PIC18C601I/PT [MICROCHIP]

High-Performance ROM-less Microcontrollers with External Memory Bus; 高性能ROM少微控制器与外部存储器总线
PIC18C601I/PT
型号: PIC18C601I/PT
厂家: MICROCHIP    MICROCHIP
描述:

High-Performance ROM-less Microcontrollers with External Memory Bus
高性能ROM少微控制器与外部存储器总线

存储 微控制器和处理器 外围集成电路 时钟
文件: 总320页 (文件大小:5367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18C601/801  
High-Performance ROM-less Microcontrollers  
with External Memory Bus  
High Performance RISC CPU:  
Advanced Analog Features:  
10-bit Analog-to-Digital Converter module (A/D)  
with:  
• C compiler optimized architecture instruction set  
• Linear program memory addressing up to 2 Mbytes  
• Linear data memory addressing to 4 Kbytes  
-
-
-
-
Fast sampling rate  
Conversion available during SLEEP  
DNL = ±1 LSb, INL = ±1 LSb  
Up to 12 channels available  
External Program Memory  
On-Chip  
On-Chip  
Programmable Low Voltage Detection (LVD)  
module  
Device  
Maximum  
Maximum  
RAM (bytes)  
Addressing Single Word  
-
Supports interrupt on Low Voltage Detection  
(bytes)  
Instructions  
PIC18C601  
PIC18C801  
256K  
2M  
128K  
1M  
1.5K  
1.5K  
Special Microcontroller Features:  
Power-on Reset (POR), Power-up Timer (PWRT),  
and Oscillator Start-up Timer (OST)  
• Up to 160 ns instruction cycle:  
- DC - 25 MHz clock input  
- 4 MHz - 6 MHz clock input with PLL active  
• 16-bit wide instructions, 8-bit wide data path  
• Priority levels for interrupts  
Watchdog Timer (WDT) with its own on-chip RC  
oscillator  
On-chip Boot RAM for boot loader application  
8-bit or 16-bit external memory interface modes  
• 8 x 8 Single Cycle Hardware Multiplier  
Up to two software programmable chip select sig-  
nals (CS1 and CS2)  
Peripheral Features:  
One programmable chip I/O select signal (CSIO)  
for memory mapped I/O expansion  
• High current sink/source 25 mA/25 mA  
• Up to 47 I/O pins with individual direction control  
• Three external interrupt pins  
Power saving SLEEP mode  
Different oscillator options, including:  
• Timer0 module: 8-bit/16-bit timer/counter with  
8-bit programmable prescaler  
- 4X Phase Lock Loop (of primary oscillator)  
- Secondary Oscillator (32 kHz) clock input  
• Timer1 module: 16-bit timer/counter (time-base for  
CCP)  
CMOS Technology:  
• Timer2 module: 8-bit timer/counter with 8-bit  
period register  
Low power, high speed CMOS technology  
Fully static design  
• Timer3 module: 16-bit timer/counter  
Wide operating voltage range (2.0V to 5.5V)  
Industrial and Extended temperature ranges  
Low power consumption  
• Secondary oscillator clock option - Timer1/Timer3  
• Two Capture/Compare/PWM (CCP) modules  
CCP pins can be configured as:  
- Capture input: 16-bit, max. resolution 10 ns  
- Compare is 16-bit, max. resolution 160 ns (TCY)  
- PWM output: PWM resolution is 1- to 10-bit  
Max. PWM freq. @:  
8-bit resolution = 99 kHz  
10-bit resolution = 24.4 kHz  
• Master Synchronous Serial Port (MSSP) with two  
modes of operation:  
- 3-wire SPI™ (Supports all 4 SPI modes)  
- I2C™ Master and Slave mode  
• Addressable USART module: Supports Interrupt  
on Address bit  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 1  
PIC18C601/801  
Pin Diagrams  
64-Pin TQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RE1/AD9  
RE0/AD8  
RG0/ALE  
RG1/OE  
RG2/WRL  
RG3/WRH  
MCLR/VPP  
RG4/BA0  
VSS  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/CCP2  
RB4  
2
3
4
5
6
RB5  
7
RB6  
8
VSS  
PIC18C601  
9
OSC2/CLKO  
OSC1/CLKI  
VDD  
10  
11  
12  
13  
14  
15  
16  
VDD  
RF7/UB  
RF6/LB  
RB7  
RF5/CS1  
RF4/A16  
RF3/CSIO  
RF2/AN7  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/CCP1  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
DS39541A-page 2  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Pin Diagrams (Cont.’d)  
68-Pin PLCC  
9
8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61  
10  
11  
60  
59  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/CCP2  
RB4  
RE1/AD9  
RE0/AD8  
RG0/ALE  
RG1/OE  
RG2/WRL  
RG3/WRH  
MCLR/VPP  
RG4/BA0  
NC  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
RB5  
RB6  
VSS  
PIC18C601  
NC  
VSS  
VDD  
OSC2/CLKO  
OSC1/CLKI  
VDD  
RF7/UB  
RF6/LB  
22  
23  
24  
25  
26  
48  
47  
46  
45  
44  
RB7  
RF5/CS1  
RF4/A16  
RF3/CSIO  
RF2/AN7  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/CCP1  
2728 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 3  
PIC18C601/801  
Pin Diagrams (Cont.d)  
80-Pin TQFP  
80 79 78  
77 76 75 74 73 72 71 70 69 68 67 66 65  
64 63 62 61  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
RH2/A18  
RJ5/D5  
2
RH3/A19  
RJ4/D4  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/CCP2  
RB4  
3
RE1/AD9  
RE0/AD8  
RG0/ALE  
RG1/OE  
RG2/WRL  
RG3/WRH  
MCLR/VPP  
RG4/BA0  
VSS  
4
5
6
7
RB5  
8
RB6  
9
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
OSC2/CLKO  
OSC1/CLKI  
VDD  
PIC18C801  
VDD  
RF7/UB  
RB7  
RF6/LB  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/CCP1  
RF5/CS1  
RF4/CS2  
RF3/CSIO  
RF2/AN7  
RJ3/D3  
RJ2/D2  
RH4/AN8  
RH5/AN9  
40  
35 36 37 38 39  
21 22 23 24 25 26 27 28 29 30 31 32 33 34  
DS39541A-page 4  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Pin Diagrams (Cont.d)  
84-Pin PLCC  
83 82 81  
84  
80  
75  
797877 76  
11 10 9 8  
7
6
5
4 3  
2
1
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
RH2/A18  
RH3/A19  
RE1/AD9  
RE0/AD8  
RG0/ALE  
RG1/OE  
RG2/WRL  
RG3/WRH  
MCLR/VPP  
RG4/BA0  
NC  
RJ5/D5  
RJ4/D4  
RB0/INT0  
74  
73  
72  
71  
70  
69  
68  
67  
66  
RB1/INT1  
RB2/INT2  
RB3/CCP2  
RB4  
RB5  
RB6  
65  
64  
63  
62  
61  
VSS  
NC  
PIC18C801  
VSS  
VDD  
OSC2/CLKO  
OSC1/CLKI  
VDD  
RF7/UB  
RF6/LB  
60  
59  
RB7  
RF5/CS1  
RF4/CS2  
RF3/CSIO  
RF2/AN7  
RH4/AN8  
RH5/AN9  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/CCP1  
58  
57  
56  
55  
54  
RJ3/D3  
RJ2/D2  
3435 36 37 38 39 40 41 42 43  
33  
44  
45 46  
48 49  
51  
50  
47  
52 53  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 5  
PIC18C601/801  
Table of Contents  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
Device Overview..................................................................................................................................................9  
Oscillator Configurations....................................................................................................................................21  
RESET...............................................................................................................................................................29  
Memory Organization ........................................................................................................................................39  
External Memory Interface.................................................................................................................................63  
Table Reads/Table Writes .................................................................................................................................73  
8 X 8 Hardware Multiplier ..................................................................................................................................85  
Interrupts............................................................................................................................................................89  
I/O Ports...........................................................................................................................................................103  
10.0 Timer0 Module.................................................................................................................................................127  
11.0 Timer1 Module.................................................................................................................................................130  
12.0 Timer2 Module.................................................................................................................................................135  
13.0 Timer3 Module.................................................................................................................................................137  
14.0 Capture/Compare/PWM (CCP) Modules.........................................................................................................141  
15.0 Master Synchronous Serial Port (MSSP) Module............................................................................................149  
16.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART).....................................177  
17.0 10-bit Analog-to-Digital Converter (A/D) Module .............................................................................................193  
18.0 Low Voltage Detect..........................................................................................................................................203  
19.0 Special Features of the CPU ...........................................................................................................................207  
20.0 Instruction Set Summary .................................................................................................................................215  
21.0 Development Support......................................................................................................................................259  
22.0 Electrical Characteristics .................................................................................................................................265  
23.0 DC and AC Characteristics Graphs and Tables ..............................................................................................295  
24.0 Packaging Information.....................................................................................................................................297  
Appendix A: Data Sheet Revision History..................................................................................................................303  
Appendix B: Device Differences ................................................................................................................................303  
Appendix C: Device Migrations..................................................................................................................................304  
Appendix D: Migrating from other PICmicro Devices.................................................................................................304  
Appendix E: Development Tool Version Requirements.............................................................................................305  
Index ...........................................................................................................................................................................307  
On-Line Support..........................................................................................................................................................315  
Reader Response .......................................................................................................................................................316  
Product Identification System......................................................................................................................................317  
DS39541A-page 6  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchips Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 7  
PIC18C601/801  
NOTES:  
DS39541A-page 8  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
An overview of features is shown in Table 1-1.  
1.0  
DEVICE OVERVIEW  
Device block diagrams are provided in Figure 1-1 for  
the 64/68-pin configuration, and Figure 1-2 for the 80/  
84-pin configuration. The pinouts for both packages  
are listed in Table 1-2.  
This document contains device specific information for  
the following two devices:  
1. PIC18C601  
2. PIC18C801  
The PIC18C601 is available in 64-pin TQFP and 68-pin  
PLCC packages. The PIC18C801 is available in 80-pin  
TQFP and 84-pin PLCC packages.  
TABLE 1-1:  
DEVICE FEATURES  
Features  
PIC18C601  
PIC18C801  
Operating Frequency  
DC - 25 MHz  
256K  
DC - 25 MHz  
Bytes  
2M  
1M  
External  
Program Memory  
Max. # of Single Word  
Instructions  
128K  
Data Memory (Bytes)  
Interrupt Sources  
I/O Ports  
1536  
1536  
15  
15  
Ports A - G  
Ports A - H, J  
Timers  
4
2
4
2
Capture/Compare/PWM modules  
MSSP,  
Addressable USART  
MSSP,  
Addressable USART  
Serial Communications  
10-bit Analog-to-Digital Module  
8 input channels  
12 input channels  
POR,  
POR,  
RESETS (and Delays)  
RESETInstruction, Stack Full,  
RESETInstruction, Stack Full,  
Stack Underflow (PWRT, OST) Stack Underflow (PWRT, OST)  
Programmable Low Voltage Detect  
8-bit External Memory Interface  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
8-bit De-multiplexed External  
Memory Interface  
16-bit External Memory Interfaces  
On-chip Chip Select Signals  
On-chip I/O Chip Select Signal  
Instruction Set  
Yes  
CS1  
Yes  
CS1, CS2  
Yes  
Yes  
75 Instructions  
75 Instructions  
64-pin TQFP  
68-pin PLCC  
80-pin TQFP  
84-pin PLCC  
Packages  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 9  
PIC18C601/801  
FIGURE 1-1:  
PIC18C601 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
PORTB  
AD7:AD0  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Table Pointer<21>  
inc/dec logic  
20  
Data Latch  
8
5
8
Data RAM  
1 Kbyte  
21  
RA5/AN4/SS/LVDIN  
21  
21  
Address Latch  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/CCP2  
RB4  
RB5  
RB6  
RB7  
PCLATU  
PCLATH  
12  
Address<12>  
PCH PCL  
PCU  
Program Counter  
Address Latch  
4
BSR  
12  
FSR0  
4
Bank0,F  
Program Memory  
(up to 256 Kbytes)  
FSR1  
FSR2  
31 Level Stack  
Data Latch  
16  
12  
PORTC  
inc/dec  
logic  
RC0/T1OSO/T13CKI  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
Decode  
Table Latch  
8
ROM Latch  
IR  
RC6/TX1/CK1  
RC7/RX1/DT1  
A16, AD15:AD8  
PORTD  
PORTE  
PORTF  
8
Instruction  
Decode &  
Control  
RD7:RD0/AD7:AD0  
RE7:RE0/AD15:AD8  
PRODH PRODL  
8 x 8 Multiply  
OSC2/CLKO  
OSC1/CLKI  
3
Power-up  
Timer  
8
Timing  
Generation  
Oscillator  
Start-upTimer  
T1OSI  
T1OSO  
WREG  
8
BITOP  
8
8
Power-on  
Reset  
8
Watchdog  
Timer  
ALU<8>  
Low Voltage  
Detect  
8
RF0/AN5  
RF1/AN6  
RF2/AN7  
RF3/CSIO  
RF4/A16  
RF5/CS1  
RF6/LB  
MCLR  
VDD, VSS  
RF7/UB  
PORTG  
RG0/ALE  
RG1/OE  
RG2/WRL  
RG3/WRH  
RG4/BA0  
Timer0  
CCP1  
Timer1  
CCP2  
Timer2  
Timer3  
Synchronous  
Serial Port  
USART1  
10-bit A/D  
DS39541A-page 10  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 1-2:  
PIC18C801 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
AD7:AD0  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
TablePointer<21>  
Data Latch  
8
5
8
Data RAM  
1 Kbyte  
21  
RA5/AN4/SS/LVDIN  
inc/dec logic  
20  
21  
21  
PORTB  
Address Latch  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/CCP2  
RB4  
RB5  
RB6  
RB7  
PCLATU  
PCLATH  
12  
Address<12>  
PCH PCL  
PCU  
Program Counter  
Address Latch  
4
BSR  
12  
FSR0  
4
Program Memory  
(up to 2 Mbytes)  
Bank0,F  
FSR1  
FSR2  
31 Level Stack  
Data Latch  
16  
12  
PORTC  
RC0/T1OSO/T13CKI  
RC1/T1OSI  
RC2/CCP1  
inc/dec  
logic  
Decode  
Table Latch  
RC3/SCK/SCL  
RC4/SDI/SDA  
8
ROM Latch  
IR  
RC5/SDO  
RC6/TX1/CK1  
RC7/RX1/DT1  
PORTD  
A19:A16, AD15:AD0  
8
Instruction  
Decode &  
Control  
RD7:RD0/AD7:AD0  
PRODH PRODL  
8 x 8 Multiply  
OSC2/CLKO  
OSC1/CLKI  
3
PORTE  
Power-up  
Timer  
8
Timing  
Generation  
RE7:RE0/AD15:AD8  
Oscillator  
Start-upTimer  
T1OSI  
T1OSO  
WREG  
8
BITOP  
8
8
Power-on  
Reset  
PORTF  
8
Watchdog  
Timer  
RF0/AN5  
RF1/AN6  
RF2/AN7  
RF3/CSIO  
RF4/CS2  
RF5/CS1  
ALU<8>  
Low Voltage  
Detect  
8
RF6/LB  
RF7/UB  
MCLR  
VDD, VSS  
PORTG  
PORTH  
RG0/ALE  
RG1/OE  
RG2/WRL  
RG3/WRH  
RG4/BA0  
Timer0  
CCP1  
Timer1  
CCP2  
Timer2  
Timer3  
RH3:RH0/A19:A16  
RH4/AN8  
RH5/AN9  
RH6/AN10  
RH7/AN11  
Synchronous  
Serial Port  
PORTJ  
USART1  
RJ7:RJ0/D7:D0  
10-bit A/D  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 11  
PIC18C601/801  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS  
Pin Number  
PIC18C601 PIC18C801  
TQFP PLCC TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
MCLR/VPP  
MCLR  
7
16  
9
20  
I
ST  
Master clear (RESET) input. This pin is  
an active low RESET to the device.  
Programming voltage input.  
VPP  
NC  
P
1, 18,  
35, 52  
1, 22,  
43, 64  
These pins should be left  
unconnected.  
OSC1/CLKI  
OSC1  
39  
50  
49  
62  
I
I
CMOS/ST  
Oscillator crystal input or external clock  
source input. ST buffer when in RC  
mode. Otherwise CMOS.  
External clock source input.  
Always associated with pin function  
OSC1 (see OSC1/CLKI, OSC2/CLKO  
pins).  
CLKI  
CMOS  
OSC2/CLKO  
OSC2  
40  
51  
50  
63  
O
O
Oscillator crystal output.  
Connects to crystal or resonator in  
Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO,  
which has 1/4 the  
CLKO  
frequency of OSC1 and denotes the  
instruction cycle rate.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
DS39541A-page 12  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18C601  
PIC18C801  
TQFP PLCC TQFP PLCC  
Description  
PORTA is a bi-directional I/O port.  
RA0/AN0  
RA0  
24  
23  
22  
34  
33  
32  
30  
29  
28  
42  
41  
40  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage (Low) input.  
RA3/AN3/VREF+  
RA3  
21  
28  
27  
31  
39  
38  
27  
34  
33  
39  
47  
46  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
Analog input 3.  
A/D reference voltage (High) input.  
AN3  
VREF+  
RA4/T0CKI  
RA4  
I/O  
I
ST/OD  
ST  
Digital I/O Open drain when  
configured as output.  
Timer0 external clock input.  
T0CKI  
RA5/AN4/SS/LVDIN  
RA5  
AN4  
SS  
I/O  
TTL  
Analog  
ST  
Digital I/O.  
Analog input 4.  
SPI slave select input.  
Low voltage detect input.  
I
I
I
LVDIN  
Analog  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 13  
PIC18C601/801  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
PIC18C601 PIC18C801  
TQFP PLCC TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTB is a bi-directional I/O port. PORTB  
can be software programmed for internal  
weak pull-ups on all inputs.  
RB0/INT0  
RB0  
48  
47  
46  
45  
60  
59  
58  
57  
58  
57  
56  
55  
72  
71  
70  
69  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 0.  
INT0  
RB1/INT1  
RB1  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 1.  
INT1  
RB2/INT2  
RB2  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 2.  
INT2  
RB3/CCP2  
RB3  
I/O  
I/O  
TTL  
ST  
Digital I/O.  
Capture2 input, Compare2 output,  
PWM2 output.  
CCP2  
RB4  
RB5  
RB6  
44  
43  
42  
56  
55  
54  
54  
53  
52  
68  
67  
66  
I/O  
I/O  
TTL  
TTL  
Digital I/O, Interrupt-on-change pin.  
Digital I/O, Interrupt-on-change pin.  
I/O  
I
TTL  
ST  
Digital I/O, Interrupt-on-change pin.  
ICSP programming clock.  
RB7  
37  
48  
47  
60  
I/O  
I/O  
TTL  
ST  
Digital I/O, Interrupt-on-change pin.  
ICSP programming data.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
DS39541A-page 14  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18C601  
PIC18C801  
TQFP PLCC TQFP PLCC  
Description  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T13CKI  
RC0  
30  
41  
36  
49  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T13CKI  
RC1/T1OSI  
RC1  
29  
33  
40  
44  
35  
43  
48  
56  
I/O  
I
ST  
CMOS  
Digital I/O.  
Timer1 oscillator input.  
T1OSI  
RC2/CCP1  
RC2  
I/O  
I/O  
ST  
ST  
Digital I/O.  
Capture1 input/Compare1  
output/PWM1 output.  
CCP1  
RC3/SCK/SCL  
RC3  
34  
35  
45  
46  
44  
45  
57  
58  
I/O  
I/O  
ST  
ST  
Digital I/O.  
SCK  
Synchronous serial clock  
input/output for SPI mode.  
Synchronous serial clock  
SCL  
I/O  
ST  
2
input/output for I C mode.  
RC4/SDI/SDA  
RC4  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SPI data in.  
SDI  
SDA  
2
I C data I/O.  
RC5/SDO  
RC5  
36  
31  
47  
42  
46  
37  
59  
50  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO  
RC6/TX/CK  
RC6  
TX  
CK  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
USART asynchronous transmit.  
USART synchronous clock.  
RC7/RX/DT  
32  
43  
38  
51  
RC7  
RX  
DT  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
USART asynchronous receive.  
USART synchronous data.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 15  
PIC18C601/801  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
PIC18C601 PIC18C801  
TQFP PLCC TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTD is a bi-directional I/O port. These  
pins have TTL input buffers when external  
memory is enabled.  
RD0/AD0  
RD0  
58  
55  
54  
53  
52  
51  
50  
49  
3
72  
69  
68  
67  
66  
65  
64  
63  
3
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 0.  
AD0  
RD1/AD1  
RD1  
67  
66  
65  
64  
63  
62  
61  
83  
82  
81  
80  
79  
78  
77  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 1.  
AD1  
RD2/AD2  
RD2  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 2.  
AD2  
RD3/AD3  
RD3  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 3.  
AD3  
RD4/AD4  
RD4  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 4.  
AD4  
RD5/AD5  
RD5  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 5.  
AD5  
RD6/AD6  
RD6  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 6.  
AD6  
RD7/AD7  
RD7  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 7.  
AD7  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
DS39541A-page 16  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18C601  
PIC18C801  
TQFP PLCC TQFP PLCC  
Description  
PORTE is a bi-directional I/O port.  
RE0/AD8  
RE0  
2
11  
10  
9
4
15  
14  
9
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 8.  
AD8  
RE1/AD9  
RE1  
1
3
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 9.  
AD9  
RE2/AD10  
RE2  
64  
63  
62  
61  
60  
59  
78  
77  
76  
75  
74  
73  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 10.  
AD10  
RE3/AD11  
RE3  
8
8
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 11.  
AD11  
RE4/AD12  
RE4  
7
7
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 12.  
AD12  
RE5/AD13  
RE5  
6
6
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 13.  
AD13  
RE6/AD14  
RE6  
5
5
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 14.  
AD14  
RE7/AD15  
RE7  
4
4
I/O  
I/O  
ST  
ST  
Digital I/O.  
External memory address/data 15.  
AD15  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 17  
PIC18C601/801  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
PIC18C601 PIC18C801  
TQFP PLCC TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTF is a bi-directional I/O port.  
RF0/AN5  
RF0  
18  
17  
16  
15  
28  
27  
26  
25  
24  
23  
18  
17  
36  
35  
30  
29  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 5.  
AN5  
RF1/AN6  
RF1  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 6.  
AN6  
RF2/AN7  
RF2  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 7.  
AN7  
RF3/CSIO  
RF3  
I/O  
I/O  
ST  
ST  
Digital I/O.  
System bus chip select I/O.  
CSIO  
RF4/A16  
RF4/CS2  
RF4  
14  
24  
16  
28  
I/O  
I/O  
O
ST  
TTL  
TTL  
Digital I/O.  
External memory address 16.  
Chip select 2.  
A16  
CS2  
RF5/CS1  
RF5  
13  
12  
23  
22  
15  
14  
27  
26  
I/O  
O
ST  
TTL  
Digital I/O.  
Chip select 1.  
CS1  
RF6/LB  
RF6  
I/O  
O
ST  
TTL  
Digital I/O.  
Low byte select signal for external  
memory interface.  
LB  
RF7/UB  
RF7  
11  
21  
13  
25  
I/O  
O
ST  
TTL  
Digital I/O.  
High byte select signal for external  
memory interface.  
UB  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
DS39541A-page 18  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18C601  
PIC18C801  
TQFP PLCC TQFP PLCC  
Description  
PORTG is a bi-directional I/O port.  
RG0/ALE  
RG0  
3
4
5
6
8
12  
13  
14  
15  
17  
5
6
16  
17  
18  
19  
21  
I/O  
O
ST  
TTL  
Digital I/O.  
Address Latch Enable.  
ALE  
RG1/OE  
RG1  
I/O  
O
ST  
TTL  
Digital I/O.  
Output Enable.  
OE  
RG2/WRL  
RG2  
7
I/O  
O
ST  
TTL  
Digital I/O.  
Write Low control.  
WRL  
RG3/WRH  
RG3  
8
I/O  
O
ST  
TTL  
Digital I/O.  
Write High control.  
WRH  
RG4/BA0  
RG4  
10  
I/O  
O
ST  
TTL  
Digital I/O.  
System bus byte address 0.  
BA0  
PORTH is a bi-directional I/O port.  
RH0/A16  
RH0  
79  
80  
1
10  
11  
12  
13  
31  
32  
33  
34  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address 16.  
A16  
RH1/A17  
RH1  
I/O  
O
ST  
Digital I/O.  
External memory address 17.  
A17  
RH2/A18  
RH2  
I/O  
O
ST  
Digital I/O.  
External memory address 18.  
A18  
RH3/A19  
RH3  
2
I/O  
O
ST  
Digital I/O.  
External memory address 19.  
A19  
RH4/AN8  
RH4  
19  
20  
21  
22  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 8.  
AN8  
RH5/AN9  
RH5  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 9.  
AN9  
RH6/AN10  
RH6  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 10.  
AN10  
RH7/AN11  
RH7  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 11.  
AN11  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 19  
PIC18C601/801  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
PIC18C601 PIC18C801  
TQFP PLCC TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTJ is a bi-directional I/O port.  
RJ0/D0  
RJ0  
39  
40  
41  
42  
59  
60  
61  
62  
52  
53  
54  
55  
73  
74  
75  
76  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
System bus data bit 0.  
D0  
RJ1/D1  
RJ1  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
System bus data bit 1.  
D1  
RJ2/D2  
RJ2  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
System bus data bit 2.  
D2  
RJ3/D3  
RJ3  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
System bus data bit 3.  
D3  
RJ4/D4  
RJ4  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
System bus data bit 4.  
D4  
RJ5/D5  
RJ5  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
System bus data bit 5.  
D5  
RJ6/D6  
RJ6  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
System bus data bit 6.  
D6  
RJ7/D7  
RJ7  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
System bus data bit 7.  
D7  
VSS  
VDD  
9, 25, 19, 36, 11,31, 23, 44,  
41, 56 53, 68 51, 70 65, 84  
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
10,26, 2, 20, 12,32, 2, 24,  
38, 57 37, 49 48, 71 45, 61  
P
AVSS  
AVDD  
20  
19  
30  
29  
26  
25  
38  
37  
P
P
Ground reference for analog modules.  
Positive supply for analog modules.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
DS39541A-page 20  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 2-1:  
CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(HS OR LP OSC  
2.0  
2.1  
OSCILLATOR  
CONFIGURATIONS  
CONFIGURATION)  
Oscillator Types  
(1)  
PIC18C601/801 can be operated in one of four oscilla-  
tor modes, programmable by configuration bits  
FOSC1:FOSC0 in CONFIG1H register:  
C1  
OSC1  
To  
Internal  
Logic  
XTAL  
(3)  
1. LP  
2. HS  
3. RC  
4. EC  
Low Power Crystal  
RF  
High Speed Crystal/Resonator  
External Resistor/Capacitor  
External Clock  
SLEEP  
PIC18C601/801  
(2)  
RS  
(1)  
C2  
OSC2  
Note 1: See Table 2-1 and Table 2-2 for recom-  
2.2  
Crystal Oscillator/Ceramic  
Resonators  
mended values of C1 and C2.  
2: A series resistor (RS) may be required for AT  
In LP or HS oscillator modes, a crystal or ceramic res-  
onator is connected to the OSC1 and OSC2 pins to  
establish oscillation. Figure 2-1 shows the pin connec-  
tions. An external clock source may also be connected  
to the OSC1 pin, as shown in Figure 2-3 and Figure 2-4.  
strip cut crystals.  
3: RF varies with the crystal chosen.  
PIC18C601/801 oscillator design requires the use of a  
parallel cut crystal.  
Note: Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturers  
specifications.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 21  
PIC18C601/801  
TABLE 2-1:  
CERAMIC RESONATORS  
Ranges Tested:  
Note 1: Recommended values of C1 and C2 are  
identical to the ranges tested (Table 2-1).  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
Mode  
Freq.  
8.0 MHz  
16.0 MHz  
20.0 MHz  
25.0 MHz  
OSC1  
OSC2  
HS  
10 - 68 pF  
10 - 22 pF  
TBD  
10 - 68 pF  
10 - 22 pF  
TBD  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components.  
4: Rs may be required in HS mode to avoid  
overdriving crystals with low drive level  
specification.  
TBD  
TBD  
HS+PLL 4.0 MHz  
TBD  
TBD  
These values are for design guidance only.  
See notes on this page.  
Resonators Used:  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
16.0 MHz Murata Erie CSA16.00MX  
0.5%  
0.5%  
0.5%  
2.3  
RC Oscillator  
For timing insensitive applications, the "RC" oscillator  
mode offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 2-2 shows how the RC combination  
is connected.  
All resonators used did not have built-in capacitors.  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
Crystal  
Freq.  
Cap. Range Cap.Range  
Osc Type  
C1  
C2  
LP  
32.0 kHz  
200 kHz  
4.0 MHz  
8.0 MHz  
20.0 MHz  
25.0 MHz  
4.0 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
In the RC oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic.  
HS  
15 pF  
15 pF  
15-33 pF  
15-33 pF  
TBD  
15-33 pF  
15-33 pF  
TBD  
FIGURE 2-2:  
RC OSCILLATOR MODE  
HS+PLL  
15 pF  
15 pF  
These values are for design guidance only.  
See notes on this page.  
VDD  
Crystals Used  
REXT  
Internal  
OSC1  
32.0 kHz Epson C-001R32.768K-A  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
Clock  
200 kHz  
1.0 MHz  
4.0 MHz  
STD XTL 200.000kHz  
ECS ECS-10-13-1  
ECS ECS-40-20-1  
CEXT  
VSS  
PIC18C601/801  
OSC2/CLKO  
FOSC/4  
or I/O  
8.0 MHz EPSON CA-301 8.000M-C ± 30 PPM  
20.0 MHz EPSON CA-301 20.000M-C ± 30 PPM  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20pF  
DS39541A-page 22  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
2.4  
External Clock Input  
2.5  
HS4 (PLL)  
The EC oscillator mode requires an external clock  
source to be connected to the OSC1 pin. The feedback  
device between OSC1 and OSC2 is turned off in these  
modes to save current. There is no oscillator start-up  
time required after a Power-on Reset or after a  
recovery from SLEEP mode.  
A Phase Lock Loop (PLL) circuit is provided as a soft-  
ware programmable option for users that want to multi-  
ply the frequency of the incoming crystal oscillator  
signal by 4. For an input clock frequency of 6 MHz, the  
internal clock frequency will be multiplied to 24 MHz.  
This is useful for customers who are concerned with  
EMI due to high frequency crystals.  
In the EC oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 2-3 shows the pin connections for the EC  
oscillator mode.  
The PLL is enabled by configuring HS oscillator mode  
and setting the PLLEN bit in the OSCON register. If HS  
oscillator mode is not selected, or PLLEN bit in  
OSCCON register is clear, the PLL is not enabled and  
the system clock will come directly from OSC1. HS  
oscillator mode is the default for PIC18C601/801. In all  
other modes, the PLLEN bit and the SCS1 bit are  
forced to 0.  
FIGURE 2-3:  
EXTERNAL CLOCK INPUT  
OPERATION (EC OSC  
CONFIGURATION)  
A PLL lock timer is used to ensure that the PLL has  
locked before device execution starts. The PLL lock  
timer has a time-out, referred to as TPLL.  
OSC1  
Clock from  
ext. system  
PIC18C601/801  
OSC2  
FOSC/4  
FIGURE 2-4:  
PLL BLOCK DIAGRAM  
HS Osc  
PLL Enable  
OSCOUT  
Phase  
Comparator  
CVCO  
FIN  
Crystal  
Loop  
Filter  
VCO  
Osc  
FOUT  
OSCIN  
SYSCLK  
Feedback Divider  
3
2
1
0
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 23  
PIC18C601/801  
2.6.1  
SYSTEM CLOCK SWITCH BIT  
2.6  
Oscillator Switching Feature  
The system clock source switching is performed under  
software control. The system clock switch bit, SCS0  
(OSCCON register), controls the clock switching. When  
the SCS0 bit is 0, the system clock source comes from  
the main oscillator, selected by the FOSC2:FOSC0 con-  
figuration bits in CONFIG1H register. When the SCS0 bit  
is set, the system clock source will come from the Timer1  
oscillator. The SCS0 bit is cleared on all forms of RESET.  
PIC18C601/801 devices include a feature that allows  
the system clock source to be switched from the main  
oscillator to an alternate low frequency clock source.  
For PIC18C601/801 devices, this alternate clock  
source is the Timer1 oscillator. If a low frequency crys-  
tal (32 kHz, for example) has been attached to the  
Timer1 oscillator pins and the Timer1 oscillator has  
been enabled, the device can switch to a low power  
execution mode. Figure 2-5 shows a block diagram of  
the system clock sources.  
Note: The Timer1 oscillator must be enabled to  
switch the system clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 control register  
(T1CON). If the Timer1 oscillator is not  
enabled, any write to the SCS0 bit will be  
ignored (SCS0 bit forced cleared) and the  
main oscillator will continue to be the sys-  
tem clock source.  
FIGURE 2-5:  
DEVICE CLOCK SOURCES  
PIC18C601/801  
Main Oscillator  
OSC2  
TOSC/4  
4 x PLL  
SLEEP  
TSCLK  
TOSC  
TT1P  
OSC1  
Timer 1 Oscillator  
T1OSO  
Clock  
Source  
T1OSCEN  
Enable  
Oscillator  
T1OSI  
Clock Source option  
for other modules  
Note: I/O pins have diode protection to VDD and VSS.  
DS39541A-page 24  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
REGISTER 2-1:  
OSCCON REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-0  
LOCK  
R/W-0  
R/W-0  
SCS1  
R/W-0  
SCS0  
PLLEN  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as '0'  
LOCK: Phase Lock Loop Lock Status bit  
1= Phase Lock Loop output is stable as system clock  
0= Phase Lock Loop output is not stable and cannot be used as system clock  
bit 2  
bit 1  
PLLEN: Phase Lock Loop Enable bit  
1= Enable Phase Lock Loop output as system clock  
0= Disable Phase Lock Loop  
SCS1: System Clock Switch bit 1  
When PLLEN and LOCK bit are set:  
1= Use PLL output  
0= Use primary oscillator/clock input pin  
When PLLEN bit or LOCK bit is cleared:  
Bit is forced clear  
bit 0  
SCS0: System Clock Switch bit 0  
When T1OSCEN bit is set:  
1= Switch to Timer1 oscillator/clock pin  
0= Use primary oscillator/clock input pin  
When T1OSCEN is cleared:  
Bit is forced clear  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
The sequence of events that takes place when switch-  
ing from the Timer1 oscillator to the main oscillator will  
depend on the mode of the main oscillator. In addition  
to eight clock cycles of the main oscillator, additional  
delays may take place.  
2.6.2  
OSCILLATOR TRANSITIONS  
PIC18C601/801 devices contain circuitry to prevent  
"glitches" when switching between oscillator sources.  
Essentially, the circuitry waits for eight rising edges of  
the clock source that the processor is switching to.  
This ensures that the new clock source is stable and  
that its pulse width will not be less than the shortest  
pulse width of the two clock sources.  
If the main oscillator is configured for an external crys-  
tal (HS, LP), the transition will take place after an oscil-  
lator start-up time (TOST) has occurred. A timing  
diagram indicating the transition from the Timer1 oscil-  
lator to the main oscillator for HS and LP modes is  
shown in Figure 2-7.  
A timing diagram indicating the transition from the main  
oscillator to the Timer1 oscillator is shown in Figure 2-6.  
The Timer1 oscillator is assumed to be running all the  
time. After the SCS0 bit is set, the processor is frozen  
at the next occurring Q1 cycle. After eight synchroniza-  
tion cycles are counted from the Timer1 oscillator, oper-  
ation resumes. No additional delays are required after  
the synchronization cycles.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 25  
PIC18C601/801  
FIGURE 2-6:  
TIMING DIAGRAM FOR TRANSITION FROM OSC1 TO TIMER1 OSCILLATOR  
Q1 Q2 Q3 Q4 Q1  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
TT1P  
1
2
3
4
5
6
7
8
T1OSI  
OSC1  
TSCS  
TOSC  
Internal  
System  
Clock  
TDLY  
SCS0  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note: Delay on internal system clock is eight oscillator cycles for synchronization.  
FIGURE 2-7:  
TIMING DIAGRAM FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS, LP)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3  
Q3  
Q4  
Q1  
TT1P  
T1OSI  
OSC1  
1
2
3
4
5
6
7
8
TOST  
TSCS  
OSC2  
Internal System  
Clock  
TOSC  
SCS0  
(OSCCON<0>)  
Program Counter  
PC + 2  
PC + 4  
PC  
Note: TOST = 1024TOSC (drawing not to scale).  
DS39541A-page 26  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
If the main oscillator is configured for HS4 (PLL) mode  
with SCS1 bit set to 1, an oscillator start-up time  
(TOST), plus an additional PLL time-out (TPLL) will  
occur. The PLL time-out is typically 2 ms and allows the  
PLL to lock to the main oscillator frequency. A timing  
diagram indicating the transition from the Timer1 oscil-  
lator to the main oscillator for HS4 mode is shown in  
Figure 2-8.  
put is not used, so the system oscillator will come from  
OSC1 directly and additional delay of TPLL is not  
required. A timing diagram indicating the transition from  
the Timer1 oscillator to the main oscillator for HS4  
mode is shown in Figure 2-9.  
If the main oscillator is configured in the RC or EC  
modes, there is no oscillator start-up time-out. Opera-  
tion will resume after eight cycles of the main oscillator  
have been counted. A timing diagram indicating the  
transition from the Timer1 oscillator to the main oscilla-  
tor for RC and EC modes is shown in Figure 2-10.  
If the main oscillator is configured for HS4 (PLL) mode,  
with SCS1 bit set to 0, only oscillator start-up time  
(TOST) will occur. Since SCS1 bit is set to 0, PLL out-  
FIGURE 2-8:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS4 WITH SCS1 = 1)  
TT1P  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q4  
Q1  
T1OSI  
OSC1  
TOST  
TPLL  
OSC2  
TSCS  
TOSC  
PLL Clock  
Input  
1
2
3
4
5
6
7
8
Internal System  
Clock  
SCS0  
(OSCCON<0>)  
Program Counter  
PC  
PC + 2  
PC + 4  
Note: TOST = 1024TOSC (drawing not to scale).  
FIGURE 2-9:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS4 WITH SCS = 0)  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
TT1P  
Q4  
Q1  
T1OSI  
OSC1  
TOSC  
TOST  
OSC2  
TSCS  
PLL  
Clock  
Output  
TPLL  
Internal  
System  
Clock  
TDLY  
SCS0  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note: TOST = 1024TOSC (drawing not to scale).  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 27  
PIC18C601/801  
FIGURE 2-10:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)  
Q3  
Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
TT1P  
T1OSI  
OSC1  
TOSC  
6
1
4
5
7
8
2
3
OSC2  
Internal System  
Clock  
SCS0  
(OSCCON<0>)  
TSCS  
Program Counter  
PC  
PC + 2  
PC + 4  
Note: RC oscillator mode assumed.  
rent consumed during SLEEP. The user can wake from  
SLEEP through external RESET, Watchdog Timer  
Reset, or through an interrupt.  
2.6.3  
SCS0, SCS1 PRIORITY  
If both SCS0 and SCS1 are set to 1simultaneously,  
the SCS0 bit has priority over the SCS1 bit. This means  
that the low power option will take precedence over the  
PLL option. If both bits are cleared simultaneously, the  
system clock will come from OSC1, after a TOST time-  
out. If only the SCS0 bit is cleared, the system clock will  
come from the PLL output, following TOST and TPLL  
time.  
2.8  
Power-up Delays  
Power-up delays are controlled by two timers, so that  
no external RESET circuitry is required for most appli-  
cations. The delays ensure that the device is kept in  
RESET until the device power supply and clock are sta-  
ble. For additional information on RESET operation,  
see Section 3.0 RESET.  
TABLE 2-3:  
SCS0, SCS1 PRIORITY  
The first timer is the Power-up Timer (PWRT), which  
optionally provides a fixed delay of TPWRT (parameter  
#33) on power-up only. The second timer is the Oscil-  
lator Start-up Timer (OST), intended to keep the chip in  
RESET until the crystal oscillator is stable.  
SCS1  
SCS0 Clock Source  
0
0
1
1
0
1
0
1
Ext Oscillator OSC1  
Timer1 Oscillator  
HS + PLL  
Timer1 Oscillator  
PIC18C601/801 devices provide a configuration bit,  
PWRTEN in CONFIG2L register, to enable or disable  
the Power-up Timer. By default, the Power-up Timer is  
enabled.  
2.7  
Effects of SLEEP Mode on the  
On-Chip Oscillator  
With the PLL enabled (HS4 oscillator mode), the time-out  
sequence following a Power-on Reset is different from  
other oscillator modes. The time-out sequence is as fol-  
lows: the PWRT time-out is invoked after a POR time  
delay has expired, then, the Oscillator Start-up Timer  
(OST) is invoked. However, this is still not a sufficient  
amount of time to allow the PLL to lock at high frequen-  
cies. The PWRT timer is used to provide an additional  
time-out, called TPLL (parameter #7), to allow the PLL  
ample time to lock to the incoming clock frequency.  
When the device executes a SLEEP instruction, the  
on-chip clocks and oscillator are turned off and the  
device is held at the beginning of an instruction cycle  
(Q1 state). With the oscillator off, the OSC1 and OSC2  
signals will stop oscillating. Since all the transistor  
switching currents have been removed, SLEEP mode  
achieves the lowest current consumption of the device  
(only leakage currents). Enabling any on-chip feature  
that will operate during SLEEP, will increase the cur-  
TABLE 2-4:  
OSC Mode  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC1 Pin  
OSC2 Pin  
RC  
EC  
Floating, external resistor should pull high  
Floating  
At logic low  
At logic low  
LP and HS Feedback inverter disabled, at quiescent voltage level Feedback inverter disabled, at quiescent voltage level  
Note: See Table 3-1 in Section 3.0 RESET, for time-outs due to SLEEP and MCLR Reset.  
DS39541A-page 28  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal oper-  
ation. Status bits from the RCON register, RI, TO, PD  
and POR, are set or cleared differently in different  
RESET situations, as indicated in Table 3-2. These bits  
are used in software to determine the nature of the  
RESET. See Table 3-3 for a full description of the  
RESET states of all registers.  
3.0  
RESET  
PIC18C601/801 devices differentiate between various  
kinds of RESET:  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during SLEEP  
d) Watchdog Timer (WDT) Reset during normal  
operation  
A simplified block diagram of the on-chip RESET circuit  
is shown in Figure 3-1.  
e) RESETInstruction  
f) Stack Full Reset  
PIC18C601/801 has a MCLR noise filter in the MCLR  
Reset path. The filter will detect and ignore small  
pulses.  
g) Stack Underflow Reset  
Most registers are unaffected by a RESET. Their status  
is unknown on POR and unchanged by all other  
RESETS. The other registers are forced to a RESET”  
state on Power-on Reset, MCLR, WDT Reset, MCLR  
Reset during SLEEP, and by the RESETinstruction.  
A WDT Reset does not drive MCLR pin low.  
FIGURE 3-1:  
SIMPLIFIED BLOCK DIAGRAM OF THE ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack Full/Underflow Reset  
External Reset  
Stack  
Pointer  
MCLR  
SLEEP  
WDT  
Time-out  
Reset  
WDT  
Module  
VDD Rise  
Detect  
Power-on Reset  
VDD  
S
OST/PWRT  
OST  
Chip_Reset  
10-bit Ripple Counter  
Q
R
OSC1  
PWRT  
On-chip  
10-bit Ripple Counter  
(1)  
RC OSC  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKI pin.  
2: See Table 3-1 for time-out situations.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 29  
PIC18C601/801  
3.1  
Power-on Reset (POR)  
3.3  
Oscillator Start-up Timer (OST)  
A Power-on Reset pulse is generated on-chip when a  
VDD rise is detected. To take advantage of the POR cir-  
cuitry, connect the MCLR pin directly (or through a  
resistor) to VDD. This will eliminate external RC compo-  
nents usually needed to create a Power-on Reset  
delay. A minimum rise rate for VDD is specified (param-  
eter D004). For a slow rise time, see Figure 3-2.  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter #32). This ensures that  
the crystal oscillator or resonator has started and  
stabilized.  
The OST time-out is invoked only for LP, HS and HS4  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
When the device starts normal operation (exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in RESET until the operating con-  
ditions are met. Power-on Reset may be used to meet  
the voltage start-up condition.  
3.4  
PLL Lock Time-out  
With the PLL enabled, the time-out sequence following  
a Power-on Reset is different from other oscillator  
modes. A portion of the Power-up Timer is used to pro-  
vide a fixed time-out that is sufficient for the PLL to lock  
to the main oscillator frequency. This PLL lock time-out  
(TPLL) is typically 1 ms and follows the oscillator start-  
up time-out (OST).  
FIGURE 3-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
3.5  
Time-out Sequence  
VDD  
On power-up, the time-out sequence is as follows:  
First, PWRT time-out is invoked after the POR time  
delay has expired; then, OST is activated. The total  
time-out will vary based on oscillator configuration and  
the status of the PWRT. For example, in RC mode with  
the PWRT disabled, there will be no time-out at all.  
Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and  
Figure 3-7 depict time-out sequences on power-up.  
D
R
R1  
MCLR  
PIC18C601/801  
C
Note 1: External Power-on Reset circuit is required only  
if the VDD power-up slope is too slow. The diode  
D helps discharge the capacitor quickly when  
VDD powers down.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire.  
Bringing MCLR high will begin execution immediately  
(Figure 3-5). This is useful for testing purposes or to  
synchronize more than one PIC18C601/801 device  
operating in parallel.  
2: R < 40 kis recommended to make sure that  
the voltage drop across R does not violate the  
devices electrical specification.  
3: R1 = 100to 1 kwill limit any current flowing  
into MCLR from external capacitor C, in the  
event of MCLR/VPP pin breakdown due to  
Electrostatic Discharge (ESD), or Electrical  
Overstress (EOS).  
Table 3-2 shows the RESET conditions for some  
Special Function Registers, while Table 3-3 shows the  
RESET conditions for all registers.  
3.2  
Power-up Timer (PWRT)  
The Power-up Timer provides a fixed nominal time-out  
(parameter #33), only on power-up from the POR. The  
Power-up Timer operates on an internal RC oscillator.  
The chip is kept in RESET as long as the PWRT is  
active. The PWRT time delay allows VDD to rise to an  
acceptable level. PIC18C601/801 devices are avail-  
able with PWRT enabled or disabled.  
The power-up time delay will vary from chip to chip, due  
to VDD, temperature and process variation. See DC  
parameter #33 for details.  
DS39541A-page 30  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 3-1:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2)  
Wake-up from  
SLEEP or  
Oscillator  
Configuration  
Oscillator Switch(1)  
PWRTEN = 0  
PWRTEN = 1  
HS with PLL enabled(1)  
72 ms + 1024TOSC  
72 ms + 1024TOSC  
72 ms  
1024TOSC  
1024TOSC  
1024TOSC + 1 ms  
HS, LP  
EC  
External RC  
1024TOSC  
72 ms  
Note 1: 1 ms is the nominal time required for the 4X PLL to lock. Maximum time is 2 ms.  
2: 72 ms is the nominal Power-up Timer delay.  
REGISTER 3-1:  
RCON REGISTER BITS AND POSITIONS  
R/W-0  
IPEN  
U-0  
r
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-1  
POR  
U-0  
r
bit 7  
bit 0  
TABLE 3-2:  
STATUS BITS, THEIR SIGNIFICANCE, AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
Program  
Counter  
RCON  
Register  
Condition  
RI TO PD  
POR STKFUL STKUNF  
00000h  
00000h  
0r-1 110r  
0r-u uuur  
1
u
1
u
1
u
0
u
u
u
u
u
Power-on Reset  
MCLR Reset during normal  
operation  
00000h  
00000h  
00000h  
0r-0 uuur  
0r-u uu1r  
0r-u uu1r  
0
u
u
u
u
u
u
u
u
u
1
1
u
u
1
u
1
u
Software Reset during normal  
operation  
Stack Full Reset during normal  
operation  
Stack Underflow Reset during normal  
operation  
00000h  
00000h  
PC + 2  
0r-u 10ur  
0r-u 01ur  
ur-u 00ur  
ur-u 00ur  
u
u
u
u
1
0
0
0
0
1
0
0
u
u
u
u
u
u
u
u
u
u
u
u
MCLR Reset during SLEEP  
WDT Reset  
WDT Wake-up  
Interrupt wake-up from SLEEP  
PC + 2(1)  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as '0', r= reserved, maintain 0’  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (000008h or 000018h).  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 31  
PIC18C601/801  
FIGURE 3-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
DS39541A-page 32  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 3-6:  
SLOW RISE TIME (MCLR TIED TO VDD)  
5V  
1V  
0V  
VDD  
MCLR  
INTERNAL POR  
TDEADTIME  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 3-7:  
TIME-OUT SEQUENCE ON POR W/ PLL ENABLED (MCLR TIED TO VDD)  
VDD  
MCLR  
IINTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
TPLL  
PLL TIME-OUT  
INTERNAL RESET  
TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 33  
PIC18C601/801  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Reset  
WDT Reset  
Reset Instruction  
Stack Over/Underflow Reset  
Applicable  
Devices  
Wake-up via WDT or  
Interrupt  
Register  
Power-on Reset  
TOSU  
TOSH  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 -1-1  
11-0 0-00  
(Note 5)  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 -1-1  
11-0 0-00  
(Note 5)  
---u uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
uu-u uuuu(3)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu -u-u(1)  
uu-u u-uu(1)  
(Note 5)  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
---- 0000  
xxxx xxxx  
xxxx xxxx  
(Note 5)  
---- 0000  
uuuu uuuu  
uuuu uuuu  
(Note 5)  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
(Note 5)  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
FSR1H  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
---- 0000  
xxxx xxxx  
---- 0000  
(Note 5)  
---- 0000  
uuuu uuuu  
---- 0000  
(Note 5)  
---- uuuu  
uuuu uuuu  
---- uuuu  
(Note 5)  
FSR1L  
BSR  
INDF2  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition,  
r= reserved, maintain 0’  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (00008h or 00018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH, and TOSL are  
updated with the current value of the PC. The SKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: This is not a physical register. It is an indirect pointer that addresses another register. The contents  
returned is the value contained in the addressed register.  
DS39541A-page 34  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
Applicable  
Devices  
Wake-up via WDT or  
Interrupt  
Power-on Reset  
Reset Instruction  
Stack Over/Underflow Reset  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
---- 0000  
xxxx xxxx  
---x xxxx  
xxxx xxxx  
xxxx xxxx  
1111 1111  
--00 0-00  
--00 0101  
---- 1111  
0r-1 11qr  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
xxxx xxxx  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
-000 0000  
0--- -000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
---- 0000  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
--uu u-u0  
--00 0101  
---- uuuu  
0r-1 qqur  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
-000 0000  
0--- -000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu u-uu  
--uu uuuu  
---- uuuu  
ur-u qqur  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
-uuu uuuu  
u--- -uuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition,  
r= reserved, maintain 0’  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (00008h or 00018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH, and TOSL are  
updated with the current value of the PC. The SKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: This is not a physical register. It is an indirect pointer that addresses another register. The contents  
returned is the value contained in the addressed register.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 35  
PIC18C601/801  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
Reset Instruction  
Stack Over/Underflow Reset  
Applicable  
Devices  
Wake-up via WDT or  
Interrupt  
Register  
Power-on Reset  
CCPR2H  
CCPR2L  
CCP2CON  
TMR3H  
TMR3L  
T3CON  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
IPR2  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 -01x  
0000 000x  
-1-- 1111  
-1-- 0000  
-1-- 0000  
1111 1111  
-111 1111  
0000 0000  
-000 0000  
0000 0000  
-000 0000  
0000 --00  
1111 1111  
1111 1111  
---1 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
--11 1111  
---x xxxx  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 -01u  
0000 000u  
-1-- 1111  
-1-- 0000  
-1-- 0000  
1111 1111  
-111 1111  
0000 0000  
-000 0000  
0000 0000  
-000 0000  
0000 --00  
1111 1111  
1111 1111  
---1 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
--11 1111  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
-u-- uuuu  
-u-- uuuu(1)  
-u-- uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu(1)  
-uuu uuuu(1)  
uuuu uuuu  
-uuu uuuu  
uuuu --uu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
MEMCON  
TRISJ  
TRISH  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
LATG  
LATF  
LATE  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition,  
r= reserved, maintain 0’  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (00008h or 00018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH, and TOSL are  
updated with the current value of the PC. The SKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: This is not a physical register. It is an indirect pointer that addresses another register. The contents  
returned is the value contained in the addressed register.  
DS39541A-page 36  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
Applicable  
Devices  
Wake-up via WDT or  
Interrupt  
Power-on Reset  
Reset Instruction  
Stack Over/Underflow Reset  
LATD  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
601  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
801  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
--xx xxxx  
xxxx xxxx  
0000 xxxx  
---x xxxx  
xxxx x000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
--0x 0000  
1111 1111  
1111 1111  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
0000 uuuu  
---u uuuu  
uuuu u000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--0u 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
LATC  
LATB  
LATA  
PORTJ  
PORTH  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
CSEL2  
CSELIO  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition,  
r= reserved, maintain 0’  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (00008h or 00018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH, and TOSL are  
updated with the current value of the PC. The SKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: This is not a physical register. It is an indirect pointer that addresses another register. The contents  
returned is the value contained in the addressed register.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 37  
PIC18C601/801  
NOTES:  
DS39541A-page 38  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
4.1.1  
BOOT RAMPROGRAM MEMORY  
4.0  
MEMORY ORGANIZATION  
PIC18C601/801 devices have a provision for configur-  
ing the last 512 bytes of general purpose user RAM as  
program memory, called Boot RAM. This is achieved  
by configuring the PGRM bit in the MEMCON register  
to 1. (Refer to Section 5.0, External Memory Inter-  
facefor more information.) When the PGRM bit is 1,  
the RAM located in data memory locations 400h  
through 5FFh (bank 4 through 5) is mapped to program  
memory locations 1FFE00h to 1FFFFFh.  
There are two memory blocks in PIC18C601/801  
devices. These memory blocks are:  
Program Memory  
Data Memory  
Each block has its own bus so that concurrent access  
can occur.  
4.1  
Program Memory Organization  
When configured as program memory, the Boot RAM is  
to be used as a temporary boot loaderfor program-  
ming purposes. It can only be used for program execu-  
tion. A read from locations 400h to 5FFh in data  
memory returns all 0s. Any attempt to write this RAM  
as data memory when PGRM = 1, does not modify any  
of these locations. TBLWT instructions to these loca-  
tions will cause writes to occur on the external memory  
bus. The boot RAM program memory cannot be modi-  
fied using TBLWTinstruction. TBLRDinstructions from  
boot RAM will read memory located on the external  
memory bus, not from the on-board RAM. Constants  
that are stored in boot RAM are retrieved using the  
RETLWinstruction.  
PIC18C601/801 devices have  
a 21-bit program  
counter that is capable of addressing up to 2 Mbyte of  
external program memory space. The PIC18C601 has  
an external program memory address space of 256  
Kbytes. Any program fetch or TBLRDfrom a program  
location greater than 256K will return all NOPs. The  
PIC18C801 has an external program memory address  
space of 2Mbytes. Refer to Section 5.0 (External  
Memory Interface) for additional details.  
The RESET vector address is mapped to 000000h and  
the interrupt vector addresses are at 000008h and  
000018h. PIC18C601/801 devices have a 31-level stack  
to store the program counter values during subroutine  
calls and interrupts. Figure 4-1 shows the program  
memory map and stack for PIC18C601. Figure 4-2  
shows the program memory map and stack for the  
PIC18C801.  
The default RESET state (power-up) for the PGRM bit  
is 0, which configures 1.5K of data RAM and all pro-  
gram memory as external. The PGRM bit can be set  
and cleared in the software.  
When execution takes place from Boot RAM, the  
external system bus and all of its control signals will be  
deactivated. If execution takes place from outside of  
Boot RAM, the external system bus and all of its con-  
trol signals are activated again.  
Figure 4-3 and Figure 4-4 show the program memory  
map and stack for PIC18C601 and PIC18C801, when  
the PGRM bit is set.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 39  
PIC18C601/801  
FIGURE 4-1:  
PROGRAM MEMORY MAP  
AND STACK FOR  
FIGURE 4-2:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18C601 (PGRM = 0)  
PIC18C801 (PGRM = 0)  
PC<20:0>  
PC<20:0>  
21  
21  
Stack Level 1  
Stack Level 1  
Stack Level 31  
RESET Vector  
Stack Level 31  
RESET Vector  
0000h  
0000h  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
0008h  
0018h  
0008h  
0018h  
External  
Program Memory  
External  
Program Memory  
3FFFFh  
40000h  
Read 0’  
1FFFFFh  
1FFFFFh  
DS39541A-page 40  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 4-3:  
PROGRAM MEMORY MAP AND STACK FOR PIC18C601 (PGRM = 1)  
PC<20:0>  
21  
Stack Level 1  
Stack Level 31  
0000h  
0008h  
RESET Vector  
High Priority Interrupt Vector  
Low Priority Interrupt Vector 0018h  
External  
Program Memory  
03FFFFh  
040000h  
Read 0’  
1FFDFFh  
1FFE00h  
1FFE00h  
1FFFFFh  
On-Chip  
Boot RAM  
1FFFFFh  
INTERNAL MEMORY  
EXTERNAL MEMORY  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 41  
PIC18C601/801  
FIGURE 4-4:  
PROGRAM MEMORY MAP AND STACK FOR PIC18C801 (PGRM = 1)  
PC<20:0>  
21  
Stack Level 1  
Stack Level 31  
0000h  
0008h  
RESET Vector  
High Priority Interrupt Vector  
Low Priority Interrupt Vector 0018h  
External  
Program Memory  
1FFDFFh  
1FFE00h  
1FFE00h  
1FFFFFh  
External  
Table Memory  
On-Chip  
Boot RAM  
1FFFFFh  
INTERNAL MEMORY  
EXTERNAL MEMORY  
DS39541A-page 42  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
4.1.2  
BOOT LOADER  
4.2.1  
TOP-OF-STACK ACCESS  
When configured as Program Memory, Boot RAM can  
be used as a temporary Boot Loaderfor programming  
purposes. If an external memory device is used as pro-  
gram memory, any updates performed by the user pro-  
gram will have to be performed in the Boot RAM,  
because the user program cannot program and fetch  
from external memory, simultaneously.  
The top of the stack is readable and writable. Three  
register locations, TOSU, TOSH and TOSL, allow  
access to the contents of the stack location indicated by  
the STKPTR register. This allows users to implement a  
software stack, if necessary. After a CALL, RCALLor  
interrupt, the software can read the pushed value by  
reading the TOSU, TOSH and TOSL registers. These  
values can be placed on a user defined software stack.  
At return time, the software can replace the TOSU,  
TOSH and TOSL and do a return.  
A typical boot loader execution and external memory  
programming sequence would be as follows:  
The boot loader program is transferred from the  
external program memory to the last 2 banks of  
data RAM by TBLRDand MOVWFinstructions.  
The user should disable the global interrupt enable bits  
during this time to prevent inadvertent stack operations.  
Once the boot loaderprogram is loaded into  
internal memory and verified, open combination  
lock and set PGRM bit to configure the data RAM  
into program RAM.  
4.2.2  
RETURN STACK POINTER  
(STKPTR)  
The STKPTR register contains the stack pointer value,  
the STKFUL (stack full) status bit, and the STKUNF  
(stack underflow) status bits. Register 4-1 shows the  
STKPTR register. The value of the stack pointer can be  
0 through 31. The stack pointer increments when val-  
ues are pushed onto the stack and decrements when  
values are popped off the stack. At RESET, the stack  
pointer value will be 0. The user may read and write the  
stack pointer value. This feature can be used by a Real  
Time Operating System for return stack maintenance.  
Jump to beginning of Boot code in Boot RAM.  
Program execution begins in Boot RAM to begin  
programming the external memory. System bus  
changes to an inactive state.  
Boot loader program performs the necessary  
external TBLWTand TBLWRDinstructions to  
perform programming functions.  
When the boot loader program is finished pro-  
gramming external memory, jump to known valid  
external program memory location and clear  
PGRM bit in MEMCON register to set Boot RAM  
as data memory, or reset the part.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit can only be cleared in software or  
by a POR. Any subsequent push operation that causes  
stack overflow will be ignored.  
4.2  
Return Address Stack  
The action that takes place when the stack becomes  
full, depends on the state of STVREN (stack overflow  
RESET enable) configuration bit in CONFIG4L regis-  
ter. Refer to Section 4.2.4 for more information. If  
STVREN is set (default), stack over/underflow will set  
the STKFUL bit, and reset the device. The STKFUL bit  
will remain set and the stack pointer will be set to 0.  
The return address stack allows any combination of up to  
31 program calls and interrupts to occur. The PC (Pro-  
gram Counter) is pushed onto the stack when a PUSH,  
CALLor RCALLinstruction is executed, or an interrupt is  
acknowledged. The PC value is pulled off the stack on a  
RETURN, RETLWor a RETFIEinstruction. PCLATU and  
PCLATH are not affected by any of the return instructions.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the stack pointer will increment to 31. All  
subsequent push attempts will be ignored and  
STKPTR remains at 31.  
The stack operates as a 31-word by 21-bit stack memory  
and a five-bit stack pointer, with the stack pointer initial-  
ized to 00000bafter all RESETS. There is no RAM asso-  
ciated with stack pointer 00000b. This is only a RESET  
value. During a CALL type instruction, causing a push  
onto the stack, the stack pointer is first incremented and  
the RAM location pointed to by the stack pointer is written  
with the contents of the PC. During a RETURN type  
instruction, causing a pop from the stack, the contents of  
the RAM location indicated by the STKPTR is transferred  
to the PC and then the stack pointer is decremented.  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit, while the stack  
pointer remains at 0. The STKUNF bit will remain set  
until cleared in software, or a POR occurs.  
Note: Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the RESET vector, where the  
stack conditions can be verified and appro-  
priate actions can be taken.  
The stack space is not part of either program or data  
space. The stack pointer is readable and writable, and  
the data on the top of the stack is readable and writable  
through SFR registers. Status bits STKOVF and  
STKUNF in STKPTR register, indicate whether stack  
over/underflow has occurred or not.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 43  
PIC18C601/801  
REGISTER 4-1:  
STKPTR - STACK POINTER REGISTER  
R/C-0  
STKFUL  
bit 7  
R/C-0  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
STKUNF  
bit 0  
bit 7  
bit 6  
bit 5  
STKFUL: Stack Full Flag bit  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit  
1= Stack underflow occurred  
0= Stack underflow did not occur  
Unimplemented: Read as '0'  
bit 4-0 SP4:SP0: Stack Pointer Location bits  
Note: Bit 7 and bit 6 can only be cleared in user software, or by a POR.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared C = Clearable bit  
1= Bit is set  
FIGURE 4-5:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack  
11111  
11110  
11101  
STKPTR<4:0>  
00010  
TOSU  
00h  
TOSH  
1Ah  
TOSL  
34h  
00011  
001A34h 00010  
000D58h 00001  
000000h 00000(1)  
Top-of-Stack  
Note 1: No RAM is associated with this address; always maintained 0s.  
DS39541A-page 44  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
4.2.3  
PUSH AND POP INSTRUCTIONS  
4.3  
Fast Register Stack  
Since the Top-of-Stack (TOS) is readable and writable,  
the ability to push values onto the stack and pop values  
off the stack, without disturbing normal program execu-  
tion, is a desirable option. To push the current PC value  
onto the stack, a PUSH instruction can be executed.  
This will increment the stack pointer and load the cur-  
rent PC value onto the stack. TOSU, TOSH and TOSL  
can then be modified to place a return address on the  
stack.  
A fast returnoption is available for interrupts and calls.  
A fast register stack is provided for the STATUS, WREG  
and BSR registers, and is only one layer in depth. The  
stack is not readable or writable and is loaded with the  
current value of the corresponding register when the  
processor vectors for an interrupt. The values in the fast  
register stack are then loaded back into the working reg-  
isters, if the fast returninstruction is used to return  
from the interrupt.  
The POPinstruction discards the current TOS by decre-  
menting the stack pointer. The previous value pushed  
onto the stack then becomes the TOS value.  
A low or high priority interrupt source will push values  
into the stack registers. If both low and high priority  
interrupts are enabled, the stack registers cannot be  
used reliably for low priority interrupts. If a high priority  
interrupt occurs while servicing a low priority interrupt,  
the stack register values stored by the low priority  
interrupt will be overwritten.  
4.2.4  
STACK FULL/UNDERFLOW RESETS  
These RESETS are enabled/disabled by programming  
the STVREN configuration bit in CONFIG4L register.  
If high priority interrupts are not disabled during low pri-  
ority interrupts, users must save the key registers in  
software during a low priority interrupt.  
When the STVREN bit is disabled, a full or underflow  
condition will set the appropriate STKFUL or STKUNF  
bit, but not cause a RESET. When the STVREN bit is  
enabled, a full or underflow will set the appropriate  
STKFUL or STKUNF bit and then cause a RESET. The  
STKFUL or STKUNF bits are only cleared by the user  
software or a POR.  
If no interrupts are used, the fast register stack can be  
used to restore the STATUS, WREG and BSR registers  
at the end of a subroutine call. To use the fast register  
stack for a subroutine call, a fast call instruction  
must be executed.  
Example 4-1 shows a source code example that uses  
the fast register stack.  
EXAMPLE 4-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
CALL SUB1, FAST  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
SUB1  
RETURN FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 45  
PIC18C601/801  
The contents of PCLATH and PCLATU will be trans-  
ferred to the program counter by an operation that  
writes PCL. Similarly, the upper two bytes of the pro-  
gram counter will be transferred to PCLATH and  
PCLATU by an operation that reads PCL. This is useful  
for computed offsets to the PC (See Section 4.8.1).  
4.4  
PCL, PCLATH and PCLATU  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21-bits  
wide. The low byte is called the PCL register. This reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<15:8>  
bits and is not directly readable or writable. Updates to  
the PCH register may be performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits and is not directly  
readable or writable. Updates to the PCU register may  
be performed through the PCLATU register.  
4.5  
Clocking Scheme/Instruction  
Cycle  
The clock input (from OSC1 or PLL output) is internally  
divided by four to generate four non-overlapping  
quadrature clocks, namely Q1, Q2, Q3 and Q4. Inter-  
nally, the program counter (PC) is incremented every  
Q1, the instruction is fetched from the program memory  
and latched into the instruction register in Q4. The  
instruction is decoded and executed during the follow-  
ing Q1 through Q4. The clocks and instruction execu-  
tion flow are shown in Figure 4-6.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the LSb of the PCL is fixed to a value of 0.  
The PC increments by 2 to address sequential instruc-  
tions in the program memory.  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
FIGURE 4-6:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
Phase  
Clock  
Q4  
PC  
PC  
PC+2  
PC+4  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-2)  
Fetch INST (PC+2)  
Execute INST (PC)  
Fetch INST (PC+4)  
Execute INST (PC+2)  
DS39541A-page 46  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
4.6  
Instruction Flow/Pipelining  
4.7  
Instructions in Program Memory  
An Instruction Cycleconsists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined, such that fetch takes one instruction cycle,  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
two cycles are required to complete the instruction  
(Example 4-2).  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte of an instruction  
word is always stored in a program memory location  
with an even address (LSB = 0). Figure 4-1 shows an  
example of how instruction words are stored in the pro-  
gram memory. To maintain alignment with instruction  
boundaries, the PC increments in steps of 2 and the  
LSB will always read 0(see Section 4.4).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
The CALLand GOTOinstructions have an absolute pro-  
gram memory address embedded into the instruction.  
Since instructions are always stored on word bound-  
aries, the data contained in the instruction is a word  
address. The word address is written to PC<20:1>,  
which accesses the desired byte address in program  
memory. Instruction #2 in Figure 4-1 shows how the  
instruction GOTO 0x06is encoded in the program  
memory. Program branch instructions that encode a  
relative address offset operate in the same manner.  
The offset value stored in a branch instruction repre-  
sents the number of single word instructions by which  
the PC will be offset. Section 20.0 provides further  
details of the instruction set.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register(IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
EXAMPLE 4-2:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction  
is flushedfrom the pipeline, while the new instruction is being fetched and then executed.  
TABLE 4-1:  
INSTRUCTIONS IN PROGRAM MEMORY  
Instruction  
Opcode  
Memory  
Address  
000007h  
000008h  
000009h  
00000Ah  
00000Bh  
00000Ch  
00000Dh  
00000Eh  
00000Fh  
000010h  
000011h  
000012h  
MOVLW 055h  
0E55h  
55h  
0Eh  
03h  
EFh  
00h  
F0h  
23h  
C1h  
56h  
F4h  
GOTO 000006h  
EF03h, F000h  
C123h, F456h  
MOVFF 123h, 456h  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 47  
PIC18C601/801  
The offset value (value in WREG) specifies the number  
of bytes that the program counter should advance.  
4.7.1  
TWO-WORD INSTRUCTIONS  
PIC18C601/801 devices have four two-word instruc-  
tions: MOVFF, CALL, GOTOand LFSR. The second  
word of these instructions has the four MSBs set to 1s  
and is a special kind of NOPinstruction. The lower 12  
bits of the second word contain data to be used by the  
instruction. If the first word of the instruction is exe-  
cuted, the data in the second word is accessed. If the  
second word of the instruction is executed by itself (first  
word was skipped), it will execute as a NOP. This action  
is necessary when the two-word instruction is preceded  
by a conditional instruction that changes the PC and  
skips one instruction. A program example that demon-  
strates this concept is shown in Example 4-3. Refer to  
Section 19.0 for further details of the instruction set.  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
Warning: The LSb of the PCL is fixed to a value of 0.  
Hence, computed GOTOto an odd address  
is not possible.  
4.8.2  
TABLE READS/TABLE WRITES  
A better method of storing data in program memory  
allows 2 bytes of data to be stored in each instruction  
location.  
Lookup table data may be stored as 2 bytes per pro-  
gram word by using table reads and writes. The table  
pointer (TBLPTR) specifies the byte address and the  
table latch (TABLAT) contains the data that is read  
from, or written to, program memory. Data is trans-  
ferred to/from program memory one byte at a time.  
4.8  
Lookup Tables  
Lookup tables are implemented two ways:  
Computed GOTO  
Table Reads  
A description of the Table Read/Table Write operation  
is shown in Section 6.0.  
4.8.1  
COMPUTED GOTO  
Note: If execution is taking place from Boot RAM  
Program Memory, RETLW instructions  
must be used to read lookup values from  
the Boot RAM itself.  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL).  
A lookup table can be formed with an ADDWF PCL  
instruction and a group of RETLW 0xnn instructions.  
WREG is loaded with an offset into the table, before exe-  
cuting a call to that table. The first instruction of the called  
routine is the ADDWF PCLinstruction. The next instruc-  
tion executed will be one of the RETLW 0xnn instruc-  
tions that returns the value 0xnnto the calling function.  
EXAMPLE 4-3:  
Two-Word Instructions  
CASE 1:  
Object Code  
Source Code  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
TSTFSZ  
MOVFF  
REG1  
; is RAM location 0?  
REG1, REG2 ; No, execute 2-word instruction  
; 2nd operand holds address of REG2  
ADDWF  
REG3  
; continue code  
CASE 2:  
Object Code  
Source Code  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
TSTFSZ  
MOVFF  
REG1  
; is RAM location 0?  
REG1, REG2 ; Yes  
; 2nd operand executed as NOP  
REG3 ; continue code  
ADDWF  
DS39541A-page 48  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
4.9.1  
GENERAL PURPOSE REGISTER  
FILE  
4.9  
Data Memory Organization  
The data memory is implemented as static RAM. Each  
register in the data memory has a 12-bit address, allow-  
ing up to 4096 bytes of data memory. Figure 4-8 shows  
the data memory organization for PIC18C601/801  
devices.  
The register file can be accessed either directly or indi-  
rectly. Indirect addressing operates through the File  
Select Registers (FSR). The operation of indirect  
addressing is shown in Section 4.12.  
The data memory map is divided into banks that con-  
tain 256 bytes each. The lower four bits of the Bank  
Select Register (BSR<3:0>) select which bank will be  
accessed. The upper 4 bits for the BSR are not imple-  
mented.  
PIC18C601/801 devices have banked memory in the  
GPR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other RESETS.  
Data RAM is available for use as GPR registers by all  
instructions. Bank 15 (0F80h to 0FFFh) contains  
SFRs. All other banks of data memory contain GPR  
registers starting with bank 0.  
The data memory contains Special Function Registers  
(SFR) and General Purpose Registers (GPR). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratch pad operations in the users appli-  
cation. The SFRs start at the last location of Bank 15  
(0FFFh) and grow downwards. GPRs start at the first  
location of Bank 0 and grow upwards. Any read of an  
unimplemented location will read as 0s.  
4.9.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and Peripheral Modules for control-  
ling the desired operation of the device. These regis-  
ters are implemented as static RAM. A list of these  
registers is given in Table 4-2.  
GPR banks 4 and 5 serve as a Program Memory called  
Boot RAM, when PGRM bit in MEMCON is set. When  
PGRM bit is set, any read from Boot RAMreturns 0s,  
while any write to it is ignored.  
The SFRs can be classified into two sets: those asso-  
ciated with the corefunction and those related to the  
peripheral functions. Those registers related to the  
coreare described in this section, while those related  
to the operation of the peripheral features are  
described in the section of that peripheral feature.  
The entire data memory may be accessed directly or  
indirectly. Direct addressing may require the use of the  
BSR register. Indirect addressing requires the use of a  
File Select Register (FSR). Each FSR holds a 12-bit  
address value that can be used to access any location  
in the Data Memory map without banking.  
The SFRs are typically distributed among the peripher-  
als whose functions they control.  
The unused SFR locations are unimplemented and  
read as '0's. See Table 4-2 for addresses for the SFRs.  
The instruction set and architecture allow operations  
across all banks. This may be accomplished by indirect  
addressing, or by the use of the MOVFFinstruction. The  
MOVFF instruction is a two-word/two-cycle instruction  
that moves a value from one register to another.  
4.9.3  
SECURED ACCESS REGISTERS  
PIC18C601/801 devices contain software program-  
ming options for safety critical peripherals. Because  
these safety critical peripherals can be programmed in  
software, registers used to control these peripherals  
are given limited access by the user code. This way,  
errant code will not accidentally change settings in  
peripherals that could cause catastrophic results.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle,  
regardless of the current BSR values, an Access Bank  
is implemented. A segment of Bank 0 and a segment of  
Bank 15 comprise the Access bank. Section 4.10 pro-  
vides a detailed description of the Access bank.  
The registers that are considered safety critical are the  
Watchdog Timer register (WDTCON), the External  
Memory Control register (MEMCON), the Oscillator  
Control register (OSCCON) and the Chip Select regis-  
ters (CSSEL2 and CSELIO).  
Two bits called Combination Lock (CMLK) bits, located  
in the lower two bits of the PSPCON register, must be  
set in sequence by user code to gain access to  
Secured Access registers.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 49  
PIC18C601/801  
REGISTER 4-2:  
PSPCON REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
W-0  
W-0  
CMLK1  
CMLK0  
bit 7  
bit 0  
bit 7-2  
bit 1-0  
Unimplemented: Read as '0'  
CMLK<1:0>: Combination Lock bits  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
The Combination Lock bits must be set sequentially,  
meaning that as soon as Combination Lock bit CMLK1  
is set, the second Combination Lock bit CMLK0 must be  
set on the following instruction cycle. If user waits more  
than one machine cycle to set the second bit after set-  
ting the first, both bits will automatically be cleared in  
hardware and the lock will remain closed. To satisfy this  
condition, all interrupts must be disabled before attempt-  
ing to unlock the Combination Lock. Once secured reg-  
isters are modified, interrupts may be re-enabled.  
When the Combination Lock is opened, the user will  
have three instruction cycles to modify the safety criti-  
cal register of choice. After three instruction cycles  
have expired, the CMLK bits are cleared, the lock will  
close and the user will have to set the CMLK bits again,  
in order to open the lock. Since there are only three  
instruction cycles allowed after the Combination Lock is  
opened, if a subroutine is used to unlock Combination  
Lock bits, user code must preload WREG with the  
desired value, call unlock subroutine, and write to the  
desired safety critical register itself.  
Each instruction must only modify one combination lock  
bit at a time. This means, user code must use the BSF  
instruction to set CMLK bits in the PSPCON register.  
Note: Successive attempts to unlock the Combi-  
nation Lock must be separated by at least  
three instruction cycles.  
Note: The Combination Lock bits are write-only  
bits. These bits will always return 0when  
read.  
EXAMPLE 4-4:  
COMBINATION UNLOCK SUBROUTINE EXAMPLE CODE  
MOVLW 5Ah  
BCF INTCON, GIE  
CALL UNLOCK  
; Preload WREG with data to be stored in a safety critical register  
; Disable all interrupts  
; Now unlock it  
; Write must take place in next instruction cycle  
MOVWF OSCCON  
; Lock is closed  
BSF INTCON, GIE  
; Re-enable interrupts  
UNLOCK  
BSF PSPCON, CMLK1  
BSF PSPCON, CMLK0  
RETURN  
DS39541A-page 50  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
EXAMPLE 4-5:  
COMBINATION UNLOCK MACRO EXAMPLE CODE  
UNLOCK_N_MODIFY @REG  
MACRO  
BCF INTCON, GIE  
BSF PSPCON, CMLK1  
BSF PSPCON, CMLK0  
MOVWF @REG  
BSF INTCON, GIE  
ENDM  
; Disable interrupts  
; Modify given register  
; Enable interrupts  
MOVLW 5Ah  
UNLOCK_N_MODIFY OSCCON  
; Preload WREG for OSCCON register  
; Modify OSCCON  
FIGURE 4-7:  
THE DATA MEMORY MAP FOR PIC18C801/601 (PGRM = 0)  
BSR<3:0>  
Data Memory Map  
000h  
07Fh  
080h  
0FFh  
100h  
00h  
Access GPRs  
= 0000b  
Bank 0  
GPR  
FFh  
00h  
= 0001b  
= 0010b  
GPR  
GPR  
Bank 1  
Bank 2  
Bank 3  
1FFh  
200h  
FFh  
00h  
2FFh  
300h  
FFh  
00h  
= 0011b  
GPR  
GPR  
FFh  
00h  
3FFh  
400h  
= 0100b  
= 0101b  
Bank 4  
Bank 5  
Access RAM Bank  
4FFh  
500h  
FFh  
00h  
00h  
Access Bank Low  
(GPRs)  
7Fh  
80h  
GPR  
Access Bank High  
FFh  
5FFh  
(SFRs)  
FFh  
= 0110b  
= 1110b  
When a = 0,  
Bank 6  
to  
Bank 14  
Unused  
the BSR is ignored and this  
Access RAM bank is used.  
The first 128 bytes are General  
Purpose RAM (from Bank 0).  
The next 128 bytes are Special  
Function Registers (from  
Bank 15).  
Read 00h’  
EFFh  
F00h  
F7Fh  
F80h  
FFFh  
00h  
FFh  
Unused  
= 1111b  
Bank 15  
Access SFRs  
When a = 1,  
the BSR is used to specify  
the RAM location that the  
instruction uses.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 51  
PIC18C601/801  
FIGURE 4-8:  
DATA MEMORY MAP FOR PIC18C601/801 (PGRM = 1)  
BSR<3:0>  
Data Memory Map  
000h  
07Fh  
080h  
0FFh  
00h  
Access GPRs  
= 0000b  
Bank 0  
GPR  
FFh  
00h  
100h  
= 0001b  
= 0010b  
GPR  
GPR  
Bank 1  
Bank 2  
Bank 3  
1FFh  
200h  
FFh  
00h  
2FFh  
300h  
FFh  
00h  
= 0011b  
GPR  
FFh  
3FFh  
Access RAM Bank  
00h  
Access Bank Low  
(GPRs)  
Access Bank High  
7Fh  
80h  
(SFRs)  
FFh  
= 0100b  
= 1110b  
Bank 4  
to  
Bank 14  
Unused  
Read 00h’  
When a = 0,  
the BSR is ignored and this  
Access RAM bank is used.  
The first 128 bytes are General  
Purpose RAM (from Bank 0).  
The next 128 bytes are Special  
Function Registers (from  
Bank 15).  
EFFh  
F00h  
F7Fh  
F80h  
FFFh  
00h  
FFh  
Unused  
= 1111b  
Bank 15  
Access SFRs  
When a = 1,  
the BSR is used to specify  
the RAM location that the  
instruction uses.  
DS39541A-page 52  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 4-9:  
SPECIAL FUNCTION REGISTER MAP  
FFFh  
FFEh  
FFDh  
FFCh  
FFBh  
FFAh  
FF9h  
FF8h  
FF7h  
FF6h  
FF5h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
FEEh  
FEDh  
FECh  
FEBh  
FEAh  
FE9h  
FE8h  
FE7h  
FE6h  
FE5h  
FE4h  
FE3h  
FE2h  
FE1h  
FE0h  
TOSU  
TOSH  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0 FCEh  
POSTDEC0 FCDh  
PREINC0  
PLUSW0  
FSR0H  
FSR0L  
FDFh  
FDEh  
FDDh  
FDCh  
FDBh  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FD3h  
FD2h  
FD1h  
FD0h  
FCFh  
INDF2  
POSTINC2 FBEh  
POSTDEC2 FBDh  
PREINC2  
PLUSW2  
FSR2H  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
Reserved  
OSCCON  
LVDCON  
WDTCON  
RCON  
TMR1H  
TMR1L  
T1CON  
TMR2  
FBFh  
CCPR1H  
CCPR1L  
CCP1CON F9Dh  
CCPR2H  
CCPR2L  
CCP2CON F9Ah  
Reserved  
Reserved  
Reserved  
F9Fh  
F9Eh  
IPR1  
PIR1  
PIE1  
MEMCON  
TRISJ  
TRISH  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
LATJ  
LATH  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA  
FBCh  
FBBh  
FBAh  
FB9h  
FB8h  
FB7h  
FB6h  
FB5h  
FB4h  
FB3h  
FB2h  
FB1h  
FB0h  
FAFh  
FAEh  
FADh  
FACh  
FABh  
FAAh  
FA9h  
FA8h  
FA7h  
FA6h  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
F9Ch  
F9Bh  
F99h  
F98h  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
F88h  
F87h  
F86h  
F85h  
F84h  
F83h  
F82h  
F81h  
F80h  
TMR3H  
TMR3L  
T3CON  
PSPCON  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
CSEL2  
CSELIO  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FC7h  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
WREG  
INDF1  
POSTINC1 FC6h  
POSTDEC1 FC5h  
PREINC1  
PLUSW1  
FSR1H  
FSR1L  
BSR  
PORTJ  
PORTH  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
IPR2  
PIR2  
PIE2  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 53  
PIC18C601/801  
TABLE 4-2:  
REGISTER FILE SUMMARY - PIC18C601/801  
Value on  
all other  
Value on  
POR  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RESETS(1)  
FFFh TOSU  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000 ---0 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
00-0 0000 00-0 0000  
---0 0000 ---0 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
FFEh TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
FFDh TOSL  
FFCh STKPTR  
FFBh PCLATU  
FFAh PCLATH  
FF9h PCL  
STKOVF  
STKUNF  
Return Stack Pointer  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
FF8h TBLPTRU  
FF7h TBLPTRH  
FF6h TBLPTRL  
FF5h TABLAT  
FF4h PRODH  
FF3h PRODL  
FF2h INTCON  
FF1h INTCON2  
FF0h INTCON3  
FEFh INDF0  
r
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>) --r0 0000 --r0 0000  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 000x 0000 000u  
1111 -1-1 1111 -1-1  
11-0 0-00 11-0 0-00  
Product Register High Byte  
Product Register Low Byte  
GIE/GIEH PEIE/GIEL  
TMR0IE  
INTEDG1  
INT0E  
INTEDG2  
INT2E  
RBIE  
TMR0IF  
T0IP  
INT0F  
RBIF  
RBIP  
INT1F  
RBPU  
INT2P  
INTEDG0  
INT1P  
INT1E  
INT2F  
Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical register)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
FEEh POSTINC0 Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register)  
FEDh POSTDEC0 Uses contents of FSR0 to address data memory - value of FSR0 post-decremented  
(not a physical register)  
FECh PREINC0  
Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented  
(not a physical register)  
N/A  
N/A  
N/A  
N/A  
FEBh PLUSW0  
Uses contents of FSR0 to address data memory -value of FSR0 offset by WREG  
(not a physical register)  
FEAh FSR0H  
FE9h FSR0L  
FE8h WREG  
FE7h INDF1  
Indirect Data Memory Address Pointer 0 High  
---- xxxx ---- uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
Uses contents of FSR1 to address data memory - value of FSR1 not changed (not a physical register)  
N/A  
N/A  
N/A  
N/A  
FE6h POSTINC1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented  
(not a physical register)  
FE5h POSTDEC1 Uses contents of FSR1 to address data memory - value of FSR1 post-decremented  
(not a physical register)  
N/A  
N/A  
FE4h PREINC1  
FE3h PLUSW1  
FE2h FSR1H  
FE1h FSR1L  
FE0h BSR  
Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register)  
Uses contents of FSR1 to address data memory - value of FSR1 offset by WREG (not a physical register)  
N/A  
N/A  
N/A  
N/A  
Indirect Data Memory Address Pointer 1 High  
---- xxxx ---- uuuu  
xxxx xxxx uuuu uuuu  
---- 0000 ---- 0000  
Indirect Data Memory Address Pointer 1 Low Byte  
Bank Select Register  
FDFh INDF2  
Uses contents of FSR2 to address data memory - value of FSR2 not changed (not a physical register)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
FDEh POSTINC2 Uses contents of FSR2 to address data memory - value of FSR2 post-incremented (not a physical register)  
FDDh POSTDEC2 Uses contents of FSR2 to address data memory - value of FSR2 post-decremented  
(not a physical register)  
FDCh PREINC2  
FDBh PLUSW2  
FDAh FSR2H  
FD9h FSR2L  
FD8h STATUS  
Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register)  
Uses contents of FSR2 to address data memory -value of FSR2 offset by WREG (not a physical register)  
N/A  
N/A  
N/A  
N/A  
Indirect Data Memory Address Pointer 2 High  
---- xxxx ---- uuuu  
xxxx xxxx uuuu uuuu  
---x xxxx ---u uuuu  
Indirect Data Memory Address Pointer 2 Low Byte  
N
OV  
Z
DC  
C
Legend  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition, r= reserved  
Note 1: Other (non-power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.  
2: These registers can only be modified when the Combination Lock is open.  
3: These registers are available on PIC18C801 only.  
DS39541A-page 54  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 4-2:  
REGISTER FILE SUMMARY - PIC18C601/801 (CONTINUED)  
Value on  
all other  
Value on  
POR  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RESETS(1)  
FD7h TMR0H  
FD6h TMR0L  
FD5h T0CON  
FD4h Reserved  
FD3h OSCCON(2)  
FD2h LVDCON(2)  
FD1h WDTCON(2)  
FD0h RCON  
FCFh TMR1H  
FCEh TMR1L  
FCDh T1CON  
FCCh TMR2  
Timer0 Register High Byte  
Timer0 Register Low Byte  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
rrrr rrrr rrrr rrrr  
---- 0000 ---- uuu0  
--00 0101 --00 0101  
TMR0ON  
16BIT  
T0CS  
T0SE  
T0PS3  
T0PS2  
T0PS1  
T0PS0  
r
IRVST  
LVDEN  
LOCK  
LVV3  
PLLEN  
LVV2  
SCS1  
LVV1  
SCS0  
LVV0  
WDPS2  
TO  
WDPS1  
PD  
WDPS0  
POR  
SWDTEN ---- 0000 ---- xxxx  
IPEN  
RI  
r
00-1 11qq 00-q qquu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Timer1 Register High Byte  
Timer1 Register Low Byte  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
0000 0000 0000 0000  
Timer2 Register  
FCBh PR2  
Timer2 Period Register  
TOUTPS3  
1111 1111 1111 1111  
FCAh T2CON  
FC9h SSPBUF  
FC8h SSPADD  
FC7h SSPSTAT  
FC6h SSPCON1  
FC5h SSPCON2  
FC4h ADRESH  
FC3h ADRESL  
FC2h ADCON0  
FC1h ADCON1  
FC0h ADCON2  
FBFh CCPR1H  
FBEh CCPR1L  
FBDh CCP1CON  
FBCh CCPR2H  
FBBh CCPR2L  
FBAh CCP2CON  
FB9h Reserved  
FB8h Reserved  
FB7h Reserved  
FB6h  
TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
SSP Receive Buffer/Transmit Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
SSP Address Register in I2C Slave Mode. SSP Baud Rate Reload Register in I2C Master Mode  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
SSPOV  
ACKSTAT  
SSPEN  
ACKDT  
CKP  
SSPM3  
RCEN  
SSPM1  
RSEN  
SSPM0 0000 0000 0000 0000  
ACKEN  
SEN  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --00 0000  
A/D Result Register High Byte  
A/D Result Register Low Byte  
CHS3  
VCFG1  
CHS2  
VCFG0  
CHS1  
PCFG3  
CHS0  
PCFG2  
ADCS2  
GO/DONE  
PCFG1  
ADON  
PCFG0 --00 0000 --00 0000  
ADCS0 0--- -000 0--- -000  
xxxx xxxx uuuu uuuu  
ADFM  
ADCS1  
Capture/Compare/PWM Register1 High Byte  
Capture/Compare/PWM Register1 Low Byte  
xxxx xxxx uuuu uuuu  
DC1B1  
DC1B0  
CCP1M3  
CCP2M3  
CCP1M2  
CCP2M2  
CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
Capture/Compare/PWM Register2 High Byte  
Capture/Compare/PWM Register2 Low Byte  
xxxx xxxx uuuu uuuu  
DC2B1  
DC2B0  
CCP2M1 CCP2M0 --00 0000 --uu uuuu  
rrrr rrrr rrrr rrrr  
rrrr rrrr rrrr rrrr  
rrrr rrrr rrrr rrrr  
FB5h  
FB4h  
FB3h TMR3H  
FB2h TMR3L  
FB1h T3CON  
Timer3 Register High Byte  
Timer3 Register Low Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T3CCP2  
T3CKPS1 T3CKPS0 T3CCP1  
T3SYNC  
TMR3CS TMR3ON 0000 0000 uuuu uuuu  
Legend  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition, r= reserved  
Note 1: Other (non-power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.  
2: These registers can only be modified when the Combination Lock is open.  
3: These registers are available on PIC18C801 only.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 55  
PIC18C601/801  
TABLE 4-2:  
REGISTER FILE SUMMARY - PIC18C601/801 (CONTINUED)  
Value on  
all other  
Value on  
POR  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RESETS(1)  
FB0h PSPCON  
FAFh SPBRG  
FAEh RCREG  
FADh TXREG  
FACh TXSTA  
FABh RCSTA  
FAAh  
CMLK1  
CMLK0 ---- --00 ---- --00  
0000 0000 0000 0000  
USART Baud Rate Generator  
USART Receive Register  
USART Transmit Register  
0000 0000 0000 0000  
0000 0000 0000 0000  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
0000 -010 0000 -010  
0000 000x 0000 000x  
ADEN  
FA9h  
FA8h  
FA7h CSEL2(2)  
FA6h CSELIO(2)  
FA5h  
CSL7  
CSL6  
CSL5  
CSL4  
CSL3  
CSL2  
CSL1  
CSL0  
1111 1111 uuuu uuuu  
1111 1111 uuuu uuuu  
CSIO7  
CSIO6  
CSIO5  
CSIO4  
CSIO3  
CSIO2  
CSIO1  
CSIO0  
FA4h  
FA3h  
FA2h IPR2  
FA1h PIR2  
FA0h PIE2  
F9Fh IPR1  
F9Eh PIR1  
F9Dh PIE1  
F9Ch MEMCON(2)  
F9Bh  
BCLIP  
BCLIF  
BCLIE  
SSPIP  
SSPIF  
SSPIE  
LVDIP  
LVDIF  
LVDIE  
CCP1IP  
CCP1IF  
CCP1IE  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
WM1  
CCP2IP ---- 1111 ---- 1111  
CCP2IF ---- 0000 ---- 0000  
CCP2IE ---- 0000 ---- 0000  
TMR1IP -111 1111 -111 1111  
TMR1IF -000 0000 -000 0000  
TMR1IE -000 0000 -000 0000  
ADIP  
ADIF  
ADIE  
PGRM  
RCIP  
RCIF  
RCIE  
WAIT1  
TXIP  
TXIF  
TXIE  
WAIT0  
EBDIS  
WM0  
0000 --00 0000 --00  
F9Ah TRISJ(3)  
Data Direction Control Register for PORTJ  
Data Direction Control Register for PORTH  
1111 1111 1111 1111  
1111 1111 1111 1111  
---1 1111 ---1 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
--11 1111 --11 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
---x xxxx ---u uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--xx xxxx --uu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
---x xxxx ---u uuuu  
xxxx xx00 uuuu uu00  
F99h  
F98h  
F96h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
TRISH(3)  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
LATJ(3)  
LATH(3)  
Read PORTG Data Latch, Write PORTG Data Latch  
Read PORTF Data Latch, Write PORTF Data Latch  
Data Direction Control Register for PORTE  
Data Direction Control Register for PORTD  
Data Direction Control Register for PORTC  
Data Direction Control Register for PORTB  
Data Direction Control Register for PORTA  
Read PORTJ Data Latch, Write PORTJ Data Latch  
Read PORTH Data Latch, Write PORTH Data Latch  
F8Fh LATG  
F8Eh LATF  
F8Dh LATE  
F8Ch LATD  
F8Bh LATC  
F8Ah LATB  
Read PORTG Data Latch, Write PORTG Data Latch  
Read PORTF Data Latch, Write PORTF Data Latch  
Read PORTE Data Latch, Write PORTE Data Latch  
Read PORTD Data Latch, Write PORTD Data Latch  
Read PORTC Data Latch, Write PORTC Data Latch  
Read PORTB Data Latch, Write PORTB Data Latch  
F89h  
F88h  
F87h  
F86h  
LATA  
Read PORTA Data Latch, Write PORTA Data Latch  
PORTJ(3)  
PORTH(3)  
PORTG  
PORTF  
Read PORTJ Pins, Write PORTJ Data Latch  
Read PORTH pins, Write PORTH Data Latch  
Read PORTG pins, Write PORTG Data Latch  
F85h  
Read PORTF pins, Write PORTF Data Latch  
Legend  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition, r= reserved  
Note 1: Other (non-power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.  
2: These registers can only be modified when the Combination Lock is open.  
3: These registers are available on PIC18C801 only.  
DS39541A-page 56  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 4-2:  
REGISTER FILE SUMMARY - PIC18C601/801 (CONTINUED)  
Value on  
all other  
Value on  
POR  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RESETS(1)  
F84h  
F83h  
F82h  
F81h  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
Read PORTE Pins, Write PORTE Data Latch  
Read PORTD pins, Write PORTD Data Latch  
Read PORTC pins, Write PORTC Data Latch  
Read PORTB pins, Write PORTB Data Latch  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--0x 0000 --0u 0000  
F80h  
Read PORTA pins, Write PORTA Data Latch  
Legend  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition, r= reserved  
Note 1: Other (non-power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.  
2: These registers can only be modified when the Combination Lock is open.  
3: These registers are available on PIC18C801 only.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 57  
PIC18C601/801  
4.10 Access Bank  
4.11 Bank Select Register (BSR)  
The Access Bank is an architectural enhancement that  
is very useful for C compiler code optimization. The  
techniques used by the C compiler are also useful for  
programs written in assembly.  
The need for a large general purpose memory space  
dictates a RAM banking scheme. When using direct  
addressing, the BSR should be configured for the  
desired bank.  
This data memory region can be used for:  
BSR<3:0> holds the upper 4 bits of the 12-bit RAM  
address. The BSR<7:4> bits will always read 0s, and  
writes will have no effect.  
Intermediate computational values  
Local variables of subroutines  
Faster context saving/switching of variables  
Common variables  
A MOVLBinstruction has been provided in the instruc-  
tion set to assist in selecting banks.  
Faster evaluation/control of SFRs (no banking)  
If the currently selected bank is not implemented, any  
read will return all '0's and all writes are ignored. The  
STATUS register bits will be set/cleared as appropriate  
for the instruction performed.  
The Access Bank is comprised of the upper 128 bytes  
in Bank 15 (SFRs) and the lower 128 bytes in Bank 0.  
These two sections will be referred to as Access Bank  
High and Access Bank Low, respectively. Figure 4-8  
indicates the Access Bank areas.  
Each Bank extends up to 0FFh (256 bytes). All data  
memory is implemented as static RAM.  
A bit in the instruction word specifies if the operation is  
to occur in the bank specified by the BSR register, or in  
the Access Bank.  
A MOVFFinstruction ignores the BSR, since the 12-bit  
addresses are embedded into the instruction word.  
Section 4.12 provides a description of indirect address-  
ing, which allows linear addressing of the entire RAM  
space.  
When forced in the Access Bank (a = 0), the last  
address in Access Bank Low is followed by the first  
address in Access Bank High. Access Bank High maps  
all Special Function Registers so that these registers  
can be accessed without any software overhead.  
FIGURE 4-10:  
DIRECT ADDRESSING  
Direct Addressing  
(3)  
from opcode  
BSR<3:0>  
7
0
(2)  
(3)  
bank select  
location select  
00h  
000h  
01h  
100h  
0Eh  
E00h  
0Fh  
F00h  
Data  
Memory  
(1)  
0FFh  
1FFh  
Bank 1  
EFFh  
FFFh  
Bank 0  
Bank 14  
Bank 15  
Note 1: For register file map detail, see Table 4-2.  
2: The access bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to the  
registers of the Access Bank.  
3: The MOVFFinstruction embeds the entire 12-bit address in the instruction.  
DS39541A-page 58  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
If INDF0, INDF1, or INDF2 are read indirectly via an  
FSR, all 0s are read (zero bit is set). Similarly, if  
INDF0, INDF1, or INDF2 are written to indirectly, the  
operation will be equivalent to a NOPinstruction and the  
STATUS bits are not affected.  
4.12 Indirect Addressing, INDF and  
FSR Registers  
Indirect addressing is a mode of addressing data mem-  
ory, where the data memory address in the instruction  
is not fixed. A SFR register is used as a pointer to the  
data memory location that is to be read or written. Since  
this pointer is in RAM, the contents can be modified by  
the program. This can be useful for data tables in the  
data memory and for software stacks. Figure 4-11  
shows the operation of indirect addressing. This shows  
the moving of the value to the data memory address  
specified by the value of the FSR register.  
4.12.1  
INDIRECT ADDRESSING  
OPERATION  
Each FSR register has an INDF register associated  
with it, plus four additional register addresses. Perform-  
ing an operation on one of these five registers deter-  
mines how the FSR will be modified during indirect  
addressing.  
Indirect addressing is possible by using one of the  
INDFn (0 n 2) registers. Any instruction using the  
INDFn register actually accesses the register indicated  
by the File Select Register, FSRn (0 n 2). Reading  
the INDFn register itself indirectly (FSRn = 0), will read  
00h. Writing to the INDFn register indirectly, results in a  
no-operation. The FSRn register contains a 12-bit  
address, which is shown in Figure 4-11.  
When data access is done to one of the five INDFn  
locations, the address selected will configure the FSRn  
register to:  
Do nothing to FSRn after an indirect access (no  
change) - INDFn  
Auto-decrement FSRn after an indirect access  
(post-decrement) - POSTDECn  
Example 4-6 shows a simple use of indirect addressing  
to clear the RAM in Bank 1 (locations 100h-1FFh) in a  
minimum number of instructions.  
Auto-increment FSRn after an indirect access  
(post-increment) - POSTINCn  
Auto-increment FSRn before an indirect access  
(pre-increment) - PREINCn  
EXAMPLE 4-6:  
HOW TO CLEAR RAM  
(BANK 1) USING  
INDIRECT ADDRESSING  
Use the value in the WREG register as an offset  
to FSRn. Do not modify the value of the WREG or  
the FSRn register after an indirect access (no  
change) - PLUSWn  
LFSR FSR0, 100h  
;
When using the auto-increment or auto-decrement fea-  
tures, the effect on the FSR is not reflected in the  
STATUS register. For example, if the indirect address  
causes the FSR to equal '0', the Z bit will not be set.  
NEXTCLRF POSTINC0  
; Clear INDF  
; register  
; & inc pointer  
; All done  
; with Bank1?  
; NO, clear next  
BTFSS FSR0H, 1  
Incrementing or decrementing an FSR affects all 12  
bits. That is, when FSRnL overflows from an increment,  
FSRnH will be incremented automatically.  
BRA  
CONTINUE;  
:
NEXT  
; YES, continue  
Adding these features allows the FSRn to be used as a  
software stack pointer, in addition to its uses for table  
operations in data memory.  
There are three indirect addressing registers. To  
address the entire data memory space (4096 bytes),  
these registers are 12-bit wide. To store the 12-bits of  
addressing information, two 8-bit registers are  
required. These indirect addressing registers are:  
Each FSR has an address associated with it that per-  
forms an indexed indirect access. When a data access  
to this INDFn location (PLUSWn) occurs, the FSRn is  
configured to add the 2s complement value in the  
WREG register and the value in FSR to form the  
address before an indirect access. The FSR value is  
not changed.  
1. FSR0: composed of FSR0H:FSR0L  
2. FSR1: composed of FSR1H:FSR1L  
3. FSR2: composed of FSR2H:FSR2L  
If an indirect addressing operation is done where the  
target address is an FSRnH or FSRnL register, the  
write operation will dominate over the pre- or post-  
increment/decrement functions.  
In addition, there are registers INDF0, INDF1 and  
INDF2, which are not physically implemented. Reading  
or writing to these registers activates indirect address-  
ing, with the value in the corresponding FSR register  
being the address of the data.  
If an instruction writes a value to INDF0, the value will  
be written to the address indicated by FSR0H:FSR0L.  
A read from INDF1 reads the data from the address  
indicated by FSR1H:FSR1L. INDFn can be used in  
code anywhere an operand can be used.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 59  
PIC18C601/801  
FIGURE 4-11:  
INDIRECT ADDRESSING  
Indirect Addressing  
FSR Register  
7
11  
8
0
FSRnH  
FSRnL  
Location Select  
0000h  
Data  
Memory  
(1)  
0FFFh  
Note 1: For register file map detail, see Table 4-2.  
DS39541A-page 60  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
For example, CLRF STATUSwill clear all implemented  
bits and set the Z bit. This leaves the STATUS register  
as ---0 0100(where - = unimplemented).  
4.13 STATUS Register  
The STATUS register, shown in Register 4-3, contains  
the arithmetic status of the ALU. The STATUS register  
can be the destination for any instruction, as with any  
other register. If the STATUS register is the destination  
for an instruction that affects the Z, DC, C, OV, or N bits,  
then the write to these five bits is disabled. These bits  
are set or cleared according to the device logic. There-  
fore, the result of an instruction with the STATUS regis-  
ter as destination may be different than intended.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF, MOVFF and MOVWF instructions are used to  
alter the STATUS register, because these instructions  
do not affect the Z, C, DC, OV, or N bits from the  
STATUS register. For other instructions which do not  
affect the status bits, see Table 20-2.  
Note: The C and DC bits operate as a borrow and  
digit borrow bit respectively, in subtraction.  
REGISTER 4-3:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
N
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7-5 Unimplemented: Read as '0'  
bit 4  
bit 3  
N: Negative bit  
This bit is used for signed arithmetic (2s complement). It indicates whether the result of the ALU  
operation was negative (ALU MSb = 1).  
1= Result was negative  
0= Result was positive  
OV: Overflow bit  
This bit is used for signed arithmetic (2s complement). It indicates an overflow of the 7-bit  
magnitude, which causes the sign bit (bit 7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit  
For arithmetic addition and subtraction instructions  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
Note: For borrow, the polarity is reversed. A subtraction is executed by adding the twos  
complement of the second operand. For rotate (RRCF, RRNCF, RLCF, and  
RLNCF) instructions, this bit is loaded with either the bit 4, or bit 3 of the source  
register.  
bit 0  
C: Carry/borrow bit  
For arithmetic addition and subtraction instructions  
1= A carry-out from the most significant bit of the result occurred  
0= No carry-out from the most significant bit of the result occurred  
Note: For borrow, the polarity is reversed. A subtraction is executed by adding the twos  
complement of the second operand. For rotate (RRCF, RLCF) instructions, this bit  
is loaded with either the high, or low order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 61  
PIC18C601/801  
4.14 RCON Register  
Note: It is recommended that the POR bit be set  
after a Power-on Reset has been detected,  
so that subsequent Power-on Resets may  
be detected.  
The Reset Control (RCON) register contains flag bits  
that allow differentiation between the sources of a  
device RESET. These flags include the TO, PD, POR  
and RI bits. This register is readable and writable.  
REGISTER 4-4:  
RCON REGISTER  
R/W-0  
IPEN  
U-0  
r
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-0  
POR  
U-0  
r
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1 = Enable priority levels on interrupts  
0 = Disable priority levels on interrupts (16CXXX compatibility mode)  
bit 6  
bit 5  
bit 4  
Reserved: Maintain as 0’  
Unimplemented: Read as '0'  
RI: RESETInstruction Flag bit  
1 = The RESETinstruction was not executed  
0 = The RESETinstruction was executed causing a device RESET  
(must be set in software after RESETinstruction was executed)  
bit 3  
bit 2  
bit 1  
TO: Watchdog Time-out Flag bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1 = A Power-on Reset has not occurred  
0 = A Power-on Reset occurred  
(must be set in software after a Power-on Reset occurs)  
bit 0  
Reserved: Maintain as 0’  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
r
= Reserved  
DS39541A-page 62  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
These pins are multiplexed with I/O port pins, but the  
I/O functions are only enabled when program execution  
takes place in internal Boot RAM and the EBDIS bit in  
the MEMCON register is set (see Register 5-1).  
5.0  
EXTERNAL MEMORY  
INTERFACE  
The External Memory Interface is a feature of the  
PIC18C601/801 that allows the processor to access  
external memory devices, such as FLASH, EPROM,  
SRAM, etc. Memory mapped peripherals may also be  
accessed.  
5.1  
Memory Control Register  
(MEMCON)  
Register 5-1 shows the Memory Control Register  
(MEMCON). This register contains bits used to control  
the operation of the External Memory Interface.  
The External Memory Interface physical implementa-  
tion includes up to 26 pins on the PIC18C601 and up to  
38 pins on the PIC18C801. These pins are reserved for  
external address/data bus functions.  
REGISTER 5-1:  
MEMCON REGISTER  
R/W-0  
EBDIS  
R/W-0  
PGRM  
R/W-0  
WAIT1  
R/W-0  
WAIT0  
U-0  
U-0  
R/W-0  
WM1  
R/W-0  
WM0  
bit7  
bit0  
bit 7  
bit 6  
EBDIS: External Bus Disable  
1= External system bus disabled, all external bus drivers are mapped as I/O ports  
0= External system bus enabled, and I/O ports are disabled  
PGRM: Program RAM Enable  
1= 512 bytes of internal RAM enabled as internal program memory from location 1FFE00h to  
1FFFFFh, external program memory at these locations is unused. Internal GPR memory  
from 400h to 5FFh is disabled and returns 00h.  
0= Internal RAM enabled as internal GPR memory from 400h to 5FFh. Program memory from  
location 1FFE00h to 1FFFFFh is configured as external program memory.  
bit 5-4  
WAIT<1:0>: Table Reads and Writes Bus Cycle Wait Count  
11= Table reads and writes will wait 0 TCY  
10= Table reads and writes will wait 1 TCY  
01= Table reads and writes will wait 2 TCY  
00= Table reads and writes will wait 3 TCY  
bit 3-2  
bit 1-0  
Unimplemented: Read as '0'  
WM<1:0>: TABLWT Operation with 16-bit Bus  
1X= Word Write mode: TABLAT0 and TABLAT1 word output, WRH active when TABLAT1 written  
01= Byte Select mode: TABLAT data copied on both MS and LS Byte, WRH and (UB or LB) will  
activate  
00= Byte Write mode: TABLAT data copied on both MS and LS Byte, WRH or WRL will activate  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 63  
PIC18C601/801  
Therefore, the designer must choose external memory  
devices according to timing calculations based on 1/2  
Tcy (2 times instruction rate). For proper memory  
speed selection, glue logic propagation delay times  
must be considered along with setup and hold times.  
5.2  
8-bit Mode  
The External Memory Interface can operate in 8-bit  
mode. The mode selection is not software configurable,  
but is programmable via the configuration bits.  
There are two types of connections in 8-bit mode. They  
are referred to as:  
The Address Latch Enable (ALE) pin indicates that the  
address bits A<7:0> are available on the External  
Memory Interface bus. The OE output enable signal will  
enable one byte of program memory for a portion of the  
instruction cycle, then BA0 will change and the second  
byte will be enabled to form the 16-bit instruction word.  
The least significant bit of the address, BA0, must be  
connected to the memory devices in this mode.  
Figure 5-1 shows an example of 8-bit Multiplexed  
mode on the PIC18C601. The control signals used in  
8-bit Multiplexed mode are outlined in Table 5-1.  
Register 5-2 describes 8-bit Multiplexed mode timing.  
8-bit Multiplexed  
8-bit De-Multiplexed  
5.2.1  
8-BIT MULTIPLEXED MODE  
The 8-bit Multiplexed mode applies only to the  
PIC18C601. Data and address lines are multiplexed on  
port pins and must be decoded with glue logic.  
For 8-bit Multiplexed mode on the PIC18C601, the  
instructions will be fetched as two 8-bit bytes on a  
shared data/address bus (PORTD). The two bytes are  
sequentially fetched within one instruction cycle (TCY).  
FIGURE 5-1:  
8-BIT MULTIPLEXED MODE EXAMPLE  
D<7:0>  
A<17:0>  
A<x:1>  
AD<7:0>  
ALE  
373  
A0  
D<7:0>  
PIC18C601  
(2)  
CE OE WR  
BA0  
A16, AD<15:8>  
CS1  
OE  
WRL  
Note 1: This signal only applies to Table Writes. See Section 6.0, Table Reads and Writes.  
TABLE 5-1:  
8-BIT MULTIPLEXED MODE CONTROL SIGNALS  
8-bit Mux  
Mode  
Name  
Function  
RG0/ALE  
RG1/OE  
ALE  
OE  
Address Latch Enable (ALE) control pin  
Output Enable (OE) control pin  
Write Low (WRL) control pin  
Byte address bit 0  
RG2/WRL  
RG4/BA0  
RF3/CSIO  
RF5/CS1  
WRL  
BA0  
CSIO  
CS1  
Chip Select I/O (See Section 5.4)  
Chip Select 1 (See Section 5.4)  
DS39541A-page 64  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 5-2:  
8-BIT MULTIPLEXED MODE TIMING  
Q4  
Q1  
Q2  
Q3  
03Ah  
A16, AD<15:8>  
0Eh  
ABh  
55h  
AD<7:0>  
BA0  
ALE  
OE  
Opcode Fetch  
MOVLW 55h  
from 007556h  
The Address Latch Enable (ALE) pin is left uncon-  
nected, since glue logic is not necessary. The OE out-  
put enable signal will enable one byte of program  
memory for a portion of the instruction cycle, then BA0  
will change and the second byte will be enabled to form  
the 16-bit instruction word. The least significant bit of  
the address, BA0, must be connected to the memory  
devices in this mode. Figure 5-3 shows an example of  
8-bit De-Multiplexed mode on the PIC18C801. The  
control signals used in 8-bit De-Multiplexed mode are  
outlined in Register 5-2. Register 5-4 describes 8-bit  
De-Multiplexed mode timing.  
5.2.2  
8-BIT DE-MULTIPLEXED MODE  
The 8-bit De-Multiplexed mode applies only to the  
PIC18C801. Data and address lines are available sep-  
arately. External components are not necessary in this  
mode.  
For 8-bit De-Multiplexed mode on the PIC18C801, the  
instructions are fetched as two 8-bit bytes on a dedi-  
cated data bus (PORTJ). The address will be pre-  
sented for the entire duration of the fetch cycle on a  
separate address bus. The two instruction bytes are  
sequentially fetched within one instruction cycle (TCY).  
Therefore, the designer must choose external memory  
devices according to timing calculations, based on 1/2  
TCY (2 times instruction rate). For proper memory speed  
selection, setup and hold times must be considered.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 65  
PIC18C601/801  
FIGURE 5-3:  
8-BIT DE-MULTIPLEXED MODE EXAMPLE  
BA0  
A0  
A<20:0>  
D<7:0>  
A<x:1>  
D<7:0>  
A<19:16>, AD<15:0>  
D<7:0>  
PIC18C801  
CE OE WR(1)  
ALE  
CS1  
OE  
WRL  
Note 1: This signal only applies to Table Writes. See Section 6.0, Table Reads and Writes.  
TABLE 5-2:  
8-BIT DE-MULTIPLEXED MODE CONTROL SIGNALS  
Name  
8-bit De-Mux Mode  
Function  
RG0/ALE  
RG1/OE  
ALE  
OE  
Address Latch Enable (ALE) control pin  
Output Enable (OE) control pin  
Write Low (WRL) control pin  
Byte address bit 0  
RG2/WRL  
RG4/BA0  
RF3/CSIO  
RF4/CS2  
RF5/CS1  
WRL  
BA0  
CSIO  
CS2  
CS1  
Chip Select I/O (See Section 5.4)  
Chip Select 2 (See Section 5.4)  
Chip Select 1 (See Section 5.4)  
FIGURE 5-4:  
8-BIT DE-MULTIPLEXED MODE TIMING  
Q1  
Q2  
Q4  
Q3  
03Ah  
A16, AD<15:8>  
0Eh  
55h  
AD<7:0>  
BA0  
ALE  
OE  
Opcode Fetch  
MOVLW 55h  
from 007556h  
DS39541A-page 66  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
For all 16-bit modes, the Address Latch Enable (ALE)  
pin indicates that the address bits A<15:0> are avail-  
able on the External Memory Interface bus. Following  
the address latch, the output enable signal (OE ) will  
enable both bytes of program memory at once to form  
a 16-bit instruction word.  
5.3  
16-bit Mode  
The External Memory Interface can operate in 16-bit  
mode. The mode selection is not software configurable,  
but is programmable via the configuration bits.  
The WM<1:0> bits in the MEMCON register determine  
three types of connections in 16-bit mode. They are  
referred to as:  
In Byte Select mode, JEDEC standard FLASH memo-  
ries will require BA0 for the byte address line, and one  
I/O line, to select between byte and word mode. The  
other 16-bit modes do not need BA0. JEDEC standard  
static RAM memories will use the UB or UL signals for  
byte selection.  
16-bit Byte Write  
16-bit Word Write  
16-bit Byte Select  
These three different configurations allow the designer  
maximum flexibility in using 8-bit and 16-bit memory  
devices.  
5.3.1  
16-BIT BYTE WRITE MODE  
Figure 5-5 shows an example of 16-bit Byte Write  
mode for the PIC18C601/801.  
FIGURE 5-5:  
16-BIT BYTE WRITE MODE EXAMPLE  
D<7:0>  
(MSB)  
A<x:0>  
(LSB)  
A<x:0>  
PIC18C801  
A<19:0>  
D<15:8>  
AD<15:8>  
373  
373  
D<7:0>  
D<7:0>  
CE  
D<7:0>  
CE  
AD<7:0>  
ALE  
(1)  
(1)  
OE WR  
OE WR  
A<19:16>  
CS1  
OE  
WRH  
WRL  
Note 1: This signal only applies to Table Writes. See Section 6.0, Table Reads and Writes.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 67  
PIC18C601/801  
5.3.2  
16-BIT WORD WRITE MODE  
Figure 5-6 shows an example of 16-bit Word Write  
mode for the PIC18C801.  
FIGURE 5-6:  
PIC18C801  
16-BIT WORD WRITE MODE EXAMPLE  
A<20:1>  
JEDEC Word  
EPROM Memory  
AD<7:0>  
373  
A<x:0>  
D<15:0>  
D<15:0>  
CE  
(1)  
OE  
WR  
AD<15:8>  
373  
ALE  
A<19:16>  
CS1  
OE  
WRH  
Note 1: This signal only applies to Table Writes. See Section 6.0, Table Reads and Writes.  
5.3.3  
16-BIT BYTE SELECT MODE  
Figure 5-7 shows an example of 16-bit Byte Select  
mode for the PIC18C801.  
FIGURE 5-7:  
16-BIT BYTE SELECT MODE EXAMPLE  
PIC18C801  
A<20:1>  
AD<7:0>  
373  
373  
JEDEC Word  
FLASH Memory  
A<x:1>  
D<15:0>  
D<15:0>  
CE  
A0  
AD<15:8>  
(1)  
ALE  
A<19:16>  
OE  
BYTE/WORD OE WR  
WRH  
A<20:1>  
WRL  
BA0  
JEDEC Word  
A<x:1>  
SRAM Memory  
I/O  
CS1  
CS2  
LB  
D<15:0>  
D<15:0>  
CE  
LB  
UB  
(1)  
UB  
OE WR  
Note 1: This signal only applies to Table Writes. See Section 6.0, Table Reads and Writes.  
DS39541A-page 68  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
5.3.4  
16-BIT MODE CONTROL SIGNALS  
Table 5-3 describes the 16-bit mode control signals for  
the PIC18C601/801.  
TABLE 5-3:  
Name  
PIC18C601/801 16-BIT MODE CONTROL SIGNALS  
18C601 16-bit  
Mode  
18C801 16-bit  
Mode  
Function  
RG0/ALE  
RG1/OE  
RG2/WRL  
RG3/WRH  
RG4/BA0  
RF3/CSIO  
RF4/CS2  
RF5/CS1  
RF6/UB  
RF7/LB  
ALE  
OE  
ALE  
OE  
Address Latch Enable (ALE) control pin  
Output Enable (OE) control pin  
Write Low (WRL) control pin  
WRL  
WRH  
BA0  
CSIO  
N/A  
CS1  
UB  
WRL  
WRH  
BA0  
CSIO  
CS2  
CS1  
UB  
Write High (WRH) control pin  
Byte address bit 0  
Chip Select I/O (See Section 5.4)  
Chip Select 2 (See Section 5.4)  
Chip Select 1 (See Section 5.4)  
Upper Byte Enable (UB) control pin  
Lower Byte Enable (LB) control pin  
I/O as BYTE/WORD control pin for JEDEC FLASH  
LB  
LB  
I/O  
I/O  
I/O  
5.3.5  
16-BIT MODE TIMING  
Figure 5-8 describes the 16-bit mode timing for the  
PIC18C601/801.  
FIGURE 5-8:  
16-BIT MODE TIMING  
Q4  
Q1  
Q2  
Q3  
03Ah  
A16, AD<15:8>  
0E55h  
3AABh  
AD<7:0>  
BA0  
ALE  
OE  
WRH 1’  
1’  
WRL  
Opcode Fetch  
MOVLW 55h  
from 007556h  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 69  
PIC18C601/801  
Two SFRs are used to control the chip select signals.  
These are CSEL2 and CSELIO (see Register 5-2 and  
Register 5-3). A chip select signal is asserted low when  
the CPU makes an access to a dedicated range of  
addresses specified in the chip select registers, CSEL2  
and CSELIO. The 8-bit value found in either of these  
registers is decoded as one of 256, 8K banks of pro-  
gram memory. If both chip select registers are 00h, all  
of the chip select signals are disabled and their corre-  
sponding pins are configured as I/O. Since the last 512  
bytes of program memory are dedicated to internal pro-  
gram RAM, the chip select signals will not activate if the  
program memory address falls in this range.  
5.4  
Chip Selects  
Chip select signals are used to select regions of exter-  
nal memory and I/O devices for access. The  
PIC18C801 has three chip selects and all are program-  
mable. The chip select signals are CS1, CS2 and  
CSIO. CS1 and CS2 are general purpose chip selects  
that are used to enable large portions of program mem-  
ory. CSIO is used to enable external I/O expansion.  
The PIC18C601uses two of these programmable chip  
selects: CS1 and CSIO.  
REGISTER 5-2:  
CSEL2 REGISTER  
R/W-1  
CSL7  
R/W-1  
CSL6  
R/W-1  
CSL5  
R/W-1  
CSL4  
R/W-1  
CSL3  
R/W-1  
CSL2  
R/W-1  
CSL1  
R/W-1  
CSL0  
bit 7  
bit 0  
bit 7-0  
CSL<7:0>: Chip Select 2 Address Decode bits  
XXh= All eight bits are compared to the Most Significant bits PC<20:13> of the program  
counter. If PC<20:13> CSL<7:0> register, then the CS2 signal is low.  
If PC<20:13> < CSL<7:0>, CS2 is high.  
00h= CS2 is inactive  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
REGISTER 5-3:  
CSELIO REGISTER  
R/W-1  
CSIO7  
R/W-1  
CSIO6  
R/W-1  
CSIO5  
R/W-1  
CSIO4  
R/W-1  
CSIO3  
R/W-1  
CSIO2  
R/W-1  
CSIO1  
R/W-1  
CSIO0  
bit0  
bit7  
bit 7-0  
CSIO<7:0>: Chip Select IO Address Decode bits  
XXh=All eight bits are compared to the Most Significant bits PC<20:13> of the program  
counter. If PC<20:13> = CSIO<7:0>, then the CSIO signal is low. If not, CSIO is high.  
00h=CSIO is inactive  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
DS39541A-page 70  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
A 00h value in the CSEL2 register will disable the CS2  
signal and will configure the RF4 pin as I/O. Figure 5-9  
shows an example address map for CS2.  
5.4.1  
CHIP SELECT 1 (CS1)  
CS1 is enabled by writing a value other than 00h into  
either the CSEL2 register, or the CSELIO register. If  
both of the chip select registers are programmed to  
00h, the CS1 signal is not enabled and the RF5 pin is  
configured as I/O.  
5.4.3  
CHIP SELECT I/O (CSIO)  
CSIO is enabled for a fixed 8K address range starting  
at the address defined by the 8-bit value contained in  
CSELIO. If, for instance, the value contained in the  
CSELIO register is 80h, then the CSIO signal will be  
low for the address range between 100000h and  
101FFFh.  
CS1 is low for all addresses in which CS2 and CSELIO  
are high. Therefore, if CSEL2 = 20h and CSELIO = 80h,  
then the CS1 signal will be low for the address that falls  
between 000000h and (2000h x 20h) - 1 = 03FFFFh.  
CS1 will always be low for the lower 8K of program  
memory. Figure 5-9 shows an example address map for  
CS1.  
If the 8K address block overlaps the address range  
specified in the CSEL2 register, the CSIO signal will be  
low, and the CS2 signal will be high, for that region.  
5.4.2  
CHIP SELECT 2 (CS2)  
A 00h value in the CSELIO register will disable the  
CSIO signal and will configure the RF3 pin as I/O.  
Figure 5-9 shows an example address map for CSIO.  
CS2 is enabled for program memory accesses, starting  
at the address derived by the 8-bit value contained in  
CSEL2. For example, if the value contained in the  
CSEL2 register is 80h, then the CS2 signal will be  
asserted low whenever the address is greater than or  
equal to 2000h x 80h = 100000h.  
FIGURE 5-9:  
EXAMPLE CONFIGURATION ADDRESS MAP FOR CS1, CS2, AND CSIO  
CSEL2 = FFh (DEFAULT)  
CSELIO = FFh (DEFAULT)  
CSEL2 = 80h  
CSELIO = 00h  
CSEL2 = 20h  
CSELIO = 80h  
PROGRAM MEMORY  
000000h  
PROGRAM MEMORY  
PROGRAM MEMORY  
000000h  
000000h  
03FFFFh  
040000h  
0FFFFFh  
100000h  
0FFFFFh  
100000h  
101FFFh  
102000h  
1FFDFFh  
1FFE00h  
1FFDFFh  
1FFE00h  
1FFDFFh  
1FFE00h  
1FFFFFh  
1FFFFFh  
1FFFFFh  
= CS1 ACTIVE  
= CS2 ACTIVE  
= CSIO ACTIVE  
= NO CHIP SELECT ACTIVE  
INTERNAL EXECUTION IF  
PGRM = 1  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 71  
PIC18C601/801  
5.5  
External Wait Cycles  
The external memory interface supports wait cycles.  
Wait cycles only apply to Table Read and Table Write  
operations over the external bus. See Section 6.0 for  
more details.  
Since the device execution is tied to instruction fetches,  
there is no need to execute faster than the fetch rate.  
So, if the program needs to be slowed, the processor  
speed must be slowed with a different TCY time.  
DS39541A-page 72  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Table Read operations retrieve data from external pro-  
gram memory and place it into the data memory space.  
Figure 6-1 shows the operation of a Table Read with  
program and data memory.  
6.0  
TABLE READS/TABLE WRITES  
PIC18C601/801 devices use two memory spaces: the  
external program memory space and the data memory  
space. Table Reads and Table Writes have been pro-  
vided to move data between these two memory spaces  
through an 8-bit register (TABLAT).  
Table Write operations store data from the data mem-  
ory space into external program memory. Figure 6-2  
shows the operation of a Table Write with external pro-  
gram and data memory.  
The operations that allow the processor to move data  
between the data and external program memory  
spaces are:  
Table operations work with byte entities. A table block  
containing data is not required to be word aligned, so a  
table block can start and end at any byte address. If a  
Table Write is being used to write an executable pro-  
gram to program memory, program instructions must  
be word aligned.  
Table Read (TBLRD)  
Table Write (TBLWT)  
FIGURE 6-1:  
TABLE READ OPERATION  
(1)  
Table Latch (8-bit)  
TABLAT  
Table Pointer  
TBLPTRU TBLPTRH TBLPTRL  
External Program Memory  
Program Memory  
(TBLPTR)  
Instruction: TBLRD*  
Note 1: Table Pointer points to a byte in external program memory.  
FIGURE 6-2:  
TABLE WRITE OPERATION  
(1)  
Table Latch (8-bit)  
TABLAT  
Table Pointer  
TBLPTRU TBLPTRH TBLPTRL  
External Program Memory  
External  
Program Memory  
Instruction: TBLWT*  
(TBLPTR)  
Note 1: Table Pointer points to a byte in external program memory.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 73  
PIC18C601/801  
6.1.2  
TBLPTR - TABLE POINTER  
REGISTER  
6.1  
Control Registers  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include:  
The Table Pointer (TBLPTR) addresses a byte within  
the program memory. The TBLPTR is comprised of  
three SFR registers (Table Pointer Upper byte, High  
byte and Low byte). These three registers  
(TBLPTRU:TBLPTRH:TBLPTRL) join to form a 21-bit  
wide pointer. The 21-bits allow the device to address up  
to 2 Mbytes of program memory space.  
TABLAT register  
TBLPTR registers  
6.1.1  
TABLAT - TABLE LATCH REGISTER  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch is used to hold  
8-bit data during data transfers between program mem-  
ory and data memory.  
The table pointer TBLPTR is used by the TBLRDand  
TBLWRT instructions. These instructions can update  
the TBLPTR in one of four ways, based on the table  
operation. These operations are shown in Table 6-1.  
These operations on the TBLPTR only affect the low  
order 21-bits.  
TABLE 6-1:  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Example  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
DS39541A-page 74  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Table Reads from external program memory are  
performed one byte at a time. If the external interface is  
8-bit, the bus interface circuitry in TABLAT will load the  
external value into TABLAT. If the external interface is  
16-bit, interface circuitry in TABLAT will select either the  
high or low byte of the data from the 16-bit bus, based  
on the least significant bit of the address.  
6.2  
Table Read  
The TBLRD instruction is used to retrieve data from  
external program memory and place it into data  
memory.  
TBLPTR points to a byte address in external program  
memory space. Executing TBLRDplaces the byte into  
TABLAT. In addition, TBLPTR can be modified auto-  
matically for the next Table Read operation.  
Example 6-1describes how to use TBLRD. Figure 6-3  
and Figure 6-4 show Table Read timings for an 8-bit  
external interface, and Figure 6-5 describes Table  
Read timing for a 16-bit interface.  
EXAMPLE 6-1:  
TABLE READ CODE EXAMPLE  
; Read a byte from location 0020h  
CLRF  
CLRF  
MOVLW  
MOVWF  
TBLRD*  
TBLPTRU  
TBLPTRH  
20h  
; clear upper 5 bits of TBLPTR  
; clear higher 8 bits of TBLPTR  
; Load 20h into  
; TBLPTRL  
; Data is in TABLAT  
TBLPTRL  
FIGURE 6-3:  
TBLRD EXTERNAL INTERFACE TIMING (8-BIT MULTIPLEXED MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
A<15:8>  
03Ah  
03Ah  
CCFh  
03Ah  
AAh  
08h 00h  
ABh  
55h 0Eh  
33h  
92h  
ACh  
55h 0Fh  
AD<7:0>  
BA0  
ALE  
OE  
1’  
1’  
WRH  
WRL  
1’  
1’  
Memory  
Cycle  
Opcode Fetch  
Opcode Fetch  
MOVLW 55h  
from 007556h  
TABLRD 92h  
from 199E67h  
Opcode Fetch  
ADDLW 55h  
from 007558h  
TBLRD*  
from 007554h  
Instruction  
Execution  
INST(PC-2)  
TBLRD Cycle1  
TBLRD Cycle2  
MOVLW  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 75  
PIC18C601/801  
FIGURE 6-4:  
TBLRD EXTERNAL INTERFACE TIMING (8-BIT DE-MULTIPLEXED MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
A<15:8>  
03AAAh  
03AABh  
CCF33h  
03AACh  
55h  
08h 00h  
55h 0Eh  
92h  
AD<7:0>  
BA0  
ALE  
OE  
1’  
1’  
1’  
WRH  
WRL  
1’  
Opcode Fetch  
Memory  
Cycle  
Opcode Fetch  
MOVLW 55h  
from 007556h  
TABLRD 92h  
from 199E67h  
Opcode Fetch  
ADDLW 55h  
from 007558h  
TBLRD*  
from 007554h  
Instruction  
Execution  
INST(PC-2)  
TBLRD Cycle1  
TBLRD Cycle2  
MOVLW  
FIGURE 6-5:  
TBLRD EXTERNAL BUS TIMING (16-BIT MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
A<19:16>  
0h  
0h  
Ch  
0h  
3AAAh  
3AABh  
0008h  
0E55h  
0F55h  
3AACh  
CF33h  
9256h  
AD<15:0>  
BA0  
ALE  
OE  
1’  
1’  
1’  
WRH  
WRL  
1’  
Memory  
Cycle  
Opcode Fetch  
Opcode Fetch  
MOVLW 55h  
from 007556h  
TABLRD 92h  
from 199E67h  
Opcode Fetch  
ADDLW 55h  
from 007558h  
TBLRD*  
from 007554h  
Instruction  
Execution  
INST(PC-2)  
TBLRD Cycle1  
TBLRD Cycle2  
MOVLW  
DS39541A-page 76  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
6.3  
Table Write  
Table Write operations store data from the data mem-  
ory space into external program memory.  
PIC18C601/801devices perform Table Writes one byte  
at a time. Table Writes to external memory are two-cycle  
instructions, unless wait states are enabled. The last  
cycle writes the data to the external memory location.  
16-bit interface Table Writes depend on the type of  
external device that is connected and the WM<1:0>  
bits in the MEMCON register (See Figure 5-2).  
Example 6-2 describes how to use TBLWT.  
EXAMPLE 6-2:  
TABLE WRITE CODE EXAMPLE  
; Write a byte to location 0020h  
CLRF  
CLRF  
TBLPTRU  
TBLPTRH  
20h  
TBLPTRL  
55h  
; clear upper 5 bits of TBLPTR  
; clear higher 8 bits of TBLPTR  
; Load 20h into  
; TBLPTRL  
; Load 55h into  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
TBLWT*  
TBLAT  
; TBLAT  
; Write it  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 77  
PIC18C601/801  
6.3.1  
8-BIT EXTERNAL TABLE WRITES  
When the external bus is 8-bit, the byte-wide Table  
Write exactly corresponds to the bus length and there  
are no special considerations required.  
The WRL signal is used as the active write signal.  
Figure 6-6 and Figure 6-7 show the timings associated  
with the 8-bit modes.  
FIGURE 6-6:  
TBLWT EXTERNAL INTERACE TIMING (8-BIT MULTIPLEXED MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
A<19:8>  
03Ah  
03Ah  
CCFh  
03Ah  
AAh  
ABh  
ACh  
08h 00h  
55h 0Eh  
55h 0Fh  
92h  
33h  
AD<7:0>  
BA0  
ALE  
OE  
1’  
WRH  
WRL  
Memory  
Cycle  
Opcode Fetch  
Opcode Fetch  
MOVLW 55h  
from 007556h  
TBLWT 92h  
to 199E67h  
Opcode Fetch  
ADDLW 55h  
from 007558h  
TBLWT*  
from 007554h  
Instruction  
Execution  
INST(PC-2)  
TBLWT Cycle1  
TBLWT Cycle2  
MOVLW  
DS39541A-page 78  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 6-7:  
TBLWT EXTERNAL INTERFACE TIMING (8-BIT DE-MULTIPLEXED MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
A<19:8>  
03Ah  
03Ah  
CCFh  
03Ah  
08h 00h  
55h  
0Fh  
55h 0Eh  
AD<7:0>  
BA0  
92h  
ALE  
OE  
1’  
WRH  
WRL  
Memory  
Cycle  
Opcode Fetch  
MOVLW 55h  
from 007556h  
Opcode Fetch  
TBLWT*  
from 007554h  
TBLWT 92h  
to 199E67h  
Opcode Fetch  
ADDLW 55h  
from 007558h  
Instruction  
Execution  
INST(PC-2)  
TBLWT Cycle1  
TBLWT Cycle2  
MOVLW  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 79  
PIC18C601/801  
6.3.2  
16-BIT EXTERNAL TABLE WRITE  
(BYTE WRITE MODE)  
This mode allows Table Writes to byte-wide external  
memories. During a TBLWTcycle, the TABLAT data is  
presented on the upper and lower byte of the  
AD<15:0> bus. The appropriate WRH or WRL line is  
strobed based on the LSb of the TBLPTR. Figure 6-8  
shows the timing associated with this mode.  
FIGURE 6-8:  
TBLWT EXTERNAL INTERFACE TIMING (16-BIT BYTE WRITE MODE)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
A<19:16>  
0h  
0h  
Ch  
0h  
0h  
Ch  
3AAAh  
3AABh  
3AACh  
CF33h  
000Dh  
6FF4h  
000Ch  
9292h  
CF33h  
3AADh  
5656h  
0E55h  
AD<15:0>  
BA0  
ALE  
OE  
WRH  
WRL  
UB  
LB  
Opcode Fetch  
Opcode Fetch  
TBLWT 56h  
to 199E66h  
Opcode Fetch  
Opcode Fetch  
TBLWT 92h  
to 199E67h  
Memory  
Cycle  
TBLWT*+  
from 007554h  
MOVWF TABLAT  
from 007556h  
TBLWT*  
from 007558h  
MOVLW 55h  
from 00755Ah  
Instruction  
Execution  
INST(PC-2)  
TBLWT*+ Cycle1  
TBLWT* Cycle1  
TBLWT*+ Cycle2  
MOVWF  
TBLWT* Cycle2  
DS39541A-page 80  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
During a TBLWT cycle to an odd address, where  
TBLPTR<0> = 1, the TABLAT data is presented on the  
upper byte of the AD<15:0> bus. The contents of the  
holding latch are presented on the lower byte of the  
AD<15:0> bus. The WRH line is strobed for each  
write cycle and the WRL line is unused. The BA0 line  
indicates the LSb of TBLPTR, but it is unnecessary.  
The UB and LB lines are active to select both bytes.  
6.3.3  
EXTERNAL TABLE WRITE IN 16-BIT  
WORD WRITE MODE  
This mode allows Table Writes to any type of word-  
wide external memories.  
This method makes a distinction between TBLWT  
cycles to even or odd addresses.  
During a TBLWT cycle to an even address, where  
TBLPTR<0> = 0, the TABLAT data is transferred to a  
holding latch and the external address data bus is tri-  
stated for the data portion of the bus cycle. No write  
signals are activated.  
The obvious limitation to this method is that the TBLWT  
must be done in pairs on a specific word boundary to  
correctly write a word location.  
Figure 6-9 shows the timing associated with this mode.  
FIGURE 6-9:  
TBLWT EXTERNAL INTERFACE TIMING (16-BIT WORD WRITE MODE)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
A<19:16>  
0h  
0h  
Ch  
0h  
0h  
Ch  
3AAAh  
3AABh  
3AACh  
CF33h  
000Dh  
6FF4h  
000Ch  
9256h  
CF33h  
3AADh  
0E55h  
AD<15:0>  
BA0  
ALE  
OE  
WRH  
WRL  
1’  
UB  
LB  
Opcode Fetch  
Opcode Fetch  
Opcode Fetch  
TBLWT 56h  
to 199E66h  
Opcode Fetch  
TBLWT 92h  
to 199E67h  
Memory  
Cycle  
TBLWT*+  
from 007554h  
MOVLW 55h  
from 00755Ah  
TBLWT*  
from 007558h  
MOVWF TABLAT  
from 007556h  
Instruction  
Execution  
INST(PC-2)  
TBLWT*+ Cycle1  
TBLWT* Cycle1  
TBLWT*+ Cycle2  
MOVWF  
TBLWT* Cycle2  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 81  
PIC18C601/801  
WRL line is unused. The BA0 or UB or UL lines are  
used to select the byte to be written, based on the LSb  
of the TBLPTR.  
6.3.4  
16-BIT EXTERNAL TABLE WRITE  
(BYTE SELECT MODE)  
This mode allows Table Writes to word-wide external  
memories that have byte selection capabilities. This  
generally includes word-wide FLASH devices and  
word-wide static RAM devices.  
JEDEC standard flash memories will require a I/O port  
line to become a BYTE/WORD input signal and will  
use the BA0 signal as a byte address. JEDEC stan-  
dard static RAM memories will use the UB or UL sig-  
nals to select the byte.  
During a TBLWTcycle, the TABLAT data is presented  
on the upper and lower byte of the AD<15:0> bus.  
The WRH line is strobed for each write cycle and the  
Figure 6-10 shows the timing associated with this mode.  
FIGURE 6-10:  
TBLWT EXTERNAL INTERFACE TIMING (16-BIT BYTE SELECT MODE)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
A<19:16>  
0h  
0h  
Ch  
0h  
0h  
Ch  
3AAAh  
3AABh  
3AACh  
CF33h  
000Dh  
6FF4h  
000Ch  
9292h  
CF33h  
3AADh  
5656h  
0E55h  
AD<15:0>  
BA0  
ALE  
OE  
WRH  
WRL  
1’  
UB  
LB  
Opcode Fetch  
Opcode Fetch  
TBLWT 56h  
to 199E66h  
Opcode Fetch  
Opcode Fetch  
TBLWT 92h  
to 199E67h  
Memory  
Cycle  
TBLWT*+  
from 007554h  
MOVLW 55h  
from 00755Ah  
TBLWT*  
from 007558h  
MOVWF TABLAT  
from 007556h  
Instruction  
Execution  
INST(PC-2)  
TBLWT*+ Cycle1  
TBLWT* Cycle1  
TBLWT*+ Cycle2  
MOVWF  
TBLWT* Cycle2  
DS39541A-page 82  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
The WAIT<1:0> bits in the MEMCON register will select  
0, 1, 2, or 3 extra TCY cycles per TBLRD/TBWLTcycle.  
The wait will occur on Q4.  
6.4  
Long Writes  
Long writes will not be supported on the PIC18C601/801  
to program FLASH configuration memory. The configu-  
ration locations can only be programmed in ICSP mode.  
The default setting of the wait on power-up is to assert  
a maximum wait of 3TCY cycles. This insures that slow  
memories will work in Microprocessor mode immedi-  
ately after RESET.  
6.5  
External Wait Cycles  
The Table Reads and Writes have the capability to  
insert wait states when accessing external memory.  
These wait states only apply to the execution of a Table  
Read or Write to external memory and not to instruction  
fetches out of external memory. The guidelines pre-  
sented in Section 5.0 must be followed to select the  
proper memory speed grade for the device operating  
frequency.  
Figure 6-11 shows 8-bit external bus timing for a Table  
Read with 2 wait cycles. Figure 6-12 shows 16-bit  
external bus timing for a Table Read with 1 wait cycle.  
FIGURE 6-11:  
EXTERNAL INTERFACE TIMING (8-BIT MODE)  
Q4 Q4 Q4 Q4  
Q1 Q2 Q3 Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q4 Q4 Q4 Q4  
Apparent Q  
Actual Q Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
A<19:8>  
03Ah  
CCFh  
ABh 55h  
33h  
92h  
0Eh  
AD<7:0>  
BA0  
ALE  
OE  
2TCY Wait  
Opcode Fetch  
Table Read  
of 92h  
from 199E67h  
MOVLW 55h  
from 007556h  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 83  
PIC18C601/801  
FIGURE 6-12:  
EXTERNAL INTERFACE TIMING (16-BIT MODE)  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q4  
Q1  
Q4  
Q2  
Q4  
Q3  
Q4  
Q4  
Apparent Q  
Actual Q  
A<19:16>  
0h  
0Ch  
3AABh  
CF33h  
0E55h  
9256h  
AD<15:0>  
BA0  
ALE  
OE  
WRH  
1’  
1’  
1’  
WRL 1’  
1TCY Wait  
Opcode Fetch  
Table Read  
of 92h  
from 199E67h  
MOVLW 55h  
from 007556h  
DS39541A-page 84  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
The performance increase allows the device to be used  
in some applications previously reserved for Digital  
Signal Processors.  
7.0  
8 X 8 HARDWARE MULTIPLIER  
An 8 x 8 hardware multiplier is included in the ALU of  
PIC18C601/801 devices. By making the multiply a  
hardware operation, it completes in a single instruction  
cycle. This is an unsigned multiply that gives a 16-bit  
result. The result is stored into the 16-bit product regis-  
ter pair (PRODH:PRODL). The multiplier does not  
affect any flags in the STATUS register.  
Table 7-1 shows a performance comparison between  
enhanced devices using the single cycle hardware mul-  
tiply, and performing the same function without the  
hardware multiply.  
Making the 8 x 8 multiplier execute in a single cycle  
gives the following advantages:  
Higher computational throughput  
Reduces code size requirements for multiply  
algorithms  
TABLE 7-1:  
Routine  
PERFORMANCE COMPARISON  
Program  
Time  
Cycles  
(Max)  
Multiply Method  
Memory  
(Words)  
@ 25 MHz @ 10 MHz @ 4 MHz  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
11.0 µs  
160.0 ns  
14.6 µs  
960.0 ns  
38.7 µs  
3.8 µs  
27.6 µs  
400.0 ns  
36.4 µs  
2.4 µs  
96.8 µs  
9.6 µs  
69.0 µs  
1.0 µs  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
91.0 µs  
6.0 µs  
242.0 µs  
24.0 µs  
254.0 µs  
36.0 µs  
Without hardware multiply  
Hardware multiply  
21  
24  
52  
36  
242  
24  
254  
36  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
40.6 µs  
5.8 µs  
102.6 µs  
14.4 µs  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 85  
PIC18C601/801  
EXAMPLE 7-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
7.1  
Operation  
Example 7-1 shows the sequence to perform an 8 x 8  
unsigned multiply. Only one instruction is required  
when one argument of the multiply is already loaded in  
the WREG register.  
MOVFF  
MULWF  
ARG1L, WREG  
ARG2L  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
;
;
Example 7-2 shows the sequence to do an 8 x 8 signed  
multiply. To account for the sign bits of the arguments,  
each arguments most significant bit (MSb) is tested  
and the appropriate subtractions are done.  
;
;
MOVFF  
MULWF  
ARG1H, WREG  
ARG2H  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
EXAMPLE 7-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
MOVFF  
MULWF  
ARG1L, WREG  
ARG2H  
MOVFF  
MULWF  
ARG1, WREG  
ARG2  
;
; ARG1L * ARG2H ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
; ARG1 * ARG2 ->  
;
PRODH:PRODL  
MOVF  
ADDWF  
MOVF  
ADDWFC  
CLRF  
ADDWFC  
PRODL, W  
RES1  
PRODH, W  
RES2  
WREG  
RES3  
EXAMPLE 7-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
;
MOVFF  
MULWF  
ARG1H, WREG  
ARG2L  
;
MOVFF  
MULWF  
ARG1, WREG  
ARG2  
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
; ARG1 * ARG2 ->  
; PRODH:PRODL  
; Test Sign Bit  
; PRODH = PRODH  
MOVF  
ADDWF  
MOVF  
ADDWFC  
CLRF  
ADDWFC  
PRODL, W  
RES1  
PRODH, W  
RES2  
WREG  
RES3  
BTFSC  
SUBWF  
ARG2, SB  
PRODH  
;
- ARG1  
MOVFF  
BTFSC  
SUBWF  
ARG2, WREG  
ARG1, SB  
PRODH  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
Example 7-4 shows the sequence to perform a 16 x 16  
signed multiply. Equation 7-2 shows the algorithm  
used. The 32-bit result is stored in four registers,  
RES3:RES0. To account for the sign bits of the argu-  
ments, each argument pairsmost significant bit (MSb)  
is tested and the appropriate subtractions are done.  
Example 7-3 shows the sequence to perform a 16 x 16  
unsigned multiply. Equation 7-1 shows the algorithm  
that is used. The 32-bit result is stored in 4 registers  
RES3:RES0.  
EQUATION 7-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
EQUATION 7-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
(ARG1H ARG2H 2 )+  
RES3:RES0  
8
(ARG1H ARG2L 2 )+  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
(ARG1H ARG2H 2  
8
16  
(ARG1L ARG2H 2 )+  
)
+
+
+
+
8
(ARG1L ARG2L)  
(ARG1H ARG2L 2 )  
(ARG1L ARG2H 2 )  
(ARG1L ARG2L)  
8
16  
16  
(-1 ARG2H<7> ARG1H:ARG1L 2  
(-1 ARG1H<7> ARG2H:ARG2L 2  
)
)
+
DS39541A-page 86  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
EXAMPLE 7-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
MOVFF  
MULWF  
ARG1L, WREG  
ARG2L  
; ARG1L * ARG2L ->  
PRODH:PRODL  
;
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
;
;
;
;
MOVFF  
MULWF  
ARG1H, WREG  
ARG2H  
; ARG1H * ARG2H ->  
;
;
;
PRODH:PRODL  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVFF  
MULWF  
ARG1L, WREG  
ARG2H  
; ARG1L * ARG2H ->  
;
;
PRODH:PRODL  
MOVF  
ADDWF  
MOVF  
ADDWFC  
CLRF  
ADDWFC  
PRODL, W  
RES1  
PRODH, W  
RES2  
WREG  
RES3  
; Add cross  
;
;
;
;
products  
;
MOVFF  
MULWF  
ARG1H, WREG  
ARG2L  
;
; ARG1H * ARG2L ->  
;
;
PRODH:PRODL  
MOVF  
ADDWF  
MOVF  
ADDWFC  
CLRF  
ADDWFC  
PRODL, W  
RES1  
PRODH, W  
RES2  
WREG  
RES3  
; Add cross  
;
;
;
;
products  
;
;
BTFSS  
GOTO  
MOVFF  
SUBWF  
MOVFF  
SUBWFB  
ARG2H, 7  
SIGN_ARG1  
ARG1L, WREG  
RES2  
ARG1H, WREG  
RES3  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
SIGN_ARG1  
BTFSS  
GOTO  
MOVFF  
SUBWF  
MOVFF  
SUBWFB  
;
ARG1H, 7  
CONT_CODE  
ARG2L, WREG  
RES2  
ARG2H, WREG  
RES3  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
CONT_CODE  
:
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 87  
PIC18C601/801  
NOTES:  
DS39541A-page 88  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
When the IPEN bit is cleared (default state), the inter-  
rupt priority feature is disabled and interrupts are  
compatible with PICmicro® mid-range devices. In Com-  
patibility mode, the interrupt priority bits for each source  
have no effect. The PEIE bit (INTCON register)  
enables/disables all peripheral interrupt sources. The  
GIE bit (INTCON register) enables/disables all interrupt  
sources. All interrupts branch to address 000008h in  
Compatibility mode.  
8.0  
INTERRUPTS  
PIC18C601/801 devices have 15 interrupt sources and  
an interrupt priority feature that allows each interrupt  
source to be assigned a high priority level, or a low pri-  
ority level. The high priority interrupt vector is at  
000008h and the low priority interrupt vector is at  
000018h. High priority interrupt events will override any  
low priority interrupts that may be in progress.  
There are 10 registers that are used to control interrupt  
operation. These registers are:  
When an interrupt is responded to, the Global Interrupt  
Enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt prior-  
ity levels are used, this will be either the GIEH or GIEL  
bit. High priority interrupt sources can interrupt a low  
priority interrupt.  
RCON  
INTCON  
INTCON2  
INTCON3  
PIR1, PIR2  
PIE1, PIE2  
IPR1, IPR2  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address  
(000008h or 000018h). Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt  
flag bits must be cleared in software before re-enabling  
interrupts, to avoid recursive interrupts.  
It is recommended that the Microchip header files sup-  
plied with MPLAB® IDE be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
The "return from interrupt" instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used), which re-enables interrupts.  
Each interrupt source has three bits to control its oper-  
ation. The functions of these bits are:  
For external interrupt events, such as the INT pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two cycle instructions.  
Individual interrupt flag bits are set, regardless of the  
status of their corresponding enable bit or the GIE bit.  
Flag bit to indicate that an interrupt event  
occurred  
Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
Priority bit to select high priority or low priority  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON register). When interrupt priority is  
enabled, there are two bits that enable interrupts glo-  
bally. Setting the GIEH bit (INTCON register) enables  
all interrupts that have the priority bit set. Setting the  
GIEL bit (INTCON register) enables all interrupts that  
have the priority bit cleared. When the interrupt flag,  
enable bit and appropriate global interrupt enable bit  
are set, the interrupt will vector immediately to address  
000008h or 000018h, depending on the priority level.  
Individual interrupts can be disabled through their cor-  
responding enable bits.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 89  
PIC18C601/801  
FIGURE 8-1:  
INTERRUPT LOGIC  
Wake-up if in SLEEP mode  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0F  
INT0E  
Interrupt to CPU  
Vector to location  
0008h  
INT1F  
INT1E  
INT1P  
INT2F  
INT2E  
INT2P  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
GIEH/GIE  
TMR1IF  
TMR1IE  
TMR1IP  
IPEN  
IPEN  
XXXXIF  
XXXXIE  
XXXXIP  
GIEL/PEIE  
IPEN  
Additional Peripheral Interrupts  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
TMR0IF  
TMR0IE  
TMR0IP  
Interrupt to CPU  
Vector to Location  
0018h  
TMR1IF  
TMR1IE  
TMR1IP  
RBIF  
RBIE  
RBIP  
XXXXIF  
XXXXIE  
XXXXIP  
GIEL\PEIE  
INT0F  
INT0E  
INT1F  
INT1E  
INT1P  
Additional Peripheral Interrupts  
INT2F  
INT2E  
INT2P  
DS39541A-page 90  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
8.1.1  
INTCON REGISTERS  
8.1  
Control Registers  
The INTCON Registers are readable and writable  
registers, which contain various enable, priority, and  
flag bits.  
This section contains the control and status registers.  
REGISTER 8-1:  
INTCON REGISTER  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
R/W-x  
RBIF  
GIE/GIEH PEIE/GIEL TMR0IE  
bit 7  
INT0IE  
TMR0IF INT0IF  
bit 0  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN = 1:  
1= Enables all high priority interrupts  
0= Disables all high priority interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low priority peripheral interrupts  
0= Disables all priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit, or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows software polling.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 91  
PIC18C601/801  
REGISTER 8-2:  
INTCON2 REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
U-0  
R/W-1  
U-0  
R/W-1  
RBIP  
INTEDG0 INTEDG1 INTEDG2  
TMR0IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt 2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
bit 3  
bit 2  
Unimplemented: Read as 0’  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
Unimplemented: Read as 0’  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit, or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows software polling.  
DS39541A-page 92  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
REGISTER 8-3:  
INTCON3 REGISTER  
R/W-1  
R/W-1  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT2IE  
INT1IE  
bit 7  
bit 0  
bit 7  
bit 6  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as 0’  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
bit 3  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
bit 2  
bit 1  
Unimplemented: Read as 0’  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
bit 0  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit, or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows software polling.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 93  
PIC18C601/801  
8.1.2  
PIR REGISTERS  
8.1.3  
PIE REGISTERS  
The Peripheral Interrupt Request (PIR) registers con-  
tain the individual flag bits for the peripheral interrupts  
(Register 8-5). There are two Peripheral Interrupt  
Request (Flag) registers (PIR1, PIR2).  
The Peripheral Interrupt Enable (PIE) registers contain  
the individual enable bits for the peripheral interrupts  
(Register 8-6). There are two two Peripheral Interrupt  
Enable registers (PIE1, PIE2). When IPEN is clear, the  
PEIE bit must be set to enable any of these peripheral  
interrupts.  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit, or the global  
enable bit, GIE (INTCON register).  
8.1.4  
IPR REGISTERS  
The Interrupt Priority (IPR) registers contain the individ-  
ual priority bits for the peripheral interrupts (Register 8-9).  
There are two Peripheral Interrupt Priority registers  
(IPR1, IPR2). The operation of the priority bits requires  
that the Interrupt Priority Enable bit (IPEN) be set.  
2: User software should ensure the appropri-  
ate interrupt flag bits are cleared prior to  
enabling an interrupt, and after servicing  
that interrupt.  
8.1.5  
RCON REGISTER  
The Reset Control (RCON) register contains the bit that  
is used to enable prioritized interrupts (IPEN).  
REGISTER 8-4:  
RCON REGISTER  
R/W-0  
IPEN  
U-0  
r
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-0  
POR  
U-0  
r
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (16CXXX compatibility mode)  
bit 6  
bit 5  
bit 4  
Reserved: Maintain as '0'  
Unimplemented: Read as '0'  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 4-4  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
For details of bit operation, see Register 4-4  
PD: Power-down Detection Flag bit  
For details of bit operation, see Register 4-4  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 4-4  
Reserved: Maintain as '0'  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39541A-page 94  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
REGISTER 8-5:  
PIR1 REGISTER  
U-0  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
CCP1IF TMR2IF TMR1IF  
bit 0  
R/W-0  
R/W-0  
RCIF  
TXIF  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as 0’  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed  
(must be cleared in software)  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
bit 5  
bit 4  
bit 3  
bit 2  
1= The USART receive buffer, RCREG, is full  
(cleared when RCREG is read)  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer, TXREG, is empty  
(cleared when TXREG is written)  
0= The USART transmit buffer is full  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete  
(must be cleared in software)  
0= Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred  
(must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred  
(must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred  
(must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed  
(must be cleared in software)  
0= TMR1 register did not overflow  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 95  
PIC18C601/801  
REGISTER 8-6:  
PIR2 REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-0  
BCLIF  
R/W-0  
LVDIF  
R/W-0  
TMR3IF CCP2IF  
bit 0  
R/W-0  
bit 7  
Unimplemented: Read as0’  
bit 7-4  
bit 3  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision occurred  
(must be cleared in software)  
0= No bus collision occurred  
bit 2  
bit 1  
bit 0  
LVDIF: Low Voltage Detect Interrupt Flag bit  
1= A low voltage condition occurred  
(must be cleared in software)  
0= The device voltage is above the Low Voltage Detect trip point  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed  
(must be cleared in software)  
0= TMR3 register did not overflow  
CCP2IF: CCPx Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred  
(must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred  
(must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39541A-page 96  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
REGISTER 8-7:  
PIE1 REGISTER  
U-0  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
CCP1IE TMR2IE TMR1IE  
bit 0  
R/W-0  
R/W-0  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as 0’  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Master Synchronous Serial Port Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 97  
PIC18C601/801  
REGISTER 8-8:  
PIE2 REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-0  
BCLIE  
R/W-0  
LVDIE  
R/W-0  
TMR3IE CCP2IE  
bit 0  
R/W-0  
bit 7  
bit 7-4  
bit 3  
Unimplemented: Read as '0'  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 2  
bit 1  
bit 0  
LVDIE: Low Voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enables the TMR3 overflow interrupt  
0= Disables the TMR3 overflow interrupt  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39541A-page 98  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
REGISTER 8-9:  
IPR1 REGISTER  
U-0  
R/W-1  
ADIP  
R/W-1  
RCIP  
R/W-1  
TXIP  
R/W-1  
SSPIP  
R/W-1  
CCP1IP TMR2IP TMR1IP  
bit 0  
R/W-1  
R/W-1  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as 0’  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RCIP: USART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TXIP: USART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
SSPIP: Master Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 99  
PIC18C601/801  
REGISTER 8-10: IPR2 REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-1  
BCLIP  
R/W-1  
LVDIP  
R/W-1  
TMR3IP CCP2IP  
bit 0  
R/W-1  
bit 7  
bit 7-4  
bit 3  
Unimplemented: Read as '0'  
BCLIP: Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 2  
bit 1  
bit 0  
LVDIP: Low Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP2IP: CCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39541A-page 100  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
in the TMR0H:TMR0L registers will set flag bit TMR0IF.  
The interrupt can be enabled/disabled by setting/clear-  
ing enable bit TMR0IE (INTCON register). Interrupt prior-  
ity for Timer0 is determined by the value contained in the  
interrupt priority bit TMR0IP (INTCON2 register). See  
Section 10.0 for further details on the Timer0 module.  
8.1.6  
INT INTERRUPTS  
External interrupts on the RB0/INT0, RB1/INT1 and  
RB2/INT2 pins are edge triggered: either rising, if the  
corresponding INTEDGx bit is set in the INTCON2 reg-  
ister, or falling, if the INTEDGx bit is clear. When a valid  
edge appears on the RBx/INTx pin, the corresponding  
flag bit INTxIF is set. This interrupt can be disabled by  
clearing the corresponding enable bit INTxIE. Flag bit  
INTxIF must be cleared in software in the Interrupt Ser-  
vice Routine before re-enabling the interrupt. All exter-  
nal interrupts (INT0, INT1 and INT2) can wake-up the  
processor from SLEEP, if bit INTxIE was set prior to  
going into SLEEP. If the global interrupt enable bit GIE  
is set, the processor will branch to the interrupt vector  
following wake-up.  
8.1.8  
PORTB INTERRUPT-ON-CHANGE  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON register). The interrupt can be enabled/  
disabled by setting/clearing enable bit RBIE (INTCON  
register). Interrupt priority for PORTB interrupt-on-  
change is determined by the value contained in the  
interrupt priority bit RBIP (INTCON2 register).  
8.2  
Context Saving During Interrupts  
Interrupt priority for INT1 and INT2 is determined by the  
value contained in the interrupt priority bits INT1IP  
(INTCON3 register) and INT2IP (INTCON3 register).  
There is no priority bit associated with INT0; it is always  
a high priority interrupt source.  
During an interrupt, the return PC value is saved on the  
stack. Additionally, the WREG, STATUS and BSR regis-  
ters are saved on the fast return stack. If a fast return  
from interrupt is not used (See Section 4.3), the user  
may need to save the WREG, STATUS and BSR regis-  
ters in software. Depending on the users application,  
other registers may also need to be saved. Example 8-1  
saves and restores the WREG, STATUS and BSR  
registers during an Interrupt Service Routine.  
8.1.7  
TMR0 INTERRUPT  
In 8-bit mode (which is the default), an overflow  
(0FFh 00h) in the TMR0 register will set flag bit  
TMR0IF. In 16-bit mode, an overflow (0FFFFh 0000h)  
EXAMPLE 8-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in Low Access bank  
; STATUS_TEMP located anywhere  
; BSR located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 101  
PIC18C601/801  
NOTES:  
DS39541A-page 102  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
EXAMPLE 9-1:  
INITIALIZING PORTA  
9.0  
I/O PORTS  
CLRF  
PORTA  
LATA  
; Initialize PORTA by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
Depending on the device selected, there are up to 9  
ports available. Some pins of the I/O ports are multi-  
plexed with an alternate function from the peripheral  
features on the device. In general, when a peripheral is  
enabled, that pin may not be used as a general  
purpose I/O pin.  
CLRF  
MOVLW 07h  
; Configure A/D  
MOVWF ADCON1  
MOVLW 0CFh  
; for digital inputs  
; Value used to  
; initialize data  
; direction  
Each port has three registers for its operation. These  
registers are:  
TRIS register (data direction register)  
PORT register (reads the levels on the pins of the  
device)  
MOVWF TRISA  
; Set RA3:RA0 as inputs  
; RA5:RA4 as outputs  
LAT register (output latch)  
The data latch (LAT register) is useful for read-modify-  
write operations on the value that the I/O pins are driving.  
FIGURE 9-1:  
RA3:RA0 AND RA5 PINS  
BLOCK DIAGRAM  
9.1  
PORTA, TRISA and LATA  
Registers  
PORTA is a 6-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
Hi-Impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
On a Power-on Reset, these pins are configured as  
analog inputs and read as '0'.  
RD LATA  
Data  
Bus  
D
Q
VDD  
WR LATA  
or  
WR PORTA  
Q
Data Latch  
CK  
P
I/O pin(1)  
N
D
Q
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch.  
WR TRISA  
VSS  
Analog  
Q
CK  
Read-modify-write operations on the LATA register,  
reads and writes the latched output value for PORTA.  
Input  
Mode  
TRIS Latch  
The RA4 pin is multiplexed with the Timer0 module  
clock input to become the RA4/T0CKI pin. The RA4/  
T0CKI pin is a Schmitt Trigger input and an open drain  
output. All other RA port pins have TTL input levels and  
full CMOS output drivers.  
TTL  
Input  
Buffer  
RD TRISA  
Q
D
The other PORTA pins are multiplexed with analog  
inputs and the analog VREF+ and VREF- inputs. The  
operation of each pin is selected by clearing/setting the  
control bits in the ADCON1 register (A/D Control  
Register1). On a Power-on Reset, these pins are con-  
figured as analog inputs and read as '0'.  
EN  
RD PORTA  
SS Input (RA5 only)  
To A/D Converter and LVD Modules  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Note 1: I/O pins have diode protection to VDD and VSS.  
Note: On  
a Power-on Reset, PORTA pins  
RA3:RA0 and RA5 default to analog inputs.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 103  
PIC18C601/801  
FIGURE 9-2:  
RA4/T0CKI PIN BLOCK  
DIAGRAM  
RD LATA  
Data  
Bus  
Q
D
WR LATA  
or  
WR PORTA  
CK  
Q
I/O pin(1)  
N
Data Latch  
D
Q
Q
VSS  
WR TRISA  
Schmitt  
Trigger  
Input  
CK  
TRIS Latch  
Buffer  
RD TRISA  
Q
D
EN  
RD PORTA  
TMR0 Clock Input  
Note 1: I/O pin has diode protection to VSS only.  
TABLE 9-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer  
Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
TTL  
TTL  
TTL  
TTL  
Input/output or analog input  
Input/output or analog input  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Input/output or analog input or VREF-  
Input/output or analog input or VREF+  
ST/OD Input/output or external clock input for Timer0, output is open drain type  
RA5/SS/AN4/LVDIN  
TTL  
Input/output or slave select input for synchronous serial port or analog  
input or low voltage detect input  
Legend: TTL = TTL input, ST = Schmitt Trigger input, OD = Open Drain  
TABLE 9-2:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other  
RESETS  
PORTA  
LATA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
--0x 0000 --uu uuuu  
-xxx xxxx -uuu uuuu  
-111 1111 -111 1111  
Latch A Data Output Register  
PORTA Data Direction Register  
TRISA  
ADCON1  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0 --00 0000 --uu uuuu  
Legend: x= unknown, u= unchanged, - = unimplemented locations read as '0'.  
Shaded cells are not used by PORTA.  
DS39541A-page 104  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (INTCON2 register). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
9.2  
PORTB, TRISB and LATB  
Registers  
PORTB is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB pin  
an input (i.e., put the corresponding output driver in a  
Hi-Impedance mode). Clearing a TRISB bit (= 0) will  
make the corresponding PORTB pin an output ( i.e.,  
put the contents of the output latch on the selected pin).  
Pin RB3 is multiplexed with the CCP input/output. The  
weak pull-up for RB3 is disabled when the RB3 pin is  
configured as CCP pin. By disabling the weak pull-up  
when pin is configured as CCP, allows the remaining  
weak pull-up devices of PORTB to be used while the  
CCP is being used.  
Read-modify-write operations on the LATB register  
read and write the latched output value for PORTB.  
Four of PORTBs pins, RB7:RB4, have an interrupt-on-  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the interrupt-  
on-change comparison). The input pins (of RB7:RB4)  
are compared with the old value latched on the last  
read of PORTB. The mismatchoutputs of RB7:RB4  
are ORd together to generate the RB Port Change  
Interrupt with flag bit RBIF (INTCON register).  
EXAMPLE 9-2:  
INITIALIZING PORTB  
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
LATB  
MOVLW  
MOVWF  
0CFh  
This interrupt can wake the device from SLEEP. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
TRISB  
; Set RB3:RB0 as inputs  
; RB5:RB4 as outputs  
; RB7:RB6 as inputs  
a) Any read or write of PORTB (except with the  
MOVFF instruction). This will end the mismatch  
condition.  
FIGURE 9-3:  
RB7:RB4 PINS BLOCK  
DIAGRAM  
VDD  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
RBPU(2)  
Data Bus  
Weak  
Pull-up  
P
Data Latch  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
D
Q
I/O pin(1)  
WR LATB  
or  
WR PORTB  
CK  
TRIS Latch  
D
Q
WR TRISB  
TTL  
Input  
Buffer  
CK  
ST  
Buffer  
RD TRISB  
RD LATB  
Latch  
Q
Q
D
EN  
Q1  
RD PORTB  
Set RBIF  
D
From other  
RB7:RB4 pins  
RD PORTB  
Q3  
EN  
RBx/INTx  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (INTCON2 register).  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 105  
PIC18C601/801  
FIGURE 9-4:  
RB2:RB0 PINS BLOCK  
DIAGRAM  
VDD  
RBPU(2)  
Weak  
P
Pull-up  
Data Latch  
Data Bus  
WR Port  
D
Q
I/O pin(1)  
CK  
TRIS Latch  
D
Q
TTL  
WR TRIS  
Input  
CK  
Buffer  
RD TRIS  
RD Port  
Q
D
EN  
Schmitt Trigger  
Buffer  
RBx/INTx  
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (INTCON2 register).  
FIGURE 9-5:  
RB3 PIN BLOCK DIAGRAM  
VDD  
Weak  
RBPU(2)  
CCP Enable  
P
Pull-up  
CCP Output  
1
0
VDD  
P
Enable  
CCP Output  
Data Latch  
I/O pin(1)  
Data Bus  
D
Q
WR LATB or  
WR PORTB  
N
CK  
TRIS Latch  
VSS  
Q
D
TTL  
WR TRISB  
Input  
CK  
Q
Buffer  
RD TRISB  
RD LATB  
Q
D
EN  
RD PORTB  
RD PORTB  
CCP2 Input  
Schmitt Trigger  
Buffer  
Note 1: I/O pin has diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
DS39541A-page 106  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 9-3:  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RB0/INT0  
bit0  
TTL/ST(1) Input/output pin or external interrupt 0 input. Internal software  
programmable weak pull-up.  
RB1/INT1  
RB2/INT2  
RB3/CCP2  
RB4  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
TTL/ST(1) Input/output pin or external interrupt 1 input. Internal software  
programmable weak pull-up.  
TTL/ST(1) Input/output pin or external interrupt 2 input. Internal software  
programmable weak pull-up.  
TTL/ST(3) Input/output pin or Capture2 input or Capture2 output or PWM2 output.  
Internal software programmable weak pull-up.  
TTL  
TTL  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
RB5  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
RB6  
TTL/ST(2) Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming clock.  
TTL/ST(2) Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming data.  
RB7  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This pin is a Schmitt Trigger input when configured as the external interrupt.  
2: This pin is a Schmitt Trigger input when used in Serial Programming mode.  
3: This pin is a Schmitt Trigger input when used in a Capture input.  
TABLE 9-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 000x 0000 000u  
1111 1111 1111 1111  
1100 0000 1100 0000  
PORTB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
LATB  
LATB Data Output Register  
PORTB Data Direction Register  
TRISB  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INTCON2 RBPU  
INTCON3 INT2IP  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTD.  
INT0IE  
RBIE  
TMR0IF INT0IF RBIF  
RBIP  
INT2IF INT1IF  
INTEDG0 INTEDG1 INTEDG2 INTEDG3 TMR0IP  
INT1IP INT2IE INT1IE  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 107  
PIC18C601/801  
The pin override value is not loaded into the TRIS reg-  
ister. This allows read-modify-write of the TRIS register,  
without concern due to peripheral overrides.  
9.3  
PORTC, TRISC and LATC  
Registers  
PORTC is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISC bit (= 0) will  
make the corresponding PORTC pin an output (i.e., put  
the contents of the output latch on the selected pin).  
EXAMPLE 9-3:  
INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
LATC  
Read-modify-write operations on the LATC register,  
read and write the latched output value for PORTC.  
MOVLW  
MOVWF  
0CFh  
PORTC is multiplexed with several peripheral functions  
(Table 9-5). PORTC pins have Schmitt Trigger input  
buffers.  
TRISC  
; Set RC3:RC0 as inputs  
; RC5:RC4 as outputs  
; RC7:RC6 as inputs  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to make  
a pin an input. The user should refer to the correspond-  
ing peripheral section for the correct TRIS bit settings.  
FIGURE 9-6:  
PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)  
Peripheral Out Select  
Peripheral Data Out  
V
DD  
0
1
P
(1)  
I/O pin  
RD LATC  
Q
Data Bus  
D
WR LATC  
or  
Q
CK  
TRIS OVERRIDE  
Pin Override Peripheral  
WR PORTC  
Data Latch  
N
D
Q
Q
RC0  
Yes  
Timer1 OSC for  
Timer1/Timer3  
V
SS  
WR TRISC  
TRIS  
Override  
CK  
RC1  
Yes  
Timer1 OSC for  
Timer1/Timer3  
TRIS Latch  
RC2  
RC3  
No  
Schmitt  
Trigger  
RD TRISC  
2
Yes  
Peripheral Enable  
SPI/I C Master Clock  
2
RC4  
Yes  
I C Data Out  
Q
D
RC5  
RC6  
Yes  
Yes  
SPI Data Out  
EN  
USART Async Xmit,  
Sync Clock  
RD PORTC  
Peripheral Data In  
RC7  
Yes  
USART Sync Data Out  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS39541A-page 108  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 9-5:  
Name  
PORTC FUNCTIONS  
Bit# Buffer Type  
Function  
RC0/T1OSO/T13CKI bit0  
ST  
Input/output port pin or Timer1 oscillator output or Timer1/Timer3  
clock input.  
RC1/T1OSI  
RC2/CCP1  
bit1  
bit2  
ST  
ST  
Input/output port pin, Timer1 oscillator input.  
Input/output port pin or Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
bit3  
bit4  
ST  
ST  
Input/output port pin or synchronous serial clock for SPI/I2C.  
Input/output port pin or SPI Data in (SPI mode) or Data I/O  
(I2C mode).  
RC5/SDO  
bit5  
bit6  
ST  
ST  
Input/output port pin or Synchronous Serial Port Data output.  
RC6/TX/CK  
Input/output port pin, Addressable USART Asynchronous Transmit, or  
Addressable USART Synchronous Clock.  
RC7/RX/DT  
bit7  
ST  
Input/output port pin, Addressable USART Asynchronous Receive, or  
Addressable USART Synchronous Data.  
Legend: ST = Schmitt Trigger input  
TABLE 9-6:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
POR,  
Value on all  
other  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
xxxx xxxx  
xxxx xxxx  
1111 1111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
PORTC  
LATC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
LATC Data Output Register  
PORTC Data Direction Register  
TRISC  
Legend: x= unknown, u= unchanged  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 109  
PIC18C601/801  
FIGURE 9-7:  
PORTD BLOCK DIAGRAM  
IN I/O MODE  
9.4  
PORTD, TRISD and LATD  
Registers  
PORTD is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISD. Setting a  
TRISD bit (= 1) will make the corresponding PORTD  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISD bit (= 0) will  
make the corresponding PORTD pin an output (i.e., put  
the contents of the output latch on the selected pin).  
RD LATD  
Data Bus  
D
Q
I/O pin  
WR LATD  
or  
WR PORTD  
CK  
Data Latch  
Read-modify-write operations on the LATD register  
reads and writes the latched output value for PORTD.  
D
Q
Schmitt  
Trigger  
Input  
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output.  
WR TRISD  
CK  
TRIS Latch  
Buffer  
PORTD is multiplexed with the system bus and is avail-  
able only when the system bus is disabled, by setting  
EBIDS bit in register MEMCON. When operating as  
the system bus, PORTD is the low order byte of the  
address/data bus (AD7:AD0), or as the low order  
address byte (A15:A8) if the address and data buses  
are de-multiplexed.  
RD TRISD  
Q
D
EN  
RD PORTD  
Note: On a Power-on Reset, PORTD defaults to  
the system bus.  
Note: I/O pins have diode protection to VDD and VSS.  
EXAMPLE 9-4:  
INITIALIZING PORTD  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
CLRF  
LATD  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0CFh  
; Value used to  
; initialize data  
; direction  
; Set RD3:RD0 as inputs  
; RD5:RD4 as outputs  
; RD7:RD6 as inputs  
TRISD  
DS39541A-page 110  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 9-8:  
PORTD BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTD  
RD LATD  
(1)  
I/O pin  
Port  
Data Bus  
D
Q
0
1
Data  
WR LATD  
or  
CK  
PORTD  
Data Latch  
D
Q
WR TRISD  
TTL  
Input  
Buffer  
CK  
TRIS Latch  
RD TRISD  
Bus Enable  
Data/TRIS Out  
Drive Bus  
System Bus  
Control  
Instruction Register  
Instruction Read  
Note 1: I/O pins have protection diodes to VDD and VSS.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 111  
PIC18C601/801  
TABLE 9-7:  
PORTD FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RD0/AD0/A0(2)  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin or system bus bit 0  
Input/output port pin or system bus bit 1  
Input/output port pin or system bus bit 2  
Input/output port pin or system bus bit 3  
Input/output port pin or system bus bit 4  
Input/output port pin or system bus bit 5  
Input/output port pin or system bus bit 6  
Input/output port pin or system bus bit 7  
RD1/AD1/A1(2)  
RD2/AD2/A2(2)  
RD3/AD3/A3(2)  
RD4/AD4/A4(3)  
RD5/AD5/A5(2)  
RD6/AD6/A6(2)  
RD7/AD7/A7(2)  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus mode.  
2: RDx is used as a multiplexed address/data bus for PIC18C601 and PIC18C801 in 16-bit mode, and as an  
address only for PIC18C801 in 8-bit mode.  
TABLE 9-8:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
POR,  
Value on all  
other  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1 Bit 0  
BOR  
RESETS  
xxxx xxxx  
xxxx xxxx  
1111 1111  
0000 --00  
uuuu uuuu  
uuuu uuuu  
1111 1111  
0000 --00  
PORTD  
LATD  
RD7  
RD6  
RD5  
RD4  
RD3 RD2 RD1 RD0  
LATD Data Output Register  
TRISD  
PORTD Data Direction Register  
MEMCON  
EBDIS  
PGRM  
WAIT1  
WAIT0  
WM1 WM0  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by PORTD.  
DS39541A-page 112  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
byte of the address/data bus (AD15:AD8), or as the  
high order address byte (A15:A8), if address and data  
buses are de-multiplexed.  
9.5  
PORTE, TRISE and LATE  
Registers  
PORTE is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISE. Setting a  
TRISE bit (= 1) will make the corresponding PORTE pin  
an input (i.e., put the corresponding output driver in a  
Hi-Impedance mode). Clearing a TRISE bit (= 0) will  
make the corresponding PORTE pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Note: On Power-on Reset, PORTE defaults to  
the system bus.  
EXAMPLE 9-5:  
INITIALIZING PORTE  
CLRF  
PORTE  
LATE  
03h  
; Initialize PORTE by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
Read-modify-write operations on the LATE register  
reads and writes the latched output value for PORTE.  
CLRF  
PORTE is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output. PORTE is multiplexed with several peripheral  
functions (Table 9-9).  
MOVLW  
MOVWF  
TRISE  
; Set RE1:RE0 as inputs  
; RE7:RE2 as outputs  
PORTE is multiplexed with the system bus and is avail-  
able only when the system bus is disabled, by setting  
EBDIS bit in register MEMCON. When operating as the  
system bus, PORTE is configured as the high order  
FIGURE 9-9:  
PORTE BLOCK DIAGRAM IN I/O MODE  
Peripheral Out Select  
Peripheral Data Out  
VDD  
P
0
1
(1)  
I/O pin  
RD LATE  
Q
Data Bus  
D
WR LATE  
or  
WR PORTE  
CK  
Q
Data Latch  
N
D
Q
Q
TRIS OVERRIDE  
Pin Override Peripheral  
VSS  
WR TRISE  
TRIS  
Override  
CK  
TRIS Latch  
RE0  
RE1  
RE2  
RE3  
RE4  
RE5  
RE6  
RE7  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
Schmitt  
Trigger  
RD TRISE  
Peripheral Enable  
Q
D
EN  
RD PORTE  
Peripheral Data In  
Note 1: I/O pins have diode protection to VDD and VSS.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 113  
PIC18C601/801  
FIGURE 9-10:  
PORTE BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTE  
RD LATD  
I/O pin(1)  
Port  
Data Bus  
D
Q
0
1
Data  
WR LATE  
or  
PORTE  
CK  
Data Latch  
TRIS Latch  
D
Q
WR TRISE  
TTL  
Input  
Buffer  
CK  
RD TRISE  
External Enable  
System Bus  
Control  
Data/Address Out  
Drive System  
To Instruction Register  
Instruction Read  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS39541A-page 114  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 9-9:  
Name  
PORTE FUNCTIONS  
Bit#  
Buffer Type  
Function  
RE0/AD8/A8(2)  
RE1/AD9/A9(2)  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin or Address/Data bit 8  
Input/output port pin or Address/Data bit 9  
Input/output port pin or Address/Data bit 10  
Input/output port pin or Address/Data bit 11  
Input/output port pin or Address/Data bit 12  
Input/output port pin or Address/Data bit 13  
Input/output port pin or Address/Data bit 14  
Input/output port pin or Address/Data bit 15  
RE2/AD10/A10(2)  
RE3/AD11/A11(2)  
RE4/AD12/A12(2)  
RE5/AD13/A13(2)  
RE6/AD14/A14(2)  
RE7/AD15/A15(2)  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus mode.  
2: REx is used as a multiplexed address/data bus for PIC18C601 and PIC18C801 in 16-bit mode, and as an  
address only for PIC18C801 in 8-bit mode.  
TABLE 9-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on:  
POR,  
Value on all  
other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
1111 1111  
xxxx xxxx  
xxxx xxxx  
0000 --00  
1111 1111  
uuuu uuuu  
uuuu uuuu  
0000 --00  
TRISE  
PORTE  
LATE  
PORTE Data Direction Control Register  
Read PORTE pin/Write PORTE Data Latch  
Read PORTE Data Latch/Write PORTE Data Latch  
EBDIS PGRM WAIT1 WAIT0  
MEMCON  
WM1  
WM0  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTE.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 115  
PIC18C601/801  
EXAMPLE 9-7:  
PROGRAMMING CHIP  
SELECT SIGNALS  
9.6  
PORTF, LATF, and TRISF  
Registers  
PORTF is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISF. Setting a  
TRISF bit (= 1) will make the corresponding PORTF pin  
an input (i.e., put the corresponding output driver in a  
Hi-Impedance mode). Clearing a TRISF bit (= 0) will  
make the corresponding PORTF pin an output (i.e., put  
the contents of the output latch on the selected pin).  
; Program chip select to activate CS1  
; for all address less than 03FFFFh,  
; while activate CS2 for rests of the  
; addresses  
; CSEL2 register is secured register.  
; Before it can be modified it,  
; combination lock must be opened  
Read-modify-write operations on the LATF register  
reads and writes the latched output value for PORTF.  
MOVLW 20h  
; Preload WREG with  
; correct CSEL2 valu  
; Disable interrupts  
; Now unlock it  
PORTF pins, RF2:RF0, are multiplexed with analog  
inputs. The operation of these pins are selected by  
ADCON0 and ADCON1 registers.  
BCF INTCON, GIE  
CALL UNLOCK  
; Lock is open. Modify CSEL2...  
MOVWF CSEL2  
PORTF pins, RF3 and RF5, are multiplexed with two of  
the integrated chip select signals CSIO and CS1. For  
PIC18C801, pin RF4 is multiplexed with chip select sig-  
nal CS2, while for PIC18C601, it is multiplexed with  
system bus signal A16. For PIC18C801 devices, both  
CSEL2 and CSELIO registers must set to all zero, to  
enable these pins as I/O pins, while for PIC18C601  
devices, only CSELIO register needs to be set to zero.  
For PIC18C601 devices, pin RF4 can only be config-  
ured as I/O when the EBDIS bit is set and execution is  
taking place in internal Boot RAM.  
; Lock is closed  
BSF INTCON, GIE  
; Chip select is programmed.  
; Re-enable interrupts  
UNLOCK  
BSF PSPCON, CMLK1  
BSF PSPCON, CMLK0  
RETURN  
PORTF pins, RF7:RF6, are multiplexed with the sys-  
tem bus control signal UB and LB, respectively, when a  
device with 16-bit bus execution is used. These pins  
can be configured as I/O pins by setting WM bits in the  
MEMCON register to any value other than 01.  
FIGURE 9-11:  
RF2:RF0 PINS BLOCK  
DIAGRAM  
Note 1: On Power-on Reset, PORTF pins  
RD LATF  
RF2:RF0 default to A/D inputs.  
Data Bus  
D
Q
2: On Power-on Reset, PORTF pins  
RF7:RF3 for PIC18C801 and pins  
RF7:RF5, RF3 for PIC18C601, default to  
system bus signals.  
VDD  
P
WR LATF  
or  
WR PORTF  
CK  
Q
Data Latch  
I/O pin  
N
D
Q
EXAMPLE 9-6:  
INITIALIZING PORTF  
WR TRISF  
VSS  
Analog  
CK  
TRIS Latch  
Q
CLRF  
PORTF  
; Initialize PORTF by  
; clearing output  
; data latches  
Input  
Mode  
CLRF  
LATF  
; Alternate method  
; to clear output  
; data latches  
ST  
RD TRISF  
Q
Input  
Buffer  
MOVLW  
MOVWF  
MOVLW  
0Fh  
ADCON1  
0CFh  
;
D
; Set PORTF as digital I/O  
; Value used to  
; initialize data  
; direction  
EN  
RD PORTF  
MOVWF  
TRISF  
; Set RF3:RF0 as inputs  
; RF5:RF4 as outputs  
; RF7:RF6 as inputs  
To A/D Converter  
Note: I/O pins have diode protection to VDD and VSS.  
DS39541A-page 116  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 9-12:  
RF5:RF3 PINS BLOCK DIAGRAM  
Q
D
EN  
RD PORTF  
RD LATF  
I/O pin(1)  
Port  
Data Bus  
D
Q
0
1
Data  
WR LATF  
or  
CK  
PORTF  
Data Latch  
TRIS Latch  
D
Q
WR TRISF  
CK  
RD TRISF  
CS Out  
System Bus  
Control  
External Enable  
Drive System  
Note 1: I/O pins have diode protection to VDD and VSS.  
FIGURE 9-13:  
RF7:RF6 PINS BLOCK DIAGRAM  
Q
D
EN  
RD PORTF  
RD LATF  
I/O pin(1)  
Data Bus  
Port  
D
Q
0
1
Data  
WR LATF  
or  
PORTF  
CK  
Data Latch  
TRIS Latch  
D
Q
WR TRISF  
CK  
RD TRISF  
UB/LB Out  
System Bus  
WM = 01’  
Control  
Drive System  
Note 1: I/O pins have diode protection to VDD and VSS.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 117  
PIC18C601/801  
TABLE 9-11: PORTF FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
Input/output port pin or analog input  
RF0/AN5  
RF1/AN6  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output port pin or analog input  
RF2/AN7  
Input/output port pin or analog input  
RF3/CSIO  
RF4/A16/CS2(1)  
RF5/CS1  
Input/output port pin or I/O chip select  
Input/output port pin or chip select 2 or address bit 16  
Input/output port pin or chip select 1  
RF6/LB  
Input/output port pin or low byte select signal for external memory  
Input/output port pin or high byte select signal for external memory  
RF7/UB  
Legend: ST = Schmitt Trigger input  
Note 1: CS2 is available only on PIC18C801.  
TABLE 9-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF  
Value on:  
POR,  
Value on all  
other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
1111 1111  
xxxx xxxx  
0000 0000  
--00 0000  
1111 1111  
uuuu uuuu  
uuuu uuuu  
--00 0000  
TRISF  
PORTF  
LATF  
PORTF Data Direction Control Register  
Read PORTF pin/Write PORTF Data Latch  
Read PORTF Data Latch/Write PORTF Data Latch  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0  
PGRM WAIT1 WAIT0 WM1 WM0  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTF.  
ADCON1  
0000 --00  
0000 --00  
MEMCON EBDIS  
DS39541A-page 118  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 9-14:  
PORTG BLOCK DIAGRAM  
IN I/O MODE  
9.7  
PORTG, LATG, and TRISG  
Registers  
PORTG is a 5-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISG. Setting a  
TRISG bit (= 1) will make the corresponding PORTG  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISG bit (= 0) will  
make the corresponding PORTG pin an output (i.e., put  
the contents of the output latch on the selected pin).  
RD LATG  
Data  
Bus  
D
Q
I/O pin(1)  
WR LATG  
or  
PORTG  
CK  
Data Latch  
Read-modify-write operations on the LATG register  
read and write the latched output value for PORTG.  
D
Q
PORTG is multiplexed with system bus control signals  
ALE, OE, WRH, WRL and BA0. The WRH signal is the  
only signal that is disabled and configured as a port pin  
(RG3) during external program execution in 8-bit mode.  
All other pins are by default, system bus control sig-  
nals. PORTG can be configured as an I/O port by set-  
ting EBDIS bit in the MEMCON register and when  
execution is taking place in internal program RAM.  
Schmitt  
Trigger  
Input  
WR TRISG  
CK  
TRIS Latch  
Buffer  
RD TRISG  
Q
D
Note: On Power-on Reset, PORTG defaults to  
EN  
system bus signals.  
RD PORTG  
EXAMPLE 9-8:  
INITIALIZING PORTG  
Note 1: I/O pins have diode protection to VDD and VSS.  
CLRF  
PORTG  
LATG  
04h  
; Initialize PORTG by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
MOVLW  
MOVWF  
TRISG  
; Set RG1:RG0 as outputs  
; RG2 as input  
; RG4:RG3 as outputs  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 119  
PIC18C601/801  
FIGURE 9-15:  
PORTG BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTG  
RD LATG  
I/O pin(1)  
Data Bus  
Port  
D
Q
0
1
Data  
WR LATG  
or  
PORTG  
CK  
Data Latch  
D
Q
WR TRISG  
CK  
TRIS Latch  
RD TRISG  
Control Out  
System Bus  
Control  
External Enable  
Drive System  
Note 1: I/O pins have diode protection to VDD and VSS.  
TABLE 9-13: PORTG FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RG0/ALE  
RG1/OE  
bit0  
bit1  
bit2  
bit3  
bit4  
ST  
ST  
ST  
ST  
ST  
Input/output port pin or Address Latch Enable signal for external memory  
Input/output port pin or Output Enable signal for external memory  
Input/output port pin or Write Low byte signal for external memory  
Input/output port pin or Write High byte signal for external memory  
Input/output port pin or Byte Address 0 signal for external memory  
RG2/WRL  
RG3/WRH  
RG4/BA0  
Legend: ST = Schmitt Trigger input  
TABLE 9-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG  
Value on:  
POR,  
Value on all  
other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1 Bit 0  
BOR  
RESETS  
---1 1111  
---x xxxx  
---x xxxx  
0000 --00  
---1 1111  
---u uuuu  
---u uuuu  
0000 --00  
TRISG  
PORTG  
LATG  
PORTG Data Direction Control Register  
Read PORTG pin/Write PORTG Data Latch  
Read PORTG Data Latch/Write PORTG Data Latch  
EBDIS PGRM WAIT1 WAIT0  
MEMCON  
WM1 WM0  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTG.  
DS39541A-page 120  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 9-16:  
RH3:RH0 PINS BLOCK  
DIAGRAM IN I/O MODE  
9.8  
PORTH, LATH, and TRISH  
Registers  
Note: PORTH is available only on PIC18C801  
devices.  
RD LATH  
Data  
Bus  
PORTH is an 8-bit wide, bi-directional I/O port. The cor-  
responding data direction register is TRISH. Setting a  
TRISH bit (= 1) will make the corresponding PORTH  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISH bit (= 0) will  
make the corresponding PORTH pin an output (i.e., put  
the contents of the output latch on the selected pin).  
D
Q
I/O pin(1)  
WR LATH  
or  
PORTH  
CK  
Data Latch  
D
Q
Read-modify-write operations on the LATH register  
read and write the latched output value for PORTH.  
Schmitt  
Trigger  
Input  
WR TRISH  
CK  
TRIS Latch  
Buffer  
Pins RH7:RH4 are multiplexed with analog inputs  
AN18:AN11, while pins RH3:RH0 are multiplexed with  
system address bus A19:A16. By default, pins  
RH7:RH4 will setup as A/D inputs and pins RH3:RH0  
will setup as system address bus. Register ADCON1  
configures RH7:RH4 as I/O or A/D inputs. Register  
MEMCON configures RH3:RH0 as I/O or system bus  
pins.  
RD TRISH  
Q
D
EN  
RD PORTH  
Note 1: On Power-on Reset, PORTH pins  
RH7:RH4 default to A/D inputs and read  
as 0.  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: On Power-on Reset, PORTH pins  
RH3:RH0 default to system bus signals.  
FIGURE 9-17:  
RH7:RH4 PINS BLOCK  
DIAGRAM  
EXAMPLE 9-9:  
INITIALIZING PORTH  
CLRF  
PORTH  
; Initialize PORTH by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
;
RD LATH  
Data  
Bus  
D
Q
CLRF  
LATH  
I/O pin(1)  
WR LATH  
or  
PORTH  
CK  
Data Latch  
MOVLW  
MOVWF  
MOVLW  
0Fh  
ADCON1  
0CFh  
;
; Value used to  
; initialize data  
; direction  
D
Q
Schmitt  
Trigger  
Input  
WR TRISH  
CK  
TRIS Latch  
MOVWF  
TRISH  
; Set RH3:RH0 as inputs  
; RH5:RH4 as outputs  
; RH7:RH6 as inputs  
Buffer  
RD TRISH  
Q
D
EN  
RD PORTH  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 121  
PIC18C601/801  
FIGURE 9-18:  
RH3:RH0 PINS BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTH  
RD LATD  
I/O pin(1)  
Data Bus  
Port  
D
Q
0
1
Data  
WR LATH  
or  
PORTH  
CK  
Data Latch  
D
Q
WR TRISH  
TTL  
Input  
Buffer  
CK  
TRIS Latch  
RD TRISH  
External Enable.  
Address Out  
System Bus  
Control  
Drive System  
To Instruction Register  
Instruction Read  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS39541A-page 122  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 9-15: PORTH FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RH0/A16(1)  
RH1/A17(1)  
RH2/A18(1)  
RH3/A19(1)  
RH4/AN8(1)  
RH5/AN9(1)  
RH6/AN10(1)  
RH7/AN11(1)  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output port pin or Address bit 16 for external memory interface  
Input/output port pin or Address bit 17 for external memory interface  
Input/output port pin or Address bit 18 for external memory interface  
Input/output port pin or Address bit 19 for external memory interface  
Input/output port pin or analog input channel 8  
Input/output port pin or analog input channel 9  
Input/output port pin or analog input channel 10  
Input/output port pin or analog input channel 11  
Legend: ST = Schmitt Trigger input  
Note 1: PORTH is available only on PIC18C801 devices.  
TABLE 9-16: SUMMARY OF REGISTERS ASSOCIATED WITH PORTH  
Value on:  
POR,  
Value on all  
other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
1111 1111  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 --00  
1111 1111  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 --00  
TRISH  
PORTH Data Direction Control Register  
PORTH Read PORTH pin/Write PORTH Data Latch  
LATH  
Read PORTH Data Latch/Write PORTH Data Latch  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0  
WM1 WM0  
ADCON1  
MEMCON EBDIS PGRM WAIT1 WAIT0  
Legend: x= unknown, u= unchanged, - = unimplemented. Shaded cells are not used by PORTH.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 123  
PIC18C601/801  
FIGURE 9-19:  
PORTJ BLOCK DIAGRAM  
IN I/O MODE  
9.9  
PORTJ, LATJ, and TRISJ  
Registers  
Note: PORTJ is available only on PIC18C801  
devices.  
RD LATJ  
Data  
Bus  
PORTJ is an 8-bit wide, bi-directional I/O port. The cor-  
responding data direction register is TRISJ. Setting a  
TRISJ bit (= 1) will make the corresponding PORTJ pin  
an input (i.e., put the corresponding output driver in a  
Hi-Impedance mode). Clearing a TRISJ bit (= 0) will  
make the corresponding PORTJ pin an output (i.e., put  
the contents of the output latch on the selected pin).  
D
Q
I/O pin(1)  
WR LATJ  
or  
PORTJ  
CK  
Data Latch  
D
Q
Read-modify-write operations on the LATJ register  
read and write the latched output value for PORTJ.  
Schmitt  
Trigger  
Input  
WR TRISJ  
CK  
TRIS Latch  
Buffer  
PORTJ is multiplexed with de-multiplexed system data  
bus D7:D0, when device is configured in 8-bit execution  
mode. Register MEMCON configures PORTJ as I/O or  
system bus pins.  
RD TRISJ  
Note: On Power-on Reset, PORTJ defaults to  
Q
D
system bus signals.  
EN  
RD PORTJ  
EXAMPLE 9-10:  
INITIALIZING PORTJ  
Note 1: I/O pins have diode protection to VDD and VSS.  
CLRF  
PORTJ  
; Initialize PORTJ by  
; clearing output  
; data latches  
CLRF  
LATJ  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0CFh  
; Value used to  
; initialize data  
; direction  
; Set RJ3:RJ0 as inputs  
; RJ5:RJ4 as outputs  
; RJ7:RJ6 as inputs  
TRISJ  
DS39541A-page 124  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 9-20:  
PORTJ BLOCK DIAGRAM IN SYSTEM DATA BUS MODE  
Q
D
EN  
RD PORTJ  
RD LATD  
I/O pin(1)  
Data Bus  
Port  
D
Q
0
1
Data  
WR LATJ  
or  
PORTJ  
CK  
Data Latch  
TRIS Latch  
D
Q
WR TRISJ  
TTL  
Input  
Buffer  
CK  
S
R
RD TRISJ  
External Enable  
Data Out  
System Bus  
Control  
Drive System  
To Instruction Register  
Instruction Read  
Note 1: I/O pins have diode protection to VDD and VSS.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 125  
PIC18C601/801  
TABLE 9-17: PORTJ FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RJ0/D0(1)  
RJ1/D1(1)  
RJ2/D2(1)  
RJ3/D3(1)  
RJ4/D4(1)  
RJ5/D5(1)  
RJ6/D6(1)  
RJ7/D7(1)  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
Input/output port pin or Data bit 0 for external memory interface  
Input/output port pin or Data bit 1 for external memory interface  
Input/output port pin or Data bit 2 for external memory interface  
Input/output port pin or Data bit 3 for external memory interface  
Input/output port pin or Data bit 4 for external memory interface  
Input/output port pin or Data bit 5 for external memory interface  
Input/output port pin or Data bit 6 for external memory interface  
Input/output port pin or Data bit 7 for external memory interface  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: PORTJ is available only on PIC18C801 devices.  
TABLE 9-18: SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ  
Value on:  
POR,  
Value on all  
other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
1111 1111  
xxxx xxxx  
xxxx xxxx  
0000 --00  
1111 1111  
uuuu uuuu  
uuuu uuuu  
0000 --00  
TRISJ  
PORTJ  
LATJ  
PORTJ Data Direction Control Register  
Read PORTJ pin/Write PORTJ Data Latch  
Read PORTJ Data Latch/Write PORTJ Data Latch  
MEMCON EBDIS PGRM WAIT1 WAIT0  
WM1  
WM0  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTJ.  
DS39541A-page 126  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Register 10-1 shows the Timer0 Control register  
(T0CON).  
10.0 TIMER0 MODULE  
The Timer0 module has the following features:  
Figure 10-1 shows a simplified block diagram of the  
Timer0 module in 8-bit mode and Figure 10-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
Software selectable as an 8-bit or 16-bit timer/  
counter  
Readable and writable  
Dedicated 8-bit software programmable prescaler  
Clock source selectable to be external or internal  
The T0CON register is a readable and writable register  
that controls all the aspects of Timer0, including the  
prescale selection.  
Interrupt on overflow from FFh to 00h in 8-bit  
mode and FFFFh to 0000h in 16-bit mode  
Note: Timer0 is enabled on POR.  
Edge select for external clock  
REGISTER 10-1: T0CON REGISTER  
R/W-1  
TMR0ON  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
T08BIT  
bit 0  
bit 7  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
bit 6  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
bit 5  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
bit 4  
bit 3  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
bit 2-0  
T0PS2:T0PS0: Timer0 Prescaler Select bits  
111= 1:256 prescale value  
110= 1:128 prescale value  
101= 1:64 prescale value  
100= 1:32 prescale value  
011= 1:16 prescale value  
010= 1:8 prescale value  
001= 1:4 prescale value  
000= 1:2 prescale value  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 127  
PIC18C601/801  
FIGURE 10-1:  
TIMER0 BLOCK DIAGRAM IN 8-BIT MODE  
Data Bus  
FOSC/4  
0
1
8
0
Sync with  
Internal  
Clocks  
TMR0L  
RA4/T0CKI  
pin(2)  
Programmable  
Prescaler  
1
(2 TCY delay)  
T0SE  
3
PSA  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
T0PS2, T0PS1, T0PS0  
T0CS(1)  
Note 1: Upon RESET, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
2: I/O pins have diode protection to VDD and VSS.  
FIGURE 10-2:  
TIMER0 BLOCK DIAGRAM IN 16-BIT MODE  
FOSC/4  
0
0
Sync with  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
TMR0  
High Byte  
Internal  
Clocks  
1
TMR0L  
Programmable  
Prescaler  
RA4/T0CKI  
pin(2)  
1
8
(2 TCY delay)  
T0SE  
3
Read TMR0L  
Write TMR0L  
T0PS2, T0PS1, T0PS0  
T0CS(1)  
PSA  
8
8
TMR0H  
8
Data Bus<7:0>  
Note 1: Upon RESET, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
2: I/O pins have diode protection to VDD and VSS.  
DS39541A-page 128  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
10.2.1  
SWITCHING PRESCALER  
ASSIGNMENT  
10.1 Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
The prescaler assignment is fully under software con-  
trol (i.e., it can be changed on-the-flyduring program  
execution).  
Timer mode is selected by clearing the T0CS bit. In  
Timer mode, the Timer0 module will increment every  
instruction cycle (without prescaler). If the TMR0L reg-  
ister is written, the increment is inhibited for the follow-  
ing two instruction cycles. The user can work around  
this by writing an adjusted value to the TMR0L register.  
10.3 Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h in 8-bit mode, or FFFFh  
to 0000h in 16-bit mode. This overflow sets the TMR0IF  
bit. The interrupt can be masked by clearing the  
TMR0IE bit. The TMR0IF bit must be cleared in soft-  
ware by the Timer0 module Interrupt Service Routine  
before re-enabling this interrupt. The TMR0 interrupt  
cannot awaken the processor from SLEEP, since the  
timer is shut-off during SLEEP.  
Counter mode is selected by setting the T0CS bit. In  
Counter mode, Timer0 will increment either on every  
rising, or falling edge, of pin RA4/T0CKI. The incre-  
menting edge is determined by the Timer0 Source  
Edge Select bit (T0SE). Clearing the T0SE bit selects  
the rising edge. Restrictions on the external clock input  
are discussed below.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
10.4 16-Bit Mode Timer Reads and  
Writes  
Timer0 can be set in 16-bit mode by clearing T0CON  
T08BIT. Registers TMR0H and TMR0L are used to  
access 16-bit timer value.  
10.2 Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module. The prescaler is not readable or  
writable.  
TMR0H is not the high byte of the timer/counter in  
16-bit mode, but is actually a buffered version of the  
high byte of Timer0 (refer to Figure 10-1). The high byte  
of the Timer0 counter/timer is not directly readable nor  
writable. TMR0H is updated with the contents of the  
high byte of Timer0 during a read of TMR0L. This pro-  
vides the ability to read all 16-bits of Timer0 without  
having to verify that the read of the high and low byte  
were valid, due to a rollover between successive reads  
of the high and low byte.  
The PSA and T0PS2:T0PS0 bits determine the  
prescaler assignment and prescale ratio.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF TMR0,  
MOVWF TMR0, BSF TMR0, x.... etc.) will clear the  
prescaler count.  
A write to the high byte of Timer0 must also take place  
through the TMR0H buffer register. Timer0 high byte is  
updated with the contents of the buffered value of  
TMR0H, when a write occurs to TMR0L. This allows all  
16-bits of Timer0 to be updated at once.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0, will clear the prescaler  
count but will not change the prescaler  
assignment.  
TABLE 10-1: REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 000x 0000 000u  
1111 1111 1111 1111  
--11 1111 --11 1111  
TMR0L Timer0 Modules Low Byte Register  
TMR0H Timer0 Modules High Byte Register  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF  
T0CON TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0  
TRISA PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 129  
PIC18C601/801  
Register 11-1 shows the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module as well as contains the Timer1 oscillator enable  
bit (T1OSCEN). Timer1 can be enabled/disabled by  
setting/clearing control bit TMR1ON (T1CON register).  
11.0 TIMER1 MODULE  
The Timer1 module timer/counter has the following  
features:  
16-bit timer/counter  
(Two 8-bit registers: TMR1H and TMR1L)  
Figure 11-1 is a simplified block diagram of the Timer1  
module.  
Readable and writable (both registers)  
Internal or external clock select  
Note: Timer1 is disabled on POR.  
Interrupt on overflow from FFFFh to 0000h  
RESET from CCP module special event trigger  
REGISTER 11-1: T1CON REGISTER  
R/W-0  
RD16  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register Read/Write of TImer1 in one 16-bit operation  
0= Enables register Read/Write of Timer1 in two 8-bit operations  
bit 6  
Unimplemented: Read as '0'  
bit 5-4  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1=Timer1 Oscillator is enabled  
0=Timer1 Oscillator is shut-off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39541A-page 130  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
When TMR1CS is clear, Timer1 increments every  
instruction cycle. When TMR1CS is set, Timer1 incre-  
ments on every rising edge of the external clock input  
or the Timer1 oscillator, if enabled.  
11.1 Timer1 Operation  
Timer1 can operate in one of these modes:  
As a timer  
As a synchronous counter  
As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is set),  
the RC1/T1OSI and RC0/T1OSO/T1CKI pins become  
inputs. That is, the TRISC<1:0> value is ignored.  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON register).  
Timer1 also has an internal RESET input. This RESET  
can be generated by the CCP module (Table 14.0).  
Note: When Timer1 is configured in an Asyn-  
chronous mode, care must be taken to  
make sure that there is no incoming pulse  
while Timer1 is being turned off. If there is  
an incoming pulse while Timer1 is being  
turned off, Timer1 value may become  
unpredictable.  
If an application requires that Timer1 be  
turned off and if it is possible that Timer1  
may receive an incoming pulse while being  
turned off, synchronize the external clock  
first, by clearing the T1SYNC bit of register  
T1CON. Please note that this may cause  
Timer1 to miss up to one count.  
FIGURE 11-1:  
TIMER1 BLOCK DIAGRAM  
CCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Flag Bit  
Synchronized  
TMR1  
CLR  
0
Clock Input  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
On/Off  
T1SYNC  
1
T13CKI/T1OSO  
T1OSI  
Synchronize  
Prescaler  
T1OSCEN  
Enable  
Oscillator  
1, 2, 4, 8  
det  
FOSC/4  
Internal  
Clock  
(1)  
0
2
SLEEP Input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This reduces power drain.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 131  
PIC18C601/801  
FIGURE 11-2:  
TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR1H  
8
8
Write TMR1L  
Read TMR1L  
Special Event Trigger  
0
Synchronized  
Clock Input  
TMR1IF  
Overflow  
Interrupt  
Flag bit  
TMR1  
8
Timer 1  
High Byte  
TMR1L  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
T13CKI/T1OSO  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
FOSC/4  
Internal  
Clock  
Enable  
0
(1)  
T1OSI  
Oscillator  
2
SLEEP Input  
TMR1CS  
T1CKPS1:T1CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This reduces power drain.  
DS39541A-page 132  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
11.2 Timer1 Oscillator  
11.4 Resetting Timer1 using a CCP  
Trigger Output  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON register). The  
oscillator is a low power oscillator rated up to 200 kHz.  
It will continue to run during SLEEP. It is primarily  
intended for a 32 kHz crystal. Table 11-1 shows the  
capacitor selection for the Timer1 oscillator.  
If the CCP module is configured in Compare mode  
to  
generate  
a
special  
event  
trigger"  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer1 and start an A/D conversion (if the A/D module  
is enabled).  
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR registers).  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
Timer1 must be configured for either Timer, or Synchro-  
nized Counter mode, to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this RESET operation may not work.  
TABLE 11-1: CAPACITOR SELECTION FOR  
THE ALTERNATE  
OSCILLATOR  
In the event that a write to Timer1 coincides with a special  
event trigger from CCP1, the write will take precedence.  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
TBD(1)  
TBD(1)  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair, effectively becomes the period register for  
Timer1.  
Crystal to be Tested:  
32.768 kHz Epson C-001R32.768K-A  
20 PPM  
Note 1: Microchip suggests 33 pF as a starting  
point in validating the oscillator circuit.  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
11.5 Timer1 16-Bit Read/Write Mode  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 11-2). When the RD16 control bit (T1CON  
register) is set, the address for TMR1H is mapped to a  
buffer register for the high byte of Timer1. A read from  
TMR1L will load the contents of the high byte of Timer1  
into the Timer1 high byte buffer. This provides the user  
with the ability to accurately read all 16 bits of Timer1,  
without having to determine whether a read of the high  
byte followed by a read of the low byte is valid, due to  
a rollover between reads.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components.  
4: Capacitor values are for design guidance  
only.  
11.3 Timer1 Interrupt  
A write to the high byte of Timer1 must also take place  
through the TMR1H buffer register. Timer1 high byte is  
updated with the contents of TMR1H when a write  
occurs to TMR1L. This allows a user to write all 16-bits  
to both the high and low bytes of Timer1 at once.  
The TMR1 Register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 interrupt, if enabled, is generated on overflow,  
which is latched in interrupt flag bit TMR1IF (PIR regis-  
ters). This interrupt can be enabled/disabled by setting/  
clearing TMR1 interrupt enable bit TMR1IE (PIE  
registers).  
The high byte of Timer1 is not directly readable or writ-  
able in this mode. All reads and writes must take place  
through the Timer1 high byte buffer register. Writes to  
TMR1H do not clear the Timer1 prescaler. The  
prescaler is only cleared on writes to TMR1L.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 133  
PIC18C601/801  
TABLE 11-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PIE1  
IPR1  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF TMR2IF  
CCP1IE TMR2IE  
CCP1IP TMR2IP  
TMR1IF -000 0000 -000 0000  
TMR1IE -000 0000 -000 0000  
TMR1IP -000 0000 -000 0000  
xxxx xxxx uuuu uuuu  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx uuuu uuuu  
T1CON  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.  
DS39541A-page 134  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
12.1 Timer2 Operation  
12.0 TIMER2 MODULE  
Timer2 can be used as the PWM time-base for the PWM  
mode of the CCP module. The TMR2 register is read-  
able and writable, and is cleared on any device RESET.  
The input clock (FOSC/4) has a prescale option of 1:1,  
The Timer2 module timer has the following features:  
8-bit timer (TMR2 register)  
8-bit period register (PR2)  
Readable and writable (both registers)  
Software programmable prescaler (1:1, 1:4, 1:16)  
Software programmable postscaler (1:1 to 1:16)  
Interrupt on TMR2 match of PR2  
1:4,  
or  
1:16,  
selected  
by  
control  
bits  
T2CKPS1:T2CKPS0 (T2CON register). The match out-  
put of TMR2 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2  
interrupt (latched in flag bit TMR2IF, PIR registers).  
SSP module optional use of TMR2 output to  
generate clock shift  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Register 12-1 shows the Timer2 Control register.  
Timer2 can be shut-off by clearing control bit TMR2ON  
(T2CON register), to minimize power consumption.  
Figure 12-1 is a simplified block diagram of the Timer2  
module. The prescaler and postscaler selection of  
Timer2 are controlled by this register.  
A write to the TMR2 register  
A write to the T2CON register  
Any device RESET (Power-on Reset, MCLR  
Reset, or Watchdog Timer Reset)  
TMR2 is not cleared when T2CON is written.  
Note: Timer2 is disabled on POR.  
REGISTER 12-1: T2CON REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as '0'  
bit 6-3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 135  
PIC18C601/801  
12.2 Timer2 Interrupt  
12.3 Output of TMR2  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon RESET.  
The output of TMR2 (before the postscaler) is a clock  
input to the Synchronous Serial Port module, which  
optionally uses it to generate the shift clock.  
FIGURE 12-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
bit TMR2IF  
TMR2  
Output(1)  
Prescaler  
RESET  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
2
Comparator  
PR2  
1:16  
1:1 to  
EQ  
T2CKPS1:T2CKPS0  
4
TOUTPS3:TOUTPS0  
Note 1: TMR2 register output can be software selected by the SSP Module as a baud clock.  
TABLE 12-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PIE1  
IPR1  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF  
CCP1IE  
CCP1IP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR1IF -000 0000 -000 0000  
TMR1IE -000 0000 -000 0000  
TMR1IP -000 0000 -000 0000  
0000 0000 0000 0000  
TMR2 Timer2 Modules Register  
T2CON  
PR2  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.  
DS39541A-page 136  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Figure 13-1 is a simplified block diagram of the Timer3  
module.  
13.0 TIMER3 MODULE  
The Timer3 module timer/counter has the following  
features:  
Register 13-1 shows the Timer3 Control register. This  
register controls the operating mode of the Timer3  
module and sets the CCP clock source.  
16-bit timer/counter  
(Two 8-bit registers: TMR3H and TMR3L)  
Register 11-1 shows the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module, as well as contains the Timer1 oscillator  
enable bit (T1OSCEN), which can be a clock source for  
Timer3.  
Readable and writable (both registers)  
Internal or external clock select  
Interrupt on overflow from FFFFh to 0000h  
RESET from CCP module trigger  
Note: Timer3 is disabled on POR.  
REGISTER 13-1: T3CON REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable  
1= Enables register Read/Write of Timer3 in one 16-bit operation  
0= Enables register Read/Write of Timer3 in two 8-bit operations  
bit 6,3  
T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits  
1x=Timer3 is the clock source for compare/capture CCP modules  
01=Timer3 is the clock source for compare/capture of CCP2,  
Timer1 is the clock source for compare/capture of CCP1  
00=Timer1 is the clock source for compare/capture CCP modules  
bit 5-4  
bit 2  
T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the system clock comes from Timer1/Timer3)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T1CKI (on the rising edge after the first  
falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 137  
PIC18C601/801  
When TMR3CS = 0, Timer3 increments every instruc-  
tion cycle. When TMR3CS = 1, Timer3 increments on  
every rising edge of the Timer1 external clock input or  
the Timer1 oscillator, if enabled.  
13.1 Timer3 Operation  
Timer3 can operate in one of these modes:  
As a timer  
As a synchronous counter  
As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON register).  
Timer3 also has an internal RESET input. This  
RESET can be generated by the CCP module  
(Section 13.0).  
FIGURE 13-1:  
TIMER3 BLOCK DIAGRAM  
CCP Special Trigger  
TMR3IF  
T3CCPx  
Synchronized  
Overflow  
Interrupt  
Flag bit  
0
Clock Input  
CLR  
TMR3L  
TMR3H  
T1OSC  
1
TMR3ON  
On/Off  
T3SYNC  
(3)  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
Oscillator  
T1OSI  
2
SLEEP Input  
TMR3CS  
T3CKPS1:T3CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This reduces power drain.  
FIGURE 13-2:  
TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR3H  
8
8
Write TMR3L  
Read TMR3L  
CCP Special Trigger  
T3CCPx  
0
Synchronized  
Clock Input  
8
TMR3  
TMR3IF Overflow  
Interrupt Flag  
bit  
CLR  
TMR3H  
TMR3L  
1
TMR3ON  
On/Off  
To Timer1 Clock Input  
T3SYNC  
T1OSC  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
SLEEP Input  
T3CKPS1:T3CKPS0  
TMR3CS  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This reduces power drain.  
DS39541A-page 138  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
13.2 Timer1 Oscillator  
13.4 Resetting Timer3 Using a CCP  
Trigger Output  
The Timer1 oscillator may be used as the clock source  
for Timer3. The Timer1 oscillator is enabled by setting  
the T1OSCEN bit (T1CON Register). The oscillator is  
a low power oscillator rated up to 200 kHz. Refer to  
Timer1 Module, Section 11.0, for Timer1 oscillator  
details.  
If the CCP module is configured in Compare mode to  
generate a special event trigger" (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer3.  
Note: The special event triggers from the CCP  
module will not set interrupt flag bit  
TMR3IF (PIR registers).  
13.3 Timer3 Interrupt  
Timer3 must be configured for either Timer, or Synchro-  
nized Counter mode, to take advantage of this feature. If  
Timer3 is running in Asynchronous Counter mode, this  
RESET operation may not work. In the event that a write  
to Timer3 coincides with a special event trigger from  
CCP1, the write will take precedence. In this mode of  
operation, the CCPR1H:CCPR1L registers pair  
becomes the period register for Timer3. Refer to  
Section 14.0, Capture/Compare/PWM (CCP) Modules,  
for CCP details.  
The TMR3 register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR3 interrupt, if enabled, is generated on overflow,  
which is latched in interrupt flag bit TMR3IF (PIE  
registers). This interrupt can be enabled/disabled by  
setting/clearing TMR3 interrupt enable bit TMR3IE  
(PIE registers).  
TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR2  
PIE2  
IPR2  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
CCP2IF ---- 0000 -0-- 0000  
TMR3IE CCP2IE ---- 0000 -0-- 0000  
TMR3IP CCP2IP ---- 0000 -0-- 0000  
TMR3L Holding register for the Least Significant Byte of the 16-bit TMR3 register  
TMR3H Holding register for the Most Significant Byte of the 16-bit TMR3 register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CON  
T3CON  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 139  
PIC18C601/801  
NOTES:  
DS39541A-page 140  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
The operation of CCP1 is identical to that of CCP2, with  
the exception of the special event trigger. Therefore,  
operation of a CCP module in the following sections is  
described, with respect to CCP1.  
14.0 CAPTURE/COMPARE/PWM  
(CCP) MODULES  
Each CCP (Capture/Compare/PWM) module contains  
a 16-bit register that can operate as a 16-bit capture  
register, as a 16-bit compare register, or as a PWM  
Duty Cycle register. Table 14-1 shows the timer  
resources of the CCP module modes.  
Table 14-2 shows the interaction of the CCP modules.  
Register 14-1 shows the CCPx Control registers  
(CCPxCON). For the CCP1 module, the register is  
called CCP1CON and for the CCP2 module, the regis-  
ter is called CCP2CON.  
REGISTER 14-1: CCP1CON REGISTER  
CCP2CON REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCP1CON  
CCP2CON  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit 0  
bit 7  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC2B1  
DC2B0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as '0'  
DCxB1:DCxB0: PWM Duty Cycle bit1 and bit0  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs (bit1 and bit0) of the 10-bit PWM duty cycle. The upper eight bits  
(DCx9:DCx2) of the duty cycle are found in CCPRxL.  
bit 3-0  
CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM off (resets CCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match (CCPxIF bit is set)  
0011= Reserved  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode,  
Initialize CCP pin Low, on compare match force CCP pin High (CCPIF bit is set)  
1001= Compare mode,  
Initialize CCP pin High, on compare match force CCP pin Low (CCPIF bit is set)  
1010= Compare mode,  
Generate software interrupt on compare match  
(CCPIF bit is set, CCP pin is unaffected)  
1011= Compare mode,  
Trigger special event (CCPIF bit is set, reset TMR1 or TMR3)  
11xx= PWM mode  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 141  
PIC18C601/801  
14.1 CCP1 Module  
14.3 Capture Mode  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
In Capture mode, CCPR1H:CCPR1L captures the 16-bit  
value of the TMR1 or TMR3 registers, when an event  
occurs on pin RC2/CCP1. An event is defined as:  
every falling edge  
every rising edge  
14.2 CCP2 Module  
every 4th rising edge  
every 16th rising edge  
Capture/Compare/PWM Register2 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. All are readable and writable.  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR registers) is set. It  
must be cleared in software. If another capture occurs  
before the value in register CCPR1 is read, the old cap-  
tured value will be lost.  
TABLE 14-1: CCP MODE - TIMER  
RESOURCE  
CCP Mode  
Timer Resource  
14.3.1  
CCP PIN CONFIGURATION  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
Note: If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
14.3.2  
TIMER1/TIMER3 MODE SELECTION  
The timers used with the capture feature (either Timer1  
and/or Timer3) must be running in Timer mode or Syn-  
chronized Counter mode. In Asynchronous Counter  
mode, the capture operation may not work. The timer  
used with each CCP module is selected in the T3CON  
register.  
TABLE 14-2: INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Capture  
TMR1 or TMR3 time-base. Time-base can be different for each CCP.  
Compare The compare could be configured for the special event trigger, which clears either TMR1  
or TMR3, depending upon which time-base is used.  
Compare  
Compare The compare(s) could be configured for the special event trigger, which clears TMR1 or  
TMR3, depending upon which time-base is used.  
PWM  
PWM  
PWM  
PWM  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
None.  
Capture  
Compare None.  
DS39541A-page 142  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared; therefore, the first capture may be from  
a non-zero prescaler. Example 14-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the falseinterrupt.  
14.3.3  
SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE registers) clear to avoid false interrupts  
and should clear the flag bit CCP1IF, following any  
such change in operating mode.  
14.3.4  
CCP PRESCALER  
EXAMPLE 14-1:  
CHANGING BETWEEN  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
RESET will clear the prescaler counter.  
CAPTURE PRESCALERS  
CLRF  
CCP1CON, F ; Turn CCP module off  
MOVLW NEW_CAPT_PS ; Load WREG with the  
; new prescaler mode  
; value and CCP ON  
MOVWF CCP1CON  
; Load CCP1CON with  
; this value  
FIGURE 14-1:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
CCPR1L  
TMR1L  
RC2/CCP1 pin  
Set Flag bit CCP1IF  
T3CCP2  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
RXB0IF or  
RXB1IF  
CCPR1H  
TMR1  
CCP1CON<3:0>  
and  
edge detect  
T3CCP2  
Enable  
TMR1H  
CCP1M3:CCP1M0  
Qs  
Set Flag bit CCP2IF  
T3CCP1  
TMR3H  
TMR3L  
CCPR2L  
TMR1L  
T3CCP2  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
RC1/CCP2 pin  
CCPR2H  
TMR1  
and  
edge detect  
Enable  
T3CCP2  
T3CCP1  
TMR1H  
CCP2M3:CCP2M0  
Qs  
Note: I/O pins have diode protection to VDD and VSS.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 143  
PIC18C601/801  
14.4.2  
TIMER1/TIMER3 MODE SELECTION  
14.4 Compare Mode  
Timer1 and/or Timer3 must be running in Timer mode,  
or Synchronized Counter mode, if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
In Compare mode, the 16-bit CCPR1 (CCPR2) register  
value is constantly compared against either the TMR1  
register pair value, or the TMR3 register pair value.  
When a match occurs, the RC2/CCP1 (RC1/CCP2) pin  
can have one of the following actions:  
14.4.3  
SOFTWARE INTERRUPT MODE  
Driven high  
When Generate Software Interrupt is chosen, the  
CCP1 pin is not affected. Only a CCP interrupt is gen-  
erated (if enabled).  
Driven low  
Toggle output (high to low or low to high)  
Remains unchanged  
14.4.4  
SPECIAL EVENT TRIGGER  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP2M3:CCP2M0). At the  
same time, interrupt flag bit CCP1IF (CCP2IF) is set.  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
14.4.1  
CCP PIN CONFIGURATION  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRISC bit.  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
The special trigger output of CCPx resets either the  
TMR1, or TMR3 register pair. Additionally, the CCP2  
Special Event Trigger will start an A/D conversion, if the  
A/D module is enabled.  
Note: The special event trigger from the CCP2  
module will not set the Timer1 or Timer3  
interrupt flag bits.  
FIGURE 14-2:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger will:  
Reset Timer1 or Timer3 (but not set Timer1 or Timer3 Interrupt Flag bit)  
Set bit GO/DONE, which starts an A/D conversion (CCP2 only)  
Special Event Trigger  
Set Flag bit CCP1IF  
Match  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
RC2/CCP1  
pin  
TRISC<2>  
Output Enable  
1
CCP1M3:CCP1M0  
Mode Select  
0
T3CCP2  
TMR1H TMR1L  
TMR3H TMR3L  
Special Event Trigger  
Set Flag bit CCP2IF  
T3CCP1  
T3CCP2  
0
1
Q
S
R
Output  
Logic  
Comparator  
Match  
RC1/CCP2  
pin  
TRISC<1>  
Output Enable  
CCPR2H CCPR2L  
CCP2M3:CCP2M0  
Mode Select  
Note: I/O pins have diode protection to VDD and VSS.  
DS39541A-page 144  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 14-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PIE1  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IP TMR2IP TMR1IP -000 0000 -000 0000  
1111 1111 1111 1111  
IPR1  
TRISC  
TMR1L  
TMR1H  
T1CON  
PORTC Data Direction Register  
Holding register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
CCPR1L Capture/Compare/PWM Register1 (LSB)  
CCPR1H Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
CCPR2L Capture/Compare/PWM Register2 (LSB)  
CCPR2H Capture/Compare/PWM Register2 (MSB)  
xxxx xxxx uuuu uuuu  
CCP2CON  
PIR2  
DC2B1  
DC2B0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF CCP2IF ---- 0000 ---- 0000  
TMR3IE CCP2IE ---- 0000 ---- 0000  
TMR3IP CCP2IP ---- 0000 ---- 0000  
PIE2  
IPR2  
TMR3L  
TMR3H  
T3CON  
Holding register for the Least Significant Byte of the 16-bit TMR3 register  
Holding register for the Most Significant Byte of the 16-bit TMR3 register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 145  
PIC18C601/801  
14.5.1  
PWM PERIOD  
14.5 PWM Mode  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated by the  
formula:  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
PWM period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
where PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
TMR2 is cleared  
Figure 14-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step-by-step procedure on how to setup the CCP  
module for PWM operation, see Section 14.5.3.  
The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
Note: The Timer2 postscaler (see Section 12.1)  
is not used in the determination of the  
PWM frequency. The postscaler could be  
used to have a servo update rate at a dif-  
ferent frequency than the PWM output.  
FIGURE 14-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L (Master)  
14.5.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Comparator  
Q
R
S
RC2/CCP1  
(Note 1)  
TMR2  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC (TMR2 prescale value)  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
CCP1 pin and  
latch D.C.  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock, or  
2 bits of the prescaler, to create 10-bit time-base.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
A PWM output (Figure 14-4) has a time-base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
When the CCPR1H and 2-bit latch match TMR2, con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the equation:  
FIGURE 14-4:  
PWM OUTPUT  
Period  
FOSC   
---------------  
log  
FPWM  
PWM Resolution (max)  
= ----------------------------- b i t s  
log(2)  
Duty Cycle  
TMR2 = PR2  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
TMR2 = Duty Cycle  
TMR2 = PR2  
DS39541A-page 146  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
14.5.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
1. Set the PWM period by writing to the PR2  
register.  
5. Configure the CCP1 module for PWM operation.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
TABLE 14-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 25 MHz  
PWM Frequency  
1.53 kHz 6.10 kHz 24.41 kHz  
97.66kHz 195.31 kHz 260.42 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
6.6  
Maximum Resolution (bits)  
TABLE 14-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PIE1  
IPR1  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF TMR2IF  
TMR1IF -000 0000 -000 0000  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IP TMR2IP TMR1IP -000 0000 -000 0000  
1111 1111 1111 1111  
TRISC PORTC Data Direction Register  
TMR2  
PR2  
Timer2 Modules Register  
0000 0000 0000 0000  
Timer2 Modules Period Register  
1111 1111 1111 1111  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
CCPR1L Capture/Compare/PWM Register1 (LSB)  
CCPR1H Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
CCPR2L Capture/Compare/PWM Register2 (LSB)  
CCPR2H Capture/Compare/PWM Register2 (MSB)  
xxxx xxxx uuuu uuuu  
CCP2CON  
PIR2  
DC2B1  
DC2B0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
CCP2IF ---- 0000 ---- 0000  
PIE2  
TMR3IE CCP2IE ---- 0000 ---- 0000  
TMR3IP CCP2IP ---- 0000 ---- 0000  
IPR2  
Legend: x= unknown, u= unchanged, = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 147  
PIC18C601/801  
NOTES:  
DS39541A-page 148  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
15.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
15.1 Master SSP (MSSP) Module  
Overview  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
Serial Peripheral InterfaceTM (SPI)  
Inter-Integrated CircuitTM (I2C)  
- Full Master mode  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
Master mode  
Multi-Master mode  
Slave mode  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 149  
PIC18C601/801  
Register 15-1 shows the MSSP Status Register  
(SSPSTAT), Register 15-2 shows the MSSP Control  
Register 1 (SSPCON1), and Register 15-3 shows the  
MSSP Control Register 2 (SSPCON2).  
15.2 Control Registers  
The MSSP module has three associated registers.  
These include a status register and two control registers.  
REGISTER 15-1: SSPSTAT REGISTER  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
2
In I C Master or Slave mode:  
1= Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0= Slew rate control enabled for high speed mode (400 kHz)  
bit 6  
CKE: SPI Clock Edge Select  
CKP = 0:  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
CKP = 1:  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
2
bit 5  
bit 4  
D/A: Data/Address bit (I C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: STOP bit  
2
(I C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a STOP bit has been detected last (this bit is 0on RESET)  
0= STOP bit was not detected last  
bit 3  
bit 2  
S: START bit  
2
(I C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a START bit has been detected last (this bit is 0on RESET)  
0= START bit was not detected last  
2
R/W: Read/Write bit Information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from  
the address match to the next START bit, STOP bit, or not ACK bit.  
2
In I C Slave mode:  
1= Read  
0= Write  
2
In I C Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress.  
OR-ing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.  
2
bit 1  
bit 0  
UA: Update Address (10-bit I C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes):  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only):  
1= Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full  
0= Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39541A-page 150  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
REGISTER 15-2: SSPCON1 REGISTER  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
Master mode:  
2
1= A write to the SSPBUF register was attempted while the I C conditions were not valid for a  
transmission to be started  
0= No collision  
Slave mode:  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In SPI mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of  
overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave mode, the  
user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master  
mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing  
to the SSPBUF register. (Must be cleared in software.)  
0= No overflow  
2
In I C mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a  
"dont care" in Transmit mode. (Must be cleared in software.)  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In both modes, when enabled, these pins must be properly configured as input or output.  
In SPI mode:  
1= Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
2
In I C mode:  
1= Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
2
In I C Slave mode:  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
2
In I C Master mode:  
Unused in this mode  
bit 3 - 0  
SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
2
0110= I C Slave mode, 7-bit address  
2
2
0111= I C Slave mode, 10-bit address  
1000= I C Master mode, clock = FOSC / (4 * (SSPADD+1) )  
1001= Reserved  
1010= Reserved  
2
1011= I C firmware controlled Master mode (Slave idle)  
1100= Reserved  
1101= Reserved  
2
1110= I C Slave mode, 7-bit address with START and STOP bit interrupts enabled  
2
1111= I C Slave mode, 10-bit address with START and STOP bit interrupts enabled  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 151  
PIC18C601/801  
REGISTER 15-3: SSPCON2 REGISTER  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT  
ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
GCEN: General Call Enable bit (In I2C Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (In I2C Master mode only)  
In Master Transmit mode:  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (In I2C Master mode only)  
In Master Receive mode:  
Value transmitted when the user initiates an Acknowledge sequence at the end of a receive  
1= Not Acknowledge  
0= Acknowledge  
ACKEN: Acknowledge Sequence Enable bit (In I2C Master mode only)  
In Master Receive mode:  
1= Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence idle  
bit 3  
bit 2  
RCEN: Receive Enable bit (In I2C Master mode only)  
1= Enables Receive mode for I2C  
0= Receive idle  
PEN: STOP Condition Enable bit (In I2C Master mode only)  
SCK release control  
1= Initiate STOP condition on SDA and SCL pins. Automatically cleared by hardware.  
0= STOP condition idle  
bit 1  
bit 0  
RSEN: Repeated START Condition Enabled bit (In I2C Master mode only)  
1= Initiate Repeated START condition on SDA and SCL pins. Automatically cleared  
by hardware.  
0= Repeated START condition idle  
SEN: START Condition Enabled bit (In I2C Master mode only)  
1= Initiate START condition on SDA and SCL pins. Automatically cleared by hardware.  
0= START condition idle  
Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the IDLE  
mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or  
writes to the SSPBUF are disabled).  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39541A-page 152  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 15-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
15.3 SPI Mode  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received, simultaneously. All four  
modes of SPI are supported. To accomplish communi-  
cation, typically three pins are used:  
Internal  
Data Bus  
Read  
Write  
Serial Data Out (SDO) - RC5/SDO  
Serial Data In (SDI) - RC4/SDI/SDA  
Serial Clock (SCK) - RC3/SCK/SCL/LVOIN  
SSPBUF reg  
Additionally, a fourth pin may be used when in any  
Slave mode of operation:  
SSPSR reg  
Shift  
SDI  
bit0  
Slave Select (SS) - RA5/SS/AN4  
Clock  
15.3.1  
OPERATION  
SDO  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits SSPCON1<5:0> and SSPSTAT<7:6>.  
These control bits allow the following to be specified:  
Control  
SS  
Enable  
SS  
Edge  
Select  
Master mode (SCK is the clock output)  
Slave mode (SCK is the clock input)  
Clock polarity (Idle state of SCK)  
2
Clock Select  
Data input sample phase (middle or end of data  
output time)  
SSPM3:SSPM0  
Clock edge (output data on rising/falling edge of  
SCK)  
SMP:CKE  
2
4
TMR2 Output  
(
)
2
Clock rate (Master mode only)  
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Slave Select mode (Slave mode only)  
SCK  
Figure 15-1 shows the block diagram of the MSSP  
module, when in SPI mode.  
Data to TX/RX in SSPSR  
TRIS bit  
Note: I/O pins have diode protection to VDD and VSS.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 153  
PIC18C601/801  
The MSSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR,  
until the received data is ready. Once the 8 bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then the buffer full detect bit, BF (SSPSTAT  
register), and the interrupt flag bit, SSPIF (PIR regis-  
ters), are set. This double buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
reading the data that was just received. Any write to the  
SSPBUF register during transmission/reception of data  
will be ignored, and the write collision detect bit, WCOL  
(SSPCON1 register), will be set. User software must  
clear the WCOL bit so that it can be determined if the  
following write(s) to the SSPBUF register completed  
successfully.  
The SSPSR is not directly readable or writable, and  
can only be accessed by addressing the SSPBUF reg-  
ister. Additionally, the MSSP status register (SSPSTAT  
register) indicates the various status conditions.  
15.3.2  
ENABLING SPI I/O  
To enable the serial port, SSP enable bit, SSPEN  
(SSPCON1 register), must be set. To reset or reconfig-  
ure SPI mode, clear the SSPEN bit, re-initialize the  
SSPCON registers, and then set the SSPEN bit. This  
configures the SDI, SDO, SCK, and SS pins as serial  
port pins. For the pins to behave as the serial port func-  
tion, corresponding pins must have their data direction  
bits (in the TRIS register) appropriately programmed.  
That is:  
SDI is automatically controlled by the SPI module  
SDO must have TRISC<5> bit cleared  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. The  
buffer full (BF) bit (SSPSTAT register) indicates when  
SSPBUF has been loaded with the received data  
(transmission is complete). When the SSPBUF is read,  
the BF bit is cleared. This data may be irrelevant if the  
SPI is only a transmitter. Generally, the MSSP interrupt  
is used to determine when the transmission/reception  
has completed. The SSPBUF must be read and/or  
written. If the interrupt method is not going to be used,  
then software polling can be done to ensure that a write  
collision does not occur. Example 15-1 shows the  
loading of the SSPBUF (SSPSR) for data transmission.  
SCK (Master mode) must have TRISC<3> bit  
cleared  
SCK (Slave mode) must have TRISC<3> bit set  
RA5 must be configured as digital I/O using  
ADCON1 register  
SS must have TRISA<5> bit set  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
EXAMPLE 15-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP BTFSS SSPSTAT, BF  
BRA LOOP  
;Has data been received (transmit complete)?  
;No  
MOVF SSPBUF, W  
;WREG reg = contents of SSPBUF  
MOVWF RXDATA  
;Save in user RAM, if data is meaningful  
MOVF TXDATA, W  
MOVWF SSPBUF  
;W reg = contents of TXDATA  
;New data to xmit  
DS39541A-page 154  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
The clock polarity is selected by appropriately program-  
ming the CKP bit (SSPCON1 register). This, then,  
would give waveforms for SPI communication as  
shown in Figure 15-2, Figure 15-4, and Figure 15-5,  
where the MSb is transmitted first. In Master mode, the  
SPI clock rate (bit rate) is user programmable to be one  
of the following:  
15.3.3  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave is to broadcast data by the software  
protocol.  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a line activity monitormode.  
FOSC/4 (or TCY)  
FOSC/16 (or 4 TCY)  
FOSC/64 (or 16 TCY)  
Timer2 output/2  
This allows a maximum data rate (at 25 MHz) of 6.25  
Mbps.  
Figure 15-2 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
FIGURE 15-2:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit6  
bit6  
bit2  
bit2  
bit5  
bit5  
bit4  
bit4  
bit1  
bit1  
bit0  
bit0  
SDO  
(CKE = 0)  
bit7  
bit7  
bit3  
bit3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit0  
bit7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 155  
PIC18C601/801  
the SDO pin is no longer driven, even if in the mid-  
dle of a transmitted byte, and becomes a floating  
output. External pull-up/pull-down resistors may be  
desirable, depending on the application.  
15.3.4  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
Note 1: When the SPI is in Slave mode with SS  
pin control enabled, (SSPCON<3:0> =  
0100), the SPI module will reset if the SS  
pin is set to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times, as  
specified in the electrical specifications.  
2: If the SPI is used in Slave mode with CKE  
set, then the SS pin control must be  
enabled.  
While in SLEEP mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from SLEEP.  
When the SPI module resets, the bit counter is forced  
to 0. This can be done by either forcing the SS pin to a  
high level, or clearing the SSPEN bit.  
15.3.5  
SLAVE SELECT  
SYNCHRONIZATION  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function),  
since it cannot create a bus conflict.  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SS pin control  
enabled (SSPCON1<3:0> = 04h). The pin must not  
be driven low for the SS pin to function as an input.  
The data latch must be high. When the SS pin is  
low, transmission and reception are enabled and  
the SDO pin is driven. When the SS pin goes high,  
FIGURE 15-3:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit7  
bit7  
bit0  
bit0  
SDO  
bit7  
SDI  
(SMP = 0)  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Next Q4 Cycle  
SSPSR to  
SSPBUF  
after Q2↓  
DS39541A-page 156  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 15-4:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
SDO  
bit7  
bit3  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 15-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Required  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
SDO  
bit7  
bit7  
bit3  
SDI  
(SMP = 0)  
bit0  
Input  
Sample  
(SMP = 0)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 157  
PIC18C601/801  
15.3.6  
SLEEP OPERATION  
15.3.8  
BUS MODE COMPATIBILITY  
In Master mode, all module clocks are halted, and the  
transmission/reception will remain in that state until the  
device wakes from SLEEP. After the device returns to  
normal mode, the module will continue to transmit/  
receive data.  
Table 15-1 shows the compatibility between the stan-  
dard SPI modes and the states of the CKP and CKE  
control bits.  
TABLE 15-1: SPI BUS MODES  
In Slave mode, the SPI transmit/receive shift register  
operates asynchronously to the device. This allows the  
device to be placed in SLEEP mode, and data to be  
shifted into the SPI transmit/receive shift register.  
When all eight bits have been received, the MSSP  
interrupt flag bit will be set and, if enabled, will wake the  
device from SLEEP.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
15.3.7  
EFFECTS OF A RESET  
There is also a SMP bit that controls when the data will  
be sampled.  
A RESET disables the MSSP module and terminates  
the current transfer.  
TABLE 15-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
all other  
RESETS  
0000 000x 0000 000u  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE  
GIEL  
RBIE  
TMR0IF INT0IF  
RBIF  
PIR1  
PIE1  
IPR1  
-000 0000 -000 0000  
-000 0000 -000 0000  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF  
SSPIE CCP1IE TMR2IE TMR1IE  
SSPIP CCP1IP TMR2IP TMR1IP  
-000 0000 -000 0000  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
TRISC PORTC Data Direction Register  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
SSPCON WCOL SSPOV SSPEN  
TRISA  
CKP  
SSPM3 SSPM2 SSPM1 SSPM0  
--11 1111 --11 1111  
0000 0000 0000 0000  
PORTA Data Direction Register  
SSPSTAT  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'.  
Shaded cells are not used by the MSSP in SPI mode.  
DS39541A-page 158  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
The SSPCON1 register allows control of the I2C oper-  
ation. The SSPM3:SSPM0 mode selection bits  
(SSPCON1 register) allow one of the following I2C  
modes to be selected:  
I2C Master mode, clock = OSC/(4*(SSPADD +1))  
I2C Slave mode (7-bit address)  
2
15.4 MSSP I C Operation  
The MSSP module in I2C mode, fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on START and STOP bits  
in hardware to determine a free bus (Multi-Master  
mode). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
I2C Slave mode (10-bit address)  
I2C Slave mode (7-bit address), with START and  
STOP bit interrupts enabled  
Two pins are used for data transfer. These are the RC3/  
SCK/SCL pin, which is the clock (SCL), and the RC4/  
SDI/SDA pin, which is the data (SDA). The user must  
configure these pins as inputs or outputs through the  
TRISC<4:3> bits.  
I2C Slave mode (10-bit address), with START and  
STOP bit interrupts enabled  
I2C firmware controlled master operation, slave is  
idle  
Selection of any I2C mode with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits.  
The MSSP module functions are enabled by setting  
MSSP Enable bit SSPEN (SSPCON1 register).  
The MSSP module has these six registers for I2C oper-  
ation:  
MSSP Control Register1 (SSPCON1)  
MSSP Control Register2 (SSPCON2)  
MSSP Status Register (SSPSTAT)  
Serial Receive/Transmit Buffer (SSPBUF)  
15.4.1  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The MSSP module  
will override the input state with the output data when  
required (slave-transmitter).  
MSSP Shift Register (SSPSR) - Not directly  
accessible  
When an address is matched, or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the acknowledge (ACK) pulse and  
load the SSPBUF register with the received value cur-  
rently in the SSPSR register.  
MSSP Address Register (SSPADD)  
FIGURE 15-6:  
MSSP BLOCK DIAGRAM  
(I2C MODE)  
If either or both of the following conditions are true, the  
MSSP module will not give this ACK pulse:  
Internal  
Data Bus  
a) The buffer full bit BF (SSPCON1 register) was  
set before the transfer was received.  
Read  
Write  
b) The overflow bit SSPOV (SSPCON1 register)  
was set before the transfer was received.  
SSPBUF reg  
RC3/SCK/SCL  
Shift  
Clock  
In this event, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR registers) is set.  
The BF bit is cleared by reading the SSPBUF register,  
while bit SSPOV is cleared through software.  
SSPSR reg  
RC4/  
SDI/  
MSb  
LSb  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, is shown in timing parameter #100 and  
parameter #101.  
SDA  
Addr Match  
Match Detect  
SSPADD reg  
START and  
Set, RESET  
S, P bits  
(SSPSTAT reg)  
STOP bit Detect  
Note: I/O pins have diode protection to VDD and VSS.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 159  
PIC18C601/801  
15.4.1.1  
Addressing  
15.4.1.2  
Reception  
Once the MSSP module has been enabled, it waits for  
a START condition to occur. Following the START con-  
dition, the eight bits are shifted into the SSPSR register.  
All incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
When the address byte overflow condition exists, then  
no acknowledge (ACK) pulse is given. An overflow con-  
dition is defined as either bit BF (SSPSTAT register) is  
set or bit SSPOV (SSPCON1 register) is set.  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR registers) must be cleared in  
software. The SSPSTAT register is used to determine  
the status of the byte.  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
b) The buffer full bit BF is set.  
c) An ACK pulse is generated.  
15.4.1.3  
Transmission  
d) MSSP interrupt flag bit SSPIF (PIR registers) is  
set on the falling edge of the ninth SCL pulse  
(interrupt is generated, if enabled).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin RC3/SCK/SCL is held  
low. The transmit data must be loaded into the  
SSPBUF register, which also loads the SSPSR regis-  
ter. Then pin RC3/SCK/SCL should be enabled by set-  
ting bit CKP (SSPCON1 register). The master must  
monitor the SCL pin prior to asserting another clock  
pulse. The slave devices may be holding off the master  
by stretching the clock. The eight data bits are shifted  
out on the falling edge of the SCL input. This ensures  
that the SDA signal is valid during the SCL high time  
(Figure 15-8).  
In 10-bit Address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSb) of the first address byte, specify if this is a 10-bit  
address. The R/W bit (SSPSTAT register) must specify  
a write so the slave device will receive the second  
address byte. For a 10-bit address, the first byte would  
equal ‘1111 0 A9 A8 0’, where A9and A8are the  
two MSbs of the address.  
The sequence of events for 10-bit addressing is as fol-  
lows, with steps 7- 9 for slave-transmitter:  
1. Receive first (high) byte of address (the SSPIF,  
BF and UA bits (SSPSTAT register) are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of address (bits  
SSPIF, BF, and UA are set).  
As a slave-transmitter, the ACK pulse from the master-  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line is high (not ACK), then the  
data transfer is complete. When the ACK is latched by  
the slave, the slave logic is reset (resets SSPSTAT reg-  
ister) and the slave monitors for another occurrence of  
the START bit. If the SDA line was low (ACK), the trans-  
mit data must be loaded into the SSPBUF register, which  
also loads the SSPSR register. Pin RC3/SCK/SCL  
should be enabled by setting bit CKP.  
5. Update the SSPADD register with the first (high)  
byte of address. If match releases SCL line, this  
will clear bit UA.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
7. Receive repeated START condition.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
DS39541A-page 160  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 15-7:  
I2C SLAVE MODE WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4  
R/W = 0  
Receiving Data  
Receiving Data  
ACK  
Not ACK  
D0  
ACK  
9
SDA  
A3 A2 A1  
D5  
D2  
D0  
8
D5  
D2  
D7 D6  
D4 D3  
D1  
7
D7 D6  
D4 D3  
D1  
7
1
2
3
4
5
6
9
1
2
3
4
9
8
5
6
1
2
3
4
5
6
7
8
P
SCL  
S
SSPIF  
Bus Master  
Terminates  
Transfer  
BF  
Cleared in software  
SSPBUF register is read  
SSPOV  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
FIGURE 15-8:  
I2C SLAVE MODE WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
R/W = 0  
Receiving Address  
A7 A6 A5 A4 A3 A2 A1  
R/W = 1  
ACK  
Transmitting Data  
Not ACK  
SDA  
D7 D6 D5 D4 D3 D2 D1 D0  
SCL  
S
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
Sampled  
SSPIF  
BF  
Cleared in software  
SSPBUF is written in software  
From SSP Interrupt  
Service Routine  
CKP  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to  
before the CKP bit can be set)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 161  
PIC18C601/801  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF bit is set (eighth bit),  
and on the falling edge of the ninth bit (ACK bit), the  
SSPIF interrupt flag bit is set.  
15.4.2  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the START condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address,  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match, and the UA  
bit is set (SSPSTAT register). If the general call address  
is sampled when the GCEN bit is set and while the  
slave is configured in 10-bit address mode, then the  
second half of the address is not necessary. The UA bit  
will not be set, and the slave will begin receiving data  
after the Acknowledge (Figure 15-9).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all 0s with R/W = 0.  
The general call address is recognized (enabled) when  
the General Call Enable (GCEN) bit is set (SSPCON2  
register). Following a START bit detect, eight bits are  
shifted into the SSPSR and the address is compared  
against the SSPADD. It is also compared to the general  
call address and fixed in hardware.  
FIGURE 15-9:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT ADDRESS)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving Data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
ACK  
General Call Address  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
9
S
SSPIF  
BF  
Cleared in software  
SSPBUF is read  
SSPOV  
GCEN  
0’  
1’  
DS39541A-page 162  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
1. Assert a START condition on SDA and SCL.  
15.4.3  
MASTER MODE  
2. Assert a Repeated START condition on SDA  
and SCL.  
Master mode of operation is supported by interrupt  
generation on the detection of the START and STOP  
conditions. The STOP (P) and START (S) bits are  
cleared from a RESET, or when the MSSP module is  
disabled. Control of the I2C bus may be taken when the  
P bit is set, or the bus is idle, with both the S and P bits  
clear.  
3. Write to the SSPBUF register initiating transmis-  
sion of data/address.  
4. Generate a STOP condition on SDA and SCL.  
5. Configure the I2C port to receive data.  
6. Generate an Acknowledge condition at the end  
of a received byte of data.  
In Master mode, the SCL and SDA lines are manipu-  
lated by the MSSP hardware.  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP Interrupt if enabled):  
Note: The MSSP module, when configured in I2C  
Master mode, does not allow queueing of  
events. For instance, the user is not  
allowed to initiate a START condition and  
immediately write the SSPBUF register to  
imitate transmission, before the START  
condition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
START condition  
STOP condition  
Data transfer byte transmitted/received  
Acknowledge Transmit  
Repeated START condition  
15.4.4  
I2C MASTER MODE SUPPORT  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON1 and by setting the  
SSPEN bit. Once Master mode is enabled, the user  
has the following six options:  
2
FIGURE 15-10:  
MSSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA In  
MSb  
LSb  
START bit, STOP bit,  
Acknowledge  
Generate  
SCL  
START bit Detect  
STOP bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
End of XMIT/RCV  
SCL In  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
Note: I/O pins have diode protection to VDD and VSS.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 163  
PIC18C601/801  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
15.4.4.1  
a) The user generates a START condition by set-  
ting the START enable (SEN) bit (SSPCON2  
register).  
The master device generates all of the serial clock  
pulses and the START and STOP conditions. A trans-  
fer is ended with a STOP condition or with a Repeated  
START condition. Since the Repeated START condi-  
tion is also the beginning of the next serial transfer, the  
I2C bus will not be released.  
b) SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
c) The user loads the SSPBUF with the address to  
transmit.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic 0. Serial data is  
transmitted eight bits at a time. After each byte is trans-  
mitted, an Acknowledge bit is received. START and  
STOP conditions are output to indicate the beginning  
and the end of a serial transfer.  
d) Address is shifted out the SDA pin until all eight  
bits are transmitted.  
e) The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
ACKSTAT bit (SSPCON2 register).  
f) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic 1. Thus, the first byte transmitted is a 7-bit slave  
address followed by a 1to indicate receive bit. Serial  
data is received via SDA, while SCL outputs the serial  
clock. Serial data is received eight bits at a time. After  
each byte is received, an Acknowledge bit is transmit-  
ted. START and STOP conditions indicate the begin-  
ning and end of transmission.  
g) The user loads the SSPBUF with eight bits of  
data.  
h) Data is shifted out the SDA pin until all eight bits  
are transmitted.  
i) The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
ACKSTAT bit (SSPCON2 register).  
j) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The baud rate generator used for the SPI mode opera-  
tion is now used to set the SCL clock frequency for  
either 100 kHz, 400 kHz, or 1 MHz I2C operation. The  
baud rate generator reload value is contained in the  
lower 7 bits of the SSPADD register. The baud rate  
generator will automatically begin counting on a write to  
the SSPBUF. Once the given operation is complete  
(i.e., transmission of the last data bit is followed by  
ACK), the internal clock will automatically stop counting  
and the SCL pin will remain in its last state.  
k) The user generates a STOP condition by setting  
the STOP enable bit PEN (SSPCON2 register).  
l) Interrupt is generated once the STOP condition  
is complete.  
15.4.5  
BAUD RATE GENERATOR  
In I2C Master mode, the reload value for the BRG is  
located in the lower 7 bits of the SSPADD register  
(Figure 15-11). When the BRG is loaded with this  
value, the BRG counts down to 0 and stops until  
another reload has taken place. The BRG count is dec-  
remented twice per instruction cycle (TCY) on the Q2  
and Q4 clocks. In I2C Master mode, the BRG is  
reloaded automatically. If clock arbitration is taking  
place, for instance, the BRG will be reloaded when the  
SCL pin is sampled high (Figure 15-12).  
FIGURE 15-11:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
SSPM3:SSPM0  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKOUT  
FOSC/4  
DS39541A-page 164  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 15-12:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL de-asserted but slave holds  
SCL low (clock arbitration)  
SCL allowed to transition high  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count  
BRG  
reload  
15.4.6  
I2C MASTER MODE START  
CONDITION TIMING  
Note: If at the beginning of the START condition,  
the SDA and SCL pins are already sam-  
pled low, or if during the START condition  
the SCL line is sampled low before the  
SDA line is driven low, a bus collision  
occurs, the Bus Collision Interrupt Flag  
BCLIF is set, the START condition is  
aborted, and the I2C module is reset into its  
IDLE state.  
To initiate a START condition, the user sets the START  
Condition Enable (SEN) bit (SSPCON2 register). If the  
SDA and SCL pins are sampled high, the baud rate  
generator is re-loaded with the contents of  
SSPADD<6:0> and starts its count. If SCL and SDA are  
both sampled high when the baud rate generator times  
out (TBRG), the SDA pin is driven low. The action of the  
SDA being driven low while SCL is high, is the START  
condition, and causes the S bit (SSPSTAT register) to  
be set. Following this, the baud rate generator is  
reloaded with the contents of SSPADD<6:0> and  
resumes its count. When the baud rate generator times  
out (TBRG), the SEN bit (SSPCON2 register) will be  
automatically cleared by hardware, the baud rate gen-  
erator is suspended leaving the SDA line held low and  
the START condition is complete.  
15.4.6.1  
WCOL Status Flag  
If the user writes the SSPBUF when a START  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesnt  
occur).  
Note: Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the START  
condition is complete.  
FIGURE 15-13:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT)  
Write to SEN bit occurs here  
SDA = 1,  
At completion of START bit,  
Hardware clears SEN bit  
and sets SSPIF bit  
SCL = 1  
TBRG  
TBRG  
Write to SSPBUF occurs here  
2nd bit  
1st bit  
SDA  
TBRG  
SCL  
TBRG  
S
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 165  
PIC18C601/801  
Immediately following the SSPIF bit getting set, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional  
eight bits of address (10-bit mode) or eight bits of data  
(7-bit mode).  
15.4.7  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
A Repeated START condition occurs when the RSEN  
bit (SSPCON2 register) is programmed high and the  
I2C logic module is in the IDLE state. When the RSEN  
bit is set, the SCL pin is asserted low. When the SCL  
pin is sampled low, the baud rate generator is loaded  
with the contents of SSPADD<5:0> and begins count-  
ing. The SDA pin is released (brought high) for one  
baud rate generator count (TBRG). When the baud rate  
generator times out, if SDA is sampled high, the SCL pin  
will be de-asserted (brought high). When SCL is sam-  
pled high, the baud rate generator is re-loaded with the  
contents of SSPADD<6:0> and begins counting. SDA  
and SCL must be sampled high for one TBRG. This  
action is then followed by assertion of the SDA pin (SDA  
15.4.7.1 WCOL Status Flag  
If the user writes the SSPBUF when a Repeated  
START sequence is in progress, the WCOL is set and  
the contents of the buffer are unchanged (the write  
doesnt occur).  
Note: Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
START condition is complete.  
= 0) for one TBRG while SCL is high. Following this, the  
,
RSEN bit (SSPCON2 register) will be automatically  
cleared and the baud rate generator will not be reloaded,  
leaving the SDA pin held low. As soon as a START con-  
dition is detected on the SDA and SCL pins, the S bit  
(SSPSTAT register) will be set. The SSPIF bit will not be  
set until the baud rate generator has timed out.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
2: A bus collision during the Repeated  
START condition occurs, if:  
SDA is sampled low when SCL goes  
from low to high.  
SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data "1".  
FIGURE 15-14:  
REPEATED START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
occurs here.  
SDA = 1,  
SDA = 1,  
SCL = 1  
At completion of START bit,  
hardware clear RSEN bit  
and set SSPIF  
SCL (no change)  
TBRG  
TBRG  
TBRG  
1st Bit  
SDA  
Write to SSPBUF occurs here  
TBRG  
Falling edge of ninth clock  
End of Xmit  
SCL  
TBRG  
Sr = Repeated START  
DS39541A-page 166  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
I2C MASTER MODE  
TRANSMISSION  
15.4.8.2 WCOL Status Flag  
15.4.8  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesnt occur).  
Transmission of a data byte, a 7-bit address, or the  
other half of a 10-bit address, is accomplished by sim-  
ply writing a value to the SSPBUF register. This action  
will set the Buffer Full bit, BF, and allow the baud rate  
generator to begin counting and start the next transmis-  
sion. Each bit of address/data will be shifted out onto  
the SDA pin after the falling edge of SCL is asserted  
(see data hold time specification parameter 106). SCL  
is held low for one baud rate generator rollover count  
(TBRG). Data should be valid before SCL is released  
high (see data setup time specification parameter 107).  
When the SCL pin is released high, it is held that way  
for TBRG. The data on the SDA pin must remain stable  
for that duration and some hold time after the next fall-  
ing edge of SCL. After the eighth bit is shifted out (the  
falling edge of the eighth clock), the BF bit is cleared  
and the master releases SDA, allowing the slave  
device being addressed to respond with an ACK bit  
during the ninth bit time, if an address match occurs, or  
if data was received properly. The status of ACK is writ-  
ten into the ACKDT bit on the falling edge of the ninth  
clock. If the master receives an Acknowledge, the  
Acknowledge Status bit, ACKSTAT, is cleared; if not,  
the bit is set. After the ninth clock, the SSPIF bit is set  
and the master clock (baud rate generator) is  
suspended until the next data byte is loaded into the  
SSPBUF, leaving SCL low and SDA unchanged  
(Figure 15-15).  
WCOL must be cleared in software.  
15.4.8.3 ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2  
register) is cleared when the slave has sent an  
Acknowledge (ACK = 0), and is set when the slave  
does not Acknowledge (ACK = 1). A slave sends an  
Acknowledge when it has recognized its address  
(including a general call), or when the slave has  
properly received its data.  
15.4.9  
I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (SSPCON2 register).  
Note: The MSSP module must be in an IDLE  
state before the RCEN bit is set, or the  
RCEN bit will be disregarded.  
The baud rate generator begins counting and on each  
rollover, the state of the SCL pin changes (high to low/  
low to high) and data is shifted into the SSPSR. After  
the falling edge of the eighth clock, the RCEN bit is  
automatically cleared, the contents of the SSPSR are  
loaded into the SSPBUF, the BF bit is set, the SSPIF  
flag bit is set and the baud rate generator is suspended  
from counting, holding SCL low. The MSSP is now in  
IDLE state, awaiting the next command. When the  
buffer is read by the CPU, the BF bit is automatically  
cleared. The user can then send an Acknowledge bit at  
the end of reception, by setting the Acknowledge  
Sequence Enable bit ACKEN (SSPCON2 register).  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL, until all seven  
address bits and the R/W bit, are completed. On the  
falling edge of the eighth clock, the master will de-  
assert the SDA pin, allowing the slave to respond with  
an Acknowledge. On the falling edge of the ninth clock,  
the master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT status bit (SSPCON2  
register). Following the falling edge of the ninth clock  
transmission of the address, the SSPIF is set, the BF  
bit is cleared and the baud rate generator is turned off,  
until another write to the SSPBUF takes place, holding  
SCL low and allowing SDA to float.  
15.4.9.1  
BF Status Flag  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
15.4.9.2  
SSPOV Status Flag  
In receive operation, the SSPOV bit is set when eight  
bits are received into the SSPSR and the BF bit is  
already set from a previous reception.  
15.4.8.1  
BF Status Flag  
In Transmit mode, the BF bit (SSPSTAT register) is set  
when the CPU writes to SSPBUF, and is cleared when  
all eight bits are shifted out.  
15.4.9.3  
WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesnt occur).  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 167  
PIC18C601/801  
2
FIGURE 15-15:  
I C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
DS39541A-page 168  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
2
FIGURE 15-16:  
I C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 169  
PIC18C601/801  
15.4.10 ACKNOWLEDGE SEQUENCE  
TIMING  
15.4.11 STOP CONDITION TIMING  
A STOP bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN (SSPCON2 register). At the end of a receive/  
transmit, the SCL line is held low after the falling edge  
of the ninth clock. When the PEN bit is set, the master  
will assert the SDA line low. When the SDA line is sam-  
pled low, the baud rate generator is reloaded and  
counts down to 0. When the baud rate generator times  
out, the SCL pin will be brought high, and one TBRG  
(baud rate generator rollover count) later, the SDA pin  
will be de-asserted. When the SDA pin is sampled high  
while SCL is high, the P bit (SSPSTAT register) is set.  
A TBRG later, the PEN bit is cleared and the SSPIF bit  
is set (Figure 15-18).  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence enable bit, ACKEN (SSPCON2  
register). When this bit is set, the SCL pin is pulled low  
and the contents of the Acknowledge Data bit (ACKDT)  
is presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The baud rate gen-  
erator then counts for one rollover period (TBRG) and the  
SCL pin is de-asserted (pulled high). When the SCL pin  
is sampled high (clock arbitration), the baud rate gener-  
ator counts for TBRG. The SCL pin is then pulled low. Fol-  
lowing this, the ACKEN bit is automatically cleared, the  
baud rate generator is turned off and the MSSP module  
then goes into IDLE mode (Figure 15-17).  
15.4.11.1 WCOL Status Flag  
If the user writes the SSPBUF when a STOP sequence  
is in progress, then the WCOL bit is set and the contents  
of the buffer are unchanged (the write doesnt occur).  
15.4.10.1 WCOL Status Flag  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the con-  
tents of the buffer are unchanged (the write doesnt occur).  
FIGURE 15-17:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
Write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
ACK  
TBRG  
SDA  
SCL  
D0  
8
9
SSPIF  
Cleared in  
Set SSPIF at the end  
of receive  
Cleared in  
software  
software  
Set SSPIF at the end  
of Acknowledge sequence  
Note: TBRG = one baud rate generator period.  
FIGURE 15-18:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1 for TBRG, followed by SDA = 1 for TBRG  
after SDA sampled high, P bit (SSPSTAT) is set  
Write to SSPCON2  
Set PEN  
PEN bit (SSPCON2) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
ACK  
SDA  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to set up STOP condition  
Note: TBRG = one baud rate generator period.  
DS39541A-page 170  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
15.4.12 CLOCK ARBITRATION  
15.4.13 SLEEP OPERATION  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated START/STOP condition,  
de-asserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the baud rate  
generator (BRG) is suspended from counting until the  
SCL pin is actually sampled high. When the SCL pin is  
sampled high, the baud rate generator is reloaded with  
the contents of SSPADD<6:0> and begins counting.  
This ensures that the SCL high time will always be at  
least one BRG rollover count, in the event that the clock  
is held low by an external device (Figure 15-19).  
While in SLEEP mode, the I2C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs, wake the processor  
from SLEEP (if the MSSP interrupt is enabled).  
15.4.14 EFFECT OF A RESET  
A RESET disables the MSSP module and terminates  
the current transfer.  
FIGURE 15-19:  
CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE  
BRG overflow,  
Release SCL,  
If SCL = 1, load BRG with  
BRG overflow occurs,  
Release SCL, Slave device holds SCL low.  
SSPADD<6:0> and start count  
to measure high time interval  
SCL = 1 BRG starts counting  
clock high interval.  
SCL  
SCL line sampled once every machine cycle (TOSC² 4).  
Hold off BRG until SCL is sampled high.  
SDA  
TBRG  
TBRG  
TBRG  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 171  
PIC18C601/801  
SDA is a '1' and the data sampled on the SDA pin = '0',  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag (BCLIF) and reset the  
I2C port to its IDLE state. (Figure 15-20).  
15.4.15 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a RESET, or  
when the MSSP module is disabled. Control of the I2C  
bus may be taken when the P bit (SSPSTAT register) is  
set, or the bus is idle, with both the S and P bits clear.  
When the bus is busy, enabling the SSP interrupt will  
generate the interrupt when the STOP condition  
occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF bit is  
cleared, the SDA and SCL lines are de-asserted, and  
the SSPBUF can be written to. When the user services  
the bus collision Interrupt Service Routine, and if the  
I2C bus is free, the user can resume communication by  
asserting a START condition.  
If a START, Repeated START, STOP, or Acknowledge  
condition was in progress when the bus collision  
occurred, the condition is aborted, the SDA and SCL  
lines are de-asserted, and the respective control bits in  
the SSPCON2 register are cleared. When the user ser-  
vices the bus collision Interrupt Service Routine, and if  
the I2C bus is free, the user can resume communication  
by asserting a START condition.  
In Multi-Master operation, the SDA line must be moni-  
tored for arbitration, to see if the signal level is the  
expected output level. This check is performed in hard-  
ware, with the result placed in the BCLIF bit.  
Arbitration can be lost in the following states:  
Address transfer  
Data transfer  
A START condition  
A Repeated START condition  
An Acknowledge condition  
The master will continue to monitor the SDA and SCL  
pins. If a STOP condition occurs, the SSPIF bit will be  
set.  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the trans-  
mitter left off when the bus collision occurred.  
15.4.16 MULTI -MASTER  
COMMUNICATION, BUS  
COLLISION, AND BUS  
ARBITRATION  
In Multi-Master mode, the interrupt generation on the  
detection of START and STOP conditions allows the  
determination of when the bus is free. Control of the I2C  
bus can be taken when the P bit is set in the SSPSTAT  
register, or the bus is idle and the S and P bits are  
cleared.  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a '1' on SDA, by letting SDA float high and  
another master asserts a '0'. When the SCL pin floats  
high, data should be stable. If the expected data on  
FIGURE 15-20:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
data doesnt match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by Master  
SDA  
Set bus collision  
interrupt (BCLIF)  
SCL  
BCLIF  
DS39541A-page 172  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 15-23). If, however, a '1' is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The baud rate generator is then reloaded and  
counts down to 0, and during this time, if the SCL pin is  
sampled as '0', a bus collision does not occur. At the  
end of the BRG count, the SCL pin is asserted low.  
15.4.16.1 Bus Collision During a START  
Condition  
During a START condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the START condition (Figure 15-21).  
b) SCL is sampled low before SDA is asserted low  
(Figure 15-22).  
During a START condition, both the SDA and the SCL  
pins are monitored.  
Note: The reason that bus collision is not a factor  
during a START condition, is that no two  
bus masters can assert a START condition  
at the exact same time. Therefore, one  
master will always assert SDA before the  
other. This condition does not cause a bus  
collision, because the two masters must be  
allowed to arbitrate the first address follow-  
ing the START condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, Repeated  
START or STOP conditions.  
If the SDA pin is already low, or the SCL pin is already  
low, then all of the following occur:  
the START condition is aborted;  
the BCLIF flag is set, and  
the MSSP module is reset to its IDLE state  
(Figure 15-21).  
The START condition begins with the SDA and SCL  
pins de-asserted. When the SDA pin is sampled high,  
the baud rate generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data '1' during the START condition.  
FIGURE 15-21:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
. Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable START  
condition if SDA = 1, SCL=1  
SEN cleared automatically because of bus collision.  
SSP module reset into IDLE state.  
SDA sampled low before  
START condition. Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software.  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 173  
PIC18C601/801  
FIGURE 15-22:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
SCL  
SEN  
SCL = 0 before SDA = 0,  
Bus collision occurs, set BCLIF  
SCL = 0 before BRG time-out,  
Bus collision occurs, set BCLIF  
BCLIF  
Interrupt cleared  
in software  
S
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 15-23:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other Master.  
Reset BRG and assert SDA.  
SDA  
SCL  
S
SCL pulled low after BRG  
Time-out  
SEN  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
BCLIF  
0’  
S
SSPIF  
Interrupts cleared  
in software  
SDA = 0, SCL = 1  
Set SSPIF  
DS39541A-page 174  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
reloaded and begins counting. If SDA goes from high to  
low before the BRG times out, no bus collision occurs  
because no two masters can assert SDA at exactly the  
same time.  
15.4.16.2 Bus Collision During a Repeated  
START Condition  
During a Repeated START condition, a bus collision  
occurs if:  
If SCL goes from high to low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data 1during the Repeated START condi-  
tion (Figure 15-25).  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
b) SCL goes low before SDA is asserted low,  
indicating that another master is attempting to  
transmit a data 1.  
If, at the end of the BRG time-out both SCL and SDA  
are still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated START condition is  
complete.  
When the user de-asserts SDA and the pin is allowed  
to float high, the BRG is loaded with SSPADD<6:0>  
and counts down to 0. The SCL pin is then de-asserted  
and when sampled high, the SDA pin is sampled.  
If SDA is low, a bus collision has occurred (i.e., another  
master is attempting to transmit a data 0, see  
Figure 15-24). If SDA is sampled high, the BRG is  
FIGURE 15-24:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software  
'0'  
S
'0'  
SSPIF  
FIGURE 15-25:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA.  
BCLIF  
RSEN  
Set BCLIF, release SDA and SCL.  
Interrupt cleared  
in software  
0’  
S
SSPIF  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 175  
PIC18C601/801  
The STOP condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the baud rate generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data 0(Figure 15-26). If the SCL pin is sampled  
low before SDA is allowed to float high, a bus collision  
occurs. This is another case of another master attempt-  
ing to drive a data 0(Figure 15-27).  
15.4.16.3 Bus Collision During a STOP  
Condition  
Bus collision occurs during a STOP condition if:  
a) After the SDA pin has been de-asserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is de-asserted, SCL is sam-  
pled low before SDA goes high.  
FIGURE 15-26:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
FIGURE 15-27:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
DS39541A-page 176  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
The USART can be configured in the following modes:  
16.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
Asynchronous (full duplex)  
Synchronous - Master (half duplex)  
Synchronous - Slave (half duplex)  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
The SPEN (RCSTA register) and the TRISC<7> bits  
have to be set, and the TRISC<6> bit must be  
cleared, in order to configure pins RC6/TX/CK and  
RC7/RX/DT as the Universal Synchronous Asynchro-  
nous Receiver Transmitter.  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial Com-  
munications Interface or SCI.) The USART can be con-  
figured as a full duplex asynchronous system that can  
communicate with peripheral devices, such as CRT ter-  
minals and personal computers, or it can be configured  
as a half duplex synchronous system that can commu-  
nicate with peripheral devices, such as A/D or D/A inte-  
grated circuits, serial EEPROMs, etc.  
Register 16-1 shows the Transmit Status and Control  
Register (TXSTA) and Register 16-2 shows the  
Receive Status and Control Register (RCSTA).  
REGISTER 16-1: TXSTA REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Dont care  
Synchronous mode:  
1= Master mode (Clock generated internally from BRG)  
0= Slave mode (Clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
SREN/CREN overrides TXEN in SYNC mode.  
bit 4  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data. Can be Address/Data bit or a parity bit.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
- n = Value at POR  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 177  
PIC18C601/801  
REGISTER 16-2: RCSTA REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (Configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Dont care  
Synchronous mode - Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - Slave:  
Unused in this mode  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load of the receive buffer when RSR<8>  
is set  
0= Disables address detection, all bytes are received, and ninth bit can be used as parity bit  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (Can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (Can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data. Can be Address/Data bit or a parity bit.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39541A-page 178  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Example 16-1 shows the calculation of the baud rate  
error for the following conditions:  
16.1 USART Baud Rate Generator  
(BRG)  
FOSC = 16 MHz  
Desired Baud Rate = 9600  
BRGH = 0  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In Asynchronous  
mode, bit BRGH (TXSTA register) also controls the  
baud rate. In Synchronous mode, bit BRGH is ignored.  
Table 16-1 shows the formula for computation of the  
baud rate for different USART modes, which only apply  
in Master mode (internal clock).  
SYNC = 0  
It may be advantageous to use the high baud rate  
(BRGH = 1), even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRG register can be calculated  
using the formula in Table 16-1. From this, the error in  
baud rate can be determined.  
16.1.1  
SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
EXAMPLE 16-1:  
CALCULATING BAUD RATE ERROR  
Desired Baud Rate  
Solving for X:  
=
FOSC / (64 (X + 1))  
X
X
X
=
=
=
( (FOSC / Desired Baud Rate) / 64 ) - 1  
((16000000 / 9600) / 64) - 1  
[25.042] = 25  
Calculated Baud Rate  
=
=
16000000 / (64 (25 + 1))  
9615  
Error  
=
(Calculated Baud Rate - Desired Baud Rate)  
Desired Baud Rate  
=
=
(9615 - 9600) / 9600  
0.16%  
TABLE 16-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+1))  
(Synchronous) Baud Rate = FOSC/(4(X+1))  
Baud Rate = FOSC/(16(X+1))  
NA  
Legend: X = value in SPBRG (0 to 255)  
TABLE 16-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
POR,  
Value on all  
other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
0000 -010  
0000 000x  
0000 0000  
0000 -010  
0000 000x  
0000 0000  
TXSTA  
RCSTA  
CSRC  
SPEN  
TX9  
RX9  
TXEN SYNC  
BRGH TRMT TX9D  
SREN CREN ADDEN FERR OERR RX9D  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 179  
PIC18C601/801  
TABLE 16-3: BAUD RATES FOR SYNCHRONOUS MODE  
FOSC =25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
SPBRG  
value  
(decimal)  
%
%
KBAUD ERROR  
KBAUD ERROR  
(decimal)  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
-
2.4  
NA  
-
-
NA  
-
-
9.6  
NA  
-
-
-
NA  
-
-
19.2  
76.8  
96  
NA  
-
NA  
-
-
77.16  
96.15  
297.62  
480.77  
6250  
24.41  
+0.47  
+0.16  
-0.79  
-3.85  
-
80  
64  
20  
12  
0
76.92  
96.15  
294.12  
500  
+0.16  
64  
51  
16  
9
+0.16  
300  
500  
HIGH  
LOW  
-1.96  
0
-
5000  
19.53  
0
-
255  
-
255  
FOSC = 16 MHz  
SPBRG  
10 MHz  
%
7.15909 MHz  
5.0688 MHz  
%
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
%
%
value  
KBAUD ERROR  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
-
-
-
2.4  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
9.6  
NA  
-
+0.16  
+0.16  
-0.79  
+2.56  
0
-
NA  
-
+0.16  
-1.36  
+0.16  
+4.17  
0
-
9.62  
+0.23  
+0.23  
+1.32  
-1.88  
-0.57  
-
185  
92  
22  
18  
5
9.60  
19.20  
74.54  
97.48  
NA  
0
131  
65  
16  
12  
-
19.2  
76.8  
96  
19.23  
76.92  
95.24  
307.70  
500  
207  
51  
41  
12  
7
19.23  
75.76  
96.15  
312.50  
500  
129  
32  
25  
7
19.24  
77.82  
94.20  
298.35  
NA  
0
-2.94  
+1.54  
300  
500  
HIGH  
LOW  
-
-
-
-
4
-
NA  
-
4000  
15.63  
-
0
2500  
9.77  
-
0
1789.80  
6.99  
-
0
1267.20  
4.95  
0
-
255  
-
255  
-
255  
255  
FOSC = 4 MHz  
3.579545 MHz  
%
1 MHz  
32.768 kHz  
%
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
NA  
-
NA  
NA  
-
NA  
1.20  
2.40  
9.62  
19.23  
NA  
-
0.30  
1.17  
NA  
+1.14  
-
-
-
-
-
-
+0.16  
207  
103  
25  
12  
-
-2.48  
6
2.4  
NA  
-
NA  
-
+0.16  
-
-
-
-
-
-
-
-
-
-
9.6  
9.62  
19.23  
76.92  
1000  
NA  
+0.16  
103  
51  
12  
9
9.62  
+0.23  
-0.83  
-2.90  
+3.57  
-0.57  
-
92  
46  
11  
8
+0.16  
NA  
-
19.2  
76.8  
96  
+0.16  
19.04  
74.57  
99.43  
298.30  
NA  
+0.16  
NA  
-
+0.16  
-
-
-
-
-
-
NA  
-
+4.17  
NA  
-
NA  
-
300  
500  
HIGH  
LOW  
-
0
-
-
2
NA  
-
NA  
-
-
500  
1
-
NA  
-
NA  
1000  
3.91  
0
894.89  
3.50  
-
0
250  
0.98  
0
8.20  
0.03  
0
-
255  
-
255  
255  
255  
DS39541A-page 180  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 16-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
SPBRG  
value  
(decimal)  
%
%
value  
KBAUD ERROR  
KBAUD  
ERROR  
(decimal)  
0.3  
1.2  
NA  
NA  
-
NA  
NA  
-
-
-
162  
40  
19  
4
-
-
129  
32  
15  
3
2.4  
2.40  
9.53  
19.53  
78.13  
97.66  
NA  
-0.15  
2.40  
9.47  
19.53  
78.13  
NA  
+0.16  
9.6  
-0.76  
-1.36  
19.2  
76.8  
96  
+1.73  
+1.73  
+1.73  
+1.73  
+1.73  
3
-
-
300  
500  
HIGH  
LOW  
-
-
-
-
-
312.50  
NA  
+4.17  
0
NA  
-
-
-
-
-
390.63  
1.53  
0
312.50  
1.22  
0
255  
255  
FOSC = 16 MHz  
SPBRG  
10 MHz  
7.15909 MHz  
5.0688 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
%
%
%
%
value  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
1.20  
2.40  
9.62  
19.23  
NA  
-
NA  
1.20  
2.40  
9.77  
19.53  
78.13  
NA  
-
NA  
1.20  
2.38  
9.32  
18.64  
NA  
-
NA  
1.20  
2.40  
9.90  
19.80  
79.20  
NA  
-
+0.16  
207  
103  
25  
12  
-
+0.16  
129  
64  
15  
7
+0.23  
92  
46  
11  
5
0
65  
32  
7
2.4  
+0.16  
+0.16  
-0.83  
0
9.6  
+0.16  
+1.73  
-2.90  
+3.13  
19.2  
76.8  
96  
+0.16  
+1.73  
-2.90  
+3.13  
3
-
-
-
-
-
-
+1.73  
1
-
-
-
-
-
-
-
+3.13  
0
NA  
-
-
-
-
-
-
-
NA  
-
-
-
-
-
-
-
300  
500  
HIGH  
LOW  
NA  
-
NA  
-
NA  
-
NA  
-
NA  
-
NA  
-
NA  
-
NA  
-
250  
0.98  
0
156.25  
0.61  
0
111.86  
0.44  
0
79.20  
0.31  
0
255  
255  
255  
255  
FOSC = 4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
%
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
0.3  
1.2  
0.30  
1.20  
2.40  
NA  
-0.16  
0.30  
1.19  
2.43  
9.32  
18.64  
NA  
+0.23  
0.30  
1.20  
NA  
+0.16  
NA  
NA  
-
-
-
-
-
-
-
-
-
-
-
+1.67  
51  
-0.83  
46  
+0.16  
12  
-
2.4  
+1.67  
25  
+1.32  
22  
-
-
-
-
-
-
-
-
-
-
NA  
-
9.6  
-
-
-
-
-
-
-
-
-
-2.90  
5
NA  
-
NA  
-
19.2  
76.8  
96  
NA  
-
-2.90  
2
NA  
-
NA  
-
NA  
-
-
-
-
-
-
-
-
NA  
-
NA  
-
NA  
-
NA  
-
NA  
-
NA  
-
300  
500  
HIGH  
LOW  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
NA  
NA  
NA  
NA  
62.50  
0.24  
0
55.93  
0.22  
0
15.63  
0.06  
0
0.51  
0.002  
0
255  
255  
255  
255  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 181  
PIC18C601/801  
TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
SPBRG  
value  
(decimal)  
%
%
value  
KBAUD ERROR  
KBAUD ERROR  
(decimal)  
0.3  
NA  
-
NA  
-
1.2  
2.4  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
-
9.6  
9.59  
-0.15  
+0.47  
+1.73  
+1.73  
+4.17  
+4.17  
-
162  
80  
19  
15  
4
9.62  
+0.16  
+0.16  
+1.73  
+0.16  
+4.17  
-
129  
64  
15  
12  
3
19.2  
76.8  
96  
19.30  
78.13  
97.66  
312.50  
520.83  
1562.50  
6.10  
19.23  
78.13  
96.15  
312.50  
NA  
300  
500  
HIGH  
LOW  
2
-
0
1250  
4.88  
-
0
-
255  
-
255  
FOSC = 16 MHz  
SPBRG  
10 MHz  
7.15909 MHz  
%
5.0688 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
SPBRG  
value  
%
%
%
value  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
NA  
-
NA  
NA  
-
NA  
NA  
-
NA  
NA  
-
-
-
-
-
-
-
-
-
185  
46  
22  
5
-
-
131  
32  
16  
3
2.4  
NA  
-
NA  
-
2.41  
9.52  
19.45  
74.57  
NA  
+0.23  
2.40  
9.60  
18.64  
79.20  
NA  
0
9.6  
9.62  
19.23  
76.92  
100  
+0.16  
103  
51  
12  
9
9.62  
18.94  
78.13  
NA  
+0.16  
64  
32  
7
-0.83  
0
19.2  
76.8  
96  
+0.16  
-1.36  
+1.32  
-2.94  
+0.16  
+1.73  
-2.90  
+3.13  
+4.17  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
300  
500  
HIGH  
LOW  
NA  
-
0
-
-
312.50  
NA  
+4.17  
1
NA  
-
NA  
-
500  
1
-
-
-
-
NA  
-
NA  
-
1000  
3.91  
0
625  
0
447.44  
1.75  
0
316.80  
1.24  
0
-
255  
2.44  
255  
255  
255  
FOSC = 4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
1.20  
2.40  
9.62  
19.23  
NA  
-
-
207  
103  
25  
12  
-
NA  
1.20  
2.41  
9.73  
18.64  
74.57  
NA  
-
-
185  
92  
22  
11  
2
0.30  
1.20  
2.40  
NA  
+0.16  
207  
0.29  
NA  
-2.48  
6
+0.16  
+0.23  
+0.16  
51  
-
-
-
-
-
-
-
-
-
-
-
2.4  
+0.16  
+0.23  
+0.16  
25  
NA  
-
9.6  
+0.16  
+1.32  
-
-
-
-
-
-
-
-
-
NA  
-
19.2  
76.8  
96  
+0.16  
-2.90  
NA  
-
NA  
-
-
-
-
-
-
-
-2.90  
NA  
-
NA  
-
NA  
-
-
-
-
-
-
-
NA  
-
NA  
-
-
300  
500  
HIGH  
LOW  
NA  
-
NA  
-
NA  
-
-
NA  
NA  
-
NA  
-
NA  
NA  
-
250  
0.98  
0
55.93  
0.22  
0
62.50  
0.24  
0
2.05  
0.008  
0
255  
255  
255  
255  
DS39541A-page 182  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Once the TXREG register transfers the data to the TSR  
register (occurs in one TCY), the TXREG register is  
empty and flag bit TXIF (PIR registers) is set. This inter-  
rupt can be enabled/disabled by setting/clearing  
enable bit TXIE (PIE registers). Flag bit TXIF will be  
set, regardless of the state of enable bit TXIE and can-  
not be cleared in software. It will reset only when new  
data is loaded into the TXREG register. While flag bit  
TXIF indicated the status of the TXREG register,  
another bit TRMT (TXSTA register) shows the status of  
the TSR register. Status bit TRMT is a read only bit,  
which is set when the TSR register is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
16.2 USART Asynchronous Mode  
In this mode, data is transmitted in non-return-to-zero  
(NRZ) format. Data consists of one START bit, eight or  
nine data bits and one STOP bit. Data is transmitted in  
serial fashion with LSb first. An on-chip 8-bit baud rate  
generator can be programmed to generate the desired  
baud rate. The baud rate generator produces a clock,  
either x16 or x64 of the bit shift rate, depending on the  
BRGH bit (TXSTA register). USART does not automat-  
ically calculate the parity bit for the given data byte. If  
parity is to be transmitted, USART must be pro-  
grammed to transmit nine bits and software must set/  
clear ninth data bit as parity bit. Asynchronous mode is  
stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
Asynchronous mode is selected by clearing the SYNC  
bit (TXSTA register).  
memory, so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
is set.  
Steps to follow when setting up an Asynchronous  
Transmission:  
Baud Rate Generator  
Sampling Circuit  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH (Section 16.1).  
Asynchronous Transmitter  
Asynchronous Receiver  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
16.2.1  
USART ASYNCHRONOUS  
TRANSMITTER  
3. If interrupts are desired, set enable bit TXIE.  
The USART transmitter block diagram is shown in  
Figure 16-1. The heart of the transmitter is the Transmit  
(serial) Shift Register (TSR). The TSR register obtains  
its data from the Read/Write Transmit Buffer register  
(TXREG). The TXREG register is loaded with data in  
software. The TSR register is not loaded until the STOP  
bit has been transmitted from the previous load. As  
soon as the STOP bit is transmitted, the TSR is loaded  
with new data from the TXREG register (if available).  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts trans-  
mission).  
FIGURE 16-1:  
USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG Register  
8
TXIE  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• •  
TSR Register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
Note: I/O pins have diode protection to VDD and VSS.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 183  
PIC18C601/801  
FIGURE 16-2:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
START Bit  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
STOP Bit  
TXIF bit  
(Transmit Buffer  
Register Empty Flag)  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Register Empty Flag)  
FIGURE 16-3:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
START Bit  
START Bit  
Word 2  
Bit 0  
Bit 1  
Bit 7/8  
Bit 0  
STOP Bit  
Word 1  
TXIF bit  
(Interrupt Reg. Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 16-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
0000 000x 0000 000u  
-000 0000 -000 0000  
-000 0000 -000 0000  
-000 0000 -000 0000  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0010 0000 0010  
0000 0000 0000 0000  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF  
RBIF  
PIR1  
PIE1  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
TXIP SSPIP CCP1IP TMR2IP TMR1IP  
IPR1  
RCSTA  
SPEN  
SREN CREN  
FERR OERR  
RX9D  
TXREG USART Transmit Register  
TXSTA CSRC TX9 TXEN SYNC ADDEN BRGH TRMT  
TX9D  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented locations read as '0'.  
Shaded cells are not used for Asynchronous Transmission.  
DS39541A-page 184  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
16.2.2  
USART ASYNCHRONOUS  
RECEIVER  
16.2.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 16-4.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high speed shifter, operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate or at FOSC. This mode would typi-  
cally be used in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
Steps to follow when setting up an Asynchronous  
Reception with Address Detect Enable:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is required,  
set the BRGH bit.  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
Steps to follow when setting up an Asynchronous  
Reception:  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCIP bit.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH (Section 16.1).  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
7. The RCIF bit will be set when reception is com-  
plete. The interrupt will be acknowledged if the  
RCIE and GIE bits are set.  
3. If interrupts are desired, set enable bit RCIE.  
4. If 9-bit reception is desired, set bit RX9.  
5. Enable the reception by setting bit CREN.  
8. Read the RCSTA register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
9. Read RCREG to determine if the device is being  
addressed.  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
10. If any error occurred, clear the CREN bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
8. Read the 8-bit received data by reading the  
RCREG register.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
FIGURE 16-4:  
USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
SPBRG  
÷ 64  
or  
÷ 16  
RSR Register  
LSb  
MSb  
0
Baud Rate Generator  
1
7
STOP (8)  
START  
• • •  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D  
SPEN  
RCREG Register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
Note: I/O pins have diode protection to VDD and VSS.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 185  
PIC18C601/801  
FIGURE 16-5:  
ASYNCHRONOUS RECEPTION  
START  
bit  
START  
bit  
START  
bit7/8 STOP bit  
bit  
RX (pin)  
bit0  
bit1  
STOP  
bit  
STOP  
bit  
bit0  
bit7/8  
bit7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
TABLE 16-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x  
0000 000u  
-000 0000  
-000 0000  
-000 0000  
0000 -00x  
0000 0000  
0000 0010  
0000 0000  
PIR1  
PIE1  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CREN  
SSPIF CCP1IF TMR2IF TMR1IF -000 0000  
SSPIE CCP1IE TMR2IE TMR1IE -000 0000  
SSPIP CCP1IP TMR2IP TMR1IP -000 0000  
IPR1  
RCSTA  
SPEN  
FERR  
OERR  
RX9D  
0000 -00x  
0000 0000  
0000 0010  
0000 0000  
RCREG USART Receive Register  
TXSTA CSRC TX9  
TXEN  
SYNC ADDEN BRGH  
TRMT  
TX9D  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.  
DS39541A-page 186  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
bit TXIF (PIR registers) is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE registers). Flag bit TXIF will be set, regardless of  
the state of enable bit TXIE, and cannot be cleared in  
software. It will reset only when new data is loaded into  
the TXREG register. While flag bit TXIF indicates the  
status of the TXREG register, another bit TRMT  
(TXSTA register) shows the status of the TSR register.  
TRMT is a read only bit, which is set when the TSR is  
empty. No interrupt logic is tied to this bit, so the user  
has to poll this bit in order to determine if the TSR reg-  
ister is empty. The TSR is not mapped in data memory,  
so it is not available to the user.  
16.3 USART Synchronous Master  
Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner (i.e., transmission and reception  
do not occur at the same time). When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA register).  
In addition, enable bit SPEN (RCSTA register) is set, in  
order to configure the RC6/TX/CK and RC7/RX/DT I/O  
pins to CK (clock) and DT (data) lines, respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit CSRC (TXSTA register).  
Steps to follow when setting up a Synchronous Master  
Transmission:  
16.3.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 16.1).  
The USART transmitter block diagram is shown in  
Figure 16-1. The heart of the transmitter is the Transmit  
(serial) Shift register (TSR). The shift register obtains  
its data from the Read/Write Transmit Buffer register  
(TXREG). The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG is empty and interrupt  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
POR,  
Value on all  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
BOR  
RESETS  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PIE1  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TMR2IF TMR1IF -000 0000 -000 0000  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IP TMR2IP TMR1IP -000 0000 -000 0000  
IPR1  
TXIP  
RCSTA  
SPEN  
CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0010 0000 0010  
0000 0000 0000 0000  
TXREG USART Transmit Register  
TXSTA CSRC TX9  
TXEN  
SYNC ADDEN  
BRGH  
TRMT  
TX9D  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 187  
PIC18C601/801  
FIGURE 16-6:  
SYNCHRONOUS TRANSMISSION  
Q1Q2 Q3Q4 Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2 Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4  
Bit 0  
Bit 1  
Bit 2  
Bit 7  
Bit 0  
Bit 1  
Word 2  
Bit 7  
RC7/RX/DT  
pin  
Word 1  
RC6/TX/CK  
pin  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note: Sync Master mode; SPBRG = 0; continuous transmission of two 8-bit words.  
FIGURE 16-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
bit0  
bit2  
bit1  
bit6  
bit7  
RC6/TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
DS39541A-page 188  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
3. Ensure bits CREN and SREN are clear.  
16.3.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
4. If interrupts are desired, set enable bit RCIE.  
5. If 9-bit reception is desired, set bit RX9.  
Once Synchronous Master mode is selected, reception  
is enabled by setting either enable bit SREN (RCSTA  
register), or enable bit CREN (RCSTA register). Data is  
sampled on the RC7/RX/DT pin on the falling edge of  
the clock. If enable bit SREN is set, only a single word  
is received. If enable bit CREN is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
the enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
When setting up a Synchronous Master reception, fol-  
low these steps:  
9. Read the 8-bit received data by reading the  
RCREG register.  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 16.1).  
10. If any error occurred, clear the error by clearing  
bit CREN.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
POR,  
BOR  
Value on all  
other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x  
0000 000u  
-000 0000  
-000 0000  
-000 0000  
0000 -00x  
0000 0000  
0000 0010  
0000 0000  
PIR1  
PIE1  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
CCP1IF TMR2IF TMR1IF -000 0000  
CCP1IE TMR2IE TMR1IE -000 0000  
CCP1IP TMR2IP TMR1IP -000 0000  
IPR1  
TXIP  
RCSTA  
SPEN  
CREN  
FERR  
OERR  
RX9D  
0000 -00x  
0000 0000  
0000 0010  
0000 0000  
RCREG USART Receive Register  
TXSTA CSRC TX9  
TXEN  
SYNC  
ADDEN  
BRGH  
TRMT  
TX9D  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Reception.  
FIGURE 16-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RCIF bit  
(interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates SYNC Master mode with bit SREN = 1and bit BRGH = 0.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 189  
PIC18C601/801  
16.4.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
16.4 USART Synchronous Slave Mode  
Synchronous Slave mode differs from the Master  
mode, in that the shift clock is supplied externally at the  
RC6/TX/CK pin (instead of being supplied internally in  
Master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA register).  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of the SLEEP  
mode and bit SREN, which is a "dont care" in Slave  
mode.  
If receive is enabled by setting bit CREN prior to the  
SLEEPinstruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register,  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector.  
16.4.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
The operation of the Synchronous Master and Slave  
modes are identical, except in the case of the SLEEP  
mode.  
When setting up a Synchronous Slave Reception,  
follow these steps:  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will be set.  
5. Flag bit RCIF will be set when reception is com-  
plete. An interrupt will be generated if enable bit  
RCIE was set.  
e) If enable bit TXIE is set, the interrupt will wake the  
chip from SLEEP. If the global interrupt is enabled,  
the program will branch to the interrupt vector.  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
When setting up a Synchronous Slave Transmission,  
follow these steps:  
7. Read the 8-bit received data by reading the  
RCREG register.  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit CSRC.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
POR,  
Value on all  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
BOR  
RESETS  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CREN  
SSPIF  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
SSPIP CCP1IP TMR2IP TMR1IP -000 0000 -000 0000  
IPR1  
RCSTA  
TXREG  
TXSTA  
SPBRG  
SPEN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0010 0000 0010  
0000 0000 0000 0000  
USART Transmit Register  
CSRC TX9  
TXEN  
SYNC ADDEN  
BRGH  
TRMT  
TX9D  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Slave Transmission.  
DS39541A-page 190  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 16-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
POR,  
BOR  
Value on all  
other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PIE1  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CREN  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IP TMR2IP TMR1IP -000 0000 -000 0000  
IPR1  
RCSTA  
SPEN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0010 0000 0010  
0000 0000 0000 0000  
RCREG USART Receive Register  
TXSTA CSRC TX9  
TXEN  
SYNC  
ADDEN  
BRGH  
TRMT  
TX9D  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Slave Reception.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 191  
PIC18C601/801  
NOTES:  
DS39541A-page 192  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
The A/D module has five registers:  
17.0 10-BIT ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
A/D Result High Register (ADRESH)  
A/D Result Low Register (ADRESL)  
A/D Control Register 0 (ADCON0)  
A/D Control Register 1 (ADCON1)  
A/D Control Register 2 (ADCON2)  
The analog-to-digital (A/D) converter module has 8  
inputs for the PIC18C601 devices and 12 for the  
PIC18C801 devices. This module has the ADCON0,  
ADCON1, and ADCON2 registers.  
The A/D allows conversion of an analog input signal  
to a corresponding 10-bit digital number.  
The ADCON0 register, shown in Register 17-1, controls  
the operation of the A/D module. The ADCON1 register,  
shown in Register 17-2, configures the functions of the  
port pins. The ADCON2, shown in Register 16-3, config-  
ures the A/D clock source and justification.  
REGISTER 17-1: ADCON0 REGISTER  
U-0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
GO/DONE ADON  
bit 7  
bit 0  
bit 7-6  
bit 5-2  
Unimplemented: Read as '0'  
CHS3:CHS0: Analog Channel Select bits  
0000= channel 00, (AN0)  
0001= channel 01, (AN1)  
0010= channel 02, (AN2)  
0011= channel 03, (AN3)  
0100= channel 04, (AN4)  
0101= channel 05, (AN5)  
0110= channel 06, (AN6)  
0111= channel 07, (AN7)  
1000= channel 08, (AN8)(1)  
1001= channel 09, (AN9)(1)  
1010= channel 10, (AN10)(1)  
1011= channel 11, (AN11)(1)  
1100= Reserved  
1101= Reserved  
1110= Reserved  
1111= Reserved  
These channels are not available on the PIC18C601 devices.  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress. Setting this bit starts an A/D conversion cycle. This bit is  
automatically cleared by hardware when the A/D conversion is complete.  
0= A/D conversion not in progress  
bit 1  
bit 0  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter module is shut-off and consumes no operating current  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 193  
PIC18C601/801  
REGISTER 17-2: ADCON1 REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VCFG1  
VCFG0  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
bit 7-6  
bit 5-4  
Unimplemented: Read as '0'  
VCFG1:VCFG0: Voltage Reference Configuration bits  
A/D VREF+  
A/D VREF-  
00  
01  
10  
11  
AVDD  
AVSS  
External VREF+  
AVDD  
AVSS  
External VREF-  
External VREF-  
External VREF+  
bit 3-0  
PCFG3:PCFG0: A/D Port Configuration Control bits  
AN11 AN10 AN9 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
A = Analog input  
D = Digital I/O  
Shaded cells = Additional A/D channels available on PIC18C801 devices.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39541A-page 194  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
REGISTER 17-3: ADCON2 REGISTER  
R/W-0  
ADFM  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ADCS0  
bit 0  
ADCS2  
ADCS1  
bit 7  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6-3  
bit 2-0  
Unimplemented: Read as '0'  
ADCS2:ADCS0: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC (clock derived from an internal RC oscillator = 1 MHz max)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC (clock derived from an internal RC oscillator = 1 MHz max)  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
The analog reference voltage is software selectable to  
either the devices positive and negative supply  
voltage (VDD and VSS), or the voltage level on the  
RA3/AN3/VREF+ pin and RA2/AN2/VREF-.  
Each port pin associated with the A/D converter can  
be configured as an analog input (RA3 can also be a  
voltage reference), or as a digital I/O.  
The ADRESH and ADRESL registers contain the  
result of the A/D conversion. When the A/D conver-  
sion is complete, the result is loaded into the  
ADRESH/ADRESL registers, the GO/DONE bit  
(ADCON0 register) is cleared, and A/D interrupt flag  
bit ADIF is set. The block diagram of the A/D module  
is shown in Figure 17-1.  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode. To oper-  
ate in SLEEP, the A/D conversion clock must be  
derived from the A/Ds internal RC oscillator.  
The output of the sample and hold is the input into the  
converter, which generates the result via successive  
approximation.  
A device RESET forces all registers to their RESET  
state. This forces the A/D module to be turned off and  
any conversion is aborted.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 195  
PIC18C601/801  
FIGURE 17-1:  
A/D BLOCK DIAGRAM  
CHS3:CHS0  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
RF2/AN7  
RF1/AN6  
RF0/AN5  
RA5/AN4  
RA3/AN3/VREF+  
RA2/AN2/VREF-  
RA1/AN1  
VIN  
RA0/AN0  
(Input voltage)  
1011  
1010  
(1)  
RH7/AN11  
A/D  
Converter  
(1)  
RH6/AN10  
1001  
1000  
(1)  
RH5/AN9  
AVDD  
(1)  
RH4/AN8  
VREF+  
(Reference  
Voltage)  
VCFG0  
VREF-  
(Reference  
Voltage)  
AVSS  
VCFG1  
Note 1: These channels are not available on the PIC18C601 devices.  
DS39541A-page 196  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
The value in the ADRESH/ADRESL registers is not  
modified for a Power-on Reset. The ADRESH/ADRESL  
registers will contain unknown data after a Power-on  
Reset.  
2. Configure A/D interrupt (if desired):  
Clear ADIF bit  
Set ADIE bit  
Set GIE bit  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 17.1.  
After this acquisition time has elapsed, the A/D conver-  
sion can be started. The following steps should be fol-  
lowed to do an A/D conversion:  
3. Wait the required acquisition time.  
4. Start conversion:  
Set GO/DONE bit (ADCON0 register)  
5. Wait for A/D conversion to complete, by either:  
Polling for the GO/DONE bit to be cleared,  
OR  
Waiting for the A/D interrupt  
6. Read A/D Result registers (ADRESH:ADRESL);  
clear bit ADIF, if required.  
1. Configure the A/D module:  
Configure analog pins, voltage reference  
and digital I/O (ADCON1)  
7. For next conversion, go to step 1 or step 2, as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
Select A/D input channel (ADCON0)  
Select A/D conversion clock (ADCON2)  
Turn on A/D module (ADCON0)  
FIGURE 17-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6 V  
ANx  
SS  
RIC 1 k  
RSS  
Rs  
CPIN  
VAIN  
I leakage  
± 500 nA  
CHOLD = 120 pF  
VT = 0.6 V  
5 pF  
VSS  
Legend: CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
VDD 4V  
3V  
I LEAKAGE = leakage current at the pin due to  
various junctions  
RIC  
SS  
= interconnect resistance  
= sampling switch  
2V  
CHOLD  
RSS  
= sample/hold capacitance (from DAC)  
= sampling switch resistance  
5
6
7
8 9 10 11  
Sampling Switch ( k)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 197  
PIC18C601/801  
To calculate the minimum acquisition time,  
Equation 17-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
17.1 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 17-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5k. After the analog input channel is  
selected (changed), this acquisition must be done  
before the conversion can be started.  
Example 17-1 shows the calculation of the minimum  
required acquisition time TACQ. This calculation is  
based on the following application system assumptions:  
CHOLD  
Rs  
Conversion Error  
VDD  
Temperature  
VHOLD  
=
=
=
=
=
120 pF  
2.5 kΩ  
1/2 LSb  
5V Rss = 7 kΩ  
50°C (system max.)  
0V @ time = 0  
Note: When the conversion is started, the hold-  
ing capacitor is disconnected from the  
input pin.  
EQUATION 17-1: ACQUISITION TIME  
TACQ  
=
Amplifier Settling Time +  
Holding Capacitor Charging Time +  
Temperature Coefficient  
=
TAMP + TC + TCOFF  
EQUATION 17-2: A/D MINIMUM CHARGING TIME  
VHOLD  
or  
TC  
=
=
(VREF - (VREF/2048)) (1 - e(-Tc/CHOLD(RIC + RSS + RS))  
-(120 pF)(1 k+ RSS + RS) ln(1/2047)  
)
EXAMPLE 17-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
=
TAMP + TC + TCOFF  
Temperature coefficient is only required for temperatures > 25°C.  
TACQ  
TC  
=
=
2 µs + TC + [(Temp - 25°C)(0.05 µs/°C)]  
-CHOLD (RIC + RSS + RS) ln(1/2047)  
-120 pF (1 k+ 7 k+ 2.5 k) ln(0.0004885)  
-120 pF (10.5 k) ln(0.0004885)  
-1.26 µs (-7.6241)  
9.61 µs  
TACQ  
=
2 µs + 9.61 µs + [(50°C - 25°C)(0.05 µs/°C)]  
11.61 µs + 1.25 µs  
12.86 µs  
DS39541A-page 198  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
17.2 Selecting the A/D Conversion  
Clock  
17.3 Configuring Analog Port Pins  
The ADCON1, TRISA, TRISF and TRISH registers  
control the operation of the A/D port pins. The port pins  
needed as analog inputs must have their correspond-  
ing TRIS bits set (input). If the TRIS bit is cleared (out-  
put), the digital output level (VOH or VOL) will be  
converted.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 12 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. There are seven possible options for TAD:  
2TOSC  
The A/D operation is independent of the state of the  
CHS3:CHS0 bits and the TRIS bits.  
4TOSC  
8TOSC  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
16TOSC  
32TOSC  
64TOSC  
Internal RC oscillator  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
2: Analog levels on any pin defined as a dig-  
ital input may cause the input buffer to  
consume current out of the devices spec-  
ification limits.  
Table 17-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
TABLE 17-1: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Maximum Device Frequency  
Operation  
ADCS2:ADCS0  
PIC18C601/801  
PIC18LC601/801(5)  
2TOSC  
4TOSC  
8TOSC  
16TOSC  
32TOSC  
64TOSC  
RC  
000  
100  
001  
101  
010  
110  
x11  
1.25 MHz  
2.50 MHz  
5.00 MHz  
10.0 MHz  
20.0 MHz  
666 kHz  
1.33 MHz  
2.67 MHz  
5.33 MHz  
10.67 MHz  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: For device frequencies above 1 MHz, the device must be in SLEEP for the entire conversion or the A/D  
accuracy may be out of specification.  
5: This column is for the LC devices only.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 199  
PIC18C601/801  
17.4 A/D Conversions  
17.5 Use of the CCP2 Trigger  
Figure 17-3 shows the operation of the A/D converter  
after the GO bit has been set. Clearing the GO/DONE  
bit during a conversion will abort the current conver-  
sion. The A/D result register pair will NOT be updated  
with the partially completed A/D conversion sample.  
That is, the ADRESH:ADRESL registers will continue  
to contain the value of the last completed conversion  
(or the last value written to the ADRESH:ADRESL reg-  
isters). After the A/D conversion is aborted, a 2TAD wait  
is required before the next acquisition is started. After  
this 2TAD wait, acquisition on the selected channel is  
automatically started.  
An A/D conversion can be started by the special event  
triggerof the CCP2 module. This requires that the  
CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be pro-  
grammed as 1011, and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the GO/DONE  
bit will be set, starting the A/D conversion and the Timer1  
(or Timer3) counter will be reset to zero. Timer1 (or  
Timer3) is reset to automatically repeat the A/D acquisi-  
tion period with minimal software overhead (moving  
ADRESH/ADRESL to the desired location). The appropri-  
ate analog input channel must be selected and the mini-  
mum acquisition done before the special event trigger”  
sets the GO/DONE bit (starts a conversion).  
Note: The GO/DONE bit should NOT be set in  
If the A/D module is not enabled (ADON is cleared), the  
special event triggerwill be ignored by the A/D mod-  
ule, but will still reset the Timer1 (or Timer3) counter.  
the same instruction that turns on the A/D.  
FIGURE 17-3:  
A/D CONVERSION TAD CYCLES  
TCY - TAD  
TAD7 TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6  
b9  
b9  
b4  
b2  
b0  
b6  
b5  
b3  
b1  
b8  
b7  
Conversion Starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
Next Q4: ADRESH/ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
DS39541A-page 200  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 17-2: SUMMARY OF A/D REGISTERS  
Value on all  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
POR, BOR  
RESETS  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x  
0000 000u  
-000 0000  
-000 0000  
-000 0000  
-0-- 0000  
---- 0000  
---- 0000  
uuuu uuuu  
uuuu uuuu  
0000 00-0  
---- -000  
0--- -000  
--0u 0000  
--11 1111  
u000 0000  
uuuu uuuu  
1111 1111  
0000 xxxx  
uuuu uuuu  
1111 1111  
PIR1  
PIE1  
IPR1  
PIR2  
PIE2  
IPR2  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF  
TMR2IF  
TMR1IF -000 0000  
SSPIE CCP1IE TMR2IE TMR1IE -000 0000  
SSPIP CCP1IP TMR2IP TMR1IP -000 0000  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
TMR3IE  
TMR3IP  
CCP2IF -0-- 0000  
CCP2IE ---- 0000  
CCP2IP ---- 0000  
xxxx xxxx  
ADRESH A/D Result Register  
ADRESL A/D Result Register  
xxxx xxxx  
ADCON0  
ADCON1  
ADCON2  
PORTA  
TRISA  
CHS3  
CHS3  
CHS1  
CHS0 GO/DONE ADON  
0000 00-0  
PCFG0 ---- -000  
ADCS0 0--- -000  
VCFG1 VCFG0 PCFG3 PCFG2  
PCFG1  
ADCS1  
RA1  
ADFM  
ADCS2  
RA2  
RA5  
RA4  
RA3  
RA0  
--0x 0000  
--11 1111  
x000 0000  
xxxx xxxx  
1111 1111  
0000 xxxx  
xxxx xxxx  
1111 1111  
PORTA Data Direction Register  
PORTF  
LATF  
RF7  
LATF7  
RF6  
RF5  
RF4  
RF3  
RF2  
RF1  
RF0  
LATF6  
LATF5  
LATF4 LATF3  
LATF2  
LATF1  
LATF0  
TRISF  
PORTF Data Direction Control Register  
(1)  
PORTH  
RH7  
RH6  
RH5  
RH4  
RH3  
RH2  
RH1  
RH0  
(1)  
LATH  
LATH7  
LATH6  
LATH5 LATH4 LATH3 LATH2  
LATH1  
LATH0  
(1)  
TRISH  
PORTH Data Direction Control Register  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: Only available on PIC18C801 devices.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 201  
PIC18C601/801  
NOTES:  
DS39541A-page 202  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Figure 18-2 shows the block diagram for the LVD mod-  
ule. A comparator uses an internally generated refer-  
ence voltage as the set point. When the selected tap  
output of the device voltage crosses the set point (is  
lower than), the LVDIF bit (PIR registers) is set.  
18.0 LOW VOLTAGE DETECT  
In many applications, the ability to determine if the  
device voltage (VDD) is below a specified voltage level  
is a desirable feature. A window of operation for the  
application can be created, where the application soft-  
ware can do "housekeeping tasks", before the device  
voltage exits the valid operating range. This can be  
done using the Low Voltage Detect module.  
Each node in the resister divider represents a trip  
pointvoltage. The trip pointvoltage is the minimum  
supply voltage level at which the device can operate,  
before the LVD module asserts an interrupt. When the  
supply voltage is equal to the trip point, the voltage  
tapped off of the resistor array (or external LVDIN input  
pin) is equal to the voltage generated by the internal  
voltage reference module. The comparator then gener-  
ates an interrupt signal setting the LVDIF bit. This volt-  
age is software programmable to any one of 16 values  
(see Figure 18-2). The trip point is selected by  
programming the LVDL3:LVDL0 bits (LVDCON<3:0>).  
This module is software programmable circuitry, where  
a device voltage trip point can be specified (internal ref-  
erence voltage or external voltage input). When the  
voltage of the device becomes lower than the specified  
point, an interrupt flag is set. If the interrupt is enabled,  
the program execution will branch to the interrupt vec-  
tor address and the software can then respond to that  
interrupt source.  
The Low Voltage Detect circuitry is completely under  
software control. This allows the circuitry to be "turned  
off" by the software, which minimizes the current con-  
sumption for the device.  
FIGURE 18-2:  
LOW VOLTAGE DETECT  
(LVD) BLOCK DIAGRAM  
VDD  
Figure 18-1 shows a possible application voltage curve  
(typically for batteries). Over time, the device voltage  
decreases. When the device voltage equals voltage VA,  
the LVD logic generates an interrupt. This occurs at time  
TA. The application software then has the time, until the  
device voltage is no longer in valid operating range, to  
shut-down the system. Voltage point VB is the minimum  
valid operating voltage specification. This occurs at time  
TB. TB - TA is the total time for shut-down.  
LVD Control  
Register  
FIGURE 18-1:  
TYPICAL LOW VOLTAGE  
DETECT APPLICATION  
LVDIF  
VA  
VB  
LVDIN  
LVDEN  
Internally Generated  
Reference Voltage  
TB  
TA  
Time  
Legend:  
VA = LVD trip point  
VB = Minimum valid device operating range  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 203  
PIC18C601/801  
18.1 Control Register  
The Low Voltage Detect Control register (Register 18-1)  
controls the operation of the Low Voltage Detect  
circuitry.  
REGISTER 18-1: LVDCON REGISTER  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
LVDL3  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-1  
LVDL0  
IRVST  
LVDEN  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as '0'  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the Low Voltage Detect logic will generate the interrupt flag at the specified  
voltage range  
0= Indicates that the Low Voltage Detect logic will not generate the interrupt flag at the  
specified voltage range and the LVD interrupt should not be enabled  
bit 4  
LVDEN: Low Voltage Detect Power Enable bit  
1= Enables LVD, powers up LVD circuit  
0= Disables LVD, powers down LVD circuit  
bit 3-0  
LVDL3:LVDL0: Low Voltage Detection Limit bits  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= 4.5V  
1101= 4.2V  
1100= 4.0V - Reserved on PIC18C601/801  
1011= 3.8V - Reserved on PIC18C601/801  
1010= 3.6V - Reserved on PIC18C601/801  
1001= 3.5V - Reserved on PIC18C601/801  
1000= 3.3V - Reserved on PIC18C601/801  
0111= 3.0V - Reserved on PIC18C601/801  
0110= 2.8V - Reserved on PIC18C601/801  
0101= 2.7V - Reserved on PIC18C601/801  
0100= 2.5V - Reserved on PIC18C601/801  
0011= 2.4V - Reserved on PIC18C601/801  
0010= 2.2V - Reserved on PIC18C601/801  
0001= 2.0V - Reserved on PIC18C601/801  
0000= Reserved on PIC18C601/801 and PIC18LC801/601  
LVDL3:LVDL0 modes which result in a trip point below the valid operating voltage of the device  
are not tested.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39541A-page 204  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
The following steps are needed to setup the LVD  
module:  
18.2 Operation  
Depending on the power source for the device voltage,  
the voltage normally decreases relatively slowly. This  
means that the LVD module does not need to be con-  
stantly operating. To decrease current consumption,  
the LVD circuitry only needs to be enabled for short  
periods, where the voltage is checked. After doing the  
check, the LVD module may be disabled.  
1. Write the value to the LVDL3:LVDL0 bits  
(LVDCON register), which selects the desired  
LVD trip point.  
2. Ensure that LVD interrupts are disabled (the  
LVDIE bit is cleared or the GIE bit is cleared).  
3. Enable the LVD module (set the LVDEN bit in  
the LVDCON register).  
Each time that the LVD module is enabled, the circuitry  
requires some time to stabilize. After the circuitry has  
stabilized, all status flags may be cleared. The module  
will then indicate the proper state of the system.  
4. Wait for the LVD module to stabilize (the IRVST  
bit to become set).  
5. Clear the LVD interrupt flag, which may have  
falsely become set, until the LVD module has  
stabilized (clear the LVDIF bit).  
6. Enable the LVD interrupt (set the LVDIE and the  
GIE bits).  
Figure 18-3 shows typical waveforms that the LVD  
module may be used to detect.  
FIGURE 18-3:  
LOW VOLTAGE DETECT WAVEFORMS  
CASE 1:  
LVDIF may not be set  
VDD  
VLVD  
LVDIF  
Enable LVD  
50 ms  
Internally Generated  
Reference Stable  
LVDIF cleared in software  
CASE 2:  
VDD  
VLVD  
LVDIF  
Enable LVD  
50 ms  
Internally Generated  
Reference Stable  
LVDIF cleared in software  
LVDIF cleared in software,  
LVDIF remains set since LVD condition still exists  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 205  
PIC18C601/801  
18.2.1  
REFERENCE VOLTAGE SET POINT  
18.3 External Analog Voltage Input  
The Internal Reference Voltage of the LVD module may  
be used by other internal circuitry (the programmable  
Brown-out Reset). If these circuits are disabled (lower  
current consumption), the reference voltage circuit  
requires time to become stable before a low voltage con-  
dition can be reliably detected. This time is invariant of  
system clock speed. This start-up time is specified in  
electrical specification parameter #36. The low voltage  
interrupt flag will not be enabled until a stable reference  
voltage is reached. Refer to the waveform in Figure 18-3.  
The LVD module has an additional feature that allows  
the user to supply the trip point voltage to the module  
from an external source (the LVDIN pin). The LVDIN pin  
is used as the trip point when the LVDL3:LVDL0 bits  
equal 1111. This state connects the LVDIN pin volt-  
age to the comparator. The other comparator input is  
connected to an internal reference voltage source.  
18.4 Operation During SLEEP  
When enabled, the LVD circuitry continues to operate  
during SLEEP. If the device voltage crosses the trip  
point, the LVDIF bit will be set and the device will wake-  
up from SLEEP. Device execution will continue from  
the interrupt vector address, if interrupts have been  
globally enabled.  
18.2.2  
CURRENT CONSUMPTION  
When the module is enabled, the LVD comparator and  
voltage divider are enabled and will consume static cur-  
rent. The voltage divider can be tapped from multiple  
places in the resistor array. Total current consumption,  
when enabled, is specified in electrical specification  
parameter #D022B.  
18.5 Effects of a RESET  
A device RESET forces all registers to their RESET  
state. This forces the LVD module to be turned off.  
DS39541A-page 206  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
while the power supply stabilizes. With these two tim-  
ers on-chip, most applications need no external  
RESET circuitry.  
19.0 SPECIAL FEATURES OF THE  
CPU  
There are several features intended to maximize  
system reliability, minimize cost through elimination of  
external components and provide power saving  
operating modes:  
SLEEP mode is designed to offer a very low current  
Power-down mode. The user can wake-up from  
SLEEP through external RESET, Watchdog Timer  
Wake-up or through an interrupt. Several oscillator  
options are also available to allow the part to fit the  
application. The RC oscillator option saves system  
cost, while the LP crystal option saves power. By  
default, HS oscillator mode is selected. There are two  
main modes of operations for external memory inter-  
face: 8-bit and 16-bit (default). A set of configuration  
bits are used to select various options.  
OSC Selection  
RESET  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
Interrupts  
Watchdog Timer (WDT)  
SLEEP  
19.1 Configuration Bits  
ID Locations  
The configuration bits can be programmed (read as 0),  
or left unprogrammed (read as 1), to select various  
device configurations. These bits are mapped starting  
at program memory location 300000h.  
PIC18C601/801 devices have a Watchdog Timer,  
which can be permanently enabled/disabled via the  
configuration bits, or it can be software controlled. By  
default, the Watchdog Timer is disabled to allow soft-  
ware control. It runs off its own RC oscillator for cost  
reduction. There are two timers that offer necessary  
delays on power-up. One is the Oscillator Start-up  
Timer (OST), intended to keep the chip in RESET until  
the crystal oscillator is stable. The other is the Power-  
up Timer (PWRT), which provides a fixed delay on  
power-up only, designed to keep the part in RESET  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h - 3FFFFFh),  
which can only be accessed using table reads and  
table writes.  
TABLE 19-1: CONFIGURATION BITS AND DEVICE IDs  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
300006h CONFIG4L  
BW  
FOSC1  
FOSC0  
---- --11  
-1-- ---1  
---- 1110  
1--- ---1  
0000 0000  
0000 0000  
PWRTEN  
WDTPS2 WDTPS1 WDTPS0 WDTEN  
r
STVREN  
REV0  
3FFFFEh  
3FFFFFh  
DEVID1  
DEVID2  
DEV2  
DEV1  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
DEV10 DEV9  
DEV3  
Legend: x= unknown, u= unchanged, - = unimplemented, q= value depends on condition, r = reserved, maintain 1.  
Shaded cells are unimplemented, read as 0.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 207  
PIC18C601/801  
REGISTER 19-1: CONFIGURATION REGISTER 1 HIGH (CONFIG1H: BYTE ADDRESS 0300001h)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
FOSC1  
FOSC0  
bit 7  
bit 0  
bit 7-2  
bit 2-0  
Unimplemented: Read as 0’  
FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= EC oscillator  
00= LP oscillator  
Legend:  
r = Reserved  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as 0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 19-2: CONFIGURATION REGISTER 2 LOW (CONFIG2L: BYTE ADDRESS 300002h)  
U-0  
R/P-1  
BW  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
PWRTEN  
bit 0  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as 0’  
BW: External Bus Data Width bit  
1= 16-bit external bus mode  
0= 8-bit external bus mode  
bit 5-1  
bit 0  
Unimplemented: Read as 0’  
PWRTEN: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
Legend:  
r = Reserved  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as 0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39541A-page 208  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
REGISTER 19-3: CONFIGURATIONREGISTER2HIGH(CONFIG2H:BYTEADDRESS300003H)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTPS2 WDTPS1 WDTPS0 WDTEN  
bit 0  
bit 7  
Unimplemented: Read as 0’  
bit 7-4  
bit 3-1  
WDTPS2:WDTPS0: Watchdog Timer Postscale Select bits  
000=1:128  
001=1:64  
010=1:32  
011=1:16  
100=1:8  
101=1:4  
110=1:2  
111=1:1  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
Legend:  
r = Reserved  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as 0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 19-4: CONFIGURATION REGISTER 4 LOW (CONFIG4L: BYTE ADDRESS 300006H)  
R/P-1  
r
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
STVREN  
bit 0  
bit 7  
bit 7  
Reserved: Maintain as 1’  
Unimplemented: Read as 0’  
bit 6-1  
bit 0  
STVREN: Stack Full/Underflow RESET Enable bit  
1= Stack Full/Underflow will cause RESET  
0= Stack Full/Underflow will not cause RESET  
Legend:  
r = Reserved  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as 0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 209  
PIC18C601/801  
The WDT time-out period values may be found in the  
Electrical Specifications section under parameter #31.  
Values for the WDT postscaler may be assigned by  
using configuration bits WDPS<3:1> in CONFIG2H  
register. If the Watchdog Timer is disabled by configu-  
ration, values for the WDT postscaler may be assigned  
using the SWDPS bits in the WDTCON register.  
19.2 Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC oscil-  
lator, which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the OSC1/CLKI pin. That means that the WDT will run,  
even if the clock on the OSC1/CLKI and OSC2/CLKO  
pins of the device has been stopped; for example, by  
execution of a SLEEPinstruction.  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and the postscaler, if  
assigned to the WDT, and prevent it from  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the RCON register  
will be cleared upon a WDT time-out.  
timing out and generating  
RESET condition.  
a device  
2: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but  
the prescaler assignment is not changed.  
By default, the Watchdog Timer is disabled by configu-  
ration to allow software control over Watchdog Timer  
operation. If the WDT is enabled by configuration, soft-  
ware execution may not disable this function. When the  
Watchdog Timer is disabled by configuration, the  
SWDTEN bit in the WDTCON register enables/  
disables the operation of the WDT.  
19.2.1  
CONTROL REGISTER  
Register 19-5 shows the WDTCON register. This is a  
readable and writable register. It contains control bits to  
control the Watchdog Timer from user software. If the  
Watchdog Timer is enabled by configuration, this regis-  
ter setting is ignored.  
REGISTER 19-5: WDTCON REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SWDPS2 SWDPS1 SWDPS0 SWDTEN  
bit 0  
bit 7  
bit 7-4  
bit 3-1  
Unimplemented: Read as 0’  
SWDPS2:SWDPS0: Software Watchdog Timer Postscale Select bits  
111= 1:128  
110= 1:64  
101= 1:32  
100= 1:16  
011= 1:8  
010= 1:4  
001= 1:2  
000= 1:1  
bit 0  
SWDTEN: Software Controlled Watchdog Timer Enable bit  
1= Watchdog Timer is on  
0= Watchdog Timer is turned off if it is not disabled  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39541A-page 210  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
the device will use predefined set postscaler value. If  
the device has the Watchdog Timer disabled by config-  
uration bits, user software can set desired postscaler  
value. When the device has the Watchdog Timer  
enabled by configuration bits, by default, Watchdog  
postscaler of 1:128 is selected.  
19.2.2  
WDT POSTSCALER  
The WDT has a postscaler that can extend the WDT  
Reset period. The postscaler may be programmed by  
the user software or is selected by configuration bits  
WDTPS<2:0> in the CONFIG2H register. If the device  
has the Watchdog Timer enabled by configuration bits,  
FIGURE 19-1:  
Watchdog Timer Block Diagram  
WDT Timer  
Postscaler  
8
SWDTEN bit  
8 - to - 1 MUX  
WDTPS2:WDTPS0  
WDT  
Time-out  
Note: WDPS2:WDPS0 are bits in a configuration register.  
TABLE 19-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
WDTPS2  
TO  
Bit 2  
WDTPS1  
PD  
Bit 1  
Bit 0  
CONFIG2H  
RCON  
IPEN  
r
RI  
WDTPS0  
POR  
WDTEN  
r
WDTCON  
SWDPS2 SWDPS1 SWDPS0 SWDTEN  
Legend: Shaded cells are not used by the Watchdog Timer.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 211  
PIC18C601/801  
External MCLR Reset will cause a device RESET. All  
other events are considered a continuation of program  
execution and will cause a "wake-up". The TO and PD  
bits in the RCON register can be used to determine the  
cause of the device RESET. The PD bit, which is set on  
power-up, is cleared when SLEEP is invoked. The TO  
bit is cleared, if a WDT time-out occurred (and caused  
wake-up).  
19.3 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
instruction.  
Upon entering into Power-down mode, the following  
actions are performed:  
1. Watchdog Timer is cleared and kept running.  
2. PD bit in RCON register is cleared.  
3. TO bit in RCON register is set.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 2) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address. In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
4. Oscillator driver is turned off.  
5. I/O ports maintain the status they had before the  
SLEEPinstruction was executed.  
To achieve lowest current consumption, follow these  
steps before switching to Power-down mode:  
1. Place all I/O pins at either VDD or VSS and  
ensure no external circuitry is drawing current  
from I/O pin.  
2. Power-down A/D and external clocks.  
3. Pull all hi-impedance inputs to high or low,  
externally.  
19.3.2  
WAKE-UP USING INTERRUPTS  
4. Place T0CKI at VSS or VDD.  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
5. Current consumption by PORTB on-chip pull-  
ups should be taken into account and disabled,  
if necessary.  
If an interrupt condition (interrupt flag bit and inter-  
rupt enable bits are set) occurs before the execu-  
tion of a SLEEPinstruction, the SLEEPinstruction  
will complete as a NOP. Therefore, the WDT and  
WDT postscaler will not be cleared, the TO bit will  
not be set and PD bits will not be cleared.  
The MCLR pin must be at a logic high level (VIHMC).  
19.3.1  
WAKE-UP FROM SLEEP  
The device can wake-up from SLEEP through one of  
the following events:  
If the interrupt condition occurs during or after  
the execution of a SLEEPinstruction, the device  
will immediately wake-up from sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
1. External RESET input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change, or a  
peripheral interrupt.  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
The following peripheral interrupts can wake the device  
from SLEEP:  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
4. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
5. TMR3 interrupt. Timer3 must be operating as  
an asynchronous counter.  
6. CCP Capture mode interrupt.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
7. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
8. MSSP (START/STOP) bit detect interrupt.  
9. MSSP transmit or receive in Slave mode  
(SPI/I2C).  
10. USART RX or TX (Synchronous Slave mode).  
11. A/D conversion (when A/D clock source is RC).  
Other peripherals cannot generate interrupts, since  
during SLEEP, no on-chip clocks are present.  
DS39541A-page 212  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 19-2:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT(1,2)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(2)  
TOST  
CLKOUT(4)  
INT pin  
INTIF bit  
GIEH bit  
Interrupt Latency(3)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+2  
PC+4  
PC+4  
PC + 4  
0008h  
000Ah  
Instruction  
Fetched  
Inst(0008h)  
Inst(PC + 2)  
Inst(PC + 4)  
Inst(000Ah)  
Inst(PC) = SLEEP  
Instruction  
Executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 2)  
Inst(PC - 1)  
Inst(0008h)  
Note 1: HS or LP oscillator mode assumed.  
2: GIE set is assumed. In this case, after wake- up, the processor jumps to the interrupt routine.  
If GIE is cleared, execution will continue in-line.  
3: TOST = 1024TOSC (drawing not to scale). This delay will not occur for RC and EC osc modes.  
4: CLKOUT is not available in these oscillator modes, but shown here for timing reference.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 213  
PIC18C601/801  
NOTES:  
DS39541A-page 214  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
The literal instructions may use some of the following  
operands:  
20.0 INSTRUCTION SET SUMMARY  
The PIC18C601/801 instruction set adds many  
enhancements to the previous PICmicro® instruction  
sets, while maintaining an easy migration path from  
them.  
A literal value to be loaded into a file register  
(represented by k)  
The desired FSR register to load the literal value  
into (represented by f)  
With few exceptions, instructions are a single program  
memory word (16-bits). Each single word instruction is  
divided into an OPCODE, which specifies the instruc-  
tion type, and one or more operands which further  
specify the operation of the instruction.  
No operand required  
(specified by ’—’)  
The control instructions may use some of the following  
operands:  
A program memory address (represented by n)  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
The mode of the Call or Return instructions  
(represented by s)  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
The mode of the Table Read and Table Write  
instructions (represented by m)  
No operand required  
(specified by ’—’)  
Control operations  
The PIC18C601/801 instruction set summary in  
Table 20-2 lists byte-oriented, bit-oriented, literal  
and control operations. Table 20-1 shows the opcode  
field descriptions.  
All instructions are a single word, except for four double  
word instructions. These four instructions were made  
double word instructions so that all the required infor-  
mation is available in these 32 bits. In the second word,  
the 4 MSbs are 1s. If this second word is executed as  
an instruction (by itself), it will execute as a NOP.  
Most byte-oriented instructions have three operands:  
1. The file register (represented by f)  
2. The destination of the result  
All single word instructions are executed in a single  
instruction cycle, unless a conditional test is true, or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles, with the additional instruction cycle(s) executed  
as a NOP.The double word instructions execute in two  
instruction cycles.  
(represented by d)  
3. The accessed memory  
(represented by a)  
The file register designator fspecifies which file regis-  
ter is to be used by the instruction.  
The destination designator dspecifies where the  
result of the operation is to be placed. If 'd' is zero, the  
result is placed in the WREG register. If 'd' is one, the  
result is placed in the file register specified in the  
instruction.  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 µs. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 µs.  
Two word branch instructions (if true) would take 3 µs.  
All bit-oriented instructions have three operands:  
1. The file register (represented by f)  
Figure 20-1 shows the general formats that the instruc-  
tions can have. All examples use the format nnhto  
represent a hexadecimal number, where hsignifies  
a hexadecimal digit.  
2. The bit in the file register  
(represented by b)  
3. The accessed memory  
(represented by a)  
The Instruction Set Summary, shown in Table 20-2,  
lists the instructions recognized by the Microchip  
assembler (MPASMTM).  
The bit field designator 'b' selects the number of the bit  
affected by the operation, while the file register desig-  
nator 'f' represents the number of the file in which the  
bit is located.  
Section 20.1 provides a description of each instruction.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 215  
PIC18C601/801  
TABLE 20-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
ACCESS  
BANKED  
bbb  
ACCESS = 0: RAM access bit symbol  
BANKED = 1: RAM access bit symbol  
Bit address within an 8-bit file register (0 to 7)  
Bank Select Register. Used to select the current RAM bank.  
BSR  
d
Destination select bit;  
d = 0: store result in WREG,  
d = 1: store result in file register f.  
dest  
f
Destination either the WREG register or the specified register file location  
8-bit Register file address (00h to FFh)  
f
12-bit Register file address (000h to FFFh). This is the source address.  
12-bit Register file address (000h to FFFh). This is the destination address.  
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)  
Label name  
The mode of the TBLPTR register for the Table Read and Table Write instructions  
Only used with Table Read and Table Write instructions:  
s
f
d
k
label  
mm  
*
No change to register (such as TBLPTR with Table reads and writes)  
Post-Increment register (such as TBLPTR with Table reads and writes)  
Post-Decrement register (such as TBLPTR with Table reads and writes)  
Pre-Increment register (such as TBLPTR with Table reads and writes)  
*+  
*-  
+*  
n
The relative address (2s complement number) for relative branch instructions, or the direct  
address for Call/Branch and Return instructions  
PRODH  
PRODL  
s
Product of Multiply high byte (Register at address FF4h)  
Product of Multiply low byte (Register at address FF3h)  
Fast Call / Return mode select bit.  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
u
Unused or Unchanged (Register at address FE8h)  
W = 0: Destination select bit symbol  
W
WREG  
x
Working register (accumulator) (Register at address FE8h)  
Don't care (0 or 1)  
The assembler will generate code with x = 0. It is the recommended form of use for compatibility  
with all Microchip software tools.  
TBLPTR  
21-bit Table Pointer (points to a Program Memory location) (Register at address FF6h)  
TABLAT  
8-bit Table Latch (Register at address FF5h)  
TOS  
Top-of-Stack  
PC  
Program Counter  
PCL  
Program Counter Low Byte (Register at address FF9h)  
PCH  
Program Counter High Byte  
PCLATH  
Program Counter High Byte Latch (Register at address FFAh)  
PCLATU  
Program Counter Upper Byte Latch (Register at address FFBh)  
GIE  
Global Interrupt Enable bit  
WDT  
Watchdog Timer  
TO  
Time-out bit  
PD  
Power-down bit  
C, DC, Z, OV, N  
ALU status bits Carry, Digit Carry, Zero, Overflow, Negative  
[
]
)
Optional  
Contents  
(
< >  
Assigned to  
Register bit field  
In the set of  
italics  
User defined term (font is courier)  
DS39541A-page 216  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 20-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
Example Instruction  
15  
10  
9
d
8
7
0
OPCODE  
a
f (FILE #)  
ADDWF MYREG, W  
d = 0 for result destination to be WREG register  
d = 1 for result destination to be file register (f)  
a = 0 to force Access Bank  
a = 1 for BSR to select Bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11  
OPCODE b (BIT #)  
9
8
7
0
a
f (FILE #)  
BSF MYREG, bit  
b = 3-bit position of bit in file register (f)  
a = 0 to force Access Bank  
a = 1 for BSR to select Bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
OPCODE  
k (literal)  
MOVLW 7Fh  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
8 7  
15  
15  
0
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
1111  
n<19:8> (literal)  
S = Fast bit  
11 10  
15  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
15  
OPCODE  
n<10:0> (literal)  
8 7  
n<7:0> (literal)  
15  
6
4
0
LFSR FSR0, 100h  
OPCODE  
f
k<11:8>(lit.)  
0
15  
11  
7
1111  
0000  
k<7:0> (literal)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 217  
PIC18C601/801  
TABLE 20-2: PIC18C601/801 INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Status  
Affected  
Description  
Cycles  
Notes  
Operands  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF f [,d [,a]] Add WREG and f  
1
1
1
1
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2, 6  
0010 01da ffff ffff C, DC, Z, OV, N 1, 2, 6  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff  
0001 11da ffff ffff Z, N  
ADDWFC f [,d [,a]] Add WREG and Carry bit to f  
ANDWF  
CLRF  
COMF  
f [,d [,a]] AND WREG with f  
f [,a] Clear f  
f [,d [,a]] Complement f  
1,2, 6  
2, 6  
1, 2, 6  
4, 6  
4, 6  
1, 2, 6  
Z
CPFSEQ f [,a]  
CPFSGT f [,a]  
CPFSLT f [,a]  
Compare f with WREG, skip =  
Compare f with WREG, skip >  
Compare f with WREG, skip <  
1 (2 or 3) 0110 001a ffff ffff None  
1 (2 or 3) 0110 010a ffff ffff None  
1 (2 or 3) 0110 000a ffff ffff None  
DECF  
f [,d [,a]] Decrement f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4, 6  
DECFSZ f [,d [,a]] Decrement f, Skip if 0  
DCFSNZ f [,d [,a]] Decrement f, Skip if Not 0  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1, 2, 3, 4, 6  
1, 2, 6  
INCF  
f [,d [,a]] Increment f  
1
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4, 6  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f [,d [,a]] Increment f, Skip if 0  
f [,d [,a]] Increment f, Skip if Not 0  
f [,d [,a]] Inclusive OR WREG with f  
f [,d [,a]] Move f  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4, 6  
1, 2, 6  
1, 2, 6  
1, 6  
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
f , f  
Move f (source) to 1st word  
s
d
s
f (destination)2nd word  
d
MOVWF f [,a]  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N 1, 2, 6  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
6
6
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
RRNCF  
SETF  
f [,a]  
f [,a]  
f [,d [,a]] Rotate Left f through Carry  
f [,d [,a]] Rotate Left f (No Carry)  
f [,d [,a]] Rotate Right f through Carry  
f [,d [,a]] Rotate Right f (No Carry)  
6
1, 2, 6  
6
6
6
f [,a]  
Set f  
SUBFWB f [,d [,a]] Subtract f from WREG with  
borrow  
0101 01da ffff ffff C, DC, Z, OV, N 1, 2, 6  
SUBWF  
f [,d [,a]] Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N  
0101 10da ffff ffff C, DC, Z, OV, N 1, 2, 6  
6
SUBWFB f [,d [,a]] Subtract WREG from f with  
borrow  
SWAPF  
TSTFSZ f [,a]  
XORWF f [,d [,a]] Exclusive OR WREG with f  
BIT-ORIENTED FILE REGISTER OPERATIONS  
f [,d [,a]] Swap nibbles in f  
1
0011 10da ffff ffff None  
4, 6  
1, 2, 6  
6
Test f, skip if 0  
1 (2 or 3) 0110 011a ffff ffff None  
1
0001 10da ffff ffff Z, N  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b [,a] Bit Clear f  
f, b [,a] Bit Set f  
f, b [,a] Bit Test f, Skip if Clear  
f, b [,a] Bit Test f, Skip if Set  
f [,d [,a]] Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2, 6  
1, 2, 6  
3, 4, 6  
3, 4, 6  
1, 2, 6  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value  
present on the pins themselves. For example, if the data latch is 1for a pin configured as input and is driven low by an  
external device, the data will be written back with a 0.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle  
is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the  
first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory  
locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
6: Microchips MPASMTM Assembler automatically defaults destination bit dto 1, while access bit adefaults to 1or 0,  
according to address of register being used.  
DS39541A-page 218  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 20-2: PIC18C601/801 INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
Call subroutine1st word  
2nd word  
1 (2)  
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1 (2)  
1 (2)  
1 (2)  
2
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
CALL  
CLRWDT  
DAW  
GOTO  
n
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to address1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111  
C
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
1
1
1
1
2
1
2
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
No Operation (Note 4)  
Pop top of return stack (TOS)  
Push top of return stack (TOS)  
Relative Call  
Software device RESET  
Return from interrupt enable  
s
RETLW  
RETURN  
SLEEP  
k
s
Return with literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value  
present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an  
external device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle  
is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the  
first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory  
locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
6: Microchips MPASMTM Assembler automatically defaults destination bit dto 1, while access bit adefaults to 1or 0,  
according to address of register being used.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 219  
PIC18C601/801  
TABLE 20-2: PIC18C601/801 INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add literal and WREG  
1
1
1
2
0000 1111 kkkk kkkk C, DC, Z, OV, N  
0000 1011 kkkk kkkk Z, N  
0000 1001 kkkk kkkk Z, N  
1110 1110 00ff kkkk None  
1111 0000 kkkk kkkk  
AND literal with WREG  
Inclusive OR literal with WREG  
Load FSR (f) with a 12-bit  
literal (k)  
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
Move literal to BSR<3:0>  
Move literal to WREG  
Multiply literal with WREG  
Return with literal in WREG  
Subtract WREG from literal  
Exclusive OR literal with WREG  
1
1
1
2
1
1
0000 0001 0000 kkkk None  
0000 1110 kkkk kkkk None  
0000 1101 kkkk kkkk None  
0000 1100 kkkk kkkk None  
0000 1000 kkkk kkkk C, DC, Z, OV, N  
0000 1010 kkkk kkkk Z, N  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000 1000 None  
0000 0000 0000 1001 None  
0000 0000 0000 1010 None  
0000 0000 0000 1011 None  
0000 0000 0000 1100 None  
0000 0000 0000 1101 None  
0000 0000 0000 1110 None  
0000 0000 0000 1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with post-increment  
Table Read with post-decrement  
Table Read with pre-increment  
Table Write  
Table Write with post-increment  
Table Write with post-decrement  
Table Write with pre-increment  
2 (5)  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value  
present on the pins themselves. For example, if the data latch is 1for a pin configured as input and is driven low by an  
external device, the data will be written back with a 0.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle  
is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the  
first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory  
locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
6: Microchips MPASMTM Assembler automatically defaults destination bit dto 1, while access bit adefaults to 1or 0,  
according to address of register being used.  
DS39541A-page 220  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
20.1 Instruction Set  
ADDLW  
ADD literal to WREG  
ADDWF  
ADD WREG to f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] ADDWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(WREG) + k WREG  
N,OV, C, DC, Z  
Operation:  
(WREG) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Description:  
Thecontents ofWREG are addedto  
the 8-bit literal kand the result is  
placed in WREG.  
0010  
01da  
ffff  
ffff  
Description:  
Add WREG to register f. If dis 0,  
the result is stored in WREG. If dis  
1, theresultisstoredbackinregister  
'f' (default). If ais 0, the Access  
Bank will be selected. If ais 1, the  
BankwillbeselectedaspertheBSR  
value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal k’  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1
ADDLW  
15h  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
WREG  
N
OV  
C
DC  
Z
=
=
=
=
=
=
10h  
?
?
?
?
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
ADDWF  
REG, W  
Example:  
?
Before Instruction  
After Instruction  
WREG  
REG  
N
=
17h  
0C2h  
WREG  
=
=
=
=
=
=
25h  
0
0
0
0
=
=
=
=
=
=
N
?
?
?
?
?
OV  
C
OV  
C
DC  
Z
DC  
Z
0
After Instruction  
WREG  
REG  
N
OV  
C
=
=
=
=
=
=
=
0D9h  
0C2h  
1
0
0
0
0
DC  
Z
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 221  
PIC18C601/801  
ADDWFC  
ADD WREG and Carry bit to f  
ANDLW  
AND literal with WREG  
Syntax:  
[ label ] ADDWFC f [,d [,a]]  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(WREG) .AND. k WREG  
N,Z  
Operation:  
(WREG) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Description:  
The contents of WREG are ANDed  
with the 8-bit literal 'k'. The result is  
placed in WREG.  
0010  
00da  
ffff  
ffff  
Description:  
Add WREG, the Carry Flag and data  
memory location f. If dis 0, the  
result is placed in WREG. If dis 1,  
the result is placed in data memory  
location 'f'. If ais 0, the Access Bank  
will be selected. If ais 1, the Bank  
will be selected as per the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
Process  
Data  
Write to  
WREG  
k’  
Words:  
Cycles:  
1
1
ANDLW  
5Fh  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
WREG  
N
Z
=
=
=
0A3h  
?
?
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
After Instruction  
ADDWFC  
REG, W  
Example:  
WREG  
=
=
=
03h  
0
0
N
Z
Before Instruction  
C
=
1
REG  
WREG  
N
OV  
DC  
Z
=
=
=
=
=
=
02h  
4Dh  
?
?
?
?
After Instruction  
C
=
=
=
=
=
=
=
0
REG  
WREG  
N
OV  
DC  
Z
02h  
50h  
0
0
0
0
DS39541A-page 222  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
ANDWF  
AND WREG with f  
BC  
Branch if Carry  
Syntax:  
[ label ] ANDWF f [,d [,a]]  
Syntax:  
[ label ] BC  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if carry bit is 1’  
(PC) + 2 + 2n PC  
Operation:  
(WREG) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N,Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is 1, then the pro-  
Description:  
The contents of WREG are ANDed  
with register 'f'. If 'd' is 0, the result is  
stored in WREG. If 'd' is 1, the result  
is storedback in register 'f' (default).  
If ais 0, the Access Bank will be  
selected. If ais 1, the bank will be  
selected as per the BSR value.  
gram will branch.  
The 2s complement number 2nis  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
Process  
Data  
Write to PC  
n’  
ANDWF  
REG,  
W
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Example:  
Before Instruction  
If No Jump:  
Q1  
WREG  
REG  
N
=
17h  
0C2h  
?
Q2  
Q3  
Q4  
=
=
=
Decode  
Read literal  
Process  
Data  
No  
operation  
Z
?
n’  
After Instruction  
WREG  
REG  
N
=
=
=
=
02h  
0C2h  
0
HERE  
BC  
5
Example:  
Before Instruction  
PC  
=
address (HERE)  
Z
0
After Instruction  
If Carry  
=
=
=
=
1;  
PC  
If Carry  
PC  
address (HERE+12)  
0;  
address (HERE+2)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 223  
PIC18C601/801  
BCF  
Bit Clear f  
BN  
Branch if Negative  
[ label ] BN  
Syntax:  
[ label ] BCF f, b [,a]  
Syntax:  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if negative bit is 1’  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is 1, then the pro-  
Description:  
Bit 'b' in register 'f' is cleared. If ais  
0, the Access Bank will be selected,  
overriding the BSR value. If a= 1,  
the Bank will be selected as per the  
BSR value.  
gram will branch.  
The 2s complement number 2nis  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
Q Cycle Activity:  
Q1  
1(2)  
Q2  
Q3  
Q4  
Q Cycle Activity:  
If Jump:  
Decode  
Read  
register f’  
Process  
Data  
Write  
register f’  
Q1  
Q2  
Q3  
Q4  
BCF  
FLAG_REG,  
7
Decode  
Read literal  
Process  
Data  
Write to PC  
Example:  
n’  
Before Instruction  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
FLAG_REG = 0C7h  
After Instruction  
If No Jump:  
Q1  
FLAG_REG = 47h  
Q2  
Q3  
Q4  
Decode  
Read literal  
Process  
Data  
No  
operation  
n’  
HERE  
BN Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE+2)  
If Negative  
PC  
DS39541A-page 224  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
[ label ] BNC  
-128 n 127  
if carry bit is 0’  
n
Syntax:  
[ label ] BNN  
-128 n 127  
n
Operands:  
Operation:  
Operands:  
Operation:  
if negative bit is 0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is 0, then the  
Description:  
If the Negative bit is 0, then the  
program will branch.  
program will branch.  
The 2s complement number 2nis  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
The 2s complement number 2nis  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
Process  
Data  
Write to PC  
Decode  
Read literal  
Process  
Data  
Write to PC  
n’  
n’  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
Process  
Data  
No  
operation  
Decode  
Read literal  
Process  
Data  
No  
operation  
n’  
n’  
HERE  
BNC Jump  
HERE  
BNN Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Negative  
PC  
If Carry  
=
=
=
=
0;  
=
=
=
=
0;  
PC  
If Carry  
PC  
address (Jump)  
1;  
address (HERE+2)  
address (Jump)  
1;  
address (HERE+2)  
If Negative  
PC  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 225  
PIC18C601/801  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
[ label ] BNOV  
-128 n 127  
n
Syntax:  
[ label ] BNZ  
-128 n 127  
if zero bit is 0’  
n
Operands:  
Operation:  
Operands:  
Operation:  
if overflow bit is 0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is 0, then the  
Description:  
If theZerobitis0, then the program  
program will branch.  
will branch.  
The 2s complement number 2nis  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
The 2s complement number 2nis  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
Process  
Data  
Write to PC  
Decode  
Read literal  
Process  
Data  
Write to PC  
n’  
n’  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
Process  
Data  
No  
operation  
Decode  
Read literal  
Process  
Data  
No  
operation  
n’  
n’  
HERE  
BNOV Jump  
HERE  
BNZ Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
After Instruction  
=
=
=
=
0;  
If Zero  
=
=
=
=
0;  
address (Jump)  
1;  
address (HERE+2)  
PC  
If Zero  
PC  
address (Jump)  
1;  
address (HERE+2)  
If Overflow  
PC  
DS39541A-page 226  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
BRA  
Unconditional Branch  
[ label ] BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
Operands:  
[ label ] BSF f, b [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1 f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Addthe2scomplementnumber2n’  
to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is a two-  
cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit 'b' in register 'f' is set. If ais 0  
Access Bank will be selected, over-  
riding the BSR value. If ais 1, the  
BankwillbeselectedaspertheBSR  
value (default).  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
Process  
Data  
Write to PC  
n’  
Decode  
Read  
register f’  
Process  
Data  
Write  
register f’  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
BSF  
FLAG_REG, 7  
Example:  
Before Instruction  
HERE  
BRA Jump  
Example:  
FLAG_REG  
=
=
0Ah  
Before Instruction  
After Instruction  
FLAG_REG  
PC  
=
=
address (HERE)  
address (Jump)  
8Ah  
After Instruction  
PC  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 227  
PIC18C601/801  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
[ label ] BTFSC f, b [,a]  
Syntax:  
[ label ] BTFSS f, b [,a]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
None  
Operation:  
skip if (f<b>) = 1  
None  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit 'b' in register f' is 0, then the next  
instruction is skipped.  
Description:  
If bit 'b' in register 'f' is 1 then the next  
instruction is skipped.  
If bit 'b' is 0, then the next instruction  
fetched during the current instruction  
execution is discarded, and a NOPis  
executed instead, making this a two-  
cycle instruction. If ais 0, the Access  
Bank will be selected, overriding the  
BSR value. If ais 1, the Bank will be  
selected as per the BSR value.  
If bit 'b' is 1, then the next instruction  
fetched during the current instruction  
execution, is discarded and a NOPis  
executed instead, making this a two-  
cycle instruction. If ais 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ais 1, the  
Bank will be selected as per the BSR  
value.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register f’  
Process  
Data  
No  
operation  
Decode  
Read  
Process  
Data  
No  
operation  
register f’  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1  
Example:  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1  
Example:  
Before Instruction  
PC  
=
address (HERE)  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If FLAG<1>  
PC  
=
=
=
=
0;  
After Instruction  
If FLAG<1>  
PC  
address (TRUE)  
1;  
address (FALSE)  
=
=
=
=
0;  
If FLAG<1>  
PC  
address (FALSE)  
1;  
address (TRUE)  
If FLAG<1>  
PC  
DS39541A-page 228  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
Operands:  
[ label ] BTG f, b [,a]  
Syntax:  
[ label ] BOV  
-128 n 127  
n
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
if overflow bit is 1’  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is 1, then the pro-  
Description:  
Bit bin data memory location fis  
inverted. If ais 0, the Access Bank  
will be selected, overriding the BSR  
value. If ais 1, the Bank will be  
selected as per the BSR value.  
gram will branch.  
The 2s complement number 2nis  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
Q Cycle Activity:  
Q1  
1(2)  
Q2  
Q3  
Q4  
Q Cycle Activity:  
If Jump:  
Decode  
Read  
register f’  
Process  
Data  
Write  
register f’  
Q1  
Q2  
Q3  
Q4  
BTG  
PORTC,  
4
Decode  
Read literal  
Process  
Data  
Write to PC  
Example:  
n’  
Before Instruction:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
PORTC  
=
0111 0101[75h]  
After Instruction:  
If No Jump:  
Q1  
PORTC  
=
0110 0101[65h]  
Q2  
Q3  
Q4  
Decode  
Read literal  
Process  
Data  
No  
operation  
n’  
HERE  
BOV Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE+2)  
If Overflow  
PC  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 229  
PIC18C601/801  
BZ  
Branch if Zero  
[ label ] BZ  
CALL  
Subroutine Call  
Syntax:  
Operands:  
Operation:  
n
Syntax:  
Operands:  
[ label ] CALL k [,s]  
-128 n 127  
0 k 1048575  
s [0,1]  
if Zero bit is 1’  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>,  
if s = 1  
(WREG) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
Description:  
If the Zero bit is 1, then the program  
will branch.  
The 2s complement number 2nis  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2M byte  
memoryrange. First,returnaddress  
(PC+ 4) is pushed onto the return  
stack. If s= 1, the WREG, STATUS  
and BSR registers are also pushed  
into their respective shadow regis-  
ters, WS, STATUSS and BSRS.  
If 's' = 0, no update occurs  
(default). Then the 20-bit value kis  
loaded into PC<20:1>. CALLis a  
two-cycle instruction.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
Process  
Data  
Write to PC  
n’  
No  
operation  
No  
No  
No  
operation  
operation  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
Process  
Data  
No  
operation  
Q Cycle Activity:  
Q1  
n’  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
HERE  
BZ Jump  
Example:  
k<7:0>,  
stack  
k<19:8>,  
Write to PC  
Before Instruction  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
PC  
=
address (HERE)  
After Instruction  
If Zero  
=
=
=
=
1;  
HERE  
CALL THERE, FAST  
Example:  
PC  
If Zero  
PC  
address (Jump)  
0;  
address (HERE+2)  
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
PC  
TOS  
WS  
=
=
=
=
Address (THERE)  
Address (HERE + 4)  
WREGREG  
BSRS  
BSR  
STATUSS = STATUS  
DS39541A-page 230  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
CLRF  
Clear f  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
Syntax:  
Operands:  
[label] CLRF f [,a]  
0 f 255  
a [0,1]  
Operands:  
Operation:  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register. If ais 0, the Access Bank  
will be selected, overriding the BSR  
value. If ais 1, the Bank will be  
selected as per the BSR value.  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits  
TO and PD are set.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register f’  
Process  
Data  
Write  
register f’  
Decode  
No  
operation  
Process  
Data  
No  
operation  
CLRF  
FLAG_REG  
CLRWDT  
Example:  
Example:  
Before Instruction  
Before Instruction  
FLAG_REG  
Z
=
=
5Ah  
?
WDT counter  
WDT postscaler  
TO  
=
=
=
=
?
?
?
?
After Instruction  
PD  
FLAG_REG  
Z
=
=
00h  
0
After Instruction  
WDT counter  
WDT postscaler  
TO  
=
=
=
=
00h  
0
1
PD  
1
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 231  
PIC18C601/801  
Compare f with WREG,  
skip if f = WREG  
CPFSEQ  
COMF  
Complement f  
Syntax:  
Operands:  
[ label ] COMF f [,d [,a]]  
Syntax:  
[ label ] CPFSEQ f [,a]  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) (WREG),  
Operation:  
skip if (f) = (WREG)  
(unsigned comparison)  
(f) dest  
Status Affected:  
Encoding:  
N,Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register fare com-  
plemented. If dis 0 the result is  
stored in WREG. If dis 1 the result  
is stored back in register f’  
Description:  
Compares the contents of data  
memory location 'f' to the contents  
of WREG by performing an  
unsigned subtraction.  
(default). If ais 0, the Access  
Bank will be selected, overriding  
the BSR value. If ais 1, the Bank  
will be selected as per the BSR  
value.  
If 'f' = WREG, then the fetched  
instruction is discarded and a NOP  
is executed instead making this a  
two-cycle instruction. If ais 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ais 1, the  
BankwillbeselectedaspertheBSR  
value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
Q2  
Q3  
Q4  
1(2)  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
COMF  
REG  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register f’  
Process  
Data  
No  
operation  
REG  
=
13h  
?
?
N
Z
=
=
If skip:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
REG  
WREG  
N
=
=
=
=
13h  
0ECh  
1
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Z
0
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
CPFSEQ REG  
Example:  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
WREG  
=
=
=
HERE  
?
?
REG  
After Instruction  
If REG  
PC  
If REG  
PC  
=
WREG;  
Address (EQUAL)  
WREG;  
=
=
Address (NEQUAL)  
DS39541A-page 232  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Compare f with WREG,  
skip if f > WREG  
Compare f with WREG,  
skip if f < WREG  
CPFSGT  
CPFSLT  
Syntax:  
[ label ] CPFSGT f [,a]  
Syntax:  
[ label ] CPFSLT f [,a]  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) − (WREG),  
Operation:  
(f) (WREG),  
skip if (f) > (WREG)  
(unsigned comparison)  
skip if (f) < (WREG)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data  
memorylocationftothecontentsof  
the WREG by performing an  
unsigned subtraction.  
Description:  
Compares the contents of data  
memory location 'f' to the contents  
of WREG by performing an  
unsigned subtraction.  
If the contents of fare greater than  
the contents of , then the fetched  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction. If ais 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ais 1, the  
BankwillbeselectedaspertheBSR  
value.  
If the contents of 'f' are less than the  
contents of WREG, then the fetched  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction. If ais 0, the  
AccessBankwillbeselected. Ifais  
1, the Bank will be selected as per  
the BSR value.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register f’  
Process  
Data  
No  
operation  
Decode  
Read  
register f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NLESS  
LESS  
CPFSLT REG  
:
:
Example:  
HERE  
NGREATER  
GREATER  
CPFSGT REG  
:
:
Example:  
Before Instruction  
PC  
WREG  
=
=
Address (HERE)  
?
Before Instruction  
PC  
WREG  
=
=
Address (HERE)  
?
After Instruction  
After Instruction  
If REG  
PC  
If REG  
PC  
If REG  
PC  
If REG  
PC  
<
=
=
WREG;  
Address (LESS)  
WREG;  
>
WREG;  
Address (GREATER)  
WREG;  
=
=
Address (NLESS)  
Address (NGREATER)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 233  
PIC18C601/801  
DECF  
Decrement f  
DAW  
Decimal Adjust WREG Register  
Syntax:  
Operands:  
[ label ] DECF f [,d [,a]]  
Syntax:  
[label] DAW  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
None  
If [WREG<3:0> >9] or [DC = 1] then  
(WREG<3:0>) + 6 W<3:0>;  
else  
Operation:  
(f) 1 dest  
Status Affected:  
Encoding:  
C,DC,N,OV,Z  
(WREG<3:0>) W<3:0>;  
0000  
01da  
ffff  
ffff  
If [WREG<7:4> >9] or [C = 1] then  
Description:  
Decrement register 'f'. If 'd' is 0, the  
result is stored in WREG. If 'd' is 1,  
the result is stored back in register 'f'  
(default). If ais 0, the Access Bank  
will be selected, overriding the BSR  
value. If ais 1, the Bank will be  
selected as per the BSR value.  
(WREG<7:4>) + 6 WREG<7:4>;  
else  
(WREG<7:4>) WREG<7:4>;  
Status Affected:  
Encoding:  
C
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the eight-bit value in  
WREG resulting from the earlier  
addition of two variables (each in  
packedBCDformat)andproducesa  
correct packed BCD result.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
DECF  
CNT  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
Process  
Data  
Write  
WREG  
CNT  
Z
=
=
01h  
0
register WREG  
DAW  
Example1:  
After Instruction  
Before Instruction  
CNT  
=
00h  
1
WREG  
=
=
=
0A5h  
0
0
Z
=
C
DC  
After Instruction  
WREG  
C
DC  
=
=
=
05h  
1
0
Example 2:  
Before Instruction  
WREG  
C
DC  
=
=
=
0CEh  
0
0
After Instruction  
WREG  
C
DC  
=
=
=
34h  
1
0
DS39541A-page 234  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
DECFSZ  
Syntax:  
Decrement f, skip if 0  
DCFSNZ  
Syntax:  
Decrement f, skip if not 0  
[ label ] DECFSZ f [,d [,a]]  
[label] DCFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) 1 dest,  
skip if result = 0  
Operation:  
(f) 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
Thecontentsofregister'f'aredecre-  
mented. If 'd' is 0, the result is  
Description:  
Thecontentsofregister'f'aredecre-  
mented. If 'd' is 0, the result is  
placed in WREG. If 'd' is 1, the result  
is placed back in register 'f' (default).  
placed in WREG. If 'd' is 1, the result  
is placed back in register 'f' (default).  
If the result is 0, the next instruction,  
which is already fetched, is dis-  
carded, and a NOPis executed  
instead, making it a two-cycle  
If the result is not 0, the next instruc-  
tion, which is already fetched, is  
discarded, and a NOPis executed  
instead, making it a two-cycle  
instruction. If ais 0, the Access  
Bankwillbeselected, overridingthe  
BSR value. If ais 1, the Bank will  
be selected as per the BSR value.  
instruction. If ais 0, the Access  
Bankwillbeselected, overridingthe  
BSR value. If ais 1, the Bank will  
be selected as per the BSR value.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
DECFSZ  
GOTO  
CNT  
LOOP  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP  
:
:
Example:  
Example:  
CONTINUE  
Before Instruction  
Before Instruction  
TEMP  
PC  
=
Address (HERE)  
=
?
After Instruction  
After Instruction  
TEMP  
CNT  
=
=
=
=
CNT - 1  
0;  
Address (CONTINUE)  
0;  
=
=
=
=
TEMP - 1,  
0;  
Address (ZERO)  
0;  
If CNT  
If TEMP  
PC  
If TEMP  
PC  
PC  
If CNT  
PC  
Address (HERE+2)  
Address (NZERO)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 235  
PIC18C601/801  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 1048575  
k PC<20:1>  
None  
INCF  
Increment f  
Syntax:  
Syntax:  
Operands:  
[ label ] INCF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C,DC,N,OV,Z  
1110  
1111  
1111  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional  
Description:  
The contents of register fare incre-  
mented. Ifdis0, theresult isplaced  
in WREG. If dis 1, the result is  
placedback inregisterf(default). If  
ais 0, the Access Bank will be  
selected, overriding the BSR value.  
If ais 1, the Bank will be selected  
as per the BSR value.  
branch anywhere within entire 2M  
byte memory range. The 20-bit  
value kis loaded into PC<20:1>.  
GOTOis always a two-cycle  
instruction.  
Words:  
Cycles:  
2
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read literal  
k<7:0>,  
No  
operation  
Read literal  
k<19:8>,  
Q2  
Q3  
Q4  
Write to PC  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
INCF  
CNT  
Example:  
GOTO THERE  
Example:  
Before Instruction  
After Instruction  
CNT  
=
0FFh  
PC  
=
Address (THERE)  
Z
C
DC  
=
=
=
0
?
?
After Instruction  
CNT  
Z
C
DC  
=
=
=
=
00h  
1
1
1
DS39541A-page 236  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
INCFSZ  
Syntax:  
Increment f, skip if 0  
INFSNZ  
Syntax:  
Increment f, skip if not 0  
[ label ] INCFSZ f [,d [,a]]  
[label] INFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
skip if result = 0  
Operation:  
(f) + 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0011  
11da  
ffff  
ffff  
0100  
10da  
ffff  
ffff  
Description:  
The contents of register fare incre-  
mented. Ifdis 0, the result is placed  
in WREG. If dis 1, the result is  
placed back in register f(default).  
Description:  
The contents of register 'f' are incre-  
mented. If'd' is0, theresult isplaced  
in WREG. If 'd' is 1, the result is  
placed back in register 'f' (default).  
If the result is 0, the next instruction,  
which is already fetched, is dis-  
carded, and a NOPis executed  
instead, making it a two-cycle  
instruction. If ais 0, the Access  
Bank will be selected, overriding  
the BSR value. If ais 1, the Bank  
will be selected as per the BSR  
value.  
If the result is not 0, the next instruc-  
tion, which is already fetched, is  
discarded, and a NOPis executed  
instead, making it a two-cycle  
instruction. If ais 0, the Access  
Bank will be selected, overriding  
the BSR value. If ais 1, the Bank  
will be selected as per the BSR  
value.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT  
HERE  
ZERO  
NZERO  
INFSNZ REG  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
Address (HERE)  
PC  
=
Address (HERE)  
After Instruction  
After Instruction  
CNT  
If CNT  
PC  
If CNT  
PC  
=
=
=
=
CNT + 1  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
REG  
If REG  
PC  
If REG  
PC  
=
=
=
=
REG + 1  
0;  
Address (NZERO)  
0;  
Address (ZERO)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 237  
PIC18C601/801  
IORLW  
Inclusive OR literal with WREG  
IORWF  
Inclusive OR WREG with f  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
[ label ] IORWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(WREG) .OR. k WREG  
N,Z  
Operation:  
(WREG) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,Z  
The contents of WREG are ORed  
with the eight bit literal 'k'. The result  
is placed in WREG.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR WREG with register  
'f'. If 'd' is 0, the result is placed in  
WREG. If 'd' is 1, the result is  
placed back in register 'f' (default).  
If ais 0, the Access Bank will be  
selected, overriding the BSR value.  
If ais 1, the Bank will be selected  
as per the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal k’  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1
IORLW  
35h  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
WREG  
=
=
=
9Ah  
?
?
Q2  
Q3  
Q4  
N
Z
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
After Instruction  
WREG  
N
Z
=
=
=
0BFh  
1
0
IORWF RESULT, W  
Example:  
Before Instruction  
RESULT =  
13h  
91h  
?
WREG  
=
=
=
N
Z
?
After Instruction  
RESULT =  
13h  
93h  
1
WREG  
=
=
=
N
Z
0
DS39541A-page 238  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
Operands:  
[ label ] LFSR f,k  
Syntax:  
Operands:  
[ label ] MOVF f [,d [,a]]  
0 f 2  
0 k 4095  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N,Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
11  
kkkk  
k kkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal kis loaded into  
the file select register pointed to  
by f.  
Description:  
The contents of register fis moved  
to a destination dependent upon the  
status of d. If 'd' is 0, the result is  
placed in WREG. If 'd' is 1, the result  
is placed back in register 'f'(default).  
Location 'f' can be anywhere in the  
256 byte Bank. If ais 0, the Access  
Bank will be selected, overriding the  
BSR value. If ais 1, the Bank will  
be selected as per the BSR value.  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
kMSB  
Process  
Data  
Write  
literalkMSB  
to FSRfH  
Words:  
Cycles:  
1
1
Decode  
Read literal  
kLSB  
Process  
Data  
Writeliteralk’  
to FSRfL  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
LFSR FSR2, 3ABh  
Example:  
Decode  
Read  
register f’  
Process  
Data  
Write  
WREG  
After Instruction  
FSR2H  
=
=
03h  
0ABh  
FSR2L  
MOVF  
REG, W  
Example:  
Before Instruction  
REG  
WREG  
N
=
=
=
=
22h  
0FFh  
?
?
Z
After Instruction  
REG  
WREG  
N
=
=
=
=
22h  
22h  
0
Z
0
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 239  
PIC18C601/801  
MOVFF  
Move f to f  
MOVLB  
Move literal to low nibble in BSR  
Syntax:  
[label] MOVFF fs,fd  
Syntax:  
[ label ] MOVLB k  
0 k 255  
k BSR  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 fs 4095  
0 fd 4095  
None  
Operation:  
(fs) fd  
0000  
0001  
kkkk  
kkkk  
Status Affected:  
None  
The 8-bit literal kis loaded into  
the Bank Select Register (BSR).  
Encoding:  
1st word (source)  
2nd word (destin.)  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffffs  
ffffd  
Words:  
Cycles:  
1
1
Description:  
The contents of source register fs’  
aremovedtodestinationregisterfd.  
Location of source fscan be any-  
where in the 4096 byte data space  
(000htoFFFh),andlocationofdesti-  
nationfdcanalsobeanywherefrom  
000h to FFFh.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
Process  
Data  
Write  
literal kto  
BSR  
k’  
Either source or destination can be  
WREG (a useful special situation).  
MOVLB  
05h  
Example:  
Before Instruction  
MOVFFis particularly useful for  
transferring a data memory location  
to a peripheral register (such as the  
transmit buffer or an I/O port).  
BSR register  
=
=
02h  
After Instruction  
BSR register  
05h  
The MOVFFinstruction cannot use  
the PCL, TOSU, TOSH or TOSL as  
the destination register.  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register f’  
(dest)  
No dummy  
read  
MOVFF  
REG1, REG2  
Example:  
Before Instruction  
REG1  
=
=
33h  
11h  
REG2  
After Instruction  
REG1  
=
=
33h,  
33h  
REG2  
DS39541A-page 240  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
MOVLW  
Move literal to WREG  
[ label ] MOVLW k  
0 k 255  
MOVWF  
Syntax:  
Move WREG to f  
Syntax:  
[ label ] MOVWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
a [0,1]  
k WREG  
Operation:  
(WREG) f  
None  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
The eight bit literal kis loaded into  
WREG.  
Description:  
MovedatafromWREGtoregisterf.  
Location fcan be anywhere in the  
256 byte Bank. If ais 0, the Access  
Bank will be selected, overriding the  
BSR value. If ais 1, the Bank will  
be selected as per the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read  
literal k’  
Process  
Data  
Write to  
WREG  
Q Cycle Activity:  
Q1  
MOVLW  
5Ah  
Example:  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register f’  
Process  
Data  
Write  
register f’  
WREG  
=
0x5A  
MOVWF  
REG  
Example:  
Before Instruction  
WREG  
=
4Fh  
REG  
=
0FFh  
After Instruction  
WREG  
REG  
=
=
4Fh  
4Fh  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 241  
PIC18C601/801  
MULLW  
Multiply Literal with WREG  
MULWF  
Syntax:  
Multiply WREG with f  
Syntax:  
[ label ] MULLW  
0 k 255  
k
[ label ] MULWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
a [0,1]  
(WREG) x k PRODH:PRODL  
Operation:  
(WREG) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
An unsigned multiplication is  
carried out between the contents  
of WREG and the 8-bit literal k.  
The 16-bit result is placed in  
PRODH:PRODL register pair.  
PRODH contains the high byte.  
Description:  
An unsigned multiplication is  
carried out between the contents  
of WREG and the register file  
location f. The 16-bit result is  
stored in the PRODH:PRODL  
register pair. PRODH contains  
the high byte.  
WREG is unchanged.  
None of the status flags are  
affected.  
Both WREG and fare  
unchanged.  
Note that neither overflow nor  
carry is possible in this operation.  
A zero result is possible but not  
detected.  
None of the status flags are  
affected.  
Note that neither overflow nor  
carry is possible in this operation.  
A zero result is possible but not  
detected. If ais 0, the Access  
Bank will be selected, overriding  
the BSR value. If ais 1, the  
Bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
MULLW  
C4h  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register f’  
Process  
Data  
Write  
WREG  
PRODH  
PRODL  
=
=
=
0E2h  
registers  
PRODH:  
PRODL  
?
?
After Instruction  
WREG  
=
=
=
0E2h  
0ADh  
08h  
MULWF  
REG  
Example:  
PRODH  
PRODL  
Before Instruction  
WREG  
REG  
PRODH  
PRODL  
=
=
=
=
0C4h  
0B5h  
?
?
After Instruction  
WREG  
=
=
=
=
0C4h  
0B5h  
8Ah  
REG  
PRODH  
PRODL  
94h  
DS39541A-page 242  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
NEGF  
Negate f  
NOP  
No Operation  
[ label ] NOP  
None  
Syntax:  
Operands:  
[label] NEGF f [,a]  
Syntax:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
No operation  
Operation:  
( f ) + 1 f  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Words:  
No operation.  
Description:  
Location fis negated using twos  
complement. The result is placed in  
the data memory location 'f'. If ais  
0, the Access Bank will be selected,  
overriding the BSR value. If ais 1,  
the Bank will be selected as per the  
BSR value.  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
None.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register f’  
Process  
Data  
Write  
register f’  
NEGF  
REG  
Example:  
Before Instruction  
REG  
N
OV  
C
DC  
Z
=
=
=
=
=
=
0011 1010[3Ah]  
?
?
?
?
?
After Instruction  
REG  
N
OV  
C
DC  
Z
=
=
=
=
=
=
1100 0110[0C6h]  
1
0
0
0
0
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 243  
PIC18C601/801  
POP  
Pop Top of Return Stack  
[ label ] POP  
None  
PUSH  
Push Top of Return Stack  
[ label ] PUSH  
None  
Syntax:  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(TOS) bit bucket  
None  
(PC+2) TOS  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
The TOS value is pulled off the  
return stack and is discarded. The  
TOS value then becomes the previ-  
ous value that was pushed onto the  
return stack.  
The PC+2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
Thisinstructionallowsimplementing  
a software stack by modifying TOS,  
and then push it onto the return  
stack.  
Thisinstructionisprovidedtoenable  
the user to properly manage the  
return stack to incorporate a soft-  
ware stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Push PC+2  
onto return  
stack  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Pop TOS  
value  
No  
operation  
PUSH  
Example:  
POP  
GOTO  
Example:  
Before Instruction  
NEW  
TOS  
=
=
00345Ah  
000124h  
PC  
Before Instruction  
TOS  
=
=
0031A2h  
014332h  
Stack (1 level down)  
After Instruction  
PC  
TOS  
=
=
=
000126h  
000126h  
00345Ah  
After Instruction  
Stack (1 level down)  
TOS  
PC  
=
=
014332h  
NEW  
DS39541A-page 244  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
[ label ] RCALL  
-1024 n 1023  
(PC) + 2 TOS,  
n
Syntax:  
[ label ] RESET  
None  
Operands:  
Operation:  
Operands:  
Operation:  
Reset all registers and flags that are  
affected by a MCLR Reset.  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to 1K  
from the current location. First,  
return address (PC+2) is pushed  
onto the stack. Then, add the 2s  
complement number 2nto the PC.  
Since the PC will have incremented  
to fetch the next instruction, the new  
address will be PC+2+2n. This  
instruction is a two-cycle instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
reset  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
2
RESET  
Example:  
After Instruction  
Registers =  
Q Cycle Activity:  
Q1  
Reset Value  
Reset Value  
Q2  
Q3  
Q4  
Flags*  
=
Decode  
Read literal  
Process  
Data  
Write to PC  
n’  
Push PC to  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
RCALL  
Jump  
Example:  
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
PC  
=
Address (Jump)  
TOS =  
Address (HERE+2)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 245  
PIC18C601/801  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to WREG  
[ label ] RETLW k  
0 k 255  
Syntax:  
[ label ] RETFIE [s]  
s [0,1]  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
(TOS) PC,  
1 GIE/GIEH or PEIE/GIEL,  
if s = 1  
k W,  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) WREG,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged.  
Description:  
W is loaded with the eight-bit literal  
'k'. The program counter is loaded  
from the top of the stack (the return  
address). The high address latch  
(PCLATH) remains unchanged.  
Status Affected:  
Encoding:  
None  
0000  
0000  
0001  
000s  
Description:  
Return from Interrupt. Stack is  
popped and Top-of-Stack (TOS) is  
loaded into the PC. Interrupts are  
enabled by setting the either the  
high or low priority global interrupt  
enable bit. If s= 1, the contents  
of the shadow registers WS,  
STATUSS and BSRS are loaded  
into their corresponding registers,  
WREG, STATUS and BSR. If  
s= 0, no update of these  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal k’  
Process  
Data  
Pop PC from  
stack, write to  
WREG  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
registers occurs (default).  
Words:  
Cycles:  
1
2
Example:  
CALL TABLE ; WREG contains table  
Q Cycle Activity:  
Q1  
;
;
;
offset value  
WREG now has  
table value  
Q2  
Q3  
Q4  
Decode  
No  
No  
operation  
Pop PC  
from stack  
:
operation  
TABLE  
Set GIEH or  
GIEL  
ADDWF PCL  
RETLW k0  
RETLW k1  
:
; WREG = offset  
; Begin table  
;
No  
No  
No  
operation  
No  
operation  
operation  
operation  
:
RETLW kn  
; End of table  
RETFIE  
1
Example:  
After Interrupt  
PC  
Before Instruction  
=
=
=
=
=
TOS  
WS  
BSRS  
STATUSS  
1
WREG  
=
07h  
WREG  
BSR  
STATUS  
GIE/GIEH, PEIE/GIEL  
After Instruction  
WREG  
=
value of kn  
DS39541A-page 246  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
RETURN  
Syntax:  
Return from Subroutine  
[ label ] RETURN [s]  
s [0,1]  
RLCF  
Rotate Left f through Carry  
Syntax:  
Operands:  
[ label ] RLCF f [,d [,a]]  
Operands:  
Operation:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC,  
if s = 1  
(WS) W,  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) C,  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
(C) dest<0>  
Status Affected:  
Encoding:  
C,N,Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register 'f' are  
rotated one bit to the left through the  
Carry Flag. If 'd' is 0 the result is  
placed in WREG. If 'd' is 1 the result  
is storedback inregister'f'(default).  
If ais 0, the Access Bank will be  
selected, overriding the BSR value.  
If ais 1, the Bank will be selected  
as per the BSR value.  
Description:  
Return from subroutine. The stack  
is popped and the top of the stack  
(TOS) is loaded into the program  
counter. If s= 1, the contents of  
the shadow registers WS, STA-  
TUSS and BSRS are loaded into  
their corresponding registers,  
WREG, STATUS and BSR. If  
s= 0, no update of these  
register f  
C
registers occurs (default).  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
Pop PC  
from stack  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
RLCF  
REG, W  
Example:  
Before Instruction  
REG  
C
N
Z
=
1110 0110  
RETURN  
Example:  
=
=
=
0
?
?
After Call  
PC  
=
TOS  
After Instruction  
RETURN FAST  
REG  
=
=
=
=
=
1110 0110  
1100 1100  
1
1
0
Before Instruction  
WREG  
WRG  
STATUS =  
BSR  
=
04h  
00h  
00h  
C
N
Z
=
After Instruction  
WREG  
STATUS =  
BSR  
PC  
=
04h  
00h  
00h  
TOS  
=
=
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 247  
PIC18C601/801  
RLNCF  
Rotate Left f (no carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
[ label ] RLNCF f [,d [,a]]  
Syntax:  
Operands:  
[ label ] RRCF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N,Z  
Status Affected:  
Encoding:  
C,N,Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register fare  
rotated one bit to the left. If dis 0  
the result is placed in WREG. If dis  
1, theresultisstored back in register  
'f' (default). If ais 0, the Access  
Bank will be selected, overriding the  
BSR value. If ais 1, the Bank will  
be selected as per the BSR value.  
Description:  
The contents of register 'f' are  
rotated one bit to the right through  
the Carry Flag. If 'd' is 0, the result is  
placed in WREG. If 'd' is 1, the result  
isplacedbackinregister'f'(default).  
If ais 0, the Access Bank will be  
selected, overriding the BSR value.  
If ais 1, the Bank will be selected  
as per the BSR value.  
register f  
Words:  
Cycles:  
1
1
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
Write to  
register f’  
Data  
destination  
RLNCF  
REG  
Example:  
Before Instruction  
RRCF  
REG, W  
Example:  
REG  
=
1010 1011  
N
Z
=
=
?
?
Before Instruction  
REG  
=
1110 0110  
C
N
Z
=
=
=
0
?
?
After Instruction  
REG  
N
Z
=
=
=
0101 0111  
0
0
After Instruction  
REG  
WREG  
C
N
Z
=
=
=
=
=
1110 0110  
0111 0011  
0
0
0
DS39541A-page 248  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
RRNCF  
Syntax:  
Rotate Right f (no carry)  
SETF  
Set f  
[ label ] RRNCF f [,d [,a]]  
Syntax:  
Operands:  
[label] SETF f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N,Z  
Description:  
Thecontentsofthespecifiedregister  
are set to FFh. If ais 0, the Access  
Bank will be selected, overriding the  
BSR value. If ais 1, the Bank will  
be selected as per the BSR value.  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register fare  
rotated one bit to the right. If dis 0,  
the result is placed in WREG. If dis  
1, the result is placed back in regis-  
ter 'f' (default). If ais 0, the Access  
Bank will be selected, overriding the  
BSR value. If ais 1, the Bank will  
be selected as per the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register f’  
Process  
Data  
Write  
register f’  
Words:  
Cycles:  
1
1
SETF  
REG  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
=
5Ah  
Q2  
Q3  
Q4  
After Instruction  
REG  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
0FFh  
RRNCF  
REG  
Example 1:  
Before Instruction  
REG  
N
Z
=
=
=
1101 0111  
?
?
After Instruction  
REG  
N
Z
=
=
=
1110 1011  
1
0
RRNCF  
REG, 0, 0  
Example 2:  
Before Instruction  
WREG  
REG  
N
=
=
=
=
?
1101 0111  
?
?
Z
After Instruction  
WREG  
REG  
N
=
=
=
=
1110 1011  
1101 0111  
1
0
Z
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 249  
PIC18C601/801  
SLEEP  
SUBFWB  
Syntax:  
Enter SLEEP mode  
[ label ] SLEEP  
None  
Subtract f from WREG with borrow  
Syntax:  
[ label ] SUBFWB f [,d [,a]]  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0 WDT postscaler,  
1 TO,  
Operation:  
(WREG) (f) (C) dest  
0 PD  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register 'f' and carry flag  
(borrow) from WREG (2s comple-  
ment method). If 'd' is 0, the result is  
stored in WREG. If 'd' is 1, the result  
is stored in register 'f' (default) . If a’  
is 0, the Access Bank will be  
selected, overriding the BSR value.  
If ais 1, the Bank will be selected  
as per the BSR value.  
Description:  
The power-down status bit (PD) is  
cleared. The time-out status bit  
(TO) is set. Watchdog Timer and  
its postscaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
No  
operation  
Process  
Data  
Go to  
sleep  
Q2  
Q3  
Q4  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
SLEEP  
Example:  
Before Instruction  
TO  
=
?
PD  
=
?
After Instruction  
TO  
=
1 †  
PD  
=
0
If WDT causes wake-up, this bit is cleared.  
DS39541A-page 250  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
SUBFWB (Cont.)  
SUBLW  
Subtract WREG from literal  
[ label ] SUBLW k  
0 k 255  
SUBFWB  
REG  
Example 1:  
Syntax:  
Before Instruction  
Operands:  
Operation:  
REG  
WREG  
C
=
=
=
3
2
1
k (WREG) WREG  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
After Instruction  
0000  
1000  
kkkk  
kkkk  
REG  
WREG  
C
Z
N
=
=
=
=
=
0FFh  
Description:  
WREGissubtractedfromtheeight  
bit literal 'k'. The result is placed in  
WREG.  
2
0
0
1
; result is negative  
Words:  
Cycles:  
1
1
SUBFWB  
REG  
Example 2:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
REG  
WREG  
C
=
=
=
2
5
1
Decode  
Read  
literal k’  
Process  
Data  
Write to  
WREG  
After Instruction  
SUBLW 02h  
Example 1:  
REG  
=
=
=
=
=
2
3
1
0
0
Before Instruction  
WREG  
WREG  
C
=
=
1
?
C
Z
N
; result is positive  
After Instruction  
WREG  
C
Z
=
=
=
=
1
SUBFWB  
REG  
Example 3:  
1
0
0
; result is positive  
Before Instruction  
REG  
WREG  
C
=
=
=
1
2
0
N
SUBLW 02h  
Example 2:  
After Instruction  
Before Instruction  
REG  
WREG  
C
Z
N
=
=
=
=
=
0
2
1
1
0
WREG  
C
=
=
2
?
; result is zero  
After Instruction  
WREG  
C
Z
=
=
=
=
0
1
1
0
; result is zero  
N
SUBLW 02h  
Example 3:  
Before Instruction  
WREG  
C
=
=
3
?
After Instruction  
WREG  
C
Z
=
=
=
=
0FFh ; (2s complement)  
0
0
1
; result is negative  
N
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 251  
PIC18C601/801  
SUBWF  
Subtract WREG from f  
SUBWF (Cont.)  
SUBWF  
REG  
Syntax:  
[ label ] SUBWF f [,d [,a]]  
Example 1:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Before Instruction  
REG  
WREG  
C
=
=
=
3
2
?
Operation:  
(f) (WREG) dest  
After Instruction  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
REG  
WREG  
C
Z
N
=
=
=
=
=
1
2
1
0
0
0101  
11da  
ffff  
ffff  
; result is positive  
Description:  
Subtract WREG from register 'f'  
(2scomplementmethod).If'd'is0,  
the result is stored in WREG. If 'd'  
is 1, the result is stored back in reg-  
ister 'f' (default). If ais 0, the  
AccessBankwillbeselected,over-  
riding the BSR value. If ais 1, the  
Bank will be selected as per the  
BSR value.  
SUBWF  
REG, W  
Example 2:  
Before Instruction  
REG  
WREG  
C
=
=
=
2
2
?
After Instruction  
REG  
WREG  
C
Z
N
=
=
=
=
=
2
0
1
1
0
Words:  
Cycles:  
1
1
; result is zero  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
SUBWF  
REG  
Example 3:  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
Before Instruction  
REG  
WREG  
C
=
=
=
1
2
?
After Instruction  
REG  
WREG  
C
Z
N
=
=
=
=
=
0FFh ;(2s complement)  
2
0
0
1
; result is negative  
DS39541A-page 252  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Subtract WREG from f with  
Borrow  
SUBWFB  
SUBWFB (Cont.)  
Example 1:  
Before Instruction  
SUBWFB REG  
Syntax:  
[ label ] SUBWFB f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
REG  
=
=
=
19h  
0Dh  
1
(0001 1001)  
(0000 1101)  
WREG  
C
Operation:  
(f) (WREG) (C) dest  
After Instruction  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
REG  
WREG  
C
Z
N
=
=
=
=
=
0Ch  
0Dh  
1
0
0
(0000 1011)  
(0000 1101)  
0101  
10da  
ffff  
ffff  
Description:  
Subtract WREG and the carry flag  
(borrow) from register 'f' (2s com-  
plement method). If 'd' is 0, the  
result is stored in WREG. If 'd' is 1,  
the result is stored back in register  
'f' (default). If ais 0, the Access  
Bank will be selected, overriding  
the BSR value. If ais 1, the Bank  
will be selected as per the BSR  
value.  
; result is positive  
Example 2:  
Before Instruction  
SUBWFB REG, W  
REG  
WREG  
C
=
=
=
1Bh  
1Ah  
0
(0001 1011)  
(0001 1010)  
After Instruction  
REG  
WREG  
C
Z
N
=
=
=
=
=
1Bh  
00h  
1
1
0
(0001 1011)  
Words:  
Cycles:  
1
1
; result is zero  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Example 3:  
Before Instruction  
SUBWFB REG  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
REG  
WREG  
C
=
=
=
03h  
0Eh  
1
(0000 0011)  
(0000 1101)  
After Instruction  
REG  
WREG  
C
Z
N
=
=
=
=
=
0F5h  
0Eh  
0
0
1
(1111 0100) [2s comp]  
(0000 1101)  
; result is negative  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 253  
PIC18C601/801  
SWAPF  
Syntax:  
Swap nibbles in f  
[ label ] SWAPF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Status Affected:  
Encoding:  
None  
0011  
10da  
ffff  
ffff  
Description:  
The upper and lower nibbles of reg-  
ister fare exchanged. If dis 0, the  
result is placed in WREG. If dis 1,  
the result is placed in register f’  
(default). If ais 0, the Access Bank  
will be selected, overriding the BSR  
value. If ais 1, the Bank will be  
selected as per the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
SWAPF  
REG  
Example:  
Before Instruction  
REG  
=
53h  
35h  
After Instruction  
REG  
=
DS39541A-page 254  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TBLRD  
Table Read  
TBLRD (Cont.)  
TBLRD *+ ;  
Syntax:  
[ label ] TBLRD ( *; *+; *-; +*)  
Example 1:  
Operands:  
Operation:  
None  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(00A356h)  
=
=
=
55h  
00A356h  
34h  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR - No Change;  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) +1 TBLPTR;  
if TBLRD *-,  
After Instruction  
TABLAT  
TBLPTR  
=
=
34h  
00A357h  
TBLRD +* ;  
Example 2:  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) -1 TBLPTR;  
if TBLRD +*,  
(TBLPTR) +1 TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT;  
Before Instruction  
TABLAT  
=
=
=
=
0AAh  
01A357h  
12h  
TBLPTR  
MEMORY(01A357h)  
MEMORY(01A358h)  
34h  
After Instruction  
Status Affected: None  
TABLAT  
TBLPTR  
=
=
34h  
01A358h  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Encoding:  
Description:  
This instruction is used to read the con-  
tents of Program Memory (P.M.). To  
address the program memory, a pointer  
called Table Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory.  
TBLPTR has a 2 Mbyte address range.  
TBLPTR[0] = 0: Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1: Most Significant  
Byte of Program  
Memory Word  
The TBLRDinstruction can modify the  
value of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
(Read  
operation  
operation  
(Write  
Program  
Memory)  
TABLAT)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 255  
PIC18C601/801  
TBLWT  
Table Write  
TBLWT (Cont.)  
TBLWT *+;  
Syntax:  
[ label ]  
TBLWT ( *; *+; *-; +*)  
Example 1:  
Operands:  
Operation:  
None  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(00A356h)  
=
=
=
55h  
00A356h  
0FFh  
if TBLWT*,  
(TABLAT) Prog Mem (TBLPTR) or  
Holding Register;  
TBLPTR - No Change;  
if TBLWT*+,  
(TABLAT) Prog Mem (TBLPTR) or  
Holding Register;  
(TBLPTR) +1 TBLPTR;  
if TBLWT*-,  
(TABLAT) Prog Mem (TBLPTR) or  
Holding Register;  
(TBLPTR) -1 TBLPTR;  
if TBLWT+*,  
After Instructions (table write completion)  
TABLAT  
TBLPTR  
MEMORY(00A356h)  
=
=
=
55h  
00A357h  
55h  
TBLWT +*;  
Example 2:  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(01389Ah)  
MEMORY(01389Bh)  
=
=
=
=
34h  
01389Ah  
0FFh  
0FFh  
(TBLPTR) +1 TBLPTR;  
(TABLAT) Prog Mem (TBLPTR) or  
Holding Register;  
After Instruction (table write completion)  
TABLAT  
=
=
=
=
34h  
TBLPTR  
MEMORY(01389Ah)  
MEMORY(01389Bh)  
01389Bh  
0FFh  
34h  
Status Affected:  
Encoding:  
None  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Description:  
This instruction is used to program the  
contents of Program Memory (P.M.).  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory.  
TBLPTR has a 2 MByte address range.  
The LSb of the TBLPTR selects which  
byte of the program memory location to  
access.  
TBLPTR[0] = 0:Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1:Most Significant  
Byte of Program  
Memory Word  
The TBLWTinstruction can modify the  
value of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
Cycles:  
1
2 (many if long write is to on-chip  
EPROM program memory)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
operation  
No operation  
(Read  
TABLAT)  
No  
operation  
No operation  
(Write to Holding  
Register or Memory)  
DS39541A-page 256  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TSTFSZ  
Syntax:  
Test f, skip if 0  
XORLW  
Exclusive OR literal with WREG  
[ label ] TSTFSZ f [,a]  
Syntax:  
[ label ]  
XORLW k  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
0 k 255  
(WREG) .XOR. k WREG  
Operation:  
skip if f = 0  
None  
Status Affected:  
Encoding:  
N,Z  
Status Affected:  
Encoding:  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
Description:  
The contents of WREG are  
XORedwiththe8-bitliteral'k'. The  
result is placed in WREG.  
Description:  
If f= 0, the next instruction, fetched  
during the current instruction exe-  
cution, is discarded and a NOPis  
executed, making this a two-cycle  
instruction. If ais 0, the Access  
Bank willbeselected, overriding the  
BSR value. If ais 1, the Bank will  
be selected as per the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal k’  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction  
Example:  
XORLW 0AFh  
Before Instruction  
Q Cycle Activity:  
Q1  
WREG  
N
Z
=
=
=
0B5h  
?
?
Q2  
Q3  
Q4  
Decode  
Read  
register f’  
Process  
Data  
No  
operation  
After Instruction  
WREG  
N
Z
=
=
=
1Ah  
0
0
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
TSTFSZ CNT  
:
:
Example:  
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
If CNT  
=
=
=
00h,  
Address (ZERO)  
00h,  
PC  
If CNT  
PC  
Address (NZERO)  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 257  
PIC18C601/801  
XORWF  
Syntax:  
Exclusive OR WREG with f  
[ label ] XORWF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(WREG) .XOR. (f) dest  
Status Affected:  
Encoding:  
N,Z  
0001  
10da  
ffff  
ffff  
Description:  
ExclusiveORthecontentsofWREG  
with register f. If dis 0, the result is  
stored in WREG. If dis 1, the result  
is stored back in the register f’  
(default). Ifais 0, the Access Bank  
will be selected, overriding the BSR  
value. If ais 1, the Bank will be  
selected as per the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register f’  
Process  
Data  
Write to  
destination  
Example:  
XORWF  
REG  
Before Instruction  
REG  
WREG  
N
=
0AFh  
0B5h  
?
=
=
=
Z
?
After Instruction  
REG  
WREG  
N
=
=
=
=
1Ah  
0B5h  
0
Z
0
DS39541A-page 258  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
The MPLAB IDE allows you to:  
21.0 DEVELOPMENT SUPPORT  
Edit your source files (either assembly or C)  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools (auto-  
matically updates all project information)  
Integrated Development Environment  
- MPLAB® IDE Software  
Debug using:  
- source files  
Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- absolute listing file  
- machine code  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
The ability to use MPLAB IDE with multiple debugging  
tools allows users to easily switch from the cost-  
effective simulator to a full-featured emulator with  
minimal retraining.  
Simulators  
- MPLAB SIM Software Simulator  
Emulators  
21.2 MPASM Assembler  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPICIn-Circuit Emulator  
In-Circuit Debugger  
The MPASM assembler is a full-featured universal  
macro assembler for all PICmicro MCUs.  
- MPLAB ICD for PIC16F87X  
Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
Programmer  
The MPASM assembler has a command line interface  
and a Windows shell. It can be used as a stand-alone  
application on a Windows 3.x or greater system, or it  
can be used through MPLAB IDE. The MPASM assem-  
bler generates relocatable object files for the MPLINK  
object linker, Intel® standard HEX files, MAP files to  
detail memory usage and symbol reference, an abso-  
lute LST file that contains source lines and generated  
machine code, and a COD file for debugging.  
Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 17 Demonstration Board  
- KEELOQ® Demonstration Board  
The MPASM assembler features include:  
Integration into MPLAB IDE projects.  
User-defined macros to streamline assembly  
code.  
21.1 MPLAB Integrated Development  
Environment Software  
Conditional assembly for multi-purpose source  
files.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application that contains:  
Directives that allow complete control over the  
assembly process.  
21.3 MPLAB C17 and MPLAB C18  
C Compilers  
An interface to debugging tools  
- simulator  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI Ccompilers for  
Microchips PIC17CXXX and PIC18CXXX family of  
microcontrollers, respectively. These compilers provide  
powerful integration capabilities and ease of use not  
found with other compilers.  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
A full-featured editor  
A project manager  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
Customizable toolbar and key mapping  
A status bar  
On-line help  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 259  
PIC18C601/801  
21.4 MPLINK Object Linker/  
MPLIB Object Librarian  
21.6 MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can also  
link relocatable objects from pre-compiled libraries,  
using directives from a linker script.  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers (MCUs). Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLINK object linker features include:  
Integration with MPASM assembler and MPLAB  
C17 and MPLAB C18 C compilers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows environment were chosen to best  
make these features available to you, the end user.  
Allows all memory areas to be defined as sections  
to provide link-time flexibility.  
The MPLIB object librarian features include:  
Easier linking because single libraries can be  
included instead of many smaller files.  
Helps keep code maintainable by grouping  
related modules together.  
21.7 ICEPIC In-Circuit Emulator  
Allows libraries to be created and modules to be  
added, listed, replaced, deleted or extracted.  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X and PIC16CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC16C5X  
or PIC16CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
21.5 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC-hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user-defined key press, to any of the pins. The  
execution can be performed in single step, execute  
until break, or trace mode.  
The MPLAB SIM simulator fully supports symbolic debug-  
ging using the MPLAB C17 and the MPLAB C18 C com-  
pilers and the MPASM assembler. The software simulator  
offers the flexibility to develop and debug code outside of  
the laboratory environment, making it an excellent multi-  
project software development tool.  
DS39541A-page 260  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
21.8 MPLAB ICD In-Circuit Debugger  
21.11 PICDEM 1 Low Cost PICmicro  
Demonstration Board  
Microchips In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PIC16F87X and can be used to  
develop for this and other PICmicro microcontrollers  
from the PIC16CXXX family. The MPLAB ICD utilizes  
the in-circuit debugging capability built into the  
PIC16F87X. This feature, along with Microchips  
In-Circuit Serial ProgrammingTM protocol, offers cost-  
effective in-circuit FLASH debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by watching variables, single-  
stepping and setting break points. Running at full  
speed enables testing hardware in real-time.  
The PICDEM 1 demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchips microcontrollers. The microcontrollers sup-  
ported are: PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM 1 demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM 1 demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
21.9 PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a  
full-featured programmer, capable of operating in  
stand-alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for max-  
imum reliability. It has an LCD display for instructions  
and error messages, keys to enter commands and a  
modular detachable socket assembly to support various  
package types. In stand-alone mode, the PRO MATE II  
device programmer can read, verify, or program  
PICmicro devices. It can also set code protection in this  
mode.  
21.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC16C62,  
PIC16C64, PIC16C65, PIC16C73 and PIC16C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
serial EEPROM to demonstrate usage of the I2CTM bus  
and separate headers for connection to an LCD  
module and a keypad.  
21.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient.  
The PICSTART Plus development programmer sup-  
ports all PICmicro devices with up to 40 pins. Larger pin  
count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 261  
PIC18C601/801  
21.13 PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board  
21.14 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM 17 dem-  
onstration board supports downloading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM 17 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC16C923 and  
PIC16C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is a LCD panel, with 4  
commons and 12 segments, that is capable of display-  
ing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows software for showing  
the demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
21.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes a LCD display to show changing  
codes, a decoder to decode transmissions and a pro-  
gramming interface to program test transmitters.  
DS39541A-page 262  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
TABLE 21-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0 1 5 2 P M C  
X X X C R M F  
H C S X X X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X C 8 2 C 1 P I  
X 7 X 7 C 1 C I P  
X 4 1 7 C I C P  
X 9 X 6 C 1 C I P  
X 8 X 6 F 1 C I P  
X 8 1 6 C I C P  
X 7 X 6 C 1 C I P  
X 7 1 6 C I C P  
X 6 2 1 6 C I F P  
X
X X C 6 C 1 P I  
X 6 1 6 C I C P  
X 5 1 6 C I C P  
0 0 1 4 C I 0 P  
X
X X C 2 C 1 P I  
s o l T e o r a w f t S o s r o t a u l E m e r u b g e g D s m e a r m o g P r r  
s t K l a i E d v n a s d r a B o o m D e  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 263  
PIC18C601/801  
NOTES:  
DS39541A-page 264  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
22.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings()  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4) ......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to VSS............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports (combined) ....................................................................................................200 mA  
Maximum current sourced by all ports (combined) ...............................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a lowlevel to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
NOTICE: Stresses above those listed under Absolute Maximum Ratingsmay cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 265  
PIC18C601/801  
FIGURE 22-1:  
PIC18C601/801 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
PIC18C601/801  
4.2V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
25 MHz  
Frequency  
FIGURE 22-2:  
PIC18C601/801 VOLTAGE-FREQUENCY GRAPH (EXTENDED)  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
PIC18C601/801  
4.2V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
25 MHz  
16 MHz  
4 MHz  
Frequency  
FMAX = (12.0 MHz/V) (VDDAPPMIN - 2.0 V) + 4 MHz where VDDAPPMIN < 3  
FMAX = (7.5 MHz/V) (VDDAPPMIN - 3.0 V) + 16 MHz where VDDAPPMIN > 3  
Note: VDDAPP is the minimum voltage of the PICmicro® device in the application.  
DS39541A-page 266  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
22.1 DC Characteristics  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
PIC18LC601/801  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC18C601/801  
(Industrial, Extended)  
Param  
No.  
Symbol  
Characteristic/  
Device  
Min  
Typ  
Max Units  
Conditions  
D001  
VDD  
Supply Voltage  
PIC18LC601/801  
PIC18C601/801  
2.0  
4.2  
1.5  
5.5  
5.5  
V
V
V
D001  
D002  
VDR  
RAM Data Retention  
Voltage(1)  
D003  
D004  
VPOR  
VDD Start Voltage to  
ensure internal  
Power-on Reset signal  
0.7  
V
See section on Power-on Reset  
for details  
SVDD  
VDD Rise Rate to  
ensure internal Power-  
on Reset signal  
0.05  
V/ms See section on Power-on Reset  
for details  
Legend: Rows with industrial-extended data are shaded for improved readability.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing  
RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and  
all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC osc option, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 267  
PIC18C601/801  
22.1 DC Characteristics (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
PIC18LC601/801  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC18C601/801  
(Industrial, Extended)  
Param  
No.  
Symbol  
Characteristic/  
Device  
Min  
Typ  
Max Units  
Conditions  
D010  
IDD  
Supply Current(2,4)  
PIC18LC601/801  
RC osc option  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
45  
mA FOSC = 4 MHz, VDD = 2.5V  
D010  
PIC18C601/801  
PIC18LC601/801  
PIC18C601/801  
PIC18LC601/801  
PIC18C601/801  
PIC18LC601/801  
RC osc options  
mA FOSC = 4 MHz, VDD = 4.2V  
D010A  
D010A  
D010C  
D010C  
D013  
LP osc option  
µA  
µA  
FOSC = 32 kHz, VDD = 2.5V  
LP osc option  
FOSC = 32 kHz, VDD = 4.2V  
EC osc option,  
mA FOSC = 25 MHz, VDD = 5.5V  
EC osc option,  
mA FOSC = 25 MHz, VDD = 5.5V  
45  
HS osc options  
TBD  
50  
mA FOSC = 6 MHz, VDD = 2.5V  
mA FOSC = 25 MHz, VDD = 5.5V  
HS + PLL osc option  
50  
mA FOSC = 10 MHz, VDD = 5.5V  
D013  
PIC18C601/801  
HS osc option  
50  
50  
mA FOSC = 25 MHz, VDD = 5.5V  
HS + PLL osc option  
mA FOSC = 10 MHz, VDD = 5.5V  
D014  
D014  
PIC18LC601/801  
PIC18C601/801  
Timer1 osc option  
FOSC = 32 kHz, VDD = 2.5V  
FOSC = 32 kHz, VDD = 2.5V, 25°C  
OSCB osc option  
48  
TBD  
µA  
µA  
TBD  
TBD  
µA  
µA  
FOSC = 32 kHz, VDD = 4.2V  
FOSC = 32 kHz, VDD = 4.2V, 25°C  
Legend: Rows with industrial-extended data are shaded for improved readability.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing  
RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and  
all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC osc option, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
DS39541A-page 268  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
22.1 DC Characteristics (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
PIC18LC601/801  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC18C601/801  
(Industrial, Extended)  
Param  
No.  
Symbol  
Characteristic/  
Device  
Min  
Typ  
Max Units  
Conditions  
D020  
IPD  
Power-down Current(3)  
PIC18LC601/801  
TBD  
5
36  
TBD  
µA  
µA  
µA  
VDD = 2.5V, -40°C to +85°C  
VDD = 5.5V, -40°C to +85°C  
VDD = 2.5V, 25°C  
D020  
PIC18C601/801  
TBD  
TBD  
36  
µA  
µA  
VDD = 4.2V, -40°C to +85°C  
VDD = 5.5V, -40°C to +85°C  
D020A  
D021B  
TBD  
µA  
µA  
VDD = 4.2V, 25°C  
VDD = 4.2V, -40°C to +125°C  
VDD = 5.5V, -40°C to +125°C  
TBD  
TBD  
42  
D022  
IWDT  
Module Differential Current  
PIC18LC801/601  
Watchdog Timer  
TBD  
6.5  
TBD  
12  
TBD  
TBD  
µA  
µA  
µA  
µA  
VDD = 2.5V  
VDD = 3.0V  
VDD = 5.5V  
VDD = 2.5V, 25°C  
D022  
PIC18C601/801  
Watchdog Timer  
TBD  
TBD  
TBD  
µA  
µA  
µA  
VDD = 5.5V, -40°C to +85°C  
VDD = 5.5V, -40°C to +125°C  
VDD = 4.2V, 25°C  
D022B  
D022B  
ILVD  
PIC18LC801/601  
Low Voltage Detect  
50  
TBD  
µA  
µA  
µA  
µA  
µA  
VDD = 2.5V  
VDD = 2.5V, 25°C  
PIC18C601/801  
Low Voltage Detect  
TBD  
TBD  
TBD  
VDD = 4.2V, -40°C to +85°C  
VDD = 4.2V, -40°C to +125°C  
VDD = 4.2V, 25°C  
D025  
D025  
IOSCB  
PIC18LC801/601  
Timer1 Oscillator  
3
TBD  
µA  
µA  
VDD = 2.5V  
VDD = 2.5V, 25°C  
PIC18C601/801  
Timer1 Oscillator  
TBD  
TBD  
TBD  
µA  
µA  
µA  
VDD = 4.2V, -40°C to +85°C  
VDD = 4.2V, -40°C to +125°C  
VDD = 4.2V, 25°C  
Legend: Rows with industrial-extended data are shaded for improved readability.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing  
RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and  
all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC osc option, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 269  
PIC18C601/801  
22.2 DC Characteristics:  
PIC18C801 (Industrial, Extended)  
PIC18LC601/801 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param Symbol  
No.  
Characteristic/  
Device  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
VSS  
0.15VDD  
0.8  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
VSS  
VSS  
0.2 VDD  
0.3VDD  
V
V
D032  
MCLR  
VSS  
VSS  
0.2 VDD  
0.3VDD  
V
V
D032A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D033  
VIH  
OSC1(in RC mode)(1)  
Input High Voltage  
I/O ports:  
VSS  
0.2 VDD  
V
D040  
D040A  
D041  
with TTL buffer  
0.25VDD + 0.8V  
2.0  
VDD  
VDD  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
0.8VDD  
0.7VDD  
VDD  
VDD  
V
V
D042  
MCLR  
0.8VDD  
0.7VDD  
VDD  
VDD  
V
V
D042A  
OSC1 (in HS and LP modes) and  
T1OSI  
D043  
VHYS  
D050  
IIL  
OSC1 (RC mode)(1)  
0.9VDD  
VDD  
TBD  
1
V
V
Hysteresis of Schmitt Trigger Inputs  
TBD  
Input Leakage Current(2,3)  
D060  
I/O ports  
µA VSS VPIN VDD,  
Pin at hi-impedance  
D061  
MCLR  
5
5
µA Vss VPIN VDD  
µA Vss VPIN VDD  
D063  
OSC1  
IPU  
Weak Pull-up Current  
PORTB weak pull-up current  
D070 IPURB  
50  
400  
µA VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator option, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
DS39541A-page 270  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
22.2 DC Characteristics:  
PIC18C801 (Industrial, Extended)  
PIC18LC601/801 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param Symbol  
No.  
Characteristic/  
Min  
Max  
Units  
Conditions  
Device  
Output Low Voltage  
I/O ports  
VOL  
D080  
0.6  
0.6  
V
V
V
V
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
D080A  
D083  
OSC2/CLKO  
(RC mode)  
0.6  
D083A  
D084  
0.6  
System Bus mode  
Control Signals  
TBD  
TBD  
TBD  
TBD  
D084A  
D085  
D085A  
-40°C to +125°C  
VOH  
Output High Voltage(3)  
D090  
I/O ports  
VDD - 0.7  
VDD - 0.7  
VDD - 0.7  
VDD - 0.7  
TBD  
V
V
V
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
D090A  
D092  
OSC2/CLKO  
(RC mode)  
D092A  
D093  
System Bus mode  
Control Signals  
D093A  
D094  
TBD  
TBD  
D094A  
TBD  
-40°C to +125°C  
VOD  
Open-drain High Voltage  
D150  
7.5  
V
RA4 pin  
Capacitive Loading Specs on Output Pins  
D101 CIO  
D102 CB  
All I/O pins and OSC2  
(in RC mode)  
50  
pF To meet the AC Timing  
Specifications  
pF In I2C mode  
SCL, SDA  
400  
Note 1: In RC oscillator option, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 271  
PIC18C601/801  
FIGURE 22-3:  
LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
(LVDIF can be  
cleared in software)  
VLVD  
(LVDIF set by hardware)  
LVDIF  
TABLE 22-1: LOW VOLTAGE DETECT CHARACTERISTICS  
VCC = 2.0V to 5.5V  
Commercial (C): TAMB = 0°C to +70°C  
Industrial (I):  
Symbol  
VLVD  
TAMB = -40°C to +85°C  
Param  
No.  
Characteristic  
Min TypMax Units  
Conditions  
D420  
LVV = 0001  
2.0  
2.2  
2.4  
2.5  
2.7  
2.8  
3.0  
3.3  
3.5  
3.6  
3.8  
4.0  
4.2  
4.5  
2.06  
2.27  
2.47  
2.58  
2.78  
2.89  
3.1  
2.12  
2.34  
2.54  
2.66  
2.86  
2.98  
3.2  
V
LVD Voltage on VDD  
Transition High to  
Low  
LVV = 0010  
LVV = 0011  
LVV = 0100  
LVV = 0101  
LVV = 0110  
LVV = 0111  
LVV = 1000  
LVV = 1001  
LVV = 1010  
LVV = 1011  
LVV = 1100  
LVV = 1101  
LVV = 1110  
V
V
V
V
V
V
3.41  
3.61  
3.72  
3.92  
4.13  
4.33  
4.64  
15  
3.52  
3.72  
3.84  
4.04  
4.26  
4.46  
4.78  
50  
V
V
V
V
V
V
V
D421  
D422  
D423  
LVD Voltage Drift Temperature  
Coefficient  
TCVOUT  
ppm/°C  
Bandgap Voltage Drift with respect to  
VDD Regulation  
VBG/  
VDD  
VBG  
50  
µV/V  
Bandgap Reference Voltage Value  
1.22  
V
Note: Production tested at TAMB = 25°C. Specifications over temperature limits guaranteed by characterization.  
DS39541A-page 272  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
22.3 AC (Timing) Characteristics  
22.3.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data-in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 273  
PIC18C601/801  
22.3.2  
TIMING CONDITIONS  
The temperature and voltages specified in Table 22-2  
apply to all timing specifications, unless otherwise  
noted. Figure 22-4 specifies the load conditions for the  
timing specifications.  
TABLE 22-2: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC spec Section 22.1.  
LC parts operate for industrial temperatures only.  
FIGURE 22-4:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load condition 1 Load condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKO  
and including D and E outputs as ports  
VSS  
DS39541A-page 274  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
22.3.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 22-5:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
1
3
4
3
2
CLKOUT  
TABLE 22-3: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param No. Symbol Characteristic  
FOSC External CLKI Frequency  
Min  
Typ  
Max  
Units  
DC  
DC  
4
DC  
DC  
DC  
4
TCY  
4
25  
6.25  
25  
200  
4
25  
6.25  
200  
MHz  
MHz  
MHz  
MHz  
kHz  
MHz  
MHz  
MHz  
kHz  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
µs  
ns  
µs  
ns  
ns  
(Note 1)  
Oscillator Frequency (Note 1)  
Tosc External CLKI Period (Note 1)  
4
5
1
250  
40  
40  
160  
5
250  
40  
160  
5
160  
2.5  
10  
Oscillator Period (Note 1)  
100  
100  
DC  
50  
5
2
3
TCY  
Instruction Cycle Time (Note 1)  
TosL, External Clock in (OSC1) High or  
TosH Low Time  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
ns  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based  
on characterization data for that particular oscillator type under standard operating conditions, with the device exe-  
cuting code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than  
expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the  
OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.  
TABLE 22-4: PLL CLOCK TIMING SPECIFICATION (VDD = 4.2V - 5.5V)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
7
TPLL  
PLL Start-up Time  
2
ms  
(Lock Time)  
CLK  
CLKOUT Stability (Jitter) using PLL  
-2  
+2  
%
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 275  
PIC18C601/801  
FIGURE 22-6:  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
19  
18  
14  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: Refer to Figure 22-4 for load conditions.  
TABLE 22-5: CLKOUT AND I/O TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
(1)  
10  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
200  
200  
100  
100  
ns  
(1)  
11  
ns  
(1)  
12  
13  
14  
15  
16  
17  
18  
18A  
TckR  
CLKOUT rise time  
ns  
(1)  
TckF  
CLKOUT fall time  
ns  
(1)  
TckL2ioV CLKOUT to Port out valid  
0.5TCY + 20  
ns  
(1)  
TioV2ckH Port in valid before CLKOUT ↑  
TckH2ioI Port in hold after CLKOUT ↑  
TosH2ioV OSC1(Q1 cycle) to Port out valid  
TosH2ioI OSC1(Q2 cycle) PIC18C601/801  
0.25TCY + 25  
ns  
(1)  
0
ns  
150  
ns  
ns  
ns  
100  
200  
to Port input invalid  
(I/O in hold time)  
PIC18LC601/801  
19  
TioV2osH Port input valid to OSC1↑  
0
ns  
(I/O in setup time)  
20  
TioR  
TioF  
Port output rise  
time  
PIC18C601/801  
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
20A  
21  
PIC18LC601/801  
Port output fall time PIC18C601/801  
PIC18LC601/801  
21A  
22††  
23††  
TINP  
INT pin high or low time  
TCY  
TCY  
TRBP  
RB7:RB4 change INT high or low time  
††These parameters are asynchronous events, not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode, where CLKO pin output is 4 x TOSC.  
DS39541A-page 276  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 22-7:  
PROGRAM MEMORY READ TIMING DIAGRAM  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
OSC1  
A<19:16>  
BA0  
Address  
Address  
Address  
Data from external  
Address  
AD<15:0>  
163  
162  
150  
151  
160  
155  
161  
166  
167  
168  
169  
ALE  
164  
CS1  
CS2  
171  
or CSIO  
171A  
OE  
165  
Operating Conditions: 2.0V <VCC <5.5V, -40°C <TA <125°C, unless otherwise stated.  
TABLE 22-6: CLKOUT AND I/O TIMING REQUIREMENTS  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
150  
151  
155  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
171  
171A  
TadV2alL Address out valid to ALE(address setup time)  
0.25TCY-10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TalL2adl  
TalL2oeL  
ALEto address out invalid (address hold time)  
ALE to OE ↓  
5
10  
0.125TCY  
TadZ2oeL AD high-Z to OE (bus release to OE)  
ToeH2adD OE to AD driven  
0
0.125TCY-5  
TadV2oeH LS data valid before OE (data setup time)  
ToeH2adl OE to data in invalid (data hold time)  
20  
0
TalH2alL  
ALE pulse width  
TCY  
0.5TCY  
0.25TCY  
ToeL2oeH OE pulse width  
0.5TCY-5  
TalH2alH  
Tacc  
ALEto ALE(cycle time)  
Address valid to data valid  
0.75TCY-25  
0.5TCY-25  
0.625TCY+10  
Toe  
OE to data valid  
TalL2oeH ALE to OE ↑  
0.625TCY-10  
0.25TCY-20  
TalH2csL  
Chip select active to ALE ↓  
TubL2oeH AD valid to chip select active  
10  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 277  
PIC18C601/801  
FIGURE 22-8:  
8-BIT PROGRAM MEMORY FETCH TIMING DIAGRAM  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
OSC1  
Address  
Address  
A<19:8>  
166  
150  
151  
161  
Data  
AD<7:0>  
Data  
Address  
Address  
162  
162A  
163  
170  
BA0  
ALE  
170A  
CS1  
CS2  
or CSIO  
OE  
Operating Conditions: 2.0V <VCC <5.5V, -40°C <TA <125°C, FOSC max = 25MHz, unless otherwise stated.  
TABLE 22-7: 8-BIT PROGRAM MEMORY FETCH TIMING REQUIREMENTS  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
150  
151  
TadV2alL Address out valid to ALE(address setup time)  
TalL2adl ALEto address out invalid (address hold time)  
0.25TCY-10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
0.125TCY-5  
20  
161  
ToeH2adD OE to AD driven  
162  
TadV2oeH LS data valid before OE (data setup time)  
TadV2oeH MS data valid before OE (data setup time)  
ToeH2adl OE to data in invalid (data hold time)  
TalH2alH ALEto ALE(cycle time)  
162A  
163  
0.25TCY+20  
0
166  
0.25TCY  
170  
TubH2oeH BA0 = 0 valid before OE ↑  
0.25TCY-10  
0.5TCY-10  
170A  
TubL2oeH BA0 = 1 valid before OE ↑  
DS39541A-page 278  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 22-9:  
PROGRAM MEMORY WRITE TIMING DIAGRAM  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
OSC1  
A<19:16>  
BA0  
Address  
Address  
Address  
166  
Data  
Address  
AD<15:0>  
153  
150  
151  
156  
ALE  
CS1, CS2,  
or CSIO  
154  
WRH or  
WRL  
157A  
157  
UB or  
LB  
Operating Conditions: 2.0V <VCC <5.5V, -40°C <TA <125°C unless otherwise stated.  
TABLE 22-8: PROGRAM MEMORY WRITE TIMING REQUIREMENTS  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
150  
151  
153  
154  
156  
157  
157A  
166  
36  
TadV2alL Address out valid to ALE(address setup time)  
TalL2adl ALEto address out invalid (address hold time)  
TwrH2adl WRn to data out invalid (data hold time)  
0.25TCY-10  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
5
5
TwrL  
WRn pulse width  
0.5TCY-5  
0.5TCY-10  
0.25TCY  
0.125TCY-5  
0.5TCY  
TadV2wrH Data valid before WRn (data setup time)  
TbsV2wrL Byte select valid before WRn (byte select setup time)  
TwrH2bsI WRn to byte select invalid (byte select hold time)  
TalH2alH ALEto ALE(cycle time)  
0.25TCY  
20  
TIVRST  
Time for Internal Reference Voltage to become stable  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 279  
PIC18C601/801  
FIGURE 22-10:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 22-4 for load conditions.  
TABLE 22-9: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TmcL  
TWDT  
MCLR Pulse Width (low)  
2
7
µs  
31  
Watchdog Timer Time-out Period  
(No Prescaler)  
18  
33  
ms  
32  
33  
34  
TOST  
TPWRT  
TIOZ  
Oscillation Start-up Timer Period  
Power up Timer Period  
28  
72  
2
1024TOSC  
132  
ms  
µs  
TOSC = OSC1 period  
I/O Hi-Impedance from MCLR Low  
or Watchdog Timer Reset  
DS39541A-page 280  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 22-11:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 22-4 for load conditions.  
TABLE 22-10: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
40  
Tt0H  
T0CKI High Pulse Width No Prescaler  
With Prescaler  
0.5TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width No Prescaler  
With Prescaler  
0.5TCY + 20  
10  
T0CKI Period  
No Prescaler  
TCY + 10  
With Prescaler  
Greater of:  
20 nS or TCY + 40  
N
ns N = prescale value  
(1, 2, 4,..., 256)  
45  
46  
Tt1H  
Tt1L  
T1CKI Synchronous, no prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
High  
Time  
Synchronous, PIC18C601/801  
with prescaler  
10  
25  
PIC18LC601/801  
Asynchronous PIC18C601/801  
30  
PIC18LC601/801  
50  
T1CKI Synchronous, no prescaler  
0.5TCY + 5  
10  
Low  
Time  
Synchronous, PIC18C601/801  
with prescaler  
PIC18LC601/801  
25  
Asynchronous PIC18C601/801  
30  
PIC18LC601/801  
TBD  
TBD  
47  
48  
Tt1P  
Ft1  
T1CKI Synchronous  
input  
period  
Greater of:  
20 nS or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T1CKI oscillator input frequency range  
Tcke2tmrI Delay from external T1CKI clock edge to  
timer increment  
2TOSC  
7TOSC  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 281  
PIC18C601/801  
FIGURE 22-12:  
CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
CCPx  
(Capture mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM mode)  
53  
Note: Refer to Figure 22-4 for load conditions.  
TABLE 22-11: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TccL  
CCPx input low No Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
time  
With  
Prescaler  
PIC18C601/801  
PIC18LC601/801  
10  
20  
0.5TCY + 20  
10  
51  
TccH  
CCPxinputhigh No Prescaler  
time  
With  
Prescaler  
PIC18C601/801  
PIC18LC601/801  
20  
52  
53  
TccP  
TccR  
CCPx input period  
3TCY + 40  
N
N = prescale  
value (1, 4 or 16)  
CCPx output fall time  
PIC18C601/801  
PIC18LC601/801  
PIC18C601/801  
PIC18LC601/801  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54  
TccF  
CCPx output fall time  
DS39541A-page 282  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 22-13:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
Bit6 - - - - - -1  
Bit6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
LSb In  
73  
Note: Refer to Figure 22-4 for load conditions.  
TABLE 22-12: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TssL2scL  
TCY  
ns  
71  
TscH  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
ns (Note 1)  
TscL  
SCK input low time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge of  
Byte2  
1.5TCY + 40  
100  
ns (Note 2)  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
ns  
75  
TdoR  
SDO data output rise time  
PIC18C601/801  
PIC18LC601/801  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(Master mode)  
PIC18C601/801  
PIC18LC601/801  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after PIC18C601/801  
TscL2doV SCK edge  
PIC18LC601/801  
Note 1: Requires the use of parameter # 73A.  
2: Only if parameter #s 71A and 72A are used.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 283  
PIC18C601/801  
FIGURE 22-14:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
Bit6 - - - - - -1  
Bit6 - - - -1  
SDO  
SDI  
75, 76  
MSb In  
74  
LSb In  
Note: Refer to Figure 22-4 for load conditions.  
TABLE 22-13: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
Symbol  
TscH  
TscL  
Characteristic  
Min  
Max Units Conditions  
No.  
71  
SCK input high time  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
(Slave mode)  
71A  
72  
40  
1.25TCY + 30  
40  
ns (Note 1)  
SCK input low time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge  
of Byte2  
1.5TCY + 40  
100  
ns (Note 2)  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
ns  
75  
TdoR  
SDO data output rise time PIC18C601/801  
PIC18LC601/801  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(Master mode)  
PIC18C601/801  
PIC18LC601/801  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after PIC18C601/801  
TscL2doV SCK edge  
PIC18LC601/801  
81  
TdoV2scH, SDO data output setup to SCK edge  
TdoV2scL  
TCY  
Note 1: Requires the use of parameter # 73A.  
2: Only if parameter #s 71A and 72A are used.  
DS39541A-page 284  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 22-15:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
Bit6 - - - - - -1  
Bit6 - - - -1  
77  
75, 76  
MSb In  
74  
LSb In  
73  
Note: Refer to Figure 22-4 for load conditions.  
TABLE 22-14: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0))  
Param  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TssL2scL  
TCY  
ns  
71  
TscH  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
ns (Note 1)  
TscL  
SCK input low time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge of Byte2 1.5TCY + 40  
ns (Note 2)  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
ns  
75  
TdoR  
SDO data output rise time  
PIC18C601/801  
PIC18LC601/801  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
77  
78  
TdoF  
SDO data output fall time  
10  
TssH2doZ SSto SDO output hi-impedance  
TscR  
SCK output rise time  
(Master mode)  
PIC18C601/801  
PIC18LC601/801  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after SCK PIC18C601/801  
TscL2doV edge  
PIC18LC601/801  
83  
TscH2ssH, SS after SCK edge  
TscL2ssH  
1.5TCY + 40  
Note 1: Requires the use of parameter # 73A.  
2: Only if parameter #s 71A and 72A are used.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 285  
PIC18C601/801  
FIGURE 22-16:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
Bit6 - - - - - -1  
Bit6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
LSb In  
Note: Refer to Figure 22-4 for load conditions.  
TABLE 22-15: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TssL2scL  
TCY  
ns  
71  
TscH  
TscL  
TB2B  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
40  
ns  
71A  
72  
ns (Note 1)  
ns  
SCK input low time  
(Slave mode)  
1.25TCY + 30  
40  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last clock edge of Byte1 to the 1st clock edge of Byte2  
1.5TCY + 40  
100  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
75  
TdoR  
SDO data output rise time  
PIC18C601/801  
PIC18LC601/801  
25  
45  
25  
50  
25  
45  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
77  
78  
TdoF  
SDO data output fall time  
TssH2doZ SSto SDO output hi-impedance  
TscR  
10  
SCK output rise time  
(Master mode)  
PIC18C601/801  
PIC18LC601/801  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after SCK  
TscL2doV edge  
PIC18C601/801  
PIC18LC601/801  
PIC18C601/801  
PIC18LC601/901  
100  
50  
82  
83  
TssL2doV SDO data output valid after SS↓  
edge  
100  
TscH2ssH, SS after SCK edge  
TscL2ssH  
1.5TCY + 40  
Note 1: Requires the use of parameter # 73A.  
2: Only if parameter #s 71A and 72A are used.  
DS39541A-page 286  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 22-17:  
I2C BUS START/STOP BITS TIMING  
SCL  
SDA  
91  
93  
90  
92  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 22-4 for load conditions.  
TABLE 22-16: I2C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for Repeated  
START condition  
91  
92  
93  
THD:STA START condition  
Hold time  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
TSU:STO STOP condition  
Setup time  
4700  
600  
THD:STO STOP condition  
Hold time  
4000  
600  
FIGURE 22-18:  
I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 22-4 for load conditions.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 287  
PIC18C601/801  
TABLE 22-17: I2C BUS DATA REQUIREMENTS (SLAVE MODE)  
Param  
No.  
Symbol  
Characteristic  
100 kHz mode  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock high time  
4.0  
µs  
PIC18C601/801 must operate  
at a minimum of 1.5 MHz  
400 kHz mode  
0.6  
µs  
PIC18C601/801 must operate  
at a minimum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
PIC18C601/801 must operate  
at a minimum of 1.5 MHz  
400 kHz mode  
1.3  
PIC18C601/801 must operate  
at a minimum of 10 MHz  
SSP module  
1.5TCY  
ns  
ns  
ns  
102  
103  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
SDA and SCL fall time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
90  
TSU:STA  
THD:STA  
THD:DAT  
TSU:DAT  
TSU:STO  
TAA  
START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for Repeated  
START condition  
91  
START condition hold 100 kHz mode  
time  
After this period the first clock  
pulse is generated  
400 kHz mode  
106  
107  
92  
Data input hold time  
100 kHz mode  
400 kHz mode  
0
0.9  
Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
(Note 2)  
STOPconditionsetup 100 kHz mode  
time  
400 kHz mode  
109  
110  
Output valid from  
clock  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
3500  
(Note 1)  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
D102  
Cb  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast mode I C bus device can be used in a standard mode I C bus system, but the requirement tsu;DAT 250 ns must  
then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a  
device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.  
2
Before the SCL line is released, TR max. + tsu;DAT = 1000 + 250 = 1250 ns (according to the standard mode I C bus  
specification).  
DS39541A-page 288  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 22-19:  
MASTER SSP I2C BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
SDA  
93  
91  
90  
92  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 22-4 for load conditions.  
TABLE 22-18: MASTER SSP I2C BUS START/STOP BITS REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
TSU:STA START condition  
Setup time  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
Only relevant for  
Repeated START  
condition  
90  
ns  
ns  
ns  
ns  
91  
92  
93  
THD:STA START condition  
Hold time  
After this period, the first  
clock pulse is generated  
TSU:STO STOP condition  
Setup time  
THD:STO STOP condition  
Hold time  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
FIGURE 22-20:  
MASTER SSP I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 22-4 for load conditions.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 289  
PIC18C601/801  
TABLE 22-19: MASTER SSP I2C BUS DATA REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock high time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ms  
ms  
TLOW  
TR  
Clock low time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
101  
102  
103  
90  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
1000  
300  
ms  
SDA and SCL  
rise time  
100 kHz mode  
400 kHz mode  
ns Cb is specified to be  
ns  
from 10 to 400 pF  
20 + 0.1Cb  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
300  
300  
300  
ns  
TF  
SDA and SCL  
fall time  
ns Cb is specified to be  
ns  
from 10 to 400 pF  
20 + 0.1Cb  
1 MHz mode(1)  
100  
ns  
TSU:STA START condition 100 kHz mode  
setup time  
2(TOSC)(BRG + 1)  
ms Only relevant for  
ms  
ms  
ms After this period, the first  
ms  
Repeated START  
condition  
400 kHz mode  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
THD:STA START condition 100 kHz mode  
2(TOSC)(BRG + 1)  
91  
hold time  
clock pulse is generated  
400 kHz mode  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
0.9  
ms  
ns  
ms  
THD:DAT Data input  
hold time  
100 kHz mode  
400 kHz mode  
0
0
106  
107  
92  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
TBD  
250  
100  
ns  
TSU:DAT Data input  
setup time  
ns (Note 2)  
ns  
1 MHz mode(1)  
TBD  
ns  
ms  
ms  
TSU:STO STOP condition 100 kHz mode  
setup time  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
3500  
1000  
ms  
ns  
ns  
TAA  
Output validfrom 100 kHz mode  
109  
110  
clock  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
4.7  
1.3  
ns  
TBUF  
Bus free time  
ms Time the bus must be  
ms  
free before a new  
transmission can start  
1 MHz mode(1)  
TBD  
400  
ms  
pF  
D102 Cb  
Bus capacitive loading  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
2: A fast mode I2C bus device can be used in a standard mode I2C bus system, but parameter #107 250 ns  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit  
to the SDA line. Before the SCL line is released, parameter #102 + parameter  
#107 = 1000 + 250 = 1250 ns (for 100 kHz mode).  
DS39541A-page 290  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 22-21:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
Note: Refer to Figure 22-4 for load conditions.  
122  
TABLE 22-20: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
120  
TckH2dtV SYNC XMIT (Master & Slave)  
Clock high to data-out valid  
PIC18C601/801  
PIC18LC601/801  
PIC18C601/801  
PIC18LC601/801  
PIC18C601/801  
PIC18LC601/801  
40  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time  
(Master mode)  
50  
Data-out rise time and fall time  
20  
50  
FIGURE 22-22:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
125  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 22-4 for load conditions.  
TABLE 22-21: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TdtV2ckl SYNC RCV (Master & Slave)  
Data-hold before CK (DT hold time)  
Data-hold after CK (DT hold time)  
10  
15  
ns  
ns  
126  
TckL2dtl  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 291  
PIC18C601/801  
TABLE 22-22: A/D CONVERTER CHARACTERISTICS: PIC18C601/801 (INDUSTRIAL, EXTENDED)  
PIC18LC601/801 (INDUSTRIAL)  
Param  
No.  
Symbol  
Characteristic  
Resolution  
Min  
Typ  
Max  
Units  
Conditions  
A01  
NR  
10  
TBD  
bit VREF = VDD 3.0V  
bit VREF = VDD < 3.0V  
A03  
A04  
A05  
A06  
EIL  
Integral linearity error  
Differential linearity error  
Full scale error  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
EDL  
EFS  
EOFF  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
Offset error  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
A10  
A20  
A20A  
A21  
A22  
A25  
A30  
Monotonicity  
guaranteed(3)  
V
VSS VAIN VREF  
VREF  
Reference voltage  
(VREFH - VREFL)  
0
3
V
For 10-bit resolution  
VREFH Reference voltage High  
AVSS  
AVDD + 0.3 V  
AVDD  
V
VREFL  
VAIN  
Reference voltage Low  
Analog input voltage  
AVSS - 0.3 V  
AVSS - 0.3 V  
V
VREF + 0.3 V  
10.0  
V
ZAIN  
Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD  
A/D conversion PIC18C601/801  
180  
90  
µA Average current  
current (VDD)  
consumption when  
PIC18LC601/801  
µA  
A/D is on(1)  
IREF  
VREF input current(2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN. To  
charge CHOLD, see  
Section 17.0.  
10  
µA During A/D conversion  
cycle.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current  
spec includes any such leakage from the A/D module.  
VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVSS pins, whichever is  
selected as reference input.  
2: Vss VAIN VREF  
3: The A/D conversion result either increases or remains constant as the analog input increases.  
DS39541A-page 292  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
FIGURE 22-23:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
TCY  
OLD_DATA  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts.This allows the  
SLEEPinstruction to be executed.  
2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
TABLE 22-23: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
20(5)  
µs TOSC based, VREF 3.0V  
130  
TAD  
A/D clock period  
PIC18C601/801  
1.6  
PIC18LC601/801  
PIC18C601/801  
PIC18LC601/801  
3.0  
2.0  
3.0  
11  
20(5)  
6.0  
9.0  
12  
µs TOSC based, VREF full range  
µs A/D RC mode  
µs A/D RC mode  
TAD  
131  
132  
TCNV Conversion time  
(not including acquisition time)(1)  
TACQ Acquisition time(3)  
15  
10  
µs -40°C Temp 125°C  
µs  
0°C Temp 125°C  
135  
136  
TSWC Switching time from convert sample  
TAMP Amplifier settling time(2)  
(Note 4)  
1
µs This may be used if the new”  
input voltage has not  
changed by more than 1 LSb  
(i.e., 5 mV @ 5.12V) from the  
last sampled voltage (as  
stated on CHOLD).  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 17.0 for minimum conditions, when input voltage has changed more than 1 LSb.  
3: The time for the holding capacitor to acquire the Newinput voltage, when the voltage changes full scale  
after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (RS) on the input channels is  
50.  
4: On the next Q4 cycle of the device clock.  
5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 293  
PIC18C601/801  
NOTES:  
DS39541A-page 294  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
23.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
Graphs and Tables are not available at this time.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 295  
PIC18C601/801  
NOTES:  
DS39541A-page 296  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
24.0 PACKAGING INFORMATION  
24.1 Package Marking Information  
64-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
PIC18C601-I/PT  
YYWWNNN  
0017017  
68-Lead PLCC  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC18C601-I/L  
0017017  
Example  
80-Lead TQFP  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC18C801-I/PT  
0017017  
Legend: XX...X Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week 01)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask  
rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with  
your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 297  
PIC18C601/801  
Package Marking Information (Contd)  
84-Lead PLCC  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC18C801-I/L  
0017017  
DS39541A-page 298  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
°
CH x 45  
α
A
c
L
A2  
φ
β
A1  
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
64  
64  
.020  
16  
0.50  
16  
Pins per Side  
Overall Height  
n1  
A
.039  
.043  
.039  
.006  
.024  
.039  
3.5  
.047  
1.00  
1.10  
1.00  
0.15  
0.60  
1.00  
3.5  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.037  
.002  
.018  
.041  
.010  
.030  
0.95  
0.05  
0.45  
1.05  
0.25  
0.75  
§
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.005  
.007  
.025  
5
7
.482  
.482  
.398  
.398  
.009  
.011  
.045  
15  
0
11.75  
11.75  
9.90  
9.90  
0.13  
0.17  
0.64  
5
7
12.25  
12.25  
10.10  
10.10  
0.23  
0.27  
1.14  
15  
Overall Width  
E
D
.472  
.472  
.394  
.394  
.007  
.009  
.035  
10  
12.00  
12.00  
10.00  
10.00  
0.18  
0.22  
0.89  
10  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-085  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 299  
PIC18C601/801  
68-Lead Plastic Leaded Chip Carrier (L) Square (PLCC)  
E
E1  
#leads=n1  
D1 D  
n 1 2  
°
°
α
CH2 x 45  
CH1 x 45  
A3  
A2  
A
32°  
c
B1  
B
A1  
p
β
D2  
E2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
68  
MAX  
n
p
Number of Pins  
Pitch  
68  
.050  
17  
1.27  
17  
Pins per Side  
Overall Height  
n1  
A
.165  
.173  
.153  
.028  
.029  
.045  
.005  
.990  
.990  
.954  
.954  
.920  
.920  
.011  
.029  
.020  
5
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
25.02  
25.02  
24.13  
24.13  
22.61  
22.61  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
25.15  
25.15  
24.23  
24.23  
23.37  
23.37  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.145  
.020  
.024  
.040  
.000  
.985  
.985  
.950  
.950  
.890  
.890  
.008  
.026  
.013  
0
.160  
.035  
.034  
.050  
.010  
.995  
.995  
.958  
.958  
.930  
.930  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
25.27  
25.27  
24.33  
24.33  
23.62  
23.62  
0.33  
0.81  
0.53  
10  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-049  
DS39541A-page 300  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
80-Lead Plastic Thin Quad Flatpack (PT) 12x12x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
B
c
1
n
°
CH x 45  
A
α
A2  
φ
β
L
A1  
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
80  
MAX  
n
p
Number of Pins  
Pitch  
80  
.020  
20  
0.50  
20  
Pins per Side  
Overall Height  
n1  
A
.039  
.037  
.002  
.018  
.043  
.039  
.004  
.024  
.039  
3.5  
.047  
1.00  
0.95  
1.10  
1.00  
0.10  
0.60  
1.00  
3.5  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.041  
.006  
.030  
1.05  
0.15  
0.75  
§
0.05  
0.45  
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.541  
.541  
.463  
.463  
.004  
.007  
.025  
5
7
.561  
.561  
.482  
.482  
.008  
.011  
.045  
15  
0
13.75  
13.75  
11.75  
11.75  
0.09  
0.17  
0.64  
5
7
14.25  
14.25  
12.25  
12.25  
0.20  
0.27  
1.14  
15  
Overall Width  
E
D
.551  
.551  
.472  
.472  
.006  
.009  
.035  
10  
14.00  
14.00  
12.00  
12.00  
0.15  
0.22  
0.89  
10  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
CH  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-092  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 301  
PIC18C601/801  
84-Lead Plastic Leaded Chip Carrier (L) Square (PLCC)  
E
E1  
#leads=n1  
D1 D  
n 1 2  
α
CH2 x 45°  
CH1 x 45°  
A3  
A2  
A
32°  
c
B1  
B
A1  
p
β
D2  
E2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
68  
MAX  
n
p
Number of Pins  
Pitch  
68  
.050  
17  
1.27  
17  
Pins per Side  
Overall Height  
n1  
A
.165  
.173  
.153  
.028  
.029  
.045  
.005  
.990  
.990  
.954  
.954  
.920  
.920  
.011  
.029  
.020  
5
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
25.02  
25.02  
24.13  
24.13  
22.61  
22.61  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
25.15  
25.15  
24.23  
24.23  
23.37  
23.37  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.145  
.020  
.024  
.040  
.000  
.985  
.985  
.950  
.950  
.890  
.890  
.008  
.026  
.013  
0
.160  
.035  
.034  
.050  
.010  
.995  
.995  
.958  
.958  
.930  
.930  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
25.27  
25.27  
24.33  
24.33  
23.62  
23.62  
0.33  
0.81  
0.53  
10  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-093  
DS39541A-page 302  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
The differences between the PIC18C601/801 devices  
listed in this data sheet are shown in Table B-1.  
Revision A  
This is a new data sheet.  
TABLE B-1:  
Feature  
DEVICE DIFFERENCES  
PIC18C601 PIC18C801  
Maximum External  
Program Memory  
(Bytes)  
256K  
2M  
Data Memory (Bytes)  
A/D Channels  
1.5K  
8
1.5K  
12  
Package  
Types  
TQFP  
PLCC  
64-pin  
68-pin  
80-pin  
84-pin  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 303  
PIC18C601/801  
APPENDIX C: DEVICE MIGRATIONS  
APPENDIX D: MIGRATING FROM  
OTHER PICmicro  
This section is intended to describe the functional and  
electrical specification differences when migrating  
between functionally similar devices (such as from a  
PIC16C74A to a PIC16C74B).  
DEVICES  
This discusses some of the issues in migrating from  
other PICmicro devices to the PIC18CXXX family of  
devices.  
Not Applicable  
D.1  
PIC16CXXX to PIC18CXXX  
See application note AN716.  
D.2  
PIC17CXXX to PIC18CXXX  
See application note AN726.  
DS39541A-page 304  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
APPENDIX E: DEVELOPMENT  
TOOL VERSION  
REQUIREMENTS  
This lists the minimum requirements (software/  
firmware) of the specified development tool to support  
the devices listed in this data sheet.  
MPLAB® IDE:  
MPLAB® SIMULATOR:  
MPLAB® ICE 3000:  
TBD  
TBD  
PIC18C601/801 Processor Module:  
Part Number - TBD  
PIC18C601/801 Device Adapter:  
Socket  
Part Number  
TBD  
TBD  
TBD  
TBD  
64-pin TQFP  
68-pin PLCC  
80-pin TQFP  
84-pin PLCC  
MPLAB® ICD:  
PRO MATE® II:  
PICSTART® Plus:  
MPASMTM Assembler:  
TBD  
TBD  
TBD  
TBD  
MPLAB® C18 C Compiler: TBD  
Note: Please read all associated README.TXT  
files that are supplied with the develop-  
ment tools. These "read me" files will dis-  
cuss product support and any known  
limitations.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 305  
PIC18C601/801  
NOTES:  
DS39541A-page 306  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
INDEX  
Phase Lock Loop ...................................................... 23  
PORTA  
RA3:RA0 and RA5 Pins .................................. 103  
RA4/T0CKI Pin ................................................ 104  
PORTB  
RB3 Pin ........................................................... 106  
RB3:RB0 Port Pins .......................................... 106  
RB7:RB4 Port Pins .......................................... 105  
PORTC .................................................................... 108  
PORTD  
I/O Mode ......................................................... 110  
System Bus Mode ........................................... 111  
PORTD (In I/O Port Mode) ...................................... 124  
PORTE  
I/O Mode ......................................................... 113  
System Bus Mode ........................................... 114  
PORTF  
RF2:RF0 Pins .................................................. 116  
RF5:RF3 Pins .................................................. 117  
RF7:RF6 Pins .................................................. 117  
PORTG  
I/O Mode ......................................................... 119  
System Bus Mode ........................................... 120  
PORTH  
RH3:RH0 Pins (I/O Mode) ............................... 121  
RH3:RH0 Pins (System Bus Mode) ................ 122  
RH7:RH4 Pins ................................................. 121  
PORTJ  
I/O Mode ......................................................... 124  
System Bus Mode ........................................... 125  
Simplified PWM Diagram ........................................ 146  
SSP (SPI Mode) ...................................................... 153  
Timer0  
16-bit Mode ..................................................... 128  
8-bit Mode ....................................................... 128  
Timer1 ..................................................................... 131  
16-bit R/W Mode ............................................. 132  
Timer2 ..................................................................... 136  
Timer3 ..................................................................... 138  
16-bit R/W Mode ............................................. 138  
USART  
A
A/D ................................................................................... 193  
A/D Converter Flag (ADIF Bit) ................................. 195  
A/D Converter Interrupt, Configuring ....................... 197  
ADCON0 Register .......................................... 193, 195  
ADCON1 Register .......................................... 193, 194  
ADCON2 Register ................................................... 193  
ADRES Register ............................................. 193, 195  
Analog Port Pins, Configuring ................................. 199  
Associated Registers ............................................... 201  
Block Diagram ......................................................... 196  
Block Diagram, Analog Input Model ........................ 197  
Configuring the Module ........................................... 197  
Conversion Clock (TAD) ........................................... 199  
Conversion Status (GO/DONE Bit) .......................... 195  
Conversions ............................................................. 200  
Converter Characteristics ............................... 272, 292  
Effects of a RESET .................................................. 206  
Equations  
Acquisition Time .............................................. 198  
Minimum Charging Time ................................. 198  
Operation During SLEEP ......................................... 206  
Sampling Requirements .......................................... 198  
Sampling Time ......................................................... 198  
Special Event Trigger (CCP) .......................... 144, 200  
Timing Diagram ....................................................... 293  
Absolute Maximum Ratings ............................................. 265  
Access Bank ...................................................................... 58  
ADCON0 Register ........................................................... 193  
GO/DONE Bit .......................................................... 195  
Registers  
ADCON2 (A/D Control 2) ................................. 195  
ADCON1 Register .................................................. 193, 194  
ADCON2 Register ........................................................... 193  
ADDLW ............................................................................ 221  
ADDWF ............................................................................ 221  
ADDWFC ......................................................................... 222  
ADRES Register ..................................................... 193, 195  
AKS .................................................................................. 167  
Analog-to-Digital Converter. See A/D  
ANDLW ............................................................................ 222  
ANDWF ............................................................................ 223  
Assembler  
Asynchronous Receive ................................... 185  
Asynchronous Transmit .................................. 183  
Watchdog Timer ...................................................... 211  
BN ................................................................................... 224  
BNC ................................................................................. 225  
BNN ................................................................................. 225  
BNOV .............................................................................. 226  
BNZ ................................................................................. 226  
BOV ................................................................................. 229  
BRA ................................................................................. 227  
BRG ................................................................................. 164  
BSF ................................................................................. 227  
BSR. See Bank Select Register.  
MPASM Assembler ................................................. 259  
B
Bank Select Register ......................................................... 58  
Baud Rate Generator ....................................................... 164  
Associated Registers ............................................... 179  
BC .................................................................................... 223  
BCF .................................................................................. 224  
BF .................................................................................... 167  
Block Diagram ................................................................. 119  
Block Diagrams  
BTFSC ............................................................................. 228  
BTFSS ............................................................................. 228  
BTG ................................................................................. 229  
Bus .................................................................................. 176  
Bus Collision During a RESTART Condition ................... 175  
Bus Collision During a START Condition ........................ 173  
Bus Collision During a STOP Condition .......................... 176  
BZ .................................................................................... 230  
A/D ........................................................................... 196  
Baud Rate Generator .............................................. 164  
Capture Mode Operation ......................................... 143  
Compare Mode Operation ....................................... 144  
Interrupt Logic ............................................................ 90  
Low Voltage Detect ................................................. 203  
MSSP  
2
I C Mode ......................................................... 159  
SPI Mode ......................................................... 153  
On-Chip Reset Circuit, Simplified .............................. 29  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 307  
PIC18C601/801  
C
D
CALL ................................................................................230  
Capture (CCP Module) ....................................................142  
Block Diagram .........................................................143  
CCP Pin Configuration .............................................142  
CCPR1H:CCPR1L Registers ...................................142  
Changing Between Capture Prescalers ...................143  
Software Interrupt ....................................................143  
Timer1 Mode Selection ............................................142  
Capture/Compare/PWM (CCP) .......................................141  
Capture Mode. See Capture  
Data Memory ..................................................................... 49  
General Purpose Registers ....................................... 49  
Special Function Registers ........................................ 49  
Data Memory Map  
Program Bit Not Set .................................................. 51  
Program Bit Set ......................................................... 52  
DAW ................................................................................ 234  
DC and AC Characteristics Graphs and Tables .............. 295  
DCFSNZ .......................................................................... 235  
DECF ............................................................................... 234  
DECFSZ .......................................................................... 235  
Development Support ...................................................... 259  
Development Tool Version Requirements ....................... 305  
Device Differences .......................................................... 303  
Device Migrations ............................................................ 304  
Direct Addressing .............................................................. 60  
CCP1 .......................................................................142  
CCPR1H Register ...........................................142  
CCPR1L Register ............................................142  
CCP2 .......................................................................142  
CCPR2H Register ...........................................142  
CCPR2L Register ............................................142  
Compare Mode. See Compare  
Interaction of Two CCP Modules .............................142  
PWM Mode. See PWM  
Registers Associated with Capture  
E
Electrical Characteristics ................................................. 265  
Errata ................................................................................... 7  
External Wait Cycles ......................................................... 72  
and Compare ...........................................145  
Timer Resources .....................................................142  
Timing Diagram .......................................................282  
Chip Select  
Chip Select 2 (CS2) ...................................................71  
Chip Select I/O (CSIO) ......................................................71  
Chip Selects  
F
Fast Register Stack ........................................................... 45  
Firmware Instructions ...................................................... 215  
G
General Call Address Sequence ..................................... 162  
General Call Address Support ......................................... 162  
GOTO .............................................................................. 236  
Chip Select 1 (CS1) ...................................................71  
Clocking Scheme ...............................................................46  
CLRF ...............................................................................231  
CLRWDT .........................................................................231  
Code Examples ...............................................................154  
Changing Between Capture Prescalers ...................143  
Clearing RAM Using Indirect Addressing ..................59  
Combination Unlock (Macro) .....................................51  
Combination Unlock (Subroutine) ..............................50  
Fast Register Stack ...................................................45  
Initializing PORTA ....................................................103  
Initializing PORTB ....................................................105  
Initializing PORTC ...................................................108  
Initializing PORTD ...................................................110  
Initializing PORTE ....................................................113  
Initializing PORTF ....................................................116  
Initializing PORTG ...................................................119  
Initializing PORTH ...................................................121  
Initializing PORTJ ....................................................124  
Programming Chip Select Signals ...........................116  
Saving STATUS, WREG and BSR Registers ..........101  
Table Read ................................................................75  
Table Write ................................................................77  
COMF ..............................................................................232  
Compare (CCP Module) ..................................................144  
Block Diagram .........................................................144  
CCP Pin Configuration .............................................144  
CCPR1H:CCPR1L Registers ...................................144  
Software Interrupt ....................................................144  
Special Event Trigger ....................133, 139, 144, 200  
Timer1 Mode Selection ............................................144  
Configuration Address Map, Example ...............................71  
Configuration Bits ............................................................207  
Table ........................................................................207  
Context Saving During Interrupts .....................................101  
CPFSEQ ..........................................................................232  
CPFSGT ..........................................................................233  
CPFSLT ...........................................................................233  
I
I/O Mode .......................................................................... 119  
I/O Ports .......................................................................... 103  
2
I C (SSP Module) ............................................................ 159  
ACK Pulse .......................................................159, 160  
Addressing .............................................................. 160  
Block Diagram ......................................................... 159  
Read/Write Bit Information (R/W Bit) ....................... 160  
Reception ................................................................ 160  
Serial Clock (RC3/SCK/SCL) .................................. 160  
Slave Mode ............................................................. 159  
Timing Diagram, Data ............................................. 287  
Timing Diagram, START/STOP Bits ....................... 287  
Transmission ........................................................... 160  
2
I C Master Mode Reception ............................................ 167  
2
I C Master Mode RESTART Condition ........................... 166  
2
I C Module  
Acknowledge Sequence Timing .............................. 170  
Baud Rate Generator .............................................. 164  
Block Diagram ................................................. 164  
BRG Reset due to SDA Collision ............................ 174  
BRG Timing ............................................................. 165  
Bus Collision  
Acknowledge ................................................... 172  
RESTART Condition ....................................... 175  
RESTART Condition Timing (Case1) .............. 175  
RESTART Condition Timing (Case2) .............. 175  
START Condition ............................................ 173  
START Condition Timing ........................173, 174  
STOP Condition .............................................. 176  
STOP Condition Timing (Case1) ..................... 176  
STOP Condition Timing (Case2) ..................... 176  
Transmit Timing .............................................. 172  
Bus Collision Timing ................................................ 172  
DS39541A-page 308  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Clock Arbitration ...................................................... 171  
Clock Arbitration Timing (Master Transmit) ............. 171  
General Call Address Support ................................. 162  
Master Mode 7-bit Reception Timing ....................... 169  
Master Mode Operation ........................................... 164  
Master Mode START Condition ............................... 165  
Master Mode Transmission ..................................... 167  
Master Mode Transmit Sequence ........................... 164  
Multi-Master Mode ................................................... 172  
Repeated START Condition Timing ........................ 166  
STOP Condition Receive or Transmit Timing .......... 170  
STOP Condition Timing ........................................... 170  
Waveforms for 7-bit Reception ................................ 161  
Waveforms for 7-bit Transmission ........................... 161  
ICEPIC In-Circuit Emulator .............................................. 260  
INCF ................................................................................ 236  
INCFSZ ............................................................................ 237  
In-Circuit Serial Programming (ICSP) .............................. 207  
Indirect Addressing ............................................................ 60  
FSR Register ............................................................. 59  
INFSNZ ............................................................................ 237  
Initialization Conditions for All Registers ............................ 34  
Instruction Cycle ................................................................ 46  
Instruction Flow/Pipelining ................................................. 47  
Instruction Format ............................................................ 217  
Instruction Set .................................................................. 215  
ADDLW .................................................................... 221  
ADDWF ................................................................... 221  
ADDWFC ................................................................. 222  
ANDLW .................................................................... 222  
ANDWF ................................................................... 223  
BC ............................................................................ 223  
BCF ......................................................................... 224  
BN ............................................................................ 224  
BNC ......................................................................... 225  
BNN ......................................................................... 225  
BNOV ...................................................................... 226  
BNZ ......................................................................... 226  
BOV ......................................................................... 229  
BRA ......................................................................... 227  
BSF .......................................................................... 227  
BTFSC ..................................................................... 228  
BTFSS ..................................................................... 228  
BTG ......................................................................... 229  
BZ ............................................................................ 230  
CALL ........................................................................ 230  
CLRF ....................................................................... 231  
CLRWDT ................................................................. 231  
COMF ...................................................................... 232  
CPFSEQ .................................................................. 232  
CPFSGT .................................................................. 233  
CPFSLT ................................................................... 233  
DAW ........................................................................ 234  
DCFSNZ .................................................................. 235  
DECF ....................................................................... 234  
DECFSZ .................................................................. 235  
GOTO ...................................................................... 236  
INCF ........................................................................ 236  
INCFSZ .................................................................... 237  
INFSNZ .................................................................... 237  
IORLW ..................................................................... 238  
IORWF ..................................................................... 238  
LFSR ....................................................................... 239  
MOVF ...................................................................... 239  
MOVFF .................................................................... 240  
MOVLB .................................................................... 240  
MOVLW ................................................................... 241  
MOVWF .................................................................. 241  
MULLW ................................................................... 242  
MULWF ................................................................... 242  
NEGF ...................................................................... 243  
NOP ........................................................................ 243  
POP ......................................................................... 244  
PUSH ...................................................................... 244  
RCALL ..................................................................... 245  
RESET .................................................................... 245  
RETFIE ................................................................... 246  
RETLW .................................................................... 246  
RETURN ................................................................. 247  
RLCF ....................................................................... 247  
RLNCF .................................................................... 248  
RRCF ...................................................................... 248  
RRNCF .................................................................... 249  
SETF ....................................................................... 249  
SLEEP ..................................................................... 250  
SUBFWB .........................................................250, 251  
SUBLW ................................................................... 251  
SUBWF ................................................................... 252  
SUBWFB ................................................................. 253  
SWAPF ................................................................... 254  
TBLRD .................................................................... 255  
TBLWT .................................................................... 256  
TSTFSZ ................................................................... 257  
XORLW ................................................................... 257  
XORWF ................................................................... 258  
Instruction Set, Summary ................................................ 218  
INT Interrupt (RB0/INT). See Interrupt Sources  
INTCON Register  
RBIF Bit ................................................................... 105  
2
Inter-Integrated Circuit. See I C  
Interrupt Control Registers ................................................ 91  
INTCON Register ...................................................... 91  
INTCON2 Register .................................................... 92  
INTCON3 Register .................................................... 93  
IPR Registers ............................................................ 99  
PIE Registers ............................................................ 97  
PIR Registers ............................................................ 95  
RCON Register ......................................................... 94  
Interrupt Sources .......................................................89, 207  
A/D Conversion Complete ....................................... 197  
Capture Complete (CCP) ........................................ 143  
Compare Complete (CCP) ...................................... 144  
Interrupt-on-Change (RB7:RB4) ............................. 105  
RB0/INT Pin, External ............................................. 101  
SSP Receive/Transmit Complete ............................ 149  
TMR0 Overflow ....................................................... 129  
TMR1 Overflow ...............................................130, 133  
TMR2 to PR2 Match ................................................ 136  
TMR2 to PR2 Match (PWM) ...........................135, 146  
TMR3 Overflow ...............................................137, 139  
USART Receive/Transmit Complete ....................... 177  
Interrupts, Enable Bits  
CCP1 Enable (CCP1IE Bit) ..................................... 143  
Interrupts, Flag Bits  
A/D Converter Flag (ADIF Bit) ................................. 195  
CCP1 Flag (CCP1IF Bit) ........................ 142, 143, 144  
Interrupt-on-Change (RB7:RB4) Flag  
(RBIF Bit) ................................................ 105  
IORLW ............................................................................. 238  
IORWF ............................................................................ 238  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 309  
PIC18C601/801  
K
P
KEELOQ Evaluation and Programming Tools ...................262  
Packaging ........................................................................ 297  
Phase Lock Loop  
Block Diagram ........................................................... 23  
Time-out .................................................................... 30  
PICDEM 1 Low Cost PICmicro  
Demonstration Board .............................................. 261  
PICDEM 17 Demonstration Board .................................. 262  
PICDEM 2 Low Cost PIC16CXX  
Demonstration Board .............................................. 261  
PICDEM 3 Low Cost PIC16CXXX  
L
LFSR ................................................................................239  
Loading the SSPBUF (SSPSR) Registers .......................154  
Low Voltage Detect ..........................................................203  
Block Diagram .........................................................203  
LVDCON Register ...................................................204  
LVD. See Low Voltage Detect.  
M
Demonstration Board .............................................. 262  
PICSTART Plus Entry Level  
MEMCOM. See Memory Control Register  
Memory ..............................................................................39  
Memory Control Register (MEMCOM) ...............................63  
Memory Organization ........................................................39  
Data Memory .............................................................49  
Program Memory .......................................................39  
Migrating from other PICmicro Devices ...........................304  
MOVF ..............................................................................239  
MOVFF ............................................................................240  
MOVLB ............................................................................240  
MOVLW ...........................................................................241  
MOVWF ...........................................................................241  
MPLAB C17 and MPLAB C18 C Compilers ....................259  
MPLAB ICD In-Circuit Debugger .....................................261  
MPLAB ICE High Performance Universal  
Development Programmer ...................................... 261  
Pin Functions  
AVDD .......................................................................... 20  
AVSS .......................................................................... 20  
MCLR/VPP ................................................................. 12  
OSC1/CLKI ................................................................ 12  
OSC2/CLKO .............................................................. 12  
RA0/AN0 ................................................................... 13  
RA1/AN1 ................................................................... 13  
RA2/AN2/VREF- ......................................................... 13  
RA3/AN3/VREF+ ........................................................ 13  
RA4/T0CKI ................................................................ 13  
RA5/AN4/SS/LVDIN .................................................. 13  
RB0/INT0 ................................................................... 14  
RB1/INT1 ................................................................... 14  
RB2/INT2 ................................................................... 14  
RB3/INT3 ................................................................... 14  
RB4 ........................................................................... 14  
RB5 ........................................................................... 14  
RB6 ........................................................................... 14  
RB7 ........................................................................... 14  
RC0/T1OSO/T1CKI ................................................... 15  
RC1/T1OSI ................................................................ 15  
RC2/CCP1 ................................................................. 15  
RC3/SCK/SCL ........................................................... 15  
RC4/SDI/SDA ............................................................ 15  
RC5/SDO .................................................................. 15  
RC6/TX/CK ................................................................ 15  
RC7/RX/DT ............................................................... 15  
RD0/AD0 ................................................................... 16  
RD0/PSP0 ................................................................. 16  
RD1/AD1 ................................................................... 16  
RD2/AD2 ................................................................... 16  
RD3/AD3 ................................................................... 16  
RD4/AD4 ................................................................... 16  
RD5/AD5 ................................................................... 16  
RD6/AD6 ................................................................... 16  
RD7/AD7 ................................................................... 16  
RE0/ALE .................................................................... 17  
RE1/OE ..................................................................... 17  
RE2/CS ........................................................17, 18, 19  
RE2/WRL .................................................................. 17  
RE3/WRH .................................................................. 17  
RE4 ........................................................................... 17  
RE5 ........................................................................... 17  
RE6 ........................................................................... 17  
RE7/CCP2 ................................................................. 17  
RF0/AN5 .................................................................... 18  
RF1/AN6 .................................................................... 18  
RF2/AN7 .................................................................... 18  
RF3/AN8 .................................................................... 18  
RF4/AN9 .................................................................... 18  
In-Circuit Emulator with MPLAB IDE .......................260  
MPLAB Integrated Development  
Environment Software .............................................259  
MPLINK Object Linker/MPLIB Object Librarian ...............260  
MULLW ............................................................................242  
Multi-Master Mode ...........................................................172  
Multiplication Algorithm  
16 x 16 Signed ...........................................................86  
16 x 16 Unsigned .......................................................86  
Multiply Examples  
16 x 16 Signed Routine .............................................87  
16 x 16 Unsigned Routine .........................................86  
8 x 8 Signed Routine .................................................86  
8 x 8 Unsigned Routine .............................................86  
MULWF ............................................................................242  
N
NEGF ...............................................................................243  
NOP .................................................................................243  
O
On-Chip Reset Circuit ........................................................29  
OPTION_REG Register .....................................................62  
PS2:PS0 Bits ...........................................................129  
PSA Bit ....................................................................129  
T0CS Bit ..................................................................129  
T0SE Bit ...................................................................129  
OSCCON Register .............................................................25  
Oscillator Configuration ...................................................207  
Oscillator Configurations ....................................................21  
HS ..............................................................................21  
LP ..............................................................................21  
RC ....................................................................... 21, 22  
Oscillator, Timer1 ............................................130, 133, 137  
Oscillator, Timer3 .............................................................139  
Oscillator, WDT ................................................................210  
DS39541A-page 310  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
RF5/AN10 .................................................................. 18  
RF6/AN11 .................................................................. 18  
RF7 ............................................................................ 18  
RG0/CANTX1 ............................................................ 19  
RG1/CANTX2 ............................................................ 19  
RG2/CANRX .............................................................. 19  
RG3 ........................................................................... 19  
RG4 ........................................................................... 19  
RH1/A17 .................................................................... 19  
RH2/A18 .................................................................... 19  
RH3/A19 .................................................................... 19  
RH4/AN12 ................................................................. 19  
RH5/AN13 ................................................................. 19  
RH6/AN14 ................................................................. 19  
RH7/AN15 ................................................................. 19  
RJ0/AD8 .................................................................... 20  
RJ1/AD9 .................................................................... 20  
RJ2/AD10 .................................................................. 20  
RJ3/AD11 .................................................................. 20  
RJ4/AD12 .................................................................. 20  
RJ5/AD13 .................................................................. 20  
RJ6/AD14 .................................................................. 20  
RJ7/AD15 .................................................................. 20  
VDD ............................................................................ 20  
VSS ............................................................................ 20  
POP ................................................................................. 244  
POR. See Power-on Reset  
PORTE  
Associated Registers .............................................. 115  
Block Diagram  
I/O Mode ......................................................... 113  
System Bus Mode ........................................... 114  
Functions ................................................................. 115  
Initialization ............................................................. 113  
PORTE Register ..................................................... 113  
TRISE Register ....................................................... 113  
PORTF  
Associated Registers .............................................. 118  
Block Diagram  
RF2:RF0 Pins .................................................. 116  
RF5:RF3 Pins .................................................. 117  
RF7:RF6 Pins .................................................. 117  
Functions ................................................................. 118  
Initialization ............................................................. 116  
PORTF Register ...................................................... 116  
TRISF ...................................................................... 116  
PORTG ............................................................................ 119  
Associated Registers .............................................. 120  
Block Diagram  
System Bus Mode ........................................... 120  
Functions ................................................................. 120  
Initialization ............................................................. 119  
PORTG Register ..................................................... 119  
TRISG ..................................................................... 119  
PORTH  
PORTA  
Associated Registers ............................................... 104  
Block Diagram  
Associated Registers .............................................. 123  
Block Diagram .................................................121, 122  
Functions ................................................................. 123  
Initialization ............................................................. 121  
PORTH Register ..................................................... 121  
TRISH ..................................................................... 121  
PORTJ  
RA3:RA0 and RA5 Pins ................................... 103  
RA4/T0CKI Pin ................................................ 104  
Functions ................................................................. 104  
Initialization .............................................................. 103  
PORTA Register ...................................................... 103  
TRISA Register ........................................................ 103  
PORTB  
Associated Registers .............................................. 126  
Block Diagram  
Associated Registers ............................................... 107  
Block Diagram  
I/O Mode ......................................................... 124  
System Bus Mode ........................................... 125  
Functions ................................................................. 126  
Initialization ............................................................. 124  
PORTJ Register ...................................................... 124  
TRISJ ...................................................................... 124  
Postscaler, WDT  
Assignment (PSA Bit) .............................................. 129  
Rate Select (PS2:PS0 Bits) ..................................... 129  
Switching Between Timer0 and WDT ..................... 129  
Power-down Mode. See SLEEP  
Power-on Reset (POR) .............................................30, 207  
Oscillator Start-up Timer (OST) ........................30, 207  
Power-up Timer (PWRT) ...................................30, 207  
Time-out Sequence ................................................... 30  
Time-out Sequence on Power-up .......................32, 33  
Timing Diagram ....................................................... 280  
Prescaler, Capture .......................................................... 143  
Prescaler, Timer0 ............................................................ 129  
Assignment (PSA Bit) .............................................. 129  
Rate Select (PS2:PS0 Bits) ..................................... 129  
Switching Between Timer0 and WDT ..................... 129  
Prescaler, Timer1 ............................................................ 131  
Prescaler, Timer2 ............................................................ 146  
PRO MATE II Universal Device Programmer .................. 261  
Product Identification System .......................................... 317  
RB3 Pin ........................................................... 106  
RB3:RB0 Port Pins .......................................... 106  
RB7:RB4 Port Pins .......................................... 105  
Functions ................................................................. 107  
Initialization .............................................................. 105  
PORTB Register ...................................................... 105  
RB0/INT Pin, External ............................................. 101  
RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) ....... 105  
TRISB Register ........................................................ 105  
PORTC  
Associated Registers ............................................... 109  
Block Diagram ......................................................... 108  
Functions ................................................................. 109  
Initialization .............................................................. 108  
PORTC Register ...................................................... 108  
RC3/SCK/SCL Pin ................................................... 160  
RC7/RX/DT Pin ....................................................... 179  
TRISC Register .............................................. 108, 177  
PORTD  
Associated Registers ............................................... 112  
Block Diagram  
I/O Mode .......................................................... 110  
System Bus Mode ........................................... 111  
Functions ................................................................. 112  
Initialization .............................................................. 110  
PORTD Register ...................................................... 110  
TRISD Register ....................................................... 110  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 311  
PIC18C601/801  
Program Counter  
RCSTA (Receive Status and Control) ..................... 178  
SSPCON1 (SSP Control 1) ..................................... 151  
SSPCON2 (SSP Control 2) ...................................... 152  
SSPSTAT (SSP Status) .......................................... 150  
STATUS .................................................................... 61  
STKPTR (Stack Pointer) ........................................... 44  
T0CON (Timer0 Control) ......................................... 127  
T1CON (Timer1 Control) ......................................... 130  
T2CON (Timer2 Control) ......................................... 135  
T3CON (Timer3 Control) ......................................... 137  
TXSTA (Transmit Status and Control) ..................... 177  
WDTCON (Watchdog Timer Control) ...................... 210  
RESET .............................................................29, 207, 245  
Timing Diagram ....................................................... 280  
RETFIE ............................................................................ 246  
RETLW ............................................................................ 246  
RETURN ......................................................................... 247  
Revision History .............................................................. 303  
RH3:RH0 Pins (I/O Mode) ............................................... 121  
RH3:RH0 Pins (System Bus Mode) ................................ 122  
RH7:RH4 Pins ................................................................. 121  
RLCF ............................................................................... 247  
RLNCF ............................................................................ 248  
RRCF .............................................................................. 248  
RRNCF ............................................................................ 249  
PCL Register .............................................................46  
PCLATH Register ......................................................46  
Program Memory ...............................................................39  
Boot Loader ...............................................................43  
Memory Map, PIC18C601  
Program Bit Not Set ...........................................40  
Program Bit Set .................................................41  
Memory Map, PIC18C801  
Program Bit Not Set ...........................................40  
Program Bit Set .................................................42  
Program Memory Map  
PIC18C601 ................................................................40  
Program Bit Set .................................................41  
PIC18C801 ................................................................40  
Program Bit Set .................................................42  
Programming, Device Instructions ...................................215  
PUSH ...............................................................................244  
PWM (CCP Module) ........................................................146  
Block Diagram .........................................................146  
CCPR1H:CCPR1L Registers ...................................146  
Duty Cycle ...............................................................146  
Example Frequencies/Resolutions ..........................147  
Output Diagram .......................................................146  
Period ......................................................................146  
Registers Associated with PWM ..............................147  
Setup for PWM Operation ........................................147  
TMR2 to PR2 Match ....................................... 135, 146  
S
Sales and Support ........................................................... 317  
SCI. See USART  
Q
SCK ................................................................................. 153  
SDI .................................................................................. 153  
SDO ................................................................................. 153  
Serial Clock, SCK ............................................................ 153  
Serial Communication Interface. See USART  
Q Clock ............................................................................146  
R
RAM. See Data Memory  
RCALL .............................................................................245  
RCSTA Register  
Serial Data In, SDI ........................................................... 153  
Serial Data Out, SDO ...................................................... 153  
Serial Peripheral Interface. See SPI  
SETF ............................................................................... 249  
Slave Select Synchronization .......................................... 156  
Slave Select, SS .............................................................. 153  
SLEEP ............................................................207, 212, 250  
Software Simulator (MPLAB SIM) ................................... 260  
Special Event Trigger. See Compare  
Special Features of the CPU ........................................... 207  
Special Function Register Map ......................................... 53  
Special Function Registers ................................................ 49  
SPI  
Associated Registers ............................................... 158  
Master Mode ........................................................... 155  
Serial Clock ............................................................. 153  
Serial Data In ........................................................... 153  
Serial Data Out ........................................................ 153  
Slave Select ............................................................ 153  
SPI Clock ................................................................. 155  
SPI Mode ................................................................. 153  
SPI Module  
SPEN Bit ..................................................................177  
Reader Response ............................................................316  
Register File .......................................................................49  
Register File Summary ......................................................54  
Registers  
ADCON0 (A/D Control 0)..........................................193  
ADCON1 (A/D Control 1) .........................................194  
CCP1CON and CCP2CON (CCP Control) ..............141  
CONFIG1H (Configuration Register 1 High) ............208  
CONFIG2H (Configuration Register 2 High) ............209  
CONFIG2L (Configuration Register 2 Low) .............208  
CONFIG4L (Configuration Register 4 Low) .............209  
CSEL2 (Chip Select 2) ...............................................70  
CSELIO (Chip Select I/O) ..........................................70  
INTCON (Interrupt Control) ........................................91  
INTCON2 (Interrupt Control 2) ...................................92  
INTCON3 (Interrupt Control 3) ...................................93  
IPR (Interrupt Priority) ................................................99  
LVDCON (LVD Control) ...........................................204  
MEMCON (Memory Control) .....................................63  
OSCCON (Oscillator Control) ....................................25  
PIE (Peripheral Interrupt Enable) ...............................97  
PIR (Peripheral Interrupt Request) ............................95  
PSPCON (PSP Control) ............................................50  
RCON (Register Control) ...........................................94  
RCON (RESET Control) ..................................... 31, 62  
Slave Mode ............................................................. 156  
Slave Select Synchronization .................................. 156  
Slave Synch Timing ................................................. 156  
Slave Timing with CKE = 0 ...................................... 157  
Slave Timing with CKE = 1 ...................................... 157  
SS .................................................................................... 153  
DS39541A-page 312  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
SSP .................................................................................. 149  
Block Diagram  
Prescaler. See Prescaler, Timer1  
Special Event Trigger (CCP) ...........................133, 144  
T1CON Register ...................................................... 130  
Timing Diagram ....................................................... 281  
TMR1H Register ..................................................... 130  
TMR1L Register ...................................................... 130  
TMR3L Register ...................................................... 137  
SPI Mode ......................................................... 153  
Block Diagram (SPI Mode) ...................................... 153  
2
2
I C Mode. See I C  
SPI Mode ................................................................. 153  
SPI Mode. See SPI  
SSPBUF .................................................................. 155  
SSPCON1 ............................................................... 151  
SSPCON2 ............................................................... 152  
SSPSR .................................................................... 155  
SSPSTAT ................................................................ 150  
TMR2 Output for Clock Shift ........................... 135, 136  
Timer2  
Associated Registers .............................................. 136  
Block Diagram ......................................................... 136  
Postscaler. See Postscaler, Timer2  
PR2 Register ...................................................135, 146  
Prescaler. See Prescaler, Timer2  
SSP Module  
SSP Clock Shift ...............................................135, 136  
T2CON Register ...................................................... 135  
TMR2 Register ........................................................ 135  
TMR2 to PR2 Match Interrupt ................ 135, 136, 146  
Timer3 ............................................................................. 137  
Associated Registers .............................................. 139  
Block Diagram ......................................................... 138  
16-bit R/W Mode ............................................. 138  
Oscillator .........................................................137, 139  
Overflow Interrupt ............................................137, 139  
Special Event Trigger (CCP) ................................... 139  
T3CON Register ...................................................... 137  
TMR3H Register ..................................................... 137  
Timing Diagrams  
SPI Master Mode ..................................................... 155  
SPI Slave Mode ....................................................... 156  
SSPCON1 Register ......................................................... 151  
SSPCON2 Register ......................................................... 152  
SSPOV ............................................................................ 167  
SSPSTAT Register .......................................................... 150  
R/W Bit .................................................................... 160  
SUBFWB ................................................................ 250, 251  
SUBLW ............................................................................ 251  
SUBWF ............................................................................ 252  
SUBWFB ......................................................................... 253  
SWAPF ............................................................................ 254  
Synchronous Serial Port. See SSP  
Acknowledge Sequence Timing .............................. 170  
Baud Rate Generator with Clock Arbitration ........... 165  
BRG Reset Due to SDA Collision ........................... 174  
Bus Collision  
START Condition Timing ................................ 173  
Bus Collision During a RESTART Condition  
(Case 1) .................................................. 175  
Bus Collision During a RESTART Condition  
(Case 2) .................................................. 175  
Bus Collision During a START Condition  
T
Table Pointer Register ....................................................... 74  
Table Read ........................................................................ 75  
Table Read/Write Control Registers .................................. 74  
Table Write ........................................................................ 77  
16-bit External  
16-bit Word Write Mode ..................................... 81  
Byte Select Mode .............................................. 82  
Byte Write Mode ................................................ 80  
8-bit External ............................................................. 78  
Table Writes  
Long Writes ............................................................... 83  
TBLRD ............................................................................. 255  
TBLWT ............................................................................. 256  
Timer0 .............................................................................. 127  
Associated Registers ............................................... 129  
Block Diagram  
(SCL = 0) ................................................. 174  
Bus Collision During a STOP Condition .................. 176  
Bus Collision for Transmit and Acknowledge .......... 172  
2
I C Bus Data ........................................................... 289  
2
I C Master Mode First START Bit Timing ............... 165  
2
I C Master Mode Reception Timing ........................ 169  
2
I C Master Mode Transmission Timing ................... 168  
Master Mode Transmit Clock Arbitration ................. 171  
Repeated START Condition .................................... 166  
Slave Synchronization ............................................. 156  
Slow Rise Time ......................................................... 33  
SPI Mode Timing (Master Mode) SPI Mode  
Master Mode Timing Diagram ......................... 155  
SPI Mode Timing (Slave Mode with CKE = 0) ........ 157  
SPI Mode Timing (Slave Mode with CKE = 1) ........ 157  
STOP Condition Receive or Transmit ..................... 170  
Time-out Sequence on Power-up ............................. 32  
USART Asynchronous Master Transmission .......... 184  
USART Asynchronous Reception ........................... 186  
USART Synchronous Reception ............................. 189  
USART Synchronous Transmission ........................ 188  
Wake-up from SLEEP via Interrupt ......................... 213  
16-bit Mode ...................................................... 128  
8-bit Mode ........................................................ 128  
Clock Source Edge Select (T0SE Bit) ..................... 129  
Clock Source Select (T0CS Bit) .............................. 129  
Interrupt ................................................................... 101  
Overflow Interrupt .................................................... 129  
Prescaler. See Prescaler, Timer0  
T0CON Register ...................................................... 127  
Timing Diagram ....................................................... 281  
Timer1 .............................................................................. 130  
Associated Registers ............................................... 134  
Block Diagram ......................................................... 131  
16-bit R/W Mode .............................................. 132  
Oscillator ......................................................... 130, 133  
Overflow Interrupt ........................................... 130, 133  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 313  
PIC18C601/801  
Timing Diagrams and Specifications ...............................275  
A/D Conversion ........................................................293  
Capture/Compare/PWM (CCP) ...............................282  
CLKOUT and I/O .....................................................276  
External Clock ..........................................................275  
W
Wake-up from SLEEP .............................................207, 212  
Timing Diagram ....................................................... 213  
Watchdog Timer (WDT) ..........................................207, 210  
Associated Registers ............................................... 211  
Block Diagram ......................................................... 211  
Postscaler. See Postscaler, WDT  
Programming Considerations .................................. 210  
RC Oscillator ........................................................... 210  
Time-out Period ....................................................... 210  
Timing Diagram ....................................................... 280  
WDTCON Register .................................................. 210  
Waveform for General Call Address Sequence .............. 162  
WCOL .............................................................165, 167, 170  
WCOL Status Flag .......................................................... 165  
Worldwide Sales and Service .......................................... 318  
WWW, On-Line Support ..............................................7, 315  
2
I C Bus Data ............................................................287  
2
I C Bus START/STOP Bits ......................................287  
Oscillator Start-up Timer (OST) ...............................280  
Power-up Timer (PWRT) .........................................280  
RESET .....................................................................280  
Timer0 and Timer1 ..................................................281  
USART Synchronous Receive  
(Master/Slave) .........................................291  
USART Synchronous Transmission  
(Master/Slave) .........................................291  
Watchdog Timer (WDT) ...........................................280  
TRISE Register ................................................................113  
TSTFSZ ...........................................................................257  
Two-Word Instructions .......................................................48  
TXSTA Register ...............................................................177  
BRGH Bit .................................................................179  
X
XORLW ........................................................................... 257  
XORWF ........................................................................... 258  
U
Universal Synchronous Asynchronous  
Receiver Transmitter. See USART  
USART .............................................................................177  
Asynchronous Mode ................................................183  
Master Transmission .......................................184  
Receive Block Diagram ...................................185  
Reception ........................................................186  
Registers Associated with Reception ..............186  
Registers Associated with Transmission .........184  
Transmit Block Diagram ..................................183  
Baud Rate Generator (BRG) ...................................179  
Baud Rate Error, Calculating ...........................179  
Baud Rate Formula .........................................179  
High Baud Rate Select (BRGH Bit) .................179  
Sampling ..........................................................179  
Serial Port Enable (SPEN Bit) .................................177  
Synchronous Master Mode ......................................187  
Reception ........................................................189  
Registers Associated with Reception ..............189  
Registers Associated with Transmission .........187  
Timing Diagram,  
Synchronous Receive .....................291  
Timing Diagram,  
Synchronous Transmission .............291  
Transmission ...................................................188  
Synchronous Slave Mode ........................................190  
Registers Associated with Reception ..............191  
Registers Associated with Transmission .........190  
DS39541A-page 314  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchips development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
001024  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
Users Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICMASTER, PICSTART, PRO MATE, KEELOQ, SEEVAL,  
MPLAB and The Embedded Control Solutions Company  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
Total Endurance, ICSP, In-Circuit Serial Programming,  
FilterLab, MXDEV, microID, FlexROM, fuzzyLAB, MPASM,  
MPLINK, MPLIB, PICDEM, ICEPIC and Migratable  
Memory are trademarks and SQTP is a service mark of  
Microchip in the U.S.A.  
Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
Design Tips  
Device Errata  
Job Postings  
Microchip Consultant Program Member Listing  
All other trademarks mentioned herein are the property of  
their respective companies.  
Links to other useful web sites related to  
Microchip Products  
Conferences for products, Development Systems,  
technical information and more  
Listing of seminars and events  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 315  
PIC18C601/801  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS39541A  
Device:  
PIC18C601/801  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS39541A-page 316  
Advance Information  
2001 Microchip Technology Inc.  
PIC18C601/801  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
XXX  
a)  
PIC18LC601 - I/L = Industrial temp., PLCC  
Temperature Package  
Range  
Pattern  
package, Extended VDD limits, 16-bit data bus.  
PIC18LC801 - E/PT = Extended temp., TQFP  
package, Extended VDD limits, 16-bit data bus.  
b)  
Device  
PIC18C601/801(1), PIC18C601/801T(2)  
:
VDD range, 4.2V to 5.5V  
PIC18LC601/801(1), PIC18LC601/801T(2)  
VDD range, 2.5V to 5.5V  
Temperature Range  
Package  
I
E
=
=
-40°C to +70°C (Industrial)  
-40°C to +125°C (Extended)  
PT  
L
=
=
TQFP  
PLCC  
Note 1: C = Standard Voltage Range  
LC = Wide Voltage Range  
2: T =  
In tape and reel (both PLCC and  
TQFP packages)  
Pattern  
QTP, SQTP, ROM Code (factory specified) or  
Special Requirements. Blank for OTP and  
Windowed devices.  
SALES AND SUPPORT  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 317  
PIC18C601/801  
NOTES:  
DS39541A-page 318  
AdvanceInformation  
2001 Microchip Technology Inc.  
PIC18C601/801  
NOTES:  
2001 Microchip Technology Inc.  
Advance Information  
DS39541A-page 319  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC (continued)  
Corporate Office  
China - Beijing  
Microchip Technology Beijing Office  
Unit 915  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
New China Hong Kong Manhattan Bldg.  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Rocky Mountain  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
China - Shanghai  
Microchip Technology Shanghai Office  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
EUROPE  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Hong Kong  
Microchip Asia Pacific  
RM 2101, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
France  
India  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Microchip Technology Inc.  
India Liaison Office  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Divyasree Chambers  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Italy  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Two Prestige Place, Suite 130  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Japan  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Los Angeles  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Tel: 949-263-1888 Fax: 949-263-1338  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
10/01/00  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchip’s quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 1/01  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by  
updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual  
property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with  
express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellec-  
tual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights  
reserved. All other trademarks mentioned herein are the property of their respective companies.  
DS39541A-page 320  
Advance Information  
2001 Microchip Technology Inc.  

相关型号:

PIC18C601TE/L

8-BIT, 25 MHz, RISC MICROCONTROLLER, PQCC68, PLASTIC, LCC-68
MICROCHIP

PIC18C601TE/PT

8-BIT, 25 MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, PLASTIC, TQFP-64
MICROCHIP

PIC18C601TI/L

8-BIT, 25 MHz, RISC MICROCONTROLLER, PQCC68, PLASTIC, LCC-68
MICROCHIP

PIC18C601TI/PT

8-BIT, 25 MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, PLASTIC, TQFP-64
MICROCHIP

PIC18C601_13

High-Performance ROM-less Microcontrollers with External Memory Bus
MICROCHIP

PIC18C658

High-Performance Microcontrollers with CAN Module
MICROCHIP

PIC18C658-E/CL

High-Performance Microcontrollers with CAN Module
MICROCHIP

PIC18C658-E/L

High-Performance Microcontrollers with CAN Module
MICROCHIP

PIC18C658-E/PT

High-Performance Microcontrollers with CAN Module
MICROCHIP

PIC18C658-I/CL

High-Performance Microcontrollers with CAN Module
MICROCHIP

PIC18C658-I/L

High-Performance Microcontrollers with CAN Module
MICROCHIP

PIC18C658-I/PT

High-Performance Microcontrollers with CAN Module
MICROCHIP