PIC16LF72T-I/SO [MICROCHIP]

8-BIT, FLASH, 10 MHz, MICROCONTROLLER, PDSO28, 0.300 INCH, PLASTIC, SOIC-28;
PIC16LF72T-I/SO
型号: PIC16LF72T-I/SO
厂家: MICROCHIP    MICROCHIP
描述:

8-BIT, FLASH, 10 MHz, MICROCONTROLLER, PDSO28, 0.300 INCH, PLASTIC, SOIC-28

光电二极管
文件: 总136页 (文件大小:2473K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M
PIC16F72  
Data Sheet  
28-Pin, 8-Bit CMOS FLASH  
Microcontroller with A/D Converter  
2002 Microchip Technology Inc.  
DS39597B  
®
Note the following details of the code protection feature on PICmicro MCUs.  
The PICmicro family meets the specifications contained in the Microchip Data Sheet.  
Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,  
when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-  
edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.  
The person doing so may be engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as unbreakable.  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of  
our product.  
If you have any further questions about this matter, please contact the local sales office nearest to you.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, MXLAB, PICC, PICDEM, PICDEM.net, rfPIC, Select  
Mode and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchips quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
DS39597B - page ii  
2002 Microchip Technology Inc.  
PIC16F72  
M
28-Pin, 8-Bit CMOS FLASH MCU with A/D Converter  
Device Included:  
Pin Diagrams  
PIC16F72  
PDIP, SOIC, SSOP  
High Performance RISC CPU:  
MCLR/VPP  
RA0/AN0  
RA1/AN1  
1  
2
3
4
5
28  
27  
26  
25  
24  
RB7/PGD  
RB6/PGC  
RB5  
RB4  
RB3  
Only 35 single word instructions to learn  
RA2/AN2  
RA3/AN3/VREF  
All single cycle instructions except for program  
branches, which are two-cycle  
RA4/T0CKI  
RA5/AN4/SS  
VSS  
6
7
8
23  
22  
21  
RB2  
RB1  
RB0/INT  
Operating speed: DC - 20 MHz clock input  
OSC1/CLKI  
OSC2/CLKO  
RC0/T1OSO/T1CKI  
9
20  
19  
18  
17  
16  
15  
VDD  
VSS  
RC7  
RC6  
RC5/SDO  
RC4/SDI/SDA  
DC - 200 ns instruction cycle  
10  
11  
12  
13  
14  
2K x 14 words of Program Memory,  
128 x 8 bytes of Data Memory (RAM)  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
Pinout compatible to PIC16C72/72A and  
PIC16F872  
Interrupt capability  
QFN  
Eight-level deep hardware stack  
Direct, Indirect and Relative Addressing modes  
Peripheral Features:  
High Sink/Source Current: 25 mA  
28 27 26 25 24 23 22  
RA2/AN2  
1
21  
RB3  
RB2  
RB1  
RB0/INT  
VDD  
VSS  
RC7  
Timer0: 8-bit timer/counter with 8-bit prescaler  
RA3/AN3/VREF  
RA4/T0CKI  
20  
19  
18  
17  
16  
15  
2
3
4
5
6
7
Timer1: 16-bit timer/counter with prescaler,  
can be incremented during SLEEP via external  
crystal/clock  
RA5/AN4/SS  
PIC16F72  
VSS  
OSC1/CLKI  
Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
OSC2/CLKO  
8
9 10 11 12 13 14  
Capture, Compare, PWM (CCP) module  
- Capture is 16-bit, max. resolution is 12.5 ns  
- Compare is 16-bit, max. resolution is 200 ns  
- PWM max. resolution is 10-bit  
8-bit, 5-channel analog-to-digital converter  
Synchronous Serial Port (SSP) with  
SPI(Master/Slave) and I2C(Slave)  
Special Microcontroller Features:  
Brown-out detection circuitry for  
Brown-out Reset (BOR)  
1,000 erase/write cycle FLASH program memory  
typical  
CMOS Technology:  
Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
Low power, high speed CMOS FLASH technology  
Fully static design  
Watchdog Timer (WDT) with its own on-chip  
RC oscillator for reliable operation  
Wide operating voltage range: 2.0V to 5.5V  
Industrial temperature range  
Programmable code protection  
Power saving SLEEP mode  
Low power consumption:  
Selectable oscillator options  
- < 0.6 mA typical @ 3V, 4 MHz  
- 20 µA typical @ 3V, 32 kHz  
- < 1 µA typical standby current  
In-Circuit Serial Programming(ICSP) via 2 pins  
Processor read access to program memory  
2002 Microchip Technology Inc.  
DS39597B-page 1  
PIC16F72  
Key Reference Manual Features  
PIC16F72  
Operating Frequency  
RESETS and (Delays)  
DC - 20 MHz  
POR, BOR, (PWRT, OST)  
FLASH Program Memory - (14-bit words, 1000 E/W cycles)  
Data Memory - RAM (8-bit bytes)  
Interrupts  
2K  
128  
8
I/O Ports  
PORTA, PORTB, PORTC  
Timers  
Timer0, Timer1, Timer2  
Capture/Compare/PWM Modules  
Serial Communications  
8-bit A/D Converter  
1
SSP  
5 channels  
35  
Instruction Set (No. of Instructions)  
DS39597B-page 2  
2002 Microchip Technology Inc.  
PIC16F72  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 5  
2.0 Memory Organization................................................................................................................................................................... 7  
3.0 I/O Ports ..................................................................................................................................................................................... 21  
4.0 Reading Program Memory ......................................................................................................................................................... 27  
5.0 Timer0 Module ........................................................................................................................................................................... 29  
6.0 Timer1 Module ........................................................................................................................................................................... 31  
7.0 Timer2 Module ........................................................................................................................................................................... 35  
8.0 Capture/Compare/PWM (CCP) Module ..................................................................................................................................... 37  
9.0 Synchronous Serial Port (SSP) Module ..................................................................................................................................... 43  
10.0 Analog-to-Digital Converter (A/D) Module.................................................................................................................................. 53  
11.0 Special Features of the CPU...................................................................................................................................................... 59  
12.0 Instruction Set Summary............................................................................................................................................................ 73  
13.0 Development Support................................................................................................................................................................. 81  
14.0 Electrical Characteristics............................................................................................................................................................ 87  
15.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 107  
16.0 Package Marking Information................................................................................................................................................... 117  
Appendix A: Revision History ........................................................................................................................................................ 123  
Appendix B: Conversion Considerations........................................................................................................................................ 123  
Index .................................................................................................................................................................................................. 125  
On-Line Support................................................................................................................................................................................. 131  
Reader Response.............................................................................................................................................................................. 132  
Product Identification System ............................................................................................................................................................ 133  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchips Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include  
literature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
2002 Microchip Technology Inc.  
DS39597B-page 3  
PIC16F72  
NOTES:  
DS39597B-page 4  
2002 Microchip Technology Inc.  
PIC16F72  
The program memory contains 2K words, which trans-  
late to 2048 instructions, since each 14-bit program  
memory word is the same width as each device  
instruction. The data memory (RAM) contains 128 bytes.  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the operation of the PIC16F72 device. Additional infor-  
mation may be found in the PICmicroMid-Range  
MCU Reference Manual (DS33023), which may be  
downloaded from the Microchip website. The Refer-  
ence Manual should be considered a complementary  
document to this data sheet, and is highly recom-  
mended reading for a better understanding of the  
device architecture and operation of the peripheral  
modules.  
There are 22 I/O pins that are user configurable on a  
pin-to-pin basis. Some pins are multiplexed with other  
device functions. These functions include:  
External interrupt  
Change on PORTB interrupt  
Timer0 clock input  
Timer1 clock/oscillator  
Capture/Compare/PWM  
A/D converter  
The PIC16F72 belongs to the Mid-Range family of the  
PICmicro devices. A block diagram of the device is  
shown in Figure 1-1.  
SPI/I2C  
Table 1-1 details the pinout of the device with  
descriptions and details for each pin.  
FIGURE 1-1:  
PIC16F72 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0/AN0  
FLASH  
Program  
RA1/AN1  
Memory  
2K x 14  
RA2/AN2  
RAM  
File  
Registers  
8-Level Stack  
(13-bit)  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
128 x 8  
Program  
Bus  
14  
RAM Addr(1)  
PORTB  
9
RB0/INT  
RB1  
RB2  
Addr MUX  
Instruction reg  
Indirect  
Addr  
7
RB3  
RB4  
Direct Addr  
8
RB5  
RB6/PGC  
RB7/PGD  
FSR reg  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RC2/CCP1  
3
MUX  
Power-up  
Timer  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
ALU  
RC7  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKI  
OSC2/CLKO  
Brown-out  
Reset  
MCLR VDD, VSS  
Timer0  
Timer1  
Timer2  
Synchronous  
Serial Port  
A/D  
CCP1  
Note 1: Higher order bits are from the STATUS register.  
2002 Microchip Technology Inc.  
DS39597B-page 5  
PIC16F72  
TABLE 1-1:  
PIC16F72 PINOUT DESCRIPTION  
PDIP,  
SOIC,  
SSOP  
Pin#  
MLF  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(3)  
OSC1/CLKI  
OSC2/CLKO  
9
6
7
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
10  
O
Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. In RC mode, the OSC2 pin outputs CLKO, which has  
1/4 the frequency of OSC1, and denotes the instruction cycle rate.  
1
26  
I/P  
ST  
Master Clear (Reset) input or programming voltage input. This pin is  
an active low RESET to the device.  
MCLR/VPP  
PORTA is a bi-directional I/O port.  
RA0/AN0  
2
3
4
5
6
27  
28  
1
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
ST  
RA0 can also be analog input0.  
RA1/AN1  
RA1 can also be analog input1.  
RA2/AN2  
RA2 can also be analog input2.  
RA3/AN3/VREF  
RA4/T0CKI  
2
RA3 can also be analog input3 or analog reference voltage.  
3
RA4 can also be the clock input to the Timer0 module. Output is  
open drain type.  
RA5/AN4/SS  
7
4
I/O  
TTL  
RA5 can also be analog input4 or the slave select for the  
synchronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
21  
22  
23  
24  
25  
26  
27  
28  
18  
19  
20  
21  
22  
23  
24  
25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
RB2  
TTL  
RB3  
TTL  
RB4  
TTL  
Interrupt-on-change pin.  
RB5  
TTL  
Interrupt-on-change pin.  
(2)  
RB6/PGC  
RB7/PGD  
TTL/ST  
TTL/ST  
Interrupt-on-change pin. Serial programming clock.  
Interrupt-on-change pin. Serial programming data.  
PORTC is a bi-directional I/O port.  
(2)  
RC0/T1OSO/  
T1CKI  
11  
8
I/O  
ST  
RC0 can also be the Timer1 oscillator output or Timer1 clock input.  
RC1/T1OSI  
RC2/CCP1  
12  
13  
9
I/O  
I/O  
ST  
ST  
RC1 can also be the Timer1 oscillator input.  
10  
RC2 can also be the Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
14  
15  
11  
12  
I/O  
I/O  
ST  
ST  
RC3 can also be the synchronous serial clock input/output for both  
SPI and I C modes.  
2
RC4 can also be the SPI Data In (SPI mode) or  
2
Data I/O (I C mode).  
RC5/SDO  
16  
17  
13  
14  
I/O  
I/O  
I/O  
P
ST  
ST  
ST  
RC5 can also be the SPI Data Out (SPI mode).  
RC6  
RC7  
18  
15  
VSS  
8, 19  
20  
5, 16  
17  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
P
Legend: I = input  
O = output  
I/O = input/output  
P = power  
= Not used  
TTL = TTL input  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.  
DS39597B-page 6  
2002 Microchip Technology Inc.  
PIC16F72  
2.2  
Data Memory Organization  
2.0  
MEMORY ORGANIZATION  
The Data Memory is partitioned into multiple banks that  
contain the General Purpose Registers and the Special  
Function Registers. Bits RP1 (STATUS<6>) and RP0  
(STATUS<5>) are the bank select bits.  
There are two memory blocks in the PIC16F72 device.  
These are the program memory and the data memory.  
Each block has separate buses so that concurrent  
access can occur. Program memory and data memory  
are explained in this section. Program memory can be  
read internally by the user code (see Section 4.0).  
RP1:RP0  
Bank  
00  
01  
10  
11  
0
1
2
3
The data memory can further be broken down into the  
general purpose RAM and the Special Function  
Registers (SFRs). The operation of the SFRs that  
control the coreare described here. The SFRs used  
to control the peripheral modules are described in the  
section discussing each individual peripheral module.  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM.  
Additional information on device memory may be found  
in the PICmicroMid-Range Reference Manual,  
(DS33023).  
2.1  
Program Memory Organization  
All implemented banks contain SFRs. Some high use”  
SFRs from one bank may be mirrored in another bank,  
for code reduction and quicker access (e.g., the  
STATUS register is in Banks 0 - 3).  
PIC16F72 devices have a 13-bit program counter capa-  
ble of addressing a 8K x 14 program memory space.  
The address range for this program memory is 0000h -  
07FFh. Accessing a location above the physically  
implemented address will cause a wraparound.  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
The RESET Vector is at 0000h and the Interrupt Vector  
is at 0004h.  
The register file can be accessed either directly, or indi-  
rectly, through the File Select Register FSR (see  
Section 2.5).  
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
Stack Level 1  
Stack Level 8  
RESET Vector  
0000h  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory  
07FFh  
0800h  
1FFFh  
2002 Microchip Technology Inc.  
DS39597B-page 7  
PIC16F72  
FIGURE 2-2:  
PIC16F72 REGISTER FILE MAP  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION  
PCL  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
Indirect addr.(*)  
Indirect addr.(*)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
TMR0  
PCL  
OPTION  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
TRISB  
PORTB  
PCLATH  
INTCON  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PMCON1  
PCLATH  
INTCON  
PIE1  
PMDATL  
PMADRL  
TMR1L  
TMR1H  
PCON  
PMDATH  
PMADRH  
T1CON  
TMR2  
T2CON  
PR2  
SSPADD  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
SSPSTAT  
ADRES  
11Fh  
120h  
19Fh  
1A0h  
ADCON0  
ADCON1  
General  
Purpose  
Register  
A0h  
accesses  
A0h -BFh  
1BFh  
1C0h  
BFh  
C0h  
32 Bytes  
General  
Purpose  
Register  
accesses  
20h-7Fh  
accesses  
40h-7Fh  
accesses  
40h -7Fh  
96 Bytes  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as 0.  
* Not a physical register.  
DS39597B-page 8  
2002 Microchip Technology Inc.  
PIC16F72  
The Special Function Registers can be classified into  
two sets: core (CPU) and peripheral. Those registers  
associated with the core functions are described in  
detail in this section. Those related to the operation of  
the peripheral features are described in detail in the  
peripheral feature section.  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 2-1.  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on Details on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
page:  
Bank 0  
(1)  
00h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000  
19  
29,13  
18  
01h  
TMR0  
PCL  
Timer0 Modules Register  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
xxxx xxxx  
(1)  
02h  
Program Counter's (PC) Least Significant Byte  
(1)  
03h  
STATUS  
FSR  
IRP  
Indirect Data Memory Address Pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1  
RP0  
TO  
PD  
Z
DC  
C
12  
(1)  
04h  
19  
05h  
06h  
07h  
08h  
09h  
PORTA  
PORTB  
PORTC  
21  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
Unimplemented  
23  
25  
Unimplemented  
(1,2)  
0Ah  
PCLATH  
INTCON  
PIR1  
GIE  
TMR0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000  
0000 000x  
18  
(1)  
0Bh  
PEIE  
ADIF  
INTE  
RBIE  
TMR0IF  
CCP1IF  
INTF  
RBIF  
14  
0Ch  
0Dh  
0Eh  
SSPIF  
TMR2IF  
TMR1IF -0-- 0000  
16  
Unimplemented  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx  
xxxx xxxx  
31  
0Fh  
31  
10h  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000  
Timer2 Modules Register 0000 0000  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000  
31  
11h  
35  
12h  
36  
13h  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
Capture/Compare/PWM Register (LSB)  
xxxx xxxx  
43,48  
45  
14h  
SSPM2  
SSPM1  
SSPM0 0000 0000  
15h  
xxxx xxxx 38,39,41  
xxxx xxxx 38,39,41  
16h  
CCPR1H Capture/Compare/PWM Register (MSB)  
17h  
CCP1CON  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000  
37  
53  
53  
18h-1Dh  
1Eh  
Unimplemented  
ADRES  
ADCON0  
A/D Result Register  
ADCS1 ADCS0  
xxxx xxxx  
1Fh  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
0000 00-0  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as 0, r = reserved.  
Shaded locations are unimplemented, read as 0.  
Note 1: These registers can be addressed from any bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
3: This bit always reads as a 1.  
2002 Microchip Technology Inc.  
DS39597B-page 9  
PIC16F72  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on Details on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
page:  
Bank 1  
(1)  
80h  
INDF  
OPTION  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000  
19  
13  
18  
12  
19  
21  
23  
25  
81h  
RBPU INTEDG  
Program Counters (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect Data Memory Address Pointer  
PORTA Data Direction Register  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
--11 1111  
1111 1111  
1111 1111  
(1)  
82h  
(1)  
83h  
STATUS  
FSR  
PD  
Z
DC  
C
(1)  
84h  
85h  
86h  
87h  
88h  
89h  
TRISA  
TRISB  
TRISC  
PORTB Data Direction Register  
PORTC Data Direction Register  
Unimplemented  
Unimplemented  
(1,2)  
8Ah  
PCLATH  
INTCON  
PIE1  
GIE  
TMR0IE  
Write Buffer for the upper 5 bits of the PC  
---0 0000  
0000 000x  
18  
14  
15  
(1)  
8Bh  
PEIE  
ADIE  
INTE  
RBIE  
TMR0IF  
CCP1IE  
INTF  
RBIF  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
SSPIE  
TMR2IE  
TMR1IE -0-- 0000  
Unimplemented  
PCON  
POR  
BOR  
---- --qq  
17  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
Timer2 Period Register  
1111 1111  
41  
43,48  
44  
2
SSPADD Synchronous Serial Port (I C mode) Address Register  
0000 0000  
SSPSTAT  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
0000 0000  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
9Fh  
ADCON1  
PCFG2  
PCFG1  
PCFG0 ---- -000  
54  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as 0, r = reserved.  
Shaded locations are unimplemented, read as 0.  
Note 1: These registers can be addressed from any bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
3: This bit always reads as a 1.  
DS39597B-page 10  
2002 Microchip Technology Inc.  
PIC16F72  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on Details on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
page:  
Bank 2  
(1)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000  
19  
29  
18  
12  
100h  
101h  
TMR0  
PCL  
Timer0 Modules Register  
xxxx xxxx  
0000 0000  
0001 1xxx  
(1  
Program Counter's (PC) Least Significant Byte  
102h  
(1)  
STATUS  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
103h  
(1)  
FSR  
Indirect Data Memory Address Pointer  
Unimplemented  
xxxx xxxx  
19  
23  
18  
104h  
105h  
106h  
107h  
108h  
109h  
PORTB  
PORTB Data Latch when written: PORTB pins when read  
xxxx xxxx  
Unimplemented  
Unimplemented  
Unimplemented  
(1,2)  
PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE TMR0IF INTF RBIF  
---0 0000  
10Ah  
(1)  
INTCON  
PMDATL  
GIE  
PEIE  
TMR0IE  
0000 000x  
xxxx xxxx  
xxxx xxxx  
--xx xxxx  
---x xxxx  
14  
27  
27  
27  
27  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
Data Register Low Byte  
PMADRL Address Register Low Byte  
PMDATH  
PMADRH  
Data Register High Byte  
Address Register High Byte  
Bank 3  
(1)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000  
19  
13  
18  
12  
180h  
181h  
OPTION  
PCL  
RBPU INTEDG  
Program Counter's (PC) Least Significant Byte  
IRP RP1 RP0 TO  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111  
0000 0000  
0001 1xxx  
(1)  
182h  
(1)  
STATUS  
PD  
Z
DC  
C
183h  
(1)  
FSR  
Indirect Data Memory Address Pointer  
Unimplemented  
xxxx xxxx  
19  
23  
18  
184h  
185h  
186h  
187h  
188h  
189h  
TRISB  
PORTB Data Direction Register  
Unimplemented  
1111 1111  
Unimplemented  
Unimplemented  
(1,2)  
Write Buffer for the upper 5 bits of the Program Counter  
PCLATH  
PEIE  
TMR0IE  
---0 0000  
18Ah  
(1)  
INTCON  
GIE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
RD  
0000 000x  
1--- ---0  
14  
27  
18Bh  
(3)  
18Ch  
PMCON1  
18Dh  
Unimplemented  
18Eh  
Reserved, maintain clear  
Reserved, maintain clear  
0000 0000  
0000 0000  
18Fh  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as 0, r = reserved.  
Shaded locations are unimplemented, read as 0.  
Note 1: These registers can be addressed from any bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
3: This bit always reads as a 1.  
2002 Microchip Technology Inc.  
DS39597B-page 11  
PIC16F72  
For example, CLRF STATUS will clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions, not affecting any status bits, see  
Section 12.0, Instruction Set Summary.  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
REGISTER 2-1:  
STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h - 1FFh)  
0= Bank 0, 1 (00h - FFh)  
bit 6-5  
RP<1:0>: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLWand SUBWFinstructions)(1)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW, SUBLWand SUBWFinstructions)(1,2)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For borrow, the polarity is reversed. A subtraction is executed by adding the twos  
complement of the second operand.  
2: For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order  
bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39597B-page 12  
2002 Microchip Technology Inc.  
PIC16F72  
2.2.2.2  
OPTION Register  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION register is a readable and writable regis-  
ter that contains various control bits to configure the  
TMR0 prescaler/WDT postscaler (single assignable  
register known also as the prescaler), the External INT  
Interrupt, TMR0, and the weak pull-ups on PORTB.  
REGISTER 2-2:  
OPTION REGISTER (ADDRESS 81h, 181h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS2:PS0: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS39597B-page 13  
PIC16F72  
2.2.2.3  
INTCON Register  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON Register is a readable and writable regis-  
ter that contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/INT pin interrupts.  
REGISTER 2-3:  
INTCON: INTERRUPT CONTROL REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INTF  
R/W-x  
RBIF  
TMR0IE  
TMR0IF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch  
condition and allow flag bit RBIF to be cleared.  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39597B-page 14  
2002 Microchip Technology Inc.  
PIC16F72  
2.2.2.4  
PIE1 Register  
This register contains the individual enable bits for the  
peripheral interrupts.  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
REGISTER 2-4:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS 8Ch)  
U-0  
R/W-0  
ADIE  
U-0  
U-0  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
CCP1IE TMR2IE TMR1IE  
bit 0  
bit 7  
Unimplemented: Read as 0’  
bit 7  
bit 6  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D converter interrupt  
0= Disables the A/D converter interrupt  
bit 5-4  
bit 3  
Unimplemented: Read as 0’  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
bit 2  
bit 1  
bit 0  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS39597B-page 15  
PIC16F72  
2.2.2.5  
PIR1 Register  
This register contains the individual flag bits for the  
Peripheral interrupts.  
REGISTER 2-5:  
PIR1: PERIPHERAL INTERRUPT FLAG REGISTER 1 (ADDRESS 0Ch)  
U-0  
R/W-0  
ADIF  
U-0  
U-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
TMR1IF  
bit 0  
CCP1IF TMR2IF  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as 0’  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed  
0= The A/D conversion is not complete  
bit 5-4  
bit 3  
Unimplemented: Read as 0’  
SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit  
1= The SSP interrupt condition has occurred, and must be cleared in software before returning  
from the Interrupt Service Routine.  
The conditions that will set this bit are a transmission/reception has taken place.  
0= No SSP interrupt condition has occurred  
bit 2  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39597B-page 16  
2002 Microchip Technology Inc.  
PIC16F72  
2.2.2.6  
PCON Register  
Note: BOR is unknown on Power-on Reset. It  
must then be set by the user and checked  
on subsequent RESETS to see if BOR is  
clear, indicating a brown-out has occurred.  
The BOR status bit is a don't careand is  
not necessarily predictable if the brown-out  
circuit is disabled (by clearing the BOREN  
bit in the Configuration word).  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The Power Control (PCON) register contains a flag bit  
to allow differentiation between a Power-on Reset  
(POR), a Brown-out Reset, an external MCLR Reset  
and WDT Reset.  
REGISTER 2-6:  
PCON: POWER CONTROL REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-x  
BOR  
bit 7  
bit 0  
bit 7-2  
bit 1  
Unimplemented: Read as 0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS39597B-page 17  
PIC16F72  
Figure 2-3 shows the four situations for the loading of  
the PC.  
2.3  
PCL and PCLATH  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 13-bits  
wide. The low byte is called the PCL register. This reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<12:8>  
bits and is not directly readable or writable. All updates  
to the PCH register go through the PCLATH register.  
Example 1 shows how the PC is loaded on a write  
to PCL (PCLATH<4:0> PCH).  
Example 2 shows how the PC is loaded during a  
GOTOinstruction (PCLATH<4:3> PCH).  
Example 3 shows how the PC is loaded during a  
CALLinstruction (PCLATH<4:3> PCH), with  
the PC loaded (PUSHd) onto the Top-of-Stack.  
Example 4 shows how the PC is loaded during  
one of the return instructions, where the PC is  
loaded (POPd) from the Top-of-Stack.  
FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS  
Stack (13-bits x 8)  
Top-of-Stack  
Example 1 - Instruction with PCL as destination  
PCH  
PCL  
12  
8
7
0
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU result  
Stack (13-bits x 8)  
Top-of-Stack  
Example 2 - GOTO Instruction  
PCH  
PCL  
12 11 10  
8
7
0
PC  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
Example 3 - CALL Instruction  
Stack (13-bits x 8)  
Top-of-Stack  
13  
PCH  
PCL  
12 11 10  
8
7
0
PC  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
Example 4 - RETURN, RETFIE, or RETLW Instruction  
Stack (13-bits x 8)  
Top-of-Stack  
13  
PCH  
PCL  
12 11 10  
8
7
0
PC  
11  
Opcode <10:0>  
PCLATH  
Note: PCLATH is not updated with the contents of PCH.  
DS39597B-page 18  
2002 Microchip Technology Inc.  
PIC16F72  
2.3.1  
COMPUTED GOTO  
2.4  
Program Memory Paging  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256-byte block). Refer to the  
The CALL and GOTO instructions provide 11 bits of  
address to allow branching within any 2K program  
memory page. When doing a CALLor GOTOinstruction,  
the upper two bits of the address are provided by  
PCLATH<4:3>. When doing a CALL or GOTO instruc-  
tion, the user must ensure that the page select bits are  
programmed so that the desired program memory  
page is addressed. If a return from a CALLinstruction  
(or interrupt) is executed, the entire 13-bit PC is pushed  
onto the stack. Therefore, manipulation of the  
PCLATH<4:3> bits is not required for the return  
instructions (which POPs the address from the stack).  
Application Note, Implementing  
a Table Read"  
(AN556).  
2.3.2  
STACK  
The stack allows a combination of up to eight program  
calls and interrupts to occur. The stack contains the  
return address from this branch in program execution.  
Note: The PIC16F72 device ignores the paging  
Mid-range devices have an 8-level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable. The PC is PUSHd onto the stack  
when a CALL instruction is executed, or an interrupt  
causes a branch. The stack is POPd in the event of a  
RETURN, RETLW or a RETFIE instruction execution.  
PCLATH is not modified when the stack is PUSHd or  
POPd.  
bit  
PCLATH<4:3>.  
The  
use  
of  
PCLATH<4:3> as a general purpose read/  
write bit is not recommended, since this  
may affect upward compatibility with future  
products.  
2.5  
Indirect Addressing, INDF and  
FSR Registers  
After the stack has been PUSHd eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on). An example of the overwriting of the stack is  
shown in Figure 2-4.  
The INDF register is not a physical register. Address-  
ing INDF actually addresses the register whose  
address is contained in the FSR register (FSR is a  
pointer). This is indirect addressing.  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-1.  
FIGURE 2-4:  
Stack  
STACK MODIFICATION  
EXAMPLE 2-1:  
INDIRECT ADDRESSING  
movlw 0x20 ;initialize pointer  
movwf FSR ;to RAM  
INDF ;clear INDF register  
FSR ;inc pointer  
Push1 Push9  
Push2 Push10  
Push3  
Top-of-Stack  
NEXT  
clrf  
incf  
btfss FSR,4 ;all done?  
Push4  
goto  
NEXT ;NO, clear next  
Push5  
Push6  
Push7  
Push8  
CONTINUE  
:
;YES, continue  
An effective 9-bit address is obtained by concatenating  
the 8-bit FSR register and the IRP bit (STATUS<7>), as  
shown in Figure 2-5.  
Note 1: There are no status bits to indicate stack  
overflow or stack underflow conditions.  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions, or the vectoring to an  
interrupt address.  
2002 Microchip Technology Inc.  
DS39597B-page 19  
PIC16F72  
FIGURE 2-5:  
DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
From Opcode  
7
RP1:RP0  
6
0
0
IRP  
FSR Register  
Bank Select  
Location Select  
Bank Select Location Select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
Data  
Memory(1)  
7Fh  
FFh  
17Fh  
1FFh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
Note 1: For register file map detail, see Figure 2-2.  
DS39597B-page 20  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 3-1:  
BLOCK DIAGRAM OF  
RA3:RA0 AND RA5 PINS  
3.0  
I/O PORTS  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Data  
Bus  
D
Q
Q
VDD  
VDD  
WR  
Additional information on I/O ports may be found in the  
PICmicroMid-Range MCU Reference Manual,  
(DS33023).  
Port  
CK  
P
Data Latch  
N
I/O pin  
3.1  
PORTA and the TRISA Register  
D
Q
PORTA is a 6-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
Hi-Impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
WR  
TRIS  
VSS  
VSS  
Q
CK  
Analog  
Input  
Mode  
TRIS Latch  
RD TRIS  
TTL  
Input  
Reading the PORTA register, reads the status of the  
pins, whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, this value is modified and then written to the port  
data latch.  
Buffer  
Q
D
EN  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The RA4/T0CKI  
pin is a Schmitt Trigger input and an open drain output.  
All other RA port pins have TTL input levels and full  
CMOS output drivers.  
RD Port  
To A/D Converter  
Other PORTA pins are multiplexed with analog inputs  
and analog VREF input. The operation of each pin is  
selected by clearing/setting the control bits in the  
ADCON1 register (A/D Control Register1).  
FIGURE 3-2:  
BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
Data  
Bus  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs and read as 0.  
D
Q
Q
WR  
Port  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
CK  
I/O pin  
N
Data Latch  
VSS  
D
Q
WR  
TRIS  
VSS  
EXAMPLE 3-1:  
INITIALIZING PORTA  
Q
CK  
Schmitt  
Trigger  
Input  
BANKSEL  
CLRF  
PORTA  
PORTA  
; select bank for PORTA  
; Initialize PORTA by  
; clearing output  
TRIS Latch  
Buffer  
; data latches  
RD TRIS  
BANKSEL  
MOVLW  
MOVWF  
ADCON1 ; Select Bank for ADCON1  
0x06 ; Configure all pins  
ADCON1 ; as digital inputs  
Q
D
MOVLW  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; TRISA<7:6> are always  
; read as ‘0’.  
EN  
RD Port  
MOVWF  
TRISA  
TMR0 Clock Input  
2002 Microchip Technology Inc.  
DS39597B-page 21  
PIC16F72  
TABLE 3-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer Function  
RA0/AN0  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input.  
RA1/AN1  
Input/output or analog input.  
RA2/AN2  
Input/output or analog input.  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
Input/output or analog input or VREF.  
Input/output or external clock input for Timer0. Output is open drain type.  
Input/output or analog input or slave select input for synchronous serial port.  
TTL  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Address Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
85h  
9Fh  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0 --0x 0000 --0u 0000  
PORTA Data Direction Register  
--11 1111 --11 1111  
ADCON1  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as 0.  
Shaded cells are not used by PORTA.  
Note: When using the SSP module in SPI Slave mode and SS enabled, the A/D Port Configuration Control bits  
(PCFG2:PCFG0) in the A/D Control Register (ADCON1) must be set to one of the following configurations:  
100, 101, 11x.  
DS39597B-page 22  
2002 Microchip Technology Inc.  
PIC16F72  
are compared with the old value latched on the last  
read of PORTB. The mismatchoutputs of RB7:RB4  
are ORd together to generate the RB Port Change  
Interrupt with flag bit RBIF (INTCON<0>).  
3.2  
PORTB and the TRISB Register  
PORTB is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISB bit (= 0) will  
make the corresponding PORTB pin an output (i.e., put  
the contents of the output latch on the selected pin).  
This interrupt can wake the device from SLEEP. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
EXAMPLE 3-2:  
INITIALIZING PORTB  
b) Clear flag bit RBIF.  
BANKSEL PORTB  
; Select bank for PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
CLRF  
PORTB  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
BANKSEL TRISB  
; Select Bank for TRISB  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
MOVLW  
0xCF  
MOVWF  
TRISB  
This interrupt-on-mismatch feature, together with soft-  
ware configurable pull-ups on these four pins, allow  
easy interface to a keypad and make it possible for  
wake-up on key depression. Refer to the Embedded  
Control Handbook, Implementing Wake-Up on Key  
Stroke(AN552).  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (OPTION<7>). The weak  
pull-up is automatically turned off when the port pin is  
configured as an output. The pull-ups are disabled on a  
Power-on Reset.  
RB0/INT is an external interrupt input pin and is  
configured using the INTEDG bit (OPTION<6>).  
FIGURE 3-4:  
BLOCK DIAGRAM OF  
RB7:RB4 PINS  
FIGURE 3-3:  
BLOCK DIAGRAM OF  
RB3:RB0 PINS  
VDD  
VDD  
RBPU(1)  
RBPU(1)  
VDD  
PWeak  
Pull-up  
VDD  
Weak  
P
Pull-up  
Data  
Bus  
Data Latch  
Data  
Bus  
Data Latch  
D
Q
D
Q
WR  
Port  
WR  
I/O pin  
I/O pin  
Port  
CK  
TRIS Latch  
CK  
TRIS Latch  
VSS  
VSS  
D
Q
D
Q
TTL  
Input  
Buffer  
WR  
TRIS  
WR  
TRIS  
TTL  
Input  
Buffer  
CK  
CK  
ST  
Buffer  
RD TRIS  
RD Port  
RD TRIS  
RD Port  
Latch  
Q
D
Q
Q
D
EN  
EN  
Q1  
Set RBIF  
RB0/INT  
RD Port  
Schmitt Trigger  
Buffer  
D
From Other  
RB7:RB4 Pins  
RD Port  
Q3  
Note 1: To enable weak pull-ups, set the appropriate TRIS bit(s)  
EN  
and clear the RBPU bit (OPTION<7>).  
RB7:RB6 in Serial Programming Mode  
Four of PORTBs pins, RB7:RB4, have an interrupt-on-  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the interrupt  
on change comparison). The input pins (of RB7:RB4)  
Note 1: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION<7>).  
2002 Microchip Technology Inc.  
DS39597B-page 23  
PIC16F72  
TABLE 3-3:  
Name  
PORTB FUNCTIONS  
Bit#  
Buffer  
Function  
RB0/INT  
bit 0  
TTL/ST(1)  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
RB1  
RB2  
RB3  
RB4  
bit 1  
bit 2  
bit 3  
bit 4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
RB5  
RB6  
RB7  
bit 5  
bit 6  
bit 7  
TTL  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
TTL/ST(2)  
TTL/ST(2)  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming clock.  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
TABLE 3-4:  
Address  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
06h, 106h PORTB  
86h, 186h TRISB  
RB7  
RB6  
RB5  
RB4 RB3 RB2 RB1 RB0 xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
PORTB Data Direction Register  
81h, 181h OPTION RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS39597B-page 24  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 3-5:  
PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE)  
3.3  
PORTC and the TRISC Register  
PORTC is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISC bit (= 0) will  
make the corresponding PORTC pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Port/Peripheral Select(1)  
Peripheral Data Out  
0
VDD  
P
Data  
Bus  
WR  
Port  
VDD  
D
Q
Q
1
CK  
PORTC is multiplexed with several peripheral functions  
(Table 3-5). PORTC pins have Schmitt Trigger input  
buffers.  
Data Latch  
I/O  
pin  
D
Q
Q
WR  
TRIS  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-modify-  
write instructions (BSF, BCF, XORWF) with TRISC as  
destination should be avoided. The user should refer to  
the corresponding peripheral section for the correct  
TRIS bit settings.  
CK  
VSS  
N
TRIS Latch  
VSS  
Schmitt  
Trigger  
RD TRIS  
Peripheral  
OE(2)  
Q
D
EN  
RD  
Port  
Peripheral Input  
EXAMPLE 3-3:  
INITIALIZING PORTC  
Note 1: Port/Peripheral select signal selects  
BANKSEL PORTC  
; Select Bank for PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
between port data and peripheral output.  
2: Peripheral OE (output enable) is only  
activated if peripheral select is active.  
CLRF  
PORTC  
BANKSEL TRISC  
; Select Bank for TRISC  
; Value used to  
MOVLW  
0xCF  
; initialize data  
; direction  
MOVWF  
TRISC  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
2002 Microchip Technology Inc.  
DS39597B-page 25  
PIC16F72  
TABLE 3-5:  
Name  
PORTC FUNCTIONS  
Bit# Buffer Type Function  
bit 0  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
ST  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input.  
Input/output port pin or Timer1 oscillator input.  
bit 1  
bit 2  
RC2/CCP1  
Input/output port pin or Capture1 input/Compare1 output/PWM1  
output.  
RC3 can also be the synchronous serial clock for both SPI and I2C  
modes.  
RC3/SCK/SCL  
bit 3  
ST  
RC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).  
Input/output port pin or Synchronous Serial Port data output.  
Input/output port pin.  
RC4/SDI/SDA  
bit 4  
ST  
RC5/SDO  
RC6  
bit 5  
bit 6  
bit 7  
ST  
ST  
ST  
RC7  
Input/output port pin.  
Legend: ST = Schmitt Trigger input  
TABLE 3-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1 Bit 0  
07h  
87h  
PORTC RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0 xxxx xxxx uuuu uuuu  
TRISC PORTC Data Direction Register  
1111 1111 1111 1111  
Legend: x= unknown, u= unchanged  
DS39597B-page 26  
2002 Microchip Technology Inc.  
PIC16F72  
4.1  
PMADR  
4.0  
READING PROGRAM MEMORY  
The address registers can address up to a maximum of  
8K words of program FLASH.  
The FLASH Program Memory is readable during nor-  
mal operation over the entire VDD range. It is indirectly  
addressed through Special Function Registers (SFR).  
Up to 14-bit wide numbers can be stored in memory for  
use as calibration parameters, serial numbers, packed  
7-bit ASCII, etc. Executing a program memory location  
containing data that forms an invalid instruction results  
in a NOP.  
When selecting a program address value, the MSByte  
of the address is written to the PMADRH register and  
the LSByte is written to the PMADRL register. The  
upper MSbits of PMADRH must always be clear.  
4.2  
PMCON1 Register  
There are five SFRs used to read the program and  
memory:  
PMCON1 is the control register for memory accesses.  
The control bit RD initiates read operations. This bit  
cannot be cleared, only set, in software. It is cleared in  
hardware at the completion of the read operation.  
PMCON1  
PMDATL  
PMDATH  
PMADRL  
PMADRH  
The program memory allows word reads. Program  
memory access allows for checksum calculation and  
reading calibration tables.  
When interfacing to the program memory block, the  
PMDATH:PMDATL registers form a two-byte word,  
which holds the 14-bit data for reads. The  
PMADRH:PMADRL registers form a two-byte word,  
which holds the 13-bit address of the FLASH location  
being accessed. This device has up to 2K words of  
program FLASH, with an address range from 0h to  
07FFh. The unused upper bits PMDATH<7:6> and  
PMADRH<7:5> are not implemented and read as  
zeros.  
REGISTER 4-1:  
PMCON1: PROGRAM MEMORY CONTROL REGISTER 1 (ADDRESS 18Ch)  
R-1  
reserved  
bit 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/S-0  
RD  
bit 0  
bit 7  
Reserved: Read as 1’  
bit 6-1  
bit 0  
Unimplemented: Read as 0’  
RD: Read Control bit  
1= Initiates a FLASH read, RD is cleared in hardware. The RD bit can only be set (not cleared)  
in software.  
0= Does not initiate a FLASH read  
Legend:  
W = Writable bit  
R = Readable bit  
1= Bit is set  
U = Unimplemented bit, read as 0’  
S = Settable bit  
-n = Value at POR  
x = Bit is unknown  
0= Bit is cleared  
2002 Microchip Technology Inc.  
DS39597B-page 27  
PIC16F72  
4.3  
Reading the FLASH Program  
Memory  
4.4  
Operation During Code Protect  
The FLASH program memory control can read any-  
where within the program memory, whether or not the  
program memory is code protected.  
To read a program memory location, the user must  
write two bytes of the address to the PMADRL and  
PMADRH registers and then set control bit, RD  
(PMCON1<0>). Once the read control bit is set, the  
program memory FLASH controller will use the second  
instruction cycle after to read the data. This causes the  
second instruction immediately following the BSF  
PMCON1,RDinstruction to be ignored. The data is  
available in the very next cycle in the PMDATL and  
PMDATH registers; therefore, it can be read as two  
bytes in the following instructions. PMDATL and  
PMDATH registers will hold this value until another  
read, or until it is written to by the user (during a write  
operation).  
This does not compromise the code, because there is  
no way to rewrite a portion of the program memory, or  
leave contents of a program memory read in a register  
while changing modes.  
EXAMPLE 4-1:  
FLASH PROGRAM READ  
; Select Bank for PMADRH  
BANKSEL PMADRH  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MS_PROG_EE_ADDR  
PMADRH  
LS_PROG_EE_ADDR  
PMADRL  
;
; MS Byte of Program Address to read  
;
; LS Byte of Program Address to read  
; Select Bank for PMCON1  
BANKSEL PMCON1  
BSF  
PMCON1, RD  
; EE Read  
;
NOP  
NOP  
; Any instructions here are ignored as program  
; memory is read in second cycle after BSF PMCON1,RD  
;
; First instruction after BSF PMCON1,RD executes normally  
; Select Bank for PMDATL  
BANKSEL PMDATL  
MOVF  
MOVF  
PMDATL, W  
PMDATH, W  
; W = LS Byte of Program PMDATL  
; W = MS Byte of Program PMDATL  
TABLE 4-1:  
Address  
REGISTERS ASSOCIATED WITH PROGRAM FLASH  
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Bit 0  
10Dh  
10Fh  
10Ch  
10Eh  
18Ch  
PMADRL  
PMADRH  
PMDATL  
PMDATH  
PMCON1  
Address Register Low Byte  
Address Register High Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Data Register Low Byte  
Data Register High Byte  
(1)  
RD 1--- ---0 1--- ---0  
Legend: x= unknown, u= unchanged, r = reserved, -= unimplemented, read as '0'.  
Shaded cells are not used during FLASH access.  
Note 1: This bit always reads as a 1.  
DS39597B-page 28  
2002 Microchip Technology Inc.  
PIC16F72  
Counter mode is selected by setting bit T0CS  
(OPTION<5>). In Counter mode, Timer0 will incre-  
ment, either on every rising or falling edge of pin RA4/  
T0CKI. The incrementing edge is determined by the  
Timer0 Source Edge Select bit T0SE (OPTION<4>).  
Clearing bit T0SE selects the rising edge. Restrictions  
on the external clock input are discussed in detail in  
Section 5.3.  
5.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following  
features:  
8-bit timer/counter  
Readable and writable  
8-bit software programmable prescaler  
Internal or external clock select  
Interrupt on overflow from FFh to 00h  
Edge select for external clock  
The prescaler is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. The pres-  
caler is not readable or writable. Section 5.4 details the  
operation of the prescaler.  
Figure 5-1 is a block diagram of the Timer0 module and  
the prescaler shared with the WDT.  
5.2  
Timer0 Interrupt  
Additional information on the Timer0 module is  
available in the PICmicroMid-Range MCU Family  
Reference Manual (DS33023).  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
TMR0IF (INTCON<2>). The interrupt can be masked  
by clearing bit TMR0IE (INTCON<5>). Bit TMR0IF  
must be cleared in software by the Timer0 module  
Interrupt Service Routine, before re-enabling this inter-  
rupt. The TMR0 interrupt cannot awaken the processor  
from SLEEP, since the timer is shut-off during SLEEP.  
5.1  
Timer0 Operation  
Timer mode is selected by clearing bit T0CS  
(OPTION<5>). In Timer mode, the Timer0 module will  
increment every instruction cycle (without prescaler). If  
the TMR0 register is written, the increment is inhibited  
for the following two instruction cycles. The user can  
work around this by writing an adjusted value to the  
TMR0 register.  
FIGURE 5-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
CLKO (= FOSC/4)  
Data Bus  
8
M
U
X
1
0
0
1
M
U
X
SYNC  
2
TMR0 reg  
Cycles  
RA4/T0CKI  
pin  
T0SE  
T0CS  
Set Flag bit TMR0IF  
PSA  
on Overflow  
PRESCALER  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION<5:0>).  
2002 Microchip Technology Inc.  
DS39597B-page 29  
PIC16F72  
Timer0 module means that there is no prescaler for the  
Watchdog Timer, and vice-versa. This prescaler is not  
readable or writable (see Figure 5-1).  
5.3  
Using Timer0 with an External  
Clock  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI, with the internal phase clocks, is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T0CKI to be high for at least 2 TOSC (and  
a small RC delay of 20 ns) and low for at least 2 TOSC  
(and a small RC delay of 20 ns). Refer to the electrical  
specification of the desired device.  
The PSA and PS2:PS0 bits (OPTION<3:0>) determine  
the prescaler assignment and prescale ratio.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF 1, MOVWF 1,  
BSF  
1,x....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the Watchdog Timer. The  
prescaler is not readable or writable.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0, will clear the prescaler  
count but will not change the prescaler  
assignment.  
5.4  
Prescaler  
There is only one prescaler available, which is mutually  
exclusively shared between the Timer0 module and the  
Watchdog Timer. A prescaler assignment for the  
TABLE 5-1:  
Address  
REGISTERS ASSOCIATED WITH TIMER0  
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3  
Value on  
Value on  
POR, BOR  
Bit 2  
Bit 1 Bit 0  
all other  
RESETS  
01h,101h TMR0  
Timer0 Module Register  
xxxx xxxx uuuu uuuu  
0Bh,8Bh, INTCON GIE  
10Bh,18Bh  
PEIE TMR0IE INTE RBIE TMR0IF INTF RBIF 0000 000x 0000 000u  
81h,181h OPTION RBPU INTEDG T0CS T0SE PSA  
PS2  
PS1  
PS0 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as 0. Shaded cells are not used by Timer0.  
DS39597B-page 30  
2002 Microchip Technology Inc.  
PIC16F72  
6.1  
Timer1 Operation  
6.0  
TIMER1 MODULE  
The Timer1 module timer/counter has the following  
features:  
Timer1 can operate in one of these modes:  
As a timer  
16-bit timer/counter  
(Two 8-bit registers; TMR1H and TMR1L)  
As a synchronous counter  
As an asynchronous counter  
Readable and writable (both registers)  
Internal or external clock select  
The Operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
Interrupt on overflow from FFFFh to 0000h  
RESET from CCP module trigger  
In Timer mode, Timer1 increments every instruction  
cycle. In Counter mode, it increments on every rising  
edge of the external clock input.  
Timer1 has a control register, shown in Register 6-1.  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
Figure 6-2 is a simplified block diagram of the Timer1  
module.  
Additional information on timer modules is available in  
the PICmicroMid-Range MCU Reference Manual,  
(DS33023).  
Timer1 also has an internal RESET input. This  
RESET can be generated by the CCP module  
(Section 8.0).  
REGISTER 6-1:  
T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as 0’  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11=1:8 Prescale value  
10=1:4 Prescale value  
01=1:2 Prescale value  
00=1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1= Oscillator is enabled  
0= Oscillator is shut-off (The oscillator inverter is turned off to eliminate power drain.)  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS39597B-page 31  
PIC16F72  
6.2  
Timer1 Operation in Timer Mode  
6.4  
Timer1 Operation in Synchronized  
Counter Mode  
Timer mode is selected by clearing the TMR1CS  
(T1CON<1>) bit. In this mode, the input clock to the  
timer is FOSC/4. The synchronize control bit T1SYNC  
(T1CON<2>) has no effect, since the internal clock is  
always in sync.  
Counter mode is selected by setting bit TMR1CS. In  
this mode, the timer increments on every rising edge of  
clock input on pin RC1/T1OSI when bit T1OSCEN is  
set, or on pin RC0/T1OSO/T1CKI when bit T1OSCEN  
is cleared.  
6.3  
Timer1 Counter Operation  
If T1SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The  
prescaler stage is an asynchronous ripple counter.  
Timer1 may operate in Asynchronous or Synchronous  
mode, depending on the setting of the TMR1CS bit.  
When Timer1 is being incremented via an external  
source, increments occur on a rising edge. After Timer1  
is enabled in Counter mode, the module must first have  
a falling edge before the counter begins to increment.  
In this configuration, during SLEEP mode, Timer1 will  
not increment even if the external clock is present,  
since the synchronization circuit is shut-off. The  
prescaler, however, will continue to increment.  
FIGURE 6-1:  
TIMER1 INCREMENTING EDGE  
T1CKI  
(Default High)  
T1CKI  
(Default Low)  
Note: Arrows indicate counter increments.  
FIGURE 6-2:  
TIMER1 BLOCK DIAGRAM  
Set Flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
Clock Input  
TMR1L  
TMR1H  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
(2)  
RC0/T1OSO/T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
Oscillator  
RC1/T1OSI  
2
Q Clock  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter is turned off. This eliminates power drain.  
DS39597B-page 32  
2002 Microchip Technology Inc.  
PIC16F72  
TABLE 6-1:  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
6.5  
Timer1 Operation in  
Asynchronous Counter Mode  
Osc Type  
Freq  
C1  
C2  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during SLEEP and can  
generate an interrupt on overflow, that will wake-up the  
processor. However, special precautions in software  
are needed to read/write the timer (Section 6.5.1).  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
These values are for design guidance only.  
Note 1: Higher capacitance increases the stability  
of oscillator, but also increases the start-up  
time.  
In Asynchronous Counter mode, Timer1 cannot be  
used as a time base for capture or compare operations.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
6.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
appropriate  
values  
of  
external  
components.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
6.7  
Timer1 Interrupt  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 interrupt, if enabled, is generated on overflow,  
which is latched in interrupt flag bit TMR1IF (PIR1<0>).  
This interrupt can be enabled/disabled by setting/  
clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers, while  
the register is incrementing. This may produce an  
unpredictable value in the timer register. Data in the  
Timer1 register (TMR1) may become corrupted. Cor-  
ruption occurs when the timer enable is turned off at the  
same instant that a ripple carry occurs in the timer  
module.  
6.8  
Resetting Timer1 Using a CCP  
Trigger Output  
If the CCP module is configured in Compare mode to  
generate special event trigger" signal  
a
(CCP1M3:CCP1M0 = 1011), the signal will reset  
Timer1 and start an A/D conversion (if the A/D module  
is enabled).  
Reading the 16-bit value requires some care. Exam-  
ples 12-2 and 12-3 in the PICmicroMid-Range MCU  
Family Reference Manual (DS33023) show how to  
read and write Timer1 when it is running in  
Asynchronous mode.  
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
6.6  
Timer1 Oscillator  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this RESET operation may not work.  
A crystal oscillator circuit is built between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 6-1 shows the capacitor  
selection for the Timer1 oscillator.  
In the event that a write to Timer1 coincides with a  
special event trigger from CCP1, the write will take  
precedence.  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair effectively becomes the period register for  
Timer1.  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
2002 Microchip Technology Inc.  
DS39597B-page 33  
PIC16F72  
6.9  
Resetting Timer1 Register Pair  
(TMR1H, TMR1L)  
6.10 Timer1 Prescaler  
The prescaler counter is cleared on writes to the  
TMR1H or TMR1L registers.  
TMR1H and TMR1L registers are not reset to 00h on a  
POR, or any other RESET, except by the CCP1 special  
event triggers.  
T1CON register is reset to 00h on a Power-on Reset or  
a Brown-out Reset, which shuts off the timer and  
leaves a 1:1 prescale. In all other RESETS, the register  
is unaffected.  
TABLE 6-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
Value on  
POR, BOR  
Address  
Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS  
0Bh,8Bh, INTCON GIE PEIE TMR0IE  
10Bh,18Bh  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
PIE1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 Register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as 0. Shaded cells are not used by the Timer1 module.  
DS39597B-page 34  
2002 Microchip Technology Inc.  
PIC16F72  
7.2  
Timer2 Prescaler and Postscaler  
7.0  
TIMER2 MODULE  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
The Timer2 module timer has the following features:  
8-bit timer (TMR2 register)  
A write to the TMR2 register  
A write to the T2CON register  
8-bit period register (PR2)  
Readable and writable (both registers)  
Software programmable prescaler (1:1, 1:4, 1:16)  
Software programmable postscaler (1:1 to 1:16)  
Interrupt on TMR2 match of PR2  
Any device RESET (Power-on Reset, MCLR ,  
WDT Reset, or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
SSP module optional use of TMR2 output to  
generate clock shift  
7.3  
Timer2 Interrupt  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon RESET.  
Timer2 has a control register, shown in Register 7-1.  
Timer2 can be shut-off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
Figure 7-1 is a simplified block diagram of the Timer2  
module.  
7.4  
Output of TMR2  
Additional information on timer modules is available in  
the PICmicroMid-Range MCU Reference Manual,  
(DS33023).  
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module, which optionally uses  
it to generate a shift clock.  
7.1  
Timer2 Operation  
Timer2 can be used as the PWM time-base for PWM  
mode of the CCP module.  
FIGURE 7-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
TMR2  
The TMR2 register is readable and writable, and is  
cleared on any device RESET.  
Output(1)  
RESET  
bit TMR2IF  
The input clock (FOSC/4) has a prescale option of 1:1,  
Prescaler  
TMR2 reg  
FOSC/4  
1:1, 1:4, 1:16  
1:4  
or  
1:16,  
selected  
by  
control  
bits  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
Postscaler  
1:1 to 1:16  
2
Comparator  
EQ  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
4
PR2 reg  
Note 1: TMR2 register output can be software  
selected by the SSP module as a baud clock.  
2002 Microchip Technology Inc.  
DS39597B-page 35  
PIC16F72  
REGISTER 7-1:  
T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as 0’  
bit 6-3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000=1:1 Postscale  
0001=1:2 Postscale  
0010=1:3 Postscale  
1111=1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Address  
Name Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
INTCON GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh, 18Bh  
0Ch  
8Ch  
11h  
12h  
92h  
PIR1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF -0-- 0000 0000 0000  
CCP1IE TMR2IE TMR1IE -0-- 0000 0000 0000  
0000 0000 0000 0000  
PIE1  
TMR2  
T2CON  
PR2  
Timer2 Module Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented, read as 0. Shaded cells are not used by the Timer2 module.  
DS39597B-page 36  
2002 Microchip Technology Inc.  
PIC16F72  
Additional information on the CCP module is available  
in the PICmicroMid-Range MCU Reference Manual,  
(DS33023).  
8.0  
CAPTURE/COMPARE/PWM  
(CCP) MODULE  
The CCP (Capture/Compare/PWM) module contains a  
16-bit register that can operate as a:  
TABLE 8-1:  
CCP MODE - TIMER  
RESOURCE  
16-bit capture register  
16-bit compare register  
CCP Mode  
Timer Resource  
PWM master/slave duty cycle register.  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
Table 8-1 shows the timer resources of the CCP  
Module modes.  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
REGISTER 8-1:  
CCPCON1:CAPTURE/COMPARE/PWMCONTROLREGISTER1(ADDRESS17h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCPxX  
CCPxY  
CCPxM3 CCPxM2 CCPxM1 CCPxM0  
bit 0  
bit 7  
Unimplemented: Read as '0'  
bit 7-6  
bit 5-4  
CCPxX:CCPxY: PWM Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0  
CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCPx module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCPxIF bit is set)  
1001= Compare mode, clear output on match (CCPxIF bit is set)  
1010= Compare mode, generate software interrupt on match (CCPxIF bit is set,  
CCPx pin is unaffected)  
1011= Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected);  
CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled)  
11xx= PWM mode  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS39597B-page 37  
PIC16F72  
8.1.2  
TIMER1 MODE SELECTION  
8.1  
Capture Mode  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode for the CCP module to use the  
capture feature. In Asynchronous Counter mode, the  
capture operation may not work.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1. An event is defined as:  
Every falling edge  
Every rising edge  
8.1.3  
SOFTWARE INTERRUPT  
Every 4th rising edge  
Every 16th rising edge  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF, following any such  
change in Operating mode.  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value is overwritten by the new captured value.  
8.1.4  
CCP PRESCALER  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
RESET will clear the prescaler counter.  
8.1.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be  
configured as an input by setting the TRISC<2> bit.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
a non-zero prescaler. Example 8-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the falseinterrupt.  
Note: If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
FIGURE 8-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
Set Flag bit CCP1IF  
(PIR1<2>)  
EXAMPLE 8-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
Prescaler  
÷ 1, 4, 16  
CLRF  
MOVLW  
CCP1CON  
; Turn CCP module off  
RC2/CCP1  
pin  
CCPR1H CCPR1L  
NEW_CAPT_PS ; Load the W reg with  
; the new prescaler  
Capture  
Enable  
and  
edge detect  
; mode value and CCP ON  
; Load CCP1CON with  
; this value  
MOVWF  
CCP1CON  
TMR1H  
TMR1L  
CCP1CON<3:0>  
Qs  
DS39597B-page 38  
2002 Microchip Technology Inc.  
PIC16F72  
8.2.1  
CCP PIN CONFIGURATION  
8.2 Compare Mode  
The user must configure the RC2/CCP1 pin as an  
output by clearing the TRISC<2> bit.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
Driven High  
Driven Low  
Remains Unchanged  
8.2.2  
TIMER1 MODE SELECTION  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, interrupt flag bit CCP1IF is set.  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode, if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
The output may become inverted when the mode of the  
module is changed from Compare/Clear on Match  
(CCPxM<3:0> = 1001) to Compare/Set on Match  
(CCPxM<3:0> = 1000). This may occur as a result of  
any operation that selectively clears bit CCPxM0, such  
as a BCFinstruction.  
8.2.3  
SOFTWARE INTERRUPT MODE  
When generate software interrupt is chosen, the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
When this condition occurs, the output becomes  
inverted when the instruction is executed. It will remain  
inverted for all following Compare operations, until the  
module is reset.  
8.2.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated  
that may be used to initiate an action.  
FIGURE 8-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
Special event trigger will:  
RESET Timer1, but not set interrupt flag bit TMR1IF  
(PIR1<0>)  
Set bit GO/DONE (ADCON0<2>) bit, which starts an A/D  
conversion  
The special trigger output of CCP1 resets the TMR1  
register pair, and starts an A/D conversion (if the A/D  
module is enabled).  
Note: The special event trigger from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
Special Event Trigger  
Set Flag bit CCP1IF  
(PIR1<2>)  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
Comparator  
Match  
RC2/CCP1  
pin  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
2002 Microchip Technology Inc.  
DS39597B-page 39  
PIC16F72  
TABLE 8-2:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Address  
Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
INTCON  
GIE  
PEIE TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh,18Bh  
0Ch  
8Ch  
87h  
0Eh  
0Fh  
10h  
15h  
16h  
17h  
PIR1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF -0-- 0000 0000 0000  
CCP1IE TMR2IE TMR1IE -0-- 0000 0000 0000  
1111 1111 1111 1111  
PIE1  
TRISC  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
PORTC Data Direction Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Capture/Compare/PWM Register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR1H Capture/Compare/PWM Register1 (MSB)  
CCP1CON CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as 0. Shaded cells are not used by Capture and Timer1.  
DS39597B-page 40  
2002 Microchip Technology Inc.  
PIC16F72  
8.3.1  
PWM PERIOD  
8.3  
PWM Mode  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the  
formula in Equation 8-1.  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
EQUATION 8-1:  
PWM PERIOD  
PWM period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1 / [PWM period].  
Figure 8-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 8.3.3.  
TMR2 is cleared  
The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
FIGURE 8-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
CCP1CON<5:4>  
Duty Cycle Registers  
Note: The Timer2 postscaler (see Section 7.0) is  
not used in the determination of the PWM  
frequency. The postscaler could be used to  
have a servo update rate at a different  
frequency than the PWM output.  
CCPR1L  
CCPR1H (Slave)  
Comparator  
TMR2  
8.3.2  
PWM DUTY CYCLE  
Q
R
S
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available: the CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. Equation 8-2 is used to  
calculate the PWM duty cycle in time.  
RC2/CCP1  
(Note 1)  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
EQUATION 8-2:  
PWM DUTY CYCLE  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC (TMR2 prescale value)  
or 2 bits of the prescaler to create 10-bit time-base.  
A PWM output (Figure 8-4) has a time-base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read only register.  
FIGURE 8-4:  
PWM OUTPUT  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
Period  
When the CCPR1H and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or 2 bits of  
the TMR2 prescaler, the CCP1 pin is cleared.  
Duty Cycle  
TMR2 = PR2  
TMR2 = Duty Cycle  
TMR2 = PR2  
2002 Microchip Technology Inc.  
DS39597B-page 41  
PIC16F72  
Maximum PWM resolution (bits) for a given PWM  
frequency is calculated using Equation 8-3.  
8.3.3  
SET-UP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
EQUATION 8-3:  
PWM MAX RESOLUTION  
1. Set the PWM period by writing to the PR2 register.  
FOSC  
FPWM  
log (  
)
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
PWM Maximum Resolution =  
bits  
log(2)  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP1 module for PWM operation.  
For a sample PWM period and duty cycle calculation,  
see the PICmicroMid-Range MCU Reference  
Manual (DS33023).  
TABLE 8-3:  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
5.5  
Maximum Resolution (bits)  
TABLE 8-4:  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh,18Bh  
0Ch  
8Ch  
87h  
11h  
92h  
12h  
15h  
16h  
17h  
PIR1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF -0-- 0000 0000 0000  
CCP1IE TMR2IE TMR1IE -0-- 0000 0000 0000  
1111 1111 1111 1111  
PIE1  
TRISC  
TMR2  
PR2  
PORTC Data Direction Register  
Timer2 Module Register  
0000 0000 0000 0000  
Timer2 Module Period Register  
1111 1111 1111 1111  
T2CON  
CCPR1L  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Capture/Compare/PWM Register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR1H Capture/Compare/PWM Register1 (MSB)  
CCP1CON CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as 0. Shaded cells are not used by PWM and Timer2.  
DS39597B-page 42  
2002 Microchip Technology Inc.  
PIC16F72  
9.2  
SPI Mode  
9.0  
9.1  
SYNCHRONOUS SERIAL PORT  
(SSP) MODULE  
This section contains register definitions and  
operational characteristics of the SPI module.  
SSP Module Overview  
SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. To accomplish  
communication, typically three pins are used:  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
Serial Data Out (SDO)  
Serial Data In (SDI)  
Serial Clock (SCK)  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
Serial Peripheral Interface (SPI)  
Inter-Integrated Circuit (I2C)  
Slave Select (SS)  
RA5/AN4/SS  
An overview of I2C operations and additional informa-  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits in the SSPCON register (SSPCON<5:0>)  
and SSPSTAT<7:6>. These control bits allow the  
following to be specified:  
tion on the SSP module can be found in the PICmicro™  
Mid-Range  
(DS33023).  
MCU  
Family  
Reference Manual  
Refer to Application Note AN578, Use of the SSP  
Module in the I 2C Multi-Master Environment.”  
Master mode (SCK is the clock output)  
Slave mode (SCK is the clock input)  
Clock Polarity (IDLE state of SCK)  
Clock edge (output data on rising/falling edge of  
SCK)  
Clock Rate (Master mode only)  
Slave Select mode (Slave mode only)  
2002 Microchip Technology Inc.  
DS39597B-page 43  
PIC16F72  
REGISTER 9-1:  
SSPSTAT:SYNCHRONOUSSERIALPORTSTATUSREGISTER (ADDRESS94h)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
SMP: SPI Data Input Sample Phase bits  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time (Microwire®)  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
I2C mode:  
This bit must be maintained clear  
bit 6  
CKE: SPI Clock Edge Select bits (Figure 9-2, Figure 9-3, and Figure 9-4)  
SPI mode, CKP = 0:  
1= Data transmitted on rising edge of SCK (Microwire alternate)  
0= Data transmitted on falling edge of SCK  
SPI mode, CKP = 1:  
1= Data transmitted on falling edge of SCK (Microwire default)  
0= Data transmitted on rising edge of SCK  
I2C mode:  
This bit must be maintained clear  
bit 5  
bit 4  
D/A: Data/Address bit (I2C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: STOP bit (I2C mode only) This bit is cleared when the SSP module is disabled, or when  
the START bit is detected last. SSPEN is cleared.  
1= Indicates that a STOP bit has been detected last (this bit is 0on RESET)  
0= STOP bit was not detected last  
bit 3  
bit 2  
S: START bit (I2C mode only) This bit is cleared when the SSP module is disabled, or when  
the STOP bit is detected last. SSPEN is cleared.  
1= Indicates that a START bit has been detected last (this bit is 0on RESET)  
0= START bit was not detected last  
R/W: Read/Write Information bit (I2C mode only) This bit holds the R/W bit information follow-  
ing the last address match. This bit is only valid from the address match to the next START bit,  
STOP bit, or ACK bit.  
1= Read  
0= Write  
bit 1  
bit 0  
UA: Update Address bit (10-bit I2C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
Receive (SPI and I2C modes):  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Transmit (I2C mode only):  
1= Transmit in progress, SSPBUF is full  
0= Transmit complete, SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39597B-page 44  
2002 Microchip Technology Inc.  
PIC16F72  
REGISTER 9-2:  
SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPM0  
bit 0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
bit 7  
bit 7  
bit 6  
WCOL: Write Collision Detect bit  
1= The SSPBUF register is written while it is still transmitting the previous word (must be  
cleared in software)  
0= No collision  
SSPOV: Receive Overflow Indicator bit  
In SPI mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case  
of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user  
must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master  
mode, the overflow bit is not set since each new reception (and transmission) is initiated  
by writing to the SSPBUF register.  
0= No overflow  
In I2C mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV  
is a "dont care" in Transmit mode. SSPOV must be cleared in software in either mode.  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode:  
1= Enables serial port and configures SCK, SDO, and SDI as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
In I2C mode:  
1= Enables the serial port and configures the SDA and SCL pins as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
In both modes, when enabled, these pins must be properly configured as input or output.  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= IDLE state for clock is a high level (Microwire® default)  
0= IDLE state for clock is a low level (Microwire alternate)  
In I2C mode:  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch - used to ensure data setup time)  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
0110= I2C Slave mode, 7-bit address  
0111= I2C Slave mode, 10-bit address  
1011= I2C firmware controlled Master mode (Slave IDLE)  
1110= I2C Slave mode, 7-bit address with START and STOP bit interrupts enabled  
1111= I2C Slave mode, 10-bit address with START and STOP bit interrupts enabled  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS39597B-page 45  
PIC16F72  
To enable the serial port, SSP enable bit, SSPEN  
(SSPCON<5>) must be set. To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
ister, and then set bit SSPEN. This configures the SDI,  
SDO, SCK, and SS pins as serial port pins. For the pins  
to behave as the serial port function, they must have  
their data direction bits (in the TRISC register)  
appropriately programmed. That is:  
FIGURE 9-1:  
SSP BLOCK DIAGRAM  
(SPI MODE)  
Internal  
Data Bus  
Read  
Write  
SSPBUF reg  
SSPSR reg  
SDI must have TRISC<4> set  
SDO must have TRISC<5> cleared  
SCK (Master mode) must have TRISC<3>  
Shift  
Clock  
cleared  
RC4/SDI/SDA  
RC5/SDO  
bit0  
SCK (Slave mode) must have TRISC<3> set  
SS must have TRISA<5> set and ADCON must  
be configured such that RA5 is a digital I/O  
.
Control  
Enable  
SS  
Note 1: When the SPI is in Slave mode with SS pin  
control enabled (SSPCON<3:0> = 0100),  
the SPI module will reset if the SS pin is  
set to VDD.  
RA5/AN4/SS  
Edge  
Select  
2
2: If the SPI is used in Slave mode with  
CKE = 1, then the SS pin control must be  
enabled.  
Clock Select  
SSPM3:SSPM0  
4
TMR2 Output  
2
Edge  
Select  
TCY  
Prescaler  
4, 16, 64  
RC3/SCK/  
SCL  
TRISC<3>  
TABLE 9-1:  
REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
10Bh,18Bh  
INTCON  
PIR1  
GIE  
PEIE TMR0IE INTE  
RBIE TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
ADIF  
ADIE  
SSPIF CCP1IF TMR2IF TMR1IF -0-- 0000 0000 0000  
8Ch  
87h  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE -0-- 0000 0000 0000  
TRISC  
PORTC Data Direction Register  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
1111 1111 1111 1111  
13h  
14h  
85h  
94h  
SSPBUF  
SSPCON  
TRISA  
xxxx xxxx uuuu uuuu  
PORTA Data Direction Register  
D/A R/W  
--11 1111 --11 1111  
--00 0000 --00 0000  
SSPSTAT  
P
S
UA  
BF  
Legend: x= unknown, u= unchanged, -= unimplemented, read as 0. Shaded cells are not used by the SSP in SPI mode.  
DS39597B-page 46  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 9-2:  
SPI MODE TIMING, MASTER MODE  
SCK (CKP = 0,  
CKE = 0)  
SCK (CKP = 0,  
CKE = 1)  
SCK (CKP = 1,  
CKE = 0)  
SCK (CKP = 1,  
CKE = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SDI (SMP = 1)  
SSPIF  
bit7  
bit0  
FIGURE 9-3:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 0)  
SS (optional)  
SCK (CKP = 0)  
SCK (CKP = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SSPIF  
FIGURE 9-4:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 1)  
SS  
SCK (CKP = 0)  
SCK (CKP = 1)  
SDO  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDI (SMP = 0)  
SSPIF  
bit7  
bit0  
2002 Microchip Technology Inc.  
DS39597B-page 47  
PIC16F72  
Selection of any I2C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits.  
Additional information on SSP I2C operation may be  
found in the PICmicroMid-Range MCU Reference  
Manual (DS33023).  
2
9.3  
SSP I C Mode Operation  
The SSP module in I2C mode fully implements all slave  
functions, except general call support and provides  
interrupts on START and STOP bits in hardware to  
facilitate firmware implementations of the master func-  
tions. The SSP module implements the Standard mode  
specifications, as well as 7-bit and 10-bit addressing.  
Two pins are used for data transfer. These are the RC3/  
SCK/SCL pin, which is the clock (SCL), and the RC4/  
SDI/SDA pin, which is the data (SDA). The user must  
configure these pins as inputs or outputs through the  
TRISC<4:3> bits.  
9.3.1  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The SSP module will  
override the input state with the output data when  
required (slave-transmitter).  
The SSP module functions are enabled by setting SSP  
Enable bit SSPEN (SSPCON<5>).  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse, and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
FIGURE 9-5:  
SSP BLOCK DIAGRAM  
(I2C MODE)  
Internal  
Either or both of the following conditions will cause the  
SSP module not to give this ACK pulse.  
Data Bus  
Read  
Write  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
SSPBUF Reg  
RC3/SCK/SCL  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
Shift  
Clock  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set.  
Table 9-2 shows what happens when a data transfer  
byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow condi-  
tion. Flag bit BF is cleared by reading the SSPBUF  
register while bit SSPOV is cleared through software.  
SSPSR Reg  
RC4/  
SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match Detect  
SSPADD Reg  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the SSP  
module are shown in timing parameter #100 and  
parameter #101.  
Set, RESET  
S, P Bits  
START and  
STOP Bit Detect  
(SSPSTAT Reg)  
The SSP module has five registers for I2C operation:  
SSP Control Register (SSPCON)  
SSP Status Register (SSPSTAT)  
Serial Receive/Transmit Buffer (SSPBUF)  
9.3.1.1  
Addressing  
Once the SSP module has been enabled, it waits for a  
START condition to occur. Following the START condi-  
tion, the eight bits are shifted into the SSPSR register.  
All incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
SSP Shift Register (SSPSR) - Not directly  
accessible  
SSP Address Register (SSPADD)  
The SSPCON register allows control of the I2C opera-  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
I2C Slave mode (7-bit address)  
I2C Slave mode (10-bit address)  
I2C Slave mode (7-bit address), with START and  
STOP bit interrupts enabled  
I2C Slave mode (10-bit address), with START and  
STOP bit interrupts enabled  
I2C Firmware controlled Master operation, Slave  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
b) The buffer full bit, BF is set.  
c) An ACK pulse is generated.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set  
(interrupt is generated, if enabled) - on the falling  
edge of the ninth SCL pulse.  
is IDLE  
DS39597B-page 48  
2002 Microchip Technology Inc.  
PIC16F72  
In 10-bit Address mode, two address bytes need to be  
received by the slave device. The five Most Significant  
bits (MSbs) of the first address byte specify if this is a  
10-bit address. Bit R/W (SSPSTAT<2>) must specify a  
write so the slave device will receive the second  
address byte. For a 10-bit address the first byte would  
equal 1111 0 A9 A8 0, where A9and A8are the  
two MSbs of the address.  
9.3.1.3  
Transmission  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit, and pin RC3/SCK/SCL is held  
low. The transmit data must be loaded into the  
SSPBUF register, which also loads the SSPSR regis-  
ter. Then pin RC3/SCK/SCL should be enabled by set-  
ting bit CKP (SSPCON<4>). The master device must  
monitor the SCL pin prior to asserting another clock  
pulse. The slave devices may be holding off the master  
device by stretching the clock. The eight data bits are  
shifted out on the falling edge of the SCL input. This  
ensures that the SDA signal is valid during the SCL  
high time (Figure 9-7).  
The sequence of events for 10-bit address is as  
follows, with steps 7- 9 for slave-transmitter:  
1. Receive first (high) byte of address (bits SSPIF,  
BF, and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. Flag bit SSPIF is set on the falling edge of  
the ninth clock pulse.  
4. Receive second (low) byte of address (bits  
SSPIF, BF, and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of Address, if match releases SCL line, this  
will clear bit UA.  
As a slave-transmitter, the ACK pulse from the master-  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line was high (not ACK), then  
the data transfer is complete. When the ACK is latched  
by the slave device, the slave logic is reset (resets  
SSPSTAT register) and the slave device then monitors  
for another occurrence of the START bit. If the SDA line  
was low (ACK), the transmit data must be loaded into  
the SSPBUF register, which also loads the SSPSR reg-  
ister. Then, pin RC3/SCK/SCL should be enabled by  
setting bit CKP.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
7. Receive Repeated START condition.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
9.3.1.2  
Reception  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
When the address byte overflow condition exists, then  
a no Acknowledge (ACK) pulse is given. An overflow  
condition is indicated if either bit BF (SSPSTAT<0>) is  
set, or bit SSPOV (SSPCON<6>) is set.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
TABLE 9-2:  
Status Bits as Data  
Transfer is Received  
DATA TRANSFER RECEIVED BYTE ACTIONS  
Set bit SSPIF  
SSPSR SSPBUF  
Generate ACK Pulse  
(SSP Interrupt occurs if enabled)  
BF  
SSPOV  
0
1
1
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
2002 Microchip Technology Inc.  
DS39597B-page 49  
PIC16F72  
FIGURE 9-6:  
I2C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4  
R/W = 0  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
ACK  
9
SDA  
SCL  
A3 A2 A1  
D7 D6 D5 D4 D3 D2  
D0  
8
D7 D6  
D5  
D4 D3  
D2  
D0  
8
D1  
7
D1  
7
3
7
1
2
4
5
4
3
6
5
6
1
2
3
6
1
2
4
8
5
P
S
SSPIF (PIR1<3>)  
Cleared in software  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
FIGURE 9-7:  
I2C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4 A3 A2 A1  
R/W = 1  
ACK  
Transmitting Data  
ACK  
SDA  
SCL  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data is  
sampled  
Cleared in software  
SSPIF (PIR1<3>)  
BF (SSPSTAT<0>)  
From SSP Interrupt  
Service Routine  
SSPBUF is written in software  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to  
before the CKP bit can be set)  
DS39597B-page 50  
2002 Microchip Technology Inc.  
PIC16F72  
9.3.2  
MASTER MODE OPERATION  
9.3.3  
MULTI-MASTER MODE OPERATION  
Master mode operation is supported in firmware using  
interrupt generation on the detection of the START and  
STOP conditions. The STOP (P) and START (S) bits  
are cleared from a RESET or when the SSP module is  
disabled. The STOP (P) and START (S) bits will toggle,  
based on the START and STOP conditions. Control of  
the I2C bus may be taken when the P bit is set, or the  
bus is IDLE and both the S and P bits are clear.  
In Multi-Master mode operation, the interrupt genera-  
tion on the detection of the START and STOP condi-  
tions allows the determination of when the bus is free.  
The STOP (P) and START (S) bits are cleared from a  
RESET or when the SSP module is disabled. The  
STOP (P) and START (S) bits will toggle, based on the  
START and STOP conditions. Control of the I2C bus  
may be taken when bit P (SSPSTAT<4>) is set, or the  
bus is IDLE and both the S and P bits clear. When the  
bus is busy, enabling the SSP interrupt will generate  
the interrupt when the STOP condition occurs.  
In Master mode operation, the SCL and SDA lines are  
manipulated in firmware by clearing the corresponding  
TRISC<4:3> bit(s). The output level is always low, irre-  
spective of the value(s) in PORTC<4:3>. So, when  
transmitting data, a 1data bit must have the  
TRISC<4> bit set (input) and a 0data bit must have  
the TRISC<4> bit cleared (output). The same scenario  
is true for the SCL line with the TRISC<3> bit.  
In Multi-Master mode operation, the SDA line must be  
monitored to see if the signal level is the expected out-  
put level. This check only needs to be done when a  
high level is output. If a high level is expected and a low  
level is present, the device needs to release the SDA  
and SCL lines (set TRISC<4:3>). There are two stages  
where this arbitration can be lost:  
The following events will cause the SSP Interrupt Flag  
bit, SSPIF, to be set (SSP Interrupt if enabled):  
Address Transfer  
Data Transfer  
START condition  
STOP condition  
When the slave logic is enabled, the Slave device con-  
tinues to receive. If arbitration was lost during the  
address transfer stage, communication to the device  
may be in progress. If addressed, an ACK pulse will be  
generated. If arbitration was lost during the data trans-  
fer stage, the device will need to retransfer the data at  
a later time.  
Data transfer byte transmitted/received  
Master mode operation can be done with either the  
Slave mode IDLE (SSPM3:SSPM0 = 1011), or with the  
Slave mode active. When both Master mode operation  
and Slave modes are used, the software needs to  
differentiate the source(s) of the interrupt.  
For more information on Master mode operation, see  
For more information on Multi-Master mode operation,  
see AN578 - Use of the SSP Module in the I2C  
Multi-Master Environment.  
AN554 - Software Implementation of I2C Bus Master.  
TABLE 9-3:  
REGISTERS ASSOCIATED WITH I2C OPERATION  
Value on  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS  
0000 000x 0000 000u  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE TMR0IF INTF  
RBIF  
10Bh,18Bh  
PIR1  
PIE1  
ADIF  
ADIE  
SSPIF CCP1IF TMR2IF TMR1IF -0-- 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE -0-- 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0Ch  
8Ch  
13h  
93h  
14h  
94h  
87h  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
2
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
SSPADD Synchronous Serial Port (I C mode) Address Register  
SSPCON WCOL SSPOV SSPEN  
CKP SSPM3 SSPM2 SSPM1 SSPM0  
R/W UA BF  
(1)  
(1)  
SSPSTAT SMP  
CKE  
D/A  
P
S
PORTC Data Direction Register  
TRISC  
1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as 0.  
Shaded cells are not used by SSP module in SPI mode.  
2
Note 1: Maintain these bits clear in I C mode.  
2002 Microchip Technology Inc.  
DS39597B-page 51  
PIC16F72  
NOTES:  
DS39597B-page 52  
2002 Microchip Technology Inc.  
PIC16F72  
The A/D module has three registers:  
10.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
A/D Result Register  
A/D Control Register 0  
A/D Control Register 1  
ADRES  
ADCON0  
ADCON1  
The analog-to-digital (A/D) converter module has five  
inputs for the PIC16F72.  
A device RESET forces all registers to their RESET  
state. This forces the A/D module to be turned off and  
any conversion is aborted.  
The A/D allows conversion of an analog input signal to  
a corresponding 8-bit digital number. The output of the  
sample and hold is the input into the converter, which  
generates the result via successive approximation. The  
analog reference voltage is software selectable to  
either the devices positive supply voltage (VDD) or the  
voltage level on the RA3/AN3/VREF pin.  
The ADCON0 register, shown in Register 10-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 10-2, configures the func-  
tions of the port pins. The port pins can be configured  
as analog inputs (RA3 can also be a voltage reference)  
or a digital I/O.  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode. To oper-  
ate in SLEEP, the A/D conversion clock must be  
derived from the A/Ds internal RC oscillator.  
For more information on use of the A/D Converter, see  
AN546 - Use of A/D Converter, or refer to the  
PICmicroMid-Range MCU Family Reference  
Manual (DS33023).  
REGISTER 10-1: ADCON0: A/D CONTROL REGISTER 0 (ADDRESS 1Fh)  
R/W-0  
ADCS1  
bit 7  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
U-0  
R/W-0  
ADON  
bit 0  
ADCS0  
GO/DONE  
bit 7-6  
bit 5-3  
ADCS<1:0>: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from the internal A/D module RC oscillator)  
CHS<2:0>: Analog Channel Select bits  
000= Channel 0, (RA0/AN0)  
001= Channel 1, (RA1/AN1)  
010= Channel 2, (RA2/AN2)  
011= Channel 3, (RA3/AN3)  
100= Channel 4, (RA5/AN4)  
bit 2  
GO/DONE: A/D Conversion Status bit  
If ADON = 1:  
1= A/D conversion in progress (setting this bit starts the A/D conversion)  
0= A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D  
conversion is complete)  
bit 1  
bit 0  
Unimplemented: Read as 0’  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter module is shut-off and consumes no operating current  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS39597B-page 53  
PIC16F72  
REGISTER 10-2: ADCON1: A/D CONTROL REGISTER 1 (ADDRESS 9Fh)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PCFG2  
PCFG1 PCFG0  
bit 0  
bit 7  
bit 7-3  
bit 2-0  
Unimplemented: Read as 0’  
PCFG<2:0>: A/D Port Configuration Control bits  
PCFG2:PCFG0 RA0 RA1 RA2 RA5 RA3  
VREF  
000  
001  
010  
011  
100  
101  
11x  
A
A
A
A
A
A
D
A
A
A
A
A
A
D
A
A
A
A
D
D
D
A
A
A
A
D
D
D
A
VREF  
A
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
VDD  
VREF  
A
VREF  
D
A = Analog input  
D = Digital I/O  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
The ADRES register contains the result of the A/D con-  
version. When the A/D conversion is complete, the  
result is loaded into the ADRES register, the GO/DONE  
bit (ADCON0<2>) is cleared, and A/D interrupt flag bit  
ADIF is set. The block diagram of the A/D module is  
shown in Figure 10-1.  
The following steps should be followed for doing an  
A/D conversion:  
1. Configure the A/D module:  
Configure analog pins/voltage reference and  
digital I/O (ADCON1)  
Select A/D input channel (ADCON0)  
Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
Clear ADIF bit  
The value in the ADRES register is not modified for a  
Power-on Reset. The ADRES register will contain  
unknown data after a Power-on Reset.  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 10.1.  
After this acquisition time has elapsed, the A/D  
conversion can be started.  
Set ADIE bit  
Set GIE bit  
3. Wait the required acquisition time.  
4. Start conversion:  
Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
Polling for the GO/DONE bit to be cleared  
OR  
Waiting for the A/D interrupt  
6. Read A/D Result register (ADRES), clear bit  
ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before the next acquisition starts.  
DS39597B-page 54  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 10-1:  
A/D BLOCK DIAGRAM  
CHS2:CHS0  
100  
011  
010  
001  
000  
RA5/AN4  
RA3/AN3/VREF  
RA2/AN2  
VAIN  
(Input Voltage)  
A/D  
Converter  
RA1/AN1  
VDD  
RA0/AN0  
000or  
010or  
100  
VREF  
(Reference  
Voltage)  
001or  
011or  
101  
PCFG2:PCFG0  
FIGURE 10-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6 V  
ANx  
SS  
RIC 1 k  
RSS  
Rs  
CHOLD  
= DAC capacitance  
= 51.2 pF  
CPIN  
5 pF  
VA  
I leakage  
500 nA  
VT = 0.6 V  
VSS  
Legend:  
CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
I leakage = leakage current at the pin due to  
various junctions  
RIC  
VDD 4V  
3V  
= interconnect resistance  
= sampling switch  
2V  
SS  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 10 11  
Sampling Switch  
( k)  
2002 Microchip Technology Inc.  
DS39597B-page 55  
PIC16F72  
10.1 A/D Acquisition Requirements  
10.3 Configuring Analog Port Pins  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 10-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current).  
The ADCON1, and TRISA registers control the opera-  
tion of the A/D port pins. The port pins that are desired  
as analog inputs must have their corresponding TRIS  
bits set (input). If the TRIS bit is cleared (output), the  
digital output level (VOH or VOL) will be converted.  
The A/D operation is independent of the state of the  
CHS<2:0> bits and the TRIS bits.  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs, will convert an  
analog input. Analog levels on a digitally  
configured input will not affect the  
conversion accuracy.  
The maximum recommended impedance for ana-  
log sources is 10 k. After the analog input channel is  
selected (changed), this acquisition must be done  
before the conversion can be started.  
To calculate the minimum acquisition time, TACQ, see  
the PICmicroMid-Range MCU Reference Manual,  
(DS33023). In general, however, given a max of 10 kΩ  
and at a temperature of 100°C, TACQ will be no more  
than 16 µs.  
2: Analog levels on any pin that is defined as  
a digital input (including the AN4:AN0  
pins), may cause the input buffer to  
consume current out of the device  
specification.  
10.2 Selecting the A/D Conversion  
Clock  
10.4 A/D Conversions  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 9.0 TAD per 8-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The four possible options for TAD are:  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The ADRES register will  
NOT be updated with the partially completed A/D con-  
version sample. That is, the ADRES register will con-  
tinue to contain the value of the last completed  
conversion (or the last value written to the ADRES reg-  
ister). After the A/D conversion is aborted, a 2 TAD wait  
is required before the next acquisition is started. After  
this 2 TAD wait, an acquisition is automatically started  
on the selected channel. The GO/DONE bit can then  
be set to start the conversion.  
2 TOSC  
8 TOSC  
32 TOSC  
Internal RC oscillator (2 - 6 µs)  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
as small as possible, but no less than 1.6 µs and not  
greater than 6.4 µs.  
Table 10-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
TABLE 10-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))  
AD Clock Source (TAD)  
Maximum Device Frequency  
Max.  
Operation  
ADCS<1:0>  
2 TOSC  
8 TOSC  
32 TOSC  
RC(1, 2)  
00  
01  
10  
11  
1.25 MHz  
5 MHz  
20 MHz  
(Note 1)  
Note 1: The RC source has a typical TAD time of 4 µs, but can vary between 2-6 µs.  
2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only  
recommended for SLEEP operation.  
DS39597B-page 56  
2002 Microchip Technology Inc.  
PIC16F72  
10.5 A/D Operation During SLEEP  
10.6 Effects of a RESET  
The A/D module can operate during SLEEP mode. This  
requires that the A/D clock source be set to RC  
(ADCS1:ADCS0 = 11). When the RC clock source is  
selected, the A/D module waits one instruction cycle  
before starting the conversion. This allows the SLEEP  
instruction to be executed, which eliminates all digital  
switching noise from the conversion. When the conver-  
sion is completed, the GO/DONE bit will be cleared,  
and the result loaded into the ADRES register. If the  
A/D interrupt is enabled, the device will wake-up from  
SLEEP. If the A/D interrupt is not enabled, the A/D mod-  
ule will then be turned off, although the ADON bit will  
remain set.  
A device RESET forces all registers to their RESET  
state. The A/D module is disabled and any conversion  
in progress is aborted. All A/D input pins are configured  
as analog inputs.  
The ADRES register will contain unknown data after a  
Power-on Reset.  
10.7 Use of the CCP Trigger  
An A/D conversion can be started by the special event  
triggerof the CCP1 module. This requires that the  
CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be pro-  
grammed as 1011and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the  
GO/DONE bit will be set, starting the A/D conversion,  
and the Timer1 counter will be reset to zero. Timer1 is  
reset to automatically repeat the A/D acquisition period  
with minimal software overhead (moving the ADRES to  
the desired location). The appropriate analog input  
channel must be selected and the minimum acquisition  
done before the special event triggersets the  
GO/DONE bit (starts a conversion).  
When the A/D clock source is another clock option (not  
RC), a SLEEPinstruction will cause the present conver-  
sion to be aborted and the A/D module to be turned off,  
though the ADON bit will remain set.  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
Note:  
For the A/D module to operate in SLEEP,  
the A/D clock source must be set to RC  
(ADCS1:ADCS0 = 11). To perform an A/D  
conversion in SLEEP, ensure the SLEEP  
instruction immediately follows the  
instruction that sets the GO/DONE bit.  
If the A/D module is not enabled (ADON is cleared),  
then the special event triggerwill be ignored by the  
A/D module, but will still reset the Timer1 counter.  
TABLE 10-2: REGISTERS/BITS ASSOCIATED WITH A/D  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE TMR0IE INTE RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Bh,8Bh  
10Bh,18Bh  
PIR1  
ADIF  
ADIE  
SSPIF CCP1IF TMR2IF TMR1IF -0-- 0000 -0-- 0000  
SSPIE CCP1IE TMR2IE TMR1IE -0-- 0000 -0-- 0000  
xxxx xxxx uuuu uuuu  
0Ch  
8Ch  
1Eh  
1Fh  
9Fh  
05h  
85h  
PIE1  
ADRES  
A/D Result Register  
ADCON0 ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE  
ADON 0000 00-0 0000 00-0  
ADCON1  
PCFG2  
RA2  
PCFG1 PCFG0 ---- -000 ---- -000  
--0x 0000 --0u 0000  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA1  
RA0  
--11 1111 --11 1111  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented, read as 0. Shaded cells are not used for A/D conversion.  
2002 Microchip Technology Inc.  
DS39597B-page 57  
PIC16F72  
NOTES:  
DS39597B-page 58  
2002 Microchip Technology Inc.  
PIC16F72  
SLEEP mode is designed to offer a very low current  
Power-down mode. The user can wake-up from  
SLEEP through external RESET, Watchdog Timer  
Wake-up, or through an interrupt.  
11.0 SPECIAL FEATURES OF THE  
CPU  
These devices have a host of features intended to max-  
imize system reliability, minimize cost through elimina-  
tion of external components, provide power saving  
Operating modes and offer code protection:  
Several oscillator options are also made available to  
allow the part to fit the application. The RC oscillator  
option saves system cost while the LP crystal option  
saves power. Configuration bits are used to select the  
desired oscillator mode.  
Oscillator Selection  
RESET  
Additional information on special features is available  
in the PICmicroMid-Range Reference Manual  
(DS33023).  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
Interrupts  
11.1 Configuration Bits  
The configuration bits can be programmed (read as  
0), or left unprogrammed (read as 1), to select vari-  
ous device configurations. These bits are mapped in  
program memory location 2007h.  
Watchdog Timer (WDT)  
SLEEP  
Code Protection  
ID Locations  
The user will note that address 2007h is beyond the  
user program memory space, which can be accessed  
only during programming.  
In-Circuit Serial Programming  
These devices have a Watchdog Timer, which can be  
enabled or disabled using a configuration bit. It runs off  
its own RC oscillator for added reliability.  
There are two timers that offer necessary delays on  
power-up. One is the Oscillator Start-up Timer (OST),  
intended to keep the chip in RESET until the crystal  
oscillator is stable. The other is the Power-up Timer  
(PWRT), which provides a fixed delay of 72 ms (nomi-  
nal) on power-up only. It is designed to keep the part in  
RESET while the power supply stabilizes, and is  
enabled or disabled using a configuration bit. With  
these two timers on-chip, most applications need no  
external RESET circuitry.  
2002 Microchip Technology Inc.  
DS39597B-page 59  
PIC16F72  
REGISTER 11-1: CONFIGURATION WORD (ADDRESS 2007h)(1)  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
u-1  
U-1  
u-1  
u-1  
u-1  
u-1  
u-1  
BOREN  
CP PWRTEN WDTEN F0SC1 F0SC0  
bit0  
bit13  
bit 13-7  
bit 6  
Unimplemented: Read as 1’  
(2)  
BOREN: Brown-out Reset Enable bit  
1= BOR enabled  
0= BOR disabled  
bit 5  
bit 4  
Unimplemented: Read as 1’  
CP: FLASH Program Memory Code Protection bit  
1= Code protection off  
0= All memory locations code protected  
bit 3  
PWRTEN: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
bit 2  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 1-0  
FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: The erased (unprogrammed) value of the configuration word is 3FFFh.  
2: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of  
the value of bit PWRTEN. Ensure the Power-up Timer is enabled any time Brown-out  
Reset is enabled.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as 1’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39597B-page 60  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 11-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS OSC  
CONFIGURATION)  
11.2 Oscillator Configurations  
11.2.1 OSCILLATOR TYPES  
The PIC16F72 can be operated in four different Oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
OSC1  
Clock from  
Ext. System  
PIC16F72  
(HS Mode)  
OSC2  
LP  
XT  
HS  
RC  
Low Power Crystal  
Open  
Crystal/Resonator  
High Speed Crystal/Resonator  
Resistor/Capacitor  
11.2.2  
CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
TABLE 11-1: CERAMIC RESONATORS  
(FOR DESIGN  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKI and OSC2/CLKO pins  
to establish oscillation (Figure 11-1). The PIC16F72  
oscillator design requires the use of a parallel cut crys-  
tal. Use of a series cut crystal may give a frequency out  
of the crystal manufacturers specifications. When in HS  
mode, the device can accept an external clock source  
to drive the OSC1/CLKI pin (Figure 11-2). See  
Figure 14-1 or Figure 14-2 (depending on the part  
number and VDD range) for valid external clock  
frequencies.  
GUIDANCE ONLY)  
Typical Capacitor Values Used:  
Mode  
Freq  
OSC1  
OSC2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
56 pF  
47 pF  
33 pF  
56 pF  
47 pF  
33 pF  
HS  
8.0 MHz  
16.0 MHz  
27 pF  
22 pF  
27 pF  
22 pF  
Capacitor values are for design guidance only.  
FIGURE 11-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP  
These capacitors were tested with the resonators  
listed below for basic start-up and operation. These  
values were not optimized.  
OSC CONFIGURATION)  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
(1)  
C1  
OSC1  
To  
internal  
logic  
XTAL  
See the notes at the bottom of page 62 for additional  
information.  
RF(3)  
OSC2  
SLEEP  
PIC16F72  
(2)  
RS  
C2(1)  
Note 1: See Table 11-1 and Table 11-2 for typical  
values of C1 and C2.  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
3: RF varies with the crystal chosen.  
2002 Microchip Technology Inc.  
DS39597B-page 61  
PIC16F72  
TABLE 11-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR (FOR  
11.2.3  
RC OSCILLATOR  
For timing insensitive applications, the RCdevice  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C com-  
ponents used. Figure 11-3 shows how the R/C  
combination is connected to the PIC16F72.  
DESIGN GUIDANCE ONLY)  
Typical Capacitor Values  
Crystal  
Freq  
Tested:  
Osc Type  
C1  
C2  
LP  
XT  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
56 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
33 pF  
15 pF  
56 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
4 MHz  
HS  
4 MHz  
8 MHz  
FIGURE 11-3:  
RC OSCILLATOR MODE  
20 MHz  
VDD  
Capacitor values are for design guidance only.  
These capacitors were tested with the crystals listed  
below for basic start-up and operation. These values  
were not optimized.  
REXT  
Internal  
OSC1  
Clock  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
CEXT  
VSS  
PIC16F72  
OSC2/CLKO  
FOSC/4  
See the notes following this table for additional  
information.  
Recommended values:  
3 kΩ ≤ REXT 100 kΩ  
CEXT > 20 pF  
Note 1: Higher capacitance increases the stability  
of oscillator, but also increases the  
start-up time.  
11.3 RESET  
The PIC16F72 differentiates between various kinds of  
RESET:  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components.  
Power-on Reset (POR)  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset (during normal operation)  
WDT Wake-up (during SLEEP)  
Brown-out Reset (BOR)  
3: Rs may be required in HS mode, as well  
as XT mode, to avoid overdriving crystals  
with low drive level specification.  
4: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
Some registers are not affected in any RESET condi-  
tion. Their status is unknown on POR and unchanged  
in any other RESET. Most other registers are reset to a  
RESET stateon Power-on Reset (POR), on the  
MCLR and WDT Reset, on MCLR Reset during  
SLEEP, and Brown-out Reset (BOR). They are not  
affected by a WDT Wake-up, which is viewed as the  
resumption of normal operation. The TO and PD bits  
are set or cleared differently in different RESET situa-  
tions, as indicated in Table 11-4. These bits are used in  
software to determine the nature of the RESET. See  
Table 11-6 for a full description of RESET states of all  
registers.  
A simplified block diagram of the on-chip RESET circuit  
is shown in Figure 11-4.  
DS39597B-page 62  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 11-4:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
RESET  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
R
BOREN  
OST/PWRT  
OST  
Chip_Reset  
10-bit Ripple Counter  
Q
OSC1  
(1)  
On-chip  
RC OSC  
PWRT  
10-bit Ripple Counter  
Enable PWRT  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKI pin.  
FIGURE 11-5:  
RECOMMENDED MCLR  
CIRCUIT  
11.4 MCLR  
PIC16F72 device has a noise filter in the MCLR Reset  
path. The filter will detect and ignore small pulses.  
VDD  
PIC16F72  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
R1  
1 k(or greater)  
The behavior of the ESD protection on the MCLR pin  
has been altered from previous devices of this family.  
Voltages applied to the pin that exceed its specification  
can result in both MCLR and excessive current beyond  
the device specification during the ESD event. For this  
reason, Microchip recommends that the MCLR pin no  
longer be tied directly to VDD. The use of an  
RC network, as shown in Figure 11-5, is suggested.  
MCLR  
C1  
0.1 µF  
(optional, not critical)  
2002 Microchip Technology Inc.  
DS39597B-page 63  
PIC16F72  
11.5 Power-on Reset (POR)  
11.9 Time-out Sequence  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.2V - 1.7V). To  
take advantage of the POR, tie the MCLR pin to VDD,  
as described in Section 11.4. A maximum rise time for  
VDD is specified. See Section 14.0, Electrical  
Characteristics for details.  
On power-up, the time-out sequence is as follows: the  
PWRT delay starts (if enabled) when a POR occurs.  
Then, OST starts counting 1024 oscillator cycles when  
PWRT ends (LP, XT, HS). When the OST ends, the  
device comes out of RESET.  
If MCLR is kept low long enough, all delays will expire.  
Bringing MCLR high will begin execution immediately.  
This is useful for testing purposes or to synchronize  
more than one PIC16F72 device operating in parallel.  
When the device starts normal operation (exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature,...) must be met to ensure  
operation. If these conditions are not met, the device  
must be held in RESET until the operating conditions  
are met. For more information, see Application Note,  
AN607- Power-up Trouble Shooting (DS00607).  
Table 11-5 shows the RESET conditions for the  
STATUS, PCON and PC registers, while Table 11-6  
shows the RESET conditions for all the registers.  
11.10 Power Control/Status Register  
(PCON)  
11.6 Power-up Timer (PWRT)  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up only from the POR. The Power-  
up Timer operates on an internal RC oscillator. The  
chip is kept in RESET as long as the PWRT is active.  
The PWRTs time delay allows VDD to rise to an accept-  
able level. A configuration bit is provided to enable/  
disable the PWRT.  
The Power Control/Status Register, PCON, has two  
bits to indicate the type of RESET that last occurred.  
Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is  
unknown on a Power-on Reset. It must then be set by  
the user and checked on subsequent RESETS to see  
if bit BOR cleared, indicating a Brown-out Reset  
occurred. When the Brown-out Reset is disabled, the  
state of the BOR bit is unpredictable.  
The power-up time delay will vary from chip to chip due  
to VDD, temperature and process variation. See DC  
parameters for details (TPWRT, parameter #33).  
Bit1 is POR (Power-on Reset Status bit). It is cleared on  
a Power-on Reset and unaffected otherwise. The user  
must set this bit following a Power-on Reset.  
11.7 Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycles (from OSC1 input) delay after the  
PWRT delay is over (if enabled). This helps to ensure  
that the crystal oscillator or resonator has started and  
stabilized.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
11.8 Brown-out Reset (BOR)  
The configuration bit, BOREN, can enable or disable  
the Brown-out Reset circuit. If VDD falls below VBOR  
(parameter D005, about 4V) for longer than TBOR  
(parameter #35, about 100 µs), the brown-out situation  
will reset the device. If VDD falls below VBOR for less  
than TBOR, a RESET may not occur.  
Once the brown-out occurs, the device will remain in  
Brown-out Reset until VDD rises above VBOR. The  
Power-up Timer then keeps the device in RESET for  
TPWRT (parameter #33, about 72 ms). If VDD should fall  
below VBOR during TPWRT, the Brown-out Reset pro-  
cess will restart when VDD rises above VBOR, with the  
Power-up Timer Reset. The Power-up Timer is always  
enabled when the Brown-out Reset circuit is enabled,  
regardless of the state of the PWRT configuration bit.  
DS39597B-page 64  
2002 Microchip Technology Inc.  
PIC16F72  
TABLE 11-3: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up from  
SLEEP  
Oscillator Configuration  
Brown-out  
PWRTEN = 0  
72 ms + 1024 TOSC  
72 ms  
PWRTEN = 1  
XT, HS, LP  
RC  
1024 TOSC  
72 ms + 1024 TOSC  
72 ms  
1024 TOSC  
TABLE 11-4: STATUS BITS AND THEIR SIGNIFICANCE  
POR BOR TO PD  
(PCON<1>) (PCON<0>) (STATUS<4>) (STATUS<3>)  
Significance  
0
0
0
u
u
u
u
u
x
x
x
0
u
u
u
u
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from  
SLEEP  
TABLE 11-5: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
STATUS  
Register  
PCON  
Register  
Condition  
Counter  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
Brown-out Reset  
000h  
PC + 1(1)  
Interrupt Wake-up from SLEEP  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
2002 Microchip Technology Inc.  
DS39597B-page 65  
PIC16F72  
TABLE 11-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Power-on Reset,  
Brown-out Reset  
MCLR Reset,  
WDT Reset  
Wake-up via WDT or  
Interrupt  
Register  
W
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
PCL  
xxxx xxxx  
0000h  
uuuu uuuu  
uuuu uuuu  
PC + 1(2)  
0000h  
STATUS  
FSR  
0001 1xxx  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
xxxx xxxx  
---0 0000  
0000 000x  
-0-- 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
-0-- 0000  
---- --qq  
1111 1111  
0000 0000  
--00 0000  
---- -000  
0--- 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
1--- ---0  
000q quuu(3)  
uuuu uuuu  
--0u 0000  
uuuu uuuu  
uuuu uuuu  
---0 0000  
0000 000u  
-0-- 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
-0-- 0000  
---- --uu  
1111 1111  
0000 0000  
--00 0000  
---- -000  
0--- 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1--- ---0  
uuuq quuu(3)  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu(1)  
-u-- uuuu(1)  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
---- --uu  
1111 1111  
uuuu uuuu  
--uu uuuu  
---- -uuu  
u--- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1--- ---u  
PORTA  
PORTB  
PORTC  
PCLATH  
INTCON  
PIR1  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
ADRES  
ADCON0  
OPTION  
TRISA  
TRISB  
TRISC  
PIE1  
PCON  
PR2  
SSPADD  
SSPSTAT  
ADCON1  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
PMCON1  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition,  
r= reserved, maintain clear.  
Note 1: One or more bits in INTCON, PIR1 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 11-5 for RESET value for specific condition.  
DS39597B-page 66  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 11-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD THROUGH  
PULL-UP RESISTOR)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 11-7:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD THROUGH  
RC NETWORK): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 11-8:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD THROUGH  
RC NETWORK): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
2002 Microchip Technology Inc.  
DS39597B-page 67  
PIC16F72  
FIGURE 11-9:  
SLOW RISE TIME (MCLR TIED TO VDD THROUGH RC NETWORK)  
5V  
1V  
VDD  
0V  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
11.11 Interrupts  
The PIC16F72 has up to eight sources of interrupt. The  
interrupt control register (INTCON) records individual  
interrupt requests in flag bits. It also has individual and  
global interrupt enable bits.  
The peripheral interrupt flags are contained in the  
Special Function Register, PIR1. The corresponding  
interrupt enable bits are contained in Special Function  
Register, PIE1, and the peripheral interrupt enable bit  
is contained in Special Function Register INTCON.  
Note: Individual interrupt flag bits are set, regard-  
less of the status of their corresponding  
mask bit, or the GIE bit.  
When an interrupt is serviced, the GIE bit is cleared to  
disable any further interrupt, the return address is  
pushed onto the stack, and the PC is loaded with  
0004h. Once in the Interrupt Service Routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all unmasked interrupts, or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupts flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set,  
regardless of the status of the GIE bit. The GIE bit is  
cleared on RESET.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs, relative to  
the current Q cycle. The latency is the same for one or  
two cycle instructions. Individual interrupt flag bits are  
set, regardless of the status of their corresponding  
mask bit, PEIE bit, or the GIE bit.  
The return from interruptinstruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables interrupts.  
FIGURE 11-10:  
INTERRUPT LOGIC  
Wake-up (If in SLEEP mode)  
Interrupt to CPU  
TMR0IF  
TMR0IE  
INTF  
INTE  
ADIF  
ADIE  
SSPIF  
SSPIE  
RBIF  
RBIE  
CCP1IF  
CCP1IE  
PEIE  
GIE  
TMR1IF  
TMR1IE  
TMR2IF  
TMR2IE  
DS39597B-page 68  
2002 Microchip Technology Inc.  
PIC16F72  
11.11.1  
INT INTERRUPT  
11.11.3  
PORTB INTCON CHANGE  
External interrupt on the RB0/INT pin is edge triggered,  
either rising, if bit INTEDG (OPTION<6>) is set, or fall-  
ing, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the Interrupt Service  
Routine before re-enabling this interrupt. The INT inter-  
rupt can wake-up the processor from SLEEP, if bit INTE  
was set prior to going into SLEEP. The status of global  
interrupt enable bit GIE decides whether or not the  
processor branches to the interrupt vector following  
wake-up. See Section 11.14 for details on SLEEP  
mode.  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>) (see  
Section 3.2).  
11.12 Context Saving During Interrupts  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt (i.e., W, STATUS registers).  
This will have to be implemented in software, as shown  
in Example 11-1.  
For the PIC16F72 device, the register W_TEMP must  
be defined in both banks 0 and 1 and must be defined  
at the same offset from the bank base address (i.e., if  
W_TEMP is defined at 20h in bank 0, it must also be  
defined at A0h in bank 1). The register STATUS_TEMP  
is only defined in bank 0.  
11.11.2  
TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit TMR0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit  
TMR0IE (INTCON<5>) (see Section 5.0).  
EXAMPLE 11-1:  
SAVING STATUS, W AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
:
W_TEMP  
STATUS,W  
STATUS  
;Copy W to TEMP register  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
STATUS_TEMP  
:(ISR)  
:
;Insert user code here  
SWAPF  
STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
2002 Microchip Technology Inc.  
DS39597B-page 69  
PIC16F72  
WDT time-out period values may be found in the Elec-  
trical Specifications section under parameter #31. Val-  
ues for the WDT prescaler (actually a postscaler, but  
shared with the Timer0 prescaler) may be assigned  
using the OPTION register.  
11.13 Watchdog Timer (WDT)  
The Watchdog Timer is a free running, on-chip RC  
oscillator that does not require any external compo-  
nents. This RC oscillator is separate from the RC oscil-  
lator of the OSC1/CLKI pin. That means that the WDT  
will run, even if the clock on the OSC1/CLKI and OSC2/  
CLKO pins of the device has been stopped, for  
example, by execution of a SLEEPinstruction.  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and the postscaler, if  
assigned to the WDT, and prevent it from  
timing out and generating a device  
RESET condition.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watchdog  
Timer Wake-up). The TO bit in the STATUS register will  
be cleared upon a Watchdog Timer time-out.  
2: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but  
the prescaler assignment is not changed.  
The WDT can be permanently disabled by clearing  
configuration bit WDTEN (see Section 11.1).  
FIGURE 11-11:  
WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 5-1)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 5-1)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION register.  
TABLE 11-7: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
PWRTEN(1) WDTEN FOSC1  
PSA PS2 PS1  
Bit 2  
Bit 1  
Bit 0  
2007h  
Config. bits  
OPTION  
(1)  
BOREN(1)  
INTEDG  
CP  
FOSC0  
PS0  
81h,181h  
RBPU  
T0CS  
T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 11-1 for operation of these bits.  
DS39597B-page 70  
2002 Microchip Technology Inc.  
PIC16F72  
Other peripherals cannot generate interrupts since  
during SLEEP, no on-chip clocks are present.  
11.14 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up  
occurs regardless of the state of the GIE bit. If the GIE  
bit is clear (disabled), the device continues execution at  
the instruction after the SLEEPinstruction. If the GIE bit  
is set (enabled), the device executes the instruction  
after the SLEEP instruction and then branches to the  
interrupt address (0004h). In cases where the execu-  
tion of the instruction following SLEEPis not desirable,  
the user should have a NOPafter the SLEEPinstruction.  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D and disable external clocks. Pull all I/O pins  
that are hi-impedance inputs, high or low externally, to  
avoid switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should also be considered.  
11.14.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The MCLR pin must be at a logic high level (VIHMC).  
If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
11.14.1 WAKE-UP FROM SLEEP  
The device can wake-up from SLEEP through one of  
the following events:  
If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake-up from SLEEP. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
1. External RESET input on MCLR pin.  
2. Watchdog Timer wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change or a  
peripheral interrupt.  
External MCLR Reset will cause a device RESET. All  
other events are considered a continuation of program  
execution and cause a "wake-up". The TO and PD bits  
in the STATUS register can be used to determine the  
cause of the device RESET. The PD bit, which is set on  
power-up, is cleared when SLEEP is invoked. The TO  
bit is cleared if a WDT time-out occurred and caused  
wake-up.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
To ensure that the WDT is cleared, a CLRWDTinstruction  
should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
2. CCP Capture mode interrupt.  
3. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
4. SSP (START/STOP) bit detect interrupt.  
5. SSP transmit or receive in Slave mode  
(SPI/I2C).  
6. A/D conversion (when A/D clock source is RC).  
2002 Microchip Technology Inc.  
DS39597B-page 71  
PIC16F72  
FIGURE 11-12:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(2)  
TOST  
CLKO(4)  
INT pin  
INTF Flag  
Interrupt Latency  
(INTCON<1>)  
(Note 2)  
GIE bit  
Processor in  
SLEEP  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
Fetched  
Instruction  
Executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: TOST = 1024 TOSC (drawing not to scale) This delay will not be there for RC Osc mode.  
3: GIE = 1' assumed. In this case, after wake-up, the processor jumps to the interrupt routine.  
If GIE = 0', execution will continue in-line.  
4: CLKO is not available in these Osc modes, but shown here for timing reference.  
FIGURE 11-13:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
11.15 Program Verification/  
Code Protection  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
To Normal  
Connections  
11.16 ID Locations  
External  
Connector  
Signals  
*
PIC16F72  
Four memory locations (2000h - 2003h) are designated  
as ID locations, where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution, but are read-  
able and writable during program/verify. It is recom-  
mended that only the four Least Significant bits of the  
ID location are used.  
+5V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP  
RB6  
RB7  
CLK  
Data I/O  
11.17 In-Circuit Serial Programming  
*
*
*
PIC16F72 microcontrollers can be serially programmed  
while in the end application circuit. This is simply done  
with two lines for clock and data and three other lines for  
power, ground, and the programming voltage (see  
Figure 11-13 for an example). This allows customers to  
manufacture boards with unprogrammed devices, and  
then program the microcontroller just before shipping  
the product. This also allows the most recent firmware  
or a custom firmware to be programmed.  
VDD  
To Normal  
Connections  
* Isolation devices (as required).  
For general information of serial programming, please  
refer to the In-Circuit Serial Programming(ICSP)  
Guide (DS30277). For specific details on programming  
commands and operations for the PIC16F72 devices,  
please refer to the latest version of the PIC16F72  
FLASH Program Memory Programming Specification  
(DS39588).  
DS39597B-page 72  
2002 Microchip Technology Inc.  
PIC16F72  
Table 12-2 lists the instructions recognized by the  
MPASMTM assembler.  
12.0 INSTRUCTION SET SUMMARY  
Each PIC16F72 instruction is a 14-bit word divided into  
an OPCODE that specifies the instruction type and one  
or more operands that further specify the operation of  
the instruction. The PIC16F72 instruction set summary  
in Table 12-2 lists byte-oriented, bit-oriented, and lit-  
eral and control operations. Table 12-1 shows the  
opcode field descriptions.  
Figure 12-1 shows the general formats that the  
instructions can have.  
All examples use the following format to represent a  
hexadecimal number:  
0xhh  
where h signifies a hexadecimal digit.  
For byte-oriented instructions, frepresents a file reg-  
ister designator and drepresents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
FIGURE 12-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
The destination designator specifies where the result of  
the operation is to be placed. If dis zero, the result is  
placed in the W register. If dis one, the result is placed  
in the file register specified in the instruction.  
8
7
6
0
OPCODE  
d
f (FILE #)  
d = 0 for destination W  
d = 1 for destination f  
For bit-oriented instructions, brepresents a bit field  
designator which selects the number of the bit affected  
by the operation, while frepresents the number of the  
file in which the bit is located.  
f = 7-bit file register address  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
For literal and control operations, krepresents an  
eight or eleven-bit constant or literal value.  
b = 3-bit bit address  
f = 7-bit file register address  
TABLE 12-1: OPCODE FIELD  
DESCRIPTIONS  
Literal and control operations  
Field  
Description  
General  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
13  
8
7
0
0
OPCODE  
k (literal)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
k = 8-bit immediate value  
Dont care location (= 0 or 1).  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
PC Program Counter  
TO Time-out bit  
A description of each instruction is available in the  
PICmicroMid-Range MCU Family Reference  
Manual (DS33023).  
PD Power-down bit  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles,  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true, or the  
program counter is changed as a result of an  
instruction, the instruction execution time is 2 µs.  
2002 Microchip Technology Inc.  
DS39597B-page 73  
PIC16F72  
TABLE 12-2: PIC16F72 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Description  
Operands  
Status  
Affected  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0xxx xxxx  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01  
01  
01  
01  
00bb bfff ffff  
01bb bfff ffff  
10bb bfff ffff  
11bb bfff ffff  
1,2  
1,2  
3
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11  
11  
10  
00  
10  
11  
11  
00  
11  
00  
00  
11  
11  
111x kkkk kkkk C,DC,Z  
1001 kkkk kkkk  
0kkk kkkk kkkk  
Z
0000 0110 0100 TO,PD  
1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
1000 kkkk kkkk  
00xx kkkk kkkk  
0000 0000 1001  
01xx kkkk kkkk  
0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
0000 0110 0011 TO,PD  
110x kkkk kkkk C,DC,Z  
1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on  
the pins themselves. For example, if the data latch is 1for a pin configured as input and is driven low by an external  
device, the data will be written back with a 0.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
Note:  
Additional information on the mid-range instruction set is available in the PICmicroMid-Range MCU Family Reference  
Manual (DS33023).  
DS39597B-page 74  
2002 Microchip Technology Inc.  
PIC16F72  
12.1 Instruction Descriptions  
ADDLW  
Add Literal and W  
[ label ] ADDLW  
0 k 255  
ANDWF  
Syntax:  
AND W with f  
Syntax:  
k
[ label ] ANDWF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
d [0,1]  
(W) + k (W)  
C, DC, Z  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
The contents of the W register  
are added to the eight-bit literal k’  
and the result is placed in the W  
register.  
AND the W register with register  
f. If d= 0, the result is stored in  
the W register. If d= 1, the  
result is stored back in register f.  
ADDWF  
Syntax:  
Add W and f  
BCF  
Bit Clear f  
[ label ] ADDWF f,d  
Syntax:  
Operands:  
[ label ] BCF f,b  
Operands:  
0 f 127  
d [0,1]  
0 f 127  
0 b 7  
Operation:  
(W) + (f) (destination)  
Operation:  
0 (f<b>)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
None  
Description:  
Add the contents of the W register  
Bit bin register fis cleared.  
with register f. If d= 0, the  
result is stored in the W register. If  
d= 1, the result is stored back  
in register f.  
BSF  
Bit Set f  
ANDLW  
AND Literal with W  
Syntax:  
Operands:  
[ label ] BSF f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
1 (f<b>)  
Z
Status Affected:  
Description:  
None  
The contents of W register are  
ANDed with the eight-bit literal  
k. The result is placed in the W  
register.  
Bit bin register fis set.  
2002 Microchip Technology Inc.  
DS39597B-page 75  
PIC16F72  
BTFSS  
Bit Test f, Skip if Set  
CLRF  
Clear f  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
00h (f)  
1 Z  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
If bit bin register f= 0, the next  
The contents of register fare  
instruction is executed.  
cleared and the Z bit is set.  
If bit b= 1, then the next instruc-  
tion is discarded and a NOPis exe-  
cuted instead, making this a 2 TCY  
instruction.  
BTFSC  
Bit Test, Skip if Clear  
CLRW  
Clear W  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] CLRW  
None  
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
00h (W)  
1 Z  
Operation:  
skip if (f<b>) = 0  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
If bit bin register f= 1, the next  
W register is cleared. Zero bit (Z)  
is set.  
instruction is executed.  
If bit bin register f= 0, the next  
instruction is discarded, and a NOP  
is executed instead, making this a  
2 TCY instruction.  
CALL  
Call Subroutine  
[ label ] CALL k  
0 k 2047  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
(PC) + 1 TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
00h WDT  
0 WDT prescaler,  
1 TO  
1 PD  
Status Affected: None  
Status Affected: TO, PD  
Description:  
Call Subroutine. First, return  
address (PC+1) is pushed onto  
the stack. The eleven-bit immedi-  
ate address is loaded into PC bits  
<10:0>. The upper bits of the PC  
are loaded from PCLATH. CALLis  
a two-cycle instruction.  
Description: CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT. Status bits  
TO and PD are set.  
DS39597B-page 76  
2002 Microchip Technology Inc.  
PIC16F72  
COMF  
Complement f  
GOTO  
Unconditional Branch  
Syntax:  
Operands:  
[ label ] COMF f,d  
Syntax:  
[ label ] GOTO k  
0 k 2047  
0 f 127  
d [0,1]  
Operands:  
Operation:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register fare  
complemented. If d= 0, the  
result is stored in W. If d= 1, the  
result is stored back in register f.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a  
two-cycle instruction.  
INCF  
Increment f  
DECF  
Decrement f  
Syntax:  
Operands:  
[ label ] INCF f,d  
Syntax:  
Operands:  
[ label ] DECF f,d  
0 f 127  
d [0,1]  
0 f 127  
d [0,1]  
Operation:  
(f) + 1 (destination)  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register fare  
incremented. If d= 0, the result  
is placed in the W register. If  
d= 1, the result is placed back  
in register f.  
Decrement register f. If d= 0,  
the result is stored in the W  
register. If d= 1, the result is  
stored back in register f.  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
[ label ] DECFSZ f,d  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description: The contents of register fare  
Description: The contents of register fare  
decremented. If d= 0, the result  
is placed in the W register. If  
d= 1, the result is placed back  
in register f.  
incremented. If d= 0, the result  
is placed in the W register. If  
d= 1, the result is placed back  
in register f.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
then a NOPis executed instead,  
making it a 2 TCY instruction.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
a NOPis executed instead, making  
it a 2 TCY instruction.  
2002 Microchip Technology Inc.  
DS39597B-page 77  
PIC16F72  
IORLW  
Inclusive OR Literal with W  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .OR. k (W)  
Z
k (W)  
None  
The contents of the W register are  
ORd with the eight-bit literal k.  
The result is placed in the W  
register.  
The eight-bit literal kis loaded  
into W register. The dont cares  
will assemble as 0s.  
IORWF  
Inclusive OR W with f  
MOVWF  
Move W to f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] MOVWF  
0 f 127  
(W) (f)  
f
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
Operation:  
(W) .OR. (f) (destination)  
None  
Status Affected:  
Description:  
Z
Move data from W register to  
register f.  
Inclusive OR the W register with  
register f. If d= 0, the result is  
placed in the W register. If d= 1,  
the result is placed back in  
register f.  
MOVF  
Move f  
NOP  
No Operation  
[ label ] NOP  
None  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Syntax:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
No operation  
Operation:  
(f) (destination)  
Status Affected: None  
Description: No operation.  
Status Affected:  
Description:  
Z
The contents of register fare  
moved to a destination dependant  
upon the status of d. If d= 0,  
the destination is W register. If  
d= 1, the destination is file reg-  
ister fitself. d= 1is useful to  
test a file register, since status  
flag Z is affected.  
DS39597B-page 78  
2002 Microchip Technology Inc.  
PIC16F72  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RLF  
Rotate Left f through Carry  
Syntax:  
Syntax:  
Operands:  
[ label ] RLF f,d  
Operands:  
Operation:  
0 f 127  
d [0,1]  
TOS PC,  
1 GIE  
Operation:  
See description below  
C
Status Affected: None  
Status Affected:  
Description:  
The contents of register fare  
rotated one bit to the left through  
the Carry Flag. If d= 0, the  
result is placed in the W register.  
If d= 1, the result is stored  
back in register f.  
C
Register f  
RRF  
Rotate Right f through Carry  
RETLW  
Return with Literal in W  
Syntax:  
Operands:  
[ label ] RRF f,d  
Syntax:  
[ label ] RETLW k  
0 k 255  
0 f 127  
d [0,1]  
Operands:  
Operation:  
k (W);  
TOS PC  
Operation:  
See description below  
C
Status Affected:  
Description:  
Status Affected: None  
The contents of register fare  
rotated one bit to the right through  
the Carry Flag. If d= 0, the  
result is placed in the W register.  
If d= 1, the result is placed back  
in register f.  
Description:  
The W register is loaded with the  
eight-bit literal k. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
C
Register f  
SLEEP  
RETURN  
Syntax:  
Return from Subroutine  
[ label ] RETURN  
None  
Syntax:  
[ label ] SLEEP  
Operands:  
Operation:  
None  
Operands:  
Operation:  
00h WDT,  
0 WDT prescaler,  
1 TO,  
TOS PC  
Status Affected: None  
Description: Return from subroutine. The stack  
0 PD  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
Status Affected:  
Description:  
TO, PD  
The power-down status bit, PD is  
cleared. Time-out status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
2002 Microchip Technology Inc.  
DS39597B-page 79  
PIC16F72  
SUBLW  
Subtract W from Literal  
XORLW  
Exclusive OR Literal with W  
Syntax:  
[ label ]  
SUBLW k  
Syntax:  
[ label ] XORLW k  
Operands:  
Operation:  
0 k 255  
Operands:  
0 k 255  
k - (W) → (W)  
Operation:  
(W) .XOR. k → (W)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Z
Description:  
The W register is subtracted (2s  
The contents of the W register  
are XORed with the eight-bit  
literal k. The result is placed in  
the W register.  
complement method) from the  
eight-bit literal k. The result is  
placed in the W register.  
XORWF  
Syntax:  
Exclusive OR W with f  
SUBWF  
Subtract W from f  
Syntax:  
[ label ]  
SUBWF f,d  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - (W) → (destination)  
Operation:  
(W) .XOR. (f) → (destination)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Z
Description:  
Subtract (2s complement method)  
Exclusive OR the contents of the  
W register with register f. If  
d= 0, the result is stored in the  
W register. If d= 1, the result is  
stored back in register f.  
W register from register f. If  
d= 0, the result is stored in the W  
register. If d= 1, the result is  
stored back in register f.  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ] SWAPF f,d  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Status Affected: None  
Description:  
The upper and lower nibbles of  
register fare exchanged. If  
d= 0, the result is placed in W  
register. If d= 1, the result is  
placed in register f.  
DS39597B-page 80  
2002 Microchip Technology Inc.  
PIC16F72  
The MPLAB IDE allows you to:  
13.0 DEVELOPMENT SUPPORT  
Edit your source files (either assembly or C)  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools (auto-  
matically updates all project information)  
Integrated Development Environment  
- MPLAB® IDE Software  
Debug using:  
- source files  
Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- absolute listing file  
- machine code  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
The ability to use MPLAB IDE with multiple debugging  
tools allows users to easily switch from the cost-  
effective simulator to a full-featured emulator with  
minimal retraining.  
Simulators  
- MPLAB SIM Software Simulator  
Emulators  
13.2 MPASM Assembler  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPICIn-Circuit Emulator  
In-Circuit Debugger  
The MPASM assembler is a full-featured universal  
macro assembler for all PICmicro MCUs.  
- MPLAB ICD  
The MPASM assembler has a command line interface  
and a Windows shell. It can be used as a stand-alone  
application on a Windows 3.x or greater system, or it  
can be used through MPLAB IDE. The MPASM assem-  
bler generates relocatable object files for the MPLINK  
object linker, Intel® standard HEX files, MAP files to  
detail memory usage and symbol reference, an abso-  
lute LST file that contains source lines and generated  
machine code, and a COD file for debugging.  
Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
Programmer  
Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 17 Demonstration Board  
- KEELOQ® Demonstration Board  
The MPASM assembler features include:  
Integration into MPLAB IDE projects.  
User-defined macros to streamline assembly  
code.  
13.1 MPLAB Integrated Development  
Environment Software  
Conditional assembly for multi-purpose source  
files.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application that contains:  
Directives that allow complete control over the  
assembly process.  
13.3 MPLAB C17 and MPLAB C18  
C Compilers  
An interface to debugging tools  
- simulator  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI Ccompilers for  
Microchips PIC17CXXX and PIC18CXXX family of  
microcontrollers, respectively. These compilers provide  
powerful integration capabilities and ease of use not  
found with other compilers.  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
A full-featured editor  
A project manager  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
Customizable toolbar and key mapping  
A status bar  
On-line help  
2002 Microchip Technology Inc.  
DS39597B-page 81  
PIC16F72  
13.4 MPLINK Object Linker/  
MPLIB Object Librarian  
13.6 MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can also  
link relocatable objects from pre-compiled libraries,  
using directives from a linker script.  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers (MCUs). Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLINK object linker features include:  
Integration with MPASM assembler and MPLAB  
C17 and MPLAB C18 C compilers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows environment were chosen to best  
make these features available to you, the end user.  
Allows all memory areas to be defined as sections  
to provide link-time flexibility.  
The MPLIB object librarian features include:  
Easier linking because single libraries can be  
included instead of many smaller files.  
Helps keep code maintainable by grouping  
related modules together.  
13.7 ICEPIC In-Circuit Emulator  
Allows libraries to be created and modules to be  
added, listed, replaced, deleted or extracted.  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X and PIC16CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC16C5X  
or PIC16CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
13.5 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC-hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user-defined key press, to any of the pins. The  
execution can be performed in single step, execute  
until break, or trace mode.  
The MPLAB SIM simulator fully supports symbolic debug-  
ging using the MPLAB C17 and the MPLAB C18 C com-  
pilers and the MPASM assembler. The software simulator  
offers the flexibility to develop and debug code outside of  
the laboratory environment, making it an excellent multi-  
project software development tool.  
DS39597B-page 82  
2002 Microchip Technology Inc.  
PIC16F72  
13.8 MPLAB ICD In-Circuit Debugger  
13.11 PICDEM 1 Low Cost PICmicro  
Demonstration Board  
Microchips In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PICmicro MCUs and can be used  
to develop for this and other PICmicro microcontrollers.  
The MPLAB ICD utilizes the in-circuit debugging capa-  
bility built into the FLASH devices. This feature, along  
with Microchips In-Circuit Serial ProgrammingTM proto-  
col, offers cost-effective in-circuit FLASH debugging  
from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by watch-  
ing variables, single-stepping and setting break points.  
Running at full speed enables testing hardware in real-  
time.  
The PICDEM 1 demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchips microcontrollers. The microcontrollers sup-  
ported are: PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM 1 demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM 1 demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
13.9 PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a  
full-featured programmer, capable of operating in  
stand-alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for max-  
imum reliability. It has an LCD display for instructions  
and error messages, keys to enter commands and a  
modular detachable socket assembly to support various  
package types. In stand-alone mode, the PRO MATE II  
device programmer can read, verify, or program  
PICmicro devices. It can also set code protection in this  
mode.  
13.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC16C62,  
PIC16C64, PIC16C65, PIC16C73 and PIC16C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
serial EEPROM to demonstrate usage of the I2CTM bus  
and separate headers for connection to an LCD  
module and a keypad.  
13.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient.  
The PICSTART Plus development programmer sup-  
ports all PICmicro devices with up to 40 pins. Larger pin  
count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
2002 Microchip Technology Inc.  
DS39597B-page 83  
PIC16F72  
13.13 PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board  
13.14 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM 17 dem-  
onstration board supports downloading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM 17 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC16C923 and  
PIC16C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is a LCD panel, with 4  
commons and 12 segments, that is capable of display-  
ing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows software for showing  
the demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
13.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes a LCD display to show changing  
codes, a decoder to decode transmissions and a pro-  
gramming interface to program test transmitters.  
DS39597B-page 84  
2002 Microchip Technology Inc.  
PIC16F72  
TABLE 13-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0 1 5 2 P M C  
X X X C R M F  
H C S X X X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X X F 8 C 1 P I  
X X C 8 2 C 1 P I  
X 7 X 7 C 1 C I P  
X 4 1 7 C I C P  
X 9 X 6 C 1 C I P  
X 8 X 6 F 1 C I P  
8 X 6 1 F C I P  
/ X 8 1 6 C I C P  
X 7 X 6 C 1 C I P  
X 7 1 6 C I C P  
X 6 2 1 6 C I F P  
X
X X C 6 C 1 P I  
X 6 1 6 C I C P  
X 5 1 6 C I C P  
0 0 1 4 C I 0 P  
X
X X C 2 C 1 P I  
s o l T e o r a w f t S o s r o t a u l E m e r u b g e g D s m e a r m o g P r r  
s t K l a i E d v n a s d r a B o o m D e  
2002 Microchip Technology Inc.  
DS39597B-page 85  
PIC16F72  
NOTES:  
DS39597B-page 86  
2002 Microchip Technology Inc.  
PIC16F72  
14.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Ambient temperature under bias................................................................................................................ -55 to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR. and RA4) ......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +6.5V  
Voltage on MCLR with respect to VSS (Note 2) ..............................................................................................0 to +13.5V  
Voltage on RA4 with respect to Vss...................................................................................................................0 to +12V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ............................................................................................................. 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB..........................................................................................................200 mA  
Maximum current sourced by PORTA, PORTB ....................................................................................................200 mA  
Maximum current sunk by PORTC .......................................................................................................................200 mA  
Maximum current sourced by PORTC ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes at the MCLR pin may cause unpredictable results. A series resistor of greater than 1 kΩ  
should be used to pull MCLR to VDD, rather than tying the pin directly to VDD.  
NOTICE: Stresses above those listed under Absolute Maximum Ratingsmay cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2002 Microchip Technology Inc.  
DS39597B-page 87  
PIC16F72  
FIGURE 14-1:  
PIC16F72 (INDUSTRIAL, EXTENDED) VOLTAGE-FREQUENCY GRAPH  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
16 MHz  
20 MHz  
Frequency  
FIGURE 14-2:  
PIC16LF72 (INDUSTRIAL) VOLTAGE-FREQUENCY GRAPH  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
4 MHz  
10 MHz  
Frequency  
FMAX = (12 MHz/V) (VDDAPPMIN - 2.5V) + 4 MHz  
Note 1: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
Note 2: FMAX has a maximum frequency of 10 MHz.  
DS39597B-page 88  
2002 Microchip Technology Inc.  
PIC16F72  
14.1 DC Characteristics:PIC16F72 (Industrial, Extended)  
PIC16LF72 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
PIC16LF72  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC16F72  
(Industrial, Extended)  
Param  
Sym  
No.  
Characteristic  
Min TypMax Units  
Conditions  
VDD  
Supply Voltage  
PIC16LF72 2.0  
D001  
5.5  
5.5  
5.5  
V
V
V
A/D not used, -40°C to +85°C  
A/D in use, -40°C to +85°C  
A/D in use, 0°C to +85°C  
2.5  
2.2  
D001  
D001A  
PIC16F72 4.0  
5.5  
5.5  
V
V
All configurations  
BOR enabled (Note 7)  
VBOR*  
D002* VDR  
D003  
RAM Data Retention  
Voltage (Note 1)  
1.5  
V
VPOR VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See section on Power-on Reset for details  
D004* SVDD VDD Rise Rate to ensure  
internal Power-on Reset  
signal  
0.05  
V/ms See section on Power-on Reset for details  
D005 VBOR Brown-out Reset Voltage 3.65  
4.0 4.35  
V
BOREN bit in configuration word enabled  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption. The test conditions for all IDD measurements in active Operation mode  
are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2REXT (mA) with REXT in k.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from  
characterization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
2002 Microchip Technology Inc.  
DS39597B-page 89  
PIC16F72  
14.1 DC Characteristics:PIC16F72 (Industrial, Extended)  
PIC16LF72 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
PIC16LF72  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC16F72  
(Industrial, Extended)  
Param  
Sym  
No.  
Characteristic  
Min TypMax Units  
Conditions  
IDD  
Supply Current (Notes 2, 5)  
D010  
PIC16LF72  
0.4 2.0  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
µA LP osc configuration  
D010A  
25  
48  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D010  
D013  
PIC16F72  
-
0.9  
5.2  
4
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
mA HS osc configuration  
15  
FOSC = 20 MHz, VDD = 5.5V  
D015* IBOR Brown-out Reset Current  
25 200  
µA BOR enabled, VDD = 5.0V  
(Note 6)  
IPD  
Power-down Current (Notes 3, 5)  
D020  
D021  
PIC16LF72  
2.0  
0.1  
30  
5
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
D020  
D021  
PIC16F72  
5.0  
0.1  
42  
19  
µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
D023* IBOR Brown-out Reset Current  
25 200  
µA BOR enabled, VDD = 5.0V  
(Note 6)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption. The test conditions for all IDD measurements in active Operation mode  
are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2REXT (mA) with REXT in k.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from  
characterization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
DS39597B-page 90  
2002 Microchip Technology Inc.  
PIC16F72  
14.2 DC Characteristics: PIC16F72 (Industrial, Extended)  
PIC16LF72 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC Specification,  
Section 14.1.  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports  
with TTL buffer  
D030  
D030A  
D031  
VSS  
VSS  
VSS  
0.15 VDD  
0.8V  
0.2 VDD  
V
V
V
For entire VDD range  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
D032  
D033  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT and LP mode)  
OSC1 (in HS mode)  
Input High Voltage  
I/O ports  
VSS  
VSS  
VSS  
0.2 VDD  
0.3V  
0.3 VDD  
V
V
V
(Note 1)  
(Note 1)  
VIH  
D040  
D040A  
D041  
with TTL buffer  
2.0  
VDD  
VDD  
VDD  
V
V
V
4.5V VDD 5.5V  
For entire VDD range  
For entire VDD range  
0.25 VDD + 0.8V  
0.8 VDD  
with Schmitt Trigger buffer  
D042  
D042A  
MCLR  
0.8 VDD  
1.6V  
0.7 VDD  
0.9 VDD  
50  
VDD  
VDD  
VDD  
VDD  
400  
V
V
V
V
OSC1 (in XT and LP mode)  
OSC1 (in HS mode)  
OSC1 (in RC mode)  
(Note 1)  
(Note 1)  
D043  
D070  
IPURB PORTB Weak Pull-up Current  
IIL Input Leakage Current (Notes 2, 3)  
250  
µA VDD = 5V, VPIN = VSS  
D060  
I/O ports  
±1  
µA Vss VPIN VDD, Pin at  
hi-impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS  
and LP osc configuration  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F72 be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
2002 Microchip Technology Inc.  
DS39597B-page 91  
PIC16F72  
14.2 DC Characteristics: PIC16F72 (Industrial, Extended)  
PIC16LF72 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC Specification,  
Section 14.1.  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
D080  
D083  
I/O ports  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.6 mA, VDD = 4.5V,  
OSC2/CLKO (RC osc config)  
-40°C to +85°C  
VOH  
Output High Voltage  
D090  
D092  
I/O ports (Note 3)  
VDD - 0.7  
VDD - 0.7  
12  
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
RA4 pin  
OSC2/CLKO (RC osc config)  
D150* VOD  
Open Drain High Voltage  
Capacitive Loading Specs on Output Pins  
D100  
COSC2 OSC2 pin  
15  
pF In XT, HS and LP modes  
when external clock is used  
to drive OSC1  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2  
(in RC mode)  
SCL, SDA in I2C mode  
Program FLASH Memory  
Endurance  
50  
pF  
400  
pF  
D130  
D131  
EP  
VPR  
100  
2.0  
1000  
5.5  
E/W 25°C at 5V  
V
VDD for read  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F72 be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
DS39597B-page 92  
2002 Microchip Technology Inc.  
PIC16F72  
14.3 Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
2. TppS  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 14-3:  
LOAD CONDITIONS  
Load Condition 1  
Load Condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF  
15 pF  
for all pins except OSC2  
for OSC2 output  
2002 Microchip Technology Inc.  
DS39597B-page 93  
PIC16F72  
FIGURE 14-4:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
CLKO  
1
3
4
3
2
TABLE 14-1: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
FOSC  
External CLKI Frequency  
(Note 1)  
DC  
DC  
DC  
DC  
0.1  
1
20  
32  
4
MHz XT Osc mode  
MHz HS Osc mode  
kHz LP Osc mode  
MHz RC osc mode  
MHz XT Osc mode  
Oscillator Frequency  
(Note 1)  
4
4
5
20  
200  
MHz HS Osc mode  
kHz LP Osc mode  
1
TOSC  
External CLKI Period  
(Note 1)  
1000  
50  
ns XT Osc mode  
ns HS Osc mode  
ms LP Osc mode  
ns RC Osc mode  
ns XT Osc mode  
ns HS Osc mode  
ms LP Osc mode  
ns TCY = 4/FOSC  
5
Oscillator Period  
(Note 1)  
250  
250  
50  
10,000  
250  
5
2
3
TCY  
Instruction Cycle Time  
(Note 1)  
200  
TCY  
DC  
TosL,  
TosH  
External Clock in (OSC1)  
High or Low Time  
500  
2.5  
15  
25  
50  
15  
ns XT oscillator  
ms LP oscillator  
ns HS oscillator  
ns XT oscillator  
ns LP oscillator  
ns HS oscillator  
4
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with  
the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at "min" values with an  
external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max" cycle time  
limit is "DC" (no clock) for all devices.  
DS39597B-page 94  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 14-5:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
13  
14  
12  
18  
19  
16  
I/O Pin  
(Input)  
15  
17  
I/O Pin  
(Output)  
New Value  
Old Value  
20, 21  
Note: Refer to Figure 14-3 for load conditions.  
TABLE 14-2: CLKO AND I/O TIMING REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
18*  
TosH2ckL OSC1to CLKO↓  
TosH2ckH OSC1to CLKO↑  
75  
75  
35  
35  
200  
200  
100  
100  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
TckR  
TckF  
CLKO rise time  
CLKO fall time  
TckL2ioV CLKOto Port out valid  
TioV2ckH Port in valid before CLKO↑  
0.5 TCY + 20  
ns (Note 1)  
TOSC + 200  
ns (Note 1)  
TckH2ioI  
Port in hold after CLKO↑  
0
ns (Note 1)  
TosH2ioV OSC1(Q1 cycle) to Port out valid  
100  
255  
ns  
ns  
ns  
TosH2ioI  
OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
Standard (F)  
100  
200  
Extended (LF)  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
Standard (F)  
Extended (LF)  
Standard (F)  
Extended (LF)  
145  
40  
21*  
TioF  
145  
22††* TINP  
23††* TRBP  
TCY  
TCY  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
†† These parameters are asynchronous events, not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode, where CLKO output is 4 x TOSC.  
2002 Microchip Technology Inc.  
DS39597B-page 95  
PIC16F72  
FIGURE 14-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 14-3 for load conditions.  
FIGURE 14-7:  
BROWN-OUT RESET TIMING  
VBOR  
VDD  
35  
TABLE 14-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter No. Symbol  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
30  
TmcL  
TWDT  
MCLR Pulse Width (low)  
2
7
µs  
VDD = 5V, -40°C to +85°C  
31*  
Watchdog Timer Time-out Period  
(No Prescaler)  
18  
33  
ms VDD = 5V, -40°C to +85°C  
32  
33*  
34  
TOST  
TPWRT  
TIOZ  
Oscillation Start-up Timer Period  
Power-up Timer Period  
28  
1024 TOSC  
132  
2.1  
TOSC = OSC1 period  
72  
ms VDD = 5V, -40°C to +85°C  
µs  
I/O Hi-impedance from MCLR Low  
or Watchdog Timer Reset  
35  
TBOR  
Brown-out Reset Pulse Width  
100  
µs  
VDD VBOR (D005)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
DS39597B-page 96  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 14-8:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 14-3 for load conditions.  
TABLE 14-4: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
T0CKI High Pulse Width  
Min  
TypMax Units  
Conditions  
40* Tt0H  
41* Tt0L  
42* Tt0P  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ns Must also meet  
parameter 42  
ns  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
ns Must also meet  
parameter 42  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45* Tt1H  
46* Tt1L  
47* Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
0.5 TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Standard(F)  
15  
ns  
ns  
ns  
ns  
Prescaler = 2,4,8  
Extended(LF)  
25  
Asynchronous Standard(F)  
Extended(LF)  
30  
50  
T1CKI Low Time Synchronous, Prescaler = 1  
0.5 TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Standard(F)  
15  
25  
30  
50  
ns  
ns  
ns  
ns  
Prescaler = 2,4,8  
Extended(LF)  
Asynchronous Standard(F)  
Extended(LF)  
T1CKI Input  
Period  
Synchronous  
Standard(F)  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Extended(LF)  
Greater of:  
50 or TCY + 40  
N
N = prescale value  
(1, 2, 4, 8)  
Asynchronous Standard(F)  
Extended(LF)  
60  
100  
DC  
ns  
ns  
Ft1  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
200  
kHz  
48  
TCKEZtmr1 Delay from External Clock Edge to Timer Increment  
These parameters are characterized but not tested.  
2 TOSC  
7 TOSC  
*
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
2002 Microchip Technology Inc.  
DS39597B-page 97  
PIC16F72  
FIGURE 14-9:  
CAPTURE/COMPARE/PWM TIMINGS (CCP1 )  
RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC2/CCP1  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 14-3 for load conditions.  
54  
TABLE 14-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)  
Param  
Symbol  
Characteristic  
Min  
TypMax Units Conditions  
No.  
50* TccL  
CCP1 input low No Prescaler  
time  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
Standard(F)  
10  
With Prescaler  
Extended(LF)  
20  
0.5 TCY + 20  
10  
51* TccH  
CCP1 input high No Prescaler  
time  
Standard(F)  
With Prescaler  
Extended(LF)  
20  
52* TccP  
53* TccR  
CCP1 input period  
3 TCY + 40  
N
ns N = prescale  
value (1,4 or 16)  
CCP1 output rise time  
Standard(F)  
Extended(LF)  
Standard(F)  
Extended(LF)  
10  
25  
10  
25  
25  
50  
25  
45  
ns  
ns  
ns  
ns  
54* TccF  
CCP1 output fall time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
DS39597B-page 98  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 14-10:  
SPI MASTER MODE TIMING (CKE = 0, SMP = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
Bit6 - - - - - -1  
Bit6 - - - -1  
MSb  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
LSb In  
73  
Note: Refer to Figure 14-3 for load conditions.  
FIGURE 14-11:  
SPI MASTER MODE TIMING (CKE = 1, SMP = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
Bit6 - - - - - -1  
Bit6 - - - -1  
LSb  
MSb  
SDO  
SDI  
75, 76  
MSb In  
74  
LSb In  
Note: Refer to Figure 14-3 for load conditions.  
2002 Microchip Technology Inc.  
DS39597B-page 99  
PIC16F72  
FIGURE 14-12:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
Bit6 - - - - - -1  
Bit6 - - - -1  
77  
75, 76  
MSb In  
74  
LSb In  
73  
Note: Refer to Figure 14-3 for load conditions.  
FIGURE 14-13:  
SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
Bit6 - - - - - -1  
Bit6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
LSb In  
Note: Refer to Figure 14-3 for load conditions.  
DS39597B-page 100  
2002 Microchip Technology Inc.  
PIC16F72  
TABLE 14-6: SPI MODE REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
TypMax Units Conditions  
No.  
70* TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71* TscH  
72* TscL  
SCK input high time (Slave mode)  
SCK input low time (Slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
73* TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
74* TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
ns  
75* TdoR  
SDO data output rise time  
Standard(F)  
Extended(LF)  
10  
25  
25  
50  
ns  
ns  
76* TdoF  
SDO data output fall time  
10  
25  
50  
ns  
ns  
77* TssH2doZ SSto SDO output hi-impedance  
10  
78* TscR  
SCK output rise time  
(Master mode)  
Standard(F)  
Extended(LF)  
10  
25  
25  
50  
ns  
ns  
79* TscF  
SCK output fall time (Master mode)  
10  
25  
ns  
80* TscH2doV, SDO data output valid after  
TscL2doV SCK edge  
Standard(F)  
Extended(LF)  
50  
145  
ns  
ns  
81* TdoV2scH, SDO data output setup to SCK edge  
TdoV2scL  
TCY  
ns  
82* TssL2doV SDO data output valid after SSedge  
50  
ns  
ns  
83* TscH2ssH, SS after SCK edge  
1.5 TCY + 40  
TscL2ssH  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 14-14:  
I2C BUS START/STOP BITS TIMING  
SCL  
SDA  
91  
93  
90  
92  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 14-3 for load conditions.  
2002 Microchip Technology Inc.  
DS39597B-page 101  
PIC16F72  
TABLE 14-7: I2C BUS START/STOP BITS REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min Typ Max Units  
Conditions  
No.  
90*  
TSU:STA  
START condition 100 kHz mode 4700  
Setup time 400 kHz mode 600  
START condition 100 kHz mode 4000  
ns Only relevant for Repeated  
START condition  
91*  
92*  
93  
*
THD:STA  
TSU:STO  
THD:STO  
ns After this period, the first clock  
pulse is generated  
Hold time  
400 kHz mode  
100 kHz mode 4700  
400 kHz mode 600  
100 kHz mode 4000  
400 kHz mode 600  
600  
STOP condition  
Setup time  
ns  
STOP condition  
Hold time  
ns  
These parameters are characterized but not tested.  
FIGURE 14-15:  
I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 14-3 for load conditions.  
DS39597B-page 102  
2002 Microchip Technology Inc.  
PIC16F72  
TABLE 14-8: I2C BUS DATA REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100*  
THIGH  
Clock High Time  
100 kHz mode  
4.0  
µs  
µs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
Device must operate at a  
minimum of 10 MHz  
SSP Module  
1.5 TCY  
4.7  
101*  
TLOW  
Clock Low Time  
100 kHz mode  
µs  
µs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
Device must operate at a  
minimum of 10 MHz  
SSP Module  
1.5 TCY  
102*  
103*  
90*  
TR  
TF  
SDA and SCL Rise 100 kHz mode  
Time  
1000  
ns  
ns  
400 kHz mode 20 + 0.1 CB 300  
CB is specified to be from  
10 - 400 pF  
SDA and SCL Fall 100 kHz mode  
Time  
300  
ns  
ns  
400 kHz mode 20 + 0.1 CB 300  
CB is specified to be from  
10 - 400 pF  
TSU:STA  
THD:STA  
START Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
µs  
µs  
Only relevant for  
Repeated START  
condition  
91*  
106*  
107*  
92*  
START Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4.0  
0.6  
0
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
After this period, the first  
clock pulse is generated  
THD:DAT Data Input Hold  
Time  
0
0.9  
TSU:DAT  
TSU:STO  
TAA  
Data Input Setup  
Time  
250  
100  
4.7  
0.6  
(Note 2)  
STOP Condition  
Setup Time  
109*  
110*  
Output Valid from  
Clock  
3500  
(Note 1)  
TBUF  
Bus Free Time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive Loading  
400  
pF  
*
These parameters are characterized but not tested.  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2: A Fast mode (400 kHz) I2C bus device can be used in a Standard mode (100 kHz) I2C bus system, but the  
requirement TSU:DAT 250 ns must then be met. This will automatically be the case if the device does not  
stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal,  
it must output the next data bit to the SDA line TR max.+TSU:DAT = 1000 + 250 = 1250 ns (according to the  
Standard mode I2C bus specification), before the SCL line is released.  
2002 Microchip Technology Inc.  
DS39597B-page 103  
PIC16F72  
TABLE 14-9: A/D CONVERTER CHARACTERISTICS:PIC16F72 (INDUSTRIAL)  
PIC16LF72 (INDUSTRIAL)  
Param  
No.  
Sym  
Characteristic  
Resolution PIC16F72  
Min  
Typ†  
Max  
Units  
Conditions  
A01 NR  
8 bits  
bit VREF = VDD = 5.12V,  
VSS VAIN VREF  
PIC16LF72  
A02 EABS Total Absolute Error  
8 bits  
< ± 1  
bit VREF = VDD = 2.2V  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
A03 EIL  
A04 EDL  
A05 EFS  
A06 EOFF  
Integral Linearity Error  
Differential Linearity Error  
Full Scale Error  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
Offset Error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
A10  
Monotonicity (Note 3)  
guaranteed  
VSS VAIN VREF  
A20 VREF  
Reference Voltage  
2.5  
2.2  
VDD+0.3  
VDD+0.3  
V
V
-40°C to +85°C  
0°C to +85°C  
A25 VAIN  
A30 ZAIN  
Analog Input Voltage  
VSS - 0.3  
VREF + 0.3  
10.0  
V
Recommended Impedance of  
Analog Voltage Source  
kΩ  
A40 IAD  
A/D Conversion PIC16F72  
180  
90  
µA Average current  
consumption when A/D  
is on (Note 1).  
Current (VDD)  
PIC16LF72  
µA  
A50 IREF  
VREF input current (Note 2)  
N/A  
± 5  
500  
µA During VAIN acquisition.  
µA During A/D Conversion  
cycle.  
*
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current  
spec includes any such leakage from the A/D module.  
2: VREF current is from the RA3 pin or the VDD pin, whichever is selected as a reference input.  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
DS39597B-page 104  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 14-16:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
134  
1 TCY  
(TOSC/2)(1)  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 14-10: A/D CONVERSION REQUIREMENTS  
Param  
Sym  
Characteristic  
Min TypMax Units  
Conditions  
No.  
130 TAD  
A/D Clock Period  
PIC16F72  
1.6  
2.0  
µs TOSC based, VREF 3.0V  
PIC16LF72  
µs TOSC based,  
2.0V VREF 5.5V  
PIC16F72  
2.0  
3.0  
9
4.0  
6.0  
6.0  
9.0  
9
µs A/D RC mode  
µs A/D RC mode  
TAD  
PIC16LF72  
131 TCNV Conversion Time (not including S/H time)  
(Note 1)  
132 TACQ Acquisition Time  
5*  
µs The minimum time is the  
amplifier settling time. This  
may be used if the new”  
input voltage has not  
changed by more than 1 LSb  
(i.e., 20.0 mV @ 5.12V) from  
the last sampled voltage (as  
stated on CHOLD).  
134 TGO Q4 to A/D Clock Start  
TOSC/2  
If the A/D clock source is  
selected as RC, a time of TCY  
is added before the A/D  
clock starts. This allows the  
SLEEPinstruction to be  
executed.  
*
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2002 Microchip Technology Inc.  
DS39597B-page 105  
PIC16F72  
NOTES:  
DS39597B-page 106  
2002 Microchip Technology Inc.  
PIC16F72  
15.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified oper-  
ating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean - 3σ)  
respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 15-1:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
6
Typical: statistical mean @ 25°C  
5
4
3
2
1
Maximum: mean + 3σ (-40°C to +125°C)  
5.5V  
5.0V  
Minimum: mean 3σ (-40°C to +125°C)  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
FOSC (M Hz)  
FIGURE 15-2:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
8
7
6
5
4
3
2
1
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
FOSC (M Hz)  
2002 Microchip Technology Inc.  
DS39597B-page 107  
PIC16F72  
FIGURE 15-3:  
TYPICAL IDD vs. FOSC OVER VDD (XT MODE)  
0.9  
Typical: statistical mean @ 25°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
FIGURE 15-4:  
MAXIMUM IDD vs. FOSC OVER VDD (XT MODE)  
1.2  
Typical: statistical mean @ 25°C  
1.0  
0.8  
0.6  
0.4  
0.2  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
DS39597B-page 108  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 15-5:  
TYPICAL IDD vs. FOSC OVER VDD (LP MODE)  
55  
50  
45  
40  
35  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
30  
25  
20  
3.0V  
2.5V  
2.0V  
15  
10  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
FIGURE 15-6:  
MAXIMUM IDD vs. FOSC OVER VDD (LP MODE)  
100  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
5.5V  
5.0V  
90  
80  
70  
4.5V  
4.0V  
60  
50  
40  
30  
3.5V  
3.0V  
2.5V  
2.0V  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
2002 Microchip Technology Inc.  
DS39597B-page 109  
PIC16F72  
FIGURE 15-7:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 20 pF, 25°C)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Operation above 4 MHz is not recomended  
10 k  
100 kΩ  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-8:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 100 pF, 25°C)  
5.0  
Operation above 4 MHz is not recomended  
4.0  
3.0  
2.0  
1.0  
5.1 kΩ  
10 kΩ  
100 kΩ  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39597B-page 110  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 15-9:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 300 pF, 25°C)  
300  
250  
200  
150  
100  
50  
3.3 k  
5.1 k  
10 k  
100 k  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-10:  
IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
100  
Max 125°C  
10  
Max 85°C  
1
Typ 25°C  
0.1  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
0.01  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
DS39597B-page 111  
PIC16F72  
FIGURE 15-11:  
IBOR vs. VDD OVER TEMPERATURE  
1,000  
Max (125˚C)  
Typ (25˚C)  
Device in  
SLEEP  
Indeterminant  
State  
Device in  
RESET  
100  
Note: Device current in RESET  
depends on Oscillator mode,  
frequency and circuit.  
Max (125˚C)  
Typ (25˚C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
10  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD (V)  
FIGURE 15-12:  
TYPICAL AND MAXIMUM IWDT vs. VDD OVER TEMPERATURE  
100  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
Max (125˚C)  
Typ (25˚C)  
10  
1
0.1  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD (V)  
DS39597B-page 112  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 15-13:  
TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD (-40°C TO +125°C)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
Max  
(125°C)  
Typ  
(25°C)  
Min  
(-40°C)  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-14:  
AVERAGE WDT PERIOD vs. VDD OVER TEMPERATURE (-40°C TO +125°C)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
125°C  
85°C  
25°C  
-40°C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
DS39597B-page 113  
PIC16F72  
FIGURE 15-15:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
Max  
Typ (25°C)  
Min  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
1.5  
1.0  
0.5  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
FIGURE 15-16:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 3V, -40°C TO +125°C)  
3.5  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max  
Typ (25°C)  
Min  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
DS39597B-page 114  
2002 Microchip Technology Inc.  
PIC16F72  
FIGURE 15-17:  
TYPICAL, MINIMUM AND MAXIMUM VOL vs. IOL (VDD = 5V, -40°C TO +125°C)  
1.0  
0.9  
Max (125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Max (85°C)  
Typ (25°C)  
Min (-40°C)  
0
5
10  
15  
20  
25  
IOL (-mA)  
FIGURE 15-18:  
TYPICAL, MINIMUM AND MAXIMUM VOL vs. IOL (VDD = 3V, -40°C TO +125°C)  
3.0  
Max (125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Max (85°C)  
Typ (25°C)  
Min (-40°C)  
0
5
10  
15  
20  
25  
IOL (-mA)  
2002 Microchip Technology Inc.  
DS39597B-page 115  
PIC16F72  
FIGURE 15-19:  
MINIMUM AND MAXIMUM VIN vs. VDD, (TTL INPUT, -40°C TO +125°C)  
1.5  
1.4  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
VTH Max (-40°C)  
VTH Typ (25°C)  
VTH Min (125°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-20:  
MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO +125°C)  
4.0  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean 3σ (-40°C to +125°C)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIH Max (125°C)  
VIH Min (-40°C)  
VIL Max (-40°C)  
VIL Min (125°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39597B-page 116  
2002 Microchip Technology Inc.  
PIC16F72  
16.0 PACKAGE MARKING INFORMATION  
28-Lead PDIP (Skinny DIP)  
Example  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC16F72-I/SP  
0217017  
28-Lead SOIC  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC16F72-I/SO  
YYWWNNN  
0210017  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16F72  
-I/SS  
YYWWNNN  
0220017  
28-Lead QFN  
Example  
1
1
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
PIC16F72  
-I/ML  
0210017  
Legend: XX...X Customer specific information*  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week 01)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
2002 Microchip Technology Inc.  
DS39597B-page 117  
PIC16F72  
28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
L
A
c
B1  
β
A1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.150  
.130  
2.54  
3.81  
3.30  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
A2  
A1  
E
.140  
.160  
3.56  
4.06  
.125  
.015  
.300  
.275  
1.345  
.125  
.008  
.040  
.016  
.320  
.135  
3.18  
0.38  
7.62  
6.99  
34.16  
3.18  
0.20  
1.02  
3.43  
.310  
.285  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.295  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.87  
7.24  
8.26  
7.49  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
34.67  
3.30  
Tip to Seating Plane  
Lead Thickness  
L
c
0.29  
Upper Lead Width  
B1  
B
1.33  
Lower Lead Width  
0.41  
8.13  
5
0.48  
8.89  
10  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
5
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
DS39597B-page 118  
2002 Microchip Technology Inc.  
PIC16F72  
28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
E1  
p
D
B
2
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.050  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle Top  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
2002 Microchip Technology Inc.  
DS39597B-page 119  
PIC16F72  
28-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
n
1
α
A
c
A2  
A1  
φ
L
β
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.026  
.073  
.068  
.006  
.309  
.207  
.402  
.030  
.007  
4
0.65  
Overall Height  
A
.068  
.078  
1.73  
1.63  
1.85  
1.73  
0.15  
7.85  
5.25  
10.20  
0.75  
0.18  
101.60  
0.32  
5
1.98  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.064  
.002  
.299  
.201  
.396  
.022  
.004  
0
.072  
.010  
.319  
.212  
.407  
.037  
.010  
8
1.83  
0.25  
8.10  
5.38  
10.34  
0.94  
0.25  
203.20  
0.38  
10  
§
0.05  
7.59  
5.11  
10.06  
0.56  
0.10  
0.00  
0.25  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
β
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-150  
Drawing No. C04-073  
DS39597B-page 120  
2002 Microchip Technology Inc.  
PIC16F72  
28-Lead Plastic Quad Flat No Leads Package (ML) 6x6 mm Body (QFN)  
EXPOSED  
METAL  
E
E1  
PADS  
Q
D1  
D
D2  
p
2
1
B
n
R
E2  
BOTTOM VIEW  
CH x 45  
L
TOP VIEW  
α
A2  
A
A1  
A3  
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
NOM  
MIN  
MAX  
MIN  
MAX  
n
Number of Pins  
Pitch  
28  
28  
0.65 BSC  
p
.026 BSC  
.033  
Overall Height  
A
A2  
A1  
A3  
E
.039  
0.85  
0.65  
0.01  
1.00  
Molded Package Thickness  
Standoff  
.026  
.031  
.002  
0.80  
0.05  
.000  
.140  
.0004  
0.00  
3.55  
Base Thickness  
Overall Width  
.008 REF.  
0.20 REF.  
.236 BSC  
.226 BSC  
6.00 BSC  
5.75 BSC  
Molded Package Width  
Exposed Pad Width  
Overall Length  
E1  
E2  
D
.146  
.152  
3.70  
3.85  
.236 BSC  
.226 BSC  
6.00 BSC  
5.75 BSC  
Molded Package Length  
Exposed Pad Length  
Lead Width  
D1  
D2  
B
.140  
.009  
.020  
.005  
.012  
.009  
.146  
.152  
.014  
.030  
.010  
.026  
.024  
12  
3.55  
0.23  
0.50  
0.13  
0.30  
0.24  
3.70  
3.85  
0.35  
0.75  
0.23  
0.65  
0.60  
12  
.011  
.024  
.007  
.016  
.017  
0.28  
0.60  
0.17  
0.40  
0.42  
Lead Length  
L
Tie Bar Width  
R
Tie Bar Length  
Q
Chamfer  
CH  
α
Mold Draft Angle Top  
* Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010(0.254mm) per side.  
JEDEC equivalent: pending  
Drawing No. C04-114  
2002 Microchip Technology Inc.  
DS39597B-page 121  
PIC16F72  
28-Lead Plastic Quad Flat No Leads Package (ML) 6x6 mm Body (QFN) (Continued)  
M
B
L
M
p
PACKAGE  
EDGE  
SOLDER  
MASK  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
p
MIN  
MAX  
MIN  
NOM  
0.65 BSC  
0.28  
MAX  
Pitch  
.026 BSC  
.011  
Pad Width  
B
L
.009  
.014  
0.23  
0.35  
Pad Length  
.020  
.005  
.024  
.030  
.006  
0.50  
0.13  
0.60  
0.75  
0.15  
Pad to Solder Mask  
M
*Controlling Parameter  
Drawing No. C04-2114  
DS39597B-page 122  
2002 Microchip Technology Inc.  
PIC16F72  
APPENDIX A: REVISION HISTORY  
Version  
Date  
Revision Description  
A
April 2002  
This is a new data sheet. However, this device is similar to the PIC16C72 device  
found in the PIC16C7X Data Sheet (DS30390), the PIC16C72A Data Sheet  
(DS35008) or the PIC16F872 device (DS30221).  
B
May 2002  
Final data sheet. Includes device characterization data. Minor typographic  
revisions throughout.  
APPENDIX B: CONVERSION CONSIDERATIONS  
Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table B-1.  
TABLE B-1:  
CONVERSION CONSIDERATIONS  
PIC16C72/72A  
Characteristic  
PIC16F872  
PIC16F72  
Pins  
28  
3
28  
28  
3
Timers  
3
Interrupts  
Communication  
8
10  
8
Basic SSP/SSP  
(SPI, I2C Slave)  
MSSP  
SSP  
(SPI, I2C Master/Slave)  
(SPI, I2C Slave)  
Frequency  
A/D  
20 MHz  
20 MHz  
20 MHz  
8-bit, 5 Channels  
1
10-bit, 5 Channels  
1
8-bit, 5 Channels  
1
CCP  
Program Memory  
2K EPROM  
2K FLASH  
2K FLASH  
(1,000 E/W cycles)  
(1000 E/W cycles)  
RAM  
128 bytes  
None  
128 bytes  
64 bytes  
128 bytes  
None  
EEPROM Data  
Other  
In-Circuit Debugger,  
Low Voltage Programming  
2002 Microchip Technology Inc.  
DS39597B-page 123  
PIC16F72  
NOTES:  
DS39597B-page 124  
2002 Microchip Technology Inc.  
PIC16F72  
INDEX  
A
C
A/D  
Capture/Compare/PWM ..................................................... 37  
Associated Registers with PWM and Timer2.............. 42  
Associated Registers, Capture, Compare  
Acquisition Requirements ........................................... 56  
ADCON0 Register....................................................... 53  
ADCON1 Register....................................................... 53  
ADIF bit....................................................................... 54  
ADRES Register ......................................................... 53  
Analog-to-Digital Converter......................................... 53  
Associated Registers .................................................. 57  
Configuring Analog Port Pins...................................... 56  
Configuring the Interrupt ............................................. 54  
Configuring the Module............................................... 54  
Conversion Clock........................................................ 56  
Conversions................................................................ 56  
Converter Characteristics ......................................... 104  
Effects of a RESET ..................................................... 57  
Internal Sampling Switch (Rss) Impedance................ 56  
Operation During SLEEP............................................ 57  
Source Impedance...................................................... 56  
Use of the the CCP Trigger......................................... 57  
Absolute Maximum Ratings ................................................ 87  
ACK..................................................................................... 49  
ADCON0  
and Timer1............................................................. 40  
Capture  
CCP1IF............................................................... 38  
CCPR1 ............................................................... 38  
CCPR1H:CCPR1L.............................................. 38  
Capture Mode............................................................. 38  
CCP Mode Timer Resources...................................... 37  
CCP Pin Configuration ......................................... 38, 39  
CCP Prescaler............................................................ 38  
CCPR1L Register....................................................... 37  
Compare Mode........................................................... 39  
PWM Mode................................................................. 41  
PWM, Example Frequencies/Resolutions .................. 42  
Software Interrupt....................................................... 38  
Software Interrupt Mode............................................. 39  
Special Event Trigger and A/D Conversions .............. 39  
Special Event Trigger Output of CCP1....................... 39  
Timer1 Mode Selection......................................... 38, 39  
CCPR1H Register............................................................... 37  
CCPxM0 bit......................................................................... 37  
CCPxM1 bit......................................................................... 37  
CCPxM2 bit......................................................................... 37  
CCPxM3 bit......................................................................... 37  
CCPxX bit........................................................................... 37  
CCPxY bit........................................................................... 37  
CKE .................................................................................... 44  
CKP .................................................................................... 45  
Clock Polarity Select bit, CKP............................................. 45  
Code Examples  
GO/DONE bit...................................................... 54  
ADRES Register ............................................................. 9, 54  
Application Notes  
AN546 (Using the Analog-to-Digital Converter).......... 53  
AN552 (Implementing Wake-up on  
Key Strokes Using PIC16F7X)............................... 23  
AN556 (Implementing a Table Read).......................... 19  
AN578 (Use of the SSP Module in the  
2
I C Multi-Master Environment)............................... 43  
AN607 (Power-up Trouble Shooting).......................... 64  
Assembler  
Changing Between Capture Prescalers ..................... 38  
FLASH Program Read................................................ 28  
Indirect Addressing..................................................... 19  
Initializing PORTA....................................................... 21  
Initializing PORTB ...................................................... 23  
Initializing PORTC ...................................................... 25  
Saving STATUS, W and PCLATH  
MPASM Assembler..................................................... 81  
B
BF ....................................................................................... 44  
Block Diagrams  
A/D.............................................................................. 55  
Analog Input Model..................................................... 55  
Capture Mode Operation ............................................ 38  
Compare Mode Operation .......................................... 39  
In-Circuit Serial Programming Connections................ 72  
Interrupt Logic............................................................. 68  
On-Chip Reset Circuit................................................. 63  
PIC16F72...................................................................... 5  
PORTC ....................................................................... 25  
PWM ........................................................................... 41  
RA3:RA0 and RA5 Port Pins ...................................... 21  
RA4/T0CKI Pin............................................................ 21  
RB3:RB0 Port Pins ..................................................... 23  
RB7:RB4 Port Pins ..................................................... 23  
Recommended MCLR Circuit ..................................... 63  
Registers in RAM................................................... 69  
Code Protection............................................................ 59, 72  
Configuration Bits ............................................................... 59  
Configuration Word............................................................. 60  
Conversion Considerations............................................... 123  
D
D/A...................................................................................... 44  
Data Memory  
General Purpose Register File ..................................... 7  
Special Function Registers........................................... 9  
Data/Address bit, D/A ......................................................... 44  
DC and AC Characteristics  
Graphs and Tables ................................................... 107  
DC Characteristics.............................................................. 89  
Development Support......................................................... 81  
Device Overview................................................................... 5  
Direct Addressing ............................................................... 20  
2
SSP in I C Mode......................................................... 48  
SSP in SPI Mode ........................................................ 46  
Timer0/WDT Prescaler................................................ 29  
Timer1......................................................................... 32  
Timer2......................................................................... 35  
Watchdog Timer (WDT) .............................................. 70  
BOR. See Brown-out Reset  
E
Electrical Characteristics .................................................... 87  
Errata.................................................................................... 3  
Brown-out Reset (BOR).................................... 59, 62, 65, 66  
Buffer Full Status bit, BF ..................................................... 44  
2002 Microchip Technology Inc.  
DS39597B-page 125  
PIC16F72  
INT Interrupt (RB0/INT). See Interrupt Sources  
INTCON Register  
F
FLASH Program Memory  
GIE bit......................................................................... 14  
INTE bit....................................................................... 14  
INTF bit....................................................................... 14  
RBIF bit....................................................................... 14  
TMR0IE bit.................................................................. 14  
Internal Sampling Switch (Rss) Impedance........................ 56  
Interrupt Sources .......................................................... 59, 68  
RB0/INT Pin, External................................................. 69  
TMR0 Overflow........................................................... 69  
Interrupts  
Associated Registers ..................................................28  
Operation During Code Protect...................................28  
Reading.......................................................................28  
FSR Register...................................................................9, 10  
I
I/O Ports..............................................................................21  
PORTA........................................................................21  
PORTB........................................................................23  
PORTC........................................................................25  
RB7:RB4 Port Change................................................ 23  
Synchronous Serial Port Interrupt............................... 16  
Interrupts, Context Saving During....................................... 69  
Interrupts, Enable Bits  
2
I C  
Associated Registers ..................................................51  
Master Mode...............................................................51  
Mode Selection ...........................................................48  
Multi-Master Mode ......................................................51  
SCL and SDA pins......................................................48  
Slave Mode.................................................................48  
ICEPIC In-Circuit Emulator .................................................82  
ID Locations ........................................................................72  
In-Circuit Serial Programming (ICSP) .................................72  
INDF Register .....................................................................10  
Indirect Addressing .............................................................20  
FSR Register ..............................................................19  
INDF Register .............................................................19  
Instruction Format ...............................................................73  
Instruction Set .....................................................................73  
ADDLW .......................................................................75  
ADDWF.......................................................................75  
ANDLW .......................................................................75  
ANDWF.......................................................................75  
BCF.............................................................................75  
BSF.............................................................................75  
BTFSC ........................................................................76  
BTFSS ........................................................................76  
CALL ...........................................................................76  
CLRF...........................................................................76  
CLRW..........................................................................76  
CLRWDT.....................................................................76  
COMF .........................................................................77  
DECF ..........................................................................77  
DECFSZ......................................................................77  
GOTO..........................................................................77  
INCF............................................................................77  
INCFSZ.......................................................................77  
IORLW.........................................................................78  
IORWF ........................................................................78  
MOVF..........................................................................78  
MOVLW.......................................................................78  
MOVWF ......................................................................78  
NOP ............................................................................78  
RETFIE .......................................................................79  
RETLW........................................................................79  
RETURN .....................................................................79  
RLF .............................................................................79  
RRF.............................................................................79  
SLEEP ........................................................................79  
SUBLW........................................................................80  
SUBWF.......................................................................80  
Summary Table...........................................................74  
SWAPF .......................................................................80  
XORLW .......................................................................80  
XORWF.......................................................................80  
Global Interrupt Enable (GIE bit) .......................... 14, 68  
Interrupt-on-Change (RB7:RB4)  
Enable (RBIE bit)................................................... 69  
RB0/INT Enable (INTE bit) ......................................... 14  
TMR0 Overflow Enable (TMR0IE bit) ......................... 14  
Interrupts, Flag bits  
Interrupt-on-Change (RB7:RB4) Flag  
(RBIF bit) ............................................................... 14  
Interrupt-on-Change (RB7:RB4) Flag  
(RBIF bit) ......................................................... 14, 69  
RB0/INT Flag (INTF bit).............................................. 14  
TMR0 Overflow Flag (TMR0IF bit).............................. 69  
K
KEELOQ Evaluation and Programming Tools...................... 84  
L
Loading of PC..................................................................... 18  
M
Master Clear (MCLR)  
MCLR Reset, Normal Operation..................... 62, 65, 66  
MCLR Reset, SLEEP...................................... 62, 65, 66  
Operation and ESD Protection ................................... 63  
Memory  
Data Memory ................................................................ 7  
Program Memory.......................................................... 7  
MPLAB C17 and MPLAB C18 C Compilers ....................... 81  
MPLAB ICD In-Circuit Debugger ........................................ 83  
MPLAB ICE High Performance Universal  
In-Circuit Emulator with MPLAB IDE............................ 82  
MPLAB Integrated Development  
Environment Software.................................................. 81  
MPLINK Object Linker/MPLIB Object Librarian.................. 82  
O
On-Line Support ............................................................... 131  
OPCODE Field Descriptions............................................... 73  
OPTION_REG Register  
INTEDG bit ................................................................. 13  
PS2:PS0 bits............................................................... 13  
PSA bit........................................................................ 13  
RBPU bit..................................................................... 13  
T0CS bit...................................................................... 13  
T0SE bit...................................................................... 13  
DS39597B-page 126  
2002 Microchip Technology Inc.  
PIC16F72  
Oscillator Configuration................................................. 59, 61  
Crystal Oscillator/Ceramic Resonators....................... 61  
HS......................................................................... 61, 65  
LP.......................................................................... 61, 65  
RC................................................................... 61, 62, 65  
XT ......................................................................... 61, 65  
Oscillator, WDT................................................................... 70  
PORTA Register................................................................... 9  
PORTB  
Associated Registers.................................................. 24  
Functions.................................................................... 24  
Pull-up Enable (RBPU bit).......................................... 13  
RB0/INT Edge Select (INTEDG bit)............................ 13  
RB0/INT Pin, External ................................................ 69  
RB7:RB4 Interrupt-on-Change Flag (RBIF bit)........... 14  
RB7:RB4 Interrupt-on-Change ................................... 69  
RB7:RB4 Interrupt-on-Change Enable  
P
P.......................................................................................... 44  
Package Marking Information ........................................... 117  
PCFG0 bit ........................................................................... 54  
PCFG1 bit ........................................................................... 54  
PCFG2 bit ........................................................................... 54  
PCL Register............................................................. 9, 10, 18  
PCLATH Register ..................................................... 9, 10, 18  
PCON Register ................................................................... 64  
POR bit ....................................................................... 17  
PICDEM 1 Low Cost PICmicro  
(RBIE bit) ............................................................... 69  
RB7:RB4 Interrupt-on-Change Flag  
(RBIF bit) ......................................................... 14, 69  
PORTB Register................................................................... 9  
PORTC  
Associated Registers.................................................. 26  
Functions.................................................................... 26  
PORTC Register................................................................... 9  
Postscaler, WDT  
Demonstration Board.................................................... 83  
PICDEM 17 Demonstration Board ...................................... 84  
PICDEM 2 Low Cost PIC16CXX  
Assignment (PSA Bit)................................................. 13  
Rate Select (PS2:PS0 bits) ........................................ 13  
Power-down Mode. See SLEEP  
Demonstration Board.................................................... 83  
PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board.................................................... 84  
PICSTART Plus Entry Level  
Development Programmer ........................................... 83  
Pin Functions  
Power-on Reset (POR)............................... 59, 62, 64, 65, 66  
Brown-out Reset (BOR).............................................. 64  
Oscillator Start-up Timer (OST) ............................ 59, 64  
POR Status (POR bit)................................................. 17  
Power Control/Status Register (PCON)...................... 64  
Power-down (PD bit) .................................................. 62  
Power-up Timer (PWRT) ...................................... 59, 64  
Time-out (TO bit) .................................................. 12, 62  
Time-out Sequence .................................................... 64  
PR2 Register ...................................................................... 35  
Prescaler, Timer0  
Assignment (PSA bit) ................................................. 13  
Rate Select (PS2:PS0 bits) ........................................ 13  
PRO MATE II Universal Device Programmer..................... 83  
Product Identification System ........................................... 133  
Program Counter  
MCLR/VPP..................................................................... 6  
OSC1/CLKI ................................................................... 6  
OSC2/CLKO ................................................................. 6  
RA0/AN0....................................................................... 6  
RA1/AN1....................................................................... 6  
RA2/AN2....................................................................... 6  
RA3/AN3/VREF.............................................................. 6  
RA4/T0CKI.................................................................... 6  
RA5/AN4/SS ................................................................. 6  
RB0/INT ........................................................................ 6  
RB1............................................................................... 6  
RB2............................................................................... 6  
RB3............................................................................... 6  
RB4............................................................................... 6  
RB5............................................................................... 6  
RB6/PGC ...................................................................... 6  
RB7/PGD ...................................................................... 6  
RC0/T1OSO/T1CKI ...................................................... 6  
RC1/T1OSI ................................................................... 6  
RC2/CCP1 .................................................................... 6  
RC3/SCK/SCL .............................................................. 6  
RC4/SDI/SDA ............................................................... 6  
RC5/SDO...................................................................... 6  
RC6............................................................................... 6  
RC7............................................................................... 6  
VDD ............................................................................... 6  
VSS................................................................................ 6  
Pinout Descriptions  
RESET Conditions...................................................... 65  
Program Memory  
Paging ........................................................................ 19  
Program Memory Map and Stack......................................... 7  
Program Verification ........................................................... 72  
PUSH.................................................................................. 19  
R
R/W..................................................................................... 44  
R/W bit................................................................................ 49  
RBIF bit............................................................................... 23  
Read/Write bit Information, R/W......................................... 44  
Reader Response............................................................. 132  
Reading Program Memory.................................................. 27  
PMADR....................................................................... 27  
PMCON1 Register...................................................... 27  
Receive Overflow Indicator bit, SSPOV.............................. 45  
Register File Map.................................................................. 8  
PIC16F72...................................................................... 6  
POP .................................................................................... 19  
POR. See Power-on Reset  
PORTA  
Associated Registers .................................................. 22  
Functions .................................................................... 22  
2002 Microchip Technology Inc.  
DS39597B-page 127  
PIC16F72  
Registers.............................................................................36  
ADCON0 (A/D Control 0)............................................53  
ADCON1 (A/D Control 1)............................................54  
CCPCON1 (Capture/Compare/PWM Control 1) .........37  
Initialization Conditions (table) ....................................66  
INTCON (Interrupt Control).........................................14  
OPTION ......................................................................13  
PCON (Power Control) ...............................................17  
PIE1 (Peripheral Interrupt Enable 1)...........................15  
PIR1 (Peripheral Interrupt Flag 1)...............................16  
PMCON1 (Program Memory Control 1)......................27  
SSPCON (Sync Serial Port Control)...........................45  
SSPSTAT (Synchronous Serial Port Status)...............44  
STATUS ......................................................................12  
Summary.......................................................................9  
T1CON (Timer1 Control).............................................31  
RESET .......................................................................... 59, 62  
Brown-out Reset (BOR). See Brown-out Reset (BOR)  
MCLR RESET. See MCLR  
SSPADD Register............................................................... 10  
SSPEN................................................................................ 45  
SSPIF ................................................................................. 16  
SSPM3:SSPM0 .................................................................. 45  
SSPOV ............................................................................... 45  
SSPSTAT Register............................................................. 10  
Stack................................................................................... 19  
Overflows.................................................................... 19  
Underflow ................................................................... 19  
START bit, S....................................................................... 44  
STATUS Register  
DC bit.......................................................................... 12  
IRP bit......................................................................... 12  
PD bit.......................................................................... 62  
TO bit.................................................................... 12, 62  
STOP bit, P......................................................................... 44  
Synchronous Serial Port (SSP) .......................................... 43  
Overview..................................................................... 43  
SPI Mode.................................................................... 43  
Synchronous Serial Port Enable bit, SSPEN...................... 45  
Synchronous Serial Port Interrupt....................................... 16  
Synchronous Serial Port Mode Select bits,  
Power-on Reset (POR). See Power-on Reset (POR)  
RESET Conditions for All Registers............................66  
RESET Conditions for PCON Register.......................65  
RESET Conditions for Program Counter ....................65  
RESET Conditions for STATUS Register....................65  
WDT Reset. See Watchdog Timer (WDT)  
SSPM3:SSPM0............................................................ 45  
T
T2CKPS0 bit....................................................................... 36  
T2CKPS1 bit....................................................................... 36  
T2CON (Timer2 Control) .................................................... 36  
TAD...................................................................................... 56  
Timer0................................................................................. 29  
Clock Source Edge Select (T0SE bit)......................... 13  
Clock Source Select (T0CS bit).................................. 13  
External Clock............................................................. 30  
Interrupt ...................................................................... 29  
Operation.................................................................... 29  
Overflow Enable (TMR0IE bit).................................... 14  
Overflow Flag (TMR0IF bit) ........................................ 69  
Overflow Interrupt ....................................................... 69  
Prescaler .................................................................... 30  
T0CKI ......................................................................... 30  
Timer1  
Associated Registers.................................................. 34  
Asynchronous Counter Mode ..................................... 33  
Capacitor Selection..................................................... 33  
Counter Operation ...................................................... 32  
Interrupt ...................................................................... 33  
Operation in Timer Mode............................................ 32  
Oscillator..................................................................... 33  
Prescaler .................................................................... 34  
Resetting TMR1H, TMR1L Register Pair.................... 34  
Resetting Using a CCP Trigger Output....................... 33  
Synchronized Counter Mode ...................................... 32  
Timer2................................................................................. 35  
Interrupt ...................................................................... 35  
Operation.................................................................... 35  
Output......................................................................... 35  
Prescaler, Postscaler.................................................. 35  
Revision History ................................................................123  
RP0, RP1 bit .........................................................................7  
S
S..........................................................................................44  
Sales and Support.............................................................133  
Slave Mode  
SCL .............................................................................48  
SDA.............................................................................48  
SLEEP..................................................................... 59, 62, 71  
SMP ....................................................................................44  
Software Simulator (MPLAB SIM).......................................82  
Special Event Trigger..........................................................57  
Special Features of the CPU...............................................59  
Special Function Registers  
PMADRH ....................................................................27  
PMADRL .....................................................................27  
PMCON1.....................................................................27  
PMDATH .....................................................................27  
PMDATL......................................................................27  
SPI  
Associated Registers ..................................................46  
SPI Clock Edge Select bit, CKE..........................................44  
SPI Data Input Sample Phase Select bit, SMP...................44  
SPI Mode  
Serial Clock.................................................................43  
Serial Data In ..............................................................43  
Serial Data Out............................................................43  
Slave Select................................................................43  
SSP  
ACK.............................................................................48  
Addressing ..................................................................48  
BF bit...........................................................................48  
2
I C Mode Operation ....................................................48  
R/W bit ........................................................................49  
Reception....................................................................49  
SCL Clock Input..........................................................48  
SSPOV bit...................................................................48  
Transmission...............................................................49  
DS39597B-page 128  
2002 Microchip Technology Inc.  
PIC16F72  
Timing Diagrams  
A/D Conversion......................................................... 105  
U
UA....................................................................................... 44  
Update Address bit, UA...................................................... 44  
Brown-out Reset ......................................................... 96  
Capture/Compare/PWM (CCP1)................................. 98  
CLKO and I/O ............................................................. 95  
External Clock............................................................. 94  
W
Wake-up from SLEEP................................................... 59, 71  
Interrupts .............................................................. 65, 66  
MCLR Reset............................................................... 66  
WDT Reset................................................................. 66  
Watchdog Timer (WDT)................................................ 59, 70  
Associated Registers.................................................. 70  
Enable (WDTEN bit)................................................... 70  
Postscaler. See Postscaler, WDT  
2
I C Bus Data............................................................. 102  
2
I C Bus START/STOP bits........................................ 101  
2
I C Reception (7-bit Address)..................................... 50  
2
I C Transmission (7-bit Address)................................ 50  
RESET, Watchdog Timer, Oscillator Start-up Timer  
and Power-up Timer............................................... 96  
Slow Rise Time (MCLR Tied to VDD Through  
RC Network)........................................................... 68  
SPI Master Mode ........................................................ 47  
SPI Master Mode (CKE = 0, SMP = 0) ....................... 99  
SPI Master Mode (CKE = 1, SMP = 1) ....................... 99  
SPI Slave Mode (CKE = 0) ................................. 47, 100  
SPI Slave Mode (CKE = 1) ................................. 47, 100  
Time-out Sequence on Power-up (MCLR Tied to  
Programming Considerations..................................... 70  
RC Oscillator .............................................................. 70  
Time-out Period .......................................................... 70  
WDT Reset, Normal Operation....................... 62, 65, 66  
WDT Reset, SLEEP ....................................... 62, 65, 66  
WCOL................................................................................. 45  
Write Collision Detect bit, WCOL........................................ 45  
WWW, On-Line Support ....................................................... 3  
VDD Through Pull-up Resistor)............................... 67  
Time-out Sequence on Power-up (MCLR Tied to  
VDD Through RC Network): Case 1 ....................... 67  
Time-out Sequence on Power-up (MCLR Tied to  
VDD Through RC Network): Case 2 ....................... 67  
Timer0 and Timer1 External Clock.............................. 97  
Wake-up from SLEEP through Interrupt ..................... 72  
Timing Parameter Symbology............................................. 93  
TMR1H Register ................................................................... 9  
TMR1L Register.................................................................... 9  
TMR2 Register...................................................................... 9  
TMR2ON bit ........................................................................ 36  
TOUTPS0 bit....................................................................... 36  
TOUTPS1 bit....................................................................... 36  
TOUTPS2 bit....................................................................... 36  
TOUTPS3 bit....................................................................... 36  
TRISA Register ............................................................. 10, 21  
TRISB Register ............................................................. 10, 23  
TRISC Register............................................................. 10, 25  
2002 Microchip Technology Inc.  
DS39597B-page 129  
PIC16F72  
NOTES:  
DS39597B-page 130  
2002 Microchip Technology Inc.  
PIC16F72  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
Connecting to the Microchip Internet Web Site  
013001  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest Devel-  
opment Tools, Data Sheets, Application Notes, Users  
Guides, Articles and Sample Programs. A variety of  
Microchip specific business information is also avail-  
able, including listings of Microchip sales offices, dis-  
tributors and factory representatives. Other data  
available for consideration is:  
Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
Design Tips  
Device Errata  
Job Postings  
Microchip Consultant Program Member Listing  
Links to other useful web sites related to  
Microchip Products  
Conferences for products, Development Systems,  
technical information and more  
Listing of seminars and events  
2002 Microchip Technology Inc.  
DS39597B-page 131  
PIC16F72  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS39597B  
Device:  
PIC16F72  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS39597B-page 132  
2002 Microchip Technology Inc.  
PIC16F72  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature Package  
Range  
Pattern  
a)  
b)  
c)  
PIC16F72-04I/SO = Industrial Temp.,  
SOIC package, normal VDD limits  
PIC16LF72-20I/SS = Industrial Temp.,  
SSOP package, extended VDD limits  
Device  
PIC16F72: Standard VDD range  
PIC16F72T: (Tape and Reel)  
PIC16LF72: Extended VDD range  
PIC16F72-20I/ML = Industrial Temp.,  
QFN package, normal VDD limits  
Temperature Range  
Package  
-
I
=
=
0°C to +70°C  
-40°C to +85°C  
SO  
SS  
ML  
P
=
=
=
=
SOIC  
SSOP  
QFN  
PDIP  
Pattern  
QTP, SQTP, ROM Code (factory specified) or  
Special Requirements. Blank for OTP and  
Windowed devices.  
*
JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
DS39597B-page 133  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-4338  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Microchip Technology (Barbados) Inc.,  
Taiwan Branch  
11F-3, No. 207  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-86766200 Fax: 86-28-86766599  
China - Fuzhou  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
EUROPE  
Denmark  
Detroit  
Tri-Atria Office Building  
Tel: 86-591-7503506 Fax: 86-591-7503521  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
Kokomo  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
France  
Microchip Technology SARL  
Parc dActivite du Moulin de Massy  
43 Rue du Saule Trapu  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
China - Hong Kong SAR  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Italy  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Microchip Technology Inc.  
India Liaison Office  
United Kingdom  
Microchip Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Austria  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, OShaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Microchip Technology Austria GmbH  
Durisolstrasse 2  
A-4600 Wels  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
05/16/02  
DS39597B-page 134  
2002 Microchip Technology Inc.  

相关型号:

PIC16LF73

28/40-Pin 8-Bit CMOS FLASH Microcontrollers
MICROCHIP

PIC16LF73-I

28/40-pin, 8-bit CMOS FLASH Microcontrollers
MICROCHIP

PIC16LF73-I/L301

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,LDCC,44PIN,PLASTIC
MICROCHIP

PIC16LF73-I/ML

暂无描述
MICROCHIP

PIC16LF73-I/P

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,DIP,40PIN,PLASTIC
MICROCHIP

PIC16LF73-I/PT

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,TQFP,44PIN,PLASTIC
MICROCHIP

PIC16LF73-I/PT301

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,TQFP,44PIN,PLASTIC
MICROCHIP

PIC16LF73-I/SO

IC-SMD-8-BIT MCU
ETC

PIC16LF73-I/SOXXX

PIC16LF73-I/SOXXX
MICROCHIP

PIC16LF73-I/SP

IC-8-BIT MCU
ETC

PIC16LF73-I/SP301

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,DIP,28PIN,PLASTIC
MICROCHIP

PIC16LF73-I/SS301

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SSOP,28PIN,PLASTIC
MICROCHIP