PIC16LF720T-E/SS [MICROCHIP]

8-BIT, FLASH, 20 MHz, RISC MICROCONTROLLER, PDSO20, 5.30 MM, LEAD FREE, PLASTIC, SSOP-20;
PIC16LF720T-E/SS
型号: PIC16LF720T-E/SS
厂家: MICROCHIP    MICROCHIP
描述:

8-BIT, FLASH, 20 MHz, RISC MICROCONTROLLER, PDSO20, 5.30 MM, LEAD FREE, PLASTIC, SSOP-20

光电二极管
文件: 总254页 (文件大小:4219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16(L)F720/721  
20-Pin Flash Microcontrollers  
Devices Included In This Data Sheet:  
Low-Power Features:  
• Standby Current:  
• PIC16F720  
• PIC16F721  
• PIC16LF720  
• PIC16LF721  
- 40 nA @ 1.8V, typical  
• Low-Power Watchdog Timer Current:  
- 500 nA @ 1.8V, typical  
High-Performance RISC CPU:  
• Only 35 Instructions to Learn:  
- All single-cycle instructions except branches  
• Operating Speed:  
- DC – 16 MHz oscillator/clock input  
- DC – 250 ns instruction cycle  
Peripheral Features:  
• Up to 17 I/O Pins and 1 Input-only Pin:  
- High-current source/sink for direct LED drive  
- Interrupt-on-change pins  
• Up to 4K x 14 Words of Flash Program Memory  
• Up to 256 bytes of Data Memory (RAM)  
• Interrupt Capability  
- Individually programmable weak pull-ups  
• A/D Converter:  
- 8-bit resolution  
• 8-Level Deep Hardware Stack  
• Direct, Indirect and Relative Addressing modes  
• Processor Self-Write/Read access to Program  
Memory  
- 12 channels  
- Selectable Voltage reference  
• Timer0: 8-Bit Timer/Counter with 8-Bit  
Programmable Prescaler  
• Enhanced Timer1  
- 16-bit timer/counter with prescaler  
- External Gate Input mode with toggle and  
single shot modes  
Special Microcontroller Features:  
• Precision Internal Oscillator:  
- 16 MHz or 500 kHz operation  
- Factory calibrated to ±1%, typical  
- Software tunable  
- Software selectable ÷1, ÷2, ÷4 or ÷8 divider  
• Power-Saving Sleep mode  
• Industrial and Extended Temperature Range  
• Power-on Reset (POR)  
• Power-up Timer (PWRT)  
- Interrupt-on-gate completion  
• Timer2: 8-Bit Timer/Counter with 8-Bit Period  
Register, Prescaler and Postscaler  
• Capture, Compare, PWM module (CCP)  
- 16-bit Capture, max resolution 12.5 ns  
- 16-bit Compare, max resolution 250 ns  
- 10-bit PWM, max frequency 15 kHz  
• Addressable Universal Synchronous  
Asynchronous Receiver Transmitter (AUSART)  
• Synchronous Serial Port (SSP)  
• Brown-out Reset (BOR)  
• Multiplexed Master Clear with Pull-up/Input Pin  
• Programmable Code Protection  
• In-Circuit Serial ProgrammingTM (ICSPTM) via Two  
Pins  
- SPI (Master/Slave)  
- I2CTM (Slave) with Address Mask  
• 128 Bytes High-Endurance Flash:  
- 100,000 write Flash endurance (minimum)  
• Wide Operating Voltage Range:  
- 1.8V to 5.5V (PIC16F720/721)  
- 1.8V to 3.6V (PIC16LF720/721)  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 1  
PIC16(L)F720/721  
PIC16(L)F72X Family Types  
Device  
PIC16(L)F707  
PIC16(L)F720  
PIC16(L)F721  
PIC16(L)F722  
PIC16(L)F722A  
PIC16(L)F723  
PIC16(L)F723A  
PIC16(L)F724  
PIC16(L)F726  
PIC16(L)F727  
(1)  
(2)  
(2)  
(4)  
(3)  
(4)  
(3)  
(4)  
(4)  
(4)  
8192  
2048  
4096  
2048  
2048  
4096  
4096  
4096  
8192  
8192  
363  
128  
256  
128  
128  
192  
192  
192  
368  
368  
36 14 32  
4/2  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
2/1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
2
2
2
2
2
2
2
I
I
I
I
I
I
I
I
I
I
Y
Y
18 12  
18 12  
25 11  
25 11  
25 11  
25 11  
8
8
Y
8
Y
8
Y
36 14 16  
25 11  
36 14 16  
Y
8
Y
Y
Note 1: I - Debugging, Integrated on Chip; H - Debugging, Requires Debug Header.  
2: One pin is input-only.  
Data Sheet Index: (Unshaded devices are described in this document.)  
1: DS41418  
2: DS41430  
3: DS41417  
4: DS41341  
PIC16(L)F707 Data Sheet, 40/44-Pin Flash, 8-bit Microcontrollers.  
PIC16(L)F720/721 Data Sheet, 20-Pin Flash, 8-bit Microcontrollers.  
PIC16(L)F722A/723A Data Sheet, 28-Pin Flash, 8-bit Microcontrollers.  
PIC16(L)F72X Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers.  
DS40001430E-page 2  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
Pin Diagrams – 20-PIN DIAGRAM FOR PIC16F720/721 AND PIC16LF720/721  
PDIP, SOIC, SSOP  
VDD  
RA5/T1CKI/CLKIN  
VSS  
1
2
20  
19  
RA0/AN0/ICSPDAT  
RA4/AN3/T1G/CLKOUT  
RA3/MCLR/VPP  
18 RA1/AN1/ICSPCLK  
RA2/AN2/T0CKI/INT  
3
17  
4
16 RC0/AN4  
15 RC1/AN5  
5
RC5/CCP1  
RC4  
6
14  
13  
RC3/AN7  
RC6/AN8/SS  
7
RC2/AN6  
8
RB4/AN10/SDI/SDA  
12 RB5/AN11/RX/DT  
11 RB6/SCK/SCL  
RC7/AN9/SDO  
RB7/TX/CK  
9
10  
Pin Diagrams – 20-PIN DIAGRAM FOR PIC16F720/721 AND PIC16LF720/721  
QFN (4x4)  
20 19 18  
17 16  
RA3/MCLR/VPP 1  
RA1/AN1/ICSPCLK  
RA2/AN2/T0CKI/INT  
RC0/AN4  
15  
14  
13  
12  
11  
2
3
4
5
RC5/CCP1  
RC4  
PIC16F720/721  
PIC16LF720/721  
RC3/AN7  
RC6/AN8/SS  
RC1/AN5  
RC2/AN6  
9
10  
6
7
8
2010-2013 Microchip Technology Inc.  
DS40001430E-page 3  
PIC16(L)F720/721  
TABLE 1:  
20-PIN ALLOCATION TABLE (PIC16F720/721 AND PIC16LF720/721)  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
VDD  
Vss  
19  
18  
17  
4
16  
15  
14  
1
AN0  
AN1  
AN2  
IOC  
IOC  
INT/IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
Y
Y
ICSPDAT  
ICSPCLK  
T0CKI  
Y
MCLR/VPP  
3
20  
19  
10  
9
AN3  
T1G  
T1CKI  
Y
CLKOUT  
CLKIN  
2
Y
13  
12  
11  
10  
16  
15  
14  
7
AN10  
AN11  
SDI/SDA  
Y
RX/DT  
SCK/SCL  
Y
8
Y
7
TX/CK  
Y
13  
12  
11  
4
AN4  
AN5  
AN6  
AN7  
6
3
5
2
CCP1  
8
5
AN8  
AN9  
SS  
9
6
SDO  
1
18  
17  
VDD  
VSS  
20  
DS40001430E-page 4  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
Table of Contents  
1.0 Device Overview ......................................................................................................................................................................... 7  
2.0 Memory Organization................................................................................................................................................................ 11  
3.0 Resets ....................................................................................................................................................................................... 25  
4.0 Interrupts ................................................................................................................................................................................... 35  
5.0 Low Dropout (LDO) Voltage Regulator ..................................................................................................................................... 43  
6.0 I/O Ports .................................................................................................................................................................................... 45  
7.0 Oscillator Module....................................................................................................................................................................... 65  
8.0 Device Configuration................................................................................................................................................................. 71  
9.0 Analog-to-Digital Converter (ADC) Module ............................................................................................................................... 75  
10.0 Fixed Voltage Reference........................................................................................................................................................... 85  
11.0 Temperature Indicator Module ................................................................................................................................................... 87  
12.0 Timer0 Module .......................................................................................................................................................................... 89  
13.0 Timer1 Module with Gate Control.............................................................................................................................................. 93  
14.0 Timer2 Module ........................................................................................................................................................................ 105  
15.0 Capture/Compare/PWM (CCP) Module .................................................................................................................................. 107  
16.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) .......................................................... 117  
17.0 SSP Module Overview ............................................................................................................................................................ 137  
18.0 Flash Program Memory Self Read/Self Write Control............................................................................................................. 159  
19.0 Power-Down Mode (Sleep) ..................................................................................................................................................... 167  
20.0 In-Circuit Serial Programming™ (ICSP™) .............................................................................................................................. 169  
21.0 Instruction Set Summary......................................................................................................................................................... 171  
22.0 Development Support.............................................................................................................................................................. 181  
23.0 Electrical Specifications........................................................................................................................................................... 185  
24.0 DC and AC Characteristics Graphs and Charts...................................................................................................................... 211  
25.0 Packaging Information............................................................................................................................................................. 231  
Appendix A: Data Sheet Revision History......................................................................................................................................... 241  
®
Appendix B: Migrating From Other PIC Devices............................................................................................................................. 241  
The Microchip Web Site.................................................................................................................................................................... 249  
Customer Change Notification Service ............................................................................................................................................. 249  
Customer Support ............................................................................................................................................................................. 249  
Reader Response............................................................................................................................................................................. 250  
Product Identification System ............................................................................................................................................................ 251  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 5  
PIC16(L)F720/721  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS40001430E-page 6  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
1.0  
DEVICE OVERVIEW  
The PIC16(L)F720/721 devices are covered by this  
data sheet. They are available in 20-pin packages.  
Figure 1-1 shows  
a
block diagram of the  
PIC16(L)F720/721 devices. Table 1-1 shows the pinout  
descriptions.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 7  
PIC16(L)F720/721  
FIGURE 1-1:  
20-PIN DEVICE BLOCK DIAGRAM FOR PIC16F720/721  
PORTA  
Configuration  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
13  
8
Data Bus  
Program Counter  
Flash  
Program  
Memory(1)  
RAM  
File  
8 Level Stack  
(13-bit)  
(1)  
Registers  
Program  
Bus  
PORTB  
14  
RAM Addr  
9
Addr MUX  
InstructionReg  
RB4  
RB5  
RB6  
RB7  
Indirect  
Addr  
7
Direct Addr  
8
FSRReg  
STATUSReg  
PORTC  
8
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
3
MUX  
Power-up  
Timer  
Instruction  
Decode &  
Control  
Power-on  
Reset  
ALU  
CLKIN  
CLKOUT  
Watchdog  
Timer  
8
Timing  
Generation  
Brown-out  
Reset  
WReg  
LDO  
Regulator  
PMDATL  
Internal  
Oscillator  
Block  
Self read/  
write Flash  
memory  
MCLR VDD  
VSS  
PMADRL  
CCP1  
CCP1  
SCK/  
/
SDI  
ICSPDAT  
ICSPCLK  
RX/DT  
TX/CK  
SDO  
SCL SS  
SDA  
T0CKI  
T1G  
T1CKI  
AUSART  
Synchronous  
Serial Port  
ICSP
Timer0  
Timer2  
Timer1  
Analog-To-Digital Converter  
AN0 AN1 AN2 AN3 AN4  
AN7  
AN5 AN6  
AN8 AN9 AN11  
AN10  
Note:  
PIC16(L)F720 – 2k x 14 Flash, 128 x 8 RAM  
PIC16(L)F721 – 4k x 14 Flash, 256 x 8 RAM.  
DS40001430E-page 8  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TABLE 1-1:  
Name  
PINOUT DESCRIPTION  
IN  
OUT  
Function  
Description  
RA0/AN0/ICSPDAT/ICDDAT  
RA1/AN1/ICSPCLK/ICDCLK  
RA2/AN2/T0CKI/INT  
General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up.  
RA0  
TTL  
CMOS  
AN0  
AN  
ST  
A/D Channel 0 Input.  
ICSPDAT  
CMOS ICSP™ Data I/O.  
General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up.  
RA1  
TTL  
CMOS  
AN1  
AN  
ST  
A/D Channel 1 Input.  
ICSPCLK  
RA2  
ICSP™ Clock.  
General purpose I/O with IOC and WPU.  
TTL  
AN  
ST  
CMOS  
AN2  
A/D Channel 2 Input.  
T0CKI  
INT  
Timer0 Clock Input.  
ST  
External interrupt.  
RA3  
TTL  
General purpose input-only with IOC and WPU.  
RA3/MCLR/VPP  
MCLR  
VPP  
ST  
HV  
TTL  
AN  
ST  
Master Clear with internal pull-up.  
Programming Voltage.  
RA4  
AN3  
CMOS General purpose I/O with IOC and WPU.  
RA4/AN3/T1G/CLKOUT  
A/D Channel 3 Input.  
Timer1 Gate Input.  
T1G  
CLKOUT  
RA5  
T1CKI  
CLKIN  
RB4  
AN10  
SDI  
TTL  
ST  
CMOS FOSC/4 output.  
RA5/T1CKI/CLKIN  
RB4/AN10/SDI/SDA  
CMOS General purpose I/O with IOC and WPU.  
Timer1 Clock input.  
ST  
External Clock Input (EC mode).  
TTL  
AN  
ST  
CMOS General purpose I/O with IOC and WPU.  
A/D Channel 10 Input.  
SPI Data Input.  
2
2
SDA  
RB5  
AN11  
RX  
I C  
OD  
I C™ Data.  
RB5/AN11/RX/DT  
TTL  
AN  
ST  
CMOS General purpose I/O with IOC and WPU.  
A/D Channel 11 Input.  
USART asynchronous input.  
DT  
ST  
CMOS USART synchronous data.  
RB6/SCK/SCL  
RB7/TX/CK  
RB6  
SCK  
SCL  
RB7  
TX  
TTL  
ST  
CMOS General purpose I/O with IOC and WPU.  
CMOS SPI Clock.  
2
2
I C  
OD  
I C™ Clock.  
TTL  
CMOS General purpose I/O with IOC and WPU.  
CMOS USART asynchronous transmit.  
CMOS USART synchronous clock.  
CMOS General purpose I/O.  
CK  
ST  
ST  
AN  
ST  
AN  
ST  
AN  
ST  
AN  
RC0/AN4  
RC1/AN5  
RC2/AN6  
RC3/AN7  
RC0  
AN4  
RC1  
AN5  
RC2  
AN6  
RC3  
AN7  
A/D Channel 4 Input.  
CMOS General purpose I/O.  
A/D Channel 5 Input.  
CMOS General purpose I/O.  
A/D Channel 6 Input.  
CMOS General purpose I/O.  
A/D Channel 7 Input.  
Legend:  
AN = Analog input or output, CMOS = CMOS compatible input or output, OD = Open Drain, TTL = TTL compatible  
input, ST = Schmitt Trigger input with CMOS levels, I C™ = Schmitt Trigger input with I C, HV = High Voltage,  
XTAL = Crystal levels  
2
2
2010-2013 Microchip Technology Inc.  
DS40001430E-page 9  
PIC16(L)F720/721  
TABLE 1-1:  
Name  
PINOUT DESCRIPTION (CONTINUED)  
IN  
OUT  
Function  
Description  
RC4  
RC4  
RC5  
CCP1  
RC6  
AN8  
ST  
ST  
ST  
ST  
AN  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
RC5/CCP1  
CMOS Capture/Compare/PWM 1.  
CMOS General purpose I/O.  
RC6/AN8/SS  
A/D Channel 8 Input.  
Slave Select input.  
SS  
ST  
ST  
RC7/AN9/SDO  
RC7  
AN9  
SDO  
VDD  
Vss  
CMOS General purpose I/O.  
A/D Channel 9 Input.  
CMOS SPI Data Output.  
AN  
VDD  
Vss  
Power  
Power  
Positive supply.  
Ground supply.  
Legend:  
AN = Analog input or output, CMOS = CMOS compatible input or output, OD = Open Drain, TTL = TTL compatible  
input, ST = Schmitt Trigger input with CMOS levels, I C™ = Schmitt Trigger input with I C, HV = High Voltage,  
XTAL = Crystal levels  
2
2
DS40001430E-page 10  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The PIC16(L)F720/721 has a 13-bit program counter  
capable of addressing a 8K x 14 program memory  
space. Table 2-1 shows the memory sizes  
implemented. Accessing a location above these  
boundaries will cause a wrap-around within the  
implemented memory space. The Reset vector is at  
0000h and the interrupt vector is at 0004h.  
TABLE 2-1:  
Device  
DEVICE SIZE AND ADDRESSES  
Program Memory Size  
(Words)  
Last Program Memory  
High-Endurance Flash  
Address  
Memory Address Range(1)  
PIC16F720  
PIC16LF720  
2048  
4096  
07FFh  
0780h-07FFh  
0F80h-0FFFh  
PIC16F721  
PIC16LF721  
0FFFh  
Note 1: High-Endurance Flash applies to the low byte of each address in the range.  
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16(L)F720  
FIGURE 2-2:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16(L)F721  
PC<12:0>  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
CALL, RETURN  
RETFIE, RETLW  
13  
13  
Stack Level 1  
Stack Level 1  
Stack Level 2  
Stack Level 2  
Stack Level 8  
Reset Vector  
Stack Level 8  
Reset Vector  
0000h  
0000h  
Interrupt Vector  
Page 0  
Interrupt Vector  
Page 0  
0004H  
0005h  
0004H  
0005h  
On-chip  
Program  
Memory  
On-chip  
Program  
Memory  
07FFh  
0800h  
07FFh  
0800h  
Page 1  
Wraps to Page 0  
Wraps to Page 0  
Wraps to Page 0  
0FFFh  
1000h  
0FFFh  
1000h  
Wraps to Page 0  
17FFh  
1800h  
17FFh  
1800h  
Wraps to Page 1  
1FFFh  
1FFFh  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 11  
PIC16(L)F720/721  
2.2  
Data Memory Organization  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers (GPRs)  
and the Special Function Registers (SFRs). Bits RP0  
and RP1 are bank select bits.  
RP1  
0
RP0  
0
Bank 0 is selected  
Bank 1 is selected  
Bank 2 is selected  
Bank 3 is selected  
0
1
1
0
1
1
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function  
Registers are the General Purpose Registers,  
implemented as static RAM. All implemented banks  
contain Special Function Registers. Some frequently  
used Special Function Registers from one bank are  
mirrored in another bank for code reduction and  
quicker access.  
DS40001430E-page 12  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
The register file is organized as 128 x 8 bits in the  
PIC16(L)F720, 256 x 8 bits in the PIC16(L)F721. Each  
register is accessed either directly or indirectly through  
the File Select Register (FSR), (Refer to Section 2.5  
“Indirect Addressing, INDF and FSR Registers”).  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral functions for controlling the  
desired operation of the device (refer to Table 2-2).  
These registers are static RAM.  
The Special Function Registers can be classified into  
two sets: core and peripheral. The Special Function  
Registers associated with the “core” are described in  
this section. Those related to the operation of the  
peripheral features are described in the section of that  
peripheral feature.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 13  
PIC16(L)F720/721  
FIGURE 2-3:  
PIC16(L)F720 SPECIAL FUNCTION REGISTERS  
File Address  
180h  
INDF(*)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
INDF(*)  
80h  
OPTION_REG 81h  
INDF(*)  
TMR0  
PCL  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
INDF(*)  
TMR0  
PCL  
OPTION_REG 181h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
PCL  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
ANSELA  
ANSELB  
ANSELC  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
PCLATH  
INTCON  
PMCON1  
PMCON2  
TMR1L  
TMR1H  
T1CON  
PCON  
T1GCON  
OSCCON  
OSCTUNE  
PR2  
TMR2  
T2CON  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
SSPADD/SSPMSK 93h  
SSPSTAT  
WPUA  
IOCA  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
WPUB  
IOCB  
TXSTA  
TXREG  
RCREG  
SPBRG  
FVRCON  
ADCON1  
ADRES  
ADCON0  
General  
Purpose  
Register  
32 Bytes  
General  
Purpose  
Register  
80 Bytes  
BFh  
C0h  
EFh  
F0h  
06Fh  
070h  
16Fh  
170h  
1EFh  
1F0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Access RAM  
BANK 0  
7Fh  
FFh  
17Fh  
1FFh  
BANK 1  
BANK 2  
BANK 3  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
*
= Not a physical register.  
DS40001430E-page 14  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 2-4:  
PIC16(L)F721 SPECIAL FUNCTION REGISTERS  
File Address  
180h  
(*)  
(*)  
(*)  
(*)  
INDF  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
INDF  
80h  
INDF  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
INDF  
TMR0  
PCL  
OPTION_REG 81h  
TMR0  
PCL  
OPTION_REG 181h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
PCL  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
ANSELA  
ANSELB  
ANSELC  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
PCLATH  
INTCON  
PMCON1  
PMCON2  
TMR1L  
TMR1H  
T1CON  
PCON  
T1GCON  
OSCCON  
OSCTUNE  
PR2  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
SSPADD/SSPMSK 93h  
SSPSTAT  
WPUA  
IOCA  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
WPUB  
IOCB  
TXSTA  
TXREG  
RCREG  
SPBRG  
FVRCON  
ADCON1  
ADRES  
ADCON0  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
06Fh  
070h  
EFh  
F0h  
16Fh  
170h  
1EFh  
1F0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Access RAM  
BANK 0  
FFh  
17Fh  
1FFh  
7Fh  
BANK 1  
BANK 2  
BANK 3  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
*
= Not a physical register.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 15  
PIC16(L)F720/721  
TABLE 2-2:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 0  
00h( 2)  
01h  
02h( 2)  
03h( 2)  
04h( 2)  
05h  
INDF  
TMR0  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module Register  
xxxx xxxx xxxx xxxx  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--xx xxxx --xx xxxx  
xxxx ---- uuuu ----  
xxxx xxxx uuuu uuuu  
PCL  
Program Counter (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
PORTA  
PORTB  
PORTC  
RA5  
RB5  
RC5  
RA4  
RB4  
RC4  
RA3  
RA2  
RA1  
RA0  
06h  
RB7  
RC7  
RB6  
RC6  
07h  
RC3  
RC2  
RC1  
RC0  
08h  
Unimplemented  
Unimplemented  
09h  
0Ah( 1),( 2) PCLATH  
GIE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000 ---0 0000  
0000 000x 0000 000x  
0000 0000 0000 0000  
0Bh( 2)  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
INTCON  
PIR1  
PEIE  
ADIF  
TMR0IE  
RCIF  
INTE  
TXIF  
RABIE  
SSPIF  
TMR0IF  
CCP1IF  
INTF  
RABIF  
TMR1GIF  
TMR2IF  
TMR1IF  
Unimplemented  
TMR1L  
TMR1H  
T1CON  
TMR2  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TMR1CS1 TMR1CS0  
T1CKPS1  
T1CKPS0  
Timer2 module Register  
TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
T1SYNC  
TMR1ON 0000 -0-0 uuuu -u-u  
0000 0000 0000 0000  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
TOUTPS3  
TOUTPS2  
Synchronous Serial Port Receive Buffer/Transmit Register  
SSPEN CKP SSPM3 SSPM2  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
WCOL  
SSPOV  
SSPM1  
SSPM0  
Capture/Compare/PWM Register Low Byte  
Capture/Compare/PWM Register High Byte  
DC1  
B1  
CCP1M3  
ADDEN  
CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
SPEN  
RX9  
SREN  
CREN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
AUSART Transmit Data Register  
AUSART Receive Data Register  
Unimplemented  
Unimplemented  
Unimplemented  
ADRES  
ADCON0  
ADC Result Register  
xxxx xxxx uuuu uuuu  
--00 0000 --00 0000  
CHS3  
CHS2  
CHS1  
CHS0  
GO/  
ADON  
DONE  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the  
upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: Accessible only when SSPM<3:0> = 1001.  
4: This bit is unimplemented and reads as ‘1’.  
5: See Register 6-2.  
DS40001430E-page 16  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TABLE 2-2:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 1  
80h( 2)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
xxxx xxxx xxxx xxxx  
1111 1111 1111 1111  
81h  
OPTION_  
REG  
RABPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h( 2)  
83h( 2)  
84h( 2)  
85h(5)  
86h  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--11 -111 --11 -111  
1111 ---- 1111 ----  
1111 1111 1111 1111  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
(4)  
TRISA  
TRISB  
TRISC  
TRISA5  
TRISB5  
TRISC5  
TRISA4  
TRISB4  
TRISC4  
TRISA2  
TRISA1  
TRISA0  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
87h  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
88h  
Unimplemented  
Unimplemented  
89h  
8Ah( 1),( 2) PCLATH  
GIE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000 ---0 0000  
0000 000x 0000 000x  
0000 0000 0000 0000  
8Bh( 2)  
INTCON  
PIE1  
PEIE  
ADIE  
TMR0IE  
RCIE  
INTE  
TXIE  
RABIE  
SSPIE  
TMR0IF  
CCP1IE  
INTF  
RABIF  
8Ch  
TMR1GIE  
TMR2IE  
TMR1IE  
8Dh  
Unimplemented  
8Eh  
PCON  
T1GCON  
POR  
BOR  
---- --qq ---- --uu  
8Fh  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS1  
T1GSS0 0000 0x00 uuuu uxuu  
90h  
OSCCON  
OSCTUNE  
PR2  
IRCF1  
TUN5  
IRCF0  
TUN4  
ICSL  
ICSS  
--10 qq-- --10 qq--  
--00 0000 --uu uuuu  
1111 1111 1111 1111  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
--11 1111 --11 1111  
--00 0000 --00 0000  
91h  
TUN3  
TUN2  
TUN1  
TUN0  
92h  
Timer2 module Period Register  
ADD<7:0>  
93h  
93h( 3)  
SSPADD  
SSPMSK  
SSPSTAT  
WPUA  
IOCA  
MSK<7:0>  
94h  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
95h  
WPUA5  
IOCA5  
WPUA4  
IOCA4  
WPUA3  
IOCA3  
WPUA2  
IOCA2  
WPUA1  
IOCA1  
WPUA0  
IOCA0  
96h  
97h  
Unimplemented  
SYNC  
98h  
TXSTA  
SPBRG  
CSRC  
BRG7  
TX9  
TXEN  
BRG5  
BRGH  
BRG2  
TRMT  
BRG1  
TX9D  
BRG0  
0000 -010 0000 -010  
0000 0000 0000 0000  
99h  
BRG6  
BRG4  
BRG3  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
Unimplemented  
Unimplemented  
Unimplemented  
TSRNG  
FVRCON  
FVRRDY  
FVREN  
ADCS2  
TSEN  
ADFVR1 ADFVR0 q000 --00 q000 --00  
Unimplemented  
ADCS0  
ADCON1  
ADCS1  
-000 ---- -000 ----  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the  
upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: Accessible only when SSPM<3:0> = 1001.  
4: This bit is unimplemented and reads as ‘1’.  
5: See Register 6-2.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 17  
PIC16(L)F720/721  
TABLE 2-2:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 2  
100h( 2)  
101h  
102h( 2)  
103h( 2)  
104h( 2)  
105h  
INDF  
TMR0  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module Register  
xxxx xxxx xxxx xxxx  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
PCL  
STATUS  
FSR  
Program Counter (PC) Least Significant Byte  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
Unimplemented  
106h  
Unimplemented  
107h  
Unimplemented  
108h  
Unimplemented  
109h  
Unimplemented  
10Ah( 1),( 2) PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RABIE TMR0IF INTF RABIF  
---0 0000 ---0 0000  
0000 000x 0000 000x  
xxxx xxxx xxxx xxxx  
0000 0000 0000 0000  
--xx xxxx --xx xxxx  
---0 0000 ---0 0000  
10Bh( 2)  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
INTCON  
GIE  
PEIE  
TMR0IE  
PMDATL  
Program Memory Read Data Register Low Byte  
Program Memory Read Address Register Low Byte  
PMADRL  
PMDATH  
Program Memory Read Data Register High Byte  
PMADRH  
Program Memory Read Address Register High Byte  
Unimplemented  
Unimplemented  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
Legend:  
Unimplemented  
Unimplemented  
Unimplemented  
WPUB  
IOCB  
WPUB7  
IOCB7  
WPUB6  
IOCB6  
WPUB5  
IOCB5  
WPUB4  
1111 ---- 1111 ----  
0000 ---- 0000 ----  
IOCB4  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the  
upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: Accessible only when SSPM<3:0> = 1001.  
4: This bit is unimplemented and reads as ‘1’.  
5: See Register 6-2.  
DS40001430E-page 18  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TABLE 2-2:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 3  
180h( 2)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
xxxx xxxx xxxx xxxx  
1111 1111 1111 1111  
181h  
OPTION_  
REG  
RABPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
182h( 2)  
183h( 2)  
184h( 2)  
185h  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
---1 -111 ---1 -111  
--11 ---- --11 ----  
11-- 1111 11-- 1111  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
ANSELA  
ANSELB  
ANSELC  
ANSB5  
ANSA4  
ANSB4  
ANSA2  
ANSA1  
ANSA0  
186h  
187h  
ANSC7  
ANSC6  
ANSC3  
ANSC2  
ANSC1  
ANSC0  
188h  
Unimplemented  
Write Buffer for the upper 5 bits of the Program Counter  
18Ah( 1),( 2) PCLATH  
---0 0000 ---0 0000  
0000 000x 0000 000x  
1000 -000 1000 -000  
---- ---- ---- ----  
18Bh( 2)  
18Ch  
18Dh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
Legend:  
INTCON  
GIE  
PEIE  
CFGS  
TMR0IE  
LWLO  
INTE  
RABIE  
TMR0IF  
WREN  
INTF  
WR  
RABIF  
RD  
(4)  
PMCON1  
FREE  
PMCON2  
Program Memory Control Register 2 (not a physical register)  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the  
upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: Accessible only when SSPM<3:0> = 1001.  
4: This bit is unimplemented and reads as ‘1’.  
5: See Register 6-2.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 19  
PIC16(L)F720/721  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu’ (where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not  
affecting any Status bits (Refer to Section 21.0  
“Instruction Set Summary”).  
• the bank select bits for data memory (SRAM)  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as Borrow  
and Digit Borrow out bits, respectively, in  
subtraction.  
REGISTER 2-1:  
STATUS: STATUS REGISTER  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h-1FFh)  
0= Bank 0, 1 (00h-FFh)  
bit 6-5  
RP<1:0>: Register Bank Select bits (used for direct addressing)  
00= Bank 0 (00h-7Fh)  
01= Bank 1 (80h-FFh)  
10= Bank 2 (100h-17Fh)  
11= Bank 3 (180h-1FFh)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(1)  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order  
bit of the source register.  
DS40001430E-page 20  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
2.2.2.2  
OPTION_REG Register  
Note:  
To achieve a 1:1 prescaler assignment for  
Timer0, assign the prescaler to the WDT  
by setting the PSA bit of the  
OPTION_REG register to ‘1’. Refer to  
The OPTION_REG register, shown in Register 2-2, is  
a readable and writable register, which contains  
various control bits to configure:  
• Software programmable prescaler for the Timer0/  
WDT  
Section 12.1.3  
“Software  
Programmable Prescaler”.  
• External RA2/INT interrupt  
• Timer0  
• Weak pull-ups on PORTA or PORTB  
REGISTER 2-2:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RABPU  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RABPU: PORTA or PORTB Pull-up Enable bit  
1= PORTA or PORTB pull-ups are disabled  
0= PORTA or PORTB pull-ups are enabled by individual bits in the WPUB register  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 21  
PIC16(L)F720/721  
2.2.2.3  
PCON Register  
The Power Control (PCON) register contains flag bits  
(refer to Table 3-4) to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Watchdog Timer Reset (WDT)  
• External MCLR Reset  
The PCON register also controls the software enable of  
the BOR.  
The PCON register bits are shown in Register 2-3.  
REGISTER 2-3:  
PCON: POWER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-q  
POR  
R/W-q  
BOR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
q = Value depends on condition  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset  
occurs)  
DS40001430E-page 22  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
2.3  
PCL and PCLATH  
Note 1: There are no Status bits to indicate stack  
The Program Counter (PC) is 13 bits wide. The low  
byte comes from the PCL register, which is a readable  
and writable register. The high byte (PC<12:8>) is not  
directly readable or writable and comes from  
PCLATH. On any Reset, the PC is cleared. Figure 2-5  
shows the two situations for the loading of the PC. The  
upper example in Figure 2-5 shows how the PC is  
loaded on a write to PCL (PCLATH<4:0> PCH).  
The lower example in Figure 2-5 shows how the PC is  
overflow or stack underflow conditions.  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions or the vectoring to an  
interrupt address.  
loaded during  
(PCLATH<4:3> PCH).  
a
CALL or GOTO instruction  
2.4  
Program Memory Paging  
All devices are capable of addressing a continuous 8K  
word block of program memory. The CALL and GOTO  
instructions provide only 11 bits of address to allow  
branching within any 2K program memory page. When  
doing a CALLor GOTOinstruction, the upper two bits of  
the address are provided by PCLATH<4:3>. When  
doing a CALLor GOTOinstruction, the user must ensure  
that the page select bits are programmed so that the  
desired program memory page is addressed. If a return  
from a CALL instruction (or interrupt) is executed, the  
entire 13-bit PC is POPed off the stack. Therefore,  
manipulation of the PCLATH<4:3> bits is not required  
for the RETURNinstructions (which POPs the address  
from the stack).  
FIGURE 2-5:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Instruction with  
12  
8
7
0
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU Result  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO, CALL  
Note:  
The contents of the PCLATH register are  
unchanged after a RETURN or RETFIE  
instruction is executed. The user must  
rewrite the contents of the PCLATH regis-  
ter for any subsequent subroutine calls or  
GOTOinstructions.  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode<10:0>  
2.3.1  
COMPUTED GOTO  
Example 2-1 shows the calling of a subroutine in  
page 1 of the program memory. This example assumes  
that PCLATH is saved and restored by the Interrupt  
Service Routine (if interrupts are used).  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When perform-  
ing a table read using a computed GOTOmethod, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256-byte block). Refer to the  
Application Note AN556, “Implementing a Table Read”  
(DS00556).  
EXAMPLE 2-1:  
CALL OF A SUBROUTINE  
IN PAGE 1 FROM PAGE 0  
ORG 500h  
PAGESELSUB_P1 ;Select page 1  
;(800h-FFFh)  
2.3.2  
STACK  
All devices have an 8-level x 13-bit wide hardware  
stack (refer to Figures 2-1 and 2-2). The stack space is  
not part of either program or data space and the Stack  
Pointer is not readable or writable. The PC is PUSHed  
onto the stack when a CALLinstruction is executed or  
an interrupt causes a branch. The stack is POPed in  
the event of a RETURN, RETLWor a RETFIEinstruction  
execution. PCLATH is not affected by a PUSH or POP  
operation.  
CALL  
:
SUB1_P1;Call subroutine in  
;page 1 (800h-FFFh)  
:
ORG  
900h  
;page 1 (800h-FFFh)  
SUB1_P1  
:
;called subroutine  
;page 1 (800h-FFFh)  
:
RETURN  
;return to  
;Call subroutine  
;in page 0  
;(000h-7FFh)  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
PUSH overwrites the value that was stored from the  
first PUSH. The tenth PUSH overwrites the second  
PUSH (and so on).  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 23  
PIC16(L)F720/721  
EXAMPLE 2-2:  
INDIRECT ADDRESSING  
2.5  
Indirect Addressing, INDF and  
FSR Registers  
MOVLW 020h ;initialize pointer  
MOVWF FSR  
BANKISEL 020h  
;to RAM  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
NEXT CLRF INDF ;clear INDF register  
INCF FSR ;inc pointer  
BTFSS FSR,4 ;all done?  
GOTO NEXT ;no clear next  
CONTINUE  
Indirect addressing is possible by using the INDF  
register. Any instruction using the INDF register  
actually accesses data pointed to by the File Select  
Register (FSR). Reading INDF itself indirectly will  
produce 00h. Writing to the INDF register indirectly  
results in a no operation (although Status bits may be  
affected). An effective 9-bit address is obtained by  
concatenating the 8-bit FSR register and the IRP bit of  
the STATUS register, as shown in Figure 2-6.  
;yes continue  
A simple program to clear RAM location 020h-02Fh  
using indirect addressing is shown in Example 2-2.  
FIGURE 2-6:  
DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
From Opcode  
7
RP1 RP0  
Bank Select  
6
0
File Select Register  
0
IRP  
Bank Select  
180h  
Location Select  
Location Select  
00h  
00  
01  
10  
11  
Data  
Memory  
7Fh  
1FFh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
Note:  
For memory map detail, refer to Figures 2-3 and 2-4.  
DS40001430E-page 24  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
Most registers are not affected by a WDT wake-up  
since this is viewed as the resumption of normal  
operation. TO and PD bits are set or cleared differently  
in different Reset situations, as indicated in Table 3-5.  
These bits are used in software to determine the nature  
of the Reset.  
3.0  
RESETS  
The PIC16(L)F720/721 differentiates between various  
kinds of Reset:  
a) Power-on Reset (POR)  
b) WDT Reset during normal operation  
c) WDT Reset during Sleep  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 3-1.  
d) MCLR Reset during normal operation  
e) MCLR Reset during Sleep  
f) Brown-out Reset (BOR)  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Section 23.0 “Electrical  
Specifications” for pulse width specifications.  
Some registers are not affected in any Reset condition;  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
• Power-on Reset (POR)  
• MCLR Reset  
• MCLR Reset during Sleep  
• WDT Reset  
• Brown-out Reset (BOR)  
FIGURE 3-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
MCLRE  
MCLR/VPP  
Sleep  
WDT  
WDT  
Module  
Time-out  
Reset  
POR  
Power-on Reset  
VDD  
Brown-out(1)  
Reset  
BOREN  
Chip_Reset  
CLKIN  
PWRT  
11-bit Ripple Counter  
WDTOSC  
Enable PWRT  
Note 1: Refer to the Configuration Word Register 1 (Register 8-1).  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 25  
PIC16(L)F720/721  
TABLE 3-1:  
STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
Condition  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset or LDO Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during Sleep or interrupt wake-up from Sleep  
TABLE 3-2:  
RESET CONDITION FOR SPECIAL REGISTERS(2)  
Program  
STATUS  
Register  
PCON  
Register  
Condition  
Counter  
Power-on Reset  
0000h  
0001 1xxx  
000u uuuu  
---- --0x  
---- --uu  
MCLR Reset during normal operation  
0000h  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
WDT Wake-up  
PC + 1  
Brown-out Reset  
0000h  
PC + 1(1)  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit (GIE) is set, the return address is  
pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.  
2: If a Status bit is not implemented, that bit will be read as ‘0’.  
DS40001430E-page 26  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
3.1  
MCLR  
3.3  
Power-up Timer (PWRT)  
The PIC16(L)F720/721 has a noise filter in the MCLR  
Reset path. The filter will detect and ignore small  
pulses.  
The Power-up Timer provides a fixed 72 ms (nominal)  
time out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates from the WDT  
oscillator. For more information, see Section 7.3  
“Internal Clock Modes”. The chip is kept in Reset as  
long as PWRT is active. The PWRT delay allows the  
VDD to rise to an acceptable level. A Configuration bit,  
PWRTE, can disable (if set) or enable (if cleared or pro-  
grammed) the Power-up Timer. The Power-up Timer  
should be enabled when Brown-out Reset is enabled,  
although it is not required.  
It should be noted that a Reset does not drive the  
MCLR pin low.  
Voltages applied to the pin that exceed its specification  
can result in both MCLR Resets and excessive current  
beyond the device specification during the ESD event.  
For this reason, Microchip recommends that the MCLR  
pin no longer be tied directly to VDD. The use of an RC  
network, as shown in Figure 3-2, is suggested.  
The Power-up Timer delay will vary from chip-to-chip  
and vary due to:  
An internal MCLR option is enabled by clearing the  
MCLRE bit in the Configuration Word register. When  
MCLRE = 0, the Reset signal to the chip is generated  
internally. When the MCLRE = 1, the RA3/MCLR pin  
becomes an external Reset input. In this mode, the  
RA3/MCLR pin has a weak pull-up to VDD. In-Circuit  
Serial Programming™ is not affected by selecting the  
internal MCLR option.  
• VDD variation  
Temperature variation  
• Process variation  
See DC parameters for details (Section 23.0  
“Electrical Specifications”).  
Note:  
The Power-up Timer is enabled by the  
PWRTE bit in the Configuration Word.  
FIGURE 3-2:  
RECOMMENDED MCLR  
CIRCUIT  
3.4  
Watchdog Timer (WDT)  
VDD  
R1  
PIC® MCU  
The WDT has the following features:  
• Shares an 8-bit prescaler with Timer0  
10 k  
• Time-out period is from 17 ms to 2.2 seconds,  
nominal  
MCLR  
• Enabled by a Configuration bit  
C1  
0.1 F  
WDT is cleared under certain conditions described in  
Table 3-3.  
3.4.1  
WDT OSCILLATOR  
The WDT derives its time base from 31 kHz internal  
oscillator.  
3.2  
Power-on Reset (POR)  
The on-chip POR circuit holds the chip in Reset until VDD  
has reached a high enough level for proper operation. A  
maximum rise time for VDD is required. See  
Section 23.0 “Electrical Specifications” for details. If  
the BOR is enabled, the maximum rise time specification  
does not apply. The BOR circuitry will keep the device in  
Reset until VDD reaches VBOR (see Section 3.5  
“Brown-out Reset (BOR)”).  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (i.e.,  
voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 27  
PIC16(L)F720/721  
3.4.2  
WDT CONTROL  
The WDTEN bit is located in the Configuration Word  
Register 1. When set, the WDT runs continuously.  
The PSA and PS<2:0> bits of the OPTION_REG  
register control the WDT period. See Section 12.0  
“Timer0 Module” for more information.  
FIGURE 3-3: WATCHDOG TIMER BLOCK DIAGRAM  
T1GSS = 11  
TMR1GE  
From TMR0  
Clock Source  
WDTEN  
Low-Power  
WDT OSC  
0
1
Postscaler  
8
Divide by  
512  
PS<2:0>  
TO TMR0  
0
1
PSA  
WDT Reset  
To T1G  
WDTEN  
TABLE 3-3:  
WDT STATUS  
Conditions  
WDT  
Cleared  
WDTEN = 0  
CLRWDTCommand  
Exit Sleep + System Clock = INTOSC, EXTCLK  
DS40001430E-page 28  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
3.5  
Brown-out Reset (BOR)  
Brown-out Reset is enabled by programming the  
BOREN<1:0> bits in the Configuration register.  
Between the POR and BOR, complete voltage range  
coverage for execution protection can be  
implemented.  
Two bits are used to enable the BOR. When  
BOREN = 11, the BOR is always enabled. When  
BOREN = 10, the BOR is enabled, but disabled during  
Sleep. When BOREN = 0X, the BOR is disabled.  
If VDD falls below VBOR for greater than parameter  
(TBOR) (see Section 23.0 “Electrical Specifica-  
tions”), the Brown-out situation will reset the device.  
This will occur regardless of VDD slew rate. A Reset is  
not ensured to occur if VDD falls below VBOR for more  
than parameter (TBOR).  
If VDD drops below VBOR while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOR, the Power-up Timer will execute a  
64 ms Reset.  
FIGURE 3-4:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
< 64 ms  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
Note 1: 64 ms delay only if PWRTE bit is programmed to ‘0’.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 29  
PIC16(L)F720/721  
3.6  
Time-out Sequence  
3.7  
Power Control (PCON) Register  
PWRT time-out is invoked after POR has expired. The  
total time-out will vary based on oscillator configuration  
and PWRTE bit status. For example, in EC mode with  
PWRTE bit = 1(PWRT disabled), there will be no time-  
out at all. Figure 3-5, Figure 3-6 and Figure 3-7 depict  
time-out sequences.  
The Power Control (PCON) register has two Status bits  
to indicate what type of Reset that last occurred.  
Bit 0 is BOR (Brown-out Reset). BOR is unknown on  
Power-on Reset. It must then be set by the user and  
checked on subsequent Resets to see if BOR = 0,  
indicating that a Brown-out has occurred. The BOR  
Status bit is a “don’t care” and is not necessarily  
predictable if the brown-out circuit is disabled  
(BOREN<1:0> = 00in the Configuration Word register).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then,  
bringing MCLR high will begin execution immediately  
(see Figure 3-6). This is useful for testing purposes or  
to synchronize more than one PIC16(L)F720/721  
device operating in parallel.  
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
1’ to this bit following a Power-on Reset. On a  
subsequent Reset, if POR is ‘0’, it will indicate that a  
Power-on Reset has occurred (i.e., VDD may have  
gone too low).  
Table 3-5 shows the Reset conditions for some special  
registers.  
For more information, see Section 3.5 “Brown-out  
Reset (BOR)”.  
TABLE 3-4:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Brown-out Reset  
Wake-up from  
Oscillator Configuration  
Sleep  
PWRTE = 0  
PWRTE = 1  
PWRTE = 0  
PWRTE = 1  
EC, INTOSC  
TPWRT  
TPWRT  
TABLE 3-5:  
POR  
RESET BITS AND THEIR SIGNIFICANCE  
BOR  
TO  
PD  
Condition  
0
1
u
u
u
0
u
u
1
1
0
0
1
1
u
0
Power-on Reset  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
u
u
u
u
u
1
u
0
MCLR Reset during normal operation  
MCLR Reset during Sleep  
Legend: u= unchanged, x= unknown  
FIGURE 3-5:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
Internal Reset  
DS40001430E-page 30  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 3-6:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
Internal Reset  
FIGURE 3-7:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD): CASE 3  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
Internal Reset  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 31  
PIC16(L)F720/721  
TABLE 3-6:  
Register  
INITIALIZATION CONDITION FOR REGISTERS  
Power-on Reset/  
MCLR Reset/  
WDT Reset  
Wake-up from Sleep through  
Interrupt/Time-out  
Address  
Brown-out Reset(1)  
W
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
INDF  
00h/80h/  
100h/180h  
TMR0  
PCL  
01h/101h  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
PC + 1(3)  
02h/82h/  
102h/182h  
STATUS  
FSR  
03h/83h/  
103h/183h  
0001 1xxx  
xxxx xxxx  
000q quuu(4)  
uuuu uuuu  
uuuq quuu(4)  
uuuu uuuu  
04h/84h/  
104h/184h  
PORTA  
PORTB  
PORTC  
PCLATH  
05h  
06h  
07h  
--xx xxxx  
xxxx ----  
xxxx xxxx  
---0 0000  
--xx xxxx  
xxxx ----  
xxxx xxxx  
---0 0000  
--uu uuuu  
uuuu ----  
uuuu uuuu  
---u uuuu  
0Ah/8Ah/  
10Ah/18Ah  
INTCON  
0Bh/8Bh/  
0000 000x  
0000 000x  
uuuu uuuu(2)  
10Bh/18Bh  
PIR1  
0Ch  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Eh  
1Fh  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 -0-0  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
--00 0000  
1111 1111  
--11 -111  
1111 ----  
1111 1111  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 -0-0  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
uuuu uuuu  
--00 0000  
1111 1111  
--11 -111  
1111 ----  
1111 1111  
0000 0000  
uuuu uuuu(2)  
uuuu uuuu  
uuuu uuuu  
uuuu -u-u  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
--uu -uuu  
uuuu ----  
uuuu uuuu  
uuuu uuuu  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
ADRES  
ADCON0  
OPTION_REG 81h/181h  
TRISA  
TRISB  
TRISC  
PIE1  
85h  
86h  
87h  
8Ch  
Legend: u= unchanged, x= unknown, - = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 3-8 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
DS40001430E-page 32  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TABLE 3-6:  
Register  
INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)  
Power-on Reset/  
MCLR Reset/  
WDT Reset  
Wake-up from Sleep through  
Interrupt/Time-out  
Address  
Brown-out Reset(1)  
PCON  
8Eh  
8Fh  
---- --qq  
0000 0x00  
--10 qq--  
--00 0000  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
1111 ----  
--11 1111  
0000 ----  
--00 0000  
0000 -010  
0000 0000  
q000 --00  
-000 ----  
xxxx xxxx  
0000 0000  
--xx xxxx  
---0 0000  
---1 -111  
--11 ----  
11-- 1111  
1000 -000  
---- --uu(1,5)  
uuuu uxuu  
--10 qq--  
--uu uuuu  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
1111 ----  
--11 1111  
0000 ----  
--00 0000  
0000 -010  
0000 0000  
q000 --00  
-000 ----  
xxxx xxxx  
0000 0000  
--xx xxxx  
---0 0000  
---1 -111  
--11 ----  
11-- 1111  
1000 -000  
---- --uu  
uuuu uxuu  
--uu qq--  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu ----  
--uu uuuu  
uuuu ----  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu --uu  
-uuu ----  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---u uuuu  
---u -uuu  
--uu ----  
uu-- uuuu  
1000 -000  
T1GCON  
OSCCON  
OSCTUNE  
PR2  
90h  
91h  
92h  
SSPADD  
SSPMSK  
SSPSTAT  
WPUB  
93h  
93h  
94h  
115h  
95h  
WPUA  
IOCB  
116h  
96h  
IOCA  
TXSTA  
98h  
SPBRG  
FVRCON  
ADCON1  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
ANSELA  
ANSELB  
ANSELC  
PMCON1  
99h  
9Dh  
9Fh  
10Ch  
10Dh  
10Eh  
10Fh  
185h  
186h  
187h  
18Ch  
Legend: u= unchanged, x= unknown, - = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 3-8 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 33  
PIC16(L)F720/721  
TABLE 3-7:  
INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
0000h  
0000h  
0001 1xxx  
000u uuuu  
---- --0x  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
0001 1xxx  
uuu1 0uuu  
---- --uu  
---- --uu  
---- --uu  
---- --10  
---- --uu  
WDT Wake-up  
PC + 1  
0000h  
PC + 1(1)  
Brown-out Reset  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit (GIE) is set, the PC is loaded with  
the interrupt vector (0004h) after execution of PC + 1.  
TABLE 3-8:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH RESETS  
Register on  
Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
STATUS  
PCON  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
20  
22  
POR  
BOR  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’, q= value depends on condition.  
Shaded cells are not used by Resets.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
DS40001430E-page 34  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
The PIC16(L)F720/721 device family has 11 interrupt  
sources, differentiated by corresponding interrupt  
enable and flag bits:  
4.0  
INTERRUPTS  
The PIC16(L)F720/721 device family features an  
interruptible core, allowing certain events to preempt  
normal program flow. An Interrupt Service Routine  
(ISR) is used to determine the source of the interrupt  
and act accordingly. Some interrupts can be configured  
to wake the MCU from Sleep mode.  
• Timer0 Overflow Interrupt  
• External Edge Detect on INT Pin Interrupt  
• Interrupt-on-change, PORTA and PORTB pins  
• Timer1 Gate Interrupt  
• A/D Conversion Complete Interrupt  
• AUSART Receive Interrupt  
• AUSART Transmit Interrupt  
• SSP Event Interrupt  
• CCP1 Event Interrupt  
• Timer2 Match with PR2 Interrupt  
• Timer1 Overflow Interrupt  
A block diagram of the interrupt logic is shown in  
Figure 4-1.  
FIGURE 4-1:  
INTERRUPT LOGIC  
SSPIF  
SSPIE  
IOC-RB4  
IOCB4  
TXIF  
TXIE  
IOC-RB5  
IOCB5  
RCIF  
RCIE  
(1)  
Wake-up (if in Sleep mode)  
IOC-RB6  
IOCB6  
TMR0IF  
TMR0IE  
TMR2IF  
TMR2IE  
Interrupt to CPU  
IOC-RB7  
IOCB7  
INTF  
INTE  
RABIF  
TMR1IF  
TMR1IE  
IOC-RA0  
IOCA0  
RABIE  
ADIF  
ADIE  
IOC-RA1  
IOCA1  
IOC-RA2  
IOCA2  
PEIE  
GIE  
TMR1GIF  
TMR1GIE  
IOC-RA3  
IOCA3  
CCP1IF  
CCP1IE  
IOC-RA4  
IOCA4  
IOC-RA5  
IOCA5  
Note 1: Some peripherals depend upon the  
system clock for operation. Since the  
system clock is suspended during  
Sleep, these peripherals will not wake  
the part from Sleep. See Section 19.1  
“Wake-up from Sleep”.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 35  
PIC16(L)F720/721  
interrupts. Because the GIE bit is cleared, any interrupt  
that occurs while executing the ISR will be recorded  
through its Interrupt Flag, but will not cause the  
processor to redirect to the interrupt vector.  
4.1  
Operation  
Interrupts are disabled upon any device Reset. They  
are enabled by setting the following bits:  
• GIE bit of the INTCON register  
The RETFIE instruction exits the ISR by popping the  
• Interrupt Enable bit(s) for the specific interrupt  
event(s)  
previous address from the stack and setting the GIE bit.  
For additional information on a specific interrupt’s  
operation, refer to its peripheral chapter.  
• PEIE bit of the INTCON register (if the Interrupt  
Enable bit of the interrupt event is contained in the  
PIE1 register)  
Note 1: Individual interrupt flag bits are set,  
regardless of the state of any other  
enable bits.  
The INTCON and PIR1 registers record individual  
interrupts via interrupt flag bits. Interrupt flag bits will be  
set, regardless of the status of the GIE, PEIE and  
individual Interrupt Enable bits.  
2: All interrupts will be ignored while the GIE  
bit is cleared. Any interrupt occurring  
while the GIE bit is clear will be serviced  
when the GIE bit is set again.  
The following events happen when an interrupt event  
occurs while the GIE bit is set:  
• Current prefetched instruction is flushed  
• GIE bit is cleared  
4.2  
Interrupt Latency  
Interrupt latency is defined as the time from when the  
interrupt event occurs to the time code execution at the  
interrupt vector begins. The latency for synchronous  
interrupts is three instruction cycles. For asynchronous  
interrupts, the latency is three to four instruction cycles,  
depending on when the interrupt occurs. See Figure 4-2  
for timing details.  
• Current Program Counter (PC) is pushed onto the  
stack  
• PC is loaded with the interrupt vector 0004h  
The ISR determines the source of the interrupt by  
polling the interrupt flag bits. The interrupt flag bits must  
be cleared before exiting the ISR to avoid repeated  
FIGURE 4-2:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
CLKIN  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(2)  
(5)  
Interrupt Latency  
INTF flag  
(INTCON<1>)  
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC + 1  
0004h  
0005h  
PC  
Inst (PC)  
PC + 1  
Instruction  
Fetched  
Inst (PC + 1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC – 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency  
is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in INTOSC and RC Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 23.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
DS40001430E-page 36  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
following the ISR from using invalid data. Examples of  
key registers include the W, STATUS, FSR and  
PCLATH registers.  
4.3  
Interrupts During Sleep  
Some interrupts can be used to wake from Sleep. To  
wake from Sleep, the peripheral must be able to  
operate without the system clock. The interrupt source  
must have the appropriate Interrupt Enable bit(s) set  
prior to entering Sleep.  
Note:  
The microcontroller does not normally  
require saving the PCLATH register.  
However, if computed GOTOs are used,  
the PCLATH register must be saved at the  
beginning of the ISR and restored when  
the ISR is complete to ensure correct  
program flow.  
On waking from Sleep, if the GIE bit is also set, the  
processor will branch to the interrupt vector. Otherwise,  
the processor will continue executing instructions after  
the SLEEPinstruction. The instruction directly after the  
SLEEP instruction will always be executed before  
branching to the ISR. Refer to the Section 19.0  
“Power-Down Mode (Sleep)” for more details.  
The code shown in Example 4-1 can be used to do the  
following.  
• Save the W register  
• Save the STATUS register  
• Save the PCLATH register  
• Execute the ISR program  
• Restore the PCLATH register  
• Restore the STATUS register  
• Restore the W register  
4.4  
INT Pin  
The external interrupt, INT pin, causes an  
asynchronous, edge-triggered interrupt. The INTEDG bit  
of the OPTION_REG register determines on which edge  
the interrupt will occur. When the INTEDG bit is set, the  
rising edge will cause the interrupt. When the INTEDG  
bit is clear, the falling edge will cause the interrupt. The  
INTF bit of the INTCON register will be set when a valid  
edge appears on the INT pin. If the GIE and INTE bits  
are also set, the processor will redirect program  
execution to the interrupt vector. This interrupt is  
disabled by clearing the INTE bit of the INTCON register.  
Since most instructions modify the W register, it must  
be saved immediately upon entering the ISR. The  
SWAPF instruction is used when saving and restoring  
the W and STATUS registers because it will not affect  
any bits in the STATUS register. It is useful to place  
W_TEMP in shared memory because the ISR cannot  
predict which bank will be selected when the interrupt  
occurs.  
4.5  
Context Saving  
The processor will branch to the interrupt vector by  
loading the PC with 0004h. The PCLATH register will  
remain unchanged. This requires the ISR to ensure  
that the PCLATH register is set properly before using  
an instruction that causes PCLATH to be loaded into  
the PC. See Section 2.3 “PCL and PCLATH” for  
details on PC operation.  
When an interrupt occurs, only the return PC value is  
saved to the stack. If the ISR modifies or uses an  
instruction that modifies key registers, their values  
must be saved at the beginning of the ISR and restored  
when the ISR completes. This prevents instructions  
EXAMPLE 4-1:  
SAVING W, STATUS AND PCLATH REGISTERS IN RAM  
;Copy W to W_TEMP register  
MOVWFW_TEMP  
SWAPFSTATUS,W  
;Swap status to be saved into W  
;Swaps are used because they do not affect the status bits  
;Select regardless of current bank  
;Copy status to bank zero STATUS_TEMP register  
;Copy PCLATH to W register  
BANKSELSTATUS_TEMP  
MOVWFSTATUS_TEMP  
MOVF  
MOVWF  
:
PCLATH,W  
PCLATH_TEMP  
;Copy W register to PCLATH_TEMP  
:(ISR)  
:
;Insert user code here  
BANKSELSTATUS_TEMP  
;Select regardless of current bank  
MOVF  
PCLATH_TEMP,W ;  
MOVWF  
PCLATH  
;Restore PCLATH  
SWAPFSTATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWFSTATUS  
SWAPFW_TEMP,F  
SWAPFW_TEMP,W  
;Swap W_TEMP into W  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 37  
PIC16(L)F720/721  
4.5.1  
INTCON REGISTER  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE of the INTCON  
register. User software should ensure the  
appropriate interrupt flag bits are clear  
prior to enabling an interrupt.  
The INTCON register is a readable and writable  
register, which contains the various enable and flag bits  
for TMR0 register overflow, PORTB change and  
external RA2/INT pin interrupts.  
REGISTER 4-1:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
R/W-0  
INTE  
R/W-0  
RABIE(1)  
R/W-0  
TMR0IF(2)  
R/W-0  
INTF  
R/W-x  
RABIF  
TMR0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
TMR0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: INT External Interrupt Enable bit  
1= Enables the INT external interrupt  
0= Disables the INT external interrupt  
RABIE: PORTA or PORTB Change Interrupt Enable bit(1)  
1= Enables the PORTA or PORTB change interrupt  
0= Disables the PORTA or PORTB change interrupt  
TMR0IF: Timer0 Overflow Interrupt Flag bit(2)  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: INT External Interrupt Flag bit  
1= The INT external interrupt occurred (must be cleared in software)  
0= The INT external interrupt did not occur  
RABIF: PORTA or PORTB Change Interrupt Flag bit  
1 = When at least one of the PORTA or PORTB general purpose I/O pins changed state (must be  
cleared in software)  
0= None of the PORTA or PORTB general purpose I/O pins have changed state  
Note 1: The appropriate bits in the IOCB register must also be set.  
2: TMR0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before  
clearing TMR0IF bit.  
DS40001430E-page 38  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
4.5.2  
PIE1 REGISTER  
The PIE1 register contains the interrupt enable bits, as  
shown in Register 4-2.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 4-2:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
TMR1GIE  
bit 7  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
CCP1IE  
TMR2IE  
TMR1IE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR1GIE: Timer1 Gate Interrupt Enable bit  
1= Enable the Timer1 gate acquisition complete interrupt  
0= Disable the Timer1 gate acquisition complete interrupt  
ADIE: A/D Converter (ADC) Interrupt Enable bit  
1= Enables the ADC interrupt  
0= Disables the ADC interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port (SSP) Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the Timer2 to PR2 match interrupt  
0= Disables the Timer2 to PR2 match interrupt  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 39  
PIC16(L)F720/721  
4.5.3  
PIR1 REGISTER  
The PIR1 register contains the interrupt flag bits, as  
shown in Register 4-3.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE of the INTCON  
register. User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 4-3:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
R/W-0  
TMR1GIF  
bit 7  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
TMR1GIF: Timer1 Gate Interrupt Flag bit  
1= Timer1 gate is inactive  
0= Timer1 gate is active  
ADIF: A/D Converter Interrupt Flag bit  
1= A/D conversion complete (must be cleared in software)  
0= A/D conversion has not completed or has not been started  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer is full (cleared by reading RCREG)  
0= The USART receive buffer is not full  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer is empty (cleared by writing to TXREG)  
0= The USART transmit buffer is full  
SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit  
1= The Transmission/Reception is complete (must be cleared in software)  
0= Waiting to Transmit/Receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: Timer2 to PR2 Interrupt Flag bit  
1= A Timer2 to PR2 match occurred (must be cleared in software)  
0= No Timer2 to PR2 match occurred  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= The TMR1 register overflowed (must be cleared in software)  
0= The TMR1 register did not overflow  
DS40001430E-page 40  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TABLE 4-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RABIE TMR0IF  
PSA PS2  
INTF  
PS1  
RABIF  
PS0  
38  
21  
39  
40  
OPTION_REG  
PIE1  
RABPU  
TMR1GIE  
TMR1GIF  
INTEDG  
ADIE  
T0CS  
RCIE  
RCIF  
T0SE  
TXIE  
TXIF  
SSPIE CCP1IE TMR2IE TMR1IE  
SSPIF CCP1IF TMR2IF TMR1IF  
PIR1  
ADIF  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the  
capture, compare and PWM.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 41  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 42  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
5.0  
LOW DROPOUT (LDO)  
VOLTAGE REGULATOR  
The PIC16F720/721 devices differ from the  
PIC16LF720/721 devices due to an internal Low  
Dropout (LDO) voltage regulator. The PIC16F720/721  
contain an internal LDO, while the PIC16LF720/721 do  
not.  
The lithography of the die allows a maximum operating  
voltage of 3.6V on the internal digital logic. In order to  
continue to support 5.0V designs, a LDO voltage  
regulator is integrated on the die. The LDO voltage  
regulator allows for the internal digital logic to operate  
at 3.2V, while I/O’s operate at 5.0V (VDD).  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 43  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 44  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
6.1.1  
WEAK PULL-UPS  
6.0  
I/O PORTS  
Each of the PORTA pins has an individually  
configurable internal weak pull-up. Control bits  
WPUA<5:0> enable or disable each pull-up (see  
Register 6-5). Each weak pull-up is automatically  
turned off when the port pin is configured as an output.  
All pull-ups are disabled on a Power-on Reset by the  
RABPU bit of the OPTION_REG register.  
There are as many as eighteen general purpose I/O  
pins available. Depending on which peripherals are  
enabled, some or all of the pins may not be available as  
general purpose I/O. In general, when a peripheral is  
enabled, the associated pin may not be used as a  
general purpose I/O pin.  
6.1  
PORTA and TRISA Registers  
6.1.2  
INTERRUPT-ON-CHANGE  
PORTA is a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISA  
(Register 6-2). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., disable the  
output driver). Clearing a TRISA bit (= 0) will make the  
corresponding PORTA pin an output (i.e., enables  
output driver and puts the contents of the output latch  
on the selected pin). Example 6-1 shows how to  
initialize PORTA.  
All of the PORTA pins are individually configurable as  
an interrupt-on-change pin. Control bits IOCA<5:0>  
enable or disable the interrupt function for each pin  
(see Register 6-6). The interrupt-on-change feature is  
disabled on a Power-on Reset.  
For enable interrupt-on-change pins, the present value  
is compared with the old value latched on the last read  
of PORTA to determine which bits have changed or  
mismatched the old value. The ‘mismatch’ outputs of  
the last read are OR’d together to set the PORTA  
Change Interrupt Flag bit (RABIF) in the INTCON  
register. This interrupt can wake the device from Sleep.  
The user, in the Interrupt Service Routine, clears the  
interrupt by:  
Reading the PORTA register (Register 6-1) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then  
written to the PORT data latch.  
1. Any read or write of PORTA. This will end the  
mismatch condition.  
The TRISA register (Register 6-2) controls the PORTA  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISA register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
2. Clear the flag bit RABIF.  
A mismatch condition will continue to set flag bit RABIF.  
Reading or writing PORTA will end the mismatch  
condition and allow flag bit RABIF to be cleared. The  
latch holding the last read value is not affected by a  
MCLR or Brown-out Reset. After these Resets, the  
RABIF flag will continue to be set if a mismatch is  
present.  
Note:  
The ANSELA register must be initialized  
to configure an analog channel as a digital  
input. Pins configured as analog inputs  
will read ‘0’.  
Note:  
When a pin change occurs at the same  
time as a read operation on PORTA, the  
RABIF flag will always be set. If multiple  
PORTA pins are configured for the inter-  
rupt-on-change, the user may not be able  
to identify which pin changed state.  
EXAMPLE 6-1:  
INITIALIZING PORTA  
BANKSELPORTA  
;
CLRF  
BANKSELANSELA  
CLRF ANSELA  
BANKSELTRISA  
PORTA  
;Init PORTA  
;
;digital I/O  
;
MOVLW  
MOVWF  
0Ch  
TRISA  
;Set RA<3:2> as inputs  
;and set RA<5:4,1:0>  
;as outputs  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 45  
PIC16(L)F720/721  
REGISTER 6-1:  
PORTA: PORTA REGISTER  
U-0  
U-0  
R/W-x/u  
RA5  
R/W-x/u  
RA4  
R/W-x/u  
R/W-x/u  
RA2  
R/W-x/u  
RA1  
R/W-x/u  
RA0  
(1)  
RA3  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RA<5:0>: PORTA I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
Note 1: RA<3> is input only.  
REGISTER 6-2:  
TRISA: PORTA TRI-STATE REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
U-1  
R/W-1  
R/W-1  
R/W-1  
(1)  
TRISA5  
TRISA4  
TRISA2  
TRISA1  
TRISA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
TRISA<5:4>: PORTA Tri-State Control bit  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
bit 3  
Unimplemented: Read as ‘1’  
bit 2-0  
TRISA<2:0>: PORTA Tri-State Control bit  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
Note 1: TRISA<3> is unimplemented and read as 1.  
REGISTER 6-3:  
WPUA: WEAK PULL-UP PORTA REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
(2)  
WPUA5  
WPUA4  
WPUA2  
WPUA1  
WPUA0  
WPUA3  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
WPUA<5:0>: Weak Pull-up PORTA Control bits  
(1)  
1= Weak pull-up enabled  
0= Weak pull-up disabled  
Note 1: Enabling weak pull-ups also requires that the RABPU bit of the OPTION_REG register be cleared.  
2: If MCLREN = 1, WPUA3 is always enabled.  
DS40001430E-page 46  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
REGISTER 6-4:  
IOCA: INTERRUPT-ON-CHANGE PORTA REGISTER  
U-0  
U-0  
R/W-0  
IOCA5  
R/W-0  
IOCA4  
R/W-0  
IOCA3  
R/W-0  
IOCA2  
R/W-0  
IOCA1  
R/W-0  
IOCA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IOCA<5:0>: Interrupt-on-Change PORTA Control bits  
(1)  
1= Interrupt-on-change enabled  
0= Interrupt-on-change disabled  
Note 1: Interrupt-on-change also requires that the RABIE bit of the INTCON register be set.  
6.1.3  
ANSELA REGISTER  
The ANSELA register (Register 6-5) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELA bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
The state of the ANSELA bits has no affect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
REGISTER 6-5:  
ANSELA: PORTA ANALOG SELECT REGISTER  
U-0  
U-0  
U-0  
R/W-1  
U-0  
R/W-1  
R/W-1  
R/W-1  
ANSA4  
ANSA2  
ANSA1  
ANSA0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
ANSA4: Analog Select between Analog or Digital Function on Pin RA<4>  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer is disabled.  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
ANSA<2:0>: Analog Select between Analog or Digital Function on Pins RA<2:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer is disabled.  
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry. Weak pull-ups, if  
available, are unaffected. The corresponding TRIS bit must be set to Input mode by the user in order to  
allow external control of the voltage on the pin.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 47  
PIC16(L)F720/721  
6.1.4  
PIN DESCRIPTIONS AND  
DIAGRAMS  
6.1.4.3  
RA2/AN2/T0CKI/INT  
Figure 6-3 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Each PORTA pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the A/D Converter (ADC), refer to the  
appropriate section in this data sheet.  
• General purpose I/O  
• Analog input for the ADC  
• External interrupt  
• Clock input for Timer0  
6.1.4.1  
RA0/AN0/ICSPDAT  
The Timer0 clock input function works independently of  
any TRIS register setting. Effectively, if TRISA2 = 0,  
the PORTA2 register bit will output to the pad and Clock  
Timer0 at the same time.  
Figure 6-1 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• General purpose I/O  
• Analog input for the ADC  
6.1.4.4  
RA3/MCLR/VPP  
• ICSP programming data (separate controls from  
TRISA)  
Figure 6-4 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• ICD Debugging data (separate controls from  
TRISA)  
• General purpose I/O  
• Master Clear Reset with weak pull-up  
6.1.4.2  
RA1/AN1/ICSPCLK  
6.1.4.5  
RA4/AN3/T1G/CLKOUT  
Figure 6-2 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Figure 6-5 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• General purpose I/O  
• General purpose I/O  
• Analog input for the ADC  
• Timer1 gate input  
• Clock output  
• Analog input for the ADC  
• ICSP programming clock (separate controls from  
TRISA)  
• ICD Debugging clock (separate controls from  
TRISA)  
6.1.4.6  
RA5/T1CKI/CLKIN  
Figure 6-6 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• General purpose I/O  
• Timer1 Clock input  
• Clock input  
DS40001430E-page 48  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 6-1:  
BLOCK DIAGRAM OF RA0  
ICSP™ mode  
DEBUG  
Analog(1)  
Input mode  
VDD  
Data Bus  
Weak  
D
Q
Q
CK  
WR  
WPUA  
RABPU  
RD  
WPUA  
VDD  
PORT_ICDDAT  
10  
D
Q
Q
0
I/O Pin  
WR  
CK  
PORTA  
VSS  
0
1
TRIS_ICDDAT  
D
Q
Q
WR  
TRISA  
CK  
RD  
TRISA  
Analog(1)  
Input mode  
RD  
PORTA  
D
Q
Q
CK  
WR  
IOCA  
Q
Q
D
RD  
IOCA  
Q3  
EN  
D
EN  
Interrupt-on-Change  
RD PORTA  
ICSPDAT  
To A/D Converter  
Note 1: ANSEL determines Analog Input mode.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 49  
PIC16(L)F720/721  
FIGURE 6-2:  
BLOCK DIAGRAM OF RA1  
ICSP™ mode  
DEBUG  
Analog(1)  
Input mode  
Data Bus  
D
Q
Q
VDD  
Weak  
CK  
WR WPUA  
RABPU  
RD WPUA  
VDD  
D
Q
Q
PORT_ICDCLK  
CK  
WR PORTA  
10  
0
I/O Pin  
D
Q
Q
0
CK  
WR TRISA  
RD TRISA  
VSS  
1
Analog(1)  
Input mode  
TRIS_ICDCLK  
RD PORTA  
WR IOCA  
D
Q
Q
Q
D
D
CK  
EN  
Q3  
RD IOCA  
Q
Interrupt-on-Change  
EN  
RD PORTA  
To A/D Converter  
ICSPCLK  
Note 1: ANSEL determines Analog Input mode.  
DS40001430E-page 50  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 6-3:  
BLOCK DIAGRAM OF RA2  
Analog(1)  
Input mode  
Data Bus  
D
Q
Q
VDD  
Weak  
WR  
WPUA  
CK  
To  
Voltage Regulator  
only)  
RABPU  
RD  
WPUA  
(for  
PIC16F720/721  
VDD  
D
Q
Q
WR  
PORTA  
CK  
I/O Pin  
D
Q
Q
WR  
TRISA  
CK  
VSS  
Analog(1)  
Input mode  
RD  
TRISA  
RD  
PORTA  
D
Q
Q
Q
Q
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
D
EN  
Interrupt-on-  
Change  
RD PORTA  
To Timer0  
To INT  
To A/D Converter  
Note 1: ANSEL determines Analog Input mode.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 51  
PIC16(L)F720/721  
FIGURE 6-4:  
BLOCK DIAGRAM OF RA3  
FIGURE 6-5:  
BLOCK DIAGRAM OF RA4  
VDD  
Weak  
Analog(2)  
Input mode  
MCLRE  
CLK  
modes  
VDD  
Data Bus  
D
Q
Q
Data Bus  
MCLRE  
WR  
CK  
WPUA  
Reset  
Input  
Pin  
Weak  
RD  
TRISA  
VSS  
RABPU  
RD  
MCLRE  
VSS  
WPUA  
RD  
PORTA  
D
Q
Q
VDD  
CLKOUT  
Enable  
Q
Q
D
CK  
WR  
IOCA  
FOSC/4  
1
0
Q3  
EN  
D
Q
Q
RD  
IOCA  
I/O Pin  
WR  
PORTA  
CK  
D
CLKOUT  
Enable  
EN  
VSS  
Interrupt-on-  
Change  
D
Q
Q
INTOSC/  
RC/EC(1)  
WR  
TRISA  
CK  
RD PORTA  
CLKOUT  
Enable  
RD  
TRISA  
Analog  
Input mode  
RD  
PORTA  
D
Q
Q
Q
D
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
Q
EN  
Interrupt-on-  
Change  
RD PORTA  
To T1G  
To A/D Converter  
Note 1: With CLKOUT option.  
2: ANSEL determines Analog Input mode.  
DS40001430E-page 52  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 6-6:  
BLOCK DIAGRAM OF RA5  
INTOSC  
mode  
Data Bus  
D
VDD  
Q
Q
WR  
CK  
Weak  
WPUA  
RABPU  
RD  
WPUA  
VDD  
D
Q
Q
WR  
PORTA  
CK  
I/O Pin  
D
Q
Q
WR  
TRISA  
CK  
VSS  
INTOSC  
mode  
RD  
TRISA  
RD  
PORTA  
D
Q
Q
Q
Q
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
D
EN  
Interrupt-on-  
Change  
RD PORTA  
To TMR1 or CLKIN  
TABLE 6-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELA  
ANSA4  
T0SE  
RA4  
ANSA2  
PS2  
ANSA1  
PS1  
ANSA0  
PS0  
47  
21  
46  
46  
OPTION_REG RABPU INTEDG  
T0CS  
RA5  
PSA  
RA3  
PORTA  
TRISA  
RA2  
RA1  
RA0  
TRISA5 TRISA4  
TRISA2 TRISA1 TRISA0  
Legend: x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by  
PORTA.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 53  
PIC16(L)F720/721  
6.2.1  
ANSELB REGISTER  
6.2  
PORTB and TRISB Registers  
The ANSELB register (Register 6-10) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELB bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
PORTB is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISB  
(Register 6-7). Setting a TRISB bit (= 1) will make the  
corresponding PORTB pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISB bit (= 0) will make the corresponding  
PORTB pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 6-2 shows how to initialize PORTB.  
The state of the ANSELB bits has no affect on digital  
output functions. A pin with TRIS clear and ANSELB  
set will still operate as a digital output, but the Input  
mode will be analog. This can cause unexpected  
behavior  
instructions on the affected port.  
when  
executing  
read-modify-write  
Reading the PORTB register (Register 6-6) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
6.2.2  
WEAK PULL-UPS  
Each of the PORTB pins has an individually configurable  
internal weak pull-up. Control bits WPUB<7:4> enable or  
disable each pull-up (see Register 6-8). Each weak pull-  
up is automatically turned off when the port pin is  
configured as an output. All pull-ups are disabled on a  
Power-on Reset by the RABPU bit of the OPTION_REG  
register.  
The TRISB register (Register 6-7) controls the PORTB  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISB register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’. Example 6-2 shows how to initialize PORTB.  
6.2.3  
INTERRUPT-ON-CHANGE  
All of the PORTB pins are individually configurable as an  
interrupt-on-change pin. Control bits IOCB<7:4> enable  
or disable the interrupt function for each pin. Refer to  
Register 6-9. The interrupt-on-change feature is  
disabled on a Power-on Reset.  
EXAMPLE 6-2:  
INITIALIZING PORTB  
BANKSELPORTB  
;
CLRF  
BANKSELANSELB  
CLRF ANSELB ;Make RB<7:4> digital  
BANKSELTRISB  
PORTB  
;Init PORTB  
;
For enabled interrupt-on-change pins, the present value  
is compared with the old value latched on the last read  
of PORTB to determine which bits have changed or  
mismatched the old value. The ‘mismatch’ outputs of  
the last read are OR’d together to set the PORTB  
Change Interrupt Flag bit (RABIF) in the INTCON  
register.  
MOVLW  
MOVWF  
B11110000;Set RB<7:4> as inputs  
TRISB  
;
Note:  
The ANSELB register must be initialized  
to configure an analog channel as a digital  
input. Pins configured as analog inputs  
will read ‘0’.  
This interrupt can wake the device from Sleep. The user,  
in the Interrupt Service Routine, clears the interrupt by:  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear the flag bit RABIF.  
A mismatch condition will continue to set flag bit RABIF.  
Reading or writing PORTB will end the mismatch  
condition and allow flag bit RABIF to be cleared. The latch  
holding the last read value is not affected by a MCLR nor  
Brown-out Reset. After these Resets, the RABIF flag will  
continue to be set if a mismatch is present.  
Note:  
When a pin change occurs at the same  
time as a read operation on PORTB, the  
RABIF flag will always be set. If multiple  
PORTB pins are configured for the  
interrupt-on-change, the user may not be  
able to identify which pin changed state.  
DS40001430E-page 54  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
REGISTER 6-6:  
PORTB: PORTB REGISTER  
R/W-x/u  
RB7  
R/W-x/u  
RB6  
R/W-x/u  
RB5  
R/W-x/u  
RB4  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
RB<7:4>: PORTB I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
bit 3-0  
Unimplemented: Read as ‘0’  
REGISTER 6-7:  
TRISB: PORTB TRI-STATE REGISTER  
R/W-1  
TRISB7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
U-0  
U-0  
U-0  
U-0  
TRISB6  
TRISB5  
TRISB4  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
TRISB<7:4>: PORTB Tri-State Control bit  
1= PORTB pin configured as an input (tri-stated)  
0= PORTB pin configured as an output  
Unimplemented: Read as ‘0’  
REGISTER 6-8:  
WPUB: WEAK PULL-UP PORTB REGISTER  
R/W-1  
WPUB7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
U-0  
U-0  
U-0  
U-0  
WPUB6  
WPUB5  
WPUB4  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
WPUB<7:4>: Weak Pull-up PORTB Control bits  
1= Weak pull-up enabled (1,2)  
0= Weak pull-up disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: Global RABPU bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 55  
PIC16(L)F720/721  
REGISTER 6-9:  
IOCB: INTERRUPT-ON-CHANGE PORTB REGISTER  
R/W-0  
IOCB7  
bit 7  
R/W-0  
IOCB6  
R/W-0  
IOCB5  
R/W-0  
IOCB4  
U-0  
U-0  
U-0  
U-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
IOCB<7:4>: Interrupt-on-Change PORTB Control bits  
1= Interrupt-on-change enabled(1)  
0= Interrupt-on-change disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: Interrupt-on-change also requires that the RABIE bit of the INTCON register be set.  
REGISTER 6-10: ANSELB: PORTB ANALOG SELECT REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
U-0  
U-0  
U-0  
U-0  
ANSB5  
ANSB4  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
ANSB<5:4>: Analog Select between Analog or Digital Function on Pins RB<5:4>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry. Weak pull-ups, if  
available, are unaffected. The corresponding TRIS bit must be set to Input mode by the user, in order to  
allow external control of the voltage on the pin.  
DS40001430E-page 56  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
6.2.4  
PIN DESCRIPTIONS AND  
DIAGRAMS  
FIGURE 6-7:  
BLOCK DIAGRAM OF RB4  
Each PORTB pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the SSP, I2C™ or interrupts, refer to the  
appropriate section in this data sheet.  
Analog(1)  
Input mode  
Data Bus  
D
Q
Q
VDD  
WR  
WPUB  
CK  
Weak  
6.2.4.1  
RB4/AN10/SDI/SDA  
RABPU  
RD  
WPUB  
Figure 6-7 shows the diagram for this pin. The RB4 pin  
is configurable to function as one of the following:  
SSPEN  
SSP  
VDD  
• General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up.  
D
Q
Q
10  
WR  
PORTB  
CK  
• Analog input for the A/D  
• Synchronous Serial Port Input (SPI)  
• I2C data I/O  
01  
I/O Pin  
D
Q
Q
From  
SSP  
10  
WR  
TRISB  
CK  
6.2.4.2  
RB5/AN11/RX/DT  
VSS  
0
Figure 6-8 shows the diagram for this pin. The RB5 pin  
is configurable to function as one of the following:  
Analog(1)  
Input mode  
RD  
TRISB  
• General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up.  
RD  
PORTB  
• Analog input for the A/D  
D
Q
Q
• USART asynchronous receive  
• USART synchronous receive  
Q
Q
D
CK  
WR  
IOCB  
EN  
Q3  
6.2.4.3  
RB6/SCK/SCL  
RD  
IOCB  
D
Figure 6-9 shows the diagram for this pin. The RB6 pin  
is configurable to function as one of the following:  
ST  
EN  
Interrupt-on-  
Change  
• General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up.  
• Synchronous Serial Port clock for both SPI and  
I2C  
RD PORTB  
To SSP  
To A/D Converter  
6.2.4.4  
RB7/TX/CK  
Figure 6-10 shows the diagram for this pin. The RB7  
pin is configurable to function as one of the following:  
Note 1:  
ANSEL determines Analog Input mode.  
• General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up.  
• USART asynchronous transmit  
• USART synchronous clock  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 57  
PIC16(L)F720/721  
FIGURE 6-8:  
BLOCK DIAGRAM OF RB5  
FIGURE 6-9:  
BLOCK DIAGRAM OF RB6  
Analog(1)  
Input mode  
Data Bus  
D
Q
Q
Data Bus  
D
VDD  
Q
Q
VDD  
Weak  
WR  
CK  
Weak  
WPUB  
WR  
CK  
WPUB  
RABPU  
RD  
RABPU  
WPUB  
RD  
WPUB  
SYNC  
SPEN  
SSPEN  
VDD  
D
Q
Q
SSP  
VDD  
Clock  
10  
WR  
PORTB  
D
Q
Q
CK  
AUSART  
DT  
10  
WR  
CK  
01  
PORTB  
I/O Pin  
From  
SSP  
01  
D
Q
Q
10  
I/O Pin  
From  
WR  
D
Q
Q
CK  
AUSART 10  
VSS  
TRISB  
01  
WR  
TRISB  
CK  
VSS  
0
RD  
TRISB  
Analog(1)  
RD  
TRISB  
Input mode  
RD  
PORTB  
RD  
PORTB  
D
Q
Q
Q
Q
D
D
Q
Q
CK  
WR  
IOCB  
Q
D
D
CK  
WR  
IOCB  
EN  
Q3  
RD  
IOCB  
EN  
Q3  
D
RD  
IOCB  
ST  
Q
EN  
ST  
Interrupt-on-  
Change  
EN  
Interrupt-on-  
Change  
RD PORTB  
To SSP  
RD PORTB  
To AUSART RX/DT  
To A/D Converter  
Note 1:  
ANSEL determines Analog Input mode.  
DS40001430E-page 58  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 6-10:  
BLOCK DIAGRAM OF RB7  
Data Bus  
D
Q
VDD  
WR  
WPUB  
CK  
Weak  
Q
RABPU  
RD  
WPUB  
SPEN  
TXEN  
SYNC  
AUSART  
CK  
10  
AUSART  
TX  
D
Q
Q
0
VDD  
WR  
PORTB  
CK  
10  
01  
I/O Pin  
D
Q
Q
WR  
‘1’  
01  
CK  
TRISB  
VSS  
01  
RD  
TRISB  
RD  
PORTB  
D
Q
Q
Q
D
CK  
WR  
IOCB  
EN  
Q3  
RD  
IOCB  
Q
D
EN  
Interrupt-on-  
Change  
RD PORTB  
TABLE 6-2:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Register on  
Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELB  
INTCON  
IOCB  
ANSB5  
TMR0IE  
IOCB5  
ANSB4  
INTE  
INTF  
RABIF  
56  
38  
56  
GIE  
PEIE  
IOCB6  
RABIE TMR0IF  
IOCB7  
IOCB4  
OPTION_REG RABPU INTEDG  
T0CS  
RB5  
T0SE  
RB4  
PSA  
PS2  
PS1  
PS0  
21  
55  
55  
55  
PORTB  
TRISB  
WPUB  
RB7  
RB6  
TRISB7 TRISB6 TRISB5 TRISB4  
WPUB7 WPUB6 WPUB5 WPUB4  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by  
PORTB.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 59  
PIC16(L)F720/721  
The TRISC register (Register 6-12) controls the PORTC  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISC register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
6.3  
PORTC and TRISC Registers  
PORTC is  
a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISC  
(Register 6-12). Setting a TRISC bit (= 1) will make the  
corresponding PORTC pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISC bit (= 0) will make the corresponding  
PORTC pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 6-3 shows how to initialize PORTC.  
EXAMPLE 6-3:  
INITIALIZING PORTC  
BANKSELPORTC  
;
CLRF  
BANKSELTRISC  
PORTC  
;Init PORTC  
;
Reading the PORTC register (Register 6-11) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
MOVLW  
MOVWF  
B‘00001100’ ;Set RC<3:2> as inputs  
TRISC  
;and set RC<7:4,1:0>  
;as outputs  
6.3.1  
ANSELC REGISTER  
The ANSELC register (Register 6-13) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELC bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
The state of the ANSELC bits has no effect on digital  
output functions. A pin with TRIS clear and ANSELC  
set will still operate as a digital output, but the Input  
mode will be analog. This can cause unexpected  
behavior  
when  
executing  
read-modify-write  
instructions on the affected port.  
REGISTER 6-11: PORTC: PORTC REGISTER  
R/W-x/u  
RC7  
R/W-x/u  
RC6  
R/W-x/u  
RC5  
R/W-x/u  
RC4  
R/W-x/u  
RC3  
R/W-x/u  
RC2  
R/W-x/u  
RC1  
R/W-x/u  
RC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RC<7:0>: PORTC General Purpose I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
DS40001430E-page 60  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
REGISTER 6-12: TRISC: PORTC TRI-STATE REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISC<7:0>: PORTC Tri-State Control bits  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
REGISTER 6-13: ANSELC: ANALOG SELECT REGISTER FOR PORTC  
R/W-1  
R/W-1  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
ANSC7  
ANSC6  
ANSC3  
ANSC2  
ANSC1  
ANSC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-6  
ANSC<7:6>: Analog Select between Analog or Digital Function on Pins RB<7:6>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
ANSC<3:0>: Analog Select between Analog or Digital Function on Pins RC<3:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry. Weak pull-ups, if available,  
are unaffected. The corresponding TRIS bit must be set to Input mode by the user in order to allow external  
control of the voltage on the pin.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 61  
PIC16(L)F720/721  
6.3.2  
RC0/AN4  
FIGURE 6-11:  
BLOCK DIAGRAM OF RC0  
AND RC1  
Figure 6-11 shows the diagram for this pin. The RC0 pin  
is configurable to function as one of the following:  
Data Bus  
• General purpose I/O  
VDD  
• Analog input for the A/D  
D
Q
WR  
PORTC  
CK  
6.3.3  
RC1/AN5  
Q
Figure 6-11 shows the diagram for this pin. The RC1 pin  
is configurable to function as one of the following:  
I/O Pin  
D
Q
Q
• General purpose I/O  
WR  
TRISC  
CK  
• Analog input for the A/D  
VSS  
Analog Input  
mode(1)  
6.3.4  
RC2/AN6  
RD  
TRISC  
Figure 6-12 shows the diagram for this pin. The RC2  
pin is configurable to function as one of the following:  
RD  
PORTC  
• General purpose I/O  
• Analog input for the A/D  
To A/D Converter  
6.3.5  
RC3/AN7  
Note 1:  
ANSEL determines Analog Input mode.  
Figure 6-12 shows the diagram for this pin. The RC3 pin  
is configurable to function as one of the following:  
• General purpose I/O  
• Analog input for the A/D  
FIGURE 6-12:  
BLOCK DIAGRAM OF RC2  
AND RC3  
6.3.6  
RC4  
Figure 6-13 shows the diagram for this pin. The RC4 pin  
functions as one of the following:  
Data Bus  
• General purpose I/O  
VDD  
D
Q
6.3.7  
RC5/CCP1  
WR  
PORTC  
CK  
Q
Figure 6-14 shows the diagram for this pin. The RC5 pin  
is configurable to function as one of the following:  
I/O Pin  
D
Q
Q
• General purpose I/O  
WR  
TRISC  
CK  
• Capture, Compare or PWM (1 output)  
VSS  
Analog Input  
mode(1)  
6.3.8  
RC6/AN8/SS  
RD  
TRISC  
Figure 6-15 shows the diagram for this pin. The RC6 pin  
is configurable to function as one of the following:  
RD  
PORTC  
• General purpose I/O  
• Analog input for the A/D  
• SS input to SSP  
To A/D Converter  
6.3.9  
RC7/AN9/SDO  
Note 1:  
ANSEL determines Analog Input mode.  
Figure 6-16 shows the diagram for this pin. The RC7 pin  
is configurable to function as one of the following:  
• General purpose I/O  
• Analog input for the A/D  
• SDO output of SSP  
DS40001430E-page 62  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 6-13:  
BLOCK DIAGRAM OF RC4  
FIGURE 6-15:  
BLOCK DIAGRAM OF RC6  
Data Bus  
VDD  
VDD  
D
Q
Q
WR  
PORTC  
CK  
I/O Pin  
Data Bus  
D
Q
I/O Pin  
WR  
PORTC  
CK  
VSS  
Q
D
Q
Q
WR  
TRISC  
CK  
VSS  
Analog Input  
D
Q
Q
mode(1)  
WR  
TRISC  
CK  
RD  
TRISC  
RD  
TRISC  
RD  
PORTC  
To SS Input  
RD  
PORTC  
To A/D Converter  
Note 1:  
ANSEL determines Analog Input mode.  
FIGURE 6-14:  
BLOCK DIAGRAM OF RC5  
Data bus  
CCP1OUT  
Enable  
VDD  
FIGURE 6-16:  
BLOCK DIAGRAM OF RC7  
D
Q
PORT/SDO  
Select  
WR  
PORTC  
CK  
10  
Q
CCP1OUT  
Data Bus  
10  
SDO  
01  
I/O Pin  
VDD  
D
Q
Q
D
Q
01  
WR  
TRISC  
CK  
WR  
PORTC  
CK  
VSS  
Q
RD  
TRISC  
I/O Pin  
D
Q
Q
WR  
TRISC  
CK  
RD  
PORTC  
VSS  
Analog Input  
mode(1)  
To CCP1 input  
RD  
TRISC  
RD  
PORTC  
To A/D Converter  
Note 1:  
ANSEL determines Analog Input mode.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 63  
PIC16(L)F720/721  
TABLE 6-3:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Registeron  
Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELC  
ANSC7  
TRISC7  
RC7  
ANSC6  
ANSC3 ANSC2 ANSC1 ANSC0  
61  
TRISC  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
RC6 RC5 RC4 RC3 RC2 RC1 RC0  
61  
60  
PORTC  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by  
PORTC.  
DS40001430E-page 64  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
Clock source modes are configured by the FOSC bits  
in Configuration Word 1 (CONFIG1). The oscillator  
module can be configured for one of the following  
modes of operation.  
7.0  
7.1  
OSCILLATOR MODULE  
Overview  
The oscillator module has a variety of clock sources and  
selection features that allow it to be used in a range of  
applications while maximizing performance and  
minimizing power consumption. Figure 7-1 illustrates a  
block diagram of the oscillator module.  
1. EC – CLKOUT function on RA4/CLKOUT pin,  
CLKIN on RA5/CLKIN.  
2. EC – I/O function on RA4/CLKOUT pin, CLKIN  
on RA5/CLKIN.  
3. INTOSC – CLKOUT function on RA4/CLKOUT  
pin, I/O function on RA5/CLKIN  
The system can be configured to use an internal  
calibrated high-frequency oscillator as clock source, with  
a choice of selectable speeds via software. In addition,  
the system can also be configured to use an external  
clock source via the CLKIN pin.  
4. INTOSCIO – I/O function on RA4/CLKOUT pin,  
I/O function on RA5/CLKIN  
FIGURE 7-1:  
SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
FOSC<1:0>  
(Configuration Word 1)  
EC  
CLKIN  
System Clock  
(CPU and Peripherals)  
Internal Oscillator  
IRCF<1:0>  
(OSCCON Register)  
MFINTOSC  
INTOSC  
0
1
500 kHz  
16 MHz/500 kHz  
11  
10  
01  
00  
32x  
PLL  
8 MHz/250 kHz  
4 MHz/125 kHz  
2 MHz/62.5 kHz  
PLLEN  
(Configuration Word 1)  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 65  
PIC16(L)F720/721  
7.3.2  
FREQUENCY SELECT BITS (IRCF)  
7.2  
Clock Source Modes  
The output of the 500 kHz MFINTOSC and 16 MHz  
HFINTOSC, with Phase-Locked Loop enabled, con-  
nect to a postscaler and multiplexer (see Figure 7-1).  
The Internal Oscillator Frequency Select bits (IRCF) of  
the OSCCON register select the frequency output of  
the internal oscillator. Depending upon the PLLEN bit,  
one of four frequencies of two frequency sets can be  
selected via software:  
Clock source modes can be classified as external or  
internal.  
• Internal clock source (INTOSC) is contained  
within the oscillator module and derived from a  
500 kHz high precision oscillator. The oscillator  
module has eight selectable output frequencies,  
with a maximum internal frequency of 16 MHz.  
• The External Clock mode (EC) relies on an  
external signal for the clock source.  
If PLLEN = 1, HFINTOSC frequency selection is as  
follows:  
The system clock can be selected between external or  
internal clock sources via the FOSC bits of the  
Configuration Word 1.  
• 16 MHz  
• 8 MHz (default after Reset)  
• 4 MHz  
• 2 MHz  
7.3  
Internal Clock Modes  
If PLLEN = 0, MFINTOSC frequency selection is as  
follows:  
The oscillator module has eight output frequencies  
derived from a 500 kHz high precision oscillator. The  
IRCF bits of the OSCCON register select the  
postscaler applied to the clock source dividing the  
frequency by 1, 2, 4 or 8. Setting the PLLEN bit of the  
Configuration Word 1 locks the internal clock source to  
16 MHz before the postscaler is selected by the IRCF  
bits. The PLLEN bit must be set or cleared at the time  
of programming; therefore, only the upper or low four  
clock source frequencies are selectable in software.  
• 500 kHz  
• 250 kHz (default after Reset)  
• 125 kHz  
• 62.5 kHz  
Note:  
Following any Reset, the IRCF<1:0> bits  
of the OSCCON register are set to ‘10’ and  
the frequency selection is set to 8 MHz or  
250 kHz. The user can modify the IRCF  
bits to select a different frequency.  
The internal oscillator block has one internal oscillator  
and a dedicated Phase-Locked Loop that are used to  
generate two internal system clock sources: the 16  
MHz High-Frequency Internal Oscillator (HFINTOSC)  
and the 500 kHz (MFINTOSC). Both can be user-  
adjusted via software using the OSCTUNE register  
(Register 7-2).  
There is no start-up delay before a new frequency  
selected in the IRCF bits takes effect. This is because  
the old and new frequencies are derived from INTOSC  
via the postscaler and multiplexer.  
Start-up delay specifications are located in the  
Table 23-2  
Specifications”.  
in  
Section 23.0  
“Electrical  
7.3.1  
INTOSC AND INTOSCIO MODES  
The INTOSC and INTOSCIO modes configure the  
internal oscillators as the system clock source when  
the device is programmed using the oscillator selection  
or the FOSC<1:0> bits in the CONFIG1 register. See  
Section 8.0 “Device Configuration” for more  
information.  
In INTOSC mode, CLKIN is available for general  
purpose I/O. CLKOUT outputs the selected internal  
oscillator frequency divided by 4. The CLKOUT signal  
may be used to provide a clock for external circuitry,  
synchronization, calibration, test or other application  
requirements.  
In INTOSCIO mode, CLKIN and CLKOUT are available  
for general purpose I/O.  
DS40001430E-page 66  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
7.4  
Oscillator Control  
The Oscillator Control (OSCCON) register (Figure 7-1)  
displays the status and allows frequency selection of the  
internal oscillator (INTOSC) system clock. The  
OSCCON register contains the following bits:  
• Frequency selection bits (IRCF)  
• Status Locked bits (ICSL)  
• Status Stable bits (ICSS)  
REGISTER 7-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
U-0  
R/W-1  
IRCF1  
R/W-0  
IRCF0  
R-q  
R-q  
U-0  
U-0  
ICSL  
ICSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
q = Value depends on condition  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
IRCF<1:0>: Internal Oscillator Frequency Select bits  
When PLLEN = 1 (16 MHz HFINTOSC)  
11= 16 MHz  
10= 8 MHz (default)  
01= 4 MHz  
00= 2 MHz  
When PLLEN = 0 (500 kHz MFINTOSC)  
11= 500 kHz  
10= 250 kHz (default)  
01= 125 kHz  
00= 62.5 kHz  
bit 3  
ICSL: Internal Clock Oscillator Status Locked bit (2% Stable)  
1= 16 MHz/500 kHz internal oscillator is in lock  
0= 16 MHz/500 kHz internal oscillator has not yet locked  
bit 2  
ICSS: Internal Clock Oscillator Status Stable bit (0.5% Stable)  
1= 16 MHz/500 kHz internal oscillator has stabilized to its maximum accuracy  
0= 16 MHz/500 kHz internal oscillator has not yet reached its maximum accuracy  
bit 1-0  
Unimplemented: Read as ‘0’  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 67  
PIC16(L)F720/721  
7.5  
Oscillator Tuning  
The INTOSC is factory calibrated but can be adjusted  
in software by writing to the OSCTUNE register  
(Register 7-2).  
The default value of the OSCTUNE register is ‘0’. The  
value is a 6-bit two’s complement number.  
When the OSCTUNE register is modified, the INTOSC  
frequency will begin shifting to the new frequency. Code  
execution continues during this shift. There is no  
indication that the shift has occurred.  
REGISTER 7-2:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: Frequency Tuning bits  
01 1111= Maximum frequency  
01 1110=  
00 0001=  
00 0000= Oscillator module is running at the factory-calibrated frequency.  
11 1111=  
10 0000= Minimum frequency  
DS40001430E-page 68  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
7.6  
External Clock Modes  
7.6.1  
EC MODE  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source. When  
operating in this mode, an external clock source is  
connected to the CLKIN input and the CLKOUT is  
available for general purpose I/O. Figure 7-2 shows the  
pin connections for EC mode.  
FIGURE 7-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
CLKIN  
Clock from  
Ext. System  
PIC® MCU  
CLKOUT  
I/O  
TABLE 7-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OSCCON  
IRCF1  
TUN5  
IRCF0  
TUN4  
ICSL  
ICSS  
67  
68  
OSCTUNE  
TUN3  
TUN2  
TUN1  
TUN0  
Legend: x= unknown, u= unchanged, = unimplemented locations read as ‘0’. Shaded cells are not used by  
oscillators.  
TABLE 7-2:  
SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES  
Register  
on Page  
Name  
Bits Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3 Bit 10/2 Bit 9/1  
Bit 8/0  
13:8  
7:0  
CP  
MCLRE  
PLLEN  
PWRTE  
WDTEN  
BOREN1 BOREN0  
CONFIG1  
CONFIG2  
72  
73  
FOSC1  
FOSC0  
13:8  
7:0  
WRT1  
WRT0  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 69  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 70  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
8.0  
DEVICE CONFIGURATION  
Device configuration consists of Configuration Word 1  
and Configuration Word 2 registers, code protection  
and Device ID.  
8.1  
Configuration Words  
There are several Configuration Word bits that allow  
different oscillator and memory protection options.  
These are implemented as Configuration Word 1  
register at 2007h and Configuration Word 2 register at  
2008h. These registers are only accessible during  
programming.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 71  
PIC16(L)F720/721  
REGISTER 8-1:  
CONFIGURATION WORD 1  
U-1  
R/P-1  
U-1  
U-1  
R/P-1  
R/P-1  
PLLEN  
BOREN1  
BOREN0  
bit 13  
bit 8  
U-1  
R/P-1  
CP  
R/P-1  
R/P-1  
R/P-1  
U-1  
R/P-1  
R/P-1  
MCLRE  
PWRTE  
WDTEN  
FOSC1  
FOSC0  
bit 7  
bit 0  
Legend:  
P = Programmable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 13  
bit 12  
Unimplemented: Read as ‘1’  
PLLEN: INTOSC PLL Enable bit  
0= INTOSC frequency is up to 500 kHz (Max. MFINTOSC)  
1= INTOSC frequency is up to 16 MHz (Max. HFINTOSC)  
bit 11-10  
bit 9-8  
Unimplemented: Read as ‘1’  
BOREN<1:0>: Brown-out Reset Enable bits(1)  
0x= Brown-out Reset disabled  
10= Brown-out Reset enabled during operation and disabled in Sleep  
11= Brown-out Reset enabled  
bit 7  
bit 6  
Unimplemented: Read as ‘1’  
CP: Flash Program Memory Code Protection bit  
0= Program Memory code protection is enabled  
1= Program Memory code protection is disabled  
bit 5  
bit 4  
bit 3  
MCLRE: MCLR/VPP Pin Function Select bit  
1= MCLR/VPP pin function is MCLR; Weak pull-up enabled.  
0= MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up disabled  
PWRTE: Power-up Timer Enable bit  
0= PWRT enabled  
1= PWRT disabled  
WDTEN: Watchdog Timer Enable bit  
0= WDT disabled  
1= WDT enabled  
bit 2  
Unimplemented: Read as ‘1’  
bit 1-0  
FOSC<1:0>: Oscillator Selection bits  
11= EC oscillator: CLKOUT function on CLKOUT pin, and CLKIN function on CLKIN pin  
10= EC oscillator: I/O function on CLKOUT pin, and CLKIN function on CLKIN pin  
01= INTOSC oscillator: CLKOUT function on CLKOUT pin, and I/O function on CLKIN pin  
00= INTOSCIO oscillator: I/O function on CLKOUT pin, and I/O function on CLKIN pin  
Note 1: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled.  
DS40001430E-page 72  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
REGISTER 8-2:  
CONFIGURATION WORD 2  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
bit 13  
bit 8  
U-1  
U-1  
U-1  
Reserved  
U-1  
U-1  
R/P-1  
R/P-1  
WRT1  
WRT0  
bit 7  
bit 0  
Legend:  
P = Programmable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 13-5  
bit 4  
Unimplemented: Read as ‘1’  
Reserved: Maintain as ‘1’  
Unimplemented: Read as ‘1’  
bit 3-2  
bit 1-0  
WRT<1:0>: Flash Memory Self-Write Protection bits  
2 kW Flash memory: PIC16(L)F720:  
11= Write protection off  
10= 000h to 1FFh write-protected, 200h to 7FFh may be modified by PMCON1 control  
01= 000h to 3FFh write-protected, 400h to 7FFh may be modified by PMCON1 control  
00= 000h to 7FFh write-protected, no addresses may be modified by PMCON1 control  
4 kW Flash memory: PIC16(L)F721:  
11= Write protection off  
10= 000h to 1FFh write-protected, 200h to FFFh may be modified by PMCON1 control  
01= 000h to 7FFh write-protected, 800h to FFFh may be modified by PMCON1 control  
00= 000h to FFFh write-protected, no addresses may be modified by PMCON1 control  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 73  
PIC16(L)F720/721  
8.2  
Code Protection  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out using ICSP™ for verification purposes.  
Note:  
The entire Flash program memory will be  
erased when the code protection is turned  
off. See the “PIC16(L)F720/721 Memory  
Programming Specification” (DS41409)  
for more information.  
8.3  
User ID  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution, but are read-  
able and writable during Program/Verify mode. Only  
the Least Significant 7 bits of the ID locations are  
reported when using MPLAB® IDE. See the  
PIC16(L)F720/721 Memory Programming Specifica-  
tion” (DS41409) for more information.  
DS40001430E-page 74  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
9.0  
ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 8-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates  
a 8-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result register (ADRES). Figure 9-1 shows the  
block diagram of the ADC.  
The ADC voltage reference, FVREF, is an internally  
generated supply only.  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
FIGURE 9-1:  
ADC BLOCK DIAGRAM  
VDD  
AN0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
ADC  
8
GO/DONE  
ADRES  
ADON  
VSS  
Temperature Indicator  
FVREF  
1110  
1111  
CHS<3:0>  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 75  
PIC16(L)F720/721  
When changing channels, a delay is required before  
starting the next conversion. Refer to Section 9.2  
“ADC Operation” for more information.  
9.1  
ADC Configuration  
When configuring and using the ADC the following  
functions must be considered:  
9.1.3  
CONVERSION CLOCK  
• Port configuration  
• Channel selection  
The source of the conversion clock is software  
selectable via the ADCS bits of the ADCON1 register.  
There are seven possible clock options:  
• ADC conversion clock source  
• Interrupt control  
• FOSC/2  
9.1.1  
PORT CONFIGURATION  
• FOSC/4  
When converting analog signals, the I/O pin selected  
as the input channel should be configured for analog by  
setting the associated TRIS and ANSEL bits. Refer to  
Section 6.0 “I/O Ports” for more information.  
• FOSC/8  
• FOSC/16  
• FOSC/32  
• FOSC/64  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input buf-  
fer to conduct excess current.  
• FRC (dedicated internal oscillator)  
The time to complete one bit conversion is defined as  
TAD. One full 8-bit conversion requires 10 TAD periods  
as shown in Figure 9-2.  
9.1.2  
CHANNEL SELECTION  
For correct conversion, the appropriate TAD  
specification must be met. Refer to the A/D conversion  
There are 14 channel selections available:  
- AN<11:0> pins  
requirements  
in  
Section 23.0  
“Electrical  
- Temperature Indicator  
Specifications” for more information. Table 9-1 gives  
examples of appropriate ADC clock selections.  
- FVR (Fixed Voltage Reference) Output  
Refer to Section 11.0 “Temperature Indicator Mod-  
ule” and Section 10.0 “Fixed Voltage Reference” for  
more information on these channel selections.  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
TABLE 9-1:  
ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES  
Device Frequency (FOSC)  
ADC Clock Period (TAD)  
ADC  
Clock Source  
ADCS<2:0>  
16 MHz  
8 MHz  
4 MHz  
1 MHz  
FOSC/2  
000  
100  
001  
101  
010  
110  
x11  
125 ns(2)  
250 ns(2)  
0.5 s(2)  
1.0 s  
250 ns(2)  
500 ns(2)  
1.0 s  
500 ns(2)  
1.0 s  
2.0 s  
4.0 s  
8 s(5)  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/32  
FOSC/64  
FRC  
2.0 s  
2.0 s  
4.0 s  
8 s(5)  
16.0 s(5)  
1.0-6.0 s(1,4)  
16.0 s(5)  
32.0 s(3)  
64.0 s(3)  
1.0-6.0 s(1,4)  
2.0 s  
4.0 s  
8 s(5)  
1.0-6.0 s(1,4)  
4.0 s  
1.0-6.0 s(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The FRC source has a typical TAD time of 1.6 s for VDD.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the  
conversion will be performed during Sleep.  
5: Recommended values for VDD 2.0V and temperature -40°C to 85°C. The 16.0 s setting should be  
avoided for temperature > 85°C.  
DS40001430E-page 76  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 9-2:  
ANALOG-TO-DIGITAL CONVERSION TAD CYCLES  
TCY to TAD  
TAD0  
TAD1  
TAD2  
b7  
TAD3  
b6  
TAD4  
TAD5  
b4  
TAD6  
b3  
TAD7  
TAD8  
TAD9  
b5  
b2  
b1  
b0  
Conversion Starts  
Holding Capacitor is disconnected from Analog Input (typically 100 ns)  
Set GO/DONE bit  
ADRES register is loaded,  
GO/DONE bit is cleared,  
ADIF bit is set,  
Holding capacitor is connected to analog input  
9.1.4  
INTERRUPTS  
9.2  
ADC Operation  
The ADC module allows for the ability to generate an  
interrupt upon completion of an Analog-to-Digital  
conversion. The ADC Interrupt Flag is the ADIF bit in  
the PIR1 register. The ADC Interrupt Enable is the  
ADIE bit in the PIE1 register. The ADIF bit must be  
cleared in software.  
9.2.1  
STARTING A CONVERSION  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the GO/  
DONE bit of the ADCON0 register to a ‘1’ will start the  
Analog-to-Digital conversion.  
Note 1: The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 9.2.6 “A/D Conversion  
Procedure”.  
2: The ADC operates during Sleep only  
when the FRC oscillator is selected.  
9.2.2  
COMPLETION OF A CONVERSION  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEP  
instruction is always executed. If the user is attempting  
to wake-up from Sleep and resume in-line code  
execution, the GIE and PEIE bits of the INTCON  
register must be disabled. If the GIE and PEIE bits of  
the INTCON register are enabled, execution will switch  
to the Interrupt Service Routine.  
When the conversion is complete, the ADC module will:  
• Clear the GO/DONE bit  
• Set the ADIF Interrupt Flag bit  
• Update the ADRES register with new conversion  
result  
9.2.3  
TERMINATING A CONVERSION  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared in software. The  
ADRES register will be updated with the partially com-  
plete Analog-to-Digital conversion sample. Incomplete  
bits will match the last bit converted.  
Please refer to Section 9.1.4 “Interrupts” for more  
information.  
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 77  
PIC16(L)F720/721  
4. Wait the required acquisition time(2)  
.
9.2.4  
ADC OPERATION DURING SLEEP  
5. Start conversion by setting the GO/DONE bit.  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. When the FRC clock source is selected, the  
ADC waits one additional instruction before starting the  
conversion. This allows the SLEEP instruction to be  
executed, which can reduce system noise during the  
conversion. If the ADC interrupt is enabled, the device  
will wake-up from Sleep when the conversion  
completes. If the ADC interrupt is disabled, the ADC  
module is turned off after the conversion completes,  
although the ADON bit remains set.  
6. Wait for ADC conversion to complete by one of  
the following:  
• Polling the GO/DONE bit  
• Waiting for the ADC interrupt (interrupts  
enabled)  
7. Read ADC Result.  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
When the ADC clock source is something other than  
FRC, a SLEEP instruction causes the present conver-  
sion to be aborted and the ADC module is turned off,  
although the ADON bit remains set.  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: Refer to Section 9.3 “A/D Acquisition  
Requirements”.  
9.2.5  
SPECIAL EVENT TRIGGER  
The Special Event Trigger of the CCP module allows  
periodic ADC measurements without software inter-  
vention. When this trigger occurs, the GO/DONE bit is  
set by hardware and the Timer1 counter resets to zero.  
EXAMPLE 9-1:  
A/D CONVERSION  
;This code block configures the ADC  
;for polling, Vdd reference, Frc clock  
;and AN0 input.  
;
;Conversion start & polling for completion  
; are included.  
;
Using the Special Event Trigger does not assure  
proper ADC timing. It is the user’s responsibility to  
ensure that the ADC timing requirements are met.  
Refer to Section 15.0 “Capture/Compare/PWM  
(CCP) Module” for more information.  
BANKSEL  
MOVLW  
ADCON1  
;
B’01110000;ADC Frc clock,  
;VDD reference  
9.2.6  
A/D CONVERSION PROCEDURE  
MOVWF  
BANKSEL  
BSF  
BANKSEL  
BSF  
BANKSEL  
MOVLW  
MOVWF  
CALL  
ADCON1  
TRISA  
TRISA,0  
ANSELA  
ANSELA,0  
ADCON0  
B’00000001’;AN0, On  
ADCON0  
SampleTime ;Acquisiton delay  
ADCON0,GO ;Start conversion  
ADCON0,GO ;Is conversion done?  
;
;
This is an example procedure for using the ADC to  
perform an Analog-to-Digital conversion:  
;Set RA0 to input  
;
;Set RA0 to analog  
;
1. Configure Port:  
• Disable pin output driver (Refer to the TRIS  
register)  
;
• Configure pin as analog (Refer to the ANSEL  
register)  
BSF  
BTFSC  
GOTO  
2. Configure the ADC module:  
• Select ADC conversion clock  
• Select ADC input channel  
• Turn on ADC module  
$-1  
;No, test again  
;
;Read result  
;store in GPR space  
BANKSEL  
MOVF  
MOVWF  
ADRES  
ADRES,W  
RESULT  
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
• Enable ADC interrupt  
• Enable peripheral interrupt  
• Enable global interrupt(1)  
DS40001430E-page 78  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
9.2.7  
ADC REGISTER DEFINITIONS  
The following registers are used to control the  
operation of the ADC.  
REGISTER 9-1:  
ADCON0: A/D CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-2  
Unimplemented: Read as ‘0’  
CHS<3:0>: Analog Channel Select bits  
0000= AN0  
0001= AN1  
0010= AN2  
0011= AN3  
0100= AN4  
0101= AN5  
0110= AN6  
0111= AN7  
1000= AN8  
1001= AN9  
1010= AN10  
1011= AN11  
1110= Temperature Indicator(1)  
1111= Fixed Voltage Reference (FVREF)(2)  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
Note 1: See Section 11.0 “Temperature Indicator Module” for more information.  
2: See Section 10.0 “Fixed Voltage Reference” for more information.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 79  
PIC16(L)F720/721  
REGISTER 9-2:  
ADCON1: A/D CONTROL REGISTER 1  
U-0  
R/W-0  
ADCS2  
R/W-0  
ADCS1  
R/W-0  
ADCS0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADCS<2:0>: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC (clock supplied from a dedicated RC oscillator)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC (clock supplied from a dedicated RC oscillator)  
bit 3-0  
Unimplemented: Read as ‘0’  
REGISTER 9-3:  
R/W-x  
ADRES: ADC RESULT REGISTER  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES7  
bit 7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
ADRES1  
ADRES0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
8-bit conversion result.  
DS40001430E-page 80  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
selected (or changed), an A/D acquisition must be  
done before the conversion can be started. To  
calculate the minimum acquisition time, Equation 9-1  
may be used. This equation assumes that 1/2 LSb error  
is used (256 steps for the ADC). The 1/2 LSb error is  
the maximum error allowed for the ADC to meet its  
specified resolution. It is noted that if the device is  
operated at or below 2.0V VDD with the FRC clock  
selected for the ADC and if the analog input changes  
by more than one or two LSBs from the previous  
conversion, then the use of at least 16 s TACQ time is  
recommended.  
9.3  
A/D Acquisition Requirements  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The Analog  
Input model is shown in Figure 9-3. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD), refer  
to Figure 9-3. The maximum recommended  
impedance for analog sources is 10 k. As the  
source impedance is decreased, the acquisition time  
may be decreased. After the analog input channel is  
EQUATION 9-1:  
ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10k5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2µs + TC + Temperature - 25°C0.05µs/°C  
Note: TCOFF is zero for temperatures below 25 degrees C.  
The value for TC can be approximated with the following equations:  
1
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED1 -------------------------- = VCHOLD  
2n + 11  
TC  
---------  
RC  
VAPPLIED 1 e  
= VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
;combining [1] and [2]  
Tc  
--------  
RC  
1
= VAPPLIED1 --------------------------  
2n + 11  
VAPPLIED 1 e  
Note: Where n = number of bits of the ADC.  
Solving for TC:  
TC = CHOLDRIC + RSS + RSln(1/511)  
= 20pF1k+ 7k+ 10kln(0.001957)  
= 2.25µs  
Therefore:  
TACQ = 2µs + 2.25µs + 50°C- 25°C0.05µs/°C  
= 5.5µs  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 81  
PIC16(L)F720/721  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin  
leakage specification.  
FIGURE 9-3:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT 0.6V  
ANx  
SS  
RIC 1k  
Rss  
Rs  
(1)  
CPIN  
5 pF  
VA  
I LEAKAGE  
CHOLD = 20 pF  
VSS  
VT 0.6V  
6V  
Legend:  
CHOLD  
CPIN  
= Sample/Hold Capacitance  
= Input Capacitance  
VDD 4V  
2V  
I LEAKAGE = Leakage current at the pin due to  
various junctions  
RIC  
RSS  
SS  
VT  
= Interconnect Resistance  
= Resistance of Sampling Switch  
= Sampling Switch  
20  
5
10  
15  
Sampling Switch, Typical  
(k)  
= Threshold Voltage  
Note 1: Refer to Section 23.0 “Electrical Specifications”.  
FIGURE 9-4:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
FFh  
FEh  
FDh  
FCh  
FBh  
1 LSB ideal  
Full-Scale  
Transition  
04h  
03h  
02h  
01h  
00h  
Analog Input Voltage  
1 LSB ideal  
Zero-Scale  
Transition  
VREF  
VSS  
DS40001430E-page 82  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TABLE 9-2:  
Name  
SUMMARY OF ASSOCIATED ADC REGISTERS  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
CHS3  
CHS2  
CHS1  
CHS0  
GO/  
ADON  
79  
DONE  
ADCON1  
ANSELA  
ANSELB  
ANSELC  
ADRES  
FVRCON  
INTCON  
PIE1  
ADCS2  
ADCS1  
ANSA5  
ANSB5  
ADCS0  
ANSA4  
ANSB4  
80  
47  
56  
61  
80  
86  
38  
39  
40  
46  
55  
61  
ANSA2  
ANSA1  
ANSA0  
ANSC7  
ANSC6  
ANSC3  
ANSC2  
ANSC1  
ANSC0  
ADC Result Register  
FVRRDY FVREN  
TSEN  
TMR0IE  
RCIE  
TSRNG  
INTE  
RABIE  
SSPIE  
SSPIF  
ADFVR1 ADFVR0  
INTF RABIF  
GIE  
TMR1GIE  
TMR1GIF  
PEIE  
ADIE  
TMR0IF  
TXIE  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
PIR1  
ADIF  
RCIF  
TXIF  
TRISA  
TRISA5  
TRISB5  
TRISC5  
TRISA4  
TRISB4  
TRISC4  
TRISA2  
TRISA1  
TRISA0  
TRISB  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISC  
TRISC3  
TRISC2 TRISC1 TRISC0  
Legend: x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends on condition. Shaded  
cells are not used for ADC module.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 83  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 84  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
10.0 FIXED VOLTAGE REFERENCE  
This device contains an internal voltage regulator. To  
provide a reference for the regulator, a fixed voltage  
reference is provided. This fixed voltage is also user  
accessible via an A/D converter channel.  
User level fixed voltage functions are controlled by the  
FVRCON register, which is shown in Register 10-1.  
FIGURE 10-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
ADFVR<1:0>  
2
x1  
x2  
x4  
FVR  
(To ADC Module)  
1.024V Fixed  
Reference  
+
-
FVREN  
FVRRDY  
Any peripheral requiring  
the Fixed Reference  
(See Table 10-1)  
TABLE 10-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)  
Peripheral  
Conditions  
Description  
HFINTOSC  
FOSC = 1  
EC on CLKIN pin.  
BOREN<1:0> = 11  
BOR always enabled.  
BOR  
IVR  
BOREN<1:0> = 10and BORFS = 1  
BOREN<1:0> = 01and BORFS = 1  
BOR disabled in Sleep mode, BOR Fast Start enabled.  
BOR under software control, BOR Fast Start enabled.  
All PIC16F720/721 devices, when  
VREGPM1 = 1and not in Sleep  
The device runs off of the Power-Save mode regulator when  
in Sleep mode.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 85  
PIC16(L)F720/721  
REGISTER 10-1: FVRCON: FIXED VOLTAGE REFERENCE REGISTER  
R-q  
R/W-0  
R/W-0  
TSEN  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
FVRRDY  
FVREN  
TSRNG  
ADFVR1  
ADFVR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
q = Value depends on condition  
bit 7  
bit 6  
FVRRDY(1): Fixed Voltage Reference Ready Flag bit  
0= Fixed Voltage Reference output is not active or stable  
1= Fixed Voltage Reference output is ready for use  
FVREN: Fixed Voltage Reference Enable bit  
0= Fixed Voltage Reference is disabled  
1= Fixed Voltage Reference is enabled  
bit 5  
bit 4  
TSEN: Temperature Indicator Enable bit(3)  
0= Temperature indicator is disabled  
1= Temperature indicator is enabled  
TSRNG: Temperature Indicator Range Selection bit(3)  
1= VOUT = VDD - 4VT (High Range)  
0= VOUT = VDD - 2VT (Low Range)  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
ADFVR<1:0>: A/D Converter Fixed Voltage Reference Selection bits  
00= A/D Converter Fixed Voltage Reference Peripheral output is off  
01= A/D Converter Fixed Voltage Reference Peripheral output is 1x (1.024V)  
10= A/D Converter Fixed Voltage Reference Peripheral output is 2x (2.048V)(2)  
11= A/D Converter Fixed Voltage Reference Peripheral output is 4x (4.096V)(2)  
Note 1: FVRRDY is always ‘1’ for the PIC16F720/721 devices.  
2: Fixed Voltage Reference output cannot exceed VDD.  
3: See Section 11.0 “Temperature Indicator Module” for additional information.  
TABLE 10-2: SUMMARY OF ASSOCIATED FIXED VOLTAGE REFERENCE REGISTERS  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
86  
FVRCON  
FVRRDY FVREN  
TSEN  
TSRNG  
ADFVR1 ADFVR0  
Legend: x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends on condition. Shaded  
cells are not used for Fixed Voltage Reference.  
DS40001430E-page 86  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 11-1:  
TEMPERATURE CIRCUIT  
DIAGRAM  
11.0 TEMPERATURE INDICATOR  
MODULE  
This family of devices is equipped with a temperature  
circuit designed to measure the operating temperature  
of the silicon die. The circuit’s range of operating  
temperature falls between -40°C and +85°C. The  
output is a voltage that is proportional to the device  
temperature. The output of the temperature indicator is  
internally connected to the device ADC.  
VDD  
TSEN  
TSRNG  
The circuit may be used as a temperature threshold  
detector or a more accurate temperature indicator,  
depending on the level of calibration performed. A one-  
point calibration allows the circuit to indicate a  
temperature closely surrounding that point. A two-point  
calibration allows the circuit to sense the entire range  
of temperature more accurately. Reference Application  
Note AN1333, “Use and Calibration of the Internal  
Temperature Indicator” (DS01333) for more details  
regarding the calibration process.  
VOUT  
To ADC  
11.1 Circuit Operation  
11.2 Minimum Operating VDD vs.  
Minimum Sensing Temperature  
Figure 11-1 shows a simplified block diagram of the  
temperature circuit. The proportional voltage output is  
achieved by measuring the forward voltage drop across  
multiple silicon junctions.  
When the temperature circuit is operated in low range,  
the device may be operated at any operating voltage  
that is within specifications.  
Equation 11-1 describes the output characteristics of  
the temperature indicator.  
When the temperature circuit is operated in high range,  
the device operating voltage, VDD, must be high  
enough to ensure that the temperature circuit is  
correctly biased.  
EQUATION 11-1: VOUT RANGES  
Table 11-1 shows the recommended minimum VDD vs.  
range setting.  
High Range: VOUT = VDD - 4VT  
Low Range: VOUT = VDD - 2VT  
TABLE 11-1: RECOMMENDED VDD VS.  
RANGE  
Min. VDD, TSRNG = 1  
Min. VDD, TSRNG = 0  
The temperature sense circuit is integrated with the  
Fixed Voltage Reference (FVR) module. See  
Section 10.0 “Fixed Voltage Reference” for more  
information.  
3.6V  
1.8V  
11.3 Temperature Output  
The circuit is enabled by setting the TSEN bit of the  
FVRCON register. When disabled, the circuit draws no  
current.  
The output of the circuit is measured using the internal  
Analog-to-Digital Converter. Channel 14 is reserved for  
the temperature circuit output. Refer to Section 9.0  
“Analog-to-Digital Converter (ADC) Module” for  
detailed information.  
The circuit operates in either high or low range. The high  
range, selected by setting the TSRNG bit of the  
FVRCON register, provides a wider output voltage. This  
provides more resolution over the temperature range,  
but may be less consistent from part to part. This range  
requires a higher bias voltage to operate and thus, a  
higher VDD is needed.  
Note:  
Every time the ADC MUX is changed to  
the temperature indicator output selection  
(CHS bit in the ADCCON0 register), wait  
500 usec for the sampling capacitor to  
fully charge before sampling the tempera-  
ture indicator output.  
The low range is selected by clearing the TSRNG bit of  
the FVRCON register. The low range generates a lower  
voltage drop and thus, a lower bias voltage is needed to  
operate the circuit. The low range is provided for low  
voltage operation.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 87  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 88  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
12.1.1  
8-BIT TIMER MODE  
12.0 TIMER0 MODULE  
The Timer0 module will increment every instruction  
cycle, if used without a prescaler. 8-Bit Timer mode is  
selected by clearing the T0CS bit of the OPTION_REG  
register.  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
• 8-bit timer/counter register (TMR0)  
• 8-bit prescaler (shared with Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
Note:  
The value written to the TMR0 register  
can be adjusted, in order to account for  
the two instruction cycle delay when  
TMR0 is written.  
• TMR0 can be used to gate Timer1  
Figure 12-1 is a block diagram of the Timer0 module.  
12.1.2  
8-BIT COUNTER MODE  
12.1 Timer0 Operation  
In 8-Bit Counter mode, the Timer0 module will increment  
on every rising or falling edge of the T0CKI pin.  
The Timer0 module can be used as either an 8-bit timer  
or an 8-bit counter.  
8-Bit Counter mode using the T0CKI pin is selected by  
setting the T0CS bit in the OPTION_REG register to ‘1’.  
The rising or falling transition of the incrementing edge  
for either input source is determined by the T0SE bit in  
the OPTION_REG register.  
FIGURE 12-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
FOSC/4  
Data Bus  
0
1
8
T0CKI  
1
SYNC  
TMR0  
2 TCY  
0
Set Flag bit T0IF  
on Overflow  
0
1
T0CS  
T0SE  
8-bit  
Prescaler  
PSA  
Overflow to Timer1  
T1GSS = 11  
TMR1GE  
PSA  
8
WDTEN  
Low-Power  
WDT  
PS<2:0>  
1
WDT  
Time-out  
Divide by  
512  
0
PSA  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 89  
PIC16(L)F720/721  
12.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
12.1.4  
TIMER0 INTERRUPT  
Timer0 will generate an interrupt when the TMR0  
register overflows from FFh to 00h. The TMR0IF  
interrupt flag bit of the INTCON register is set every  
time the TMR0 register overflows, regardless of  
whether or not the Timer0 interrupt is enabled. The  
TMR0IF bit can only be cleared in software. The Timer0  
interrupt enable is the TMR0IE bit of the INTCON  
register.  
A single software programmable prescaler is available  
for use with either Timer0 or the Watchdog Timer  
(WDT), but not both simultaneously. The prescaler  
assignment is controlled by the PSA bit of the  
OPTION_REG register. To assign the prescaler to  
Timer0, the PSA bit must be cleared to a ‘0’.  
There are eight prescaler options for the Timer0 mod-  
ule ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION_REG  
register. In order to have a 1:1 prescaler value for the  
Timer0 module, the prescaler must be assigned to the  
WDT module.  
Note:  
The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
12.1.5  
8-BIT COUNTER MODE  
SYNCHRONIZATION  
The prescaler is not readable or writable. When  
assigned to the Timer0 module, all instructions writing to  
the TMR0 register will clear the prescaler.  
When in 8-Bit Counter mode, the incrementing edge on  
the T0CKI pin must be synchronized to the instruction  
clock. Synchronization can be accomplished by  
sampling the prescaler output on the Q2 and Q4 cycles  
of the instruction clock. The high and low periods of the  
external clocking source must meet the timing  
requirements as shown in Section 23.0 “Electrical  
Specifications”.  
Note:  
When the prescaler is assigned to WDT, a  
CLRWDTinstruction will clear the prescaler  
along with the WDT.  
DS40001430E-page 90  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
12.2 Option Register  
REGISTER 12-1: OPTION_REG: OPTION REGISTER  
R/W-1  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
RABPU  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RABPU: PORTA or PORTB Pull-up Enable bit  
1= PORTA or PORTB pull-ups are disabled  
0= PORTA or PORTB pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
T0SE  
RABIE TMR0IF  
PSA PS2  
INTF  
PS1  
RABIF  
PS0  
38  
21  
89  
46  
OPTION_REG RABPU INTEDG T0CS  
TMR0  
Timer0 module Register  
TRISA2  
TRISA  
TRISA5 TRISA4  
TRISA1  
TRISA0  
Legend: – = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the  
Timer0 module.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 91  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 92  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
• Gate Toggle Mode  
13.0 TIMER1 MODULE WITH GATE  
CONTROL  
• Gate Single-pulse Mode  
• Gate Value Status  
The Timer1 module is a 16-bit timer/counter with the  
following features:  
• Gate Event Interrupt  
Figure 13-1 is a block diagram of the Timer1 module.  
• 16-bit timer/counter register pair (TMR1H:TMR1L)  
• Programmable internal or external clock source  
• 3-bit prescaler  
• Synchronous or asynchronous operation  
• Multiple Timer1 gate (count enable) sources  
• Interrupt on overflow  
• Wake-up on overflow (external clock,  
Asynchronous mode only)  
• Time base for the Capture/Compare function  
• Special Event Trigger (with CCP)  
• Selectable Gate Source Polarity  
FIGURE 13-1:  
TIMER1 BLOCK DIAGRAM  
T1GSS<1:0>  
T1GSPM  
00  
T1G  
0
01  
10  
11  
From Timer0  
Overflow  
T1G_IN  
D
Data Bus  
T1GVAL  
Q1  
0
1
D
Q
From Timer2  
Match PR2  
Single Pulse  
Acq. Control  
RD  
T1GCON  
1
EN  
Q
Q
From WDT  
Overflow  
Interrupt  
det  
Set  
TMR1GIF  
T1GGO/DONE  
CK  
R
T1GPOL  
TMR1GE  
TMR1ON  
T1GTM  
TMR1ON  
(2)  
TMR1  
TMR1H  
EN  
D
Synchronized  
clock input  
0
T1CLK  
TMR1L  
Q
1
Set flag bit  
TMR1IF on  
Overflow  
TMR1CS<1:0>  
T1SYNC  
(1)  
(3)  
10  
T1CKI  
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
Reserved  
11  
00  
2
T1CKPS<1:0>  
FOSC/4  
Internal  
Clock  
FOSC/2  
Internal  
Clock  
Sleep input  
FOSC  
Internal  
Clock  
01  
Note 1: ST buffer is high speed type when using T1CKI.  
2: Timer1 register increments on rising edge.  
3: Synchronize does not operate while in Sleep.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 93  
PIC16(L)F720/721  
13.1 Timer1 Operation  
13.2 Clock Source Selection  
The Timer1 module is a 16-bit incrementing counter  
which is accessed through the TMR1H:TMR1L register  
pair. Writes to TMR1H or TMR1L directly update the  
counter.  
The TMR1CS<1:0> bits of the T1CON register are used  
to select the clock source for Timer1. Table 13-2 displays  
the clock source selections.  
13.2.1  
INTERNAL CLOCK SOURCE  
When used with an internal clock source, the module is  
a timer and increments on every instruction cycle.  
When used with an external clock source, the module  
can be used as either a timer or counter and  
increments on every selected edge of the external  
source.  
When the internal clock source is selected the  
TMR1H:TMR1L register pair will increment on multiples  
of FOSC as determined by the Timer1 prescaler.  
13.2.2  
EXTERNAL CLOCK SOURCE  
When the external clock source is selected, the Timer1  
module may work as a timer or a counter. When enabled  
to count, Timer1 is incremented on the rising edge of the  
external clock input T1CKI.  
Timer1 is enabled by configuring the TMR1ON and  
TMR1GE bits in the T1CON and T1GCON registers,  
respectively. Table 13-1 displays the Timer1 enable  
selections.  
Note:  
In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge after any one or  
more of the following conditions:  
TABLE 13-1: TIMER1 ENABLE  
SELECTIONS  
Timer1  
Operation  
TMR1ON  
TMR1GE  
•Timer1 enabled after POR Reset  
•Write to TMR1H or TMR1L  
•Timer1 is disabled  
0
0
1
1
0
1
0
1
Off  
Off  
•Timer1 is disabled (TMR1ON = 0)  
when T1CKI is high then Timer1 is  
enabled (TMR1ON=1) when T1CKI is  
low.  
Always On  
Count Enabled  
TABLE 13-2: CLOCK SOURCE  
SELECTIONS  
TMR1CS<1:0>  
Clock Source  
01  
00  
10  
11  
System Clock (FOSC)  
Instruction Clock (FOSC/4)  
External Clocking on T1CKI Pin  
Reserved  
DS40001430E-page 94  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
13.3 Timer1 Prescaler  
13.5 Timer1 Gate  
Timer1 has four prescaler options allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits of the  
T1CON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMR1H or TMR1L.  
Timer1 can be configured to count freely or the count  
can be enabled and disabled using Timer1 gate  
circuitry. This is also referred to as Timer1 gate count  
enable.  
Timer1 gate can also be driven by multiple selectable  
sources.  
13.4 Timer1 Operation in  
13.5.1  
TIMER1 GATE COUNT ENABLE  
Asynchronous Counter Mode  
The Timer1 gate is enabled by setting the TMR1GE bit  
of the T1GCON register. The polarity of the Timer1 gate  
is configured using the T1GPOL bit of the T1GCON  
register.  
If control bit T1SYNC of the T1CON register is set, the  
external clock input is not synchronized. The timer  
increments asynchronously to the internal phase  
clocks. If external clock source is selected then the  
timer will continue to run during Sleep and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in  
software are needed to read/write the timer (see  
Section 13.4.1 “Reading and Writing Timer1 in  
Asynchronous Counter Mode”).  
When Timer1 Gate (T1G) input is active, Timer1 will  
increment on the rising edge of the Timer1 clock  
source. When Timer1 gate input is inactive, no  
incrementing will occur and Timer1 will hold the current  
count. See Figure 13-3 for timing details.  
TABLE 13-3: TIMER1 GATE ENABLE  
SELECTIONS  
Note:  
When switching from synchronous to  
asynchronous operation, it is possible to  
skip an increment. When switching from  
asynchronous to synchronous operation,  
it is possible to produce an additional  
increment.  
T1CLK T1GPOL  
T1G  
Timer1 Operation  
0
0
1
1
0
1
0
1
Counts  
Holds Count  
Holds Count  
Counts  
13.4.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
13.5.2  
TIMER1 GATE SOURCE  
SELECTION  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
The Timer1 gate source can be selected from one of  
four different sources. Source selection is controlled by  
the T1GSS bits of the T1GCON register. The polarity  
for each available source is also selectable. Polarity  
selection is controlled by the T1GPOL bit of the  
T1GCON register.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMR1H:TMR1L register pair.  
TABLE 13-4: TIMER1 GATE SOURCES  
T1GSS  
Timer1 Gate Source  
Timer1 Gate Pin  
00  
01  
Overflow of Timer0  
(TMR0 increments from FFh to 00h)  
10  
11  
Timer2 match PR2  
(TMR2 increments to match PR2)  
Count Enabled by WDT Overflow  
(Watchdog Time-out interval expired)  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 95  
PIC16(L)F720/721  
13.5.2.1  
T1G Pin Gate Operation  
13.5.2.4  
Watchdog Overflow Gate Operation  
The T1G pin is one source for Timer1 gate control. It  
can be used to supply an external source to the Timer1  
gate circuitry.  
The Watchdog Timer oscillator, prescaler and counter  
will be automatically turned on when TMR1GE = 1 and  
T1GSS selects the WDT as a gate source for Timer1  
(T1GSS = 11). TMR1ON does not factor into the oscil-  
lator, prescaler and counter enable. See Table 13-5.  
13.5.2.2  
Timer0 Overflow Gate Operation  
When Timer0 increments from FFh to 00h, a low-to-  
high pulse will automatically be generated and  
internally supplied to the Timer1 gate circuitry.  
The PSA and PS bits of the OPTION_REG register still  
control what time-out interval is selected. Changing the  
prescaler during operation may result in a spurious  
capture.  
13.5.2.3  
Timer2 Match Gate Operation  
Enabling the Watchdog Timer oscillator does not  
automatically enable a Watchdog Reset or Wake-up  
from Sleep upon counter overflow.  
The TMR2 register will increment until it matches the  
value in the PR2 register. On the very next increment  
cycle, TMR2 will be reset to 00h. When this Reset  
occurs, a low-to-high pulse will automatically be  
generated and internally supplied to the Timer1 gate  
circuitry.  
Note:  
When using the WDT as a gate source for  
Timer1, operations that clear the Watchdog  
Timer (CLRWDT, SLEEP instructions) will  
affect the time interval being measured.  
This includes waking from Sleep. All other  
interrupts that might wake the device from  
Sleep should be disabled to prevent them  
from disturbing the measurement period.  
As the gate signal coming from the WDT counter will  
generate different pulse widths depending on if the  
WDT is enabled, when the CLRWDT instruction is  
executed, and so on, Toggle mode must be used. A  
specific sequence is required to put the device into the  
correct state to capture the next WDT counter interval.  
TABLE 13-5: WDT/TIMER1 GATE INTERACTION  
TMR1GE = 1  
and  
T1GSS = 11  
WDT Oscillator  
WDT Available for  
WDTEN  
WDT Reset  
Wake-up  
Enable  
T1G Source  
N
Y
Y
N
1
1
0
0
Y
Y
Y
N
Y
Y
N
N
Y
Y
N
N
N
Y
Y
N
DS40001430E-page 96  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
13.5.3  
TIMER1 GATE TOGGLE MODE  
13.5.5  
TIMER1 GATE VALUE STATUS  
When Timer1 Gate Toggle mode is enabled, it is  
possible to measure the full-cycle length of a Timer1  
gate signal, as opposed to the duration of a single level  
pulse.  
When Timer1 gate value status is utilized, it is possible  
to read the most current level of the gate control value.  
The value is stored in the T1GVAL bit in the T1GCON  
register. The T1GVAL bit is valid even when the Timer1  
gate is not enabled (TMR1GE bit is cleared).  
The Timer1 gate source is routed through a flip-flop that  
changes state on every incrementing edge of the  
signal. See Figure 13-4 for timing details.  
13.5.6  
TIMER1 GATE EVENT INTERRUPT  
When Timer1 gate event interrupt is enabled, it is  
possible to generate an interrupt upon the completion  
of a gate event. When the falling edge of T1GVAL  
occurs, the TMR1GIF flag bit in the PIR1 register will be  
set. If the TMR1GIE bit in the PIE1 register is set, then  
an interrupt will be recognized.  
Timer1 Gate Toggle mode is enabled by setting the  
T1GTM bit of the T1GCON register. When the T1GTM  
bit is cleared, the flip-flop is cleared and held clear. This  
is necessary in order to control which edge is  
measured.  
Note:  
Enabling Toggle mode at the same time  
as changing the gate polarity may result in  
indeterminate operation.  
The TMR1GIF flag bit operates even when the Timer1  
gate is not enabled (TMR1GE bit is cleared).  
13.5.4  
TIMER1 GATE SINGLE-PULSE  
MODE  
When Timer1 Gate Single-Pulse mode is enabled, it is  
possible to capture a single pulse gate event. Timer1  
Gate Single-Pulse mode is first enabled by setting the  
T1GSPM bit in the T1GCON register. Next, the  
T1GGO/DONE bit in the T1GCON register must be set.  
The Timer1 will be fully enabled on the next  
incrementing edge. On the next trailing edge of the  
pulse, the T1GGO/DONE bit will automatically be  
cleared. No other gate events will be allowed to  
increment Timer1 until the T1GGO/DONE bit is once  
again set in software.  
Clearing the T1GSPM bit of the T1GCON register will  
also clear the T1GGO/DONE bit. See Figure 13-5 for  
timing details.  
Enabling the Toggle mode and the Single-Pulse mode  
simultaneously will permit both sections to work  
together. This allows the cycle times on the Timer1 gate  
source to be measured. See Figure 13-6 for timing  
details.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 97  
PIC16(L)F720/721  
13.6 Timer1 Interrupt  
13.8 CCP Capture/Compare Time Base  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit of the PIR1 register is  
set. To enable the interrupt on rollover, you must set  
these bits:  
The CCP module uses the TMR1H:TMR1L register  
pair as the time base when operating in Capture or  
Compare mode.  
In Capture mode, the value in the TMR1H:TMR1L  
register pair is copied into the CCPR1H:CCPR1L  
register pair on a configured event.  
• TMR1ON bit of the T1CON register  
• TMR1IE bit of the PIE1 register  
• PEIE bit of the INTCON register  
• GIE bit of the INTCON register  
In Compare mode, an event is triggered when the value  
CCPR1H:CCPR1L register pair matches the value in  
the TMR1H:TMR1L register pair. This event can be a  
Special Event Trigger.  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
For more information, see Section 15.0 “Capture/  
Compare/PWM (CCP) Module”.  
Note:  
The TMR1H:TMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
13.9 CCP Special Event Trigger  
When the CCP is configured to trigger a special event,  
the trigger will clear the TMR1H:TMR1L register pair.  
This special event does not cause a Timer1 interrupt.  
The CCP module may still be configured to generate a  
CCP interrupt.  
13.7 Timer1 Operation During Sleep  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, the clock  
source can be used to increment the counter. To set up  
the timer to wake the device:  
In this mode of operation, the CCPR1H:CCPR1L  
register pair becomes the period register for Timer1.  
• TMR1ON bit of the T1CON register must be set  
• TMR1IE bit of the PIE1 register must be set  
• PEIE bit of the INTCON register must be set  
• T1SYNC bit of the T1CON register must be set  
Timer1 should be synchronized to the FOSC/4 to utilize  
the Special Event Trigger. Asynchronous operation of  
Timer1 can cause a Special Event Trigger to be  
missed.  
• TMR1CS bits of the T1CON register must be  
configured  
In the event that a write to TMR1H or TMR1L coincides  
with a Special Event Trigger from the CCP, the write will  
take precedence.  
• TMR1GE bit of the T1GCON register must be  
configured  
For more information, see Section 9.2.5 “Special  
Event Trigger”.  
The device will wake-up on an overflow and execute  
the next instructions. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine (0004h).  
FIGURE 13-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.  
DS40001430E-page 98  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 13-3:  
TIMER1 GATE COUNT ENABLE MODE  
TMR1GE  
T1GPOL  
T1G_IN  
T1CKI  
T1GVAL  
TIMER1  
N
N + 1  
N + 2  
N + 3  
N + 4  
FIGURE 13-4:  
TIMER1 GATE TOGGLE MODE  
TMR1GE  
T1GPOL  
T1GTM  
T1G_IN  
T1CKI  
T1GVAL  
TIMER1  
N
N + 1 N + 2 N + 3 N + 4  
N + 5 N + 6 N + 7 N + 8  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 99  
PIC16(L)F720/721  
FIGURE 13-5:  
TIMER1 GATE SINGLE-PULSE MODE  
TMR1GE  
T1GPOL  
T1GSPM  
Cleared by hardware on  
falling edge of T1GVAL  
T1GGO/  
DONE  
Set by software  
Counting enabled on  
rising edge of T1G  
T1G_IN  
T1CKI  
T1GVAL  
TIMER1  
N
N + 1  
N + 2  
Cleared by  
software  
Set by hardware on  
falling edge of T1GVAL  
Cleared by software  
TMR1GIF  
DS40001430E-page 100  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 13-6:  
TMR1GE  
T1GPOL  
TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE  
T1GSPM  
T1GTM  
Cleared by hardware on  
falling edge of T1GVAL  
T1GGO/  
DONE  
Set by software  
Counting enabled on  
rising edge of T1G  
T1G_IN  
T1CKI  
T1GVAL  
TIMER1  
N + 4  
N + 2 N + 3  
N
N + 1  
Set by hardware on  
falling edge of T1GVAL  
Cleared by  
software  
Cleared by software  
TMR1GIF  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 101  
PIC16(L)F720/721  
13.10 Timer1 Control Register  
The Timer1 Control register (T1CON), shown in  
Register 13-1, is used to control Timer1 and select the  
various features of the Timer1 module.  
REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U-0  
R/W-0  
TMR1CS1  
TMR1CS0  
T1CKPS1  
T1CKPS0  
T1SYNC  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-6  
bit 5-4  
TMR1CS<1:0>: Timer1 Clock Source Select bits  
11= Reserved  
10= Timer1 clock source is pin or oscillator. External clock from T1CKI pin (on the rising edge)  
01= Timer1 clock source is system clock (FOSC)  
00= Timer1 clock source is instruction clock (FOSC/4)  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS<1:0> = 1X  
1= Do not synchronize external clock input  
0= Synchronize external clock input with system clock (FOSC)  
TMR1CS<1:0> = 0X  
This bit is ignored. Timer1 uses the internal clock when TMR1CS<1:0> = 1X.  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Clears Timer1 gate flip-flop  
DS40001430E-page 102  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
13.11 Timer1 Gate Control Register  
The Timer1 Gate Control register (T1GCON), shown in  
Register 13-2, is used to control Timer1 gate.  
REGISTER 13-2: T1GCON: TIMER1 GATE CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R-x  
R/W-0  
R/W-0  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS1  
T1GSS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
TMR1GE: Timer1 Gate Enable bit  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 counting is controlled by the Timer1 gate function  
0= Timer1 counts regardless of Timer1 gate function  
bit 6  
bit 5  
T1GPOL: Timer1 Gate Polarity bit  
1= Timer1 gate is active-high (Timer1 counts when gate is high)  
0= Timer1 gate is active-low (Timer1 counts when gate is low)  
T1GTM: Timer1 Gate Toggle mode bit  
1= Timer1 Gate Toggle mode is enabled.  
0= Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared  
Timer1 gate flip-flop toggles on every rising edge.  
bit 4  
bit 3  
T1GSPM: Timer1 Gate Single Pulse mode bit  
1= Timer1 Gate Single-Pulse mode is enabled and is controlling Timer1 gate  
0= Timer1 Gate Single-Pulse mode is disabled  
T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit  
1= Timer1 gate single-pulse acquisition is ready, waiting for an edge  
0= Timer1 gate single-pulse acquisition has completed or has not been started  
This bit is automatically cleared when T1GSPM is cleared.  
bit 2  
T1GVAL: Timer1 Gate Current State bit  
Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L.  
Unaffected by Timer1 Gate Enable (TMR1GE).  
bit 1-0  
T1GSS<1:0>: Timer1 Gate Source Select bits  
00= Timer1 gate pin  
01= Timer0 overflow output  
10= TMR2 match PR2 output  
11= Watchdog Timer scaler overflow  
Watchdog Timer oscillator is turned on if TMR1GE = 1, regardless of the state of TMR1ON  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 103  
PIC16(L)F720/721  
TABLE 13-6: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELB  
CCP1CON  
INTCON  
PIE1  
ANSB5  
DC1  
ANSB4  
B1  
56  
107  
38  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
GIE  
PEIE  
ADIE  
ADIF  
RB6  
TMR0IE  
RCIE  
INTE  
TXIE  
TXIF  
RB4  
RABIE  
SSPIE  
SSPIF  
TMR0IF  
INTF  
RABIF  
TMR1GIE  
TMR1GIF  
RB7  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
39  
PIR1  
RCIF  
40  
PORTB  
TMR1H  
TMR1L  
TRISB  
RB5  
55  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
98  
98  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISB5  
TRISC5  
TRISB4  
55  
TRISC  
TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
T1SYNC TMR1ON  
61  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0  
102  
103  
T1CON  
T1GCON  
TMR1GE T1GPOL  
T1GTM  
T1GSPM T1GGO/ T1GVAL T1GSS1 T1GSS0  
DONE  
Legend: x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1  
module.  
DS40001430E-page 104  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
The TMR2 and PR2 registers are both fully readable  
and writable. On any Reset, the TMR2 register is set to  
00h and the PR2 register is set to FFh.  
14.0 TIMER2 MODULE  
The Timer2 module is an 8-bit timer with the following  
features:  
Timer2 is turned on by setting the TMR2ON bit in the  
T2CON register to a ‘1’. Timer2 is turned off by clearing  
the TMR2ON bit to a ‘0’.  
• 8-bit timer register (TMR2)  
• 8-bit period register (PR2)  
• Interrupt on TMR2 match with PR2  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
The Timer2 prescaler is controlled by the T2CKPS bits  
in the T2CON register. The Timer2 postscaler is  
controlled by the TOUTPS bits in the T2CON register.  
The prescaler and postscaler counters are cleared  
when:  
See Figure 14-1 for a block diagram of Timer2.  
• A write to TMR2 occurs.  
• A write to T2CON occurs.  
14.1 Timer2 Operation  
The clock input to the Timer2 module is the system  
instruction clock (FOSC/4). The clock is fed into the  
Timer2 prescaler, which has prescale options of 1:1,  
1:4 or 1:16. The output of the prescaler is then used to  
increment the TMR2 register.  
• Any device Reset occurs (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset, or Brown-out  
Reset).  
Note:  
TMR2 is not cleared when T2CON is  
written.  
The values of TMR2 and PR2 are constantly compared  
to determine when they match. TMR2 will increment  
from 00h until it matches the value in PR2. When a  
match occurs, two things happen:  
• TMR2 is reset to 00h on the next increment cycle.  
• The Timer2 postscaler is incremented.  
The match output of the Timer2/PR2 comparator is  
then fed into the Timer2 postscaler. The postscaler has  
postscale options of 1:1 to 1:16 inclusive. The output of  
the Timer2 postscaler is used to set the TMR2IF  
interrupt flag bit in the PIR1 register.  
FIGURE 14-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
bit TMR2IF  
TMR2  
Output  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS<1:0>  
4
TOUTPS<3:0>  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 105  
PIC16(L)F720/721  
14.2  
Timer2 Control Register  
REGISTER 14-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3  
TOUTPS2  
TOUTPS1  
TOUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
TOUTPS<3:0>: Timer2 Output Postscaler Select bits  
0000= 1:1 Postscaler  
0001= 1:2 Postscaler  
0010= 1:3 Postscaler  
0011= 1:4 Postscaler  
0100= 1:5 Postscaler  
0101= 1:6 Postscaler  
0110= 1:7 Postscaler  
0111= 1:8 Postscaler  
1000= 1:9 Postscaler  
1001= 1:10 Postscaler  
1010= 1:11 Postscaler  
1011= 1:12 Postscaler  
1100= 1:13 Postscaler  
1101= 1:14 Postscaler  
1110= 1:15 Postscaler  
1111= 1:16 Postscaler  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
TABLE 14-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
TMR0IE  
RCIE  
INTE  
TXIE  
TXIF  
RABIE  
SSPIE  
SSPIF  
TMR0IF  
INTF  
RABIF  
TMR1IE  
TMR1IF  
38  
39  
TMR1GIE  
TMR1GIF  
CCP1IE TMR2IE  
CCP1IF TMR2IF  
PIR1  
40  
RCIF  
PR2  
Timer2 module Period Register  
Timer2 module Register  
105  
105  
106  
TMR2  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Legend: x= unknown, u= unchanged, -= unimplemented read as ‘0’. Shaded cells are not used for Timer2  
module.  
DS40001430E-page 106  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
15.0 CAPTURE/COMPARE/PWM  
(CCP) MODULE  
TABLE 15-1: CCP MODE – TIMER  
RESOURCES REQUIRED  
The Capture/Compare/PWM module is a peripheral  
which allows the user to time and control different  
events. In Capture mode, the peripheral allows the  
timing of the duration of an event. The Compare mode  
allows the user to trigger an external event when a  
predetermined amount of time has expired. The PWM  
mode can generate a Pulse-Width Modulated signal of  
varying frequency and duty cycle.  
CCP Mode  
Capture  
Timer Resource  
Timer1  
Timer1  
Timer2  
Compare  
PWM  
The timer resources used by the module are shown in  
Table 15-1.  
Additional information on CCP modules is available in  
the Application Note AN594, “Using the CCP Modules”  
(DS00594).  
REGISTER 15-1: CCP1CON: CCP1 CONTROL REGISTER  
U-0  
U-0  
R/W-0  
DC1  
R/W-0  
B1  
R/W-0  
R/W-0  
R/W-0  
CCP1M1  
R/W-0  
CCP1M3  
CCP1M2  
CCP1M0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DC1:B1: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0  
CCP1M<3:0>: CCP mode Select bits  
0000= Capture/Compare/PWM off (resets CCP module)  
0001= Unused (reserved)  
0010= Compare mode, toggle output on match (CCP1IF bit of the PIRx register is set)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCP1IF bit of the PIR1 register is set)  
1001= Compare mode, clear output on match (CCP1IF bit of the PIR1 register is set)  
1010= Compare mode, generate software interrupt on match (CCP1IF bit is set of the PIRx register,  
CCP1 pin is unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit of the PIR1register is set, TMR1 is reset  
and A/D conversion is started if the ADC module is enabled. CCP1 pin is unaffected.)  
11xx= PWM mode.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 107  
PIC16(L)F720/721  
15.1.3  
SOFTWARE INTERRUPT  
15.1 Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCP1IE interrupt enable bit of the PIE1 register clear to  
avoid false interrupts. Additionally, the user should  
clear the CCP1IF interrupt flag bit of the PIR1 register  
following any change in operating mode  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin CCP1. An event is defined as one of the  
following and is configured by the CCP1M<3:0> bits of  
the CCP1CON register:  
• Every falling edge  
• Every rising edge  
15.1.4  
CCP PRESCALER  
• Every 4th rising edge  
• Every 16th rising edge  
There are four prescaler settings specified by the  
CCP1M<3:0> bits of the CCP1CON register.  
Whenever the CCP module is turned off, or the CCP  
module is not in Capture mode, the prescaler counter  
is cleared. Any Reset will clear the prescaler counter.  
When a capture is made, the Interrupt Request Flag bit  
CCP1IF of the PIR1 register is set. The interrupt flag  
must be cleared in software. If another capture occurs  
before the value in the CCPR1H, CCPR1L register pair  
is read, the old captured value is overwritten by the new  
captured value (refer to Figure 15-1).  
Switching from one capture prescaler to another does not  
clear the prescaler and may generate a false interrupt. To  
avoid this unexpected operation, turn the module off by  
clearing the CCP1CON register before changing the  
prescaler (refer to Example 15-1).  
15.1.1  
CCP1 PIN CONFIGURATION  
In Capture mode, the CCP1 pin should be configured  
as an input by setting the associated TRIS control bit.  
EXAMPLE 15-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
BANKSELCCP1CON  
;Set Bank bits to point  
;to CCP1CON  
;Turn CCP module off  
Note:  
If the CCP1 pin is configured as an output,  
a write to the port can cause a capture  
condition.  
CLRF  
CCP1CON  
MOVLW  
NEW_CAPT_PS;Load the W reg with  
; the new prescaler  
; move value and CCP ON  
;Load CCP1CON with this  
; value  
FIGURE 15-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
MOVWF  
CCP1CON  
Set Flag bit CCP1IF  
(PIR1 register)  
15.1.5  
CAPTURE DURING SLEEP  
Prescaler  
Capture mode depends upon the Timer1 module for  
proper operation. There are two options for driving the  
Timer1 module in Capture mode. It can be driven by the  
instruction clock (FOSC/4), or by an external clock  
source.  
1, 4, 16  
CCP1  
CCPR1H  
CCPR1L  
Capture  
Enable  
and  
Edge Detect  
TMR1H  
TMR1L  
If Timer1 is clocked by FOSC/4, then Timer1 will not  
increment during Sleep. When the device wakes from  
Sleep, Timer1 will continue from its previous state.  
CCP1CON<3:0>  
System Clock (FOSC)  
If Timer1 is clocked by an external clock source, then  
Capture mode will operate as defined in Section 15.1  
“Capture Mode”.  
15.1.2  
TIMER1 MODE SELECTION  
Timer1 must be running in Timer mode or Synchronized  
Counter mode for the CCP module to use the capture  
feature. In Asynchronous Counter mode or when  
Timer1 is clocked at FOSC, the capture operation may  
not work.  
Note:  
Clocking Timer1 from the system clock  
(FOSC) should not be used in Capture  
mode. In order for Capture mode to  
recognize the trigger event on the CCP1  
pin, Timer1 must be clocked from the  
Instruction Clock (FOSC/4) or from an  
external clock source.  
DS40001430E-page 108  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELB  
CCP1CON  
CCPR1L  
CCPR1H  
INTCON  
ANSB5  
DC1  
ANSB4  
B1  
56  
107  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Capture/Compare/PWM Register Low Byte  
Capture/Compare/PWM Register High Byte  
GIE  
PEIE  
ADIE  
ADIF  
TMR0IE  
RCIE  
INTE  
TXIE  
TXIF  
RABIE  
TMR0IF  
INTF  
RABIF  
38  
PIE1  
TMR1GIE  
TMR1GIF  
SSPIE  
SSPIF  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
39  
PIR1  
RCIF  
40  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0  
T1SYNC  
TMR1ON  
T1CON  
T1GCON  
102  
103  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM T1GGO/ T1GVAL T1GSS1 T1GSS0  
DONE  
TMR1L  
TMR1H  
TRISB  
TRISC  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
98  
98  
55  
61  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISB5  
TRISC5  
TRISB4  
TRISC4  
TRISC3 TRISC2 TRISC1 TRISC0  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the  
capture.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 109  
PIC16(L)F720/721  
15.2.2  
TIMER1 MODE SELECTION  
15.2 Compare Mode  
In Compare mode, Timer1 must be running in either  
Timer mode or Synchronized Counter mode. The  
compare operation may not work in Asynchronous  
Counter mode.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the CCP1 module may:  
Toggle the CCP1 output  
• Set the CCP1 output  
Note:  
Clocking Timer1 from the system clock  
(FOSC) should not be used in Compare  
mode. For the Compare operation of the  
TMR1 register to the CCPR1 register to  
occur, Timer1 must be clocked from the  
instruction clock (FOSC/4) or from an  
external clock source.  
• Clear the CCP1 output  
• Generate a Special Event Trigger  
• Generate a Software Interrupt  
The action on the pin is based on the value of the  
CCP1M<3:0> control bits of the CCP1CON register.  
All Compare modes can generate an interrupt.  
15.2.3  
SOFTWARE INTERRUPT MODE  
When Software Interrupt mode is chosen  
(CCP1M<3:0> = 1010), the CCP1IF bit in the PIR1  
register is set and the CCP1 module does not assert  
control of the CCP1 pin (refer to the CCP1CON  
register).  
FIGURE 15-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
CCP1CON<3:0>  
Mode Select  
15.2.4  
SPECIAL EVENT TRIGGER  
Set CCP1IF Interrupt Flag  
(PIR1)  
When Special Event Trigger mode is chosen  
(CCP1M<3:0> = 1011), the CCP1 module does the  
following:  
4
CCPR1H CCPR1L  
Comparator  
CCP1  
Q
S
R
Output  
Logic  
Match  
• Resets Timer1  
• Starts an ADC conversion if ADC is enabled  
TMR1H TMR1L  
TRIS  
The CCP1 module does not assert control of the CCP1  
pin in this mode (refer to the CCP1CON register).  
Output Enable  
Special Event Trigger  
The Special Event Trigger output of the CCP occurs  
immediately upon a match between the TMR1H,  
TMR1L register pair and the CCPR1H, CCPR1L  
register pair. The TMR1H, TMR1L register pair is not  
reset until the next rising edge of the Timer1 clock. This  
allows the CCPR1H, CCPR1L register pair to  
effectively provide a 16-bit programmable period  
register for Timer1.  
Special Event Trigger will:  
Clear TMR1H and TMR1L registers.  
NOT set interrupt flag bit TMR1IF of the PIR1 register.  
Set the GO/DONE bit to start the ADC conversion.  
15.2.1  
CCP1 PIN CONFIGURATION  
The user must configure the CCP1 pin as an output by  
clearing the associated TRIS bit.  
Note 1: The Special Event Trigger from the CCP  
module does not set interrupt flag bit  
TMR1IF of the PIR1 register.  
Note:  
Clearing the CCP1CON register will force  
the CCP1 compare output latch to the  
default low level. This is not the PORT I/O  
data latch.  
2: Removing the match condition by  
changing the contents of the CCPR1H  
and CCPR1L register pair, between the  
clock edge that generates the Special  
Event Trigger and the clock edge that  
generates the Timer1 Reset, will  
preclude the Reset from occurring.  
15.2.5  
COMPARE DURING SLEEP  
The Compare mode is dependent upon the system  
clock (FOSC) for proper operation. Since FOSC is shut  
down during Sleep mode, the Compare mode will not  
function properly during Sleep.  
DS40001430E-page 110  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
CHS3  
CHS2  
CHS1  
CHS0  
GO/  
ADON  
79  
DONE  
ANSELB  
CCP1CON  
CCPR1L  
CCPR1H  
INTCON  
ANSB5  
DC1  
ANSB4  
B1  
56  
107  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Capture/Compare/PWM Register Low Byte  
Capture/Compare/PWM Register High Byte  
GIE  
PEIE  
ADIE  
ADIF  
TMR0IE  
RCIE  
INTE  
TXIE  
TXIF  
RABIE  
TMR0IF  
INTF  
RABIF  
38  
PIE1  
TMR1GIE  
TMR1GIF  
SSPIE  
SSPIF  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
39  
PIR1  
RCIF  
40  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0  
T1SYNC  
TMR1ON  
T1CON  
T1GCON  
102  
103  
TMR1GE T1GPOL  
T1GTM T1GSPM T1GGO/ T1GVAL T1GSS1 T1GSS0  
DONE  
TMR1L  
TMR1H  
TRISB  
TRISC  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
98  
98  
55  
61  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISB5  
TRISC5  
TRISB4  
TRISC4  
TRISC3  
TRISC2 TRISC1 TRISC0  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the  
compare.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 111  
PIC16(L)F720/721  
The PWM output (Figure 15-4) has a time base  
(period) and a time that the output stays high (duty  
cycle).  
15.3 PWM Mode  
The PWM mode generates a Pulse-Width Modulated  
signal on the CCP1 pin. The duty cycle, period and  
resolution are determined by the following registers:  
FIGURE 15-4:  
CCP PWM OUTPUT  
• PR2  
Period  
• T2CON  
• CCPR1L  
• CCP1CON  
Pulse Width  
TMR2 = PR2  
TMR2 = CCPR1L:CCP1CON<5:4>  
In Pulse-Width Modulation (PWM) mode, the CCP  
module produces up to a 10-bit resolution PWM output  
on the CCP1 pin.  
TMR2 = 0  
Figure 15-3 shows a simplified block diagram of PWM  
operation.  
15.3.1  
CCPX PIN CONFIGURATION  
In PWM mode, the CCP1 pin is multiplexed with the  
PORT data latch. The user must configure the CCP1  
pin as an output by clearing the associated TRIS bit.  
Figure 15-4 shows a typical waveform of the PWM  
signal.  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, refer to Section 15.3.8  
“Setup for PWM Operation”.  
Note:  
Clearing the CCP1CON register will  
relinquish CCP1 control of the CCP1 pin.  
FIGURE 15-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
CCPR1H(2) (Slave)  
Comparator  
CCP1  
R
S
Q
(1)  
TMR2  
TRIS  
Comparator  
PR2  
Clear Timer2,  
toggle CCP1 pin and  
latch duty cycle  
Note 1:  
2:  
The 8-bit timer TMR2 register is concatenated with  
the 2-bit internal system clock (FOSC), or two bits of  
the prescaler, to create the 10-bit time base.  
In PWM mode, CCPR1H is a read-only register.  
DS40001430E-page 112  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
15.3.2  
PWM PERIOD  
15.3.3  
PWM DUTY CYCLE  
The PWM period is specified by the PR2 register of  
Timer2. The PWM period can be calculated using the  
formula of Equation 15-1.  
The PWM duty cycle is specified by writing a 10-bit value  
to multiple registers: CCPR1L register and DC1 and B1  
bits of the CCP1CON register. The CCPR1L contains  
the eight MSbs and the DC1 and B1 bits of the  
CCP1CON register contain the two LSbs. CCPR1L and  
DC1 and B1 bits of the CCP1CON register can be  
written to at any time. The duty cycle value is not latched  
into CCPR1H until after the period completes (i.e., a  
match between PR2 and TMR2 registers occurs). While  
using the PWM, the CCPR1H register is read-only.  
EQUATION 15-1: PWM PERIOD  
PWM Period = PR2+ 1  4 TOSC   
(TMR2 Prescale Value)  
Note:  
TOSC = 1/FOSC  
Equation 15-2 is used to calculate the PWM pulse  
width.  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
Equation 15-3 is used to calculate the PWM duty cycle  
ratio.  
• TMR2 is cleared  
• The CCP1 pin is set. (Exception: If the PWM duty  
cycle = 0%, the pin will not be set.)  
EQUATION 15-2: PULSE WIDTH  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H.  
Pulse Width = CCPR1L:CCP1CON<5:4>  
TOSC (TMR2 Prescale Value)  
Note:  
The  
Timer2  
postscaler  
(refer  
to  
Section 14.1 “Timer2 Operation”) is not  
used in the determination of the PWM  
frequency.  
Note: TOSC = 1/FOSC  
EQUATION 15-3: DUTY CYCLE RATIO  
CCPR1L:CCP1CON<5:4>  
Duty Cycle Ratio = -----------------------------------------------------------------------  
4PR2 + 1  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
The 8-bit timer TMR2 register is concatenated with  
either the 2-bit internal system clock (FOSC), or two bits  
of the prescaler, to create the 10-bit time base. The  
system clock is used if the Timer2 prescaler is set to 1:1.  
When the 10-bit time base matches the CCPR1H and  
2-bit latch, then the CCP1 pin is cleared (refer to  
Figure 15-3).  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 113  
PIC16(L)F720/721  
15.3.4  
PWM RESOLUTION  
EQUATION 15-4: PWM RESOLUTION  
The resolution determines the number of available duty  
cycles for a given period. For example, a 10-bit resolution  
will result in 1024 discrete duty cycles, whereas an 8-bit  
resolution will result in 256 discrete duty cycles.  
log4PR2 + 1  
Resolution = ----------------------------------------- bits  
log2  
The maximum PWM resolution is 10 bits when PR2 is  
255. The resolution is a function of the PR2 register  
value as shown by Equation 15-4.  
Note:  
If the pulse width value is greater than the  
period the assigned PWM pin(s) will  
remain unchanged.  
TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 16 MHz)  
PWM Frequency  
977 Hz  
3.91 kHz  
15.625 kHz  
62.50 kHz  
125.0 kHz  
250.0 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0x0F  
6
0xFF  
10  
0xFF  
10  
Maximum Resolution (bits)  
TABLE 15-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)  
PWM Frequency  
1.22 kHz  
4.90 kHz  
19.61 kHz  
76.92 kHz  
153.85 kHz 200.0 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0x65  
8
4
0x65  
8
1
0x65  
8
1
0x19  
6
1
0x0C  
5
1
0x09  
5
Maximum Resolution (bits)  
4. Load the CCPR1L register and the DCxBx bits of  
the CCP1CON register, with the PWM duty cycle  
value.  
15.3.5  
OPERATION IN SLEEP MODE  
In Sleep mode, the TMR2 register will not increment  
and the state of the module will not change. If the CCP1  
pin is driving a value, it will continue to drive that value.  
When the device wakes up, TMR2 will continue from its  
previous state.  
5. Configure and start Timer2:  
• Clear the TMR2IF interrupt flag bit of the PIR1  
register. See Note below.  
• Configure the T2CKPS bits of the T2CON  
register with the Timer2 prescale value.  
15.3.6  
CHANGES IN SYSTEM CLOCK  
FREQUENCY  
• Enable Timer2 by setting the TMR2ON bit of  
the T2CON register.  
The PWM frequency is derived from the system clock  
frequency (FOSC). Any changes in the system clock  
frequency will result in changes to the PWM frequency.  
Refer to Section 7.0 “Oscillator Module” for  
additional details.  
6. Enable PWM output pin:  
• Wait until Timer2 overflows, TMR2IF bit of the  
PIR1 register is set. See Note below.  
• Enable the PWM pin (CCP1) output driver(s)  
by clearing the associated TRIS bit(s).  
15.3.7  
EFFECTS OF RESET  
Note:  
In order to send a complete duty cycle and  
period on the first PWM output, the above  
steps must be included in the setup  
sequence. If it is not critical to start with a  
complete PWM signal on the first output,  
then step 6 may be ignored.  
Any Reset will force all ports to Input mode and the  
CCP registers to their Reset states.  
15.3.8  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Disable the PWM pin (CCP1) output driver(s) by  
setting the associated TRIS bit(s).  
2. Load the PR2 register with the PWM period value.  
3. Configure the CCP module for the PWM mode  
by loading the CCP1CON register with the  
appropriate values.  
DS40001430E-page 114  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TABLE 15-6: SUMMARY OF REGISTERS ASSOCIATED WITH PWM  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELB  
CCP1CON  
CCPR1L  
CCPR1H  
PR2  
ANSB5  
DC1  
ANSB4  
B1  
56  
107  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Capture/Compare/PWM Register Low Byte  
Capture/Compare/PWM Register High Byte  
Timer2 module Period Register  
105  
106  
105  
55  
T2CON  
TMR2  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 module Register  
TRISB  
TRISB7 TRISB6  
TRISC7 TRISC6  
TRISB5  
TRISC5  
TRISB4  
TRISC4  
TRISC  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
61  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the  
PWM.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 115  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 116  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
The AUSART module includes the following capabilities:  
16.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
• Full-duplex asynchronous transmit and receive  
• Two-character input buffer  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (AUSART)  
• One-character output buffer  
• Programmable 8-bit or 9-bit character length  
• Address detection in 9-bit mode  
• Input buffer overrun error detection  
• Received character framing error detection  
• Half-duplex synchronous master  
• Half-duplex synchronous slave  
• Sleep operation  
The  
Addressable  
Universal  
Synchronous  
Asynchronous Receiver Transmitter (AUSART)  
module is a serial I/O communications peripheral. It  
contains all the clock generators, shift registers and  
data buffers necessary to perform an input or output  
serial data transfer independent of device program  
execution. The AUSART, also known as a Serial  
Communications Interface (SCI), can be configured as  
a full-duplex asynchronous system or half-duplex  
synchronous system. Full-Duplex mode is useful for  
communications with peripheral systems, such as CRT  
terminals and personal computers. Half-Duplex  
Synchronous mode is intended for communications  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs or other microcontrollers.  
These devices typically do not have internal clocks for  
baud rate generation and require the external clock  
signal provided by a master synchronous device.  
Block diagrams of the AUSART transmitter and  
receiver are shown in Figure 16-1 and Figure 16-2.  
FIGURE 16-1:  
AUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIE  
Interrupt  
TXIF  
TXREG Register  
8
TX/CK  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• • •  
Transmit Shift Register (TSR)  
TXEN  
TRMT  
SPEN  
Baud Rate Generator  
FOSC  
÷ n  
TX9  
n
+ 1  
Multiplier x4 x16 x64  
TX9D  
SYNC  
BRGH  
1
x
0
1
0
0
SPBRG  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 117  
PIC16(L)F720/721  
FIGURE 16-2:  
AUSART RECEIVE BLOCK DIAGRAM  
SPEN  
CREN  
OERR  
RX/DT  
RSR Register  
MSb  
Stop (8)  
LSb  
Pin Buffer  
and Control  
Data  
Recovery  
7
1
0
START  
• • •  
Baud Rate Generator  
FOSC  
RX9  
÷ n  
n
+ 1  
Multiplier x4 x16 x64  
SYNC  
BRGH  
1
x
0
1
0
0
FIFO  
SPBRG  
RX9D  
FERR  
RCREG Register  
8
Data Bus  
RCIF  
RCIE  
Interrupt  
The operation of the AUSART module is controlled  
through two registers:  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
These registers are detailed in Register 16-1 and  
Register 16-2, respectively.  
DS40001430E-page 118  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
16.1 AUSART Asynchronous Mode  
Note 1: When the SPEN bit is set the RX/DT I/O  
pin is automatically configured as an input,  
regardless of the state of the correspond-  
ing TRIS bit and whether or not the AUS-  
ART receiver is enabled. The RX/DT pin  
data can be read via a normal PORT read  
but PORT latch data output is precluded.  
The AUSART transmits and receives data using the  
standard non-return-to-zero (NRZ) format. NRZ is  
implemented with two levels: a VOH Mark state which  
represents a ‘1’ data bit, and a VOL space state which  
represents a ‘0’ data bit. NRZ refers to the fact that  
consecutively transmitted data bits of the same value  
stay at the output level of that bit without returning to a  
neutral level between each bit transmission. An NRZ  
transmission port idles in the Mark state. Each character  
transmission consists of one Start bit followed by eight  
or nine data bits and is always terminated by one or  
more Stop bits. The Start bit is always a space and the  
Stop bits are always marks. The most common data  
format is eight bits. Each transmitted bit persists for a  
period of 1/(baud rate). An on-chip dedicated 8-bit Baud  
Rate Generator is used to derive standard baud rate  
frequencies from the system oscillator. Refer to  
Table 16-5 for examples of baud rate configurations.  
2: The TXIF transmitter interrupt flag is set  
when the TXEN enable bit is set.  
16.1.1.2  
Transmitting Data  
A transmission is initiated by writing a character to the  
TXREG register. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately  
transferred to the TSR register. If the TSR still contains  
all or part of a previous character, the new character  
data is held in the TXREG until the Stop bit of the  
previous character has been transmitted. The pending  
character in the TXREG is then transferred to the TSR  
in one TCY immediately following the Stop bit  
transmission. The transmission of the Start bit, data bits  
and Stop bit sequence commences immediately  
following the transfer of the data to the TSR from the  
TXREG.  
The AUSART transmits and receives the LSb first. The  
AUSART’s transmitter and receiver are functionally  
independent, but share the same data format and baud  
rate. Parity is not supported by the hardware, but can  
be implemented in software and stored as the ninth  
data bit.  
16.1.1  
AUSART ASYNCHRONOUS  
TRANSMITTER  
16.1.1.3  
Transmit Interrupt Flag  
The AUSART transmitter block diagram is shown in  
Figure 16-1. The heart of the transmitter is the serial  
Transmit Shift Register (TSR), which is not directly  
accessible by software. The TSR obtains its data from  
the transmit buffer, which is the TXREG register.  
The TXIF interrupt flag bit of the PIR1 register is set  
whenever the AUSART transmitter is enabled and no  
character is being held for transmission in the TXREG.  
In other words, the TXIF bit is only clear when the TSR  
is busy with a character and a new character has been  
queued for transmission in the TXREG. The TXIF flag bit  
is not cleared immediately upon writing TXREG. TXIF  
becomes valid in the second instruction cycle following  
the write execution. Polling TXIF immediately following  
the TXREG write will return invalid results. The TXIF bit  
is read-only, it cannot be set or cleared by software.  
16.1.1.1  
Enabling the Transmitter  
The AUSART transmitter is enabled for asynchronous  
operations by configuring the following three control  
bits:  
• TXEN = 1  
• SYNC = 0  
• SPEN = 1  
The TXIF interrupt can be enabled by setting the TXIE  
interrupt enable bit of the PIE1 register. However, the  
TXIF flag bit will be set whenever the TXREG is empty,  
regardless of the state of TXIE enable bit.  
All other AUSART control bits are assumed to be in  
their default state.  
To use interrupts when transmitting data, set the TXIE  
bit only when there is more data to send. Clear the  
TXIE interrupt enable bit upon writing the last character  
of the transmission to the TXREG.  
Setting the TXEN bit of the TXSTA register enables the  
transmitter circuitry of the AUSART. Clearing the SYNC  
bit of the TXSTA register configures the AUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the AUSART and automatically  
configures the TX/CK I/O pin as an output.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 119  
PIC16(L)F720/721  
16.1.1.4  
TSR Status  
16.1.1.6  
Asynchronous Transmission Setup:  
The TRMT bit of the TXSTA register indicates the  
status of the TSR register. This is a read-only bit. The  
TRMT bit is set when the TSR register is empty and is  
cleared when a character is transferred to the TSR  
register from the TXREG. The TRMT bit remains clear  
until all bits have been shifted out of the TSR register.  
No interrupt logic is tied to this bit, so the user has to  
poll this bit to determine the TSR status.  
1. Initialize the SPBRG register and the BRGH bit to  
achieve the desired baud rate (Refer to  
Section 16.2 “AUSART Baud Rate Generator  
(BRG)”).  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
3. If 9-bit transmission is desired, set the TX9  
control bit. A set ninth data bit will indicate that  
the eight Least Significant data bits are an  
address when the receiver is set for address  
detection.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
16.1.1.5  
Transmitting 9-bit Characters  
4. Enable the transmission by setting the TXEN  
control bit. This will cause the TXIF interrupt bit  
to be set.  
The AUSART supports 9-bit character transmissions.  
When the TX9 bit of the TXSTA register is set, the  
AUSART will shift nine bits out for each character trans-  
mitted. The TX9D bit of the TXSTA register is the ninth,  
and Most Significant, data bit. When transmitting 9-bit  
data, the TX9D data bit must be written before writing  
the eight Least Significant bits into the TXREG. All nine  
bits of data will be transferred to the TSR shift register  
immediately after the TXREG is written.  
5. If interrupts are desired, set the TXIE interrupt  
enable bit of the PIE1 register. An interrupt will  
occur immediately provided that the GIE and  
PEIE bits of the INTCON register are also set.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded into the TX9D data bit.  
7. Load 8-bit data into the TXREG register. This  
will start the transmission.  
A special 9-bit Address mode is available for use with  
multiple receivers. Refer to Section 16.1.2.7 “Address  
Detection” for more information on the Address mode.  
FIGURE 16-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
TX/CK pin  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
DS40001430E-page 120  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 16-4:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TX/CK pin  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
Word 2  
TXIF bit  
(Transmit Buffer  
Empty Flag)  
1 TCY  
Word 1  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Transmit Shift Reg.  
Note:  
This timing diagram shows two consecutive transmissions.  
TABLE 16-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
RX9  
TMR0IE  
RCIE  
INTE  
TXIE  
RABIE  
SSPIE  
SSPIF  
ADDEN  
BRG3  
TMR0IF  
INTF  
RABIF  
38  
39  
TMR1GIE  
TMR1GIF  
SPEN  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
PIR1  
RCIF  
TXIF  
40  
RCSTA  
SPBRG  
TRISC  
TXREG  
TXSTA  
SREN  
BRG5  
CREN  
BRG4  
FERR  
BRG2  
OERR  
BRG1  
RX9D  
BRG0  
126  
127  
61  
BRG7  
BRG6  
TRISC7  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
AUSART Transmit Data Register  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
125  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for asynchronous transmission.  
16.1.2  
AUSART ASYNCHRONOUS  
RECEIVER  
16.1.2.1  
Enabling the Receiver  
The AUSART receiver is enabled for asynchronous  
operation by configuring the following three control bits:  
The Asynchronous mode is typically used in RS-232  
systems. The receiver block diagram is shown in  
Figure 16-2. The data is received on the RX/DT pin and  
drives the data recovery block. The data recovery block  
is actually a high-speed shifter operating at 16 times  
the baud rate, whereas the serial Receive Shift  
Register (RSR) operates at the bit rate. When all eight  
or nine bits of the character have been shifted in, they  
are immediately transferred to a two character First-In  
First-Out (FIFO) memory. The FIFO buffering allows  
reception of two complete characters and the start of a  
third character before software must start servicing the  
AUSART receiver. The FIFO and RSR registers are not  
directly accessible by software. Access to the received  
data is via the RCREG register.  
• CREN = 1  
• SYNC = 0  
• SPEN = 1  
All other AUSART control bits are assumed to be in  
their default state.  
Setting the CREN bit of the RCSTA register enables the  
receiver circuitry of the AUSART. Clearing the SYNC bit  
of the TXSTA register configures the AUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the AUSART and automatically  
configures the RX/DT I/O pin as an input.  
Note:  
When the SPEN bit is set, the TX/CK I/O  
pin is automatically configured as an  
output, regardless of the state of the  
corresponding TRIS bit and whether or  
not the AUSART transmitter is enabled.  
The PORT latch is disconnected from the  
output driver so it is not possible to use the  
TX/CK pin as a general purpose output.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 121  
PIC16(L)F720/721  
16.1.2.2  
Receiving Data  
16.1.2.4  
Receive Framing Error  
The receiver data recovery circuit initiates character  
reception on the falling edge of the first bit. The first bit,  
also known as the Start bit, is always a zero. The data  
recovery circuit counts one-half bit time to the center of  
the Start bit and verifies that the bit is still a zero. If it is  
not a zero then the data recovery circuit aborts  
character reception, without generating an error, and  
resumes looking for the falling edge of the Start bit. If  
the Start bit zero verification succeeds then the data  
recovery circuit counts a full bit time to the center of the  
next bit. The bit is then sampled by a majority detect  
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.  
This repeats until all data bits have been sampled and  
shifted into the RSR. One final bit time is measured and  
the level sampled. This is the Stop bit, which is always  
a ‘1’. If the data recovery circuit samples a ‘0’ in the  
Stop bit position then a framing error is set for this  
character, otherwise the framing error is cleared for this  
character. Refer to Section 16.1.2.4 “Receive  
Framing Error” for more information on framing  
errors.  
Each character in the receive FIFO buffer has a  
corresponding framing error Status bit. A framing error  
indicates that a Stop bit was not seen at the expected  
time. The framing error status is accessed via the  
FERR bit of the RCSTA register. The FERR bit  
represents the status of the top unread character in the  
receive FIFO. Therefore, the FERR bit must be read  
before reading the RCREG.  
The FERR bit is read-only and only applies to the top  
unread character in the receive FIFO. A framing error  
(FERR = 1) does not preclude reception of additional  
characters. It is not necessary to clear the FERR bit.  
Reading the next character from the FIFO buffer will  
advance the FIFO to the next character and the next  
corresponding framing error.  
The FERR bit can be forced clear by clearing the SPEN  
bit of the RCSTA register which resets the AUSART.  
Clearing the CREN bit of the RCSTA register does not  
affect the FERR bit. A framing error by itself does not  
generate an interrupt.  
Note:  
If all receive characters in the receive  
FIFO have framing errors, repeated reads  
of the RCREG will not clear the FERR bit.  
Immediately after all data bits and the Stop bit have  
been received, the character in the RSR is transferred  
to the AUSART receive FIFO and the RCIF interrupt  
flag bit of the PIR1 register is set. The top character in  
the FIFO is transferred out of the FIFO by reading the  
RCREG register.  
16.1.2.5  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before the FIFO is accessed. When  
this happens the OERR bit of the RCSTA register is set.  
The characters already in the FIFO buffer can be read  
but no additional characters will be received until the  
error is cleared. The error must be cleared by either  
clearing the CREN bit of the RCSTA register or by  
setting the AUSART by clearing the SPEN bit of the  
RCSTA register.  
Note:  
If the receive FIFO is overrun, no additional  
characters will be received until the overrun  
condition  
is  
cleared.  
Refer  
to  
Section 16.1.2.5 “Receive Overrun  
Error” for more information on overrun  
errors.  
16.1.2.3  
Receive Interrupts  
The RCIF interrupt flag bit of the PIR1 register is set  
whenever the AUSART receiver is enabled and there is  
an unread character in the receive FIFO. The RCIF  
interrupt flag bit is read-only, it cannot be set or cleared  
by software.  
16.1.2.6  
Receiving 9-bit Characters  
The AUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set, the AUSART  
will shift 9 bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth and Most Significant data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
RCIF interrupts are enabled by setting all of the  
following bits:  
• RCIE interrupt enable bit of the PIE1 register  
• PEIE, Peripheral Interrupt Enable bit of the  
INTCON register  
• GIE, Global Interrupt Enable bit of the INTCON  
register  
The RCIF interrupt flag bit of the PIR1 register will be  
set when there is an unread character in the FIFO,  
regardless of the state of interrupt enable bits.  
DS40001430E-page 122  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
16.1.2.7  
Address Detection  
16.1.2.9  
9-bit Address Detection Mode Setup  
A special Address Detection mode is available for use  
when multiple receivers share the same transmission  
line, such as in RS-485 systems. Address detection is  
enabled by setting the ADDEN bit of the RCSTA  
register.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRG register and the BRGH bit  
to achieve the desired baud rate (refer to  
Section 16.2 “AUSART Baud Rate Generator  
(BRG)”).  
Address detection requires 9-bit character reception.  
When address detection is enabled, only characters  
with the ninth data bit set will be transferred to the  
receive FIFO buffer, thereby setting the RCIF interrupt  
bit of the PIR1 register. All other characters will be  
ignored.  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
3. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
Upon receiving an address character, user software  
determines if the address matches its own. Upon  
address match, user software must disable address  
detection by clearing the ADDEN bit before the next  
Stop bit occurs. When user software detects the end of  
the message, determined by the message protocol  
used, software places the receiver back into the  
Address Detection mode by setting the ADDEN bit.  
4. Enable 9-bit reception by setting the RX9 bit.  
5. Enable address detection by setting the ADDEN  
bit.  
6. Enable reception by setting the CREN bit.  
7. The RCIF interrupt flag bit of the PIR1 register  
will be set when a character with the ninth bit set  
is transferred from the RSR to the receive buffer.  
An interrupt will be generated if the RCIE inter-  
rupt enable bit of the PIE1 register was also set.  
16.1.2.8  
Asynchronous Reception Setup:  
1. Initialize the SPBRG register and the BRGH bit  
to achieve the desired baud rate (refer to  
Section 16.2 “AUSART Baud Rate Generator  
(BRG)”).  
8. Read the RCSTA register to get the error flags.  
The ninth data bit will always be set.  
9. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register. Software determines if this is the  
device’s address.  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
3. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
10. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and generate interrupts.  
4. If 9-bit reception is desired, set the RX9 bit.  
5. Enable reception by setting the CREN bit.  
6. The RCIF interrupt flag bit of the PIR1 register  
will be set when a character is transferred from  
the RSR to the receive buffer. An interrupt will be  
generated if the RCIE bit of the PIE1 register  
was also set.  
7. Read the RCSTA register to get the error flags  
and, if 9-bit data reception is enabled, the ninth  
data bit.  
8. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register.  
9. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 123  
PIC16(L)F720/721  
FIGURE 16-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX/DT pin  
bit 7/8  
bit 7/8  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
TABLE 16-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
TMR0IE  
RCIE  
INTE  
TXIE  
TXIF  
RABIE  
SSPIE  
SSPIF  
TMR0IF  
INTF  
RABIF  
38  
39  
TMR1GIE  
TMR1GIF  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
PIR1  
RCIF  
40  
RCREG  
RCSTA  
SPBRG  
TRISC  
TXSTA  
AUSART Receive Data Register  
123  
126  
127  
61  
SPEN  
BRG7  
RX9  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
RX9D  
BRG0  
BRG6  
TRISC7  
CSRC  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
TX9 TXEN SYNC BRGH TRMT TX9D  
125  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for asynchronous reception.  
DS40001430E-page 124  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
REGISTER 16-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN(1)  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit(1)  
1= Transmit enabled  
0= Transmit disabled  
SYNC: AUSART mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: Ninth bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Synchronous mode.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 125  
PIC16(L)F720/721  
REGISTER 16-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit(1)  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care  
Synchronous mode:  
Must be set to ‘0’  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: Ninth bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
Note 1: The AUSART module automatically changes the pin from tri-state to drive as needed. Configure  
TRISx = 1.  
DS40001430E-page 126  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
EXAMPLE 16-1:  
CALCULATING BAUD  
RATE ERROR  
16.2 AUSART Baud Rate Generator  
(BRG)  
For a device with FOSC of 16 MHz, desired baud rate of  
9600, and Asynchronous mode with SYNC = 0and BRGH  
= 0(as seen in Table 16-5):  
The Baud Rate Generator (BRG) is an 8-bit timer that  
is dedicated to the support of both the asynchronous  
and synchronous AUSART operation.  
FOSC  
Desired Baud Rate = ---------------------------------------  
64SPBRG + 1  
The SPBRG register determines the period of the free  
running baud rate timer. In Asynchronous mode the  
multiplier of the baud rate period is determined by the  
BRGH bit of the TXSTA register. In Synchronous mode,  
the BRGH bit is ignored.  
Solving for SPBRG:  
FOSC  
--------------------------------------------------------  
SPBRG =  
=
1  
Table 16-3 contains the formulas for determining the  
baud rate. Example 16-1 provides a sample calculation  
for determining the baud rate and baud rate error.  
64Desired Baud Rate  
16000000  
649600  
------------------------  
1  
Typical baud rates and error values for various  
asynchronous modes have been computed for your  
convenience and are shown in Table 16-5. It may be  
advantageous to use the high baud rate (BRGH = 1), to  
reduce the baud rate error.  
= 25.042= 25  
16000000  
Actual Baud Rate = --------------------------  
6425 + 1  
= 9615  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures that  
the BRG does not wait for a timer overflow before  
outputting the new baud rate.  
Actual Baud Rate Desired Baud Rate  
% Error = ------------------------------------------------------------------------------------------------- 100  
Desired Baud Rate  
9615 9600  
-----------------------------  
=
100 = 0.16%  
9600  
TABLE 16-3: BAUD RATE FORMULAS  
Configuration Bits  
Baud Rate Formula  
AUSART Mode  
SYNC  
BRGH  
0
0
1
0
1
x
Asynchronous  
Asynchronous  
Synchronous  
FOSC/[64 (n+1)]  
FOSC/[16 (n+1)]  
FOSC/[4 (n+1)]  
Legend:  
x= Don’t care, n = value of SPBRG register  
TABLE 16-4: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCSTA  
SPBRG  
TXSTA  
SPEN  
BRG7  
CSRC  
RX9  
BRG6  
TX9  
SREN  
BRG5  
TXEN  
CREN  
BRG4  
SYNC  
ADDEN  
BRG3  
FERR  
BRG2  
BRGH  
OERR  
BRG1  
TRMT  
RX9D  
BRG0  
TX9D  
126  
127  
125  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for the Baud Rate Generator.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 127  
PIC16(L)F720/721  
TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0  
FOSC = 16.0000 MHz  
FOSC = 11.0592 MHz  
FOSC = 8.000 MHz  
FOSC = 4.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
1201  
2403  
9615  
10416  
19.23k  
0.08  
0.16  
0.16  
-0.01  
0.16  
207  
103  
25  
300  
1200  
143  
71  
17  
16  
8
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
1200  
2400  
9600  
10165  
19.20k  
0.00  
0.00  
0.00  
-2.42  
0.00  
0.00  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10417  
0.00  
12  
2
57.60k  
SYNC = 0, BRGH = 0  
FOSC = 3.6864 MHz FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
0.00  
0.00  
0.00  
0.00  
300  
1200  
300  
1200  
2400  
9600  
191  
47  
23  
5
300  
1202  
0.16  
0.16  
51  
12  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
2
19.20k  
0.00  
0.00  
0
57.60k  
DS40001430E-page 128  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1  
FOSC = 11.0592 MHz FOSC = 8.000 MHz  
FOSC = 16.0000 MHz  
FOSC = 4.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
0.16  
0.16  
0.16  
0.00  
0.16  
2400  
2404  
9615  
10417  
19231  
55556  
0.16  
0.16  
0.00  
0.16  
-3.55  
207  
51  
47  
25  
8
71  
65  
35  
11  
5
9600  
9615  
10417  
19.23k  
58.8k  
0.16  
0.00  
0.16  
2.12  
103  
95  
51  
16  
9600  
0.00  
0.53  
0.00  
0.00  
0.00  
10417  
19.2k  
57.6k  
115.2k  
10473  
19.20k  
57.60k  
115.2k  
23  
12  
SYNC = 0, BRGH = 1  
FOSC = 3.6864 MHz FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
300  
1200  
191  
95  
23  
21  
11  
3
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
1200  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2400  
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
10473  
19.2k  
57.60k  
115.2k  
10417  
0.00  
1
2010-2013 Microchip Technology Inc.  
DS40001430E-page 129  
PIC16(L)F720/721  
16.3.1.2  
Synchronous Master Transmission  
16.3 AUSART Synchronous Mode  
Data is transferred out of the device on the RX/DT pin.  
The RX/DT and TX/CK pin output drivers are automat-  
ically enabled when the AUSART is configured for  
synchronous master transmit operation.  
Synchronous serial communications are typically used  
in systems with a single master and one or more  
slaves. The master device contains the necessary  
circuitry for baud rate generation and supplies the clock  
for all devices in the system. Slave devices can take  
advantage of the master clock by eliminating the  
internal clock generation circuitry.  
A transmission is initiated by writing a character to the  
TXREG register. If the TSR still contains all or part of a  
previous character, the new character data is held in  
the TXREG until the last bit of the previous character  
has been transmitted. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately trans-  
ferred to the TSR. The transmission of the character  
commences immediately following the transfer of the  
data to the TSR from the TXREG.  
There are two signal lines in Synchronous mode: a  
bidirectional data line and a clock line. Slaves use the  
external clock supplied by the master to shift the serial  
data into and out of their respective receive and trans-  
mit shift registers. Since the data line is bidirectional,  
synchronous operation is half-duplex only. Half-duplex  
refers to the fact that master and slave devices can  
receive and transmit data but not both simultaneously.  
The AUSART can operate as either a master or slave  
device.  
Each data bit changes on the leading edge of the  
master clock and remains valid until the subsequent  
leading clock edge.  
Start and Stop bits are not used in synchronous  
transmissions.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
16.3.1  
SYNCHRONOUS MASTER MODE  
16.3.1.3  
Synchronous Master Transmission  
Setup:  
The following bits are used to configure the AUSART  
for Synchronous Master operation:  
1. Initialize the SPBRG register and the BRGH bit  
to achieve the desired baud rate (refer to  
Section 16.2 “AUSART Baud Rate Generator  
(BRG)”).  
• SYNC = 1  
• CSRC = 1  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Disable Receive mode by clearing bits SREN  
and CREN.  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Setting the CSRC  
bit of the TXSTA register configures the device as a  
master. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
AUSART.  
4. Enable Transmit mode by setting the TXEN bit.  
5. If 9-bit transmission is desired, set the TX9 bit.  
6. If interrupts are desired, set the TXIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded in the TX9D bit.  
16.3.1.1  
Master Clock  
8. Start transmission by loading data to the TXREG  
register.  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device config-  
ured as a master transmits the clock on the TX/CK line.  
The TX/CK pin output driver is automatically enabled  
when the AUSART is configured for synchronous  
transmit or receive operation. Serial data bits change  
on the leading edge to ensure they are valid at the trail-  
ing edge of each clock. One clock cycle is generated  
for each data bit. Only as many clock cycles are  
generated as there are data bits.  
DS40001430E-page 130  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 16-6:  
SYNCHRONOUS TRANSMISSION  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
TX/CK pin  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note:  
Synchronous Master mode, SPBRG = 0, continuous transmission of two 8-bit words.  
FIGURE 16-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RX/DT pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 16-6: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
RX9  
TMR0IE  
RCIE  
INTE  
TXIE  
RABIE  
SSPIE  
SSPIF  
ADDEN  
BRG3  
TMR0IF  
INTF  
RABIF  
38  
39  
TMR1GIE  
TMR1GIF  
SPEN  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
PIR1  
RCIF  
TXIF  
40  
RCSTA  
SPBRG  
TRISC  
TXREG  
TXSTA  
SREN  
BRG5  
CREN  
BRG4  
FERR  
BRG2  
OERR  
BRG1  
RX9D  
BRG0  
126  
127  
61  
BRG7  
BRG6  
TRISC7  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
AUSART Transmit Data Register  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
125  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for synchronous master  
transmission.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 131  
PIC16(L)F720/721  
16.3.1.4  
Synchronous Master Reception  
16.3.1.7  
Receiving 9-bit Characters  
Data is received at the RX/DT pin. The RX/DT pin  
output driver is automatically disabled when the  
AUSART is configured for synchronous master receive  
operation.  
The AUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set, the AUSART  
will shift nine bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth, and Most Significant, data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the eight Least Significant bits  
from the RCREG.  
In Synchronous mode, reception is enabled by setting  
either the Single Receive Enable bit (SREN of the  
RCSTA register) or the Continuous Receive Enable bit  
(CREN of the RCSTA register).  
When SREN is set and CREN is clear, only as many  
clock cycles are generated as there are data bits in a  
single character. The SREN bit is automatically cleared  
at the completion of one character. When CREN is set,  
clocks are continuously generated until CREN is  
cleared. If CREN is cleared in the middle of a character  
the CK clock stops immediately and the partial charac-  
ter is discarded. If SREN and CREN are both set, then  
SREN is cleared at the completion of the first character  
and CREN takes precedence.  
Address detection in Synchronous modes is not  
supported, therefore the ADDEN bit of the RCSTA  
register must be cleared.  
16.3.1.8  
Synchronous Master Reception  
Setup  
1. Initialize the SPBRG register for the appropriate  
baud rate. Set or clear the BRGH bit, as  
required, to achieve the desired baud rate.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
To initiate reception, set either SREN or CREN. Data is  
sampled at the RX/DT pin on the trailing edge of the  
TX/CK clock pin and is shifted into the Receive Shift  
Register (RSR). When a complete character is  
received into the RSR, the RCIF bit of the PIR1 register  
is set and the character is automatically transferred to  
the two character receive FIFO. The Least Significant  
eight bits of the top character in the receive FIFO are  
available in RCREG. The RCIF bit remains set as long  
as there are un-read characters in the receive FIFO.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
5. If 9-bit reception is desired, set bit RX9.  
6. Verify address detection is disabled by clearing  
the ADDEN bit of the RCSTA register.  
7. Start reception by setting the SREN bit or for  
continuous reception, set the CREN bit.  
16.3.1.5  
Slave Clock  
8. Interrupt flag bit RCIF of the PIR1 register will be  
set when reception of a character is complete.  
An interrupt will be generated if the RCIE inter-  
rupt enable bit of the PIE1 register was set.  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device configured  
as a slave receives the clock on the TX/CK line. The TX/  
CK pin output driver is automatically disabled when the  
device is configured for synchronous slave transmit or  
receive operation. Serial data bits change on the leading  
edge to ensure they are valid at the trailing edge of each  
clock. One data bit is transferred for each clock cycle.  
Only as many clock cycles should be received as there  
are data bits.  
9. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
10. Read the 8-bit received data by reading the  
RCREG register.  
11. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit, which  
resets the AUSART.  
16.3.1.6  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before RCREG is read to access  
the FIFO. When this happens the OERR bit of the  
RCSTA register is set. Previous data in the FIFO will  
not be overwritten. The two characters in the FIFO  
buffer can be read, however, no additional characters  
will be received until the error is cleared. The OERR bit  
can only be cleared by clearing the overrun condition.  
If the overrun error occurred when the SREN bit is set  
and CREN is clear then the error is cleared by reading  
RCREG. If the overrun occurred when the CREN bit is  
set then the error condition is cleared by either clearing  
the CREN bit of the RCSTA register.  
DS40001430E-page 132  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 16-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
TX/CK pin  
Write to  
bit SREN  
SREN bit  
0’  
0’  
CREN bit  
RCIF bit  
(Interrupt)  
Read  
RCREG  
Note:  
Timing diagram demonstrates Synchronous Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 16-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
TMR0IE  
RCIE  
INTE  
TXIE  
TXIF  
RABIE  
SSPIE  
SSPIF  
TMR0IF  
INTF  
RABIF  
38  
39  
TMR1GIE  
TMR1GIF  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
PIR1  
RCIF  
40  
RCREG  
RCSTA  
TRISC  
TXSTA  
AUSART Receive Data Register  
SREN CREN ADDEN FERR  
123  
126  
61  
SPEN  
TRISC7  
CSRC  
RX9  
OERR  
RX9D  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
TX9 TXEN SYNC BRGH TRMT TX9D  
125  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for synchronous master  
reception.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 133  
PIC16(L)F720/721  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
16.3.2  
SYNCHRONOUS SLAVE MODE  
The following bits are used to configure the AUSART  
for synchronous slave operation:  
1. The first character will immediately transfer to  
the TSR register and transmit.  
• SYNC = 1  
2. The second word will remain in TXREG register.  
3. The TXIF bit will not be set.  
• CSRC = 0  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
4. After the first character has been shifted out of  
TSR, the TXREG register will transfer the second  
character to the TSR and the TXIF bit will now be  
set.  
Setting the SYNC bit of the TXSTA register configures the  
device for synchronous operation. Clearing the CSRC bit  
of the TXSTA register configures the device as a slave.  
Clearing the SREN and CREN bits of the RCSTA register  
ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
AUSART.  
5. If the PEIE and TXIE bits are set, the interrupt  
will wake the device from Sleep and execute the  
next instruction. If the GIE bit is also set, the  
program will call the Interrupt Service Routine.  
16.3.2.2  
Synchronous Slave Transmission  
Setup  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
16.3.2.1  
AUSART Synchronous Slave  
Transmit  
2. Clear the CREN and SREN bits.  
The operation of the Synchronous Master and Slave  
modes are identical (refer to Section 16.3.1.2  
“Synchronous Master Transmission”), except in the  
case of the Sleep mode.  
3. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
TXIE bit.  
4. If 9-bit transmission is desired, set the TX9 bit.  
5. Enable transmission by setting the TXEN bit.  
6. Verify address detection is disabled by clearing  
the ADDEN bit of the RCSTA register.  
7. If 9-bit transmission is selected, insert the Most  
Significant bit into the TX9D bit.  
8. Start transmission by writing the Least  
Significant 8 bits to the TXREG register.  
TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
RX9  
TMR0IE  
RCIE  
INTE  
TXIE  
RABIE  
SSPIE  
SSPIF  
ADDEN  
TMR0IF  
INTF  
RABIF  
38  
39  
TMR1GIE  
TMR1GIF  
SPEN  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
PIR1  
RCIF  
TXIF  
40  
RCSTA  
TRISC  
TXREG  
TXSTA  
SREN  
CREN  
FERR  
OERR  
RX9D  
126  
61  
TRISC7  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
AUSART Transmit Data Register  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
125  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for synchronous slave  
transmission.  
DS40001430E-page 134  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
16.3.2.3  
AUSART Synchronous Slave  
Reception  
16.3.2.4  
Synchronous Slave Reception Setup  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
The operation of the Synchronous Master and Slave  
modes is identical (Section 16.3.1.4 “Synchronous  
Master Reception”), with the following exceptions:  
2. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
• Sleep  
3. If 9-bit reception is desired, set the RX9 bit.  
• CREN bit is always set, therefore the receiver is  
never Idle  
4. Verify address detection is disabled by clearing  
the ADDEN bit of the RCSTA register.  
• SREN bit, which is a “don’t care” in Slave mode  
5. Set the CREN bit to enable reception.  
A character may be received while in Sleep mode by  
setting the CREN bit prior to entering Sleep. Once the  
word is received, the RSR register will transfer the data  
to the RCREG register. If the RCIE interrupt enable bit  
of the PIE1 register is set, the interrupt generated will  
wake the device from Sleep and execute the next  
instruction. If the GIE bit is also set, the program will  
branch to the interrupt vector.  
6. The RCIF bit of the PIR1 register will be set  
when reception is complete. An interrupt will be  
generated if the RCIE bit of the PIE1 register  
was set.  
7. If 9-bit mode is enabled, retrieve the Most  
Significant bit from the RX9D bit of the RCSTA  
register.  
8. Retrieve the 8 Least Significant bits from the  
receive FIFO by reading the RCREG register.  
9. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register.  
TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
TMR0IE  
RCIE  
INTE  
TXIE  
TXIF  
RABIE  
SSPIE  
SSPIF  
TMR0IF  
INTF  
RABIF  
38  
39  
TMR1GIE  
TMR1GIF  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
PIR1  
RCIF  
40  
RCREG  
RCSTA  
TRISC  
TXSTA  
AUSART Receive Data Register  
SREN CREN ADDEN FERR  
123  
126  
61  
SPEN  
TRISC7  
CSRC  
RX9  
OERR  
RX9D  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
TX9 TXEN SYNC BRGH TRMT TX9D  
125  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for synchronous slave reception.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 135  
PIC16(L)F720/721  
16.4.2  
SYNCHRONOUS TRANSMIT  
DURING SLEEP  
16.4 AUSART Operation During Sleep  
The AUSART will remain active during Sleep only in the  
Synchronous Slave mode. All other modes require the  
system clock and therefore cannot generate the  
necessary signals to run the Transmit or Receive Shift  
registers during Sleep.  
To transmit during Sleep, all the following conditions  
must be met before entering Sleep mode:  
• RCSTA and TXSTA Control registers must be  
configured for synchronous slave transmission  
(refer to Section 16.3.2.2 “Synchronous Slave  
Transmission Setup”).  
Synchronous Slave mode uses an externally generated  
clock to run the Transmit and Receive Shift registers.  
• The TXIF interrupt flag must be cleared by writing  
the output data to the TXREG, thereby filling the  
TSR and transmit buffer.  
16.4.1  
SYNCHRONOUS RECEIVE DURING  
SLEEP  
• If interrupts are desired, set the TXIE bit of the  
PIE1 register and the PEIE bit of the INTCON  
register.  
To receive during Sleep, all the following conditions  
must be met before entering Sleep mode:  
• RCSTA and TXSTA Control registers must be  
configured for synchronous slave reception (refer  
to Section 16.3.2.4 “Synchronous Slave  
Reception Setup”).  
Upon entering Sleep mode, the device will be ready to  
accept clocks on the TX/CK pin and transmit data on  
the RX/DT pin. When the data word in the TSR has  
been completely clocked out by the external device, the  
pending byte in the TXREG will transfer to the TSR and  
the TXIF flag will be set. Thereby, waking the processor  
from Sleep. At this point, the TXREG is available to  
accept another character for transmission, which will  
clear the TXIF flag.  
• If interrupts are desired, set the RCIE bit of the  
PIE1 register and the PEIE bit of the INTCON  
register.  
• The RCIF interrupt flag must be cleared by  
reading RCREG to unload any pending  
characters in the receive buffer.  
Upon waking from Sleep, the instruction following the  
SLEEPinstruction will be executed. If the GIE, Global  
Interrupt Enable bit is also set then the Interrupt  
Service Routine at address 0004h will be called.  
Upon entering Sleep mode, the device will be ready to  
accept data and clocks on the RX/DT and TX/CK pins,  
respectively. When the data word has been completely  
clocked in by the external device, the RCIF interrupt  
flag bit of the PIR1 register will be set. Thereby, waking  
the processor from Sleep.  
Upon waking from Sleep, the instruction following the  
SLEEP instruction will be executed. If the GIE, Global  
Interrupt Enable bit of the INTCON register is also set,  
then the Interrupt Service Routine at address 0004h  
will be called.  
DS40001430E-page 136  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
A typical SPI connection between microcontroller  
devices is shown in Figure 17-1. Addressing of more  
than one slave device is accomplished via multiple  
hardware slave select lines. External hardware and  
additional I/O pins must be used to support multiple  
slave select addressing. This prevents extra overhead  
in software for communication.  
17.0 SSP MODULE OVERVIEW  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other peripher-  
als or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers,  
display drivers, A/D converters, etc. The SSP module  
can operate in one of two modes:  
For SPI communication, typically three pins are used:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C™)  
• Serial Data Out (SDO)  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
17.1 SPI Mode  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
The SPI mode allows eight bits of data to be synchro-  
nously transmitted and received, simultaneously. The  
SSP module can be operated in one of two SPI modes:  
• Slave Select (SS)  
• Master mode  
• Slave mode  
SPI is a full-duplex protocol, with all communication  
being bidirectional and initiated by a master device. All  
clocking is provided by the master device and all bits  
are transmitted, MSb first. Care must be taken to  
ensure that all devices on the SPI bus are setup to  
allow all controllers to send and receive data at the  
same time.  
FIGURE 17-1:  
TYPICAL SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM<3:0> = 00xx  
SPI Slave SSPM<3:0> = 010x  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
SS  
Slave Select  
(optional)  
General I/O  
Processor 2  
Processor 1  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 137  
PIC16(L)F720/721  
FIGURE 17-2:  
SPI MODE BLOCK  
DIAGRAM  
Internal  
Data Bus  
Read  
Write  
SSPBUF Reg  
SSPSR Reg  
SDI  
bit 0  
bit 7  
Shift  
Clock  
SDO  
SS  
Control  
Enable  
RA5/SS  
RA0/SS  
SSSEL  
2
Clock Select  
Edge  
Select  
TMR2  
Output  
2  
Edge  
Select  
FOSC  
Prescaler  
4, 16, 64  
SCK  
4
TRISx  
SSPM<3:0>  
DS40001430E-page 138  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
17.1.1  
MASTER MODE  
17.1.1.3  
Master Mode Setup  
In Master mode, data transfer can be initiated at any  
time because the master controls the SCK line. Master  
mode determines when the slave (Figure 17-1,  
Processor 2) transmits data via control of the SCK line.  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is loaded with a byte  
value. If the master is only going to receive, SDO output  
could be disabled (programmed and used as an input).  
The SSPSR register will continue to shift in the signal  
present on the SDI pin at the programmed clock rate.  
17.1.1.1  
Master Mode Operation  
The SSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
register shifts the data in and out of the device, MSb  
first. The SSPBUF register holds the data that is written  
out of the master until the received data is ready. Once  
the eight bits of data have been received, the byte is  
moved to the SSPBUF register. The Buffer Full Status  
bit, BF of the SSPSTAT register, and the SSP Interrupt  
Flag bit, SSPIF of the PIR1 register, are then set.  
When initializing SPI Master mode operation, several  
options need to be specified. This is accomplished by  
programming the appropriate control bits in the  
SSPCON and SSPSTAT registers. These control bits  
allow the following to be specified:  
• SCK as clock output  
• Idle state of SCK (CKP bit)  
• Data input sample phase (SMP bit)  
• Output data on rising/falling edge of SCK (CKE bit)  
• Clock bit rate  
Any write to the SSPBUF register during transmission/  
reception of data will be ignored and the Write Collision  
Detect bit, WCOL of the SSPCON register, will be set.  
User software must clear the WCOL bit so that it can be  
determined if the following write(s) to the SSPBUF  
register completed successfully.  
In Master mode, the SPI clock rate (bit rate) is user  
selectable to be one of the following:  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 TCY)  
• FOSC/64 (or 16 TCY)  
• (Timer2 output)/2  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data is written to the SSPBUF. The BF bit of the  
SSPSTAT register is set when SSPBUF has been  
loaded with the received data (transmission is  
complete). When the SSPBUF is read, the BF bit is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. The SSP interrupt may be used to  
determine when the transmission/reception is  
complete and the SSPBUF must be read and/or  
written. If interrupts are not used, then software polling  
can be done to ensure that a write collision does not  
occur. Example 17-1 shows the loading of the SSPBUF  
(SSPSR) for data transmission.  
This allows  
a maximum data rate of 5 Mbps  
(at FOSC = 16 MHz).  
Figure 17-3 shows the waveforms for Master mode.  
The clock polarity is selected by appropriately program-  
ming the CKP bit of the SSPCON register. When the  
CKE bit is set, the SDO data is valid before there is a  
clock edge on SCK. The sample time of the input data  
is shown based on the state of the SMP bit and can  
occur at the middle or end of the data output time. The  
time when the SSPBUF is loaded with the received  
data is shown.  
Note:  
The SSPSR is not directly readable or  
writable and can only be accessed by  
addressing the SSPBUF register.  
17.1.1.4  
Sleep in Master Mode  
In Master mode, all module clocks are halted and the  
transmission/reception will remain in their current state,  
paused, until the device wakes from Sleep. After the  
device wakes up from Sleep, the module will continue  
to transmit/receive data.  
17.1.1.2  
Enabling Master I/O  
To enable the serial port, the SSPEN bit of the  
SSPCON register, must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, re-initialize the  
SSPCON register and then set the SSPEN bit. If a  
Master mode of operation is selected in the SSPM bits  
of the SSPCON register, the SDI, SDO and SCK pins  
will be assigned as serial port pins.  
For these pins to function as serial port pins, they must  
have their corresponding data direction bits set or  
cleared in the associated TRIS register as follows:  
• SDI configured as input  
• SDO configured as output  
• SCK configured as output  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 139  
PIC16(L)F720/721  
FIGURE 17-3:  
SPI MASTER MODE WAVEFORM  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
SDO  
(CKE = 0)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
SSPSR to  
SSPBUF  
EXAMPLE 17-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
BANKSEL  
SSPSTAT  
;
LOOP  
BTFSS  
GOTO  
SSPSTAT, BF ;Has data been received(transmit complete)?  
LOOP  
;No  
BANKSEL  
MOVF  
MOVWF  
MOVF  
SSPBUF  
SSPBUF, W  
RXDATA  
TXDATA, W  
SSPBUF  
;
;WREG reg = contents of SSPBUF  
;Save in user RAM, if data is meaningful  
;W reg = contents of TXDATA  
;New data to xmit  
MOVWF  
DS40001430E-page 140  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
17.1.2  
SLAVE MODE  
17.1.2.2  
Enabling Slave I/O  
For any SPI device acting as a slave, the data is  
transmitted and received as external clock pulses  
appear on SCK pin. This external clock must meet the  
minimum high and low times as specified in the  
electrical specifications.  
To enable the serial port, the SSPEN bit of the  
SSPCON register must be set. If a Slave mode of  
operation is selected in the SSPM bits of the SSPCON  
register, the SDI, SDO and SCK pins will be assigned  
as serial port pins.  
For these pins to function as serial port pins, they must  
have their corresponding data direction bits set or  
cleared in the associated TRIS register as follows:  
17.1.2.1  
Slave Mode Operation  
The SSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR  
until the received data is ready.  
• SDI configured as input  
• SDO configured as output  
• SCK configured as input  
Optionally, a fourth pin, Slave Select (SS) may be used  
in Slave mode. Slave Select may be configured to  
operate on the RC6/SS pin via the SSSEL bit in the  
APFCON register.  
The slave has no control as to when data will be  
clocked in or out of the device. All data that is to be  
transmitted, to a master or another slave, must be  
loaded into the SSPBUF register before the first clock  
pulse is received.  
Upon selection of a Slave Select pin, the appropriate  
bits must be set in the ANSELA and TRISA registers.  
Slave Select must be set as an input by setting the  
corresponding bit in TRISA, and digital I/O must be  
enabled on the SS pin by clearing the corresponding bit  
of the ANSELA register.  
Once eight bits of data have been received:  
• Received byte is moved to the SSPBUF register  
• BF bit of the SSPSTAT register is set  
• SSPIF bit of the PIR1 register is set  
Any write to the SSPBUF register during transmission/  
reception of data will be ignored and the Write Collision  
Detect bit, WCOL of the SSPCON register, will be set.  
User software must clear the WCOL bit so that it can be  
determined if the following write(s) to the SSPBUF  
register completed successfully.  
17.1.2.3  
Slave Mode Setup  
When initializing the SSP module to SPI Slave mode,  
compatibility must be ensured with the master device.  
This is done by programming the appropriate control  
bits of the SSPCON and SSPSTAT registers. These  
control bits allow the following to be specified:  
The user’s firmware must read SSPBUF, clearing the  
BF flag, or the SSPOV bit of the SSPCON register will  
be set with the reception of the next byte and  
communication will be disabled.  
• SCK as clock input  
• Idle state of SCK (CKP bit)  
• Data input sample phase (SMP bit)  
• Output data on rising/falling edge of SCK (CKE bit)  
A SPI module transmits and receives at the same time,  
occasionally causing dummy data to be transmitted/  
received. It is up to the user to determine which data is  
to be used and what can be discarded.  
Figure 17-4 and Figure 17-5 show example waveforms  
of Slave mode operation.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 141  
PIC16(L)F720/721  
FIGURE 17-4:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
SSPSR to  
SSPBUF  
FIGURE 17-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
SSPSR to  
SSPBUF  
DS40001430E-page 142  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
When the SPI module resets, the bit counter is cleared  
to ‘0’. This can be done by either forcing the SS pin to  
a high level or clearing the SSPEN bit. Figure 17-6  
shows the timing waveform for such a synchronization  
event.  
17.1.2.4  
Slave Select Operation  
The SS pin allows Synchronous Slave mode operation.  
The SPI must be in Slave mode with SS pin control  
enabled (SSPM<3:0> = 0100). The associated TRIS bit  
for the SS pin must be set, making SS an input.  
Note:  
SSPSR must be reinitialized by writing to  
the SSPBUF register before the data can  
be clocked out of the slave again.  
In Slave Select mode, when:  
• SS = 0, The device operates as specified in  
Section 17.1.2 “Slave Mode”.  
• SS = 1, The SPI module is held in Reset and the  
SDO pin will be tri-stated.  
17.1.2.5  
Sleep in Slave Mode  
While in Sleep mode, the slave can transmit/receive  
data. The SPI Transmit/Receive Shift register operates  
asynchronously to the device on the externally supplied  
clock source. This allows the device to be placed in  
Sleep mode and data to be shifted into the SPI  
Transmit/Receive Shift register. When all eight bits  
have been received, the SSP Interrupt Flag bit will be  
set and, if enabled, will wake the device from Sleep.  
Note 1: When the SPI is in Slave mode with SS  
pin control enabled (SSPM<3:0> = 0100),  
the SPI module will reset if the SS pin is  
driven high.  
2: If the SPI is used in Slave mode with CKE  
set, the SS pin control must be enabled.  
FIGURE 17-6:  
SLAVE SELECT SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
SSPSR must be reinitialized by writing to  
the SSPBUF register before the data can  
be clocked out of the slave again.  
bit 6  
bit 7  
bit 7  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
SSPSR to  
SSPBUF  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 143  
PIC16(L)F720/721  
REGISTER 17-1: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of  
overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read  
the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode the overflow  
bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF  
register.  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables serial port and configures SCK, SDO and SDI as serial port pins(1)  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
Note 1: When enabled, these pins must be properly configured as input or output.  
DS40001430E-page 144  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
REGISTER 17-2: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
SMP: SPI Data Input Sample Phase bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
CKE: SPI Clock Edge Select bit  
SPI mode, CKP = 0:  
1= Data stable on rising edge of SCK  
0= Data stable on falling edge of SCK  
SPI mode, CKP = 1:  
1= Data stable on falling edge of SCK  
0= Data stable on rising edge of SCK  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D/A: Data/Address bit  
Used in I2C mode only.  
P: Stop bit  
Used in I2C mode only.  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write Information bit  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 145  
PIC16(L)F720/721  
TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELC  
INTCON  
PIE1  
ANSC7  
GIE  
ANSC6  
PEIE  
ANSC3  
RABIE  
SSPIE  
SSPIF  
ANSC2  
TMR0IF  
ANSC1  
INTF  
ANSC0  
RABIF  
61  
38  
TMR0IE  
RCIE  
INTE  
TXIE  
TXIF  
39  
TMR1GIE  
TMR1GIF  
ADIE  
ADIF  
CCP1IE TMR2IE  
CCP1IF TMR2IF  
TMR1IE  
TMR1IF  
PIR1  
40  
RCIF  
PR2  
Timer2 module Period Register  
Synchronous Serial Port Receive Buffer/Transmit Register  
105  
139  
144  
145  
55  
SSPBUF  
SSPCON  
SSPSTAT  
TRISB  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0  
BF  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISB5  
TRISC5  
TRISB4  
TRISC4  
TRISC  
T2CON  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
61  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
106  
Legend: x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the SSP in  
SPI mode.  
DS40001430E-page 146  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
2
FIGURE 17-8:  
TYPICAL I2C™  
CONNECTIONS  
17.2 I C Mode  
The SSP module, in I2C mode, implements all slave  
functions except general call support. It provides  
interrupts on Start and Stop bits in hardware to facilitate  
firmware implementations of the master functions. The  
SSP module implements the I2C Standard mode  
specifications:  
VDD VDD  
Slave 1  
Master  
SDA  
SCL  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
SDA  
SCL  
• Start and Stop bit interrupts enabled to support  
firmware Master mode  
Slave 2  
• Address masking  
SDA  
Two pins are used for data transfer; the SCL pin (clock  
line) and the SDA pin (data line). The user must  
configure the two pin’s data direction bits as inputs in  
the appropriate TRIS register. Upon enabling I2C  
mode, the I2C slew rate limiters in the I/O pads are  
controlled by the SMP bit of SSPSTAT register. The  
SSP module functions are enabled by setting the  
SSPEN bit of SSPCON register.  
SCL  
(optional)  
The SSP module has six registers for I2C operation.  
They are:  
• SSP Control (SSPCON) register  
Data is sampled on the rising edge and shifted out on  
the falling edge of the clock. This ensures that the SDA  
signal is valid during the SCL high time. The SCL clock  
input must have minimum high and low times for proper  
operation. Refer to Section 23.0 “Electrical  
Specifications”.  
• SSP Status (SSPSTAT) register  
• Serial Receive/Transmit Buffer (SSPBUF) register  
• SSP Shift Register (SSPSR), not directly  
accessible  
• SSP Address (SSPADD) register  
• SSP Address Mask (SSPMSK) register  
FIGURE 17-7:  
I2C™ MODE BLOCK  
DIAGRAM  
17.2.1  
HARDWARE SETUP  
Selection of I2C mode, with the SSPEN bit of the  
SSPCON register set, forces the SCL and SDA pins to  
be open drain, provided these pins are programmed as  
inputs by setting the appropriate TRISC bits. The SSP  
module will override the input state with the output data,  
when required, such as for Acknowledge and slave-  
transmitter sequences.  
Internal  
Data Bus  
Read  
Write  
SSPBUF Reg  
SCL  
SDA  
Shift  
Clock  
Note:  
Pull-up resistors must be provided  
externally to the SCL and SDA pins for  
proper operation of the I2C module.  
SSPSR Reg  
MSb  
LSb  
SSPMSK Reg  
Match Detect  
SSPADD Reg  
Addr Match  
Start and  
Stop bit Detect  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 147  
PIC16(L)F720/721  
Figure 17-9 shows the Start and Stop conditions. A  
master device generates these conditions for starting  
and terminating data transfer. Due to the definition of  
the Start and Stop conditions, when data is being trans-  
mitted, the SDA line can only change state when the  
SCL line is low.  
17.2.2  
START AND STOP CONDITIONS  
During times of no data transfer (Idle time), both the  
clock line (SCL) and the data line (SDA) are pulled high  
through external pull-up resistors. The Start and Stop  
conditions determine the start and stop of data trans-  
mission. The Start condition is defined as a high-to-low  
transition of the SDA line while SCL is high. The Stop  
condition is defined as a low-to-high transition of the  
SDA line while SCL is high.  
FIGURE 17-9:  
START AND STOP CONDITIONS  
SDA  
SCL  
S
P
Change of  
Change of  
Data Allowed  
Start  
Data Allowed  
Stop  
Condition  
Condition  
In such a case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF of the PIR1 register is  
set. Table 17-2 shows the results of when a data  
transfer byte is received, given the status of bits BF and  
SSPOV. Flag bit BF is cleared by reading the SSPBUF  
register, while bit SSPOV is cleared through software.  
17.2.3  
ACKNOWLEDGE  
After the valid reception of an address or data byte, the  
hardware automatically will generate the Acknowledge  
(ACK) pulse and load the SSPBUF register with the  
received value currently in the SSPSR register. There  
are certain conditions that will cause the SSP module  
not to generate this ACK pulse. They include any or all  
of the following:  
• The Buffer Full bit, BF of the SSPSTAT register,  
was set before the transfer was received.  
• The SSP Overflow bit, SSPOV of the SSPCON  
register, was set before the transfer was received.  
• The SSP module is being operated in Firmware  
Master mode.  
TABLE 17-2: DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Set bit SSPIF  
(SSP Interrupt occurs  
if enabled)  
Generate ACK  
Transfer is Received  
SSPSR SSPBUF  
Pulse  
BF  
SSPOV  
0
1
1
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
DS40001430E-page 148  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
17.2.4  
ADDRESSING  
17.2.4.2  
10-bit Addressing  
Once the SSP module has been enabled, it waits for a  
Start condition to occur. Following the Start condition,  
the 8 bits are shifted into the SSPSR register. All incom-  
ing bits are sampled with the rising edge of the clock  
line (SCL).  
In 10-bit Address mode, two address bytes need to be  
received by the slave (Figure 17-11). The five Most  
Significant bits (MSbs) of the first address byte specify  
if it is a 10-bit address. The R/W bit of the SSPSTAT  
register must specify a write so the slave device will  
receive the second address byte. For a 10-bit address,  
the first byte would equal ‘1111 0 A9 A8 0’, where  
A9 and A8 are the two MSbs of the address.  
17.2.4.1  
7-bit Addressing  
In 7-bit Addressing mode (Figure 17-10), the value of  
register SSPSR<7:1> is compared to the value of reg-  
ister SSPADD<7:1>. The address is compared on the  
falling edge of the eighth clock (SCL) pulse. If the  
addresses match, and the BF and SSPOV bits are  
clear, the following events occur:  
The sequence of events for 10-bit address is as follows  
for reception:  
1. Load SSPADD register with high byte of address.  
2. Receive first (high) byte of address (bits SSPIF,  
BF and UA of the SSPSTAT register are set).  
• The SSPSR register value is loaded into the  
SSPBUF register.  
3. Read the SSPBUF register (clears bit BF).  
4. Clear the SSPIF flag bit.  
• The BF bit is set.  
5. Update the SSPADD register with second (low)  
byte of address (clears UA bit and releases the  
SCL line).  
• An ACK pulse is generated.  
• SSP Interrupt Flag bit, SSPIF of the PIR1 register,  
is set (interrupt is generated if enabled) on the  
falling edge of the ninth SCL pulse.  
6. Receive low byte of address (bits SSPIF, BF and  
UA are set).  
7. Update the SSPADD register with the high byte  
of address. If match releases SCL line, this will  
clear bit UA.  
8. Read the SSPBUF register (clears bit BF).  
9. Clear flag bit SSPIF.  
If data is requested by the master, once the slave has  
been addressed:  
1. Receive repeated Start condition.  
2. Receive repeat of high byte address with R/W = 1,  
indicating a read.  
3. BF bit is set and the CKP bit is cleared, stopping  
SCL and indicating a read request.  
4. SSPBUF is written, setting BF, with the data to  
send to the master device.  
5. CKP is set in software, releasing the SCL line.  
17.2.4.3  
Address Masking  
The Address Masking register (SSPMSK) is only  
accessible while the SSPM bits of the SSPCON  
register are set to ‘1001’. In this register, the user can  
select which bits of a received address the hardware  
will compare when determining an address match. Any  
bit that is set to a zero in the SSPMSK register, the  
corresponding bit in the received address byte and  
SSPADD register are ignored when determining an  
address match. By default, the register is set to all  
ones, requiring a complete match of a 7-bit address or  
the lower eight bits of a 10-bit address.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 149  
PIC16(L)F720/721  
17.2.5  
RECEPTION  
When the R/W bit of the received address byte is clear,  
the master will write data to the slave. If an address  
match occurs, the received address is loaded into the  
SSPBUF register. An address byte overflow will occur  
if that loaded address is not read from the SSPBUF  
before the next complete byte is received.  
An SSP interrupt is generated for each data transfer byte.  
The BF, R/W and D/A bits of the SSPSTAT register are  
used to determine the status of the last received byte.  
FIGURE 17-10:  
I2C™ WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
R/W = 0  
ACK  
Receiving Address  
A7 A6 A5 A4 A3 A2  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
SDA  
A1  
7
D2 D1 D0  
D4  
D3  
D7 D6 D5 D4 D3 D2 D1 D0  
D7  
1
D6 D5  
1
2
3
4
5
6
8
9
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
P
SCL  
S
SSPIF  
Cleared in software  
Bus Master  
sends Stop  
condition  
BF  
SSPBUF register is read  
SSPOV  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
DS40001430E-page 150  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 17-11:  
I2C™ SLAVE MODE TIMING (RECEPTION, 10-BIT ADDRESS)  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 151  
PIC16(L)F720/721  
Following the 8th falling clock edge, control of the SDA  
line is released back to the master so that the master  
can acknowledge or not acknowledge the response. If  
the master sends a not acknowledge, the slave’s  
transmission is complete and the slave must monitor for  
the next Start condition. If the master acknowledges,  
control of the bus is returned to the slave to transmit  
another byte of data. Just as with the previous byte, the  
clock is stretched by the slave, data must be loaded into  
the SSPBUF and CKP must be set to release the clock  
line (SCL).  
17.2.6  
TRANSMISSION  
When the R/W bit of the received address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set and the slave will respond to  
the master by reading out data. After the address match,  
an ACK pulse is generated by the slave hardware and  
the SCL pin is held low (clock is automatically stretched)  
until the slave is ready to respond. See Section 17.2.7  
“Clock Stretching”. The data the slave will transmit  
must be loaded into the SSPBUF register, which sets  
the BF bit. The SCL line is released by setting the CKP  
bit of the SSPCON register.  
An SSP interrupt is generated for each transferred data  
byte. The SSPIF flag bit of the PIR1 register initiates an  
SSP interrupt, and must be cleared by software before  
the next byte is transmitted. The BF bit of the SSPSTAT  
register is cleared on the falling edge of the 8th  
received clock pulse. The SSPIF flag bit is set on the  
falling edge of the ninth clock pulse.  
FIGURE 17-12:  
I2C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4 A3 A2 A1  
R/W  
Transmitting Data  
ACK  
9
SDA  
SCL  
ACK  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
Cleared in software  
SSPIF  
BF  
Dummy read of SSPBUF  
to clear BF flag  
From SSP Interrupt  
Service Routine  
SSPBUF is written in software  
CKP  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to  
before the CKP bit can be set)  
DS40001430E-page 152  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
2
FIGURE 17-13:  
I C SLAVE MODE TIMING (TRANSMISSION 10-BIT ADDRESS)  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 153  
PIC16(L)F720/721  
Refer to Application Note AN554, “Software  
Implementation of I2C™ Bus Master” (DS00554) for more  
information.  
17.2.7  
CLOCK STRETCHING  
During any SCL low phase, any device on the I2C bus  
may hold the SCL line low and delay, or pause, the  
transmission of data. This “stretching” of a transmission  
allows devices to slow down communication on the  
bus. The SCL line must be constantly sampled by the  
master to ensure that all devices on the bus have  
released SCL for more data.  
17.2.9  
MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allow the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the SSP  
module is disabled. The Stop (P) and Start (S) bits will  
toggle based on the Start and Stop conditions. Control  
of the I2C bus may be taken when the P bit of the  
SSPSTAT register is set or when the bus is Idle, and  
both the S and P bits are clear. When the bus is busy,  
enabling the SSP Interrupt will generate the interrupt  
when the Stop condition occurs.  
Stretching usually occurs after an ACK bit of a  
transmission, delaying the first bit of the next byte. The  
SSP module hardware automatically stretches for two  
conditions:  
• After a 10-bit address byte is received (update  
SSPADD register)  
• Anytime the CKP bit of the SSPCON register is  
cleared by hardware  
In Multi-Master operation, the SDA line must be moni-  
tored to see if the signal level is the expected output  
level. This check only needs to be done when a high  
level is output. If a high level is expected and a low level  
is present, the device needs to release the SDA and  
SCL lines (set TRIS bits). There are two stages where  
this arbitration of the bus can be lost. They are the  
Address Transfer and Data Transfer stages.  
The module will hold SCL low until the CKP bit is set.  
This allows the user slave software to update SSPBUF  
with data that may not be readily available. In 10-bit  
addressing modes, the SSPADD register must be  
updated after receiving the first and second address  
bytes. The SSP module will hold the SCL line low until  
the SSPADD has a byte written to it. The UA bit of the  
SSPSTAT register will be set, along with SSPIF,  
indicating an address update is needed.  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address  
transfer stage, communication to the device may be in  
progress. If addressed, an ACK pulse will be  
generated. If arbitration was lost during the data  
transfer stage, the device will need to re-transfer the  
data at a later time.  
17.2.8  
FIRMWARE MASTER MODE  
Master mode of operation is supported in firmware  
using interrupt generation on the detection of the Start  
and Stop conditions. The Stop (P) and Start (S) bits of  
the SSPSTAT register are cleared from a Reset or  
when the SSP module is disabled (SSPEN cleared).  
The Stop (P) and Start (S) bits will toggle based on the  
Start and Stop conditions. Control of the I2C bus may  
be taken when the P bit is set or the bus is Idle and both  
the S and P bits are clear.  
Refer to Application Note AN578, “Use of the SSP  
Module in the I2C™ Multi-Master Environment”  
(DS00578) for more information.  
In Firmware Master mode, the SCL and SDA lines are  
manipulated by setting/clearing the corresponding TRIS  
bit(s). The output level is always low, irrespective of the  
value(s) in the corresponding PORT register bit(s).  
When transmitting a ‘1’, the TRIS bit must be set (input)  
and a ‘0’, the TRIS bit must be clear (output).  
The following events will cause the SSP Interrupt Flag  
bit, SSPIF, to be set (SSP Interrupt will occur if  
enabled):  
• Start condition  
• Stop condition  
• Data transfer byte transmitted/received  
Firmware Master mode of operation can be done with  
either the Slave mode Idle (SSPM<3:0> = 1011), or  
with either of the Slave modes in which interrupts are  
enabled. When both master and slave functionality is  
enabled, the software needs to differentiate the  
source(s) of the interrupt.  
DS40001430E-page 154  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
17.2.10 CLOCK SYNCHRONIZATION  
17.2.11 SLEEP OPERATION  
When the CKP bit is cleared, the SCL output is held low  
once it is sampled low. Therefore, the CKP bit will not  
stretch the SCL line until an external I2C master device  
has already asserted the SCL line low. The SCL output  
will remain low until the CKP bit is set and all other  
devices on the I2C bus have released SCL. This  
ensures that a write to the CKP bit will not violate the  
minimum high time requirement for SCL (Figure 17-14).  
While in Sleep mode, the I2C module can receive  
addresses of data, and when an address match or  
complete byte transfer occurs, wake the processor  
from Sleep (if SSP interrupt is enabled).  
FIGURE 17-14:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX-1  
Master device  
asserts clock  
CKP  
Master device  
de-asserts clock  
WR  
SSPCON  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 155  
PIC16(L)F720/721  
REGISTER 17-3: SSPCON: SYNCHRONOUS SERIAL PORT CONTROL REGISTER (I2C MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a “don’t  
care” in Transmit mode. SSPOV must be cleared in software in either mode.  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables the serial port and configures the SDA and SCL pins as serial port pins(2)  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
1= Release control of SCL  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port mode Select bits  
0110= I2C Slave mode, 7-bit address  
0111= I2C Slave mode, 10-bit address  
1000= Reserved  
1001= Load SSPMSK register at SSPADD SFR Address(1)  
1010= Reserved  
1011= I2C Firmware Controlled Master mode (Slave Idle)  
1100= Reserved  
1101= Reserved  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
Note 1: When this mode is selected, any reads or writes to the SSPADD SFR address accesses the SSPMSK register.  
2: When enabled, these pins must be properly configured as input or output using the associated TRIS bit.  
DS40001430E-page 156  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
REGISTER 17-4: SSPSTAT: SYNCHRONOUS SERIAL PORT STATUS REGISTER (I2C MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
SMP: SPI Data Input Sample Phase bit  
1= Slew Rate Control (limiting) disabled. Operating in I2C Standard mode (100 kHz and 1 MHz).  
0= Slew Rate Control (limiting) enabled. Operating in I2C Fast mode (400 kHz).  
bit 6  
bit 5  
CKE: SPI Clock Edge Select bit  
This bit must be maintained clear. Used in SPI mode only.  
D/A: DATA/ADDRESS bit (I2C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: Stop bit  
This bit is cleared when the SSP module is disabled, or when the Start bit is detected last.  
1= Indicates that a Stop bit has been detected last (this bit is ‘0’ on Reset)  
0= Stop bit was not detected last  
S: Start bit  
This bit is cleared when the SSP module is disabled, or when the Stop bit is detected last.  
1= Indicates that a Start bit has been detected last (this bit is ‘0’ on Reset)  
0= Start bit was not detected last  
R/W: READ/WRITE bit Information  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next Start bit, Stop bit or ACK bit.  
1= Read  
0= Write  
bit 1  
bit 0  
UA: Update Address bit (10-bit I2C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
Receive:  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Transmit:  
1= Transmit in progress, SSPBUF is full  
0= Transmit complete, SSPBUF is empty  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 157  
PIC16(L)F720/721  
REGISTER 17-5: SSPMSK: SSP MASK REGISTER  
R/W-1  
MSK7  
R/W-1  
MSK6  
R/W-1  
MSK5  
R/W-1  
MSK4  
R/W-1  
MSK3  
R/W-1  
MSK2  
R/W-1  
MSK1  
R/W-1  
MSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
bit 0  
MSK<7:1>: Mask bits  
1= The received address bit n is compared to SSPADD<n> to detect I2C address match  
0= The received address bit n is not used to detect I2C address match  
MSK<0>: Mask bit for I2C Slave Mode, 10-bit Address  
I2C Slave mode, 10-bit Address (SSPM<3:0> = 0111):  
1= The received address bit ‘0’ is compared to SSPADD<0> to detect I2C address match  
0= The received address bit ‘0’ is not used to detect I2C address match  
All other SSP modes: this bit has no effect.  
REGISTER 17-6: SSPADD: SSP I2C ADDRESS REGISTER  
R/W-0  
ADD7  
R/W-0  
ADD6  
R/W-0  
ADD5  
R/W-0  
ADD4  
R/W-0  
ADD3  
R/W-0  
ADD2  
R/W-0  
ADD1  
R/W-0  
ADD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADD<7:0>: Address bits  
Received address  
TABLE 17-3: REGISTERS ASSOCIATED WITH I2C OPERATION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
TMR0IE  
RCIF  
INTE  
TXIF  
TXIE  
RABIE TMR0IF  
SSPIF  
SSPIE CCP1IE TMR2IE TMR1IE  
INTF  
RABIF  
38  
40  
TMR1GIF  
TMR1GIE  
CCP1IF TMR2IF TMR1IF  
PIE1  
RCIE  
39  
SSPBUF  
SSPADD  
SSPCON  
SSPMSK(2)  
SSPSTAT  
TRISB  
Synchronous Serial Port Receive Buffer/Transmit Register  
ADD<7:0>  
139  
158  
156  
158  
145  
55  
WCOL  
SSPOV SSPEN  
CKP  
SSPM3 SSPM2 SSPM1  
SSPM0  
MSK<7:0>  
P
SMP(1)  
CKE(1)  
D/A  
S
R/W  
UA  
BF  
TRISB7  
TRISB6 TRISB5 TRISB4  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by SSP  
module in I2C mode.  
Note 1: Maintain these bits clear in I2C mode.  
2: Accessible only when SSPM<3:0> = 1001.  
DS40001430E-page 158  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
18.1 Program Memory Read Operation  
18.0 FLASH PROGRAM MEMORY  
SELF READ/SELF WRITE  
CONTROL  
To read a program memory location, the user must  
write two bytes of the address to the PMADRH and  
PMADRL registers, then set control bit RD  
(PMCON1<0>). Once the read control bit is set, the  
Program Memory Read (PMR) controller uses the two  
instruction cycles to read the data. This causes the two  
instructions immediately following the ‘BSF PMCON1,  
RD’ instruction to be ignored.  
The Flash Program Memory is readable and writable  
during normal operation of the device. This memory is  
not directly mapped in the register file space. Instead,  
it is indirectly addressed through the Special Function  
Registers. There are six SFRs used to read/write this  
memory:  
The data is available in the third cycle, following the set  
of the RD bit, in the PMDATH and PMDATL registers.  
PMDATL and PMDATH registers will hold this value  
until another read is executed. See Example 18-1 and  
Figure 18-1 for more information.  
• PMCON1  
• PMCON2  
• PMDATL  
• PMDATH  
• PMADRL  
• PMADRH  
Note:  
Interrupts must be disabled during the  
time from setting PMCON1<0> (RD) to  
the third instruction thereafter.  
When interfacing the program memory block, the  
PMDATL and PMDATH registers form a two byte word  
which holds the 14-bit program data for reading, and  
the PMADRL and PMADRH registers form a two byte  
word which holds the 13-bit address of the program  
Flash location being accessed. These devices have 2K  
to 4K words of program memory with an address range  
from 0000h to 0FFFh.  
Devices without a full map of memory will shadow  
accesses to unused blocks back to the implemented  
memory.  
EXAMPLE 18-1:  
FLASH PROGRAM MEMORY READ  
* This code block will read 1 word of program  
* memory at the memory address:  
PROG_ADDR_HI: PROG_ADDR_LO  
*
*
data will be returned in the variables;  
PROG_DATA_HI, PROG_DATA_LO  
BANKSEL PMADRL  
; Select Bank 2  
MOVLW  
MOVWF  
MOVLW  
MOVWL  
PROG_ADDR_LO  
PMADRL  
PROG_ADDR_HI  
PMADRH  
;
; Store LSB of address  
;
; Store MSB of address  
BANKSEL PMCON1  
; Select Bank 3  
BCF  
BSF  
NOP  
NOP  
BSF  
INTCON,GIE  
PMCON1,RD  
; Disable interrupts  
; Initiate read  
; Ignored (Figure 18-1)  
; Ignored (Figure 18-1)  
; Restore interrupts  
INTCON,GIE  
BANKSEL PMDATL  
; Select Bank 2  
MOVF  
PMDATL,W  
; Get LSB of word  
MOVWF  
MOVF  
PROG_DATA_LO  
PMDATH,W  
; Store in user location  
; Get MSB of word  
MOVWF  
PROG_DATA_HI  
; Store in user location  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 159  
PIC16(L)F720/721  
FIGURE 18-1:  
FLASH PROGRAM MEMORY READ CYCLE EXECUTION – NORMAL MODE  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PMADRH, PMADRL  
Flash ADDR  
Flash DATA  
PC  
PC + 1  
PC+3  
PC + 4  
PC + 5  
INSTR (PC)  
INSTR (PC + 1)  
PMDATH, PMDATL  
INSTR (PC + 3)  
INSTR (PC + 4)  
BSF PMCON1, RD  
Executed here  
INSTR (PC - 1)  
Executed here  
Forced NOP  
Executed here  
Forced NOP  
Executed here  
INSTR (PC + 3)  
Executed here  
INSTR (PC + 4)  
Executed here  
RD bit  
PMDATH  
PMDATL  
Register  
Force  
NOP  
Stop  
PC  
18.2 Code Protection  
18.4 PMCON1 and PMCON2 Registers  
When the device is code-protected, the CPU may  
continue to read and write the Flash program memory.  
Depending on the settings of the Flash program  
memory enable (WRT<1:0>) bits, the device may or  
may not be able to write certain blocks of the program  
memory. However, reads of the program memory are  
allowed.  
PMCON1 is the control register for the data program  
memory accesses.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, but only set  
in software. They are cleared in hardware at the  
completion of the read or write operation. The inability  
to clear the WR bit in software prevents the accidental  
premature termination of a write operation. Setting the  
control bit WR initiates a write operation. For program  
memory writes, WR initiates a write cycle if FREE = 0  
and an erase cycle if FREE = 1.  
When the Flash program memory Code Protection  
(CP) bit in the Configuration Word register is enabled,  
the program memory is code-protected, and the device  
programmer (ICSP™) cannot access data or program  
memory.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. PMCON2 is not a  
physical register. Reading PMCON2 will read all ‘0’s.  
The PMCON2 register is used exclusively in the Flash  
memory write sequence.  
Note:  
Code-protect does not affect the CPU  
from performing a read operation on the  
program memory. For more information,  
refer to Section 8.2 “Code Protection”.  
18.3 PMADRH and PMADRL Registers  
The PMADRH:PMADRL register pair can address up  
to a maximum of 4K words of program Flash. The Most  
Significant Byte (MSB) of the address is written to the  
PMADRH register and the Least Significant Byte (LSB)  
is written to the PMADRL register.  
DS40001430E-page 160  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
When the LWLO bit is ‘1’, the write sequence will only  
load the buffer register and will not actually initiate the  
write to program Flash:  
18.5 Writing to Flash Program Memory  
A word of the Flash program memory may only be  
written to if the word is in an unprotected segment of  
memory.  
1. Set the WREN and LWLO bits of the PMCON1  
register.  
Flash program memory may only be written to if the  
destination address is in a segment of memory that is  
not write-protected, as defined in bits WRT<1:0> of the  
Configuration Word Register 2. Flash program memory  
must be written in 32-word rows. See Figure 18-2 for  
more details. A row consists of 32 words with sequen-  
tial addresses, with a lower boundary defined by an  
address, where PMADR<4:0>= 00000. All row writes to  
program memory are done as 32-word erase and one  
to 32-word write operations. The write operation is  
edge-aligned. Crossing boundaries is not recom-  
mended, as the operation will only affect the new  
boundary, wrapping the data values at the same time.  
Once the write control bit is set, the Program Memory  
(PM) controller will immediately write the data. Program  
execution is stalled while the write is in progress.  
2. Write 55h, then AAh, to PMCON2 (Flash  
programming unlock sequence).  
3. Set control bit WR of the PMCON1 register to  
begin the write operation.  
Note:  
Self-write execution to Flash memory  
cannot be done while running in low  
power PFM and Voltage Regulator  
modes. Therefore, executing a self-write  
will put the PFM and voltage regulator into  
High Power mode for the duration of the  
sequence.  
To transfer data from the buffer registers to the program  
memory, the last word to be written should be written to  
the PMDATH:PMDATL register pair. Then, the  
following sequence of events must be executed:  
To erase a program memory row, the address of the  
row to erase must be loaded into the  
PMADRH:PMADRL register pair. A row consists of 32  
words so, when selecting a row, PMADR<4:0> are  
ignored. After the Address has been set up, then the  
following sequence of events must be executed:  
1. Clear the LWLO bit of the PMCON1 Register.  
2. Write 55h, then AAh, to PMCON2 (Flash  
programming sequence).  
3. Set control bit WR of the PMCON1 register to  
begin the write operation.  
1. Set the WREN and FREE control bits of the  
PMCON1 register.  
4. Two NOPmust follow the setting of the WR bit.  
2. Write 55h, then AAh, to PMCON2 (Flash  
programming sequence).  
This is necessary to provide time for the address and to  
be provided to the program Flash memory to be put in  
the write latches.  
3. Set the WR control bit of the PMCON1 register.  
To write program data, it must first be loaded into the  
buffer latches (see Figure 18-2). This is accomplished  
by first writing the destination address to PMADRL and  
PMADRH and then writing the data to PMDATA and  
PMDATH. After the address and data have been set  
up, then the following sequence of events must be  
executed:  
Note:  
An ICD break that occurs during the 55h -  
AAh – Set WR bit sequence will interrupt  
the timing of the sequence and prevent  
the unlock sequence from occurring. In  
this case, no write will be initiated, as  
there was no operation to complete.  
1. Set the WREN control bit of the PMCON1  
register.  
No automatic erase occurs upon the initiation of the  
write; if the program Flash needs to be erased before  
writing, the row (32 words) must be previously erased.  
2. Write 55h, then AAh, to PMCON2 (Flash  
programming sequence).  
3. Set the WR control bit of the PMCON1 register.  
After the “BSF PMCON1, WR” instruction, the processor  
requires two cycles to set up the erase/write operation.  
All 32 buffer register locations should be written to with  
correct data. If less than 32 words are being written to  
in the block of 32 words, then a read from the program  
memory location(s) not being written to must be  
performed. This takes the data from the program  
location(s) not being written and loads it into the  
PMDATL and PMDATH registers. Then, the sequence  
of events to transfer data to the buffer registers must be  
executed.  
The user must place two NOPinstructions after the WR  
bit is set. These two instructions will also be forced in  
hardware to NOP, but if an ICD break occurs at this  
point, the forcing to NOPwill be lost.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 161  
PIC16(L)F720/721  
Since data is being written to buffer registers, the  
writing of the first 31 words of the block appears to  
occur immediately. The processor will halt internal  
operations for the typical 2ms, only during the cycle in  
which the erase takes place (i.e., the last word of the  
32-word block erase). This is not Sleep mode as the  
clocks and peripherals will continue to run. After the 32-  
word write cycle, the processor will resume operation  
with the third instruction after the PMCON1 write  
instruction.  
FIGURE 18-2:  
BLOCK OF 32 WRITES TO FLASH PROGRAM MEMORY  
7
5
0
0 7  
PMDATH  
6
PMDATL  
8
14  
14  
14  
14  
PMADRL<4:0> = 00000  
PMADRL<4:0> = 00001  
PMADRL<4:0> = 00010  
PMADRL<4:0> = 11111  
Buffer Register  
Buffer Register  
Buffer Register  
Buffer Register  
Program Memory  
DS40001430E-page 162  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
18.6 Protection Against Spurious Write  
18.7 Operation During Code-Protect  
There are conditions when the device should not write  
to the program memory. To protect against spurious  
writes, various mechanisms have been built in. On  
power-up, WREN is cleared. Also, the Power-up Timer  
(64 ms duration) prevents program memory writes.  
When the device is code-protected, the CPU is able to  
read and write unscrambled data to the program  
memory.  
18.8 Operation During Write-Protect  
The write initiates sequence and the WREN bit helps  
prevent an accidental write during brown-out, power  
glitch or software malfunction.  
When the program memory is write-protected, the CPU  
can read and execute from the program memory.  
The portions of program memory that are  
write-protected can be modified by the CPU using the  
PMCON registers, but the protected program memory  
cannot be modified using ICSP mode.  
REGISTER 18-1: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER  
U-1  
R/W-0/0  
CFGS  
R/W-0/0  
LWLO  
R/W/HC-0/0  
FREE  
U-0  
R/W-0/0  
WREN  
R/S/HC-0/0 R/S/HC-0/0  
WR RD  
bit 7  
bit 0  
Legend:  
S = Setable bit, cleared in hardware  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘1’  
CFGS: Flash Program/Configuration Select bit  
1= Accesses Configuration, user ID and device ID registers  
0= Accesses Flash program  
bit 5  
bit 4  
LWLO: Load Write Latches Only bit  
1=  
The next WR command does not initiate a write to the PFM; only the program memory  
latches are updated.  
0=  
The next WR command writes a value from PMDATH:PMDATL into program memory latches  
and initiates a write to the PFM of all the data stored in the program memory latches.  
FREE: Program Flash Erase Enable bit  
1=  
Perform an program Flash erase operation on the next WR command (cleared by hardware  
after completion of erase).  
0=  
Perform a program Flash write operation on the next WR command  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
WREN: Program/Erase Enable bit  
1= Allows program/erase cycles  
0= Inhibits programming/erasing of Program Flash  
bit 1  
bit 0  
WR: Write Control bit  
1= Initiates a program Flash program/erase operation.  
The operation is self-timed and the bit is cleared by hardware once operation is complete.  
The WR bit can only be set (not cleared) in software.  
0= Program/erase operation to the Flash is complete and inactive  
RD: Read Control bit  
1= Initiates an program memory read (The RD is cleared in hardware; the RD bit can only be set  
(not cleared) in software).  
0= Does not initiate a program memory read  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 163  
PIC16(L)F720/721  
REGISTER 18-2: PMDATH: PROGRAM MEMORY DATA HIGH REGISTER  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
PMD9  
R/W-x  
PMD8  
PMD13  
PMD12  
PMD11  
PMD10  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
PMD<13:8>: The value of the program memory word pointed to by PMADRH and PMADRL after a  
program memory read command.  
REGISTER 18-3: PMDATL: PROGRAM MEMORY DATA LOW REGISTER  
R/W-x  
PMD7  
R/W-x  
PMD6  
R/W-x  
PMD5  
R/W-x  
PMD4  
R/W-x  
PMD3  
R/W-x  
PMD2  
R/W-x  
PMD1  
R/W-x  
PMD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
PMD<7:0>: The value of the program memory word pointed to by PMADRH and PMADRL after a  
program memory read command.  
REGISTER 18-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH REGISTER  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
PMA9  
R/W-x  
PMA8  
PMA12  
PMA11  
PMA10  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
PMA<12:8>: Program Memory Read Address bits  
DS40001430E-page 164  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
REGISTER 18-5: PMADRL: PROGRAM MEMORY ADDRESS LOW REGISTER  
R/W-x  
PMA7  
R/W-x  
PMA6  
R/W-x  
PMA5  
R/W-x  
PMA4  
R/W-x  
PMA3  
R/W-x  
PMA2  
R/W-x  
PMA1  
R/W-x  
PMA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
PMA<7:0>: Program Memory Read Address bits  
TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH PROGRAM MEMORY READ  
Register on  
Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMCON1  
PMCON2  
PMADRH  
PMADRL  
PMDATH  
PMDATL  
CFGS  
LWLO  
FREE  
WREN  
WR  
RD  
163  
Program Memory Control Register 2 (not a physical register)  
Program Memory Read Address Register High Byte  
164  
165  
164  
164  
Program Memory Read Address Register Low Byte  
Program Memory Read Data Register High Byte  
Program Memory Read Data Register Low Byte  
Legend: x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the program  
memory read.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 165  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 166  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
19.1 Wake-up from Sleep  
19.0 POWER-DOWN MODE (SLEEP)  
The device can wake-up from Sleep through one of the  
following events:  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
1. External Reset input on MCLR pin.  
If the Watchdog Timer is enabled:  
2. Watchdog Timer wake-up (if WDT was  
enabled).  
• WDT will be cleared but keeps running.  
• PD bit of the STATUS register is cleared.  
• TO bit of the STATUS register is set.  
• Oscillator driver is turned off.  
3. Interrupt from RA2/INT pin, PORTB change or a  
peripheral interrupt.  
The first event will cause a device Reset. The two latter  
events are considered a continuation of program  
execution. The TO and PD bits in the STATUS register  
can be used to determine the cause of a device Reset.  
The PD bit, which is set on power-up, is cleared when  
Sleep is invoked. TO bit is cleared if WDT wake-up  
occurred.  
• I/O ports maintain the status they had before  
SLEEPwas executed (driving high, low or high-  
impedance).  
For lowest current consumption in this mode, all I/O  
pins should be either at VDD or VSS, with no external  
circuitry drawing current from the I/O pin. I/O pins that  
are high-impedance inputs should be pulled high or low  
externally to avoid switching currents caused by float-  
ing inputs. The T0CKI input should also be at VDD or  
VSS for lowest current consumption. The contribution  
from on-chip pull-ups on PORTB should be considered.  
The following peripheral interrupts can wake the device  
from Sleep:  
1. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
2. USART Receive Interrupt (Synchronous Slave  
mode only)  
The MCLR pin must be at a logic high level when  
external MCLR is enabled.  
3. A/D conversion (when A/D clock source is RC)  
4. Interrupt-on-change  
Note:  
A Reset generated by a WDT time-out  
does not drive MCLR pin low.  
5. External interrupt from INT pin  
6. Capture event on CCP1  
7. SSP interrupt in SPI or I2C Slave mode  
Other peripherals cannot generate interrupts since  
during Sleep, no on-chip clocks are present.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction, then branches to the interrupt  
address (0004h). In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
Note:  
If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the correspond-  
ing interrupt flag bits set, the device will  
immediately wake-up from Sleep. The  
SLEEPinstruction is completely executed.  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 167  
PIC16(L)F720/721  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
19.2 Wake-up Using Interrupts  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP. Therefore, the WDT and WDT  
prescaler and postscaler (if enabled) will not be  
cleared, the TO bit will not be set and the PD bit  
will not be cleared.  
To ensure that the WDT is cleared, a CLRWDTinstruction  
should be executed before a SLEEPinstruction.  
• If the interrupt occurs during or after the  
execution of a SLEEPinstruction, the device will  
immediately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT prescaler  
and postscaler (if enabled) will be cleared, the TO  
bit will be set and the PD bit will be cleared.  
FIGURE 19-1:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Oscillator  
CLKOUT(2)  
INT pin  
INTF flag  
(INTCON reg.)  
Interrupt Latency(1)  
GIE bit  
(INTCON reg.)  
Processor in  
Sleep  
Instruction Flow  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Sleep  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1:  
2:  
GIE = 1assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.  
CLKOUT is not available in EC Oscillator mode, but shown here for timing reference.  
TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE  
Register on  
Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IOCB  
INTCON  
PIE1  
IOCB7  
GIE  
IOCB6  
PEIE  
ADIE  
ADIF  
IOCB5  
TMR0IE  
RCIE  
IOCB4  
INTE  
TXIE  
TXIF  
56  
38  
39  
40  
RABIE  
SSPIE  
SSPIF  
TMR0IF  
INTF  
RABIF  
TMR1GIE  
TMR1GIF  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
PIR1  
RCIF  
Legend: x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used in Power-Down  
mode.  
DS40001430E-page 168  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
The device is placed into Program/Verify mode by  
holding the ICSPCLK and ICSPDAT pins low then  
raising the voltage on MCLR/VPP from 0V to VPP. In  
Program/Verify mode the program memory, user IDs and  
the Configuration Words are programmed through serial  
communications. The ICSPDAT pin is a bidirectional I/O  
used for transferring the serial data and the ISCPCLK pin  
is the clock input. For more information on ICSP™ refer  
20.0 IN-CIRCUIT SERIAL  
PROGRAMMING™ (ICSP™)  
ICSP™ programming allows customers to manufacture  
circuit boards with unprogrammed devices. Programming  
can be done after the assembly process, allowing the  
device to be programmed with the most recent firmware  
or a custom firmware. Five pins are needed for ICSP™  
programming:  
to  
the  
PIC16F72x/PIC16LF72x  
Programming  
Specification” (DS41332).  
• ICSPCLK  
• ICSPDAT  
• MCLR/VPP  
• VDD  
• VSS  
FIGURE 20-1:  
TYPICAL CONNECTION FOR ICSP™ PROGRAMMING  
External  
Programming  
Signals  
Device to be  
Programmed  
VDD  
VDD  
VDD  
10k  
VPP  
MCLR/VPP  
VSS  
GND  
Data  
ICSPDAT  
ICSPCLK  
Clock  
*
*
*
To Normal Connections  
Isolation devices (as required).  
*
2010-2013 Microchip Technology Inc.  
DS40001430E-page 169  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 170  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
21.0 INSTRUCTION SET SUMMARY  
TABLE 21-1: OPCODE FIELD  
DESCRIPTIONS  
The PIC16(L)F720/721 instruction set is highly  
orthogonal and is comprised of three basic categories:  
Field  
Description  
Byte-oriented operations  
Bit-oriented operations  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Literal and control operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Each PIC16 instruction is a 14-bit word divided into an  
opcode, which specifies the instruction type and one or  
more operands, which further specify the operation of  
the instruction. The formats for each of the categories  
is presented in Figure 21-1, while the various opcode  
fields are summarized in Table 21-1.  
k
x
Don’t care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
Table 21-2 lists the instructions recognized by the  
MPASMTM assembler.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
PC  
TO  
C
Program Counter  
Time-out bit  
Carry bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
DC  
Z
Digit carry bit  
Zero bit  
PD  
Power-down bit  
For bit-oriented instructions, ‘b’ represents a bit field  
designator, which selects the bit affected by the  
operation, while ‘f’ represents the address of the file in  
which the bit is located.  
FIGURE 21-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
For literal and control operations, ‘k’ represents an 8-  
bit or 11-bit constant, or literal value.  
8
7
6
0
OPCODE  
d
f (FILE #)  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a  
nominal instruction execution time of 1 s. All  
instructions are executed within a single instruction  
cycle, unless a conditional test is true, or the program  
counter is changed as a result of an instruction. When  
this occurs, the execution takes two instruction cycles,  
with the second cycle executed as a NOP.  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
Literal and control operations  
General  
21.1 Read-Modify-Write Operations  
13  
8
7
0
0
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion, or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
OPCODE  
k (literal)  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
For example, a CLRF PORTB instruction will read  
PORTB, clear all the data bits, then write the result  
back to PORTB. This example would have the unin-  
tended consequence of clearing the condition that set  
the RABIF flag.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 171  
PIC16(L)F720/721  
TABLE 21-2: PIC16(L)F720/721 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Description  
Operands  
Status  
Affected  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
1, 2  
1, 2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1, 2  
1, 2  
1, 2, 3  
1, 2  
1, 2, 3  
1, 2  
1, 2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
Move W to f  
No Operation  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
00 0010 dfff ffff C, DC, Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1, 2  
1, 2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Call Subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C, DC, Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO, PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO, PD  
11 110x kkkk kkkk C, DC, Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
DS40001430E-page 172  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
21.2 Instruction Descriptions  
BCF  
Bit Clear f  
ADDLW  
Add literal and W  
Syntax:  
[ label ] BCF f,b  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) + k (W)  
C, DC, Z  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal ‘k’  
and the result is placed in the  
W register.  
Bit ‘b’ in register ‘f’ is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d 0,1  
Operation:  
1(f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit ‘b’ in register ‘f’ is set.  
Description:  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If  
‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
BTFSC  
Bit Test f, Skip if Clear  
ANDLW  
AND literal with W  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 0  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
If bit ‘b’ in register ‘f’ is ‘0’ the next  
instruction is discarded and a NOP  
is executed instead, making this a  
2-cycle instruction.  
ANDWF  
AND W with f  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
d 0,1  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
AND the W register with register  
‘f’. If ‘d’ is ‘0’, the result is stored in  
the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 173  
PIC16(L)F720/721  
CLRWDT  
Clear Watchdog Timer  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[ label ] CLRWDT  
Syntax:  
[ label ] BTFSS f,b  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
0 b < 7  
00h WDT  
0WDT prescaler,  
1TO  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
1PD  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
Status Affected: TO, PD  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOP  
is executed instead, making this a  
2-cycle instruction.  
Status bits TO and PD are set.  
CALL  
Call Subroutine  
COMF  
Complement f  
Syntax:  
[ label ] CALL  
0 k 2047  
k
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in  
register ‘f’.  
Description:  
Call Subroutine. First, return  
address (PC + 1) is pushed onto  
the stack. The eleven-bit  
immediate address is loaded into  
PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two-cycle instruction.  
CLRF  
Clear f  
DECF  
Decrement f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are  
cleared and the Z bit is set.  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
DS40001430E-page 174  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, then a NOPis  
executed instead, making it a  
2-cycle instruction.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, a NOPis executed  
instead, making it a 2-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the  
W register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a  
two-cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 175  
PIC16(L)F720/721  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
MOVF  
Move f  
Syntax:  
f
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
0 f 127  
d [0,1]  
Operation:  
(f) (dest)  
None  
Status Affected:  
Description:  
Z
Move data from W register to  
register ‘f’.  
The contents of register f is  
moved to a destination dependent  
upon the status of d. If d = 0,  
destination is W register. If d = 1,  
the destination is file register f  
itself. d = 1is useful to test a file  
register since status flag Z is  
affected.  
Words:  
1
1
Cycles:  
Example:  
MOVW  
F
OPTION  
Before Instruction  
OPTION = 0xFF  
Words:  
1
1
W
=
0x4F  
After Instruction  
Cycles:  
Example:  
OPTION = 0x4F  
W
MOVF  
FSR, 0  
=
0x4F  
After Instruction  
W
=
value in FSR  
register  
Z
=
1
MOVLW  
Syntax:  
Move literal to W  
NOP  
No Operation  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] NOP  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
k (W)  
No operation  
Status Affected: None  
None  
Description:  
The eight-bit literal ‘k’ is loaded into  
W register. The “don’t cares” will  
assemble as ‘0’s.  
No operation.  
1
Cycles:  
1
Words:  
1
1
NOP  
Example:  
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
DS40001430E-page 176  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RETLW  
Return with literal in W  
Syntax:  
Syntax:  
[ label ] RETLW k  
Operands:  
Operation:  
Operands:  
Operation:  
0 k 255  
TOS PC,  
1GIE  
k (W);  
TOS PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
Return from Interrupt. Stack is  
POPed and Top-of-Stack (TOS) is  
loaded in the PC. Interrupts are  
enabled by setting Global  
Interrupt Enable bit, GIE  
The W register is loaded with the  
eight bit literal ‘k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
(INTCON<7>). This is a two-cycle  
instruction.  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
CALL TABLE;W contains  
table  
Cycles:  
Example:  
2
RETFIE  
;offset value  
;W now has table value  
TABLE  
After Interrupt  
PC = TOS  
GIE =  
1
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
RETLW k2  
;
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
RETURN  
Return from Subroutine  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
TOS PC  
Status Affected: None  
Description: Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 177  
PIC16(L)F720/721  
RLF  
Rotate Left f through Carry  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0PD  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
C
Register f  
Words:  
1
1
Cycles:  
Example:  
RLF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
SUBLW  
Subtract W from literal  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Syntax:  
[ label ] RRF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
k - (W) W)  
Operation:  
See description below  
C
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Description: The W register is subtracted (2’s  
complement method) from the  
eight-bit literal ‘k’. The result is  
placed in the W register.  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is placed  
back in register ‘f’.  
C = 0  
W k  
C = 1  
W k  
DC = 0  
DC = 1  
W<3:0> k<3:0>  
W<3:0> k<3:0>  
C
Register f  
DS40001430E-page 178  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
SUBWF  
Subtract W from f  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
[ label ] XORLW k  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 k 255  
Operation:  
(W) .XOR. k W)  
Operation:  
(f) - (W) destination)  
Status Affected:  
Description:  
Z
Status Affected: C, DC, Z  
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
Description:  
Subtract (2’s complement method)  
W register from register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f.  
C = 0  
W f  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> f<3:0>  
W<3:0> f<3:0>  
SWAPF  
Swap Nibbles in f  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Operation:  
(W) .XOR. (f) destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Description: The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in the W  
register. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 179  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 180  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
22.1 MPLAB Integrated Development  
Environment Software  
22.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- HI-TECH C® for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 181  
PIC16(L)F720/721  
22.2 MPLAB C Compilers for Various  
Device Families  
22.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
22.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
22.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
22.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS40001430E-page 182  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
22.7 MPLAB SIM Software Simulator  
22.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
22.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
22.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 183  
PIC16(L)F720/721  
22.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
22.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
22.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS40001430E-page 184  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
23.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias....................................................................................................... -40°C to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS, PIC16F720/721 ........................................................................ -0.3V to +6.5V  
Voltage on VDD with respect to VSS, PIC16LF720/721 ...................................................................... -0.3V to +4.0V  
Voltage on MCLR with respect to VSS ................................................................................................. -0.3V to +9.0V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ...............................................................................................................................800 mW  
Maximum current out of VSS pin ...................................................................................................................... 95 mA  
Maximum current into VDD pin ......................................................................................................................... 70 mA  
Clamp current, IK (VPIN < 0 or VPIN > VDD)20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sunk by all ports, -40°C TA +85°C for industrial............................................................ 200 mA  
Maximum current sunk by all ports, -40°C TA +125°C for extended ........................................................... 90 mA  
Maximum current sourced by all ports, 40°C TA +85°C for industrial....................................................... 140 mA  
Maximum current sourced by all ports, -40°C TA +125°C for extended...................................................... 65 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for  
extended periods may affect device reliability.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 185  
PIC16(L)F720/721  
23.1 DC Characteristics: PIC16(L)F720/721-I/E (Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF720/721  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F720/721  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param.  
No.  
Sym.  
Characteristic  
Supply Voltage  
Min.  
Typ† Max. Units  
Conditions  
D001  
VDD  
PIC16LF720/721  
1.8  
1.8  
3.6  
5.5  
V
FOSC 16 MHz: HFINTOSC, EC  
FOSC 16 MHz: HFINTOSC, EC  
D001  
PIC16F720/721  
V
(1)  
D002*  
VDR  
RAM Data Retention Voltage  
PIC16LF720/721  
1.5  
1.7  
V
V
V
Device in Sleep mode  
Device in Sleep mode  
D002*  
PIC16F720/721  
VPOR*  
Power-on Reset Release Voltage  
1.6  
VPORR* Power-on Reset Rearm Voltage  
PIC16LF720/721  
-8  
0.9  
1.5  
6
V
V
PIC16F720/721  
D003  
VFVR  
SVDD  
Fixed Voltage Reference Voltage,  
Initial Accuracy  
%
VFVR = 1.024V, VDD 2.5V  
VFVR = 2.048V, VDD 2.5V  
VFVR = 4.096V, VDD 4.75V;  
D004*  
VDD Rise Rate to ensure internal  
0.05  
V/ms See Section 3.2 “Power-on Reset  
(POR)” for details.  
Power-on Reset signal  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
DS40001430E-page 186  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 23-1:  
POR AND POR REARM WITH SLOW RISING VDD  
VDD  
VPOR  
VPORR  
VSS  
NPOR  
POR REARM  
VSS  
(3)  
(2)  
TPOR  
TVLOW  
Note 1: When NPOR is low, the device is held in Reset.  
2: TPOR 1 s typical.  
3: TVLOW 2.7 s typical.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 187  
PIC16(L)F720/721  
23.2 DC Characteristics: PIC16(L)F720/721-I/E (Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF720/721  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F720/721  
Param.  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Device  
Min.  
Typ†  
Max.  
Units  
No.  
Characteristics  
VDD  
Note  
(1, 2)  
Supply Current (IDD)  
D013  
D013  
100  
210  
120  
220  
250  
220  
420  
250  
450  
500  
105  
130  
120  
145  
160  
600  
1000  
610  
1010  
1150  
900  
1450  
910  
1460  
1700  
180  
270  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
FOSC = 1 MHz  
EC mode  
205  
FOSC = 1 MHz  
EC mode  
320  
410  
D014  
D014  
330  
FOSC = 4 MHz  
EC mode  
500  
430  
FOSC = 4 MHz  
EC mode  
655  
730  
D015  
D015  
203  
FOSC = 500 kHz  
MFINTOSC mode  
235  
219  
FOSC = 500 kHz  
MFINTOSC mode  
284  
348  
D016  
D016  
800  
FOSC = 8 MHz  
HFINTOSC mode  
1200  
850  
FOSC = 8 MHz  
HFINTOSC mode  
1200  
1500  
1200  
1850  
1200  
1900  
2100  
D017  
D017  
FOSC = 16 MHz  
HFINTOSC mode  
FOSC = 16 MHz  
HFINTOSC mode  
Note 1: The test conditions for all IDD measurements in active EC Mode are: CLKIN = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
DS40001430E-page 188  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
23.3 DC Characteristics: PIC16(L)F720/721-I/E (Power-Down)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF720/721  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F720/721  
Param.  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Note  
Max.  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
No.  
+85°C +125°C  
VDD  
(2)  
Power-down Base Current (IPD)  
D020  
0.04  
0.05  
18  
1
2
8
9
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
Base IPD  
Base IPD  
D020  
47  
58  
60  
4
55  
72  
84  
9
20  
23  
D021  
D021  
0.5  
0.8  
20  
IPD LPWDT on (Note 1)  
IPD LPWDT on (Note 1)  
5
11  
49  
60  
63  
29  
31  
77  
98  
160  
57  
74  
86  
35  
38  
90  
108  
170  
22  
25  
D021A  
D021A  
14  
IPD FVR on (Note 1)  
IPD FVR on (Note 1)  
15  
39  
46  
91  
D022  
D022  
IPD BOR on (Note 1)  
IPD BOR on (Note 1)  
7
15  
26  
26  
64  
67  
4
78  
91  
10  
11  
29  
D027  
D027  
1.5  
2
IPD ADC on (Note 1, Note 3)  
non-convert  
5
19  
48  
59  
62  
400  
420  
430  
450  
470  
57  
74  
87  
410  
430  
440  
460  
480  
IPD ADC on (Note 1, Note 3)  
non-convert  
21  
24  
D027A  
D027A  
250  
260  
280  
300  
320  
IPD ADC on (Note 1, Note 3)  
convert  
IPD ADC on (Note 1, Note 3)  
convert  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: A/D oscillator source is FRC.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 189  
PIC16(L)F720/721  
23.4 DC Characteristics: PIC16(L)F720/721-I/E  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param.  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O PORT:  
D030  
D030A  
D031  
with TTL buffer  
0.8  
V
V
V
V
4.5V VDD 5.5V  
0.15 VDD  
0.2 VDD  
0.3 VDD  
1.8V VDD 4.5V  
2.0V VDD 5.5V  
with Schmitt Trigger buffer  
2
with I C™ levels  
VIH  
Input High Voltage  
I/O ports:  
D040  
with TTL buffer  
2.0  
V
V
4.5V VDD 5.5V  
1.8V VDD 4.5V  
D040A  
0.25 VDD +  
0.8  
D041  
D042  
D060  
with Schmitt Trigger buffer  
0.8 VDD  
0.7 VDD  
0.8 VDD  
V
V
V
2.0V VDD 5.5V  
2
with I C™ levels  
MCLR  
(1)  
IIL  
Input Leakage Current  
I/O ports  
± 5  
± 125  
nA  
VSS VPIN VDD, Pin at high-  
impedance, 85°C  
125°C  
± 5  
± 1000  
± 200  
nA  
nA  
(2)  
D061  
MCLR  
± 50  
VSS VPIN VDD, 85°C  
IPUR  
VOL  
PORTB Weak Pull-up Current  
D070*  
25  
25  
100  
140  
200  
300  
VDD = 3.3V, VPIN = VSS  
VDD = 5.0V, VPIN = VSS  
A  
Output Low Voltage  
D080  
I/O ports  
IOL = 8mA, VDD = 5V  
IOL = 6mA, VDD = 3.3V  
IOL = 1.8mA, VDD = 1.8V  
0.6  
V
VOH  
Output High Voltage  
D090  
I/O ports  
IOH = 3.5mA, VDD = 5V  
IOH = 3mA, VDD = 3.3V  
IOH = 1mA, VDD = 1.8V  
VDD - 0.7  
V
CIO  
EP  
Capacitive Loading Specs on Output Pins  
D101A*  
All I/O pins  
50  
pF  
Program Flash Memory  
Cell Endurance  
D130  
D131  
1k  
10k  
E/W Temperature during programming:  
10°C TA 40°C  
VPR  
VDD for Read  
VMIN  
8.0  
V
Temperature during programming:  
10°C TA 40°C  
VIHH  
Voltage on MCLR/VPP during  
Erase/Program  
9.0  
V
D132  
VPEW  
VDD for Write or Row Erase  
1.8  
1.8  
5.5  
3.6  
V
V
PIC16F720/721  
PIC16LF720/721  
Temperature during programming:  
10°C TA 40°C  
IPPPGM* Current on MCLR/VPP during  
Erase/Write  
1.0  
mA  
IDDPGM* Current on VDD during Erase/  
Write  
5.0  
Temperature during programming:  
10°C TA 40°C  
mA  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Negative current is defined as current sourced by the pin.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
DS40001430E-page 190  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
23.4 DC Characteristics: PIC16(L)F720/721-I/E (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param.  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
D133  
D134*  
D135  
TPEW  
Erase/Write cycle time  
Characteristic Retention  
High-Endurance Flash Cell  
2.8  
ms Temperature during programming:  
10°C TA 40°C  
TRETD  
EHEFC  
40  
Year Provided no other specifications  
are violated  
100K  
E/W 0°C to +60°C  
Lower byte,  
Last 128 Addresses in Flash  
memory  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Negative current is defined as current sourced by the pin.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 191  
PIC16(L)F720/721  
23.5 Thermal Considerations  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature-40°C TA +125°C  
Param.  
No.  
Sym.  
Characteristic  
Typ.  
Units  
Conditions  
TH01  
JA  
Thermal Resistance Junction to  
Ambient  
62.2  
75.0  
89.3  
43.0  
27.5  
23.1  
31.1  
5.3  
C/W 20-pin PDIP package  
C/W 20-pin SOIC package  
C/W 20-pin SSOP package  
C/W 20-pin QFN 4x4mm package  
C/W 20-pin PDIP package  
C/W 20-pin SOIC package  
C/W 20-pin SSOP package  
C/W 20-pin QFN 4x4mm package  
C  
TH02  
JC  
Thermal Resistance Junction to  
Case  
TH03  
TH04  
TH05  
TH06  
TJMAX  
PD  
Maximum Junction Temperature  
Power Dissipation  
150  
W
W
W
PD = PINTERNAL + PI/O  
PINTERNAL = IDD x VDD  
(1)  
PINTERNAL Internal Power Dissipation  
PI/O  
I/O Power Dissipation  
PI/O = (IOL * VOL) + (IOH * (VDD -  
VOH))  
(2)  
TH07  
PDER  
Derated Power  
W
PDER = PDMAX (TJ - TA)/JA  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient Temperature; TJ = Junction Temperature  
DS40001430E-page 192  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
23.6  
Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
CLKIN  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O PORT  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 23-2:  
LOAD CONDITIONS  
Load Condition  
Pin  
CL  
VSS  
Legend: CL = 50 pF for all pins  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 193  
PIC16(L)F720/721  
23.7 AC Characteristics: PIC16F720/721-I/E  
FIGURE 23-3:  
PIC16F720/721 VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C  
5.5  
1.8  
16  
0
8
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 23-4:  
PIC16LF720/721 VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C  
3.6  
1.8  
16  
0
8
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
DS40001430E-page 194  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 23-5:  
HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE  
125  
± 5%  
85  
60  
25  
0
± 3%  
± 2%  
± 5%  
-40  
1.8  
2.0  
2.5  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
3.0  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 195  
PIC16(L)F720/721  
FIGURE 23-6:  
CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
CLKIN  
OS02  
OS03  
CLKOUT  
TABLE 23-1: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param.  
Sym.  
No.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
(1)  
DC  
16  
MHz EC Oscillator mode  
OS01  
OS02  
OS03  
FOSC  
TOSC  
TCY  
External CLKIN Frequency  
(1)  
External CLKIN Period  
63  
ns  
ns  
EC Oscillator mode  
TCY = 4/FOSC  
(1)  
Instruction Cycle Time  
250  
TCY  
DC  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing  
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current  
consumption. All devices are tested to operate at “min” values with an external clock applied to CLKIN pin. When an  
external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
DS40001430E-page 196  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TABLE 23-2:  
OSCILLATOR PARAMETERS(1)  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param.  
No.  
Freq.  
Tolerance  
Sym  
Characteristic  
Min. Typ† Max. Units  
Conditions  
OS08  
OS08  
HFOSC  
Internal Calibrated HFINTOSC  
Frequency(2, 3)  
2%  
16.0  
16.0  
MHz 0°C TA +60°C,  
VDD 2.5V  
3%  
MHz +60°C TA +85°C,  
VDD 2.5V  
5%  
2%  
16.0  
500  
MHz -40°C TA +125°C  
MFOSC  
Internal Calibrated MFINTOSC  
Frequency(2, 3)  
kHz 0°C TA +60°C,  
VDD 2.5V  
3%  
500  
kHz +60°C TA +85°C,  
VDD 2.5V  
5%  
500  
5
8
kHz -40°C TA +125°C  
s  
OS10* TIOSC ST HFINTOSC 16 MHz and  
MFINTOSC 500 kHz  
Oscillator Wake-up from Sleep  
Start-up Time  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: All specified values are based on characterization data for that particular oscillator type under standard  
operating conditions with the device executing code. Exceeding these specified limits may result in an  
unstable oscillator operation and/or higher than expected current consumption. All devices are tested to  
operate at “min” values with an external clock applied to the CLKIN pin. When an external clock input is  
used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to  
the device as possible. 0.1 F and 0.01 F values in parallel are recommended.  
3: The frequency tolerance of the internal oscillator is ±2% from 0-60°C and ±3% from 60-85°C  
(see Figure 23-5).  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 197  
PIC16(L)F720/721  
FIGURE 23-7:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
FOSC  
OS12  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS18  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
TABLE 23-3: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param.  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max. Units Conditions  
OS11*  
OS12*  
OS13*  
TOSH2CKL FOSCto CLKOUT(1)  
TOSH2CKH FOSCto CLKOUT(1)  
70  
72  
20  
ns VDD = 3.3-5.0V  
ns VDD = 3.3-5.0V  
ns  
TCKL2IOV  
CLKOUTto Port out valid(1)  
OS14*  
OS15*  
OS16*  
TIOV2CKH Port input valid before CLKOUT(1)  
TOSH2IOV FOSC(Q1 cycle) to Port out valid  
TOSC + 200 ns  
50  
70*  
ns  
ns VDD = 3.3-5.0V  
ns VDD = 3.3-5.0V  
TOSH2IOI  
FOSC(Q2 cycle) to Port input invalid  
50  
(I/O in hold time)  
OS17*  
OS18*  
OS19*  
TIOV2OSH Port input valid to FOSC(Q2 cycle)  
20  
ns  
(I/O in setup time)  
TIOR  
TIOF  
Port output rise time  
15  
40  
32  
72  
ns  
ns  
VDD = 2.0V  
VDD = 3.3-5.0V  
Port output fall time  
28  
15  
55  
30  
VDD = 2.0V  
VDD = 3.3-5.0V  
OS20*  
OS21*  
TINP  
INT pin input high or low time  
25  
ns  
ns  
TRBP  
PORTB interrupt-on-change new input  
level time  
TCY  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25C unless otherwise stated.  
Note 1: Measurements are taken in EC mode where CLKOUT output is 4 x TOSC.  
DS40001430E-page 198  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 23-8:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR + VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
TBORDC  
Reset  
(due to BOR)  
(1)  
TPWRT  
Note 1: The additional delay of TPWRT, prior to releasing Reset, only occurs when the Power-up Timer is enabled (PWRTE = 0).  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 199  
PIC16(L)F720/721  
TABLE 23-4: RESET, WATCHDOG TIME, POWER-UP TIMER, AND BROWN-OUT RESET  
PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param.  
No.  
Sym.  
TMCL  
TWDT  
Characteristic  
Min. Typ† Max. Units  
Conditions  
30*  
MCLR Pulse Width (low)  
2
5
s VDD = 5V, -40°C to +85°C  
s VDD = 5V(1)  
31  
Standard Watchdog Timer Time-out  
Period (No Prescaler)(2)  
10  
10  
18  
18  
27  
33  
ms VDD = 3.3V-5V, -40°C to +85°C  
ms VDD = 3.3V-5V(1)  
33*  
34*  
TPWRT Power-up Timer Period, PWRTE = 0  
40  
65  
140  
2.0  
ms  
TIOZ  
I/O high-impedance from MCLR Low  
or Watchdog Timer Reset  
s  
35  
VBOR  
Brown-out Reset Voltage  
1.80  
0
1.9  
25  
3
2.1  
50  
V
36*  
37*  
VHYST  
Brown-out Reset Hysteresis  
mV  
TBORDC Brown-out Reset DC Response  
Time  
1
5
10  
s VDD VBOR, -40°C to +85°C  
VDD VBOR  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Voltages above 3.6V require that the regulator be enabled.  
2: Design Target. If unable to meet this target, the maximum can be increased, but the minimum cannot be  
changed.  
FIGURE 23-9:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
DS40001430E-page 200  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TABLE 23-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param.  
No.  
Sym.  
TT0H  
Characteristic  
Min.  
Typ† Max. Units  
Conditions  
40*  
T0CKI High Pulse  
No  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
Width  
Prescaler  
With  
Prescaler  
10  
0.5 TCY + 20  
10  
41*  
TT0L  
T0CKI Low Pulse  
Width  
No  
Prescaler  
With  
Prescaler  
42*  
45*  
TT0P  
TT1H  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
N = prescale value  
(2, 4, ..., 256)  
T1CKI  
High  
Time  
Synchronous, No  
Prescaler  
0.5 TCY + 20  
ns  
ns  
Synchronous, with  
Prescaler  
15  
Asynchronous  
30  
ns  
ns  
46*  
TT1L  
TT1P  
T1CKI  
Low Time Prescaler  
Synchronous, No  
0.5 TCY + 20  
Synchronous, with  
Prescaler  
15  
30  
ns  
Asynchronous  
Synchronous  
ns  
ns  
47*  
49*  
T1CKI  
Input  
Period  
Greater of:  
30 or TCY + 40  
N
N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
ns  
TCKEZ Delay from External Clock Edge to  
Timer Increment  
These parameters are characterized but not tested.  
2 TOSC  
7 TOSC  
Timers in Sync  
mode  
TMR1  
*
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
FIGURE 23-10:  
CAPTURE/COMPARE/PWM TIMINGS (CCP)  
CCP  
(Capture mode)  
CC01  
CC02  
CC03  
Note: Refer to Figure 23-2 for load conditions.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 201  
PIC16(L)F720/721  
TABLE 23-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param.  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max. Units  
Conditions  
CC01* TccL CCP Input Low Time  
CC02* TccH CCP Input High Time  
CC03* TccP CCP Input Period  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
20  
0.5TCY + 20  
20  
3TCY + 40  
N
N = prescale value (1, 4 or 16)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
TABLE 23-7: PIC16F720/721 A/D CONVERTER (ADC) CHARACTERISTICS  
Operating Conditions (unless otherwise stated)  
VDD = 3.0V, TA 25°C  
Param.  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
AD01  
AD02  
AD03  
NR  
Resolution  
8
bit  
EIL  
EDL  
Integral Error  
±1.7  
±1  
LSb VDD = 3.0V  
Differential Error  
LSb No missing codes  
VDD = 3.0V  
AD04  
AD07  
AD07  
AD08*  
EOFF Offset Error  
EGN Gain Error  
±2.2  
±1.5  
VDD  
10  
LSb VDD = 3.0V  
LSb VDD = 3.0V  
VAIN Full-Scale Range  
VSS  
V
ZAIN Recommended Impedance of  
Analog Voltage Source  
k  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS40001430E-page 202  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TABLE 23-8: PIC16F720/721 A/D CONVERSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param.  
Sym.  
No.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
(2)  
(2)  
AD130* TAD  
A/D Clock Period  
1.0  
4.0  
9.0  
S  
S  
VDD 2.0V  
VDD 2.0V  
16.0  
A/D Internal RC Oscillator  
Period  
(ADRC mode)  
1.0  
2.0  
6.0  
S  
AD131 TCNV Conversion Time (not including  
10.5  
TAD Set GO/DONE bit to new data in A/D  
Result register  
(1)  
Acquisition Time)  
AD132* TACQ Acquisition Time  
2
S  
VDD = 3.0V, EC or INTOSC Clock  
mode  
(3)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The ADRES register may be read on the following TCY cycle.  
2: Setting of 16.0 s TAD not recommended for temperature > 85°C.  
3: If ADRC mode is selected for use with VDD 2.0V, longer acquisition times will be required (see Section 9.3 “A/D  
Acquisition Requirements”)  
FIGURE 23-11:  
PIC16F720/721 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
AD134  
Q4  
1 TCY  
(1)  
(TOSC/2  
)
AD131  
AD130  
A/D CLK  
7
6
5
4
3
2
1
0
A/D Data  
ADRES  
NEW_DATA  
1 TCY  
OLD_DATA  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 203  
PIC16(L)F720/721  
FIGURE 23-12:  
PIC16F720/721 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
AD134  
Q4  
(1)  
(TOSC/2 + TCY  
1 TCY  
)
AD131  
AD130  
A/D CLK  
A/D Data  
7
6
5
3
2
1
0
4
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
FIGURE 23-13:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
CK  
DT  
US121  
US121  
US122  
US120  
Refer to Figure 23-2 for load conditions.  
Note:  
TABLE 23-9: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param.  
Symbol  
No.  
Characteristic  
Min.  
Max.  
Units Conditions  
US120* TCKH2DTV SYNC XMIT (Master and Slave)  
Clock high to data-out valid  
3.0-5.5V  
1.8-5.5V  
3.0-5.5V  
1.8-5.5V  
3.0-5.5V  
1.8-5.5V  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
US121* TCKRF  
Clock out rise time and fall time  
(Master mode)  
50  
US122* TDTRF  
Data-out rise time and fall time  
45  
50  
*
These parameters are characterized but not tested.  
DS40001430E-page 204  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 23-14:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
CK  
DT  
US125  
US126  
Note: Refer to Figure 23-2 for load conditions.  
TABLE 23-10: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param.  
Symbol  
No.  
Characteristic  
Min.  
Max. Units  
Conditions  
US125* TDTV2CKL SYNC RCV (Master and Slave)  
Data-hold before CK (DT hold time)  
10  
15  
ns  
ns  
US126* TCKL2DTL Data-hold after CK (DT hold time)  
*
These parameters are characterized but not tested.  
FIGURE 23-15:  
SPI MASTER MODE TIMING (CKE = 0, SMP = 0)  
SS  
SP70  
SCK  
(CKP = 0)  
SP71  
SP72  
SP78  
SP79  
SP79  
SCK  
(CKP = 1)  
SP78  
LSb  
SP80  
MSb  
bit 6 - - - - - -1  
SDO  
SDI  
SP75, SP76  
bit 6 - - - -1  
MSb In  
LSb In  
SP74  
SP73  
Note 1: Refer to Figure 23-2 for load conditions.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 205  
PIC16(L)F720/721  
FIGURE 23-16:  
SPI MASTER MODE TIMING (CKE = 1, SMP = 1)  
SS  
SP81  
SCK  
(CKP = 0)  
SP71  
SP73  
SP72  
SP79  
SP78  
SCK  
(CKP = 1)  
SP80  
bit 6 - - - - - -1  
LSb  
MSb  
SDO  
SDI  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
LSb In  
Note 1: Refer to Figure 23-2 for load conditions.  
FIGURE 23-17:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
SP70  
SCK  
(CKP = 0)  
SP83  
SP71  
SP72  
SP78  
SP79  
SCK  
(CKP = 1)  
SP78  
LSb  
SP79  
SP80  
MSb  
SDO  
SDI  
bit 6 - - - - - -1  
SP77  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
SP73  
LSb In  
Note 1: Refer to Figure 23-2 for load conditions.  
DS40001430E-page 206  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 23-18:  
SPI SLAVE MODE TIMING (CKE = 1)  
SP82  
SP70  
SS  
SP83  
SCK  
(CKP = 0)  
SP72  
SP71  
SCK  
(CKP = 1)  
SP80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
SP77  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
LSb In  
Note 1: Refer to Figure 23-2 for load conditions.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 207  
PIC16(L)F720/721  
TABLE 23-11: SPI MODE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min.  
Typ† Max. Units Conditions  
No.  
SP70* TSSL2SCH, SSto SCKor SCKinput  
TCY  
ns  
TSSL2SCL  
SP71* TSCH  
SP72* TSCL  
SCK input high time (Slave mode)  
SCK input low time (Slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
SP73* TDIV2SCH, Setup time of SDI data input to SCK edge  
TDIV2SCL  
SP74* TSCH2DIL,  
TSCL2DIL  
Hold time of SDI data input to SCK edge  
100  
ns  
SP75* TDOR  
SDO data output rise time  
3.0-5.5V  
1.8-5.5V  
10  
Tcy  
10  
25  
10  
10  
25  
10  
25  
50  
25  
50  
25  
50  
25  
50  
145  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SP76* TDOF  
SDO data output fall time  
SP77* TSSH2DOZ  
SP78* TSCR  
SSto SDO output high-impedance  
SCK output rise time  
(Master mode)  
3.0-5.5V  
1.8-5.5V  
SP79* TSCF  
SCK output fall time (Master mode)  
SP80* TSCH2DOV, SDO data output valid after  
TSCL2DOV SCK edge  
3.0-5.5V  
1.8-5.5V  
SP81* TDOV2SCH, SDO data output setup to SCK edge  
TDOV2SCL  
SP82* TSSL2DOV  
SDO data output valid after SSedge  
50  
ns  
ns  
SP83* TSCH2SSH, SS after SCK edge  
1.5TCY +  
40  
TSCL2SSH  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
DS40001430E-page 208  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 23-19:  
I2C™ BUS START/STOP BITS TIMING  
SCL  
SP93  
SP91  
SP90  
SP92  
SDA  
Stop  
Condition  
Start  
Condition  
Note 1: Refer to Figure 23-2 for load conditions.  
TABLE 23-12: I2C™ BUS START/STOP BITS REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min. Typ Max. Units  
Conditions  
No.  
SP90* TSU:STA Start condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns Only relevant for Repeated  
Start condition  
SP91* THD:STA Start condition  
Hold time  
4000  
600  
ns After this period, the first  
clock pulse is generated  
SP92* TSU:STO Stop condition  
Setup time  
4700  
600  
ns  
SP93 THD:STO Stop condition  
Hold time  
4000  
600  
ns  
*
These parameters are characterized but not tested.  
FIGURE 23-20:  
I2C™ BUS DATA TIMING  
SP100  
SP103  
SP102  
SP101  
SCL  
SP90  
SP106  
SP107  
SP92  
SP91  
SDA  
In  
SP110  
SP109  
SP109  
SDA  
Out  
Note 1: Refer to Figure 23-2 for load conditions.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 209  
PIC16(L)F720/721  
TABLE 23-13: I2C™ BUS DATA REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min.  
Max. Units  
Conditions  
No.  
100*  
THIGH  
Clock high time  
100 kHz mode  
4.0  
s  
s  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
Device must operate at a  
minimum of 10 MHz  
SSP module  
1.5TCY  
4.7  
101*  
TLOW  
Clock low time  
100 kHz mode  
s  
s  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
SSP module  
1.3  
Device must operate at a  
minimum of 10 MHz  
1.5TCY  
102*  
103*  
TR  
TF  
SDA and SCL rise 100 kHz mode  
time  
1000  
300  
ns  
ns  
400 kHz mode  
20 +  
0.1CB  
CB is specified to be from  
10-400 pF  
SDA and SCL fall  
time  
100 kHz mode  
400 kHz mode  
250  
250  
ns  
ns  
20 +  
0.1CB  
CB is specified to be from  
10-400 pF  
90*  
91*  
TSU:STA Start condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
s  
s  
s  
s  
ns  
s  
ns  
ns  
s  
s  
ns  
ns  
s  
s  
Only relevant for  
Repeated Start condition  
THD:STA Start condition hold 100 kHz mode  
After this period the first  
clock pulse is generated  
time  
400 kHz mode  
106*  
107*  
92*  
THD:DAT Data input hold  
time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
0
0.9  
TSU:DAT Data input setup  
time  
250  
100  
4.7  
0.6  
(Note 2)  
TSU:STO Stop condition  
setup time  
109*  
110*  
TAA  
Output valid from  
clock  
3500  
(Note 1)  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmis-  
sion can start  
CB  
Bus capacitive loading  
400  
pF  
*
These parameters are characterized but not tested.  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2: A Fast mode (400 kHz) I2C bus device can be used in a Standard mode (100 kHz) I2C bus system, but the  
requirement TSU:DAT 250 ns must then be met. This will automatically be the case if the device does not  
stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it  
must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the  
Standard mode I2C bus specification), before the SCL line is released.  
DS40001430E-page 210  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
24.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS  
FIGURE 24-1:  
PIC16F720/721 MAX IDD vs. FOSC OVER VDD, EC MODE  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
5.0V  
3.6V  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3ıꢀꢀꢀꢀ  
(-40°C to 125°C)  
3.0V  
2.5V  
1.8V  
0
2
4
6
8
10  
12  
14  
16  
18  
FOSC (MHz)  
FIGURE 24-2:  
PIC16F720/721 TYPICAL IDD vs. FOSC OVER VDD, EC MODE  
1800  
1600  
1400  
1200  
1000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3ıꢀꢀꢀꢀ  
(-40°C to 125°C)  
5.0V  
3.6V  
3.0V  
2.5V  
1.8V  
600  
400  
200  
0
0
2
4
6
8
10  
12  
14  
16  
18  
FOSC (MHz)  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 211  
PIC16(L)F720/721  
FIGURE 24-3:  
PIC16LF720/721 MAX. IDD vs. FOSC OVER VDD, EC MODE  
2000  
1800  
1600  
1400  
1200  
1000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3ıꢀꢀꢀꢀ  
(-40°C to 125°C)  
3.6V  
3.3V  
3.0V  
2.5V  
2.0V  
1.8V  
600  
400  
200  
0
0
2
4
6
8
10  
12  
14  
16  
18  
FOSC (MHz)  
FIGURE 24-4:  
PIC16LF720/721 TYPICAL IDD vs. FOSC OVER VDD, EC MODE  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3ıꢀꢀꢀꢀ  
(-40°C to 125°C)  
3.6V  
3.3V  
3.0V  
2.5V  
2.0V  
1.8V  
0
2
4
6
8
10  
12  
14  
16  
18  
FOSC (MHz)  
DS40001430E-page 212  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 24-5:  
PIC16F720/721 MAX. IDD vs. FOSC OVER VDD, MFINTOSC  
350  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3  
(-40°C to 125°C)  
300  
250  
200  
150  
100  
50  
5V  
3V  
2.5V  
1.8V  
0
0
100  
200  
300  
400  
500  
600  
FOSC (kHZ)  
FIGURE 24-6:  
PIC16F720/721 TYPICAL IDD vs. FOSC OVER VDD, MFINTOSC  
350  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3  
(-40°C to 125°C)  
300  
250  
200  
150  
100  
50  
5V  
3V  
2.5V  
1.8V  
0
0
100  
200  
300  
FOSC (kHZ)  
400  
500  
600  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 213  
PIC16(L)F720/721  
FIGURE 24-7:  
PIC16LF720/721 MAX. IDD vs. FOSC OVER VDD, MFINTOSC  
250  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3  
(-40°C to 125°C)  
200  
150  
100  
50  
3.6V  
3V  
2.5V  
1.8V  
0
0
100  
200  
300  
400  
500  
600  
FOSC (kHZ)  
FIGURE 24-8:  
PIC16LF720/721 TYPICAL IDD vs. FOSC OVER VDD, MFINTOSC  
250  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3  
(-40°C to 125°C)  
200  
150  
100  
50  
3.6V  
3V  
2.5V  
1.8V  
0
0
100  
200  
300  
400  
500  
600  
FOSC (kHZ)  
DS40001430E-page 214  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 24-9:  
PIC16F720/721 MAX. IDD vs. FOSC OVER VDD, HFINTOSC  
2000  
5.0V  
3.6V  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3ıꢀꢀꢀꢀ  
(-40°C to 125°C)  
2.5V  
1.8V  
0
2
4
6
8
10  
12  
14  
16  
18  
FOSC (MHz)  
FIGURE 24-10:  
PIC16F720/721 TYPICAL IDD vs. FOSC OVER VDD, HFINTOSC  
2000  
1800  
1600  
1400  
1200  
1000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3ıꢀꢀꢀꢀ  
(-40°C to 125°C)  
5.0V  
3.6V  
2.5V  
1.8V  
600  
400  
200  
0
0
2
4
6
8
10  
12  
14  
16  
18  
FOSC (MHz)  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 215  
PIC16(L)F720/721  
FIGURE 24-11:  
PIC16LF720/721 MAX. IDD vs. FOSC OVER VDD, HFINTOSC  
2500  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3ıꢀꢀꢀꢀ  
(-40°C to 125°C)  
3.6V  
2000  
1500  
1000  
500  
3.0V  
2.5V  
1.8V  
0
0
2
4
6
8
10  
12  
14  
16  
18  
FOSC (MHz)  
FIGURE 24-12:  
PIC16LF720/721 TYPICAL IDD vs. FOSC OVER VDD, HFINTOSC  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3.6V  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3ıꢀꢀꢀꢀ  
(-40°C to 125°C)  
3.0V  
2.5V  
1.8V  
600  
400  
200  
0
0
2
4
6
8
10  
12  
14  
16  
18  
FOSC (MHz)  
DS40001430E-page 216  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 24-13:  
PIC16F720/721 BASE IPD vs. VDD  
80  
Typical: Statistical Mean @25°C  
70  
60  
50  
40  
30  
20  
10  
0
Maximum: Mean (Worst-Case Temp) +3  
(-40°C to 125°C)  
Max.125°C  
Max. 85°C  
Typ. 25°C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD (V)  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 217  
PIC16(L)F720/721  
FIGURE 24-14:  
PIC16LF720/721 MAXIMUM BASE IPD vs. VDD  
8
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3  
(-40°C to 125°C)  
7
6
5
4
3
2
1
Max. 125°C  
Max. 85°C  
0
1.5  
2
2.5  
3
3.5  
4
VDD (V)  
FIGURE 24-15:  
PIC16LF720/721 TYPICAL BASE IPD vs. VDD  
250  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3  
(-40°C to 125°C)  
200  
150  
100  
50  
Typ.  
0
1.5  
2
2.5  
3
3.5  
4
VDD (V)  
DS40001430E-page 218  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 24-16:  
PIC16F720/721 WDT IPD vs. VDD  
80  
Typical: Statistical Mean @25°C  
70  
60  
50  
40  
30  
20  
10  
0
Maximum: Mean (Worst-Case Temp) +3  
(-40°C to 125°C)  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD (V)  
FIGURE 24-17:  
PIC16LF720/721 WDT IPD vs. VDD  
14  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3  
(-40°C to 125°C)  
12  
10  
8
Max. 125°C  
6
Max. 85°C  
Typ. 25°C  
4
2
0
1.5  
2
2.5  
3
3.5  
4
VDD (V)  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 219  
PIC16(L)F720/721  
FIGURE 24-18:  
PIC16F720/721 FIXED VOLTAGE REFERENCE IPD vs. VDD  
300  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3  
(-40°C to 125°C)  
250  
200  
150  
100  
50  
Max. 125°C  
Max. 85°C  
Typ.  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD (V)  
FIGURE 24-19:  
PIC16LF720/721 FIXED VOLTAGE REFERENCE IPD vs. VDD  
40  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3  
(-40°C to 125°C)  
35  
30  
25  
20  
15  
10  
5
Max. 125°C  
Max. 85°C  
Typ.  
0
1.5  
2
2.5  
3
3.5  
4
VDD (V)  
DS40001430E-page 220  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 24-20:  
PIC16F720/721 BOR IPD vs. VDD  
80  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3  
(-40°C to 125°C)  
70  
60  
50  
40  
30  
20  
10  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD (V)  
FIGURE 24-21:  
PIC16LF720/721 BOR IPD vs. VDD  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) +3  
(-40°C to 125°C)  
25  
20  
15  
10  
5
Max. 125°C  
Max. 85°C  
Typ. 25°C  
0
1.5  
2
2.5  
3
3.5  
4
VDD (V)  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 221  
PIC16(L)F720/721  
FIGURE 24-22:  
TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
1.8  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
1.6  
1.4  
1.2  
1
Minimum: Mean - 3(-40°C to 125°C)  
Max. -40°  
Typ. 25°  
Min. 125°  
0.8  
0.6  
0.4  
1.8  
3.6  
VDD (V)  
5.5  
FIGURE 24-23:  
SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
3.5  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Minimum: Mean - 3(-40°C to 125°C)  
VIH Max. -40°C  
VIH Min. 125°C  
1.8  
3.6  
5.5  
VDD (V)  
DS40001430E-page 222  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 24-24:  
SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
3.0  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
Minimum: Mean - 3(-40°C to 125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIL Max. -40°C  
VIL Min. 125°C  
1.8  
3.6  
5.5  
VDD (V)  
FIGURE 24-25:  
VOH vs. IOH OVER TEMPERATURE, VDD = 5.5V  
5.6  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
5.5  
5.4  
5.3  
5.2  
5.1  
5
Minimum: Mean - 3(-40°C to 125°C)  
Max. -40°  
Typ. 25°  
Min. 125°  
-0.2  
-1.0  
-1.8  
-2.6  
-3.4  
-4.2  
-5.0  
IOH (mA)  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 223  
PIC16(L)F720/721  
FIGURE 24-26:  
VOH vs. IOH OVER TEMPERATURE, VDD = 3.6V  
3.8  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
Minimum: Mean - 3(-40°C to 125°C)  
3.6  
3.4  
3.2  
3
Max. -40°  
Typ. 25°  
Min. 125°  
2.8  
2.6  
-0.2  
-1.0  
-1.8  
-2.6  
-3.4  
-4.2  
-5.0  
IOH (mA)  
FIGURE 24-27:  
VOH vs. IOH OVER TEMPERATURE, VDD = 1.8V  
2
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
1.8  
1.6  
1.4  
1.2  
1
Minimum: Mean - 3(-40°C to 125°C)  
Max. -40°  
Typ. 25°  
0.8  
0.6  
0.4  
0.2  
Min. 125°  
0
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
-2.0  
IOH (mA)  
DS40001430E-page 224  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 24-28:  
VOL vs. IOL OVER TEMPERATURE, VDD = 5.5V  
0.5  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
0.45  
0.4  
Minimum: Mean - 3(-40°C to 125°C)  
0.35  
0.3  
Max. 125°  
0.25  
0.2  
Typ. 25°  
0.15  
0.1  
Min. -40°  
0.05  
0
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
IOL (mA)  
FIGURE 24-29:  
VOL vs. IOL OVER TEMPERATURE, VDD = 3.6  
0.9  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Minimum: Mean - 3(-40°C to 125°C)  
Max. 125°  
Typ. 25°  
Min. -40°  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
IOL (mA)  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 225  
PIC16(L)F720/721  
FIGURE 24-30:  
VOL vs. IOL OVER TEMPERATURE, VDD = 1.8V  
1.2  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
Minimum: Mean - 3(-40°C to 125°C)  
1
0.8  
0.6  
0.4  
0.2  
0
Max. 125°  
Min. -40°  
0.0  
0.4  
0.8  
1.2  
1.6  
IOL (mA)  
2.0  
2.4  
2.8  
FIGURE 24-31:  
PIC16F720/721 PWRT PERIOD  
105  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
95  
85  
75  
65  
55  
45  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
1.8V  
2V  
2.2V  
2.4V  
3V  
3.6V  
4V  
4.5V  
5V  
5.5V  
VDD  
DS40001430E-page 226  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 24-32:  
PIC16F720/721 WDT TIME-OUT PERIOD  
24.00  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
22.00  
20.00  
18.00  
16.00  
14.00  
12.00  
10.00  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
1.8V  
2V  
2.2V  
2.4V  
3V  
3.6V  
4V  
4.5V  
5V  
VDD  
FIGURE 24-33:  
PIC16F720/721 HFINTOSC WAKE-UP FROM SLEEP START-UP TIME  
6.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
Max.  
Typ.  
1.8V  
2V  
3V  
3.6V  
4V  
4.5V  
5V  
5.5V  
VDD  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 227  
PIC16(L)F720/721  
FIGURE 24-34:  
PIC16F720/721 A/D INTERNAL RC OSCILLATOR PERIOD  
6.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Max.  
Min.  
1.8V  
3.6V  
5.5V  
VDD(V)  
FIGURE 24-35:  
TYPICAL FVR (X1 AND X2) VS. SUPPLY VOLTAGE (V) NORMALIZED AT 3.0V  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
1.8  
2.5  
3
3.6  
4.2  
5.5  
Voltage  
DS40001430E-page 228  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
FIGURE 24-36:  
TYPICAL FVR CHANGE VS. TEMPERATURE NORMALIZED AT 25°C  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-40  
0
45  
85  
125  
Temperature (°C)  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 229  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 230  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
25.0 PACKAGING INFORMATION  
25.1 Package Marking Information  
20-Lead PDIP (300 mil)  
Example  
PIC16F721-E/P  
e
3
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
0810017  
YYWWNNN  
20-Lead QFN (4x4x0.9 mm)  
Example  
PIC16  
F721  
PIN 1  
PIN 1  
e
3
E/ML  
810017  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
*
Standard PICmicro® device marking consists of Microchip part number, year code, week code and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 231  
PIC16(L)F720/721  
25.1 Package Marking Information  
20-Lead SOIC (7.50 mm)  
Example  
PIC16F720  
-I/SO  
e
3
0810017  
20-Lead SSOP (5.30 mm)  
Example  
PIC16F720  
-I/SS  
e
3
0810017  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
*
Standard PICmicro® device marking consists of Microchip part number, year code, week code and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
DS40001430E-page 232  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
25.2  
Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢓꢇMꢇꢔꢁꢁꢇꢕꢌꢉꢇꢖꢗꢆꢘꢇꢙꢈꢎꢐꢈꢚ  
ꢛꢗꢋꢄꢜ 3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
N
E1  
NOTE 1  
1
2
3
D
E
A2  
A
L
c
A1  
b1  
eB  
e
b
6ꢅꢄ&!  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢎꢕ  
ꢂꢁꢕꢕꢀ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
M
ꢂꢎꢁꢕ  
ꢂꢁꢛꢘ  
M
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
1ꢆ!ꢈꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢀ&ꢋꢀꢐꢍꢋ"ꢇ#ꢈꢉꢀ=ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ=ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
ꢙꢄꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
6ꢓꢓꢈꢉꢀ9ꢈꢆ#ꢀ=ꢄ#&ꢍ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
)ꢁ  
)
ꢈ1  
ꢂꢁꢁꢘ  
ꢂꢕꢁꢘ  
ꢂ-ꢕꢕ  
ꢂꢎꢖꢕ  
ꢂꢛ>ꢕ  
ꢂꢁꢁꢘ  
ꢂꢕꢕ>  
ꢂꢕꢖꢘ  
ꢂꢕꢁꢖ  
M
ꢂꢁ-ꢕ  
M
ꢂ-ꢁꢕ  
ꢂꢎꢘꢕ  
ꢁꢂꢕ-ꢕ  
ꢂꢁ-ꢕ  
ꢂꢕꢁꢕ  
ꢂꢕ?ꢕ  
ꢂꢕꢁ>  
M
ꢂ-ꢎꢘ  
ꢂꢎ>ꢕ  
ꢁꢂꢕ?ꢕ  
ꢂꢁꢘꢕ  
ꢂꢕꢁꢘ  
ꢂꢕꢜꢕ  
ꢂꢕꢎꢎ  
ꢂꢖ-ꢕ  
9ꢋ*ꢈꢉꢀ9ꢈꢆ#ꢀ=ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀꢝꢋ*ꢀꢐꢓꢆꢌꢄꢅꢑꢀꢀꢏ  
ꢛꢗꢋꢄꢊꢜ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢏꢀꢐꢄꢑꢅꢄ%ꢄꢌꢆꢅ&ꢀ,ꢍꢆꢉꢆꢌ&ꢈꢉꢄ!&ꢄꢌꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢂꢕꢁꢕ/ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
ꢖꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢁꢛ1  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 233  
PIC16(L)F720/721  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ ꢏꢅꢆꢇ!ꢉꢅꢋ"ꢇꢛꢗꢇꢃꢄꢅꢆꢇꢈꢅꢍ#ꢅ$ꢄꢇꢒ%ꢃꢓꢇMꢇ&'&'ꢁ()ꢇꢕꢕꢇꢖꢗꢆꢘꢇꢙ !ꢛꢚ  
ꢛꢗꢋꢄꢜ 3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D
D2  
EXPOSED  
PAD  
e
E2  
E
2
1
b
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
6ꢅꢄ&!  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
7:ꢔ  
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢐ&ꢆꢅ#ꢋ%%ꢀ  
,ꢋꢅ&ꢆꢌ&ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
: ꢈꢉꢆꢇꢇꢀ=ꢄ#&ꢍ  
.$ꢓꢋ!ꢈ#ꢀꢃꢆ#ꢀ=ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢀꢃꢆ#ꢀ9ꢈꢅꢑ&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢀ=ꢄ#&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢀ9ꢈꢅꢑ&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢀꢃꢆ#  
7
ꢗꢁ  
ꢗ-  
.
.ꢎ  
ꢎꢕ  
ꢕꢂꢘꢕꢀ1ꢐ,  
ꢕꢂꢛꢕ  
ꢕꢂ>ꢕ  
ꢕꢂꢕꢕ  
ꢁꢂꢕꢕ  
ꢕꢂꢕꢘ  
ꢕꢂꢕꢎ  
ꢕꢂꢎꢕꢀꢝ.3  
ꢖꢂꢕꢕꢀ1ꢐ,  
ꢎꢂꢜꢕ  
ꢖꢂꢕꢕꢀ1ꢐ,  
ꢎꢂꢜꢕ  
ꢕꢂꢎꢘ  
ꢕꢂꢖꢕ  
M
ꢎꢂ?ꢕ  
ꢎꢂ>ꢕ  
ꢒꢎ  
)
9
ꢎꢂ?ꢕ  
ꢕꢂꢁ>  
ꢕꢂ-ꢕ  
ꢕꢂꢎꢕ  
ꢎꢂ>ꢕ  
ꢕꢂ-ꢕ  
ꢕꢂꢘꢕ  
M
@
ꢛꢗꢋꢄꢊꢜ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢃꢆꢌ4ꢆꢑꢈꢀꢄ!ꢀ!ꢆ*ꢀ!ꢄꢅꢑ"ꢇꢆ&ꢈ#ꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢁꢎ?1  
DS40001430E-page 234  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
ꢛꢗꢋꢄꢜ 3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 235  
PIC16(L)F720/721  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001430E-page 236  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 237  
PIC16(L)F720/721  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001430E-page 238  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ*+,ꢌꢑ#ꢇ*ꢕꢅꢉꢉꢇ-ꢏꢋꢉꢌꢑꢄꢇꢒ**ꢓꢇMꢇ.(ꢔꢁꢇꢕꢕꢇꢖꢗꢆꢘꢇꢙ**-ꢈꢚꢇ  
ꢛꢗꢋꢄꢜ 3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
A2  
A
φ
A1  
L1  
L
6ꢅꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢎꢕ  
ꢕꢂ?ꢘꢀ1ꢐ,  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
ꢐ&ꢆꢅ#ꢋ%%ꢀ  
: ꢈꢉꢆꢇꢇꢀ=ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ=ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢓꢉꢄꢅ&  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
3ꢋꢋ&ꢀꢗꢅꢑꢇꢈ  
M
M
ꢁꢂꢜꢘ  
M
ꢜꢂ>ꢕ  
ꢘꢂ-ꢕ  
ꢜꢂꢎꢕ  
ꢕꢂꢜꢘ  
ꢁꢂꢎꢘꢀꢝ.3  
M
ꢎꢂꢕꢕ  
ꢁꢂ>ꢘ  
M
>ꢂꢎꢕ  
ꢘꢂ?ꢕ  
ꢜꢂꢘꢕ  
ꢕꢂꢛꢘ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
9ꢁ  
ꢁꢂ?ꢘ  
ꢕꢂꢕꢘ  
ꢜꢂꢖꢕ  
ꢘꢂꢕꢕ  
?ꢂꢛꢕ  
ꢕꢂꢘꢘ  
ꢕꢂꢕꢛ  
ꢕꢟ  
ꢕꢂꢎꢘ  
>ꢟ  
ꢖꢟ  
9ꢈꢆ#ꢀ=ꢄ#&ꢍ  
)
ꢕꢂꢎꢎ  
M
ꢕꢂ->  
ꢛꢗꢋꢄꢊꢜ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢕꢂꢎꢕꢀ''ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢜꢎ1  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 239  
PIC16(L)F720/721  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001430E-page 240  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: MIGRATING FROM  
OTHER PIC®  
DEVICES  
Revision A (September 2010)  
This shows a comparison of features in the migration  
from another PIC® device, the PIC16F720, to the  
PIC16F721 device.  
Original release of this document.  
Revision B (March 2011)  
B.1  
TABLE B-1:  
Feature  
PIC16F690 to PIC16F721  
Updated the Electrical Specifications section.  
FEATURE COMPARISON  
Revision C (September 2011)  
PIC16F690  
PIC16F721  
Reviewed title; Updated Table 1 and Table 1-1;  
Reviewed the Memory Organization section; Updated  
Section 3.6, Figures 3-4 and 3-5, Register 4-1 and  
Figure 4-2; Updated Registers 8-1 and 8-2; Reviewed  
the Oscillator Module section; Updated Table 10-1,  
Figures 11-1, 12-1 and Register 18-1; Updated the  
Summary of Registers Tables; Updated the Electrical  
Specifications section; Updated the DC and AC  
Characteristics Graphs and Charts section; Updated  
the Packaging Information section; Updated the  
Product Identification System section.  
Max. Operating Speed  
20 MHz  
4K  
16 MHz  
4K  
Max. Program  
Memory (Words)  
Max. SRAM (Bytes)  
A/D Resolution  
256  
10-bit  
2/1  
8
256  
8-bit  
2/1  
4
Timers (8/16-bit)  
Oscillator Modes  
Brown-out Reset  
Internal Pull-ups  
Y
Y
RA<5:0>,  
RB<7:4>  
RA<5:0>,  
RB<7:4>  
Revision D (February 2013)  
Interrupt-on-change  
RA<5:0>,  
RB<7:4>  
RA<5:0>,  
RB<7:4>  
Updated Table 1-1, Table 15-4 and Table 16-5;  
Updated the Electrical Specifications section; Updated  
the DC and AC Characteristics Graphs and Charts  
section; Other minor corrections.  
Comparator  
EUSART  
2
Y
Y
Y
0
Y
N
N
Extended WDT  
Software Control  
Option of WDT/BOR  
Revision E (August 2013)  
Deleted Example 18-2; Revised Table 23-7.  
INTOSC Frequencies  
Pin Count  
31 kHz -  
8 MHz  
500 kHz -  
16 MHz  
20  
20  
Note:  
This device has been designed to perform  
to the parameters of its data sheet. It has  
been tested to an electrical specification  
designed to determine its conformance  
with these parameters. Due to process dif-  
ferences in the manufacture of this device,  
this device may have different perfor-  
mance characteristics than its earlier ver-  
sion. These differences may cause this  
device to perform differently in your appli-  
cation than the earlier version of this  
device.  
Note:  
The user should verify that the device  
oscillator starts and performs as  
expected. Adjusting the loading capacitor  
values and/or the oscillator mode may be  
required.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 241  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 242  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
INDEX  
A
B
A/D  
BF bit ........................................................................ 145, 157  
Block Diagrams  
Specifications.................................................... 202, 203  
Absolute Maximum Ratings .............................................. 185  
AC Characteristics  
(CCP) Capture Mode Operation............................... 108  
ADC............................................................................ 75  
ADC Transfer Function............................................... 82  
Analog Input Model..................................................... 82  
AUSART Receive..................................................... 118  
AUSART Transmit.................................................... 117  
CCP PWM ................................................................ 112  
Clock Source .............................................................. 65  
Compare................................................................... 110  
Interrupt Logic............................................................. 35  
MCLR Circuit .............................................................. 27  
On-Chip Reset Circuit................................................. 25  
RA0 Pins..................................................................... 49  
RA1 Pins..................................................................... 50  
RA2 Pin ...................................................................... 51  
RA4 Pin ...................................................................... 52  
RA5 Pin ................................................................ 52, 53  
RB0 Pin ...................................................................... 57  
RB3 Pin ...................................................................... 58  
RC0 Pin ...................................................................... 62  
RC5 Pin ...................................................................... 63  
RC6 Pin ...................................................................... 63  
RC7 Pin ...................................................................... 63  
SPI Mode.................................................................. 138  
Industrial and Extended ............................................ 194  
Load Conditions........................................................ 193  
ADC .................................................................................... 75  
Acquisition Requirements ........................................... 81  
Associated registers.................................................... 83  
Block Diagram............................................................. 75  
Calculating Acquisition Time....................................... 81  
Channel Selection....................................................... 76  
Configuration............................................................... 76  
Configuring Interrupt ................................................... 78  
Conversion Clock........................................................ 76  
Conversion Procedure ................................................ 78  
Internal Sampling Switch (RSS) Impedance................ 81  
Interrupts..................................................................... 77  
Operation .................................................................... 77  
Operation During Sleep .............................................. 78  
Port Configuration....................................................... 76  
Source Impedance...................................................... 81  
Special Event Trigger.................................................. 78  
ADCON0 Register......................................................... 16, 79  
ADCON1 Register......................................................... 17, 80  
Addressable Universal Synchronous Asynchronous  
Receiver Transmitter (AUSART)............................... 117  
ADRES Register ................................................................. 80  
ADRESH Register............................................................... 16  
Analog-to-Digital Converter. See ADC  
2
SSP (I C Mode)........................................................ 147  
Timer1 .................................................. 93, 99, 100, 101  
Timer2 ...................................................................... 105  
TMR0/WDT Prescaler ................................................ 89  
Voltage Reference...................................................... 85  
Brown-out Reset (BOR)...................................................... 29  
Timing and Characteristics....................................... 199  
ANSELA Register ............................................................... 47  
ANSELB Register ............................................................... 56  
Assembler  
MPASM Assembler................................................... 182  
AUSART ........................................................................... 117  
Associated Registers  
C
C Compilers  
MPLAB C18.............................................................. 182  
Capture Module. See Capture/Compare/PWM (CCP)  
Capture/Compare/PWM (CCP) ........................................ 107  
Associated registers w/ Capture............................... 109  
Associated registers w/ Compare............................. 111  
Associated registers w/ PWM................................... 115  
Capture Mode........................................................... 108  
CCPx Pin Configuration............................................ 108  
Compare Mode......................................................... 110  
CCPx Pin Configuration.................................... 110  
Software Interrupt Mode........................... 108, 110  
Special Event Trigger....................................... 110  
Timer1 Mode Selection............................. 108, 110  
Prescaler .................................................................. 108  
PWM Mode............................................................... 112  
Duty Cycle ........................................................ 113  
Effects of Reset................................................ 114  
Example PWM Frequencies and Resolutions  
Baud Rate Generator........................................ 127  
Asynchronous Mode ................................................. 119  
Associated Registers  
Receive..................................................... 124  
Transmit.................................................... 121  
Baud Rate Generator (BRG) ............................ 127  
Receiver............................................................ 121  
Setting up 9-bit Mode with Address Detect....... 123  
Transmitter........................................................ 119  
Baud Rate Generator (BRG)  
Baud Rate Error, Calculating ............................ 127  
Baud Rates, Asynchronous Modes .................. 128  
Formulas........................................................... 127  
High Baud Rate Select (BRGH Bit) .................. 127  
Synchronous Master Mode............................... 130, 134  
Associated Registers  
Receive..................................................... 133  
Transmit.................................................... 131  
Reception.......................................................... 132  
Transmission .................................................... 130  
Synchronous Slave Mode  
16 MHZ..................................................... 114  
8 MHz....................................................... 114  
Operation in Sleep Mode.................................. 114  
Setup for Operation .......................................... 114  
System Clock Frequency Changes .................. 114  
PWM Period ............................................................. 113  
Setup for PWM Operation ........................................ 114  
Timer Resources ...................................................... 107  
Associated Registers  
Receive..................................................... 135  
Transmit.................................................... 134  
Reception.......................................................... 135  
Transmission .................................................... 134  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 243  
PIC16(L)F720/721  
CCP. See Capture/Compare/PWM (CCP)  
Instruction Set................................................................... 171  
ADDLW..................................................................... 173  
ADDWF..................................................................... 173  
ANDLW..................................................................... 173  
ANDWF..................................................................... 173  
BCF .......................................................................... 173  
BSF........................................................................... 173  
BTFSC...................................................................... 173  
BTFSS ...................................................................... 174  
CALL......................................................................... 174  
CLRF ........................................................................ 174  
CLRW ....................................................................... 174  
CLRWDT .................................................................. 174  
COMF ....................................................................... 174  
DECF........................................................................ 174  
DECFSZ ................................................................... 175  
GOTO ....................................................................... 175  
INCF ......................................................................... 175  
INCFSZ..................................................................... 175  
IORLW...................................................................... 175  
IORWF...................................................................... 175  
MOVF ....................................................................... 176  
MOVLW .................................................................... 176  
MOVWF.................................................................... 176  
NOP.......................................................................... 176  
RETFIE..................................................................... 177  
RETLW ..................................................................... 177  
RETURN................................................................... 177  
RLF........................................................................... 178  
RRF .......................................................................... 178  
SLEEP ...................................................................... 178  
SUBLW..................................................................... 178  
SUBWF..................................................................... 179  
SWAPF..................................................................... 179  
XORLW .................................................................... 179  
XORWF .................................................................... 179  
Summary Table ........................................................ 172  
INTCON Register................................................................ 38  
Internal Oscillator Block  
CCP1CON Register ............................................................16  
CCPR1H Register...............................................................16  
CCPR1L Register................................................................16  
CCPxCON Register ..........................................................107  
CKE bit...................................................................... 145, 157  
CKP bit...................................................................... 144, 156  
Clock Sources  
External Modes...........................................................69  
EC.......................................................................69  
Code Examples  
A/D Conversion...........................................................78  
Call of a Subroutine in Page 1 from Page 0................23  
Changing Between Capture Prescalers....................108  
Indirect Addressing .....................................................24  
Initializing PORTA.......................................................45  
Initializing PORTB.......................................................54  
Initializing PORTC.......................................................60  
Loading the SSPBUF (SSPSR) Register..................140  
Saving W, STATUS and PCLATH Registers in  
RAM....................................................................37  
Comparators  
C2OUT as T1 Gate .....................................................95  
Compare Module. See Capture/Compare/PWM (CCP)  
Customer Change Notification Service .............................249  
Customer Notification Service...........................................249  
Customer Support.............................................................249  
D
D/A bit ...............................................................................157  
Data Memory.......................................................................12  
Data/Address bit (D/A) ......................................................157  
DC and AC Characteristics ...............................................211  
DC Characteristics  
Extended and Industrial ............................................190  
Industrial and Extended ............................................186  
Development Support .......................................................181  
Device Configuration...........................................................71  
Code Protection ..........................................................74  
Configuration Word .....................................................71  
User ID........................................................................74  
Device Overview ...................................................................7  
INTOSC  
Specifications ........................................... 197, 198  
Internal Sampling Switch (RSS) Impedance........................ 81  
Internet Address ............................................................... 249  
Interrupts............................................................................. 35  
ADC ............................................................................ 78  
Associated registers w/ Interrupts............................... 41  
Interrupt-on-Change ................................................... 54  
TMR1.......................................................................... 98  
INTOSC Specifications............................................. 197, 198  
IOCB Register..................................................................... 56  
E
Effects of Reset  
PWM mode ...............................................................114  
Electrical Specifications ....................................................185  
Errata ....................................................................................6  
F
Firmware Instructions........................................................171  
Fixed Voltage Reference. See FVR  
L
FSR Register................................................................. 16, 17  
FVR.....................................................................................85  
Associated registers....................................................86  
FVRCON Register...............................................................86  
Load Conditions................................................................ 193  
M
M....................................................................................... 201  
MCLR.................................................................................. 27  
Internal........................................................................ 27  
Memory Organization ......................................................... 11  
Data ............................................................................ 12  
Program...................................................................... 11  
Microchip Internet Web Site.............................................. 249  
Migrating from other PIC Microcontroller Devices ............ 241  
MPLAB ASM30 Assembler, Linker, Librarian................... 182  
MPLAB Integrated Development Environment Software.. 181  
MPLAB PM3 Device Programmer .................................... 184  
G
General Purpose Register File............................................13  
I
2
I C Mode  
Associated Registers ................................................158  
INDF Register ............................................................... 16, 17  
Indirect Addressing, INDF and FSR Registers....................24  
Instruction Format .............................................................171  
DS40001430E-page 244  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
MPLAB REAL ICE In-Circuit Emulator System................. 183  
MPLINK Object Linker/MPLIB Object Librarian ................ 182  
RC2 ............................................................................ 62  
RC3 ............................................................................ 62  
RC4 ............................................................................ 62  
RC5 ............................................................................ 62  
RC6 ............................................................................ 62  
RC7 ............................................................................ 62  
Specifications ........................................................... 198  
PORTC Register................................................................. 60  
Power-Down Mode (Sleep)............................................... 167  
Associated Registers................................................ 168  
Power-on Reset.................................................................. 27  
Power-up Timer (PWRT).................................................... 27  
Specifications ........................................................... 200  
PR2 Register .............................................................. 17, 146  
Precision Internal Oscillator Parameters .......................... 198  
Prescaler  
Shared WDT/Timer0................................................... 90  
Product Identification System ........................................... 251  
Program Memory................................................................ 11  
Map and Stack (PIC16F720/LF720)........................... 11  
Map and Stack (PIC16F721/LF721)........................... 11  
Paging ........................................................................ 23  
Program Memory Read (PMR)......................................... 159  
Associated Registers................................................ 165  
Programming, Device Instructions.................................... 171  
O
OPCODE Field Descriptions............................................. 171  
OPTION_REG Register ...................................................... 91  
OSCCON Register.............................................................. 67  
Oscillator  
Associated registers............................................ 69, 104  
Oscillator Module  
EC............................................................................... 65  
Oscillator Tuning......................................................... 68  
Oscillator Parameters ....................................................... 197  
Oscillator Specifications.................................................... 196  
OSCTUNE Register ............................................................ 68  
P
P (Stop) bit........................................................................ 157  
Packaging ......................................................................... 231  
Marking ............................................................. 231, 232  
PDIP Details.............................................................. 233  
Paging, Program Memory................................................... 23  
PCL and PCLATH............................................................... 23  
Computed GOTO........................................................ 23  
Stack........................................................................... 23  
PCL Register................................................................. 16, 17  
PCLATH Register ......................................................... 16, 17  
PCON Register ....................................................... 17, 22, 30  
PIE1 Register................................................................ 17, 39  
PIR1 Register................................................................ 16, 40  
PMADRH Register ............................................................ 164  
PMADRL Register............................................................. 165  
PMCON1 Register .................................................... 163, 165  
PMDATH Register ............................................................ 164  
PMDATL Register............................................................. 164  
PORTA................................................................................ 45  
ANSELA Register ....................................................... 47  
Associated Registers .................................................. 53  
Pin Descriptions and Diagrams................................... 48  
PORTA Register ......................................................... 16  
RA0............................................................................. 48  
RA1............................................................................. 48  
RA2............................................................................. 48  
RA3............................................................................. 48  
RA4............................................................................. 48  
RA5............................................................................. 48  
RA6............................................................................. 48  
Specifications............................................................ 198  
PORTA Register ................................................................. 46  
PORTB  
R
R/W bit.............................................................................. 157  
RCREG............................................................................. 123  
RCSTA Register ......................................................... 16, 126  
Read-Modify-Write Operations ......................................... 171  
Receive Overflow Indicator bit (SSPOV) .................. 144, 156  
Registers  
ADCON0 (ADC Control 0).......................................... 79  
ADCON1 (ADC Control 1).......................................... 80  
ADRES (ADC Result)................................................. 80  
ANSELA (PORTA Analog Select) .............................. 47  
ANSELB (PORTB Analog Select) .............................. 56  
CCPxCON (CCP Operation) .................................... 107  
FVRCON (Fixed Voltage Reference Register)........... 86  
INTCON (Interrupt Control) ........................................ 38  
IOCB (Interrupt-on-Change PORTB).......................... 56  
OPTION_REG (Option).............................................. 91  
OSCCON (Oscillator Control)..................................... 67  
OSCTUNE (Oscillator Tuning).................................... 68  
PCON (Power Control Register)................................. 22  
PCON (Power Control)............................................... 30  
PIE1 (Peripheral Interrupt Enable 1) .......................... 39  
PIR1 (Peripheral Interrupt Register 1)........................ 40  
PMADRH (Program Memory Address High) ............ 164  
PMADRL (Program Memory Address Low).............. 165  
PMCON1 (Program Memory Control 1) ................... 163  
PMDATH (Program Memory Data High) .................. 164  
PMDATL (Program Memory Data Low).................... 164  
PORTA ....................................................................... 46  
PORTB ....................................................................... 55  
PORTC....................................................................... 60  
RCSTA (Receive Status and Control) ...................... 126  
Reset Values .............................................................. 32  
Reset Values (Special Registers)............................... 34  
SSPCON (Sync Serial Port Control) Register .. 144, 156  
SSPSTAT (Sync Serial Port Status) Register .. 145, 157  
STATUS ..................................................................... 20  
T1CON (Timer1 Control) .......................................... 102  
T1GCON (Timer1 Gate Control)............................... 103  
T2CON ..................................................................... 106  
Additional Pin Functions  
ANSELB Register ............................................... 54  
Weak Pull-up ...................................................... 54  
Associated Registers .................................................. 59  
Interrupt-on-Change.................................................... 54  
Pin Descriptions and Diagrams................................... 57  
PORTB Register ......................................................... 16  
RB0............................................................................. 57  
RB4............................................................................. 57  
RB5............................................................................. 57  
RB6............................................................................. 57  
RB7............................................................................. 57  
PORTB Register ................................................................. 55  
PORTC  
PORTC Register......................................................... 16  
RC0............................................................................. 62  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 245  
PIC16(L)F720/721  
TRISA (Tri-State PORTA)...........................................46  
TRISB (Tri-State PORTB)...........................................55  
TRISC (Tri-State PORTC) ..........................................61  
TXSTA (Transmit Status and Control) ......................125  
WPUB (Weak Pull-up PORTB)...................................55  
Reset...................................................................................25  
Resets  
Modes of Operation .................................................... 94  
Module On/Off (TMR1ON Bit)................................... 103  
Operation During Sleep .............................................. 98  
Prescaler .................................................................... 95  
Specifications ........................................................... 201  
Timer1 Gate  
Selecting Source ................................................ 95  
TMR1H Register......................................................... 93  
TMR1L Register.......................................................... 93  
Associated Registers ..................................................34  
Revision History ................................................................241  
Timer2  
Associated registers ................................................. 106  
Timers  
Timer1  
T1CON ............................................................. 102  
T1GCON........................................................... 103  
Timer2  
T2CON ............................................................. 106  
Timing Diagrams  
S
S (Start) bit........................................................................157  
SMP bit...................................................................... 145, 157  
Software Simulator (MPLAB SIM).....................................183  
SPBRG..............................................................................127  
SPBRG Register .................................................................17  
Special Event Trigger..........................................................78  
Special Function Registers .................................................13  
SPI Mode ..........................................................................143  
Associated Registers ................................................146  
Typical Master/Slave Connection .............................137  
SSP...................................................................................137  
A/D Conversion......................................................... 203  
A/D Conversion (Sleep Mode).................................. 204  
Asynchronous Reception.......................................... 124  
Asynchronous Transmission..................................... 120  
Asynchronous Transmission (Back-to-Back)............ 121  
Brown-out Reset (BOR)............................................ 199  
Brown-out Reset Situations ........................................ 29  
CLKOUT and I/O ...................................................... 198  
Clock Synchronization .............................................. 155  
Clock Timing............................................................. 196  
2
I C Mode...................................................................147  
Acknowledge.....................................................148  
Addressing........................................................149  
Clock Stretching................................................154  
Clock Synchronization ......................................155  
Firmware Master Mode.....................................154  
Hardware Setup................................................147  
Multi-Master Mode ............................................154  
Reception..........................................................150  
Sleep Operation................................................155  
2
I C Bus Data............................................................. 209  
2
I C Bus Start/Stop Bits ............................................. 209  
2
I C Reception (7-bit Address)................................... 150  
2
I C Slave Mode with SEN = 0 (Reception,  
Start/Stop Conditions........................................148  
10-bit Address) ................................................. 151  
I C Transmission (7-bit Address).............................. 152  
2
Transmission.....................................................152  
Master Mode.............................................................139  
SPI Mode ..................................................................137  
Slave Mode.......................................................141  
Typical SPI Master/Slave Connection.......................137  
SSPADD Register...............................................................17  
SSPBUF Register ...............................................................16  
SSPCON Register............................................... 16, 144, 156  
SSPEN bit ................................................................. 144, 156  
SSPM bits ................................................................. 144, 156  
SSPOV bit................................................................. 144, 156  
SSPSTAT Register ............................................. 17, 145, 157  
STATUS Register................................................................20  
Synchronous Serial Port Enable bit (SSPEN)........... 144, 156  
Synchronous Serial Port Mode Select bits (SSPM) .. 144, 156  
INT Pin Interrupt ......................................................... 36  
Slave Select Synchronization ................................... 143  
SPI Master Mode...................................................... 140  
SPI Master Mode (CKE = 1, SMP = 1) ..................... 206  
SPI Mode (Slave Mode with CKE = 0)...................... 142  
SPI Mode (Slave Mode with CKE = 1)...................... 142  
SPI Slave Mode (CKE = 0)....................................... 206  
SPI Slave Mode (CKE = 1)....................................... 207  
Synchronous Reception (Master Mode, SREN) ....... 133  
Synchronous Transmission ...................................... 131  
Synchronous Transmission (Through TXEN)........... 131  
Time-out Sequence  
Case 1 ................................................................ 30  
Case 2 ................................................................ 31  
Case 3 ................................................................ 31  
Timer0 and Timer1 External Clock ........................... 200  
Timer1 Incrementing Edge ......................................... 98  
USART Synchronous Receive (Master/Slave) ......... 205  
USART Synchronous Transmission (Master/Slave). 204  
Wake-up from Interrupt............................................. 168  
Timing Parameter Symbology .......................................... 193  
Timing Requirements  
T
T1CON Register.......................................................... 16, 102  
TMR1ON Bit..............................................................103  
T1GCON Register.............................................................103  
T2CON Register.................................................. 16, 106, 146  
Temperature Indicator Module............................................87  
Thermal Considerations....................................................192  
Time-out Sequence.............................................................30  
Timer0.................................................................................89  
Associated Registers ..................................................91  
Operation .............................................................. 89, 94  
Specifications............................................................201  
Timer1.................................................................................93  
Associated registers..................................................104  
Asynchronous Counter Mode .....................................95  
Reading and Writing ...........................................95  
2
I C Bus Data............................................................. 210  
I2C Bus Start/Stop Bits............................................. 209  
SPI Mode.................................................................. 208  
TMR0 Register.................................................................... 16  
TMR1H Register................................................................. 16  
TMR1L Register.................................................................. 16  
TMR2 Register.................................................................... 16  
TMRO Register................................................................... 18  
TRISA ................................................................................. 45  
Interrupt.......................................................................98  
DS40001430E-page 246  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
TRISA Register ............................................................. 17, 46  
TRISB ................................................................................. 54  
TRISB Register ............................................................. 17, 55  
TRISC ................................................................................. 60  
TRISC Register............................................................. 17, 61  
TXREG.............................................................................. 119  
TXREG Register ................................................................. 16  
TXSTA Register.......................................................... 17, 125  
BRGH Bit .................................................................. 127  
U
UA..................................................................................... 157  
Update Address bit, UA .................................................... 157  
USART  
Synchronous Master Mode  
Requirements, Synchronous Receive .............. 205  
Requirements, Synchronous Transmission ...... 204  
Timing Diagram, Synchronous Receive ........... 205  
Timing Diagram, Synchronous Transmission ... 204  
W
Wake-up Using Interrupts ................................................. 168  
Watchdog Timer (WDT)...................................................... 27  
Clock Source............................................................... 27  
Modes ......................................................................... 28  
Period.......................................................................... 27  
Specifications............................................................ 200  
WCOL bit .................................................................. 144, 156  
WPUB Register................................................................... 55  
Write Collision Detect bit (WCOL)............................. 144, 156  
WWW Address.................................................................. 249  
WWW, On-Line Support ....................................................... 6  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 247  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 248  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
Customers  
should  
contact  
their  
distributor,  
representative or Field Application Engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 249  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 250  
2010-2013 Microchip Technology Inc.  
PIC16(L)F720/721  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
X
X
/XX  
XXX  
PART NO.  
Device  
Examples:  
Tape and Reel  
Option  
Temperature  
Range  
Package  
Pattern  
a)  
PIC16F720-E/P 301 = Extended Temp., PDIP  
package, QTP pattern #301  
b)  
PIC16F721T-I/SO = Tape and Reel, Industrial  
Temp., SOIC package  
Device:  
PIC16F720, PIC16LF720, PIC16F721, PIC16LF721  
Temperature  
Range:  
I
E
=
=
-40C to +85C  
-40C to +125C  
Package:  
ML  
P
SO  
SS  
=
=
=
=
Micro Lead Frame (QFN)  
Plastic DIP  
SOIC  
SSOP  
Pattern:  
3-Digit Pattern Code for QTP (blank otherwise)  
Note 1: T=  
Available in tape and reel for all  
industrial devices except PDIP.  
2: Tape and Reel identifier only appears in  
the catalog part number description. This  
identifier is used for ordering purposes  
and is not printed on the device package.  
Check with your Microchip Sales Office  
for package availability with the Tape and  
Reel option.  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 251  
PIC16(L)F720/721  
NOTES:  
DS40001430E-page 252  
2010-2013 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010-2013, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 9781620773970  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2010-2013 Microchip Technology Inc.  
DS40001430E-page 253  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/12  
DS40001430E-page 254  
2010-2013 Microchip Technology Inc.  

相关型号:

PIC16LF720_11

20-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC16LF721

20-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC16LF721-E/ML

20-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC16LF721-E/P

20-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC16LF721-E/SO

20-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC16LF721-E/SS

20-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC16LF721-I/ML

20-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC16LF721-I/P

20-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC16LF721-I/SO

20-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC16LF721-I/SS

20-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC16LF721-MV/ML

20-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC16LF721-MV/P

20-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP