label ] IORLW k  
0 k 255  
IORWF  
Inclusive OR W with f  
[ label ] IORWF f,d  
0 f 127  
Syntax:  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
d
[0,1]  
(W) .OR. k (W)  
Z
Operation:  
(W) .OR. (f) (destination)  
Status Affected:  
Encoding:  
Z
11  
1000  
kkkk  
kkkk  
00  
0100  
dfff  
ffff  
The contents of the W register is  
OR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
Inclusive OR the W register with regis-  
ter 'f'. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is placed  
back in register 'f'.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
W
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
IORLW  
0x35  
Example  
Before Instruction  
IORWF  
RESULT, 0  
Example  
W
=
0x9A  
After Instruction  
Before Instruction  
W
=
0xBF  
1
RESULT =  
W
0x13  
0x91  
Z
=
=
After Instruction  
RESULT =  
0x13  
0x93  
1
W
Z
=
=
1997 Microchip Technology Inc.  
DS30444E - page 129  
PIC16C9XX  
MOVF  
Move f  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Syntax:  
f
0 f 127  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
Operation:  
(f) (destination)  
None  
Status Affected:  
Encoding:  
Z
00  
0000  
1fff  
ffff  
00  
1000  
dfff  
ffff  
Move data from W register to register  
'f'.  
The contents of register f is moved to a  
destination dependant upon the status  
of d. If d = 0, destination is W register. If  
d = 1, the destination is file register f  
itself. d = 1 is useful to test a file regis-  
ter since status flag Z is affected.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
1
1
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
MOVWF  
OPTION_REG  
Example  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Before Instruction  
OPTION =  
0xFF  
0x4F  
W
=
MOVF  
FSR,  
After Instruction  
0
Example  
OPTION =  
W
0x4F  
0x4F  
After Instruction  
=
W = value in FSR register  
Z
= 1  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
k (W)  
None  
11  
00xx  
kkkk  
kkkk  
The eight bit literal 'k' is loaded into W  
register.The don’t cares will assemble  
as 0’s.  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
W
MOVLW  
0x5A  
Example  
After Instruction  
W
=
0x5A  
DS30444E - page 130  
1997 Microchip Technology Inc.  
PIC16C9XX  
NOP  
No Operation  
[ label ] NOP  
None  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
Syntax:  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Operands:  
Operation:  
No operation  
None  
TOS PC,  
1 GIE  
Status Affected:  
Encoding:  
None  
00  
0000  
0xx0  
0000  
00  
0000  
0000  
1001  
No operation.  
Return from Interrupt. Stack is POPed  
and Top of Stack (TOS) is loaded in the  
PC. Interrupts are enabled by setting  
Global Interrupt Enable bit, GIE  
(INTCON<7>). This is a two cycle  
instruction.  
Description:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No-  
No-  
No-  
Operation Operation Operation  
Words:  
1
2
Cycles:  
NOP  
Example  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Decode  
No-  
Set the  
Pop from  
the Stack  
Operation GIE bit  
No-  
No- No-  
No-  
2nd Cycle  
Operation Operation Operation Operation  
RETFIE  
Example  
After Interrupt  
PC  
GIE =  
=
TOS  
1
OPTION  
Syntax:  
Load Option Register  
[ label ] OPTION  
None  
Operands:  
Operation:  
(W) OPTION  
Status Affected: None  
00  
0000  
0110  
0010  
Encoding:  
The contents of the W register are  
loaded in the OPTION register. This  
instruction is supported for code com-  
patibility with PIC16C5X products.  
Since OPTION is a readable/writable  
register, the user can directly address  
it.  
Description:  
Words:  
Cycles:  
Example  
1
1
To maintain upward compatibility  
with future PIC16CXX products, do  
not use this instruction.  
1997 Microchip Technology Inc.  
DS30444E - page 131  
PIC16C9XX  
RETLW  
Return with Literal in W  
RETURN  
Return from Subroutine  
[ label ] RETURN  
None  
Syntax:  
[ label ] RETLW k  
Syntax:  
Operands:  
Operation:  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
k (W);  
TOS PC  
TOS PC  
None  
Status Affected:  
Encoding:  
None  
00  
0000  
0000  
1000  
11  
01xx  
kkkk  
kkkk  
Return from subroutine. The stack is  
POPed and the top of the stack (TOS)  
is loaded into the program counter.This  
is a two cycle instruction.  
The W register is loaded with the eight  
bit literal 'k'. The program counter is  
loaded from the top of the stack (the  
return address). This is a two cycle  
instruction.  
Description:  
Words:  
1
2
Cycles:  
Words:  
1
2
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Cycles:  
Decode  
No-  
No-  
Pop from  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Operation Operation the Stack  
Decode  
Read  
No-  
WritetoW,  
No-  
No- No- No-  
2nd Cycle  
literal 'k' Operation Pop from  
the Stack  
Operation Operation Operation Operation  
No-  
No-  
No-  
No-  
2nd Cycle  
Example  
RETURN  
Operation Operation Operation Operation  
Example  
After Interrupt  
PC  
=
TOS  
CALL TABLE ;W contains table  
;offset value  
;W now has table value  
TABLE  
ADDWF PC  
RETLW k1  
RETLW k2  
;W = offset  
;Begin table  
;
RETLW kn  
; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
DS30444E - page 132  
1997 Microchip Technology Inc.  
PIC16C9XX  
RLF  
Rotate Left f through Carry  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 127  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
See description below  
C
Operation:  
See description below  
C
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
00  
1101  
dfff  
ffff  
00  
1100  
dfff  
ffff  
The contents of register 'f' are rotated  
one bit to the left through the Carry  
Flag. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is stored  
back in register 'f'.  
The contents of register 'f' are rotated  
one bit to the right through the Carry  
Flag. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is placed  
back in register 'f'.  
Description:  
Description:  
C
Register f  
C
Register f  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
RLF  
REG1,0  
RRF  
Example  
REG1,0  
Example  
Before Instruction  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
REG1  
C
=
=
1110 0110  
0
After Instruction  
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
1997 Microchip Technology Inc.  
DS30444E - page 133  
PIC16C9XX  
SLEEP  
SUBLW  
Subtract W from Literal  
Syntax:  
[ label ]  
SUBLW k  
Syntax:  
[ label ] SLEEP  
Operands:  
Operation:  
0 k 255  
Operands:  
Operation:  
None  
k - (W) → (W)  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Status Affected: C, DC, Z  
Encoding:  
11  
110x  
kkkk  
kkkk  
0 PD  
The W register is subtracted (2’s comple-  
ment method) from the eight bit literal 'k'.  
The result is placed in the W register.  
Description:  
Status Affected:  
Encoding:  
TO, PD  
00  
0000  
0110  
0011  
The power-down status bit, PD is  
cleared. Time-out status bit, TO is  
set. Watchdog Timer and its pres-  
caler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped. See  
Section 14.8 for more details.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process Write to W  
data  
Words:  
1
1
Example 1:  
SUBLW  
0x02  
Cycles:  
Before Instruction  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
W
C
Z
=
=
=
1
?
?
Decode  
No-  
No-  
Go to  
Operation Operation Sleep  
After Instruction  
Example:  
SLEEP  
W
C
Z
=
=
=
1
1; result is positive  
0
Example 2:  
Before Instruction  
W
C
Z
=
=
=
2
?
?
After Instruction  
W
C
Z
=
=
=
0
1; result is zero  
1
Example 3:  
Before Instruction  
W
C
Z
=
=
=
3
?
?
After Instruction  
W
C
=
=
0xFF  
0; result is nega-  
tive  
Z
=
0
DS30444E - page 134  
1997 Microchip Technology Inc.  
PIC16C9XX  
SUBWF  
Syntax:  
Subtract W from f  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ]  
SUBWF f,d  
[ label ] SWAPF f,d  
Operands:  
0 f 127  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(f) - (W) → (destination)  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Status Affected: C, DC, Z  
Status Affected:  
Encoding:  
None  
Encoding:  
00  
0010  
dfff  
ffff  
00  
1110  
dfff  
ffff  
Subtract (2’s complement method) W reg-  
ister from register 'f'. If 'd' is 0 the result is  
stored in the W register. If 'd' is 1 the  
result is stored back in register 'f'.  
Description:  
The upper and lower nibbles of register  
'f' are exchanged. If 'd' is 0 the result is  
placed in W register. If 'd' is 1 the result  
is placed in register 'f'.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
data  
Write to  
destination  
Decode  
Read  
register 'f'  
Process  
data  
Write to  
destination  
Example 1:  
SUBWF  
REG1,1  
SWAPF  
REG,  
0
Example  
Before Instruction  
Before Instruction  
REG1  
REG1  
=
=
=
=
3
2
?
?
W
C
Z
=
0xA5  
After Instruction  
REG1  
W
=
=
0xA5  
0x5A  
After Instruction  
REG1  
=
1
2
W
C
Z
=
=
=
1; result is positive  
0
Example 2:  
Before Instruction  
TRIS  
Load TRIS Register  
REG1  
=
=
=
=
2
2
?
?
Syntax:  
[label] TRIS  
f
W
C
Z
Operands:  
Operation:  
5 f 7  
(W) TRIS register f;  
After Instruction  
Status Affected: None  
REG1  
=
0
2
00  
0000 0110  
0fff  
Encoding:  
W
C
Z
=
=
=
1; result is zero  
1
The instruction is supported for code  
compatibility with the PIC16C5X prod-  
ucts. Since TRIS registers are read-  
able and writable, the user can directly  
address them.  
Description:  
Example 3:  
Before Instruction  
REG1  
=
=
=
=
1
2
?
?
W
C
Z
Words:  
Cycles:  
Example  
1
1
After Instruction  
REG1  
=
0xFF  
2
0; result is negative  
0
To maintain upward compatibility  
with future PIC16CXX products, do  
not use this instruction.  
W
C
Z
=
=
=
1997 Microchip Technology Inc.  
DS30444E - page 135  
PIC16C9XX  
XORLW  
Exclusive OR Literal with W  
[label] XORLW k  
XORWF  
Syntax:  
Exclusive OR W with f  
[label] XORWF f,d  
0 f 127  
Syntax:  
Operands:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
d
[0,1]  
(W) .XOR. k → (W)  
Operation:  
(W) .XOR. (f) → (destination)  
Z
Status Affected:  
Encoding:  
Z
11  
1010 kkkk kkkk  
00  
0110  
dfff  
ffff  
The contents of the W register are  
XOR’ed with the eight bit literal 'k'.  
The result is placed in the W regis-  
ter.  
Exclusive OR the contents of the W  
register with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
Process Write to  
literal 'k'  
data  
W
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Example:  
XORLW  
0xAF  
REG  
Before Instruction  
1
Example  
XORWF  
W
=
0xB5  
0x1A  
Before Instruction  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
W
=
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS30444E - page 136  
1997 Microchip Technology Inc.  
PIC16C9XX  
16.3  
ICEPIC: Low-Cost PIC16CXXX  
In-Circuit Emulator  
16.0 DEVELOPMENT SUPPORT  
16.1  
Development Tools  
ICEPIC is a low-cost in-circuit emulator solution for the  
Microchip PIC16C5X and PIC16CXXX families of 8-bit  
OTP microcontrollers.  
The PICmicrο microcontrollers are supported with a  
full range of hardware and software development tools:  
• PICMASTER/PICMASTER CE Real-Time  
In-Circuit Emulator  
ICEPIC is designed to operate on PC-compatible  
machines ranging from 286-AT through Pentium  
based machines under Windows 3.x environment.  
ICEPIC features real time, non-intrusive emulation.  
• ICEPIC Low-Cost PIC16C5X and PIC16CXXX  
In-Circuit Emulator  
• PRO MATE II Universal Programmer  
16.4  
PRO MATE II: Universal Programmer  
• PICSTART Plus Entry-Level Prototype  
Programmer  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode.  
• PICDEM-1 Low-Cost Demonstration Board  
• PICDEM-2 Low-Cost Demonstration Board  
• PICDEM-3 Low-Cost Demonstration Board  
• MPASM Assembler  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for displaying error messages, keys to  
enter commands and a modular detachable socket  
assembly to support various package types. In stand-  
alone mode the PRO MATE II can read, verify or pro-  
• MPLAB SIM Software Simulator  
• MPLAB-C (C Compiler)  
• Fuzzy Logic Development System  
(fuzzyTECH MP)  
gram  
PIC12CXXX,  
PIC14C000,  
PIC16C5X,  
16.2  
PICMASTER: High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
PIC16CXXX and PIC17CXX devices. It can also set  
configuration and code-protect bits in this mode.  
16.5  
PICSTART Plus Entry Level  
Development System  
The PICMASTER Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for all  
microcontrollers in the PIC12CXXX, PIC14C000,  
PIC16C5X, PIC16CXXX and PIC17CXX families.  
PICMASTER is supplied with the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
“make” and download, and source debugging from a  
single environment.  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient. PICSTART Plus is not  
recommended for production programming.  
PICSTART Plus supports all PIC12CXXX, PIC14C000,  
PIC16C5X, PIC16CXXX and PIC17CXX devices with  
up to 40 pins. Larger pin count devices such as the  
PIC16C923 and PIC16C924 may be supported with an  
adapter socket.  
Interchangeable target probes allow the system to be  
easily reconfigured for emulation of different proces-  
sors. The universal architecture of the PICMASTER  
allows expansion to support all new Microchip micro-  
controllers.  
The PICMASTER Emulator System has been designed  
as a real-time emulation system with advanced fea-  
tures that are generally found on more expensive devel-  
opment tools. The PC compatible 386 (and higher)  
machine platform and Microsoft Windows 3.x environ-  
ment were chosen to best make these features avail-  
able to you, the end user.  
A CE compliant version of PICMASTER is available for  
European Union (EU) countries.  
1997 Microchip Technology Inc.  
DS30444E - page 137  
PIC16C9XX  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
16.6  
PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
the PICDEM-1 board, on a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the PICMASTER emulator and download  
the firmware to the emulator for testing. Additional pro-  
totype area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
16.9  
MPLAB™ Integrated Development  
Environment Software  
The MPLAB IDE Software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. MPLAB is a windows based application  
which contains:  
• A full featured editor  
• Three operating modes  
- editor  
- emulator  
- simulator  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar with project information  
• Extensive on-line help  
16.7  
PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The PICMASTER emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
MPLAB allows you to:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Debug using:  
- source files  
- absolute listing file  
Transfer data dynamically via DDE (soon to be  
replaced by OLE)  
• Run up to four emulators on the same PC  
The ability to use MPLAB with Microchip’s simulator  
allows a consistent platform and the ability to easily  
switch from the low cost simulator to the full featured  
emulator with minimal retraining due to development  
tools.  
2
usage of the I C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
16.8  
PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
16.10 Assembler (MPASM)  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The PICMASTER emulator may  
also be used with the PICDEM-3 board to test firmware.  
Additional prototype area has been provided to the  
user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
The MPASM Universal Macro Assembler is a PC-  
hosted symbolic assembler. It supports all microcon-  
troller series including the PIC12C5XX, PIC14000,  
PIC16C5X, PIC16CXXX, and PIC17CXX families.  
MPASM offers full featured Macro capabilities, condi-  
tional assembly, and several source and listing formats.  
It generates various object code formats to support  
Microchip's development tools as well as third party  
programmers.  
MPASM allows full symbolic debugging from  
PICMASTER, Microchip’s Universal Emulator System.  
DS30444E - page 138  
1997 Microchip Technology Inc.  
PIC16C9XX  
MPASM has the following features to assist in develop-  
ing software for specific use applications.  
16.14 MP-DriveWay – Application Code  
Generator  
• Provides translation of Assembler source code to  
object code for all Microchip microcontrollers.  
MP-DriveWay is an easy-to-use Windows-based Appli-  
cation Code Generator. With MP-DriveWay you can  
visually configure all the peripherals in a PICmicro  
device and, with a click of the mouse, generate all the  
initialization and many functional code modules in C  
language. The output is fully compatible with Micro-  
chip’s MPLAB-C C compiler. The code produced is  
highly modular and allows easy integration of your own  
code. MP-DriveWay is intelligent enough to maintain  
your code through subsequent code generation.  
• Macro assembly capability.  
• Produces all the files (Object, Listing, Symbol,  
and special) required for symbolic debug with  
Microchip’s emulator systems.  
• Supports Hex (default), Decimal and Octal source  
and listing formats.  
MPASM provides a rich directive language to support  
programming of the PICmicro. Directives are helpful in  
making the development of your assemble source code  
shorter and more maintainable.  
16.15 SEEVAL Evaluation and  
Programming System  
16.11 Software Simulator (MPLAB-SIM)  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance Disk is included to aid in trade-  
off analysis and reliability calculations. The total kit can  
significantly reduce time-to-market and result in an opti-  
mized system.  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment. It allows the  
user to simulate the PICmicro series microcontrollers  
on an instruction level. On any given instruction, the  
user may examine or modify any of the data areas or  
provide external stimulus to any of the pins. The input/  
output radix can be set by the user and the execution  
can be performed in; single step, execute until break, or  
in a trace mode.  
16.16 KEELOQ Evaluation and  
Programming Tools  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C and MPASM. The Software Simulator offers  
the low cost flexibility to develop and debug code out-  
side of the laboratory environment making it an excel-  
lent multi-project software development tool.  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products.The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
16.12 C Compiler (MPLAB-C)  
The MPLAB-C Code Development System is a  
complete ‘C’ compiler and integrated development  
environment for Microchip’s PICmicro family of micro-  
controllers. The compiler provides powerful integration  
capabilities and ease of use not found with other  
compilers.  
For easier source level debugging, the compiler pro-  
vides symbol information that is compatible with the  
MPLAB IDE memory display.  
16.13 Fuzzy Logic Development System  
(fuzzyTECH-MP)  
fuzzyTECH-MP fuzzy logic development tool is avail-  
able in two versions - a low cost introductory version,  
MP Explorer, for designers to gain a comprehensive  
working knowledge of fuzzy logic system design; and a  
full-featured version, fuzzyTECH-MP, edition for imple-  
menting more complex systems.  
Both versions include Microchip’s fuzzyLAB demon-  
stration board for hands-on experience with fuzzy logic  
systems implementation.  
1997 Microchip Technology Inc.  
DS30444E - page 139  
PIC16C9XX  
TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP  
ufzy  
D e m o B o a r d s  
E m u l a t o r P r o d u c t s  
S o f t w a r e T o o l s  
P r o g r a m m e r s  
DS30444E - page 140  
1997 Microchip Technology Inc.  
PIC16C9XX  
17.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Ambient temperature under bias............................................................................................................ .-55˚C to +125˚C  
Storage temperature .............................................................................................................................. -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4)..........................................-0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS............................................................................................................. 0V to +14V  
Voltage on RA4 with respect to Vss ................................................................................................................ 0V to +14V  
Total power dissipation (Note 1)................................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD).....................................................................................................................± 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD).............................................................................................................± 20 mA  
Maximum output current sunk by any I/O pin .........................................................................................................10 mA  
Maximum output current sourced by any I/O pin ...................................................................................................10 mA  
Maximum current sunk by all Ports combined ......................................................................................................200 mA  
Maximum current sourced by all Ports combined ................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device.This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
TABLE 17-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND  
FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
PIC16C923-04  
PIC16C924-04  
PIC16C923-08  
PIC16C924-08  
PIC16LC923-04  
PIC16LC924-04  
OSC  
CL Devices  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 6.0V  
VDD: 2.5V to 6.0V  
IDD: 5 mA max. at 5.5V  
IPD: 21 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3.0V  
IPD: 5 µA max. at 3V  
Freq: 4 MHz max.  
IDD: 5 mA max. at 5.5V  
IPD: 21 µA max. at 4V  
Freq: 4 MHz max.  
RC  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 6.0V  
VDD: 2.5V to 6.0V  
IDD: 5 mA max. at 5.5V  
IPD: 21 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3.0V  
IPD: 5 µA max. at 3V  
Freq: 4 MHz max.  
IDD: 5 mA max. at 5.5V  
IPD: 21 µA max. at 4V  
Freq: 4 MHz max.  
XT  
HS  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 3.5 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 4 MHz max.  
IDD: 7 mA max. at 5.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 8 MHz max.  
IDD: 7 mA max. at 5.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 8 MHz max.  
Do not use in HS mode  
VDD: 4.0V to 6.0V  
IDD: 22.5 µA typ.  
at 32 kHz, 4.0V  
IPD: 1.5 µA typ. at 4.0V  
Freq: 200 kHz max.  
VDD: 2.5V to 6.0V  
IDD: 30 µA max.  
at 32 kHz, 3.0V  
IPD: 5 µA max. at 3.0V  
Freq: 200 kHz max.  
VDD: 2.5V to 6.0V  
IDD: 30 µA max. at 32 kHz, 3.0V  
IPD: 5 µA max. at 3.0V  
Freq: 200 kHz max.  
LP  
Do not use in LP mode  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications.  
It is recommended that the user select the device type that ensures the specifications required.  
1997 Microchip Technology Inc.  
DS30444E - page 141  
PIC16C9XX  
17.1  
DC Characteristics:  
PIC16C923/924-04 (Commercial, Industrial)  
PIC16C923/924-08 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40˚C  
0˚C  
TA +85˚C for industrial and  
TA +70˚C for commercial  
Param  
No.  
Characteristic  
Sym  
Min Typ† Max Units  
Conditions  
D001 Supply Voltage  
D001A  
VDD  
4.0  
4.5  
-
-
6.0  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002* RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5  
-
V
D003  
VDD start voltage to  
ensure internal  
VPOR  
-
VSS  
-
V
See Power-on Reset section for details  
Power-on Reset signal  
D004* VDD rise rate to ensure SVDD  
internal Power-on  
0.05  
-
-
V/ms (Note 6) See Power-on Reset section for  
details  
Reset signal  
D010 Supply Current (Note 2) IDD  
-
-
-
2.7  
5
mA XT and RC osc configuration  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
µA LP osc configuration,  
FOSC = 32 kHz, VDD = 4.0V  
mA HS osc configuration  
D011  
D012  
22.5 48  
3.5  
1.5  
7
FOSC = 8 MHz, VDD = 5.5V  
D020 Power-down Current  
(Note 3)  
IPD  
-
21  
µA VDD = 4.0V  
Module Differential Cur-  
rent (Note 5)  
D021 Watchdog Timer  
IWDT  
-
-
6.0  
40  
20  
55  
µA VDD = 4.0V  
D022* LCDVoltage Generation ILCDRC  
w/internal RC osc  
µA VDD = 4.0V (Note 7)  
enabled  
D024* LCDVoltage Generation ILCDT1  
-
33  
60  
µA VDD = 4.0V (Note 7)  
w/Timer1 @ 32.768 kHz  
D025* Timer1 oscillator  
D026* A/D Converter  
IT1OSC  
IAD  
-
-
10.6 17  
1.0  
µA VDD = 4.0V  
-
µA A/D on, not converting  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
6: PWRT must be enabled for slow ramps.  
7: ∆ΙLCDT1 and ∆ΙLCDRC includes the current consumed by the LCD Module and the voltage generation cir-  
cuitry. This does not include current dissipated by the LCD panel.  
DS30444E - page 142  
1997 Microchip Technology Inc.  
PIC16C9XX  
17.2  
DC Characteristics:  
PIC16LC923/924-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40˚C  
0˚C  
TA +85˚C for industrial and  
TA +70˚C for commercial  
Param  
No.  
Characteristic  
Sym  
Min Typ† Max Units  
Conditions  
D001 Supply Voltage  
VDD  
2.5  
-
-
6.0  
-
V
V
LP, XT, RC osc configuration  
D002* RAM Data Retention  
Voltage (Note 1)  
VDR  
1.5  
D003  
VDD start voltage to  
ensure internal  
Power-on Reset signal  
VPOR  
-
VSS  
-
-
-
V
See Power-on Reset section for details  
D004* VDD rise rate to ensure SVDD  
internal Power-on  
0.05  
V/ms (Note 6) See Power-on Reset section for  
details  
Reset signal  
D010 Supply Current (Note 2) IDD  
-
-
2.0 3.8 mA XT and RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D011  
13.5 30  
µA LP osc configuration,  
FOSC = 32 kHz, VDD = 4.0V  
D020 Power-down Current  
(Note 3)  
IPD  
-
0.9  
5
µA VDD = 3.0V  
Module Differential Cur-  
rent (Note 5)  
D021 Watchdog Timer  
IWDT  
-
-
6.0  
36  
20  
50  
µA VDD = 3.0V  
D022* LCDVoltage Generation ILCDRC  
w/internal RC osc  
µA VDD = 3.0V (Note 7)  
enabled  
D024* LCDVoltage Generation ILCDT1  
-
15  
29  
µA VDD = 3.0V (Note 7)  
w/Timer1 @ 32.768 kHz  
D025* Timer1 oscillator  
D026* A/D Converter  
IT1OSC  
IAD  
-
-
3.1 6.5  
1.0  
µA VDD = 3.0V  
-
µA A/D on, not converting  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
6: PWRT must be enabled for slow ramps.  
7: ∆ΙLCDT1 and ∆ΙLCDRC includes the current consumed by the LCD Module and the voltage generation cir-  
cuitry. This does not include current dissipated by the LCD panel.  
1997 Microchip Technology Inc.  
DS30444E - page 143  
PIC16C9XX  
17.3  
DC Characteristics:  
PIC16C923/924-04 (Commercial, Industrial)  
PIC16C923/924-08 (Commercial, Industrial)  
PIC16LC923/924-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +85˚C for industrial and  
0˚C TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec  
DC CHARACTERISTICS  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D031  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
-
-
-
-
-
0.15VDD  
0.8V  
0.2VDD  
0.2VDD  
0.3VDD  
V
V
V
V
V
For entire VDD range  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
D032 MCLR, OSC1 (in RC mode)  
D033 OSC1 (in XT, HS and LP)  
Input High Voltage  
Note1  
I/O ports  
VIH  
-
-
-
D040  
D040A  
with TTL buffer  
2.0  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
For entire VDD range  
0.25VDD  
+ 0.8V  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
50  
D041  
with Schmitt Trigger buffer  
D042 MCLR  
-
-
-
-
VDD  
VDD  
VDD  
VDD  
V
V
V
V
D042A OSC1 (XT, HS and LP)  
D043 OSC1 (in RC mode)  
D070 PORTB weak pull-up current  
Input Leakage Current  
(Notes 2, 3)  
D060 I/O ports  
D061 MCLR, RA4/T0CKI  
D063 OSC1  
Note1  
IPURB  
IIL  
250 400  
µA VDD = 5V, VPIN = VSS  
-
-
-
-
-
-
±1.0  
±5  
±5  
µA Vss VPIN VDD, Pin at hi-Z  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP osc  
configuration  
Output Low Voltage  
D080 I/O ports  
D083 OSC2/CLKOUT (RC osc mode)  
VOL  
-
-
-
-
0.6  
0.6  
V
V
IOL = 4.0 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V  
Output High Voltage  
D090 I/O ports (Note 3)  
D092 OSC2/CLKOUT (RC osc mode)  
Capacitive Loading Specs on  
Output Pins  
VOH VDD - 0.7 -  
VDD - 0.7 -  
-
-
V
V
IOH = -3.0 mA, VDD = 4.5V  
IOH = -1.3 mA, VDD = 4.5V  
D100* OSC2 pin  
COSC2  
-
-
15  
pF In XT, HS and LP modes when exter-  
nal clock is used to drive OSC1.  
D101* All I/O pins and OSC2 (in RC)  
CIO  
CB  
-
-
-
-
50  
400  
pF  
pF  
2
D102*  
SCL, SDA in I C mode  
D150* Open -Drain High Voltage  
VDD  
-
-
14  
V
RA4 pin  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C9XX be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified lev-  
els represent normal operating conditions. Higher leakage current may be measured at different input volt-  
ages.  
3: Negative current is defined as current sourced by the pin.  
DS30444E - page 144  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 17-1: LCD VOLTAGE WAVEFORM  
D223  
D224  
VLCD3  
VLCD2  
VLCD1  
VSS  
TABLE 17-2: LCD MODULE ELECTRICAL SPECIFICATIONS  
Parameter  
No.  
Sym  
VLCD3  
VLCD2  
VLCD1  
VOH  
Characteristic  
Min  
VDD - 0.3  
Typ†  
Max  
Vss + 7.0  
VLCD3  
Units  
Conditions  
D200  
LCD Voltage on pin  
VLCD3  
V
V
V
V
V
D201  
LCD Voltage on pin  
VLCD2  
D202  
LCD Voltage on pin  
VLCD1  
VDD  
D220*  
D221*  
D222*  
D223*  
Output High  
Voltage  
Max VLCDN -  
0.1  
Max VLCDN  
COM outputs IOH = 25 µA  
SEG outputs IOH = 3 µA  
VOL  
Output Low Voltage  
Min VLCDN  
Min VLCDN +  
0.1  
COM outputs IOL = 25 µA  
SEG outputs IOL = 3 µA  
FLCDRC LCDRC Oscillator Fre-  
quency  
5
15  
50  
kHz VDD = 5V, -40˚C to +85˚C  
TrLCD  
Output Rise Time  
200  
µs  
µs  
COM outputs Cload = 5,000 pF  
SEG outputs Cload = 500 pF  
VDD = 5.0V, T = 25°C  
D224*  
TfLCD  
Output Fall Time (1)  
200  
COM outputs Cload = 5,000 pF  
SEG outputs Cload = 500 pF  
VDD = 5.0V, T = 25°C  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
(1) 0 ohm source impedance at VLCD.  
TABLE 17-3: VLCD CHARGE PUMP ELECTRICAL SPECIFICATIONS  
Parameter  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
No.  
D250*  
D252*  
D265*  
IVADJ  
VLCDADJ regulated current output  
10  
0.1/1  
2.3  
µA  
µA/V  
V
IVADJ/VDD VLCDADJ current VDD Rejection  
VVADJ  
VLCDADJ voltage limits PIC16C92X  
PIC16LC92X  
1.0  
1.0  
VDD -  
0.7V  
V
VDD < 3V  
*
These parameters are characterized but not tested.  
Note 1: For design guidance only.  
1997 Microchip Technology Inc.  
DS30444E - page 145  
PIC16C9XX  
17.4  
Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
2
1. TppS2ppS  
3. TCC:ST  
4. Ts  
(I C specifications only)  
2
2. TppS  
(I C specifications only)  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
2
I C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
2
TCC:ST (I C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
DS30444E - page 146  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 17-2: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2 unless otherwise noted.  
15 pF for OSC2 output  
1997 Microchip Technology Inc.  
DS30444E - page 147  
 
PIC16C9XX  
17.5  
Timing Diagrams and Specifications  
FIGURE 17-3: EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 17-4: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
Fosc External CLKIN Frequency  
DC  
DC  
DC  
DC  
0.1  
4
4
8
MHz XT and RC osc mode  
MHz HS osc mode  
kHz LP osc mode  
MHz RC osc mode  
MHz XT osc mode  
MHz HS osc mode  
kHz LP osc mode  
(Note 1)  
200  
4
Oscillator Frequency  
(Note 1)  
4
8
5
200  
1
Tosc External CLKIN Period  
250  
125  
5
ns  
ns  
µs  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
XT and RC osc mode  
HS osc mode  
LP osc mode  
RC osc mode  
XT osc mode  
HS osc mode  
LP osc mode  
TCY = 4/FOSC  
XT oscillator  
LP oscillator  
(Note 1)  
Oscillator Period  
(Note 1)  
250  
250  
125  
5
10,000  
250  
2
3
TCY  
Instruction Cycle Time (Note 1)  
500  
50  
DC  
TosL, External Clock in (OSC1) High or  
TosH Low Time  
2.5  
10  
HS oscillator  
XT oscillator  
LP oscillator  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
25  
50  
15  
HS oscillator  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
DS30444E - page 148  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 17-4: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
16  
18  
19  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Refer to Figure 17-2 for load conditions.  
TABLE 17-5: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
100  
100  
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
Tosc + 200  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
150  
Port out valid  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
PIC16C923/924  
PIC16LC923/924  
100  
200  
ns  
ns  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
40  
80  
40  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C923/924  
PIC16LC923/924  
PIC16C923/924  
PIC16LC923/924  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
TCY  
TCY  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
††  
These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
1997 Microchip Technology Inc.  
DS30444E - page 149  
PIC16C9XX  
FIGURE 17-5: RESET,WATCHDOGTIMER, OSCILLATOR START-UPTIMER AND POWER-UPTIMER  
TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Refer to Figure 17-2 for load conditions.  
TABLE 17-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER  
REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
2
7
µs  
ms VDD = 5V, -40˚C to +85˚C  
31*  
Twdt  
Watchdog Timer Time-out Period  
18  
33  
(No Prescaler)  
32  
33*  
34  
Tost  
Oscillation Start-up Timer Period  
28  
1024TOSC  
132  
2.1  
TOSC = OSC1 period  
Tpwrt Power-up Timer Period  
72  
ms VDD = 5V, -40˚C to +85˚C  
TIOZ  
µs  
I/O Hi-impedance from MCLR Low  
or Watchdog Timer Reset  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30444E - page 150  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 17-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
46  
40  
45  
42  
RC0/T1OSO/T1CKI  
47  
48  
TMR0 or  
TMR1  
Refer to Figure 17-2 for load conditions.  
TABLE 17-7: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40*  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
0.5TCY + 20  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
10  
0.5TCY + 20  
10  
ns  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
With Prescaler  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4, ..., 256)  
N
0.5TCY + 20  
15  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
ns Must also meet  
parameter 47  
ns  
PIC16C923/924  
Synchronous,  
Prescaler =  
2,4,8  
PIC16LC923/924  
25  
ns  
PIC16C923/924  
PIC16LC923/924  
Asynchronous  
30  
ns  
50  
ns  
T1CKI Low Time  
Synchronous, Prescaler = 1  
0.5TCY + 20  
ns Must also meet  
parameter 47  
ns  
PIC16C923/924  
Synchronous,  
Prescaler =  
2,4,8  
15  
25  
PIC16LC923/924  
ns  
PIC16C923/924  
PIC16LC923/924  
PIC16C923/924  
Asynchronous  
30  
ns  
50  
ns  
T1CKI input period Synchronous  
Greater of:  
30 OR TCY + 40  
ns N = prescale value  
(1, 2, 4, 8)  
N
PIC16LC923/924  
Greater of:  
50 OR TCY + 40  
N = prescale value  
(1, 2, 4, 8)  
N
60  
PIC16C923/924  
PIC16LC923/924  
Asynchronous  
ns  
ns  
100  
DC  
Ft1  
Timer1 oscillator input frequency range  
200  
kHz  
(oscillator enabled by setting bit T1OSCEN)  
48  
*
TCKEZtmr1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30444E - page 151  
PIC16C9XX  
FIGURE 17-7: CAPTURE/COMPARE/PWM TIMINGS  
RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC2/CCP1  
(Compare or PWM Mode)  
53  
54  
Refer to Figure 17-2 for load conditions.  
TABLE 17-8: CAPTURE/COMPARE/PWM REQUIREMENTS  
Parameter Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
50*  
TccL Input Low Time No Prescaler  
With Prescaler PIC16C923/924  
PIC16LC923/924  
0.5TCY + 20  
ns  
10  
ns  
ns  
ns  
ns  
ns  
20  
51*  
TccH  
No Prescaler  
0.5TCY + 20  
Input High Time  
With Prescaler PIC16C923/924  
PIC16LC923/924  
10  
20  
52*  
53*  
TccP  
3TCY + 40  
N
ns N = prescale value  
(1,4 or 16)  
Input Period  
TccR Output Rise Time  
TccF Output Fall Time  
PIC16C923/924  
PIC16LC923/924  
PIC16C923/924  
PIC16LC923/924  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54*  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30444E - page 152  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 17-8: SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
BIT6 - - - - - -1  
MSb  
LSb  
SDO  
SDI  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Refer to Figure 17-2 for load conditions.  
FIGURE 17-9: SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
SDO  
SDI  
75, 76  
MSb IN  
74  
LSb IN  
Refer to Figure 17-2 for load conditions.  
1997 Microchip Technology Inc.  
DS30444E - page 153  
PIC16C9XX  
FIGURE 17-10:SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
BIT6 - - - - - -1  
77  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Refer to Figure 17-2 for load conditions.  
FIGURE 17-11:SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb IN  
74  
LSb IN  
Refer to Figure 17-2 for load conditions.  
DS30444E - page 154  
1997 Microchip Technology Inc.  
PIC16C9XX  
TABLE 17-9: SPI MODE REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
ns  
Conditions  
70*  
TssL2scH,  
TssL2scL  
SSto SCKor SCKinput  
TCY  
71*  
TscH  
SCK input high time (slave  
mode)  
Continuous  
1.25TCY +  
30  
ns  
71A*  
72*  
Single Byte  
Continuous  
40  
ns  
ns  
TscL  
SCK input low time (slave  
mode)  
1.25TCY +  
30  
72A*  
73*  
Single Byte  
40  
50  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK edge  
ns  
ns  
74*  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK edge  
50  
75*  
76*  
77*  
78*  
79*  
80*  
TdoR  
SDO data output rise time  
10  
10  
10  
10  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TdoF  
SDO data output fall time  
TssH2doZ  
TscR  
SSto SDO output hi-impedance  
SCK output rise time (master mode)  
SCK output fall time (master mode)  
SDO data output valid after SCK edge  
TscF  
TscH2doV,  
TscL2doV  
81*  
TdoV2scH,  
TdoV2scL  
SDO data output setup to SCK edge  
TCY  
ns  
82*  
83*  
TssL2doV  
SDO data output valid after SSedge  
SS after SCK edge  
50  
ns  
ns  
TscH2ssH,  
TscL2ssH  
1.5TCY + 40  
84*  
Tb2b  
Delay between consecutive bytes  
1.5TCY + 40  
ns  
*
Characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30444E - page 155  
PIC16C9XX  
2
FIGURE 17-12:I C BUS START/STOP BITS TIMING  
SCL  
93  
91  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Refer to Figure 17-2 for load conditions.  
2
TABLE 17-10:I C BUS START/STOP BITS REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min Typ Max Units  
Conditions  
90*  
91*  
92*  
93*  
TSU:STA START condition  
Setup time  
100 kHz mode  
100 kHz mode  
100 kHz mode  
100 kHz mode  
4700  
4000  
4700  
4000  
Only relevant for repeated START  
condition  
ns  
ns  
ns  
ns  
THD:STA START condition  
Hold time  
After this period the first clock  
pulse is generated  
TSU:STO STOP condition  
Setup time  
THD:STO STOP condition  
Hold time  
*
Characterized but not tested.  
DS30444E - page 156  
1997 Microchip Technology Inc.  
PIC16C9XX  
2
FIGURE 17-13:I C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Refer to Figure 17-2 for load conditions.  
2
TABLE 17-11:I C BUS DATA REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Max  
Units  
Conditions  
100*  
101*  
102*  
THIGH  
Clock high time  
100 kHz mode  
4.0  
µs  
µs  
ns  
Device must operate at a mini-  
mum of 1.5 MHz  
SSP Module  
1.5TCY  
4.7  
TLOW  
Clock low time  
100 kHz mode  
Device must operate at a mini-  
mum of 1.5 MHz  
SSP Module  
1.5TCY  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
1000  
103*  
90*  
SDA and SCL fall time 100 kHz mode  
300  
ns  
TSU:STA START condition  
setup time  
100 kHz mode  
4.7  
µs  
Only relevant for repeated  
START condition  
91*  
THD:STA START condition hold 100 kHz mode  
time  
4.0  
µs  
After this period the first clock  
pulse is generated  
106*  
107*  
92*  
THD:DAT Data input hold time  
100 kHz mode  
0
ns  
ns  
µs  
TSU:DAT Data input setup time 100 kHz mode  
250  
4.7  
TSU:STO STOP condition setup 100 kHz mode  
time  
109*  
110*  
TAA  
Output valid from  
clock  
100 kHz mode  
3500  
ns  
Note 1  
TBUF  
Bus free time  
100 kHz mode  
4.7  
µs  
Time the bus must be free  
before a new transmission can  
start  
D102*  
Cb  
Bus capacitive loading  
400  
pF  
*
Characterized but not tested.  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
1997 Microchip Technology Inc.  
DS30444E - page 157  
PIC16C9XX  
TABLE 17-12:A/D CONVERTER CHARACTERISTICS:  
PIC16C924-04 (COMMERCIAL, INDUSTRIAL)  
PIC16LC924-04 (COMMERCIAL, INDUSTRIAL)  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR Resolution  
8-bits  
bit VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A02 EABS Total Absolute error  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
LSb  
LSb  
LSb  
LSb  
LSb  
A03  
A04  
A05  
EIL Integral linearity error  
EDL Differential linearity error  
EFS Full scale error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A06 EOFF Offset error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A10  
Monotonicity  
3.0V  
guaranteed  
V
VSS VAIN VREF  
A20 VREF Reference voltage  
VDD + 0.3  
VREF + 0.3  
10.0  
A25  
A30  
VAIN Analog input voltage  
VSS - 0.3  
V
ZAIN Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD A/D conversion current PIC16C924  
180  
90  
µA Average current consump-  
(VDD)  
tion when A/D is on.  
(Note 1)  
PIC16LC924  
µA  
IREF VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN to charge  
CHOLD, see Section 12.1.  
10  
µA During A/D Conversion  
cycle  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
DS30444E - page 158  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 17-14:A/D CONVERSION TIMING  
BSF ADCON0, GO  
1 TCY  
(TOSC/2) (1)  
134  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 17-13:A/D CONVERSION REQUIREMENTS  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
PIC16C924  
PIC16LC924  
PIC16C924  
PIC16LC924  
130  
TAD A/D clock period  
1.6  
2.0  
2.0  
3.0  
µs  
TOSC based, VREF 3.0V  
µs TOSC based, VREF full range  
µs A/D RC Mode  
µs A/D RC Mode  
TAD  
4.0  
6.0  
9.5  
6.0  
9.0  
131  
132  
TCNV Conversion time (not including S/H time)  
(Note 1)  
TACQ Acquisition time  
Note 2  
5*  
20  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if  
the "new" input voltage has not  
changed by more than 1 LSb (i.e.,  
20.0 mV @ 5.12V) from the last  
sampled voltage (as stated on  
CHOLD).  
134  
135  
TGO Q4 to A/D clock start  
TOSC/2 §  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
TSWC Switching from convert sample time  
1.5 §  
TAD  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
§
This specification ensured by design.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 12.1 for min conditions.  
1997 Microchip Technology Inc.  
DS30444E - page 159  
PIC16C9XX  
NOTES:  
DS30444E - page 160  
1997 Microchip Technology Inc.  
PIC16C9XX  
18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.  
In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are guaranteed to operate properly only within the specified  
range.  
Note: The data presented in this section is a statistical summary of data collected on units from different lots over  
a period of time and process characterization samples. 'Typical' represents the mean of the distribution at,  
25°C, while 'max' or 'min' represents (mean +3σ) and (mean -3σ) respectively where σ is standard devia-  
tion.  
FIGURE 18-1: TYPICAL IPD vs. VDD (WDT  
DISABLED, RC MODE @  
25°C)  
FIGURE 18-3: TYPICAL IPD vs. VDD (WDT  
ENABLED, RC MODE @  
25°C)  
280  
25.0  
260  
240  
220  
200  
180  
20.0  
15.0  
10.0  
5.0  
160  
140  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
120  
100  
FIGURE 18-4: MAXIMUM IPD vs. VDD (WDT  
ENABLED, RC MODE -40°C TO  
+85°C)  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
40.0  
35.0  
30.0  
25.0  
FIGURE 18-2: MAXIMUM IPD vs. VDD (WDT  
DISABLED, RC MODE -40°C  
TO +85°C)  
3.5  
20.0  
15.0  
3.0  
2.5  
2.0  
1.5  
1.0  
10.0  
5.0  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
1997 Microchip Technology Inc.  
DS30444E - page 161  
PIC16C9XX  
FIGURE 18-5: TYPICAL IPD vs. VDD (LCD  
FIGURE 18-7: TYPICAL IPD vs. VDD (LCD  
(1)  
(2)  
(1)  
(2)  
ON , INTERNAL RC , RC  
ON ,TIMER1 (32 kHz ), RC  
MODE @ 25°C)  
MODE @ 25°C)  
90  
60  
55  
50  
80  
70  
60  
50  
40  
45  
40  
35  
30  
30  
20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
C Spec @ 4.0V = 41  
LC Spec @ 3.0V = 37  
10  
0
FIGURE 18-6: MAXIMUM IPD vs. VDD (LCD ON  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
(1)  
VDD (VOLTS)  
(32 kHz ), INTERNAL RC (32  
(2)  
kHz ), RC MODE -40°C TO  
+85°C)  
70  
FIGURE 18-8: MAXIMUM IPD vs. VDD (LCD  
(1)  
(2)  
ON ,TIMER1(32 kHz ), RC  
MODE -40°C TO +85°C)  
65  
60  
55  
50  
180  
160  
140  
120  
100  
80  
45  
40  
35  
30  
60  
40  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
C Spec @ 4.0V = 45  
LC Spec @ 3.0V = 40  
20  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
Note 1: The LCD module is turned on, internal charge pump enabled, 1/4 MUX, 32 Hz frame frequency and no load  
on LCD segments/commons. IPD will increase depending on the LCD panel connected to the PIC16C9XX.  
Note 2: Indicates the clock source to the LCD module.  
DS30444E - page 162  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 18-9: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
FIGURE 18-12:TYPICAL IPD vs.TIMER1  
ENABLED (32 kHz, RC0/RC1 =  
33 pF/33 pF, RC MODE)  
Cext = 22 pF,T = 25°C  
6.0  
5.5  
5.0  
30  
25  
20  
15  
10  
5
4.5  
R = 5k  
4.0  
3.5  
3.0  
R = 10k  
2.5  
2.0  
1.5  
1.0  
R = 100k  
0.5  
0.0  
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
VDD (VOLTS)  
Shaded area is beyond recommended range.  
FIGURE 18-13:MAXIMUM IPD vs.TIMER1  
ENABLED  
FIGURE 18-10:TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
(32 kHz, RC0/RC1 = 33 pF/33  
Cext = 100 pF,T = 25°C  
pF, 85°C TO -40°C, RC MODE)  
2.4  
2.2  
R = 3.3k  
2.0  
45  
40  
35  
30  
1.8  
1.6  
R = 5k  
1.4  
1.2  
1.0  
25  
20  
15  
10  
5
R = 10k  
0.8  
0.6  
0.4  
R = 100k  
0.2  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
VDD (Volts)  
FIGURE 18-11:TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
Cext = 300 pF,T = 25°C  
1000  
900  
800  
R = 3.3k  
700  
600  
R = 5k  
500  
400  
R = 10k  
300  
200  
R = 100k  
5.5 6.0  
100  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
VDD (VOLTS)  
1997 Microchip Technology Inc.  
DS30444E - page 163  
PIC16C9XX  
FIGURE 18-14:TYPICAL IDD vs. FREQUENCY (RC MODE @ 20 pF, 25°C)  
2500  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
2000  
1500  
1000  
500  
0
3.0V  
2.5V  
0.0  
1.00  
2.00  
3.00  
Frequency (MHz)  
4.00  
Shaded area is  
beyond recommended range  
5.00  
Typical 2.7 mA @ 4 MHz, 5.5V  
FIGURE 18-15:MAXIMUM IDD vs. FREQUENCY (RC MODE @ 20 pF, -40°C TO +85°C)  
3500  
6.0V  
3000  
2500  
2000  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
1500  
1000  
500  
0
0.0  
1.00  
2.00  
3.00  
Frequency (MHz)  
4.00  
Shaded area is  
5.00  
Maximum 5.0 mA @ 4 MHz, 5.5V  
beyond recommended range  
DS30444E - page 164  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 18-16:TYPICAL IDD vs. FREQUENCY (RC MODE @ 100 pF, 25°C)  
1400  
6.0V  
5.5V  
1200  
1000  
800  
600  
400  
200  
0
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0
200  
Shaded area is  
beyond recommended range  
400  
600  
800  
1000  
1200  
1400  
1600  
Frequency (kHz)  
FIGURE 18-17:MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO +85°C)  
1600  
6.0V  
5.5V  
1400  
1200  
1000  
800  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
600  
400  
200  
0
0
200  
Shaded area is  
beyond recommended range  
400  
600  
800  
1000  
1200  
1400  
1600  
Frequency (kHz)  
1997 Microchip Technology Inc.  
DS30444E - page 165  
PIC16C9XX  
FIGURE 18-18:TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)  
1200  
6.0V  
5.5V  
1000  
800  
600  
400  
200  
0
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0
100  
200  
300  
400  
500  
600  
700  
Frequency (kHz)  
FIGURE 18-19:MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO +85°C)  
1400  
6.0V  
1200  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
1000  
800  
3.0V  
2.5V  
600  
400  
200  
0
0
100  
200  
300  
400  
500  
600  
700  
Frequency (kHz)  
DS30444E - page 166  
1997 Microchip Technology Inc.  
PIC16C9XX  
TABLE 18-1: RC OSCILLATOR  
FREQUENCIES  
FIGURE 18-20:TRANSCONDUCTANCE(gm)  
OF HS OSCILLATOR vs. VDD  
Average  
Cext  
Rext  
4.0  
Max -40°C  
Fosc @ 5V, 25°C  
3.5  
22 pF  
5k  
10k  
100k  
3.3k  
5k  
4.12 MHz  
2.35 MHz  
268 kHz  
1.80 MHz  
1.27 MHz  
688 kHz  
77.2 kHz  
707 kHz  
501 kHz  
269 kHz  
28.3 kHz  
± 1.4%  
3.0  
± 1.4%  
± 1.1%  
± 1.0%  
± 1.0%  
± 1.2%  
± 1.0%  
± 1.4%  
± 1.2%  
± 1.6%  
± 1.1%  
2.5  
Typ 25°C  
2.0  
100 pF  
300 pF  
Min 85°C  
1.5  
1.0  
0.5  
0.0  
10k  
100k  
3.3k  
5k  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
VDD (VOLTS)  
Shaded area is  
beyond recommended range  
10k  
100k  
FIGURE 18-21:TRANSCONDUCTANCE(gm)  
OF LP OSCILLATOR vs. VDD  
The percentage variation indicated here is part to  
part variation due to normal process distribution.The  
variation indicated is ±3 standard deviation from  
average value for VDD = 5V.  
110  
100  
Max -40°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Typ 25°C  
Min 85°C  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
VDD (VOLTS)  
Shaded areas are  
beyond recommended range  
FIGURE 18-22:TRANSCONDUCTANCE(gm)  
OF XT OSCILLATOR vs. VDD  
1000  
900  
Max -40°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
Typ 25°C  
Min 85°C  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
VDD (VOLTS)  
Shaded areas are  
beyond recommended range  
1997 Microchip Technology Inc.  
DS30444E - page 167  
PIC16C9XX  
FIGURE 18-23:TYPICAL XTAL STARTUPTIME  
FIGURE 18-26:TYPICAL IDD vs. VDD  
vs. VDD (LP MODE, 25°C)  
(LP MODE @ 25°C)  
3.5  
3.0  
2.5  
140  
120  
100  
200 kHz, 15 pF/15 pF  
2.0  
80  
32 kHz, 33 pF/33 pF  
1.5  
60  
40  
20  
1.0  
0.5  
0.0  
200 kHz, 15 pF/15 pF  
32 kHz, 33 pF/33 pF  
0
2.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
VDD (VOLTS)  
FIGURE 18-24:TYPICAL XTAL STARTUPTIME  
LC Spec -> Typical = 22.5 µA, 32 kHz, 4.0V  
vs. VDD (HS MODE, 25°C)  
7
6
5
4
FIGURE 18-27:MAXIMUM IDD vs. VDD  
(LP MODE -40°C TO +85°C)  
140  
120  
100  
8 MHz, 33 pF/33 pF  
3
8 MHz, 15 pF/15 pF  
2
200 kHz, 15 pF/15 pF  
1
4.0  
80  
60  
40  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
FIGURE 18-25:TYPICAL XTAL STARTUPTIME  
vs. VDD (XT MODE, 25°C)  
70  
20  
0
60  
50  
32 kHz, 33 pF/33 pF  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
40  
200 kHz, 68 pF/68 pF  
LC Spec -> Maximum = 48 µA, 32 kHz, 4.0V  
30  
200 kHz, 47 pF/47 pF  
20  
1 MHz, 15 pF/15 pF  
10  
4 MHz, 15 pF/15 pF  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
DS30444E - page 168  
1997 Microchip Technology Inc.  
PIC16C9XX  
FIGURE 18-28:TYPICAL IDD vs. VDD  
FIGURE 18-30:TYPICAL IDD vs. VDD  
(XT MODE @ 25°C)  
(HS MODE @ 25°C)  
7
6
5
1600  
1400  
1200  
4 MHz, 15 pF/15 pF  
1000  
4
3
2
800  
8 MHz, 15 pF/15 pF  
1 MHz, 15 pF/15 pF  
600  
400  
200  
1
0
200 kHz, 33 pF/33 pF  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
VDD (VOLTS)  
Typical = 2.7 µA, 4 MHz, 5.5V  
Typical = 3.5 mA, 8 MHz, 5.5V  
FIGURE 18-29:MAXIMUM IDD vs. VDD  
(XT MODE -40°C TO +85°C)  
FIGURE 18-31:MAXIMUM IDD vs. VDD  
(HS MODE -40°C TO +85°C)  
2500  
2000  
1500  
8
7
6
5
4
3
2
1
0
4 MHz, 15 pF/15 pF  
1 MHz, 15 pF/15 pF  
1000  
500  
0
200 kHz, 33 pF/33 pF  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
8 MHz, 15 pF/15 pF  
VDD (VOLTS)  
Maximum = 5 mA, 4 MHz, 5.5V  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (VOLTS)  
Maximum = 7 mA, 8 MHz, 5.5V  
1997 Microchip Technology Inc.  
DS30444E - page 169  
PIC16C9XX  
NOTES:  
DS30444E - page 170  
1997 Microchip Technology Inc.  
PIC16C9XX  
19.0 PACKAGING INFORMATION  
19.1  
64-Lead Plastic Surface Mount (TQFP 10x10x1 mm Body 1.0/0.10 mm Lead Form))  
D1  
D
D/2  
e/2  
A
A
E1  
E
DETAIL A  
e
E/2  
See Detail A  
8 Places  
0° min.  
11/13°  
A
A2  
A1  
See Detail B  
Datum Plane  
0.25  
0-7°  
b
0.08  
R min.  
with Lead Finish  
Base Metal  
Gauge Plane  
0.20 min.  
0.09/0.20  
0.09/0.16  
L
1.00 ref.  
b1  
DETAIL B  
Package Group: Plastic TQFP  
Millimeters  
Nominal  
Inches  
Symbol  
Min  
Max  
Min  
Nominal  
Max  
α
A
0°  
-
7°  
1.20  
0.15  
1.05  
0.27  
0.23  
-
0°  
-
7°  
-
-
-
-
0.047  
A1  
A2  
b
0.05  
0.10  
1.00  
0.22  
0.20  
12.00  
10.00  
12.00  
10.00  
0.50  
0.60  
64  
0.002  
0.004  
0.039  
0.009  
0.008  
0.472  
0.394  
0.472  
0.394  
0.020  
0.024  
64  
0.006  
0.95  
0.037  
0.041  
0.17  
0.007  
0.011  
b1  
D
0.17  
0.007  
0.009  
-
-
-
D1  
E
-
-
-
-
-
-
-
-
-
E1  
e
-
-
-
-
-
-
-
L
0.45  
64  
0.75  
64  
0.018  
64  
0.030  
64  
N
1997 Microchip Technology Inc.  
DS30444E - page 171  
PIC16C9XX  
19.2  
64-Lead Plastic Dual In-line (750 mil)  
N
α
E1  
E
C
eA  
eB  
Pin No. 1  
Indicator Area  
D
S
S1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A2  
A1  
D1  
Package Group: Plastic Dual In-Line (PLA)  
Millimeters  
Inches  
Symbol  
Min  
Max  
Notes  
Min  
Max  
Notes  
α
0°  
15°  
5.08  
0°  
15°  
0.200  
A
A1  
A2  
B
0.51  
3.38  
0.38  
.076  
0.20  
57.40  
55.12  
19.05  
16.76  
1.73  
19.05  
19.05  
3.05  
64  
0.020  
0.133  
0.015  
0.030  
0.008  
2.260  
2.170  
0.750  
0.660  
0.068  
0.750  
0.750  
0.120  
64  
4.27  
0.56  
1.27  
0.30  
57.91  
55.12  
19.69  
17.27  
1.83  
19.05  
21.08  
3.43  
64  
0.168  
0.022  
0.050  
0.012  
2.280  
2.170  
0.775  
0.680  
0.072  
0.750  
0.830  
0.135  
64  
B1  
C
Typical  
Typical  
Typical  
Typical  
D
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Typical  
Typical  
Reference  
Reference  
N
S
1.19  
0.686  
0.047  
0.027  
S1  
DS30444E - page 172  
1997 Microchip Technology Inc.  
PIC16C9XX  
19.3  
68-Lead Plastic Leaded Chip Carrier (Square)  
D
0.812/0.661  
N Pics  
.032/.026  
1.27  
.050  
2 Sides  
0.177  
.007  
S
B D-E S  
-A-  
0.177  
.007  
2 Sides  
-H-  
B A S  
9
S
A
D1  
A1  
-D-  
3
D3/E3  
D2  
0.101  
.004  
Seating  
Plane  
D
0.38  
.015  
-C-  
F-G  
E2  
S
S
3
-G-  
4
4
3
-F-  
8
E1  
E
0.38  
.015  
F-G  
-B-  
-E-  
3
0.177  
.007  
A F-G S  
S
10  
0.812/0.661  
.032/.026  
3
0.254  
.010  
0.254  
.010  
11  
Max  
Max  
11  
1.524  
.060  
0.508  
.020  
0.508  
.020  
Min  
-H-  
2
-H-  
2
6
6
-C-  
5
1.651  
.065  
1.651  
.065  
0.64  
.025  
0.533/0.331  
.021/.013  
Min  
R
R
1.14/0.64  
.045/.025  
1.14/0.64  
.045/.025  
0.177  
.007  
D-E  
S
F-G S ,  
A
M
Package Group: Plastic Leaded Chip Carrier (PLCC)  
Millimeters  
Inches  
Max  
Symbol  
Min  
Max  
Notes  
Min  
Notes  
A
A1  
D
4.191  
2.286  
25.019  
24.130  
22.860  
20.320  
25.019  
24.130  
22.860  
20.320  
68  
4.699  
2.794  
25.273  
24.334  
23.622  
-
0.165  
0.090  
0.985  
0.950  
0.900  
0.800  
0.985  
0.950  
0.900  
0.800  
68  
0.185  
0.110  
0.995  
0.958  
0.930  
-
D1  
D2  
D3  
E
Reference  
Reference  
Reference  
Reference  
25.273  
24.334  
23.622  
-
0.995  
0.958  
0.930  
-
E1  
E2  
E3  
N
-
-
CP  
LT  
-
0.102  
0.254  
-
0.004  
0.010  
0.203  
0.008  
1997 Microchip Technology Inc.  
DS30444E - page 173  
PIC16C9XX  
19.4  
Package Marking Information  
68-Lead CERQUAD Windowed  
Example  
MMMMMMMMMMMMMMMMM  
AABBCDE  
PIC16C924-04/CL  
9650CAE  
64-Lead TQFP  
Example  
MMMMMMMMMM  
MMMMMMM  
PIC16C923  
-08I/PT  
AABBCDE  
9712CAE  
68-Lead PLCC  
Example  
MMMMMMMMMM  
MMMMMMM  
PIC16C924  
-08/L  
AABBCDE  
9648CAE  
64-Lead SDIP (Shrink DIP)  
Example  
MMMMMMMMMMMMMMMMM  
AABBCDE  
PIC16C924-04I/SP  
9736CAE  
Legend:  
MM...M  
XX...X  
AA  
Microchip part number information  
Customer specific information*  
Year code (last 2 digits of calender year)  
Week code (week of January 1 is week '01’)  
BB  
C
Facility code of the plant at which wafer is manufactured.  
C = Chandler, Arizona, U.S.A.  
S = Tempe, Arizona, U.S.A.  
D
1
E
Mask revision number for microcontroller  
Assembly code of the plant or country of origin in which  
part was assembled.  
In the event the full Microchip part number cannot be marked on one  
line, it will be carried over to the next line thus limiting the number of  
available characters for customer specific information.  
Note:  
*
Standard OTP marking consists of Microchip part number, year code, week code,  
facility code, mask revision number, and assembly code. For OTP marking beyond  
this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
DS30444E - page 174  
1997 Microchip Technology Inc.  
PIC16C9XX  
APPENDIX A:  
APPENDIX B: COMPATIBILITY  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
To convert code written for PIC16C5X to PIC16CXX,  
the user should take the following steps:  
1. Instruction word length is increased to 14-bits.  
This allows larger page sizes both in program  
memory (4K now as opposed to 512 before) and  
register file (192 bytes now versus 32 bytes  
before).  
1. Remove any program memory page select oper-  
ations (PA2, PA1, PA0 bits) for CALL, GOTO.  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits are  
set properly under the new scheme.  
2. A PC high latch register (PCLATH) is added to  
handle program memory paging. Bits PA2, PA1,  
PA0 are removed from STATUS register.  
3. Eliminate any data memory page switching.  
Redefine data variables to reallocate them.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
3. Data memory paging is redefined slightly. STA-  
TUS register is modified.  
5. Change reset vector to 0000h.  
4. Four new instructions have been added:  
RETURN, RETFIE, ADDLW, and SUBLW.  
Two instructions TRIS and OPTION are being  
phased out although they are kept for compati-  
bility with PIC16C5X.  
5. OPTION and TRIS registers are made address-  
able.  
6. Interrupt capability is added. Interrupt vector is  
at 0004h.  
7. Stack size is increased to 8 deep.  
8. Reset vector is changed to 0000h.  
9. Reset of all registers is revisited. Five different  
reset (and wake-up) types are recognized. Reg-  
isters are reset differently.  
10. Wake up from SLEEP through interrupt is  
added.  
11. Two separate timers, Oscillator Start-up Timer  
(OST) and Power-up Timer (PWRT) are  
included for more reliable power-up. These tim-  
ers are invoked selectively to avoid unnecessary  
delays on power-up and wake-up.  
12. PORTB has weak pull-ups and interrupt on  
change feature.  
13. T0CKI pin is also a port pin (RA4) now.  
14. FSR is made a full eight bit register.  
15. “In-circuit programming” is made possible. The  
user can program PIC16CXX devices using only  
five pins: VDD, VSS, MCLR/VPP, RB6 (clock) and  
RB7 (data in/out).  
16. PCON status register is added with a Power-on  
Reset status bit (POR).  
17. Code protection scheme is enhanced such that  
portions of the program memory can be pro-  
tected, while the remainder is unprotected.  
1997 Microchip Technology Inc.  
DS30444E - page 175  
PIC16C9XX  
18 - TosH2ioL  
30 - TmcL  
34 - Tioz  
200 ns Min (LC devices)  
2 µs Min  
APPENDIX C:WHAT’S NEW  
Figure 13-13 (Resistor Ladder and Charge Pump) in  
LCD Section.  
2.1 µs Max  
Parameter D150 - Open Drain High Voltage.  
Timer0 and Timer1 External Clock Timings - Various.  
DC and AC Characterization Graphs and Tables.  
53 - TccR,  
54 - TccF  
APPENDIX D:WHAT’S CHANGED  
Various descriptions for clarity.  
73 - TdiV2scH  
74 - TscH2diL  
50 ns Min  
50 ns Min  
Example code for Changing prescaler assignment  
between Timer0 and the WDT.  
Combined A/D specification tables for Standard and  
Extended Voltage devices.  
The A/D section has many changes that provide  
greater clarification of A/D operation.  
The Instruction Set has Q-cycle activity listings for  
every instruction.  
The following Electrical Characteristic Parameter val-  
ues have changed to:  
D011 (Standard Voltage Devices, C)  
Typical  
Max  
22.5  
48  
µA  
µA  
D022 (Standard Voltage Devices)  
Typical  
Max  
40  
55  
µA  
µA  
D024 (Standard Voltage Devices)  
Typical  
Max  
33  
60  
µA  
µA  
D001 (Extended Voltage Devices, LC)  
Min 2.5  
V
D011 (Extended Voltage Devices, LC)  
Typical  
Max  
13.5  
30  
µA  
µA  
D022 (Extended Voltage Devices, LC)  
Typical  
Max  
36  
50  
µA  
µA  
D024 (Extended Voltage Devices, LC)  
Typical  
Max  
15  
29  
µA  
µA  
D030 (with TTL)  
Max  
Max  
0.5VDD  
0.8V  
V (ENTIRE RANGE)  
V (4.5V VDD 5.5V)  
D201, D202  
Deleted D210 and D211, D251, D253, D260, D271  
D222  
Min  
Typical  
Max  
5
15  
50  
kHz  
kHz  
kHz  
D223, D224 - units to ns.  
Added D265 (VLCDADJ voltage limits.  
Changed parameters:  
12 - TckR  
35 ns Typical  
13 - TckF  
35 ns Typical  
15 - TioV2ckH  
Tosc + 200 ns Min  
DS30444E - page 176  
1997 Microchip Technology Inc.  
PIC16C9XX  
PORTF ........................................................................39  
PORTG........................................................................40  
PWM............................................................................59  
RA3:RA0 and RA5 Port Pins.......................................31  
RA4/T0CKI Pin ............................................................31  
RB3:RB0 Port Pins......................................................33  
RB7:RB4 Port Pins......................................................33  
RC Oscillator ............................................................ 105  
INDEX  
A
A/D  
Accuracy/Error ............................................................ 86  
ADCON0............................................................... 79, 80  
ADCON1............................................................... 79, 80  
ADIF............................................................................ 80  
Analog-to-Digital Converter......................................... 79  
Configuring Analog Port.............................................. 83  
Connection Considerations......................................... 87  
Conversion time.......................................................... 85  
Conversions................................................................ 84  
Converter Characteristics ......................................... 158  
Faster Conversion - Lower Resolution Tradeoff ......... 85  
GO/DONE................................................................... 80  
Internal Sampling Switch (Rss) Impedance................ 82  
Operation During Sleep .............................................. 86  
Sampling Requirements.............................................. 82  
Sampling Time............................................................ 82  
Source Impedance...................................................... 82  
Transfer Function........................................................ 87  
A/D Conversion Clock......................................................... 83  
Registers  
Section........................................................................ 19  
Absolute Maximum Ratings .............................................. 141  
ACK............................................................. 70, 74, 75, 76, 77  
ADCON0 Register............................................................... 19  
ADCON1 Register............................................................... 20  
ADIE bit............................................................................... 26  
ADIF bit............................................................................... 27  
ADRES............................................................ 19, 79, 80, 109  
ALU....................................................................................... 9  
Application Notes  
2
SSP (I C Mode)...........................................................73  
SSP (SPI Mode) ..........................................................65  
Timer0 .........................................................................45  
Timer0/WDT Prescaler................................................48  
Timer1 .........................................................................52  
Timer2 .........................................................................55  
Watchdog Timer ....................................................... 116  
Brown-out Protection Circuit............................................. 112  
C
C bit .....................................................................................23  
Capture/Compare/PWM (CCP)  
Capture Mode..............................................................58  
CCP1...........................................................................57  
CCP1CON................................................................ 109  
CCPR1H................................................................... 109  
CCPR1L ................................................................... 109  
Compare Mode............................................................58  
Compare Mode Block Diagram ...................................58  
Prescaler .....................................................................58  
PWM Block Diagram ...................................................59  
PWM Mode..................................................................59  
PWM, Example Frequencies/Resolutions ...................60  
Section.........................................................................57  
Carry bit.................................................................................9  
CCP1CON Register.............................................................19  
CCP1IE bit...........................................................................26  
CCP1IF bit...........................................................................27  
CCPR1H Register ...............................................................19  
CCPR1L Register................................................................19  
Clocking Scheme.................................................................15  
Code Examples  
AN546......................................................................... 79  
AN552......................................................................... 33  
AN556......................................................................... 29  
AN578......................................................................... 63  
AN594......................................................................... 57  
AN607....................................................................... 107  
Architecture  
Harvard ......................................................................... 9  
Overview....................................................................... 9  
von Neumann................................................................ 9  
Assembler  
Call of a Subroutine in Page 1 from Page 0 ................30  
Changing Between Capture Prescalers ......................58  
Changing Prescaler (Timer0 to WDT) .........................49  
Changing Prescaler (WDT to Timer0) .........................49  
Doing an A/D Conversion............................................84  
I/O Programming .........................................................41  
2
MPASM Assembler................................................... 138  
I C Module Operation..................................................78  
Indirect Addressing......................................................30  
Initializing PORTA .......................................................31  
Initializing PORTB .......................................................33  
Initializing PORTC .......................................................35  
Initializing PORTD .......................................................36  
Initializing PORTE .......................................................38  
Initializing PORTF........................................................39  
Initializing PORTG.......................................................40  
Loading the SSPBUF register .....................................65  
Reading a 16-bit Free-running Timer ..........................53  
Code Protection........................................................ 103, 118  
Computed GOTO ................................................................29  
Configuration Bits ............................................................. 103  
B
BF ....................................................................................... 74  
Block Diagrams  
A/D.............................................................................. 81  
Capture Mode ............................................................. 58  
Compare Mode ........................................................... 58  
External Brown-out1 ................................................. 112  
External Brown-out2 ................................................. 112  
External Parallel Cystal Oscillator............................. 105  
External Power-on Reset.......................................... 112  
External Series Crystal Oscillator ............................. 105  
Interrupt Logic........................................................... 114  
LCD Module................................................................ 90  
On-Chip Reset Circuit............................................... 106  
PIC16C923 ................................................................. 10  
PIC16C924 ................................................................. 11  
PORTC ....................................................................... 35  
PORTD ................................................................. 36, 37  
PORTE........................................................................ 38  
D
DC bit...................................................................................23  
DC Characteristics.................................................... 142, 143  
Development Support....................................................... 137  
Development Tools........................................................... 137  
Digit Carry bit.........................................................................9  
1997 Microchip Technology Inc.  
DS30444E - page 177  
PIC16C9XX  
Direct Addressing................................................................30  
NOP.......................................................................... 131  
OPTION.................................................................... 131  
RETFIE..................................................................... 131  
RETLW..................................................................... 132  
RETURN................................................................... 132  
RLF........................................................................... 133  
RRF .......................................................................... 133  
SLEEP...................................................................... 134  
SUBLW..................................................................... 134  
SUBWF..................................................................... 135  
SWAPF..................................................................... 135  
TRIS ......................................................................... 135  
XORLW .................................................................... 136  
XORWF .................................................................... 136  
Section...................................................................... 119  
INT Interrupt...................................................................... 115  
INTCON............................................................ 109, 113, 115  
INTCON Register................................ 19, 20, 21, 22, 25, 102  
INTEDG ............................................................................ 115  
INTEDG bit ......................................................................... 24  
E
Electrical Characteristics...................................................141  
External Power-on Reset Circuit.......................................112  
F
Family of Devices  
PIC16C9XX...................................................................6  
FSR...................................................................................108  
FSR Register...............................................19, 20, 21, 22, 30  
Fuzzy Logic Dev. System (fuzzyTECH -MP)...................139  
G
GIE....................................................................................113  
I
I/O Ports  
Section........................................................................31  
I/O Programming Considerations........................................41  
2
I C  
2
Addressing I C Devices..............................................70  
2
Arbitration....................................................................72  
BF .........................................................................74, 75  
CKP.............................................................................76  
Clock Synchronization ................................................72  
Combined Format .......................................................71  
Inter-Integrated Circuit (I C) ............................................... 63  
Internal Sampling Switch (Rss) Impedance........................ 82  
Interrupt Flag .................................................................... 113  
Interrupts................................................................... 103, 113  
RB7:RB4 Port Change ............................................... 33  
IRP bit................................................................................. 23  
2
I C Overview...............................................................69  
Initiating and Terminating Data Transfer.....................69  
Master-Receiver Sequence ........................................71  
Master-Transmitter Sequence ....................................71  
Multi-master ................................................................72  
START ........................................................................69  
STOP ....................................................................69, 70  
Transfer Acknowledge ................................................70  
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator ..........137  
IDLE_MODE .......................................................................78  
In-Circuit Serial Programming...................................103, 118  
INDF..................................................................................108  
INDF Register .............................................19, 20, 21, 22, 30  
Indirect Addressing .............................................................30  
Instruction Cycle..................................................................15  
Instruction Flow/Pipelining ..................................................15  
Instruction Format .............................................................119  
Instruction Set  
K
KeeLoq Evaluation and Programming Tools ................. 139  
L
Loading of PC..................................................................... 29  
M
MCLR........................................................................ 106, 108  
Memory  
Data Memory.............................................................. 17  
Maps, PIC16C9XX ..................................................... 17  
Program Memory........................................................ 17  
MP-DriveWay™ - Application Code Generator ................ 139  
MPLAB C.......................................................................... 139  
MPLAB Integrated Development Environment Software.. 138  
O
One-Time-Programmable Devices ....................................... 7  
OPCODE .......................................................................... 119  
OPTION.................................................................... 109, 115  
OPTION Register.................................................... 20, 22, 24  
Orthogonal............................................................................ 9  
OSC selection................................................................... 103  
Oscillator  
HS..................................................................... 104, 107  
LP ..................................................................... 104, 107  
Oscillator Configurations................................................... 104  
Output of TMR2 .................................................................. 55  
ADDLW.....................................................................121  
ADDWF.....................................................................121  
ANDLW.....................................................................122  
ANDWF.....................................................................122  
BCF...........................................................................122  
BSF...........................................................................123  
BTFSC ......................................................................123  
BTFSS ......................................................................124  
CALL.........................................................................124  
CLRF.........................................................................125  
CLRW .......................................................................125  
CLRWDT...................................................................126  
COMF .......................................................................126  
DECF ........................................................................126  
DECFSZ....................................................................127  
GOTO .......................................................................127  
INCF..........................................................................128  
INCFSZ.....................................................................128  
IORLW ......................................................................129  
IORWF......................................................................129  
MOVF........................................................................130  
MOVLW ....................................................................130  
MOVWF ....................................................................130  
P
Paging, Program Memory................................................... 29  
PC..................................................................................... 108  
PCL Register .............................................. 19, 20, 21, 22, 29  
PCLATH............................................................................ 109  
PCLATH Register ....................................... 19, 20, 21, 22, 29  
PCON ............................................................................... 109  
PCON Register................................................................... 28  
PD............................................................................. 106, 108  
PD bit.................................................................................. 23  
PICDEM-1 Low-Cost PICmicro Demo Board ................... 138  
PICDEM-2 Low-Cost PIC16CXX Demo Board................. 138  
PICDEM-3 Low-Cost PIC16CXXX Demo Board .............. 138  
DS30444E - page 178  
1997 Microchip Technology Inc.  
PIC16C9XX  
PICMASTER In-Circuit Emulator ................................... 137  
PICSTART Plus Entry Level Development System ....... 137  
PIE1 .................................................................................. 113  
PIE1 Register........................................................ 20, 26, 102  
Pin Functions  
Oscillator Start-up Timer (OST)........................ 103, 107  
Power Control Register (PCON)............................... 107  
Power-on Reset (POR)............................. 103, 107, 108  
Power-up Timer (PWRT).................................. 103, 107  
Power-Up-Timer (PWRT) ......................................... 107  
Time-out Sequence .................................................. 107  
Time-out Sequence on Power-up............................. 111  
TO..................................................................... 106, 108  
POR bit................................................................................28  
Port RB Interrupt............................................................... 115  
PORTA Register........................................................... 19, 31  
PORTB ....................................................................... 77, 108  
PORTB Register..................................................... 19, 21, 33  
PORTC............................................................................. 108  
PORTC Register........................................................... 19, 35  
PORTD............................................................................. 109  
PORTD Register..................................................................36  
PORTE ............................................................................. 109  
PORTE Register..................................................................38  
PORTF Register..................................................................39  
PORTG Register .................................................................40  
Ports  
PORTA ........................................................................31  
PORTB ........................................................................33  
PORTC........................................................................35  
PORTD........................................................................36  
PORTE ........................................................................38  
PORTF ........................................................................39  
PORTG........................................................................40  
Power-down Mode (SLEEP)............................................. 117  
PR2................................................................................... 109  
PR2 Register .......................................................................20  
Prescaler, Switching Between Timer0 and WDT.................49  
PRO MATE II Universal Programmer............................ 137  
Program Branches.................................................................9  
Program Memory Maps, PIC16C9XX..................................17  
PS0 bit.................................................................................24  
PS1 bit.................................................................................24  
PS2 bit.................................................................................24  
PSA bit.................................................................................24  
PUSH...................................................................................29  
MCLRVPP.................................................................... 12  
OSC1/CLKIN............................................................... 12  
OSC2/CLKOUT........................................................... 12  
RA0/AN0..................................................................... 12  
RA1/AN1..................................................................... 12  
RA2/AN2..................................................................... 12  
RA3/AN3/VREF............................................................ 12  
RA4/T0CKI.................................................................. 12  
RA5/AN4/SS ............................................................... 12  
RB0/INT ...................................................................... 12  
RB1............................................................................. 12  
RB2............................................................................. 12  
RB3............................................................................. 12  
RB4............................................................................. 12  
RB5............................................................................. 12  
RB6............................................................................. 12  
RB7............................................................................. 12  
RC0/T1OSO/T1CKI .................................................... 12  
RC1/T1OSI ................................................................. 12  
RC2/CCP1 .................................................................. 12  
RC3/SCK/SCL ............................................................ 12  
RC4/SDI/SDA ............................................................. 12  
RC5/SDO.................................................................... 12  
RD0/SEG00 ................................................................ 13  
RD1/SEG01 ................................................................ 13  
RD2/SEG02 ................................................................ 13  
RD3/SEG03 ................................................................ 13  
RD4/SEG04 ................................................................ 13  
RD5/SEG29/COM3..................................................... 13  
RD6/SEG30/COM2..................................................... 13  
RD7/SEG31/COM1..................................................... 13  
RE0/SEG05 ................................................................ 13  
RE1/SEG06 ................................................................ 13  
RE2/SEG07 ................................................................ 13  
RE3/SEG08 ................................................................ 13  
RE4/SEG09 ................................................................ 13  
RE5/SEG10 ................................................................ 13  
RE6/SEG11 ................................................................ 13  
RE7/SEG27 ................................................................ 13  
RF0/SEG12................................................................. 13  
RF1/SEG13................................................................. 13  
RF2/SEG14................................................................. 13  
RF3/SEG15................................................................. 13  
RF4/SEG16................................................................. 13  
RF5/SEG17................................................................. 13  
RF6/SEG18................................................................. 13  
RF7/SEG19................................................................. 13  
RG0/SEG20................................................................ 13  
RG1/SEG21................................................................ 13  
RG2/SEG22................................................................ 13  
RG3/SEG23................................................................ 13  
RG4/SEG24................................................................ 13  
RG5/SEG25................................................................ 13  
RG6/SEG26................................................................ 13  
RG7/SEG28................................................................ 13  
VDD ............................................................................. 14  
VSS.............................................................................. 14  
PIR1.................................................................................. 113  
PIR1 Register.............................................................. 19, 102  
POP .................................................................................... 29  
POR .......................................................................... 107, 108  
Q
Quick-Turnaround-Production ...............................................7  
R
R/W bit.............................................................. 70, 74, 75, 76  
RBIF bit....................................................................... 33, 115  
RBPU bit..............................................................................24  
RC Oscillator .................................................... 104, 105, 107  
RCV_MODE ........................................................................78  
Read-Modify-Write...............................................................41  
Register File ........................................................................17  
Reset ........................................................................ 103, 106  
RP0 bit.......................................................................... 17, 23  
RP1 bit.................................................................................23  
S
SCL......................................................................... 74, 76, 77  
SDA .............................................................................. 76, 77  
SEEVAL Evaluation and Programming System ............ 139  
Serialized Quick-Turnaround-Production ..............................7  
Slave Mode  
SCL..............................................................................74  
SDA .............................................................................74  
SLEEP...................................................................... 103, 106  
Software Simulator (MPLAB-SIM).................................... 139  
Special Features of the CPU............................................ 103  
1997 Microchip Technology Inc.  
DS30444E - page 179  
PIC16C9XX  
Special Function Registers, Section ...................................19  
SPI  
Interrupt Timing .................................................. 46  
Overview............................................................. 43  
Prescaler ............................................................ 48  
Prescaler Block Diagram.................................... 48  
Section................................................................ 45  
Synchronization.................................................. 47  
Timing................................................................. 45  
Master Mode...............................................................66  
Serial Clock.................................................................65  
Serial Data In ..............................................................65  
Serial Data Out ...........................................................65  
Serial Peripheral Interface (SPI) .................................63  
Slave Select................................................................65  
SPI clock.....................................................................66  
SPI Mode ....................................................................65  
SSP  
Timer1  
Capacitor Selection ............................................ 53  
Overview............................................................. 43  
Switching Prescaler Assignment ........................ 49  
SSPADD .......................................................73, 74, 109  
SSPBUF............................................66, 73, 74, 76, 109  
SSPCON...........................................64, 73, 75, 76, 109  
SSPIF bit...................................................74, 75, 76, 77  
SSPOV bit...................................................................74  
SSPSR............................................................66, 74, 76  
SSPSTAT..........................................63, 73, 75, 76, 109  
Timer2  
Overview............................................................. 43  
Timing Diagrams  
A/D Conversion ........................................................ 159  
Timer0 ........................................................................ 45  
Timer0 Interrupt Timing .............................................. 46  
Timer0 with External Clock......................................... 47  
Timing Diagrams and Specifications ................................ 148  
TMR0 Register.............................................................. 19, 21  
TMR1H Register................................................................. 19  
TMR1IE bit.......................................................................... 26  
TMR1IF bit.......................................................................... 27  
TMR1L Register.................................................................. 19  
TMR2 Register.................................................................... 19  
TMR2IE bit.......................................................................... 26  
TMR2IF bit.......................................................................... 27  
TO bit.................................................................................. 23  
TRISA Register....................................................... 20, 22, 31  
TRISB ............................................................................... 109  
TRISB Register....................................................... 20, 22, 33  
TRISC......................................................................... 77, 109  
TRISC Register....................................................... 20, 35, 68  
TRISD............................................................................... 109  
TRISD Register................................................................... 36  
TRISE ............................................................................... 109  
TRISE Register....................................................... 38, 39, 40  
Two’s Complement............................................................... 9  
2
SSP I C  
Addressing..................................................................74  
Multi-master Mode ......................................................77  
Reception....................................................................75  
2
SSP I C Operation......................................................73  
START ........................................................................76  
START (S) ..................................................................77  
STOP (P) ....................................................................77  
Transmission...............................................................76  
SSPADD Register...............................................................20  
SSPBUF Register ...............................................................19  
SSPCON Register...............................................................19  
SSPIE bit.............................................................................26  
SSPIF bit.............................................................................27  
SSPOV................................................................................74  
SSPSTAT Register .............................................................20  
Stack ...................................................................................29  
Overflows....................................................................29  
Underflow....................................................................29  
STATUS............................................................................108  
STATUS Register..............................................19, 20, 21, 22  
U
T
UV Erasable Devices............................................................ 7  
T0CS bit ..............................................................................24  
T1CON Register..........................................................19, 102  
T2CON Register..................................................................19  
TAD......................................................................................83  
Timer Modules, Overview ...................................................43  
Timer0  
RTCC........................................................................108  
T0IF...........................................................................115  
TMR0 Interrupt..........................................................115  
Timer1  
Resetting of Timer1 Registers ....................................54  
Resetting Timer1 using a CCP Trigger Output ...........54  
T1CON................................................................51, 109  
TMR1H......................................................................109  
TMR1L ......................................................................109  
Timer2  
T2CON................................................................55, 109  
TIMER2 (TMR2) Module.............................................55  
TMR2 ........................................................................109  
Timers  
W
W ...................................................................................... 108  
W Register  
ALU............................................................................... 9  
Wake-up from SLEEP....................................................... 117  
Watchdog Timer (WDT)............................ 103, 106, 108, 116  
WDT.................................................................................. 108  
Period ....................................................................... 116  
Programming Considerations................................... 116  
Timeout..................................................................... 108  
X
XMIT_MODE ...................................................................... 78  
XT ............................................................................. 104, 107  
Z
Z bit..................................................................................... 23  
Zero bit.................................................................................. 9  
Timer0  
Block Diagram.....................................................45  
External Clock.....................................................47  
External Clock Timing.........................................47  
Increment Delay..................................................47  
Interrupt...............................................................45  
DS30444E - page 180  
1997 Microchip Technology Inc.  
PIC16C9XX  
Figure 8-1:  
T1CON: Timer1 Control Register (Address  
10h) .............................................................51  
Timer1 Block Diagram.................................52  
Timer2 Block Diagram.................................55  
T2CON: Timer2 Control Register (Address  
12h) .............................................................55  
List of Equations And Examples  
Figure 8-2:  
Figure 9-1:  
Figure 9-2:  
Example 3-1: Instruction Pipeline Flow............................. 15  
Example 4-1: Call of a Subroutine in Page 1 from Page 030  
Example 4-2: Indirect Addressing..................................... 30  
Example 5-1: Initializing PORTA....................................... 31  
Example 5-2: Initializing PORTB....................................... 33  
Example 5-3: Initializing PORTC ...................................... 35  
Example 5-4: Initializing PORTD ...................................... 36  
Example 5-5: Initializing PORTE....................................... 38  
Example 5-6: Initializing PORTF....................................... 39  
Example 5-7: Initializing PORTG ...................................... 40  
Example 5-8: Read-Modify-Write Instructions on an  
Figure 10-1: CCP1CON Register (Address 17h).............57  
Figure 10-2: Capture Mode Operation Block Diagram ....58  
Figure 10-3: Compare Mode Operation Block Diagram ..58  
Figure 10-4: Simplified PWM Block Diagram...................59  
Figure 10-5: PWM Output................................................59  
Figure 11-1: SSPSTAT: Sync Serial Port Status Register  
(Address 94h)..............................................63  
Figure 11-2: SSPCON: Sync Serial Port Control Register  
(Address 14h)..............................................64  
Figure 11-3: SSP Block Diagram (SPI Mode)..................65  
Figure 11-4: SPI Master/Slave Connection .....................66  
Figure 11-5: SPI Mode Timing, Master Mode..................67  
Figure 11-6: SPI Mode Timing  
I/O Port ....................................................... 41  
Example 7-1: Changing Prescaler (Timer0WDT).......... 49  
Example 7-2: Changing Prescaler (WDTTimer0).......... 49  
Example 8-1: Reading a 16-bit Free-Running Timer ........ 53  
Example 10-1: Changing Between Capture Prescalers...... 58  
Example 10-2: PWM Period and Duty Cycle Calculation ... 60  
Example 11-1: Loading the SSPBUF (SSPSR) Register.... 65  
Equation 12-1: A/D Minimum Charging Time...................... 82  
Example 12-1: Calculating the Minimum Required  
(Slave Mode With CKE = 0) ........................67  
Figure 11-7: SPI Mode Timing  
(Slave Mode With CKE = 1) ........................68  
Figure 11-8: Start and Stop Conditions ...........................69  
Figure 11-9: 7-bit Address Format...................................70  
Figure 11-10: I C 10-bit Address Format...........................70  
Figure 11-11: Slave-receiver Acknowledge.......................70  
Figure 11-12: Data Transfer Wait State.............................70  
Figure 11-13: Master-transmitter Sequence......................71  
Figure 11-14: Master-receiver Sequence ..........................71  
Figure 11-15: Combined Format........................................71  
Figure 11-16: Multi-master Arbitration  
Sample Time............................................... 82  
Example 12-2: Doing an A/D Conversion ........................... 84  
Example 12-3: 4-bit vs. 8-bit Conversion Times ................. 85  
Example 13-1: Static MUX with 32 Segments .................. 100  
Example 13-2: 1/3 MUX with 13 Segments ...................... 100  
Example 14-1: Saving STATUS, W, and PCLATH  
2
Registers in RAM...................................... 115  
List of Figures  
(Two Masters) .............................................72  
Figure 3-1:  
Figure 3-2:  
Figure 3-3:  
Figure 4-1:  
Figure 4-2:  
Figure 4-3:  
PIC16C923 Block Diagram......................... 10  
PIC16C924 Block Diagram......................... 11  
Clock/Instruction Cycle ............................... 15  
Program Memory Map and Stack............... 17  
Register File Map........................................ 18  
Status Register (Address 03h, 83h, 103h,  
183h)........................................................... 23  
OPTION Register (Address 81h, 181h)...... 24  
INTCON Register (Address 0Bh, 8Bh,  
Figure 11-17: Clock Synchronization.................................72  
Figure 11-18: SSP Block Diagram  
2
(I C Mode)...................................................73  
2
Figure 11-19: I C Waveforms for Reception  
(7-bit Address).............................................75  
2
Figure 11-20: I C Waveforms for Transmission  
(7-bit Address).............................................76  
2
Figure 4-4:  
Figure 4-5:  
Figure 11-21: Operation of the I C Module in IDLE_MODE,  
RCV_MODE or XMIT_MODE .....................78  
Figure 12-1: ADCON0 Register (Address 1Fh) ...............79  
Figure 12-2: ADCON1 Register (Address 9Fh) ...............80  
Figure 12-3: A/D Block Diagram......................................81  
Figure 12-4: Analog Input Model .....................................82  
Figure 12-5: A/D Transfer Function .................................87  
Figure 12-6: Flowchart of A/D Operation.........................88  
Figure 13-1: LCDCON Register (Address 10Fh).............89  
Figure 13-2: LCD Module Block Diagram........................90  
Figure 13-3: LCDPS Register (Address 10Eh)................90  
Figure 13-4: Waveforms in Static Drive...........................91  
Figure 13-5: Waveforms in 1/2 MUX, 1/3 Bias Drive.......92  
Figure 13-6: Waveforms in 1/3 MUX, 1/3 Bias ................93  
Figure 13-7: Waveforms in 1/4 MUX, 1/3 Bias ................94  
Figure 13-8: LCD Clock Generation ................................95  
Figure 13-9: Example Waveforms in 1/4 MUX Drive.......97  
Figure 13-10: Generic LCDD Register Layout...................98  
Figure 13-11: Sleep Entry/exit When SLPEN = 1 or  
10Bh, 18Bh)................................................ 25  
PIE1 Register (Address 8Ch) ..................... 26  
PIR1 Register (Address 0Ch) ..................... 27  
PCON Register (Address 8Eh)................... 28  
Loading of PC In Different Situations.......... 29  
Figure 4-6:  
Figure 4-7:  
Figure 4-8:  
Figure 4-9:  
Figure 4-10: Direct/Indirect Addressing........................... 30  
Figure 5-1:  
Figure 5-2:  
Figure 5-3:  
Figure 5-4:  
Figure 5-5:  
Block Diagram of pins RA3:RA0 and RA5.. 31  
Block Diagram of RA4/T0CKI Pin............... 31  
Block Diagram of RB3:RB0 Pins ................ 33  
Block Diagram of RB7:RB4 Pins ................ 33  
PORTC Block Diagram (Peripheral Output  
Override)..................................................... 35  
PORTD<4:0> Block Diagram...................... 36  
PORTD<7:5> Block Diagram...................... 37  
PORTE Block Diagram............................... 38  
PORTF Block Diagram ............................... 39  
Figure 5-6:  
Figure 5-7:  
Figure 5-8:  
Figure 5-9:  
Figure 5-10: PORTG Block Diagram............................... 40  
Figure 5-11: Successive I/O Operation........................... 41  
CS1:CS0 = 00 .............................................99  
Figure 7-1:  
Figure 7-2:  
Figure 7-3:  
Figure 7-4:  
Figure 7-5:  
Figure 7-6:  
Timer0 Block Diagram ................................ 45  
Timer0 Timing: Internal Clock/No Prescale 45  
Timer0 Timing: Internal Clock/Prescale 1:2 46  
Timer0 Interrupt Timing .............................. 46  
Timer0 Timing with External Clock ............. 47  
Block Diagram of the Timer0/WDT  
Figure 13-12: LCDSE Register (Address 10Dh)............. 100  
Figure 13-13: Charge Pump and Resistor Ladder.......... 101  
Figure 14-1: Configuration Word .................................. 103  
Figure 14-2: Crystal/Ceramic Resonator Operation  
(HS, XT or LP OSC Configuration)........... 104  
Figure 14-3: External Clock Input Operation  
Prescaler..................................................... 48  
(HS, XT or LP OSC Configuration)........... 104  
1997 Microchip Technology Inc.  
DS30444E - page 181  
PIC16C9XX  
Figure 14-4: External Parallel Resonant Crystal  
Oscillator Circuit........................................105  
Figure 14-5: External Series Resonant Crystal  
Figure 18-14: Typical IDD vs. Frequency  
(RC Mode @ 20 pF, 25°C)....................... 164  
Figure 18-15: Maximum IDD vs. Frequency  
(RC Mode @ 20 pF, -40°C to +85°C)....... 164  
Figure 18-16: Typical IDD vs. Frequency  
(RC Mode @ 100 pF, 25°C)..................... 165  
Figure 18-17: Maximum IDD vs. Frequency  
(RC Mode @ 100 pF, -40°C to +85°C)..... 165  
Figure 18-18: Typical IDD vs. Frequency  
(RC Mode @ 300 pF, 25°C)..................... 166  
Figure 18-19: Maximum IDD vs. Frequency  
(RC Mode @ 300 pF, -40°C to +85°C)..... 166  
Oscillator Circuit........................................105  
Figure 14-6: RC Oscillator Mode...................................105  
Figure 14-7: Simplified Block Diagram of On-chip  
Reset Circuit .............................................106  
Figure 14-8: Time-out Sequence on Power-up  
(MCLR not Tied to VDD): Case 1 ..............111  
Figure 14-9: Time-out Sequence on Power-up  
(MCLR Not Tied To VDD): Case 2.............111  
Figure 14-10: Time-out Sequence on Power-up  
(MCLR Tied to VDD)..................................111  
Figure 14-11: External Power-on Reset Circuit  
Figure 18-20: Transconductance(gm) of HS Oscillator  
vs. VDD ..................................................... 167  
Figure 18-21: Transconductance(gm) of LP Oscillator  
vs. VDD ..................................................... 167  
Figure 18-22: Transconductance(gm) of XT Oscillator  
vs. VDD ..................................................... 167  
Figure 18-23: Typical XTAL Startup Time vs. VDD  
(LP Mode, 25°C)....................................... 168  
Figure 18-24: Typical XTAL Startup Time vs. VDD  
(HS Mode, 25°C)...................................... 168  
Figure 18-25: Typical XTAL Startup Time vs. VDD  
(XT Mode, 25°C) ..................................... 168  
Figure 18-26: Typical IDD vs. VDD  
(LP Mode @ 25°C)................................... 168  
Figure 18-27: Maximum IDD vs. VDD  
(LP Mode -40°C to +85°C) ....................... 168  
Figure 18-28: Typical IDD vs. VDD  
(XT Mode @ 25°C)................................... 169  
Figure 18-29: Maximum IDD vs. VDD  
(for Slow VDD Power-up)...........................112  
Figure 14-12: External Brown-out Protection Circuit 1....112  
Figure 14-13: External Brown-out Protection Circuit 2....112  
Figure 14-14: Interrupt Logic...........................................114  
Figure 14-15: INT Pin Interrupt Timing............................114  
Figure 14-16: Watchdog Timer Block Diagram...............116  
Figure 14-17: Summary of Watchdog Timer Registers...116  
Figure 14-18: Wake-up from Sleep Through Interrupt ....118  
Figure 14-19: Typical In-Circuit Serial Programming  
Connection................................................118  
Figure 15-1: General Format for Instructions................119  
Figure 17-1: LCD Voltage Waveform............................145  
Figure 17-2: Load Conditions........................................147  
Figure 17-3: External Clock Timing...............................148  
Figure 17-4: CLKOUT and I/O Timing...........................149  
Figure 17-5: Reset, Watchdog Timer, Oscillator Start-up  
Timer and Power-up Timer Timing ...........150  
Figure 17-6: Timer0 and Timer1 External Clock  
Timings .....................................................151  
(XT Mode -40°C to +85°C) ....................... 169  
Figure 18-30: Typical IDD vs. VDD  
Figure 17-7: Capture/Compare/PWM Timings..............152  
Figure 17-8: SPI Master Mode Timing (CKE = 0) .........153  
Figure 17-9: SPI Master Mode Timing (CKE = 1) .........153  
Figure 17-10: SPI Slave Mode Timing (CKE = 0) ...........154  
Figure 17-11: SPI Slave Mode Timing (CKE = 1) ...........154  
(HS Mode @ 25°C) .................................. 169  
Figure 18-31: Maximum IDD vs. VDD  
(HS Mode -40°C to +85°C)....................... 169  
List of Tables  
2
Figure 17-12: I C Bus Start/Stop Bits Timing..................156  
2
Table 1-1:  
Table 3-1:  
Table 4-1:  
Table 5-1:  
Table 5-2:  
PIC16C9XX Family of Devices..................... 6  
PIC16C9XX Pinout Description.................. 12  
Special Function Register Summary.......... 19  
PORTA Functions ...................................... 32  
Summary of Registers Associated with  
Figure 17-13: I C Bus Data Timing.................................157  
Figure 17-14: A/D Conversion Timing.............................159  
Figure 18-1: Typical IPD vs. VDD (WDT Disabled,  
RC Mode @ 25°C)....................................161  
Figure 18-2: Maximum IPD vs. VDD (WDT Disabled,  
RC Mode -40°C to +85°C)........................161  
PORTA....................................................... 32  
PORTB Functions ...................................... 34  
Summary of Registers Associated with  
Table 5-3:  
Table 5-4:  
Figure 18-3: Typical IPD vs. VDD (WDT Enabled,  
RC Mode @ 25°C)....................................161  
PORTB....................................................... 34  
PORTC Functions ...................................... 35  
Summary of Registers Associated with  
PORTC....................................................... 35  
PORTD Functions ...................................... 37  
Summary of Registers Associated with  
Figure 18-4: Maximum IPD vs. VDD (WDT Enabled,  
RC Mode -40°C to +85°C)........................161  
Figure 18-5: Typical IPD vs. VDD (LCD on(1), Internal  
RC(2), RC Mode @ 25°C) ........................162  
Figure 18-6: Maximum IPD vs. VDD (LCD on (32 kHz(1)),  
Internal RC (32 kHz(2)), RC Mode -40°C to  
Table 5-5:  
Table 5-6:  
Table 5-7:  
Table 5-8:  
PORTD....................................................... 37  
PORTE Functions ...................................... 38  
Summary of Registers Associated with  
+85°C).......................................................162  
Figure 18-7: Typical IPD vs. VDD (LCD On(1), Timer1  
(32 kHz(2)), RC Mode @ 25°C)................162  
Table 5-9:  
Table 5-10:  
PORTE....................................................... 38  
PORTF Functions....................................... 39  
Summary of Registers Associated with  
PORTF ....................................................... 39  
PORTG Functions...................................... 40  
Summary of Registers Associated with  
PORTG....................................................... 40  
Registers Associated with Timer0.............. 49  
Capacitor Selection for the Timer1  
Figure 18-8: Maximum IPD vs. VDD (LCD On(1), Timer1  
(32 kHz(2)), RC Mode -40°C to +85°C)....162  
Table 5-11:  
Table 5-12:  
Figure 18-9: Typical RC Oscillator Frequency vs. VDD .163  
Figure 18-10: Typical RC Oscillator Frequency vs. VDD .163  
Figure 18-11: Typical RC Oscillator Frequency vs. VDD .163  
Figure 18-12: Typical IPD vs. Timer1 Enabled (32 kHz,  
RC0/RC1 = 33 pF/33 pF, RC Mode).........163  
Table 5-13:  
Table 5-14:  
Table 7-1:  
Table 8-1:  
Figure 18-13: Maximum IPD vs. Timer1 Enabled  
(32 kHz, RC0/RC1 = 33 pF/33 pF, 85°C to  
Oscillator .................................................... 53  
-40°C, RC Mode) ......................................163  
DS30444E - page 182  
1997 Microchip Technology Inc.  
PIC16C9XX  
Table 8-2:  
Table 9-1:  
Registers Associated with Timer1 as a  
Timer/counter.............................................. 54  
Registers Associated with Timer2 as a  
Timer/Counter............................................. 56  
CCP Mode - Timer Resource ..................... 57  
Example PWM Frequencies and  
Table 10-1:  
Table 10-2:  
Resolutions at 8 MHz.................................. 60  
Registers Associated with Timer1,  
Capture and Compare ................................ 61  
Registers Associated with PWM and  
Table 10-3:  
Table 10-4:  
Timer2......................................................... 61  
Registers Associated with SPI Operation... 68  
I C Bus Terminology................................... 69  
Table 11-1:  
Table 11-2:  
Table 11-3:  
Table 11-4:  
Table 12-1:  
Table 12-2:  
Table 13-1:  
Table 13-2:  
2
Data Transfer Received Byte Actions......... 74  
2
Registers Associated with I C Operation.... 77  
TAD vs. Device Operating Frequencies ...... 83  
Summary of A/D Registers ......................... 88  
Frame Frequency Formulas ....................... 96  
Approx. Frame Freq in Hz using Timer1 @  
32.768 kHz or Fosc @ 8 MHz..................... 96  
Approx. Frame Freq in Hz using internal  
RC osc @ 14 kHz ....................................... 96  
Summary of Registers Associated with  
Table 13-3:  
Table 13-4:  
the LCD Module........................................ 102  
Ceramic Resonators................................. 104  
Capacitor Selection for Crystal Oscillator . 104  
Time-out in Various Situations.................. 107  
Status Bits and Their Significance............ 108  
Reset Condition for Special Registers...... 108  
Initialization Conditions for all Registers... 108  
Opcode Field Descriptions........................ 119  
PIC16CXXX Instruction Set...................... 120  
development tools from microchip............ 140  
Cross Reference of Device Specs for  
Table 14-1:  
Table 14-2:  
Table 14-3:  
Table 14-4:  
Table 14-5:  
Table 14-6:  
Table 15-1:  
Table 15-2:  
Table 16-1:  
Table 17-1:  
Oscillator Configurations and Frequencies  
of Operation (Commercial Devices).......... 141  
LCD Module Electrical Specifications....... 145  
VLCD Charge Pump Electrical  
Table 17-2:  
Table 17-3:  
Specifications............................................ 145  
External Clock Timing Requirements ....... 148  
CLKOUT and I/O Timing Requirements ... 149  
Reset, Watchdog Timer, Oscillator  
Table 17-4:  
Table 17-5:  
Table 17-6:  
Start-up Timer and Power-up Timer  
Requirements ........................................... 150  
Timer0 and Timer1 External Clock  
Table 17-7:  
Requirements ........................................... 151  
Capture/Compare/PWM Requirements.... 152  
Table 17-8:  
Table 17-9:  
SPI Mode Requirements........................... 155  
2
Table 17-10: I C Bus Start/Stop Bits Requirements...... 156  
2
Table 17-11: I C Bus Data Requirements ..................... 157  
Table 17-12: A/D Converter Characteristics:  
PIC16C924-04 (Commercial, Industrial)  
PIC16LC924-04 (Commercial, Industrial). 158  
Table 17-13: A/D Conversion Requirements ................. 159  
Table 18-1:  
RC Oscillator Frequencies........................ 167  
1997 Microchip Technology Inc.  
DS30444E - page 183  
PIC16C9XX  
DS30444E - page 184  
1997 Microchip Technology Inc.  
PIC16C9XX  
The procedure to connect will vary slightly from country  
to country. Please check with your local CompuServe  
agent for details if you have a problem. CompuServe  
service allow multiple users various baud rates  
depending on the local point of access.  
ON-LINE SUPPORT  
Microchip provides two methods of on-line support.  
These are the Microchip BBS and the Microchip World  
Wide Web (WWW) site.  
Use Microchip's Bulletin Board Service (BBS) to get  
current information and help about Microchip products.  
Microchip provides the BBS communication channel for  
you to use in extending your technical staff with micro-  
controller and memory experts.  
The following connect procedure applies in most loca-  
tions.  
1. Set your modem to 8-bit, No parity, and One stop  
(8N1). This is not the normal CompuServe setting  
which is 7E1.  
To provide you with the most responsive service possi-  
ble, the Microchip systems team monitors the BBS,  
posts the latest component data and software tool  
updates, provides technical help and embedded sys-  
tems insights, and discusses how Microchip products  
provide project solutions.  
2. Dial your local CompuServe access number.  
3. Depress the <Enter> key and a garbage string will  
appear because CompuServe is expecting a 7E1  
setting.  
4. Type +, depress the <Enter> key and “Host Name:”  
will appear.  
The web site, like the BBS, is used by Microchip as a  
means to make files and information easily available to  
customers.To view the site, the user must have access  
to the Internet and a web browser, such as Netscape or  
Microsoft Explorer. Files are also available for FTP  
download from our FTP site.  
5. Type MCHIPBBS, depress the <Enter> key and you  
will be connected to the Microchip BBS.  
In the United States, to find CompuServe's phone num-  
ber closest to you, set your modem to 7E1 and dial  
(800) 848-4480 for 300-2400 baud or (800) 331-7166  
for 9600-14400 baud connection. After the system  
responds with “Host Name:”, type NETWORK, depress  
the <Enter> key and follow CompuServe's directions.  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your favor-  
ite Internet browser to attach to:  
For voice information (or calling from overseas), you  
may call (614) 723-1550 for your local CompuServe  
number.  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
Microchip regularly uses the Microchip BBS to distrib-  
ute technical information, application notes, source  
code, errata sheets, bug reports, and interim patches  
for Microchip systems software products.For each SIG,  
a moderator monitors, scans, and approves or disap-  
proves files submitted to the SIG. No executable files  
are accepted from the user community in general to  
limit the spread of computer viruses.  
ftp.mchip.com/biz/mchip  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest Devel-  
opment Tools, Datasheets, Application Notes, User's  
Guides, Articles and Sample Programs. A variety of  
Microchip specific business information is also avail-  
able, including listings of Microchip sales offices, dis-  
tributors and factory representatives. Other data  
available for consideration is:  
Systems Information and Upgrade Hot Line  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
1-800-755-2345 for U.S. and most of Canada, and  
1-602-786-7302 for the rest of the world.  
Connecting to the Microchip BBS  
Trademarks: The Microchip name, logo, PIC, PICSTART,  
PICMASTER and PRO MATE are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries. PICmicro, ICSP, MPLAB and fuzzyLAB are  
trademarks and SQTP is a service mark of Microchip in  
the U.S.A.  
Connect worldwide to the Microchip BBS using either  
the Internet or the CompuServe communications net-  
work.  
Internet:  
fuzzyTECH is a registered trademark of Inform Software  
Corporation. IBM, IBM PC-AT are registered trademarks of  
International Business Machines Corp. Pentium is a trade-  
mark of Intel Corporation. Windows is a trademark and  
MS-DOS, Microsoft Windows are registered trademarks  
of Microsoft Corporation. CompuServe is a registered  
trademark of CompuServe Incorporated.  
You can telnet or ftp to the Microchip BBS at the  
address: mchipbbs.microchip.com  
CompuServe Communications Network:  
When using the BBS via the Compuserve Network, in  
most cases, a local call is your only expense. The  
Microchip BBS connection does not use CompuServe  
membership services, therefore you do not need Com-  
puServe membership to join Microchip's BBS. There is  
no charge for connecting to the Microchip BBS.  
All other trademarks mentioned herein are the property of  
their respective companies.  
1997 Microchip Technology Inc.  
DS30444E - page 185  
PIC16C9XX  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30444E  
Device:  
PIC16C9XX  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30444E - page 186  
1997 Microchip Technology Inc.  
PIC16C9XX  
PIC16C9XX PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.  
Examples  
PART NO. -XX X /XX XXX  
Pattern:  
QTP, SQTP, ROM Code or Special Requirements  
a)  
PIC16C924 - 04/P 301  
Commercial Temp.,  
PDIP Package, 4 MHz,  
normal VDD limits, QTP  
pattern #301  
Package:  
SP  
PT  
CL  
L
= 64-pin Shrink PDIP  
= TQFP  
= 68-pin Windowed CERQUAD  
= PLCC  
b)  
c)  
PIC16LC923 - 04/PT  
Commercial Temp.,  
TQFP package, 4 MHz,  
extended VDD limits  
Temperature  
Range:  
-
I
= 0°C to +70°C (T for Tape/Reel)  
= -40°C to +85°C (S for Tape/Reel)  
Frequency  
Range:  
04  
04  
08  
= 200 kHz (PIC16C9XX-04)  
= 4 MHz  
= 8 MHz  
PIC16C923 - 08I/CL  
Industrial Temp.,  
Windowed CERQUAD  
package, 8 MHz, normal  
VDD limits  
Device  
PIC16C9XX :VDD range 4.0V to 6.0V  
PIC16C9XXT :VDD range 4.0V to 6.0V (Tape/Reel)  
PIC16LC9XX :VDD range 2.5V to 6.0V  
PIC16LC9XT :VDD range 2.5V to 6.0V (Tape/Reel)  
* CL Devices are UV erasable and can be programmed to any device configuration. CL Devices meet the electrical requirement of  
each oscillator type (including LC devices).  
Sales and Support  
Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office (see below)  
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277  
3. The Microchip’s Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.  
1997 Microchip Technology Inc.  
DS30444E - page 187  
PIC16C9XX  
DS30444E page 188  
1997 Microchip Technology Inc.  
M
WORLDWIDE SALES & SERVICE  
AMERICAS  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Microchip Technology Inc.  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Hong Kong  
Microchip Asia Pacific  
RM 3801B, Tower Two  
Metroplaza  
United Kingdom  
Arizona Microchip Technology Ltd.  
Unit 6, The Courtyard  
Meadow Bank, Furlong Road  
Tel: 602-786-7200 Fax: 602-786-7277  
Technical Support: 602 786-7627  
Web: http://www.microchip.com  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Bourne End, Buckinghamshire SL8 5AJ  
Tel: 44-1628-851077 Fax: 44-1628-850259  
France  
Arizona Microchip Technology SARL  
Zone Industrielle de la Bonde  
2 Rue du Buisson aux Fraises  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
India  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-4036 Fax: 91-80-559-9840  
Boston  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 Müchen, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Italy  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
Tel: 39-39-6899939 Fax: 39-39-6899883  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
14651 Dallas Parkway, Suite 816  
Dallas, TX 75240-8809  
Tel: 972-991-7177 Fax: 972-991-8588  
Tel: 86-21-6275-5700  
Fax: 86 21-6275-5060  
JAPAN  
Singapore  
Microchip Technology Taiwan  
Singapore Branch  
200 Middle Road  
#10-03 Prime Centre  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222 Japan  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Los Angeles  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
7/29/97  
Tel: 714-263-1888 Fax: 714-263-1338  
NewYork  
Tel: 886 2-717-7175 Fax: 886-2-545-0139  
Microchip Technology Inc.  
150 Motor Parkway, Suite 416  
Hauppauge, NY 11788  
Tel: 516-273-5305 Fax: 516-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Microchip Technology Inc.  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
Printed on recycled paper.  
All rights reserved. ©1997, Microchip Technology Incorporated, USA. 8/97  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or  
warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other  
intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.The Microchip logo and name are registered trademarks  
of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
DS30444E-page 189  
1997 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY