PIC18F2320-E/SO [MICROCHIP]

8-BIT, FLASH, 25 MHz, MICROCONTROLLER, PDSO28, 0.300 INCH, PLASTIC, MS-013, SO-28;
PIC18F2320-E/SO
型号: PIC18F2320-E/SO
厂家: MICROCHIP    MICROCHIP
描述:

8-BIT, FLASH, 25 MHz, MICROCONTROLLER, PDSO28, 0.300 INCH, PLASTIC, MS-013, SO-28

闪存 微控制器
文件: 总388页 (文件大小:6899K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18F2220/2320/4220/4320  
Data Sheet  
28/40/44-Pin High-Performance,  
Enhanced Flash Microcontrollers  
with 10-Bit A/D and nanoWatt Technology  
2003 Microchip Technology Inc.  
DS39599C  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical  
components in life support systems is not authorized except  
with express written approval by Microchip. No licenses are  
conveyed, implicitly or otherwise, under any intellectual  
property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE and PowerSmart are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,  
SEEVAL and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Application Maestro, dsPICDEM, dsPICDEM.net, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo,  
PowerMate, PowerTool, rfLAB, rfPIC, Select Mode,  
SmartSensor, SmartShunt, SmartTel and Total Endurance are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2003, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
DS39599C-page ii  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
28/40/44-Pin High-Performance, Enhanced Flash MCUs  
with 10-bit A/D and nanoWatt Technology  
Low-Power Features:  
Peripheral Highlights:  
• Power Managed modes:  
• High current sink/source 25 mA/25 mA  
• Three external interrupts  
- Run: CPU on, peripherals on  
- Idle: CPU off, peripherals on  
- Sleep: CPU off, peripherals off  
• Power Consumption modes:  
- PRI_RUN: 150 µA, 1 MHz, 2V  
- PRI_IDLE: 37 µA, 1 MHz, 2V  
- SEC_RUN: 14 µA, 32 kHz, 2V  
- SEC_IDLE: 5.8 µA, 32 kHz, 2V  
- RC_RUN: 110 µA, 1 MHz, 2V  
- RC_IDLE: 52 µA, 1 MHz, 2V  
- Sleep: 0.1 µA, 1 MHz, 2V  
• Up to 2 Capture/Compare/PWM (CCP) modules:  
- Capture is 16-bit, max. resolution is 6.25 ns (TCY/16)  
- Compare is 16-bit, max. resolution is 100 ns (TCY)  
- PWM output: PWM resolution is 1 to 10-bit  
• Enhanced Capture/Compare/PWM (ECCP) module:  
- One, two or four PWM outputs  
- Selectable polarity  
- Programmable dead-time  
- Auto-Shutdown and Auto-Restart  
• Compatible 10-bit, up to 13-channel  
Analog-to-Digital Converter module (A/D) with  
programmable acquisition time  
• Timer1 Oscillator: 1.1 µA, 32 kHz, 2V  
• Watchdog Timer: 2.1 µA  
• Two-Speed Oscillator Start-up  
• Dual analog comparators  
• Addressable USART module:  
- RS-232 operation using internal oscillator  
block (no external crystal required)  
Oscillators:  
• Four Crystal modes:  
- LP, XT, HS: up to 25 MHz  
Special Microcontroller Features:  
- HSPLL: 4-10 MHz (16-40 MHz internal)  
• Two External RC modes, up to 4 MHz  
• Two External Clock modes, up to 40 MHz  
• Internal oscillator block:  
- 8 user selectable frequencies: 31 kHz, 125 kHz,  
250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz, 8 MHz  
- 125 kHz-8 MHz calibrated to 1%  
- Two modes select one or two I/O pins  
- OSCTUNE – Allows user to shift frequency  
• Secondary oscillator using Timer1 @ 32 kHz  
• Fail-Safe Clock Monitor  
• 100,000 erase/write cycle Enhanced Flash program  
memory typical  
• 1,000,000 erase/write cycle Data EEPROM memory  
typical  
• Flash/Data EEPROM Retention: > 40 years  
• Self-programmable under software control  
• Priority levels for interrupts  
• 8 x 8 Single-Cycle Hardware Multiplier  
• Extended Watchdog Timer (WDT):  
- Programmable period from 41 ms to 131s  
- 2% stability over VDD and Temperature  
• Single-supply 5V In-Circuit Serial Programming™  
(ICSP™) via two pins  
- Allows for safe shutdown if peripheral clock stops  
• In-Circuit Debug (ICD) via two pins  
• Wide operating voltage range: 2.0V to 5.5V  
Program Memory  
Data Memory  
MSSP  
CCP/  
10-bit  
A/D (ch)  
Timers  
8/16-bit  
Device  
I/O  
ECCP  
USART  
Flash # Single Word SRAM EEPROM  
(bytes) Instructions (bytes) (bytes)  
Master  
SPI™  
2
(PWM)  
I C™  
PIC18F2220  
PIC18F2320  
PIC18F4220  
PIC18F4320  
4096  
8192  
4096  
8192  
2048  
4096  
2048  
4096  
512  
512  
512  
512  
256  
256  
256  
256  
25  
25  
36  
36  
10  
10  
13  
13  
2/0  
2/0  
1/1  
1/1  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
2
2
2
2
2/3  
2/3  
2/3  
2/3  
2003 Microchip Technology Inc.  
DS39599C-page 1  
PIC18F2220/2320/4220/4320  
Pin Diagrams  
PDIP  
MCLR/VPP/RE3  
RA0/AN0  
1
2
3
4
RB7/KBI3/PGD  
RB6/KBI2/PGC  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
RA1/AN1  
RA2/AN2/VREF-/CVREF  
RB5/KBI1/PGM  
RB4/AN11/KBI0  
RB3/AN9/CCP2*  
RB2/AN8/INT2  
RA3/AN3/VREF+  
RA4/T0CKI/C1OUT  
5
6
7
8
RA5/AN4/SS/LVDIN/C2OUT  
RE0/AN5/RD  
RB1/AN10/INT1  
RB0/AN12/INT0  
VDD  
RE1/AN6/WR  
RE2/AN7/CS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
VDD  
VSS  
RD7/PSP7/P1D  
RD6/PSP6/P1C  
RD5/PSP5/P1B  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
OSC1/CLKI/RA7  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2*  
RC2/CCP1/P1A  
27  
26  
25  
24  
23  
22  
21  
RC3/SCK/SCL  
RD0/PSP0  
RC4/SDI/SDA  
RD3/PSP3  
RD2/PSP2  
RD1/PSP1  
SPDIP, SOIC  
28  
27  
26  
1
2
3
4
5
6
7
8
9
RB7/KBI3/PGD  
RB6//KBI2/PGC  
RB5/KBI1/PGM  
RB4/AN11/KBI0  
RB3/AN9/CCP2*  
RB2/AN8/INT2  
RB1/AN10/INT1  
RB0/AN12/INT0  
VDD  
VSS  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
MCLR/VPP/RE3  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-/CVREF  
RA3/AN3/VREF+  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/LVDIN/C2OUT  
VSS  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
OSC1/CLKI/RA7  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2*  
RC2/CCP1/P1A  
RC3/SCK/SCL  
10  
11  
12  
13  
14  
RC4/SDI/SDA  
* RB3 is the alternate pin for the CCP2 pin multiplexing.  
Note: Pin compatible with 40-pin PIC16C7X devices.  
DS39599C-page 2  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Pin Diagrams (Cont.’d)  
TQFP  
NC  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RC7/RX/DT  
1
2
3
4
5
6
7
8
RC0/T1OSO/T1CKI  
OSC2/CLKO/RA6  
OSC1/CLKI/RA7  
VSS  
RD4/PSP4  
RD5/PSP5/P1B  
RD6/PSP6/P1C  
RD7/PSP7/P1D  
VSS  
PIC18F4220  
PIC18F4320  
VDD  
RE2/AN7/CS  
RE1/AN6/WR  
RE0/AN5/RD  
RA5/AN4/SS/LVDIN/C2OUT  
RA4/T0CKI/C1OUT  
VDD  
RB0/AN12/INT0  
RB1/AN10/INT1  
RB2/AN8/INT2  
RB3/AN9/CCP2*  
9
10  
11  
* RB3 is the alternate pin for the CCP2 pin multiplexing.  
QFN  
RC7/RX/DT  
1
OSC2/CLKO/RA6  
OSC1/CLKI/RA7  
VSS  
VSS  
VDD  
33  
RD4/PSP4  
2
32  
31  
30  
29  
28  
27  
26  
RD5/PSP5/P1B  
3
RD6/PSP6/P1C  
4
PIC18F4220  
PIC18F4320  
RD7/PSP7/P1D  
5
VSS  
VDD  
VDD  
NC  
6
7
8
RE2/AN7/CS  
RE1/AN6/WR  
RE0/AN5/RD  
RA5/AN4/SS/LVDIN/C2OUT  
RA4/T0CKI/C1OUT  
RB0/AN12/INT0  
RB1/AN10/INT1  
RB2/AN8/INT2  
9
10  
11  
25  
24  
23  
* RB3 is the alternate pin for the CCP2 pin multiplexing.  
2003 Microchip Technology Inc.  
DS39599C-page 3  
PIC18F2220/2320/4220/4320  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 7  
2.0 Oscillator Configurations ............................................................................................................................................................ 19  
3.0 Power Managed Modes ............................................................................................................................................................. 29  
4.0 Reset.......................................................................................................................................................................................... 43  
5.0 Memory Organization................................................................................................................................................................. 53  
6.0 Flash Program Memory.............................................................................................................................................................. 71  
7.0 Data EEPROM Memory ............................................................................................................................................................. 81  
8.0 8 X 8 Hardware Multiplier........................................................................................................................................................... 85  
9.0 Interrupts .................................................................................................................................................................................... 87  
10.0 I/O Ports ................................................................................................................................................................................... 101  
11.0 Timer0 Module ......................................................................................................................................................................... 117  
12.0 Timer1 Module ......................................................................................................................................................................... 121  
13.0 Timer2 Module ......................................................................................................................................................................... 127  
14.0 Timer3 Module ......................................................................................................................................................................... 129  
15.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 133  
16.0 Enhanced Capture/Compare/PWM (ECCP) Module................................................................................................................ 141  
17.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 155  
18.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART).............................................................. 195  
19.0 10-bit Analog-to-Digital Converter (A/D) Module...................................................................................................................... 211  
20.0 Comparator Module.................................................................................................................................................................. 221  
21.0 Comparator Voltage Reference Module................................................................................................................................... 227  
22.0 Low-Voltage Detect.................................................................................................................................................................. 231  
23.0 Special Features of the CPU.................................................................................................................................................... 237  
24.0 Instruction Set Summary.......................................................................................................................................................... 255  
25.0 Development Support............................................................................................................................................................... 299  
26.0 Electrical Characteristics.......................................................................................................................................................... 305  
27.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 343  
28.0 Packaging Information.............................................................................................................................................................. 361  
Appendix A: Revision History............................................................................................................................................................. 369  
Appendix B: Device Differences......................................................................................................................................................... 369  
Appendix C: Conversion Considerations ........................................................................................................................................... 370  
Appendix D: Migration from Baseline to Enhanced Devices.............................................................................................................. 370  
Appendix E: Migration from Mid-Range to Enhanced Devices .......................................................................................................... 371  
Appendix F: Migration from High-End to Enhanced Devices............................................................................................................. 371  
Index .................................................................................................................................................................................................. 373  
On-Line Support................................................................................................................................................................................. 383  
Systems Information and Upgrade Hot Line ...................................................................................................................................... 383  
Reader Response .............................................................................................................................................................................. 384  
PIC18F2220/2320/4220/4320 Product Identification System ............................................................................................................ 385  
DS39599C-page 4  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include  
literature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
2003 Microchip Technology Inc.  
DS39599C-page 5  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 6  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Besides its availability as a clock source, the internal  
oscillator block provides a stable reference source that  
gives the family additional features for robust  
operation:  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the following devices:  
• PIC18F2220  
• PIC18F2320  
• PIC18F4220  
• PIC18F4320  
Fail-Safe Clock Monitor: This option constantly  
monitors the main clock source against a reference  
signal provided by the internal oscillator. If a clock  
failure occurs, the controller is switched to the  
internal oscillator block, allowing for continued  
low-speed operation or a safe application shutdown.  
This family offers the advantages of all PIC18 micro-  
controllers – namely, high computational performance  
at an economical price with the addition of high-  
endurance Enhanced Flash program memory. On top  
of these features, the PIC18F2220/2320/4220/4320  
family introduces design enhancements that make  
these microcontrollers a logical choice for many  
high-performance, power sensitive applications.  
Two-Speed Start-up: This option allows the internal  
oscillator to serve as the clock source from Power-on  
Reset, or wake-up from Sleep mode, until the primary  
clock source is available. This allows for code execu-  
tion during what would otherwise be the clock start-up  
interval and can even allow an application to perform  
routine background activities and return to Sleep  
without returning to full power operation.  
1.1  
New Core Features  
1.1.1  
nanoWatt TECHNOLOGY  
All of the devices in the PIC18F2220/2320/4220/4320  
family incorporate a range of features that can signifi-  
cantly reduce power consumption during operation.  
Key items include:  
1.2  
Other Special Features  
Memory Endurance: The Enhanced Flash cells for  
both program memory and data EEPROM are rated  
to last for many thousands of erase/write cycles – up  
to 100,000 for program memory and 1,000,000 for  
EEPROM. Data retention without refresh is  
conservatively estimated to be greater than 40 years.  
Alternate Run Modes: By clocking the controller  
from the Timer1 source or the internal oscillator  
block, power consumption during code execution  
can be reduced by as much as 90%.  
Multiple Idle Modes: The controller can also run  
with its CPU core disabled, but the peripherals are  
still active. In these states, power consumption can  
be reduced even further, to as little as 4% of normal  
operation requirements.  
Self-programmability: These devices can write to  
their own program memory spaces under internal  
software control. By using a bootloader routine  
located in the protected Boot Block at the top of pro-  
gram memory, it becomes possible to create an  
application that can update itself in the field.  
On-the-fly Mode Switching: The power managed  
modes are invoked by user code during operation,  
allowing the user to incorporate power saving ideas  
into their application’s software design.  
Enhanced CCP Module: In PWM mode, this  
module provides 1, 2 or 4 modulated outputs for  
controlling half-bridge and full-bridge drivers. Other  
features include Auto-Shutdown for disabling PWM  
outputs on interrupt or other select conditions and  
Auto-Restart to reactivate outputs once the  
condition has cleared.  
Lower Consumption in Key Modules: The power  
requirements for both Timer1 and the Watchdog  
Timer have been reduced by up to 80%, with typical  
values of 1.8 and 2.2 µA, respectively.  
Addressable USART: This serial communication  
module is capable of standard RS-232 operation  
using the internal oscillator block, removing the  
need for an external crystal (and its accompanying  
power requirement) in applications that talk to the  
outside world.  
1.1.2  
MULTIPLE OSCILLATOR OPTIONS  
AND FEATURES  
All of the devices in the PIC18F2220/2320/4220/4320  
family offer nine different oscillator options, allowing  
users a wide range of choices in developing application  
hardware. These include:  
10-bit A/D Converter: This module incorporates  
programmable acquisition time, allowing for a chan-  
nel to be selected and a conversion to be initiated  
without waiting for a sampling period and thus,  
reduce code overhead.  
• Four Crystal modes using crystals or ceramic  
resonators.  
• Two External Clock modes offering the option of  
using two pins (oscillator input and a divide-by-4  
clock output) or one pin (oscillator input with the  
second pin reassigned as general I/O).  
Extended Watchdog Timer (WDT): This enhanced  
version incorporates a 16-bit prescaler, allowing a  
time-out range from 4 ms to over 2 minutes, that is  
stable across operating voltage and temperature.  
• Two External RC Oscillator modes with the same  
pin options as the External Clock modes.  
• An internal oscillator block, which provides a 31 kHz  
INTRC clock and an 8 MHz clock with 6 program  
selectable divider ratios (4 MHz to 125 kHz) for a  
total of 8 clock frequencies.  
2003 Microchip Technology Inc.  
DS39599C-page 7  
PIC18F2220/2320/4220/4320  
3. I/O ports (3 bidirectional ports and 1 input only  
port on PIC18F2X20 devices, 5 bidirectional  
ports on PIC18F4X20 devices)  
1.3  
Details on Individual Family  
Members  
Devices in the PIC18F2220/2320/4220/4320 family are  
available in 28-pin (PIC18F2X20) and 40/44-pin  
(PIC18F4X20) packages. Block diagrams for the two  
groups are shown in Figure 1-1 and Figure 1-2.  
4. CCP and Enhanced CCP implementation  
(PIC18F2X20 devices have 2 standard CCP  
modules, PIC18F4X20 devices have one  
standard CCP module and one ECCP module)  
The devices are differentiated from each other in five  
ways:  
5. Parallel Slave Port (present only on  
PIC18F4X20 devices)  
1. Flash program memory (4 Kbytes for  
PIC18FX220 devices, 8 Kbytes for PIC18FX320)  
All other features for devices in this family are identical.  
These are summarized in Table 1-1.  
2. A/D channels (10 for PIC18F2X20 devices, 13 for  
PIC18F4X20 devices)  
The pinouts for all devices are listed in Table 1-2 and  
Table 1-3.  
TABLE 1-1:  
DEVICE FEATURES  
Features  
PIC18F2220  
PIC18F2320  
PIC18F4220  
PIC18F4320  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Data EEPROM Memory (Bytes)  
Interrupt Sources  
DC – 40 MHz  
DC – 40 MHz  
DC – 40 MHz  
DC – 40 MHz  
4096  
8192  
4096  
512  
256  
19  
4096  
2048  
512  
256  
20  
8192  
4096  
512  
256  
20  
2048  
512  
256  
19  
I/O Ports  
Ports A, B, C (E)  
Ports A, B, C (E) Ports A, B, C, D, E Ports A, B, C, D, E  
Timers  
4
2
0
4
2
0
4
1
1
4
1
1
Capture/Compare/PWM Modules  
Enhanced Capture/  
Compare/PWM Modules  
Serial Communications  
MSSP,  
Addressable  
USART  
MSSP,  
Addressable  
USART  
MSSP,  
Addressable  
USART  
MSSP,  
Addressable  
USART  
Parallel Communications (PSP)  
10-bit Analog-to-Digital Module  
Resets (and Delays)  
No  
No  
Yes  
Yes  
10 Input Channels 10 Input Channels 13 Input Channels 13 Input Channels  
POR, BOR, POR, BOR, POR, BOR, POR, BOR,  
RESETInstruction, RESETInstruction, RESETInstruction, RESETInstruction,  
Stack Full,  
Stack Underflow  
(PWRT, OST),  
MCLR (optional),  
WDT  
Stack Full,  
Stack Underflow  
(PWRT, OST),  
MCLR (optional),  
WDT  
Stack Full,  
Stack Underflow  
(PWRT, OST),  
MCLR (optional),  
WDT  
Stack Full,  
Stack Underflow  
(PWRT, OST),  
MCLR (optional),  
WDT  
Programmable Low-Voltage  
Detect  
Yes  
Yes  
Yes  
Yes  
Programmable Brown-out Reset  
Instruction Set  
Yes  
Yes  
Yes  
Yes  
75 Instructions  
75 Instructions  
75 Instructions  
75 Instructions  
Packages  
28-pin SPDIP  
28-pin SOIC  
28-pin SPDIP  
28-pin SOIC  
40-pin PDIP  
44-pin TQFP  
44-pin QFN  
40-pin PDIP  
44-pin TQFP  
44-pin QFN  
DS39599C-page 8  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 1-1:  
PIC18F2220/2320 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
Data Latch  
Table Pointer <2>  
inc/dec logic  
21  
8
8
8
8
RA0/AN0  
RA1/AN1  
Data RAM  
(512 Bytes)  
RA2/AN2/VREF-/CVREF  
RA3/AN3/VREF+  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/LVDIN/C2OUT  
OSC2/CLKO/RA6(3)  
OSC1/CLKI/RA7(3)  
21  
21  
Address Latch  
20  
PCLATU PCLATH  
PCU PCH PCL  
12(2)  
Address Latch  
Program Memory  
(4 Kbytes)  
Address<12>  
Program Counter  
4
BSR  
12  
FSR0  
4
PORTB  
Data Latch  
Bank0, F  
RB0/AN12/INT0  
RB1/AN10/INT1  
RB2/AN8/INT2  
RB3/AN9/CCP2(1)  
RB4/AN11/KBI0  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
FSR1  
FSR2  
31 Level Stack  
12  
16  
inc/dec  
logic  
Decode  
Table Latch  
8
ROM Latch  
PORTC  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2(1)  
RC2/CCP1/P1A  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
Instruction  
Register  
8
Instruction  
Decode &  
Control  
RC6/TX/CK  
RC7/RX/DT  
PRODH PRODL  
8 x 8 Multiply  
3
8
WREG  
8
BIT OP  
8
OSC1(3)  
OSC2(3)  
T1OSI  
Power-up  
Timer  
Internal  
Oscillator  
Block  
8
Oscillator  
Start-up Timer  
8
INT RC  
Oscillator  
ALU<8>  
Power-on  
Reset  
PORTE  
T1OSO  
8
Watchdog  
Timer  
Precision  
Voltage  
Reference  
RE3(2)  
Brown-out  
Reset  
Low-Voltage  
Programming  
MCLR(2)  
VDD, VSS  
Fail-Safe  
Clock Monitor  
In-Circuit  
Debugger  
Timer3  
(16-bit)  
Timer0  
(8- or 16-bit)  
Timer2  
(8-bit)  
Timer1  
(16-bit)  
10-bit A/D  
Converter  
Master  
Synchronous  
Serial Port  
Addressable  
USART  
Data EEPROM  
(256 Bytes)  
CCP1  
CCP2  
Note 1: Optional multiplexing of CCP2 input/output with RB3 is enabled by selection of the CCPMX2 configuration bit.  
2: RE3 is available only when the MCLR Resets are disabled.  
3: OSC1, OSC2, CLKI and CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O.  
Refer to Section 2.0 “Oscillator Configurations” for additional information.  
2003 Microchip Technology Inc.  
DS39599C-page 9  
PIC18F2220/2320/4220/4320  
FIGURE 1-2:  
PIC18F4220/4320 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
Data Latch  
Data RAM  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-/CVREF  
RA3/AN3/VREF+  
Table Pointer <2>  
inc/dec logic  
21  
8
8
8
8
(512 Bytes)  
21  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/LVDIN/C2OUT  
OSC2/CLKO/RA6(3)  
OSC1/CLKI/RA7(3)  
21  
Address Latch  
20  
PCLATU PCLATH  
12(2)  
Address Latch  
Program Memory  
(8 Kbytes)  
Address<12>  
PCU PCH PCL  
Program Counter  
4
BSR  
12  
FSR0  
4
PORTB  
Data Latch  
Bank0, F  
RB0/AN12/INT0  
RB1/AN10/INT1  
RB2/AN8/INT2  
RB3/AN9/CCP2(1)  
RB4/AN11/KBI0  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
FSR1  
FSR2  
31 Level Stack  
12  
16  
inc/dec  
logic  
Decode  
Table Latch  
8
ROM Latch  
PORTC  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2(1)  
RC2/CCP1/P1A  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
Instruction  
Register  
8
Instruction  
Decode &  
Control  
RC6/TX/CK  
RC7/RX/DT  
PRODH PRODL  
8 x 8 Multiply  
3
PORTD  
8
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5/P1B  
RD6/PSP6/P1C  
RD7/PSP7/P1D  
BIT OP  
8
WREG  
8
OSC1(3)  
OSC2(3)  
T1OSI  
Internal  
Oscillator  
Block  
Power-up  
Timer  
8
Oscillator  
Start-up Timer  
8
INT RC  
Oscillator  
ALU<8>  
Power-on  
Reset  
T1OSO  
8
Watchdog  
Timer  
PORTE  
Precision  
Voltage  
Reference  
RE0/AN5/RD  
Brown-out  
Reset  
Low-Voltage  
Programming  
RE1/AN6/WR  
RE2/AN7/CS  
RE3(2)  
(2)  
MCLR  
Fail-Safe  
Clock Monitor  
In-Circuit  
Debugger  
VDD, VSS  
Timer1  
(16-bit)  
Timer2  
(8-bit)  
Timer3  
(16-bit)  
10-bit A/D  
Converter  
Timer0  
(8- or 16-bit)  
Master  
Synchronous  
Serial Port  
Addressable  
USART  
Data EEPROM  
(256 Bytes)  
Enhanced  
CCP  
CCP2  
Note 1: Optional multiplexing of CCP2 input/output with RB3 is enabled by selection of the CCP2MX configuration bit.  
2: RE3 is available only when the MCLR Resets are disabled.  
3: OSC1, OSC2, CLKI and CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O.  
Refer to Section 2.0 “Oscillator Configurations” for additional information.  
DS39599C-page 10  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 1-2:  
PIC18F2220/2320 PINOUT I/O DESCRIPTIONS  
Pin Number  
PDIP SOIC  
Pin Buffer  
Type Type  
Pin Name  
Description  
MCLR/VPP/RE3  
MCLR  
1
1
Master Clear (input) or programming voltage (input).  
Master Clear (Reset) input. This pin is an active-low Reset  
to the device.  
I
ST  
ST  
VPP  
RE3  
P
I
Programming voltage input.  
Digital input.  
OSC1/CLKI/RA7  
OSC1  
9
9
Oscillator crystal or external clock input.  
I
I
ST  
CMOS  
TTL  
Oscillator crystal input or external clock source input.  
ST buffer when configured in RC mode, CMOS otherwise.  
External clock source input. Always associated with pin  
function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)  
General purpose I/O pin.  
CLKI  
RA7  
I/O  
OSC2/CLKO/RA6  
OSC2  
10  
10  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or resonator  
in Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO which has 1/4 the  
frequency of OSC1 and denotes the instruction cycle rate.  
General purpose I/O pin.  
CLKO  
RA6  
I/O  
TTL  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
2
3
4
2
3
4
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-/CVREF  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
CVREF  
I
I
O
Analog  
Analog  
Analog  
Analog input 2.  
A/D Reference Voltage (Low) input.  
Comparator Reference Voltage output.  
RA3/AN3/VREF+  
RA3  
5
6
7
5
6
7
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
Analog input 3.  
A/D Reference Voltage (High) input.  
AN3  
VREF+  
RA4/T0CKI/C1OUT  
RA4  
I/O ST/OD  
I
O
Digital I/O. Open-drain when configured as output.  
Timer0 external clock input.  
Comparator 1 output.  
T0CKI  
C1OUT  
ST  
RA5/AN4/SS/LVDIN/C2OUT  
RA5  
AN4  
SS  
LVDIN  
C2OUT  
I/O  
I
I
I
O
TTL  
Analog  
TTL  
Analog  
Digital I/O.  
Analog input 4.  
SPI Slave Select input.  
Low-Voltage Detect input.  
Comparator 2 output.  
RA6  
RA7  
See the OSC2/CLKO/RA6 pin.  
See the OSC1/CLKI/RA7 pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
OD = Open-drain (no diode to VDD)  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.  
2: Alternate assignment for CCP2 when CCP2MX is cleared.  
2003 Microchip Technology Inc.  
DS39599C-page 11  
PIC18F2220/2320/4220/4320  
TABLE 1-2:  
PIC18F2220/2320 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Pin Name  
Description  
Type Type  
PDIP SOIC  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/AN12/INT0  
RB0  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 12.  
External interrupt 0.  
AN12  
INT0  
RB1/AN10/INT1  
RB1  
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 10.  
External interrupt 1.  
AN10  
INT1  
RB2/AN8/INT2  
RB2  
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 8.  
External interrupt 2.  
AN8  
INT2  
RB3/AN9/CCP2  
RB3  
I/O  
I
I/O  
TTL  
Analog  
ST  
Digital I/O.  
Analog input 9.  
Capture2 input, Compare2 output, PWM2 output.  
AN9  
CCP2(1)  
RB4/AN11/KBI0  
RB4  
I/O  
I
I
TTL  
Analog  
TTL  
Digital I/O.  
Analog input 11.  
Interrupt-on-change pin.  
AN11  
KBI0  
RB5/KBI1/PGM  
RB5  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
KBI1  
PGM  
Interrupt-on-change pin.  
Low-voltage ICSP programming enable pin.  
RB6/KBI2/PGC  
RB6  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming clock pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming data pin.  
KBI3  
PGD  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
OD = Open-drain (no diode to VDD)  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.  
2: Alternate assignment for CCP2 when CCP2MX is cleared.  
DS39599C-page 12  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 1-2:  
PIC18F2220/2320 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
PDIP SOIC  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
11  
12  
13  
14  
15  
11  
12  
13  
14  
15  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/CCP2  
RC1  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture2 input, Compare2 output, PWM2 output.  
T1OSI  
CCP2(2)  
RC2/CCP1/P1A  
RC2  
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
CCP1  
P1A  
Capture1 input/Compare1 output/PWM1 output.  
Enhanced CCP1 output.  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Digital I/O.  
SCK  
SCL  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I2C mode.  
RC4/SDI/SDA  
RC4  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SPI data in.  
I2C data I/O.  
SDI  
SDA  
RC5/SDO  
RC5  
16  
17  
16  
17  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO  
RC6/TX/CK  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX  
CK  
USART asynchronous transmit.  
USART synchronous clock (see related RX/DT).  
RC7/RX/DT  
RC7  
18  
18  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX  
DT  
USART asynchronous receive.  
USART synchronous data (see related TX/CK).  
RE3  
VSS  
VDD  
P
See MCLR/VPP/RE3 pin.  
8, 19 8, 19  
20 20  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
CMOS = CMOS compatible input or output  
P
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
OD = Open-drain (no diode to VDD)  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.  
2: Alternate assignment for CCP2 when CCP2MX is cleared.  
2003 Microchip Technology Inc.  
DS39599C-page 13  
PIC18F2220/2320/4220/4320  
TABLE 1-3:  
Pin Name  
PIC18F4220/4320 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin Buffer  
Description  
Type Type  
PDIP TQFP QFN  
MCLR/VPP/RE3  
MCLR  
1
18  
30  
18  
32  
Master Clear (input) or programming voltage (input).  
Master Clear (Reset) input. This pin is an active-low  
Reset to the device.  
I
ST  
ST  
VPP  
RE3  
P
I
Programming voltage input.  
Digital input.  
OSC1/CLKI/RA7  
OSC1  
13  
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock source input.  
ST buffer when configured in RC mode, CMOS otherwise.  
External clock source input. Always associated with  
pin function OSC1. (See related OSC1/CLKI,  
OSC2/CLKO pins.)  
I
I
ST  
CLKI  
CMOS  
RA7  
I/O  
TTL  
General purpose I/O pin.  
OSC2/CLKO/RA6  
OSC2  
14  
31  
33  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or resonator  
in Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO which has 1/4 the  
frequency of OSC1 and denotes the instruction cycle rate.  
General purpose I/O pin.  
CLKO  
RA6  
I/O  
TTL  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
2
3
4
19  
20  
21  
19  
20  
21  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-/CVREF  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
CVREF  
I
I
O
Analog  
Analog  
Analog  
Analog input 2.  
A/D reference voltage (Low) input.  
Comparator reference voltage output.  
RA3/AN3/VREF+  
RA3  
5
6
7
22  
23  
24  
22  
23  
24  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
Analog input 3.  
A/D reference voltage (High) input.  
AN3  
VREF+  
RA4/T0CKI/C1OUT  
RA4  
I/O ST/OD  
I
O
Digital I/O. Open-drain when configured as output.  
Timer0 external clock input.  
Comparator 1 output.  
T0CKI  
C1OUT  
ST  
RA5/AN4/SS/LVDIN/  
C2OUT  
RA5  
I/O  
I
I
I
O
TTL  
Analog  
TTL  
Analog  
Digital I/O.  
Analog input 4.  
SPI slave select input.  
Low-Voltage Detect input.  
Comparator 2 output.  
AN4  
SS  
LVDIN  
C2OUT  
RA6  
RA7  
See the OSC2/CLKO/RA6 pin.  
See the OSC1/CLKI/RA7 pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
OD = Open-drain (no diode to VDD)  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.  
2: Alternate assignment for CCP2 when CCP2MX is cleared.  
DS39599C-page 14  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 1-3:  
Pin Name  
PIC18F4220/4320 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP TQFP QFN  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/AN12/INT0  
RB0  
33  
34  
35  
36  
37  
38  
39  
40  
8
9
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 12.  
External interrupt 0.  
AN12  
INT0  
RB1/AN10/INT1  
RB1  
9
10  
11  
12  
14  
15  
16  
17  
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 10.  
External interrupt 1.  
AN10  
INT1  
RB2/AN8/INT2  
RB2  
10  
11  
14  
15  
16  
17  
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 8.  
External interrupt 2.  
AN8  
INT2  
RB3/AN9/CCP2  
RB3  
I/O  
I
I/O  
TTL  
Analog  
ST  
Digital I/O.  
Analog input 9.  
Capture2 input, Compare2 output, PWM2 output.  
AN9  
CCP2(1)  
RB4/AN11/KBI0  
RB4  
I/O  
I
I
TTL  
Analog  
TTL  
Digital I/O.  
Analog input 11.  
Interrupt-on-change pin.  
AN11  
KBI0  
RB5/KBI1/PGM  
RB5  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
KBI1  
PGM  
Interrupt-on-change pin.  
Low-voltage ICSP programming enable pin.  
RB6/KBI2/PGC  
RB6  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming clock pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming data pin.  
KBI3  
PGD  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
OD = Open-drain (no diode to VDD)  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.  
2: Alternate assignment for CCP2 when CCP2MX is cleared.  
2003 Microchip Technology Inc.  
DS39599C-page 15  
PIC18F2220/2320/4220/4320  
TABLE 1-3:  
Pin Name  
PIC18F4220/4320 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Description  
Type Type  
PDIP TQFP QFN  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
15  
16  
17  
18  
23  
32  
35  
36  
37  
42  
34  
35  
36  
37  
42  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/CCP2  
RC1  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture2 input, Compare2 output, PWM2 output.  
T1OSI  
CCP2(2)  
RC2/CCP1/P1A  
RC2  
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
CCP1  
P1A  
Capture1 input/Compare1 output/PWM1 output.  
Enhanced CCP1 output.  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Digital I/O.  
SCK  
SCL  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I2C mode.  
RC4/SDI/SDA  
RC4  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SPI data in.  
I2C data I/O.  
SDI  
SDA  
RC5/SDO  
RC5  
24  
25  
43  
44  
43  
44  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO  
RC6/TX/CK  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX  
CK  
USART asynchronous transmit.  
USART synchronous clock (see related RX/DT).  
RC7/RX/DT  
RC7  
26  
1
1
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX  
DT  
USART asynchronous receive.  
USART synchronous data (see related TX/CK).  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
OD = Open-drain (no diode to VDD)  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.  
2: Alternate assignment for CCP2 when CCP2MX is cleared.  
DS39599C-page 16  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 1-3:  
Pin Name  
PIC18F4220/4320 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP TQFP QFN  
PORTD is a bidirectional I/O port or a Parallel Slave Port  
(PSP) for interfacing to a microprocessor port. These pins  
have TTL input buffers when PSP module is enabled.  
RD0/PSP0  
RD0  
19  
20  
21  
22  
27  
28  
38  
39  
40  
41  
2
38  
39  
40  
41  
2
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP0  
RD1/PSP1  
RD1  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP1  
RD2/PSP2  
RD2  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP2  
RD3/PSP3  
RD3  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP3  
RD4/PSP4  
RD4  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP4  
RD5/PSP5/P1B  
RD5  
3
3
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
Enhanced CCP1 output.  
PSP5  
P1B  
RD6/PSP6/P1C  
RD6  
29  
30  
4
5
4
5
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
Enhanced CCP1 output.  
PSP6  
P1C  
RD7/PSP7/P1D  
RD7  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
Enhanced CCP1 output.  
PSP7  
P1D  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
OD = Open-drain (no diode to VDD)  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.  
2: Alternate assignment for CCP2 when CCP2MX is cleared.  
2003 Microchip Technology Inc.  
DS39599C-page 17  
PIC18F2220/2320/4220/4320  
TABLE 1-3:  
Pin Name  
PIC18F4220/4320 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Description  
Type Type  
PDIP TQFP QFN  
PORTE is a bidirectional I/O port.  
RE0/AN5/RD  
RE0  
8
9
25  
26  
27  
18  
25  
26  
27  
18  
I/O  
I
I
ST  
Analog  
TTL  
Digital I/O.  
Analog input 5.  
Read control for Parallel Slave Port  
(see also WR and CS pins).  
AN5  
RD  
RE1/AN6/WR  
RE1  
I/O  
I
I
ST  
Analog  
TTL  
Digital I/O.  
Analog input 6.  
Write control for Parallel Slave Port  
(see CS and RD pins).  
AN6  
WR  
RE2/AN7/CS  
RE2  
10  
I/O  
I
I
ST  
Analog  
TTL  
Digital I/O.  
Analog input 7.  
Chip select control for Parallel Slave Port  
(see related RD and WR).  
AN7  
CS  
RE3  
VSS  
1
P
See MCLR/VPP/RE3 pin.  
12, 6, 29 6, 30,  
31 31  
Ground reference for logic and I/O pins.  
VDD  
NC  
11, 32 7, 28 7, 8,  
28, 29  
P
Positive supply for logic and I/O pins.  
13  
NC  
NC No connect.  
CMOS = CMOS compatible input or output  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
OD = Open-drain (no diode to VDD)  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.  
2: Alternate assignment for CCP2 when CCP2MX is cleared.  
DS39599C-page 18  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 2-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(XT, LP, HS OR HSPLL  
CONFIGURATION)  
2.0  
2.1  
OSCILLATOR  
CONFIGURATIONS  
Oscillator Types  
(1)  
C1  
OSC1  
The PIC18F2X20 and PIC18F4X20 devices can be  
operated in ten different oscillator modes. The user can  
program the configuration bits, FOSC3:FOSC0, in  
Configuration Register 1H to select one of these ten  
modes:  
To  
Internal  
Logic  
XTAL  
(3)  
RF  
Sleep  
(2)  
RS  
1. LP  
Low-Power Crystal  
(1)  
PIC18FXXXX  
C2  
2. XT  
Crystal/Resonator  
OSC2  
3. HS  
High-Speed Crystal/Resonator  
Note 1: See Table 2-1 and Table 2-2 for initial values  
of C1 and C2.  
4. HSPLL  
High-Speed Crystal/Resonator  
with PLL enabled  
2: A series resistor (RS) may be required for AT  
strip cut crystals.  
5. RC  
External Resistor/Capacitor with  
FOSC/4 output on RA6  
3: RF varies with the oscillator mode chosen.  
6. RCIO  
7. INTIO1  
8. INTIO2  
External Resistor/Capacitor with  
I/O on RA6  
Internal Oscillator with FOSC/4  
output on RA6 and I/O on RA7  
TABLE 2-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
Internal Oscillator with I/O on RA6  
and RA7  
Typical Capacitor Values Used:  
9. EC  
External Clock with FOSC/4 output  
External Clock with I/O on RA6  
Mode  
Freq  
OSC1  
OSC2  
10. ECIO  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
56 pF  
47 pF  
33 pF  
56 pF  
47 pF  
33 pF  
2.2  
Crystal Oscillator/Ceramic  
Resonators  
HS  
8.0 MHz  
16.0 MHz  
27 pF  
22 pF  
27 pF  
22 pF  
In XT, LP, HS or HSPLL Oscillator modes, a crystal or  
ceramic resonator is connected to the OSC1 and  
OSC2 pins to establish oscillation. Figure 2-1 shows  
the pin connections.  
Capacitor values are for design guidance only.  
These capacitors were tested with the resonators  
listed below for basic start-up and operation. These  
values are not optimized.  
The oscillator design requires the use of a parallel cut  
crystal.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
Note:  
Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturers  
specifications.  
See the notes on page 20 for additional information.  
Resonators Used:  
455 kHz  
2.0 MHz  
4.0 MHz  
8.0 MHz  
16.0 MHz  
2003 Microchip Technology Inc.  
DS39599C-page 19  
PIC18F2220/2320/4220/4320  
An external clock source may also be connected to the  
OSC1 pin in the HS mode, as shown in Figure 2-2.  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
Typical Capacitor Values  
FIGURE 2-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS OSC  
CONFIGURATION)  
Crystal  
Freq  
Tested:  
Osc Type  
C1  
C2  
LP  
XT  
HS  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
4 MHz  
8 MHz  
20 MHz  
33 pF  
15 pF  
33 pF  
27 pF  
27 pF  
22 pF  
15 pF  
33 pF  
15 pF  
33 pF  
27 pF  
27 pF  
22 pF  
15 pF  
OSC1  
Clock from  
Ext. System  
PIC18FXXXX  
(HS Mode)  
OSC2  
Open  
2.3  
HSPLL  
Capacitor values are for design guidance only.  
A Phase Locked Loop (PLL) circuit is provided as an  
option for users who wish to use a lower frequency  
crystal oscillator circuit, or to clock the device up to its  
highest rated frequency from a crystal oscillator. This  
may be useful for customers who are concerned with  
EMI due to high-frequency crystals.  
These capacitors were tested with the crystals listed  
below for basic start-up and operation. These values  
are not optimized.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
The HSPLL mode makes use of the HS mode oscillator  
for frequencies up to 10 MHz. A PLL then multiplies the  
oscillator output frequency by 4 to produce an internal  
clock frequency up to 40 MHz.  
See the notes following this table for additional  
information.  
The PLL is enabled only when the oscillator configura-  
tion bits are programmed for HSPLL mode. If  
programmed for any other mode, the PLL is not  
enabled.  
Crystals Used:  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
8 MHz  
20 MHz  
FIGURE 2-3:  
PLL BLOCK DIAGRAM  
HS Osc Enable  
PLL Enable  
(from Configuration Register 1H)  
Note 1: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
2: When operating below 3V VDD, or when  
using certain ceramic resonators at any  
voltage, it may be necessary to use the  
HS mode or switch to a crystal oscillator.  
OSC2  
OSC1  
Phase  
Comparator  
HS Mode  
Crystal  
Osc  
FIN  
FOUT  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
Loop  
Filter  
appropriate  
values  
of  
external  
components.  
÷4  
VCO  
4: RS may be required to avoid overdriving  
SYSCLK  
crystals with low drive level specification.  
5: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
DS39599C-page 20  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
2.4  
External Clock Input  
2.5  
RC Oscillator  
The EC and ECIO Oscillator modes require an external  
clock source to be connected to the OSC1 pin. There is  
no oscillator start-up time required after a Power-on  
Reset or after an exit from Sleep mode.  
For timing insensitive applications, the “RC” and  
“RCIO” device options offer additional cost savings.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) val-  
ues and the operating temperature. In addition to this,  
the oscillator frequency will vary from unit to unit due to  
normal manufacturing variation. Furthermore, the dif-  
ference in lead frame capacitance between package  
types will also affect the oscillation frequency, espe-  
cially for low CEXT values. The user also needs to take  
into account variation due to tolerance of external R  
and C components used. Figure 2-6 shows how the  
R/C combination is connected.  
In the EC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 2-4 shows the pin connections for the EC  
Oscillator mode.  
FIGURE 2-4:  
EXTERNAL CLOCK INPUT  
OPERATION  
(EC CONFIGURATION)  
In the RC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic.  
OSC1/CLKI  
Clock from  
Ext. System  
PIC18FXXXX  
OSC2/CLKO  
FOSC/4  
FIGURE 2-6:  
RC OSCILLATOR MODE  
VDD  
The ECIO Oscillator mode functions like the EC mode,  
except that the OSC2 pin becomes an additional gen-  
eral purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6). Figure 2-5 shows the pin connections  
for the ECIO Oscillator mode.  
REXT  
Internal  
OSC1  
Clock  
CEXT  
VSS  
PIC18FXXXX  
FIGURE 2-5:  
EXTERNAL CLOCK INPUT  
OPERATION  
(ECIO CONFIGURATION)  
OSC2/CLKO  
FOSC/4  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20 pF  
OSC1/CLKI  
PIC18FXXXX  
I/O (OSC2)  
Clock from  
Ext. System  
The RCIO Oscillator mode (Figure 2-7) functions like  
the RC mode, except that the OSC2 pin becomes an  
additional general purpose I/O pin. The I/O pin  
becomes bit 6 of PORTA (RA6).  
RA6  
FIGURE 2-7:  
RCIO OSCILLATOR MODE  
VDD  
REXT  
Internal  
OSC1  
Clock  
CEXT  
PIC18FXXXX  
VSS  
I/O (OSC2)  
RA6  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20 pF  
2003 Microchip Technology Inc.  
DS39599C-page 21  
PIC18F2220/2320/4220/4320  
2.6.2  
INTRC OUTPUT FREQUENCY  
2.6  
Internal Oscillator Block  
The internal oscillator block is calibrated at the factory  
to produce an INTOSC output frequency of 8.0 MHz.  
This changes the frequency of the INTRC source from  
its nominal 31.25 kHz. Peripherals and features that  
depend on the INTRC source will be affected by this  
shift in frequency.  
The PIC18F2X20/4X20 devices include an internal  
oscillator block which generates two different clock sig-  
nals. Either can be used as the system’s clock source.  
This can eliminate the need for external oscillator  
circuits on the OSC1 and/or OSC2 pins.  
The main output (INTOSC) is an 8 MHz clock source  
which can be used to directly drive the system clock. It  
also drives a postscaler which can provide a range of  
clock frequencies from 125 kHz to 4 MHz. The  
INTOSC output is enabled when a system clock  
frequency from 125 kHz to 8 MHz is selected.  
Once set during factory calibration, the INTRC  
frequency will remain within ±1% as temperature and  
VDD change across their full specified operating  
ranges.  
2.6.3  
OSCTUNE REGISTER  
The other clock source is the internal RC oscillator  
(INTRC) which provides a 31 kHz output. The INTRC  
oscillator is enabled by selecting the internal oscillator  
block as the system clock source or when any of the  
following are enabled:  
The internal oscillator’s output has been calibrated at  
the factory but can be adjusted in the user's application.  
This is done by writing to the OSCTUNE register  
(Register 2-1). The tuning sensitivity is constant  
throughout the tuning range.  
• Power-up Timer  
When the OSCTUNE register is modified, the INTOSC  
and INTRC frequencies will begin shifting to the new  
frequency. The INTRC clock will reach the new fre-  
quency within 8 clock cycles (approximately  
8 * 32 µs = 256 µs). The INTOSC clock will stabilize  
within 1 ms. Code execution continues during this shift.  
There is no indication that the shift has occurred. Oper-  
ation of features that depend on the INTRC clock  
source frequency, such as the WDT, Fail-Safe Clock  
Monitor and peripherals, will also be affected by the  
change in frequency.  
• Fail-Safe Clock Monitor  
• Watchdog Timer  
• Two-Speed Start-up  
These features are discussed in greater detail in  
Section 23.0 “Special Features of the CPU”.  
The clock source frequency (INTOSC direct, INTRC  
direct or INTOSC postscaler) is selected by configuring  
the IRCF bits of the OSCCON register (page 26).  
2.6.1  
INTIO MODES  
Using the internal oscillator as the clock source can  
eliminate the need for up to two external oscillator pins  
which can then be used for digital I/O. Two distinct  
configurations are available:  
• In INTIO1 mode, the OSC2 pin outputs FOSC/4,  
while OSC1 functions as RA7 for digital input and  
output.  
• In INTIO2 mode, OSC1 functions as RA7 and  
OSC2 functions as RA6, both for digital input and  
output.  
DS39599C-page 22  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 2-1:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: Frequency Tuning bits  
011111= Maximum frequency (+12.5%, approximately)  
000001  
000000= Center frequency. Oscillator module is running at the calibrated frequency.  
111111  
100000= Minimum frequency (-12.5%, approximately)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2003 Microchip Technology Inc.  
DS39599C-page 23  
PIC18F2220/2320/4220/4320  
2.7.1  
OSCILLATOR CONTROL REGISTER  
2.7  
Clock Sources and Oscillator  
Switching  
The OSCCON register (Register 2-2) controls several  
aspects of the system clock’s operation, both in full  
power operation and in power managed modes.  
Like previous PIC18 devices, the PIC18F2X20 and  
PIC18F4X20 devices include a feature that allows the  
system clock source to be switched from the main  
oscillator to an alternate low-frequency clock source.  
PIC18F2X20/4X20 devices offer two alternate clock  
sources. When enabled, these give additional options  
for switching to the various power managed operating  
modes.  
The System Clock Select bits, SCS1:SCS0, select the  
clock source that is used when the device is operating  
in power managed modes. The available clock sources  
are the primary clock (defined in Configuration  
Register 1H), the secondary clock (Timer1 oscillator)  
and the internal oscillator block. The clock selection  
has no effect until a SLEEPinstruction is executed and  
the device enters a power managed mode of operation.  
The SCS bits are cleared on all forms of Reset.  
Essentially, there are three clock sources for these  
devices:  
• Primary oscillators  
The Internal Oscillator Select bits, IRCF2:IRCF0, select  
the frequency output of the internal oscillator block that  
is used to drive the system clock. The choices are the  
INTRC source, the INTOSC source (8 MHz) or one of  
the six frequencies derived from the INTOSC  
postscaler (125 kHz to 4 MHz). If the internal oscillator  
block is supplying the system clock, changing the  
states of these bits will have an immediate change on  
the internal oscillator’s output.  
• Secondary oscillators  
• Internal oscillator block  
The primary oscillators include the External Crystal  
and Resonator modes, the External RC modes, the  
External Clock modes and the internal oscillator block.  
The particular mode is defined on POR by the contents  
of Configuration Register 1H. The details of these  
modes are covered earlier in this chapter.  
The OSTS, IOFS and T1RUN bits indicate which clock  
source is currently providing the system clock. The  
OSTS indicates that the Oscillator Start-up Timer has  
timed out and the primary clock is providing the system  
clock in primary clock modes. The IOFS bit indicates  
when the internal oscillator block has stabilized and is  
providing the system clock in RC Clock modes. The  
T1RUN bit (T1CON<6>) indicates when the Timer1  
oscillator is providing the system clock in secondary  
clock modes. If none of these bits are set, the INTRC is  
providing the system clock, or the internal oscillator  
block has just started and is not yet stable.  
The secondary oscillators are those external sources  
not connected to the OSC1 or OSC2 pins. These  
sources may continue to operate even after the  
controller is placed in a power managed mode.  
PIC18F2X20/4X20 devices offer only the Timer1  
oscillator as a secondary oscillator. This oscillator, in all  
power managed modes, is often the time base for  
functions such as a real-time clock.  
Most often, a 32.768 kHz watch crystal is connected  
between the RC0/T1OSO/T1CKI and RC1/T1OSI pins.  
Like the LP mode oscillator circuit, loading capacitors  
are also connected from each pin to ground.  
The IDLEN bit controls the selective shutdown of the  
controller’s CPU in power managed modes. The use of  
these bits is discussed in more detail in Section 3.0  
“Power Managed Modes”.  
The Timer1 oscillator is discussed in greater detail in  
Section 12.2 “Timer1 Oscillator”.  
In addition to being a primary clock source, the internal  
oscillator block is available as a power managed  
mode clock source. The INTRC source is also used as  
the clock source for several special features, such as  
the WDT and Fail-Safe Clock Monitor.  
Note 1: The Timer1 oscillator must be enabled to  
select the secondary clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 Control regis-  
ter (T1CON<3>). If the Timer1 oscillator  
is not enabled, then any attempt to set the  
SCS0 bit will be ignored.  
The clock sources for the PIC18F2X20/4X20 devices  
are shown in Figure 2-8. See Section 12.0 “Timer1  
Module” for further details of the Timer1 oscillator. See  
Section 23.1 “Configuration Bits” for Configuration  
register details.  
2: It is recommended that the Timer1  
oscillator be operating and stable before  
executing the SLEEPinstruction or a very  
long delay may occur while the Timer1  
oscillator starts.  
DS39599C-page 24  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 2-8:  
PIC18F2X20/4X20 CLOCK DIAGRAM  
Clock  
Control  
PIC18F2X20/4X20  
CONFIG1H<3:0>  
HSPLL  
OSCCON<1:0>  
Peripherals  
Primary Oscillator  
OSC2  
4 x PLL  
Sleep  
LP, XT, HS, RC, EC  
OSC1  
Secondary Oscillator  
T1OSC  
T1OSO  
Clock Source Option  
for Other Modules  
T1OSCEN  
Enable  
Oscillator  
T1OSI  
OSCCON<6:4>  
Internal Oscillator  
CPU  
8 MHz  
OSCCON<6:4>  
111  
110  
101  
4 MHz  
2 MHz  
Internal  
Oscillator  
Block  
IDLEN  
1 MHz  
100  
011  
010  
001  
000  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
8 MHz  
(INTOSC)  
INTRC  
Source  
WDT, FSCM  
2003 Microchip Technology Inc.  
DS39599C-page 25  
PIC18F2220/2320/4220/4320  
REGISTER 2-2:  
OSCCON REGISTER  
R/W-0  
IDLEN  
R/W-0  
IRCF2  
R/W-0  
IRCF1  
R/W-0  
IRCF0  
R(1)  
R-0  
R/W-0  
SCS1  
R/W-0  
SCS0  
OSTS  
IOFS  
bit 7  
bit 0  
bit 7  
IDLEN: Idle Enable bit  
1= Idle mode enabled; CPU core is not clocked in power managed modes  
0= Run mode enabled; CPU core is clocked in power managed modes  
bit 6-4 IRCF2:IRCF0: Internal Oscillator Frequency Select bits  
111= 8 MHz (8 MHz source drives clock directly)  
110= 4 MHz  
101= 2 MHz  
100= 1 MHz  
011= 500 kHz  
010= 250 kHz  
001= 125 kHz  
000= 31 kHz (INTRC source drives clock directly)  
bit 3  
bit 2  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Oscillator start-up time-out timer has expired; primary oscillator is running  
0= Oscillator start-up time-out timer is running; primary oscillator is not ready  
IOFS: INTOSC Frequency Stable bit  
1= INTOSC frequency is stable  
0= INTOSC frequency is not stable  
bit 1-0 SCS1:SCS0: System Clock Select bits  
1x= Internal oscillator block (RC modes)  
01= Timer1 oscillator (Secondary modes)(2)  
00= Primary oscillator (Sleep and PRI_IDLE modes)  
Note 1: Depends on state of IESO bit in Configuration Register 1H.  
2: SCS0 may not be set while T1OSCEN (T1CON<3>) is clear.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39599C-page 26  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
If the Sleep mode is selected, all clock sources are  
stopped. Since all the transistor switching currents  
have been stopped, Sleep mode achieves the lowest  
current consumption of the device (only leakage  
currents).  
2.7.2  
OSCILLATOR TRANSITIONS  
The PIC18F2X20/4X20 devices contain circuitry to pre-  
vent clocking “glitches” when switching between clock  
sources. A short pause in the system clock occurs dur-  
ing the clock switch. The length of this pause is  
between 8 and 9 clock periods of the new clock source.  
This ensures that the new clock source is stable and  
that its pulse width will not be less than the shortest  
pulse width of the two clock sources.  
Enabling any on-chip feature that will operate during  
Sleep will increase the current consumed during Sleep.  
The INTRC is required to support WDT operation. The  
Timer1 oscillator may be operating to support a real-  
time clock. Other features may be operating that do not  
require a system clock source (i.e., SSP slave, PSP,  
INTn pins, A/D conversions and others).  
Clock transitions are discussed in greater detail in  
Section 3.1.2 “Entering Power Managed Modes”.  
2.8  
Effects of Power Managed Modes  
on the Various Clock Sources  
2.9  
Power-up Delays  
Power-up delays are controlled by two timers so that no  
external Reset circuitry is required for most applica-  
tions. The delays ensure that the device is kept in  
Reset until the device power supply is stable under nor-  
mal circumstances and the primary clock is operating  
and stable. For additional information on power-up  
delays, see Section 4.1 “Power-on Reset (POR)”  
through Section 4.5 “Brown-out Reset (BOR)”.  
When the device executes a SLEEP instruction, the  
system is switched to one of the power managed  
modes, depending on the state of the IDLEN and  
SCS1:SCS0 bits of the OSCCON register. See  
Section 3.0 “Power Managed Modes” for details.  
When PRI_IDLE mode is selected, the designated pri-  
mary oscillator continues to run without interruption.  
For all other power managed modes, the oscillator  
using the OSC1 pin is disabled. The OSC1 pin (and  
OSC2 pin, if used by the oscillator) will stop oscillating.  
The first timer is the Power-up Timer (PWRT) which  
provides a fixed delay on power-up (parameter 33,  
Table 26-10), if enabled, in Configuration Register 2L.  
The second timer is the Oscillator Start-up Timer  
(OST), intended to keep the chip in Reset until the crys-  
tal oscillator is stable (LP, XT and HS modes). The OST  
does this by counting 1024 oscillator cycles before  
allowing the oscillator to clock the device.  
In secondary clock modes (SEC_RUN and  
SEC_IDLE), the Timer1 oscillator is operating and pro-  
viding the system clock. The Timer1 oscillator may also  
run in all power managed modes if required to clock  
Timer1 or Timer3.  
In internal oscillator modes (RC_RUN and RC_IDLE),  
the internal oscillator block provides the system clock  
source. The INTRC output can be used directly to  
provide the system clock and may be enabled to  
support various special features, regardless of the  
power managed mode (see Section 23.2 “Watchdog  
Timer (WDT)” through Section 23.4 “Fail-Safe Clock  
Monitor”). The INTOSC output at 8 MHz may be used  
directly to clock the system or may be divided down  
first. The INTOSC output is disabled if the system clock  
is provided directly from the INTRC output.  
When the HSPLL Oscillator mode is selected, the  
device is kept in Reset for an additional 2 ms, following  
the HS mode OST delay, so the PLL can lock to the  
incoming clock frequency.  
There is a delay of 5 to 10 µs, following POR, while the  
controller becomes ready to execute instructions. This  
delay runs concurrently with any other delays. This  
may be the only delay that occurs when any of the EC,  
RC or INTIO modes are used as the primary clock  
source.  
TABLE 2-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC Mode  
OSC1 Pin  
OSC2 Pin  
RC, INTIO1  
Floating, external resistor  
should pull high  
At logic low (clock/4 output)  
RCIO, INTIO2  
Floating, external resistor  
should pull high  
Configured as PORTA, bit 6  
ECIO  
Floating, pulled by external clock  
Floating, pulled by external clock  
Configured as PORTA, bit 6  
At logic low (clock/4 output)  
EC  
LP, XT, and HS  
Feedback inverter disabled at  
quiescent voltage level  
Feedback inverter disabled at  
quiescent voltage level  
Note:  
See Table 4-1 in Section 4.0 “Reset” for time-outs due to Sleep and MCLR Reset.  
2003 Microchip Technology Inc.  
DS39599C-page 27  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 28  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
For PIC18F2X20/4X20 devices, the power managed  
3.0  
POWER MANAGED MODES  
modes are invoked by using the existing SLEEP  
instruction. All modes exit to PRI_RUN mode when trig-  
gered by an interrupt, a Reset, or a WDT time-out  
(PRI_RUN mode is the normal full power execution  
mode; the CPU and peripherals are clocked by the pri-  
mary oscillator source). In addition, power managed  
Run modes may also exit to Sleep mode or their  
corresponding Idle mode.  
The PIC18F2X20 and PIC18F4X20 devices offer a total  
of six operating modes for more efficient power  
management (see Table 3-1). These operating modes  
provide a variety of options for selective power  
conservation in applications where resources may be  
limited (i.e., battery-powered devices).  
There are three categories of power managed modes:  
• Sleep mode  
• Idle modes  
• Run modes  
3.1  
Selecting Power Managed Modes  
Selecting a power managed mode requires deciding if  
the CPU is to be clocked or not and selecting a clock  
source. The IDLEN bit controls CPU clocking while the  
SC1:SCS0 bits select a clock source. The individual  
modes, bit settings, clock sources and affected  
modules are summarized in Table 3-1.  
These categories define which portions of the device  
are clocked and sometimes, what speed. The Run and  
Idle modes may use any of the three available clock  
sources (primary, secondary or INTOSC multiplexer);  
the Sleep mode does not use a clock source.  
The clock switching feature offered in other PIC18  
devices (i.e., using the Timer1 oscillator in place of the  
primary oscillator) and the Sleep mode offered by all  
PICmicro® devices (where all system clocks are  
stopped) are both offered in the PIC18F2X20/4X20  
devices (SEC_RUN and Sleep modes, respectively).  
However, additional power managed modes are avail-  
able that allow the user greater flexibility in determining  
what portions of the device are operating. The power  
managed modes are event driven; that is, some  
specific event must occur for the device to enter or  
(more particularly) exit these operating modes.  
3.1.1  
CLOCK SOURCES  
The clock source is selected by setting the SCS bits of  
the OSCCON register. Three clock sources are avail-  
able for use in power managed Idle modes: the primary  
clock (as configured in Configuration Register 1H), the  
secondary clock (Timer1 oscillator) and the internal  
oscillator block. The secondary and internal oscillator  
block sources are available for the power managed  
modes (PRI_RUN mode is the normal full power exe-  
cution mode; the CPU and peripherals are clocked by  
the primary oscillator source).  
TABLE 3-1:  
Mode  
POWER MANAGED MODES  
OSCCON Bits  
Module Clocking  
Available Clock and Oscillator Source  
IDLEN SCS1:SCS0  
CPU  
Peripherals  
<7>  
<1:0>  
None – All clocks are disabled  
Primary – LP, XT, HS, HSPLL, RC, EC, INTRC(1)  
This is the normal full power execution mode.  
Sleep  
0
0
00  
00  
Off  
Off  
.
PRI_RUN  
Clocked  
Clocked  
SEC_RUN  
RC_RUN  
PRI_IDLE  
SEC_IDLE  
RC_IDLE  
0
0
1
1
1
01  
1x  
00  
01  
1x  
Clocked  
Clocked  
Off  
Clocked  
Clocked  
Clocked  
Clocked  
Clocked  
Secondary – Timer1 Oscillator  
Internal Oscillator Block(1)  
Primary – LP, XT, HS, HSPLL, RC, EC  
Secondary – Timer1 Oscillator  
Internal Oscillator Block(1)  
Off  
Off  
Note 1: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.  
2003 Microchip Technology Inc.  
DS39599C-page 29  
PIC18F2220/2320/4220/4320  
3.1.2  
ENTERING POWER MANAGED  
MODES  
Note 1: Caution should be used when modifying a  
single IRCF bit. If VDD is less than 3V, it is  
possible to select a higher clock speed  
than is supported by the low VDD.  
Improper device operation may result if  
the VDD/FOSC specifications are violated.  
In general, entry, exit and switching between power  
managed clock sources requires clock source  
switching. In each case, the sequence of events is the  
same.  
Any change in the power managed mode begins with  
loading the OSCCON register and executing a SLEEP  
instruction. The SCS1:SCS0 bits select one of three  
power managed clock sources; the primary clock (as  
defined in Configuration Register 1H), the secondary  
clock (the Timer1 oscillator) and the internal oscillator  
block (used in RC modes). Modifying the SCS bits will  
have no effect until a SLEEP instruction is executed.  
Entry to the power managed mode is triggered by the  
execution of a SLEEPinstruction.  
2: Executing a SLEEP instruction does not  
necessarily place the device into Sleep  
mode; executing a SLEEP instruction is  
simply a trigger to place the controller into  
a power managed mode selected by the  
OSCCON register, one of which is Sleep  
mode.  
3.1.3  
MULTIPLE SLEEP COMMANDS  
The power managed mode that is invoked with the  
SLEEPinstruction is determined by the settings of the  
IDLEN and SCS bits at the time the instruction is exe-  
cuted. If another SLEEP instruction is executed, the  
device will enter the power managed mode specified by  
these same bits at that time. If the bits have changed,  
the device will enter the new power managed mode  
specified by the new bit settings.  
Figure 3-5 shows how the system is clocked while  
switching from the primary clock to the Timer1 oscilla-  
tor. When the SLEEPinstruction is executed, clocks to  
the device are stopped at the beginning of the next  
instruction cycle. Eight clock cycles from the new clock  
source are counted to synchronize with the new clock  
source. After eight clock pulses from the new clock  
source are counted, clocks from the new clock source  
resume clocking the system. The actual length of the  
pause is between eight and nine clock periods from the  
new clock source. This ensures that the new clock  
source is stable and that its pulse width will not be less  
than the shortest pulse width of the two clock sources.  
3.1.4  
COMPARISONS BETWEEN RUN  
AND IDLE MODES  
Clock source selection for the Run modes is identical to  
the corresponding Idle modes. When a SLEEPinstruc-  
tion is executed, the SCS bits in the OSCCON register  
are used to switch to a different clock source. As a  
result, if there is a change of clock source at the time a  
SLEEPinstruction is executed, a clock switch will occur.  
Three bits indicate the current clock source: OSTS and  
IOFS in the OSCCON register and T1RUN in the  
T1CON register. Only one of these bits will be set while  
in a power managed mode other than PRI_RUN. When  
the OSTS bit is set, the primary clock is providing the  
system clock. When the IOFS bit is set, the INTOSC  
output is providing a stable 8 MHz clock source and is  
providing the system clock. When the T1RUN bit is set,  
the Timer1 oscillator is providing the system clock. If  
none of these bits are set, then either the INTRC clock  
source is clocking the system or the INTOSC source is  
not yet stable.  
In Idle modes, the CPU is not clocked and is not run-  
ning. In Run modes, the CPU is clocked and executing  
code. This difference modifies the operation of the  
WDT when it times out. In Idle modes, a WDT time-out  
results in a wake from power managed modes. In Run  
modes, a WDT time-out results in a WDT Reset (see  
Table 3-2).  
During a wake-up from an Idle mode, the CPU starts  
executing code by entering the corresponding Run  
mode until the primary clock becomes ready. When the  
primary clock becomes ready, the clock source is auto-  
matically switched to the primary clock. The IDLEN and  
SCS bits are unchanged during and after the wake-up.  
If the internal oscillator block is configured as the pri-  
mary clock source in Configuration Register 1H, then  
both the OSTS and IOFS bits may be set when in  
PRI_RUN or PRI_IDLE modes. This indicates that the  
primary clock (INTOSC output) is generating a stable  
8 MHz output. Entering a power managed RC mode  
(same frequency) would clear the OSTS bit.  
Figure 3-2 shows how the system is clocked during the  
clock source switch. The example assumes the device  
was in SEC_IDLE or SEC_RUN mode when a wake is  
triggered (the primary clock was configured in HSPLL  
mode).  
DS39599C-page 30  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 3-2:  
COMPARISON BETWEEN POWER MANAGED MODES  
Power  
Managed  
Mode  
Clock during wake-up  
(while primary becomes  
ready)  
WDT time-out  
causes a ...  
Peripherals are  
clocked by ...  
CPU is clocked by ...  
Sleep  
Not clocked (not running) Wake-up  
Not clocked  
None or INTOSC multiplexer if  
Two-Speed Start-up or  
Fail-Safe Clock Monitor are  
enabled.  
Any Idle mode Not clocked (not running) Wake-up  
Primary, Secondary or Unchanged from Idle mode  
INTOSC multiplexer  
(CPU operates as in  
corresponding Run mode).  
Any Run mode Secondary or INTOSC  
multiplexer  
Reset  
Secondary or INTOSC Unchanged from Run mode.  
multiplexer  
There is one exception to how the IDLEN bit functions.  
When all the low-power OSCCON bits are cleared  
(IDLEN:SCS1:SCS0 = 000), the device enters Sleep  
mode upon the execution of the SLEEPinstruction. This  
is both the Reset state of the OSCCON register and the  
setting that selects Sleep mode. This maintains com-  
patibility with other PICmicro devices that do not offer  
power managed modes.  
3.2  
Sleep Mode  
The power managed Sleep mode in the PIC18F2X20/  
4X20 devices is identical to that offered in all other  
PICmicro controllers. It is entered by clearing the  
IDLEN and SCS1:SCS0 bits (this is the Reset state)  
and executing the SLEEPinstruction. This shuts down  
the primary oscillator and the OSTS bit is cleared (see  
Figure 3-1).  
If the Idle Enable bit, IDLEN (OSCCON<7>), is set to a  
1’ when a SLEEP instruction is executed, the  
peripherals will be clocked from the clock source  
selected using the SCS1:SCS0 bits; however, the CPU  
will not be clocked. Since the CPU is not executing  
instructions, the only exits from any of the Idle modes  
are by interrupt, WDT time-out or a Reset.  
When a wake event occurs in Sleep mode (by interrupt,  
Reset or WDT time-out), the system will not be clocked  
until the primary clock source becomes ready (see  
Figure 3-2), or it will be clocked from the internal  
oscillator block if either the Two-Speed Start-up or the  
Fail-Safe Clock Monitor are enabled (see Section 23.0  
“Special Features of the CPU”). In either case, the  
OSTS bit is set when the primary clock is providing the  
system clocks. The IDLEN and SCS bits are not  
affected by the wake-up.  
When a wake-up event occurs, CPU execution is  
delayed approximately 10 µs while it becomes ready to  
execute code. When the CPU begins executing code,  
it is clocked by the same clock source as was selected  
in the power managed mode (i.e., when waking from  
RC_IDLE mode, the internal oscillator block will clock  
the CPU and peripherals until the primary clock source  
becomes ready – this is essentially RC_RUN mode).  
This continues until the primary clock source becomes  
ready. When the primary clock becomes ready, the  
OSTS bit is set and the system clock source is  
switched to the primary clock (see Figure 3-4). The  
IDLEN and SCS bits are not affected by the wake-up.  
3.3  
Idle Modes  
The IDLEN bit allows the controller’s CPU to be  
selectively shut down while the peripherals continue to  
operate. Clearing IDLEN allows the CPU to be clocked.  
Setting IDLEN disables clocks to the CPU, effectively  
stopping program execution (see Register 2-2). The  
peripherals continue to be clocked regardless of the  
setting of the IDLEN bit.  
While in any Idle mode or the Sleep mode, a WDT time-out  
will result in a WDT wake-up to full power operation.  
2003 Microchip Technology Inc.  
DS39599C-page 31  
PIC18F2220/2320/4220/4320  
FIGURE 3-1:  
TIMING TRANSITION FOR ENTRY TO SLEEP MODE  
Q1 Q2 Q3 Q4 Q1  
OSC1  
CPU  
Clock  
Peripheral  
Clock  
Sleep  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-2:  
TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1 Q2 Q3 Q4 Q1 Q2  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC + 6  
PC  
PC + 2  
PC + 8  
Wake-up Event  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
OSTS bit Set  
DS39599C-page 32  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
When a wake-up event occurs, the CPU is clocked  
from the primary clock source. A delay of approxi-  
3.3.1  
PRI_IDLE MODE  
This mode is unique among the three Low-Power Idle  
modes in that it does not disable the primary system  
clock. For timing sensitive applications, this allows for  
the fastest resumption of device operation, with its  
more accurate primary clock source, since the clock  
source does not have to “warm up” or transition from  
another oscillator.  
mately 10 µs is required between the wake-up event  
and when code execution starts. This is required to  
allow the CPU to become ready to execute instructions.  
After the wake-up, the OSTS bit remains set. The  
IDLEN and SCS bits are not affected by the wake-up  
(see Figure 3-4).  
PRI_IDLE mode is entered by setting the IDLEN bit,  
clearing the SCS bits and executing a SLEEPinstruc-  
tion. Although the CPU is disabled, the peripherals  
continue to be clocked from the primary clock source  
specified in Configuration Register 1H. The OSTS bit  
remains set in PRI_IDLE mode (see Figure 3-3).  
FIGURE 3-3:  
TRANSITION TIMING TO PRI_IDLE MODE  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-4:  
TRANSITION TIMING FOR WAKE FROM PRI_IDLE MODE  
Q1  
Q3  
Q4  
Q2  
OSC1  
CPU Start-up Delay  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 2  
PC  
Wake-up Event  
2003 Microchip Technology Inc.  
DS39599C-page 33  
PIC18F2220/2320/4220/4320  
When a wake-up event occurs, the peripherals continue  
to be clocked from the Timer1 oscillator. After a 10 µs  
delay following the wake-up event, the CPU begins exe-  
cuting code, being clocked by the Timer1 oscillator. The  
microcontroller operates in SEC_RUN mode until the  
primary clock becomes ready. When the primary clock  
becomes ready, a clock switch back to the primary clock  
occurs (see Figure 3-6). When the clock switch is com-  
plete, the T1RUN bit is cleared, the OSTS bit is set and  
the primary clock is providing the system clock. The  
IDLEN and SCS bits are not affected by the wake-up;  
the Timer1 oscillator continues to run.  
3.3.2  
SEC_IDLE MODE  
In SEC_IDLE mode, the CPU is disabled but the  
peripherals continue to be clocked from the Timer1  
oscillator. This mode is entered by setting the IDLEN  
bit, modifying to SCS1:SCS0 = 01 and executing a  
SLEEPinstruction. When the clock source is switched  
to the Timer1 oscillator (see Figure 3-5), the primary  
oscillator is shut down, the OSTS bit is cleared and the  
T1RUN bit is set.  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_IDLE mode.  
If the T1OSCEN bit is not set when try-  
ing to set the SCS0 bit (OSCCON<0>),  
the write to SCS0 will not occur. If the  
Timer1 oscillator is enabled but not yet  
running, peripheral clocks will be delayed  
until the oscillator has started; in such sit-  
uations, initial oscillator operation is far  
from stable and unpredictable operation  
may result.  
FIGURE 3-5:  
TIMING TRANSITION FOR ENTRY TO SEC_IDLE MODE  
Q1 Q2 Q3 Q4 Q1  
1
2
3
4
5
6
7
8
T1OSI  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-6:  
TIMING TRANSITION FOR WAKE FROM SEC_RUN MODE (HSPLL)  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q1  
Q2  
T1OSI  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
1
2
3
4
5
6
7
8
Clock Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC + 6  
PC  
PC + 2  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
Wake-up from Interrupt Event  
DS39599C-page 34  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
was executed and the INTOSC source was already  
stable, the IOFS bit will remain set. If the IRCF bits are  
all clear, the INTOSC output is not enabled and the  
IOFS bit will remain clear; there will be no indication of  
the current clock source.  
3.3.3  
RC_IDLE MODE  
In RC_IDLE mode, the CPU is disabled but the periph-  
erals continue to be clocked from the internal oscillator  
block using the INTOSC multiplexer. This mode allows  
for controllable power conservation during Idle periods.  
When a wake-up event occurs, the peripherals con-  
tinue to be clocked from the INTOSC multiplexer. After  
a 10 µs delay following the wake-up event, the CPU  
begins executing code, being clocked by the INTOSC  
multiplexer. The microcontroller operates in RC_RUN  
mode until the primary clock becomes ready. When the  
primary clock becomes ready, a clock switch back to  
the primary clock occurs (see Figure 3-8). When the  
clock switch is complete, the IOFS bit is cleared, the  
OSTS bit is set and the primary clock is providing the  
system clock. The IDLEN and SCS bits are not affected  
by the wake-up. The INTRC source will continue to run  
if either the WDT or the Fail-Safe Clock Monitor is  
enabled.  
This mode is entered by setting the IDLEN bit, setting  
SCS1 (SCS0 is ignored) and executing a SLEEP  
instruction. The INTOSC multiplexer may be used to  
select a higher clock frequency by modifying the IRCF  
bits before executing the SLEEPinstruction. When the  
clock source is switched to the INTOSC multiplexer  
(see Figure 3-7), the primary oscillator is shut down  
and the OSTS bit is cleared.  
If the IRCF bits are set to a non-zero value (thus  
enabling the INTOSC output), the IOFS bit becomes  
set after the INTOSC output becomes stable, in about  
1 ms. Clocks to the peripherals continue while the  
INTOSC source stabilizes. If the IRCF bits were previ-  
ously at a non-zero value before the SLEEPinstruction  
FIGURE 3-7:  
TIMING TRANSITION TO RC_IDLE MODE  
Q1 Q2 Q3 Q4 Q1  
1
2
3
4
5
6
7
8
INTRC  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-8:  
TIMING TRANSITION FOR WAKE FROM RC_RUN MODE (RC_RUN TO PRI_RUN)  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q4  
Q1  
Q2  
INTOSC  
Multiplexer  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
1
2
3
4
5
6
7
8
Clock Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC + 6  
PC  
PC + 2  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
Wake-up from Interrupt Event  
2003 Microchip Technology Inc.  
DS39599C-page 35  
PIC18F2220/2320/4220/4320  
SEC_RUN mode is entered by clearing the IDLEN bit,  
setting SCS1:SCS0 = 01 and executing a SLEEP  
instruction. The system clock source is switched to the  
Timer1 oscillator (see Figure 3-9), the primary oscilla-  
tor is shut down, the T1RUN bit (T1CON<6>) is set and  
the OSTS bit is cleared.  
3.4  
Run Modes  
If the IDLEN bit is clear when a SLEEP instruction is  
executed, the CPU and peripherals are both clocked  
from the source selected using the SCS1:SCS0 bits.  
While these operating modes may not afford the power  
conservation of Idle or Sleep modes, they do allow the  
device to continue executing instructions by using a  
lower frequency clock source. RC_RUN mode also  
offers the possibility of executing code at a frequency  
greater than the primary clock.  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_RUN mode.  
If the T1OSCEN bit is not set when try-  
ing to set the SCS0 bit, the write to  
SCS0 will not occur. If the Timer1 oscilla-  
tor is enabled, but not yet running, system  
clocks will be delayed until the oscillator  
has started; in such situations, initial oscil-  
lator operation is far from stable and  
unpredictable operation may result.  
Wake-up from a power managed Run mode can be  
triggered by an interrupt, or any Reset, to return to full  
power operation. As the CPU is executing code in Run  
modes, several additional exits from Run modes are  
possible. They include exit to Sleep mode, exit to a cor-  
responding Idle mode, and exit by executing a RESET  
instruction. While the device is in any of the power  
managed Run modes, a WDT time-out will result in a  
WDT Reset.  
When a wake-up event occurs, the peripherals and  
CPU continue to be clocked from the Timer1 oscillator  
while the primary clock is started. When the primary  
clock becomes ready, a clock switch back to the primary  
clock occurs (see Figure 3-6). When the clock switch is  
complete, the T1RUN bit is cleared, the OSTS bit is set  
and the primary clock is providing the system clock. The  
IDLEN and SCS bits are not affected by the wake-up;  
the Timer1 oscillator continues to run.  
3.4.1  
PRI_RUN MODE  
The PRI_RUN mode is the normal full power execution  
mode. If the SLEEPinstruction is never executed, the  
microcontroller operates in this mode (a SLEEPinstruc-  
tion is executed to enter all other power managed  
modes). All other power managed modes exit to  
PRI_RUN mode when an interrupt or WDT time-out  
occur.  
Firmware can force an exit from SEC_RUN mode. By  
clearing the T1OSCEN bit (T1CON<3>), an exit from  
SEC_RUN back to normal full power operation is trig-  
gered. The Timer1 oscillator will continue to run and  
provide the system clock even though the T1OSCEN bit  
is cleared. The primary clock is started. When the pri-  
mary clock becomes ready, a clock switch back to the  
primary clock occurs (see Figure 3-6). When the clock  
switch is complete, the Timer1 oscillator is disabled, the  
T1RUN bit is cleared, the OSTS bit is set and the pri-  
mary clock is providing the system clock. The IDLEN  
and SCS bits are not affected by the wake-up.  
There is no entry to PRI_RUN mode. The OSTS bit is  
set. The IOFS bit may be set if the internal oscillator  
block is the primary clock source (see Section 2.7.1  
“Oscillator Control Register”).  
3.4.2  
SEC_RUN MODE  
The SEC_RUN mode is the compatible mode to the  
“clock switching” feature offered in other PIC18  
devices. In this mode, the CPU and peripherals are  
clocked from the Timer1 oscillator. This gives users the  
option of lower power consumption while still using a  
high accuracy clock source.  
FIGURE 3-9:  
TIMING TRANSITION FOR ENTRY TO SEC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
4
5
6
7
8
T1OSI  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 2  
DS39599C-page 36  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
3.4.3  
RC_RUN MODE  
Note:  
Caution should be used when modifying a  
single IRCF bit. If VDD is less than 3V, it is  
possible to select a higher clock speed  
than is supported by the low VDD.  
Improper device operation may result if  
the VDD/FOSC specifications are violated.  
In RC_RUN mode, the CPU and peripherals are  
clocked from the internal oscillator block using the  
INTOSC multiplexer and the primary clock is shut  
down. When using the INTRC source, this mode pro-  
vides the best power conservation of all the Run modes  
while still executing code. It works well for user applica-  
tions which are not highly timing sensitive or do not  
require high-speed clocks at all times.  
If the IRCF bits are all clear, the INTOSC output is not  
enabled and the IOFS bit will remain clear; there will be  
no indication of the current clock source. The INTRC  
source is providing the system clocks.  
If the primary clock source is the internal oscillator  
block (either of the INTIO1 or INTIO2 oscillators), there  
are no distinguishable differences between PRI_RUN  
and RC_RUN modes during execution. However, a  
clock switch delay will occur during entry to, and exit  
from, RC_RUN mode. Therefore, if the primary clock  
source is the internal oscillator block, the use of  
RC_RUN mode is not recommended.  
If the IRCF bits are changed from all clear (thus  
enabling the INTOSC output), the IOFS bit becomes  
set after the INTOSC output becomes stable. Clocks to  
the system continue while the INTOSC source  
stabilizes in approximately 1 ms.  
If the IRCF bits were previously at a non-zero value  
before the SLEEP instruction was executed and the  
INTOSC source was already stable, the IOFS bit will  
remain set.  
This mode is entered by clearing the IDLEN bit, setting  
SCS1 (SCS0 is ignored) and executing a SLEEP  
instruction. The IRCF bits may select the clock  
frequency before the SLEEP instruction is executed.  
When the clock source is switched to the INTOSC  
multiplexer (see Figure 3-10), the primary oscillator is  
shut down and the OSTS bit is cleared.  
When a wake-up event occurs, the system continues to  
be clocked from the INTOSC multiplexer while the pri-  
mary clock is started. When the primary clock becomes  
ready, a clock switch to the primary clock occurs (see  
Figure 3-8). When the clock switch is complete, the  
IOFS bit is cleared, the OSTS bit is set and the primary  
clock is providing the system clock. The IDLEN and  
SCS bits are not affected by the wake-up. The INTRC  
source will continue to run if either the WDT or the  
Fail-Safe Clock Monitor is enabled.  
The IRCF bits may be modified at any time to immedi-  
ately change the system clock speed. Executing a  
SLEEPinstruction is not required to select a new clock  
frequency from the INTOSC multiplexer.  
FIGURE 3-10:  
TIMING TRANSITION TO RC_RUN MODE  
Q4 Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
4
5
6
7
8
INTRC  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
2003 Microchip Technology Inc.  
DS39599C-page 37  
PIC18F2220/2320/4220/4320  
3.4.4  
EXIT TO IDLE MODE  
3.5  
Wake-up From Power Managed  
Modes  
An exit from a power managed Run mode to its corre-  
sponding Idle mode is executed by setting the IDLEN  
bit and executing a SLEEP instruction. The CPU is  
halted at the beginning of the instruction following the  
SLEEPinstruction. There are no changes to any of the  
clock source status bits (OSTS, IOFS or T1RUN).  
While the CPU is halted, the peripherals continue to be  
clocked from the previously selected clock source.  
An exit from any of the power managed modes is trig-  
gered by an interrupt, a Reset, or a WDT time-out. This  
section discusses the triggers that cause exits from  
power managed modes. The clocking subsystem  
actions are discussed in each of the power managed  
modes (see Section 3.2 “Sleep Mode” through  
Section 3.4 “Run Modes”).  
3.4.5  
EXIT TO SLEEP MODE  
Note:  
If application code is timing sensitive, it  
should wait for the OSTS bit to become set  
before continuing. Use the interval during  
the low-power exit sequence (before  
OSTS is set) to perform timing insensitive  
“housekeeping” tasks.  
An exit from a power managed Run mode to Sleep  
mode is executed by clearing the IDLEN and  
SCS1:SCS0 bits and executing a SLEEP instruction.  
The code is no different than the method used to invoke  
Sleep mode from the normal operating (full power)  
mode.  
Device behavior during Low-Power mode exits is  
summarized in Table 3-3.  
The primary clock and internal oscillator block are dis-  
abled. The INTRC will continue to operate if the WDT  
is enabled. The Timer1 oscillator will continue to run, if  
enabled, in the T1CON register. All clock source status  
bits are cleared (OSTS, IOFS and T1RUN).  
3.5.1  
EXIT BY INTERRUPT  
Any of the available interrupt sources can cause the  
device to exit a power managed mode and resume full  
power operation. To enable this functionality, an inter-  
rupt source must be enabled by setting its enable bit in  
one of the INTCON or PIE registers. The exit sequence  
is initiated when the corresponding interrupt flag bit is  
set. On all exits from Lower Power mode by interrupt,  
code execution branches to the interrupt vector if the  
GIE/GIEH bit (INTCON<7>) is set. Otherwise, code  
execution continues or resumes without branching  
(see Section 9.0 “Interrupts”).  
DS39599C-page 38  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 3-3:  
ACTIVITY AND EXIT DELAY ON WAKE-UP FROM SLEEP MODE OR  
ANY IDLE MODE (BY CLOCK SOURCES)  
Power  
Activity During Wake-up from  
Power Managed Mode  
ClockReady  
Status Bit  
(OSCCON)  
Clock in Power Primary System  
Managed  
Mode Exit  
Delay  
Managed Mode  
Clock  
Exit by Interrupt  
CPU and peripherals  
Exit by Reset  
Not clocked or  
LP, XT, HS  
HSPLL  
EC, RC, INTRC(1)  
INTOSC(2)  
LP, XT, HS  
HSPLL  
OSTS  
Primary System  
Clock  
(PRI_IDLE mode)  
clocked by primary clock Two-Speed Start-up  
5-10 µs(5)  
and executing  
instructions.  
(if enabled)(3)  
.
IOFS  
OST  
CPU and peripherals  
clocked by selected  
power managed mode  
clock and executing  
instructions until primary  
clock source becomes  
ready.  
OSTS  
OST + 2 ms  
T1OSC or  
INTRC(1)  
EC, RC, INTRC(1) 5-10 µs(5)  
INTOSC(2)  
LP, XT, HS  
HSPLL  
1 ms(4)  
IOFS  
OST  
OSTS  
OST + 2 ms  
INTOSC(2)  
EC, RC, INTRC(1) 5-10 µs(5)  
INTOSC(2)  
LP, XT, HS  
HSPLL  
EC, RC, INTRC(1) 5-10 µs(5)  
INTOSC(2) 1 ms(4)  
None  
OST  
IOFS  
Not clocked or  
OSTS  
Two-Speed Start-up (if  
enabled) until primary  
clock source becomes  
OST + 2 ms  
Sleep mode  
ready(3)  
.
IOFS  
Note 1: In this instance, refers specifically to the INTRC clock source.  
2: Includes both the INTOSC 8 MHz source and postscaler derived frequencies.  
3: Two-Speed Start-up is covered in greater detail in Section 23.3 “Two-Speed Start-up”.  
4: Execution continues during the INTOSC stabilization period.  
5: Required delay when waking from Sleep and all Idle modes. This delay runs concurrently with any other  
required delays (see Section 3.3 “Idle Modes”).  
2003 Microchip Technology Inc.  
DS39599C-page 39  
PIC18F2220/2320/4220/4320  
3.5.2  
EXIT BY RESET  
3.5.4  
EXIT WITHOUT AN OSCILLATOR  
START-UP DELAY  
Normally, the device is held in Reset by the Oscillator  
Start-up Timer (OST) until the primary clock (defined in  
Configuration Register 1H) becomes ready. At that  
time, the OSTS bit is set and the device begins  
executing code.  
Certain exits from power managed modes do not  
invoke the OST at all. These are:  
• PRI_IDLE mode, where the primary clock source  
is not stopped; and  
Code execution can begin before the primary clock  
becomes ready. If either the Two-Speed Start-up (see  
Section 23.3 “Two-Speed Start-up”) or Fail-Safe  
Clock Monitor (see Section 23.4 “Fail-Safe Clock  
Monitor”) are enabled in Configuration Register 1H,  
the device may begin execution as soon as the Reset  
source has cleared. Execution is clocked by the  
INTOSC multiplexer driven by the internal oscillator  
block. Since the OSCCON register is cleared following  
all Resets, the INTRC clock source is selected. A higher  
speed clock may be selected by modifying the IRCF bits  
in the OSCCON register. Execution is clocked by the  
internal oscillator block until either the primary clock  
becomes ready, or a power managed mode is entered  
before the primary clock becomes ready; the primary  
clock is then shut down.  
• the primary clock source is not any of the LP, XT,  
HS or HSPLL modes.  
In these cases, the primary clock source either does  
not require an oscillator start-up delay, since it is  
already running (PRI_IDLE), or normally does not  
require an oscillator start-up delay (RC, EC and INTIO  
Oscillator modes).  
However, a fixed delay (approximately 10 µs) following  
the wake-up event is required when leaving Sleep and  
Idle modes. This delay is required for the CPU to pre-  
pare for execution. Instruction execution resumes on  
the first clock cycle following this delay.  
3.6  
INTOSC Frequency Drift  
The factory calibrates the internal oscillator block  
output (INTOSC) for 8 MHz. However, this frequency  
may drift as VDD or temperature changes, which can  
affect the controller operation in a variety of ways.  
3.5.3  
EXIT BY WDT TIME-OUT  
A WDT time-out will cause different actions depending  
on which power managed mode the device is in when  
the time-out occurs.  
It is possible to adjust the INTOSC frequency by modi-  
fying the value in the OSCTUNE register. This has the  
side effect that the INTRC clock source frequency is  
also affected. However, the features that use the  
INTRC source often do not require an exact frequency.  
These features include the Fail-Safe Clock Monitor, the  
Watchdog Timer and the RC_RUN/RC_IDLE modes  
when the INTRC clock source is selected.  
If the device is not executing code (all Idle modes and  
Sleep mode), the time-out will result in a wake-up from  
the power managed mode (see Section 3.2 “Sleep  
Mode” through Section 3.4 “Run Modes”).  
If the device is executing code (all Run modes), the  
time-out will result in a WDT Reset (see Section 23.2  
“Watchdog Timer (WDT)”).  
The WDT timer and postscaler are cleared by execut-  
ing a SLEEP or CLRWDT instruction, the loss of a  
currently selected clock source (if the Fail-Safe Clock  
Monitor is enabled) and modifying the IRCF bits in the  
OSCCON register if the internal oscillator block is the  
system clock source.  
Being able to adjust the INTOSC requires knowing  
when an adjustment is required, in which direction it  
should be made and in some cases, how large a  
change is needed. Three examples are shown but  
other techniques may be used.  
DS39599C-page 40  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
3.6.1  
EXAMPLE – USART  
3.6.3  
EXAMPLE – CCP IN CAPTURE  
MODE  
An adjustment may be indicated when the USART  
begins to generate framing errors or receives data  
with errors while in Asynchronous mode. Framing  
errors indicate that the system clock frequency is too  
high – try decrementing the value in the OSCTUNE  
register to reduce the system clock frequency. Errors in  
data may suggest that the system clock speed is too  
low – increment OSCTUNE.  
A CCP module can use free running Timer1 (or  
Timer3), clocked by the internal oscillator block and an  
external event with a known period (i.e., AC power fre-  
quency). The time of the first event is captured in the  
CCPRxH:CCPRxL registers and is recorded for use  
later. When the second event causes a capture, the  
time of the first event is subtracted from the time of the  
second event. Since the period of the external event is  
known, the time difference between events can be  
calculated.  
3.6.2  
EXAMPLE – TIMERS  
This technique compares system clock speed to some  
reference clock. Two timers may be used; one timer is  
clocked by the peripheral clock, while the other is  
clocked by a fixed reference source, such as the  
Timer1 oscillator.  
If the measured time is much greater than the  
calculated time, the internal oscillator block is running  
too fast – decrement OSCTUNE. If the measured time  
is much less than the calculated time, the internal  
oscillator block is running too slow – increment  
OSCTUNE.  
Both timers are cleared but the timer clocked by the ref-  
erence generates interrupts. When an interrupt occurs,  
the internally clocked timer is read and both timers are  
cleared. If the internally clocked timer value is greater  
than expected, then the internal oscillator block is  
running too fast – decrement OSCTUNE.  
2003 Microchip Technology Inc.  
DS39599C-page 41  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 42  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Most registers are not affected by a WDT wake-up  
since this is viewed as the resumption of normal oper-  
4.0  
RESET  
The PIC18F2X20/4X20 devices differentiate between  
various kinds of Reset:  
ation. Status bits from the RCON register, RI, TO, PD,  
POR and BOR, are set or cleared differently in different  
Reset situations as indicated in Table 4-2. These bits  
are used in software to determine the nature of the  
Reset. See Table 4-3 for a full description of the Reset  
states of all registers.  
a) Power-on Reset (POR)  
b) MCLR Reset while executing instructions  
c) MCLR Reset when not executing instructions  
d) Watchdog Timer (WDT) Reset (during  
execution)  
A simplified block diagram of the on-chip Reset circuit  
is shown in Figure 4-1.  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
The enhanced MCU devices have a MCLR noise filter  
in the MCLR Reset path. The filter will detect and  
ignore small pulses.  
g) Stack Full Reset  
h) Stack Underflow Reset  
The MCLR pin is not driven low by any internal Resets,  
including the WDT.  
Most registers are unaffected by a Reset. Their status  
is unknown on POR and unchanged by all other  
Resets. The other registers are forced to a “Reset  
state” depending on the type of Reset that occurred.  
The MCLR input provided by the MCLR pin can be dis-  
abled with the MCLRE bit in Configuration Register 3H  
(CONFIG3H<7>). See Section 23.1 “Configuration  
Bits” for more information.  
FIGURE 4-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack Full/Underflow Reset  
Stack  
Pointer  
External Reset  
MCLRE  
MCLR  
( )_IDLE  
Sleep  
WDT  
Time-out  
VDD Rise  
Detect  
POR Pulse  
BOREN  
VDD  
Brown-out  
Reset  
S
OST/PWRT  
OST  
10-bit Ripple Counter  
1024 Cycles  
Chip_Reset  
R
Q
OSC1  
32 µs  
INTRC(1)  
65.5 ms  
PWRT  
11-bit Ripple Counter  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is the INTRC source from the internal oscillator block and is separate from the RC oscillator of the CLKI pin.  
2: See Table 4-1 for time-out situations.  
2003 Microchip Technology Inc.  
DS39599C-page 43  
PIC18F2220/2320/4220/4320  
4.1  
Power-on Reset (POR)  
4.3  
Oscillator Start-up Timer (OST)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected. To take advantage of the POR cir-  
cuitry, just tie the MCLR pin through a resistor (1k to  
10 k) to VDD. This will eliminate external RC compo-  
nents usually needed to create a Power-on Reset  
delay. A minimum rise rate for VDD is specified  
(parameter D004). For a slow rise time, see Figure 4-2.  
The Oscillator Start-up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter #33). This ensures that  
the crystal oscillator or resonator has started and  
stabilized.  
The OST time-out is invoked only for XT, LP, HS and  
HSPLL modes and only on Power-on Reset, or on exit  
from most power managed modes.  
When the device starts normal operation (i.e., exits the  
Reset condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
4.4  
PLL Lock Time-out  
With the PLL enabled in its PLL mode, the time-out  
sequence following a Power-on Reset is slightly  
different from other oscillator modes. A portion of the  
Power-up Timer is used to provide a fixed time-out that  
is sufficient for the PLL to lock to the main oscillator fre-  
quency. This PLL lock time-out (TPLL) is typically 2 ms  
and follows the oscillator start-up time-out.  
FIGURE 4-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
VDD  
VDD  
D
4.5  
Brown-out Reset (BOR)  
R
A configuration bit, BOREN, can disable (if clear/  
programmed) or enable (if set) the Brown-out Reset cir-  
cuitry. If VDD falls below VBOR (parameter D005) for  
greater than TBOR (parameter #35), the brown-out situ-  
ation will reset the chip. A Reset may not occur if VDD  
falls below VBOR for less than TBOR. The chip will  
remain in Brown-out Reset until VDD rises above VBOR.  
If the Power-up Timer is enabled, it will be invoked after  
VDD rises above VBOR; it then will keep the chip in  
Reset for an additional time delay TPWRT (parameter  
#33). If VDD drops below VBOR while the Power-up  
Timer is running, the chip will go back into a Brown-out  
Reset and the Power-up Timer will be initialized. Once  
VDD rises above VBOR, the Power-up Timer will execute  
the additional time delay. Enabling BOR Reset does  
not automatically enable the PWRT.  
R1  
MCLR  
PIC18FXXXX  
C
Note 1: External Power-on Reset circuit is  
required only if the VDD power-up slope is  
too slow. The diode D helps discharge the  
capacitor quickly when VDD powers down.  
2: R < 40 kis recommended to make sure  
that the voltage drop across R does not  
violate the device’s electrical specification.  
3: R1 1 kwill limit any current flowing into  
MCLR from external capacitor C, in the  
event of MCLR/VPP pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
4.6  
Time-out Sequence  
On power-up, the time-out sequence is as follows:  
First, after the POR pulse has cleared, PWRT time-out  
is invoked (if enabled). Then, the OST is activated. The  
total time-out will vary based on oscillator configuration  
and the status of the PWRT. For example, in RC mode  
with the PWRT disabled, there will be no time-out at all.  
Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and  
Figure 4-7 depict time-out sequences on power-up.  
4.2  
Power-up Timer (PWRT)  
The Power-up Timer (PWRT) of the PIC18F2X20/4X20  
devices is an 11-bit counter, which uses the INTRC  
source as the clock input. This yields a count of  
2048 x 32 µs = 65.6 ms. While the PWRT is counting,  
the device is held in Reset.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, all time-outs will expire. Bring-  
ing MCLR high will begin execution immediately  
(Figure 4-5). This is useful for testing purposes or to  
synchronize more than one PIC18FXXXX device  
operating in parallel.  
The power-up time delay depends on the INTRC clock  
and will vary from chip-to-chip due to temperature and  
process variation. See DC parameter #33 for details.  
The PWRT is enabled by clearing configuration bit,  
PWRTEN.  
Table 4-2 shows the Reset conditions for some Special  
Function Registers, while Table 4-3 shows the Reset  
conditions for all the registers.  
DS39599C-page 44  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 4-1:  
Oscillator  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2) and Brown-out  
Exit from  
Configuration  
Power Managed Mode  
PWRTEN = 0  
PWRTEN = 1  
HSPLL  
66 ms(1) + 1024 TOSC + 2 ms(2)  
66 ms(1) + 1024 TOSC  
66 ms(1)  
1024 TOSC + 2 ms(2)  
1024 TOSC + 2 ms(2)  
HS, XT, LP  
EC, ECIO  
1024 TOSC  
1024 TOSC  
RC, RCIO  
66 ms(1)  
66 ms(1)  
INTIO1, INTIO2  
Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.  
2: 2 ms is the nominal time required for the 4x PLL to lock.  
REGISTER 4-1:  
RCON REGISTER BITS AND POSITIONS  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-1  
POR  
R/W-1  
BOR  
bit 7  
bit 0  
Note:  
Refer to Section 5.14 “RCON Register” for bit definitions.  
TABLE 4-2:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
Program  
Counter  
RCON  
Register  
Condition  
RI TO PD POR BOR STKFUL STKUNF  
Power-on Reset  
RESETInstruction  
Brown-out  
0000h  
0000h  
0000h  
0--1 1100  
0--0 uuuu  
0--1 11u-  
1
0
1
1
u
1
1
u
1
0
u
u
0
u
0
0
u
u
0
u
u
MCLR during power managed  
Run modes  
0000h  
0000h  
0000h  
0--u 1uuu  
0--u 10uu  
0--u 0uuu  
u
u
u
1
1
0
u
0
u
u
u
u
u
u
u
u
u
u
u
u
u
MCLR during power managed  
Idle modes and Sleep mode  
WDT Time-out during full power  
or power managed Run mode  
MCLR during full power  
execution  
u
1
u
u
u
1
Stack Full Reset (STVREN = 1)  
0000h  
0--u uuuu  
u
u
u
u
u
Stack Underflow Reset  
(STVREN = 1)  
Stack Underflow Error (not an  
actual Reset, STVREN = 0)  
0000h  
PC + 2  
PC + 2  
u--u uuuu  
u--u 00uu  
u--u u0uu  
u
u
u
u
0
u
u
0
0
u
u
u
u
u
u
u
u
u
1
u
u
WDT Time-out during power  
managed Idle or Sleep modes  
Interrupt exit from power  
managed modes  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (0x000008h or 0x000018h).  
2003 Microchip Technology Inc.  
DS39599C-page 45  
PIC18F2220/2320/4220/4320  
TABLE 4-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
TOSU  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
---0 0000  
0000 0000  
0000 0000  
uu-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 -1-1  
11-0 0-00  
N/A  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 -1-1  
11-0 0-00  
N/A  
---0 uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
uu-u uuuu(3)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu -u-u(1)  
uu-u u-uu(1)  
N/A  
TOSH  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0 2220 2320 4220 4320  
POSTDEC0 2220 2320 4220 4320  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PREINC0  
PLUSW0  
FSR0H  
FSR0L  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
WREG  
INDF1  
POSTINC1 2220 2320 4220 4320  
POSTDEC1 2220 2320 4220 4320  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PREINC1  
PLUSW1  
2220 2320 4220 4320  
2220 2320 4220 4320  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 4-2 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
DS39599C-page 46  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 4-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction  
Stack Resets  
FSR1H  
FSR1L  
BSR  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
---- xxxx  
xxxx xxxx  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- uuuu  
N/A  
INDF2  
POSTINC2 2220 2320 4220 4320  
POSTDEC2 2220 2320 4220 4320  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PREINC2  
PLUSW2  
FSR2H  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
0000 q000  
--00 0101  
---- ---0  
0--1 11q0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
0000 0000  
uuuu uuuu  
1111 1111  
0000 q000  
--00 0101  
---- ---0  
0--q qquu  
uuuu uuuu  
uuuu uuuu  
u0uu uuuu  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu qquu  
--uu uuuu  
---- ---u  
u--u qquu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1 2220 2320 4220 4320  
SSPCON2 2220 2320 4220 4320  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 4-2 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
2003 Microchip Technology Inc.  
DS39599C-page 47  
PIC18F2220/2320/4220/4320  
TABLE 4-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
xxxx xxxx  
xxxx xxxx  
--00 0000  
--00 0000  
0-00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
0000 0000  
000- 0000  
0000 0111  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
0000 0000  
0000 0000  
xx-0 x000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
--00 0000  
0-00 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
--00 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 0000  
0000 0000  
000- 0000  
0000 0111  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
0000 0000  
0000 0000  
uu-0 u000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
--uu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu-0 u000  
0000 0000  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON 2220 2320 4220 4320  
PWM1CON 2220 2320 4220 4320  
ECCPAS  
CVRCON  
CMCON  
TMR3H  
TMR3L  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
T3CON  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
EEADR  
EEDATA  
EECON1  
EECON2  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 4-2 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
DS39599C-page 48  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 4-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction  
Stack Resets  
IPR2  
PIR2  
PIE2  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
11-1 1111  
00-0 0000  
00-0 0000  
1111 1111  
-111 1111  
0000 0000  
-000 0000  
0000 0000  
-000 0000  
--00 0000  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
1111 1111(5)  
---- -xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx(5)  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xx0x 0000(5)  
11-1 1111  
00-0 0000  
00-0 0000  
1111 1111  
-111 1111  
0000 0000  
-000 0000  
0000 0000  
-000 0000  
--00 0000  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
1111 1111(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
---- xxxx  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu0u 0000(5)  
uu-u uuuu  
uu-u uuuu(1)  
uu-u uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu(1)  
-uuu uuuu(1)  
uuuu uuuu  
-uuu uuuu  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
IPR1  
PIR1  
PIE1  
OSCTUNE 2220 2320 4220 4320  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA(5)  
LATE  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
2220 2320 4220 4320  
LATD  
LATC  
LATB  
LATA(5)  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA(5)  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 4-2 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
2003 Microchip Technology Inc.  
DS39599C-page 49  
PIC18F2220/2320/4220/4320  
FIGURE 4-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 4-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 4-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
DS39599C-page 50  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 4-6:  
SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)  
5V  
0V  
1V  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
TOST  
OST Time-out  
Internal Reset  
FIGURE 4-7:  
TIME-OUT SEQUENCE ON POR W/ PLL ENABLED (MCLR TIED TO VDD)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
TOST  
TPLL  
PLL Time-out  
Internal Reset  
Note:  
TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
2003 Microchip Technology Inc.  
DS39599C-page 51  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 52  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
5.1  
Program Memory Organization  
5.0  
MEMORY ORGANIZATION  
A 21-bit program counter is capable of addressing the  
2-Mbyte program memory space. Accessing a location  
between the physically implemented memory and the  
2-Mbyte address will cause a read of all ‘0’s (a NOP  
instruction).  
There are three memory types in Enhanced MCU  
devices. These memory types are:  
• Program Memory  
• Data RAM  
• Data EEPROM  
The PIC18F2220 and PIC18F4220 each have  
4 Kbytes of Flash memory and can store up to 2,048  
single-word instructions.  
Data and program memory use separate busses which  
allow for concurrent access of these types.  
Additional detailed information for Flash program mem-  
ory and data EEPROM is provided in Section 6.0  
“Flash Program Memory” and Section 7.0 “Data  
EEPROM Memory”, respectively.  
The PIC18F2320 and PIC18F4320 each have  
8 Kbytes of Flash memory and can store up to 4,096  
single-word instructions.  
The Reset vector address is at 0000h and the interrupt  
vector addresses are at 0008h and 0018h.  
The Program Memory Maps for PIC18F2220/4220 and  
PIC18F2320/4320 devices are shown in Figure 5-1  
and Figure 5-2, respectively.  
FIGURE 5-1:  
PROGRAM MEMORY MAP  
AND STACK FOR  
FIGURE 5-2:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18F2220/4220  
PIC18F2320/4320  
PC<20:0>  
PC<20:0>  
21  
21  
CALL,RCALL,RETURN  
RETFIE,RETLW  
CALL,RCALL,RETURN  
RETFIE,RETLW  
Stack Level 1  
Stack Level 1  
Stack Level 31  
Stack Level 31  
0000h  
0000h  
Reset Vector  
Reset Vector  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
0008h  
0018h  
0008h  
0018h  
On-Chip  
Program Memory  
On-Chip  
Program Memory  
0FFFh  
1000h  
1FFFh  
2000h  
Read ‘0’  
Read ‘0’  
1FFFFFh  
200000h  
1FFFFFh  
200000h  
2003 Microchip Technology Inc.  
DS39599C-page 53  
PIC18F2220/2320/4220/4320  
5.2.2  
RETURN STACK POINTER  
(STKPTR)  
5.2  
Return Address Stack  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC  
(Program Counter) is pushed onto the stack when a  
CALLor RCALLinstruction is executed or an interrupt is  
Acknowledged. The PC value is pulled off the stack on  
a RETURN, RETLWor a RETFIEinstruction. PCLATU  
and PCLATH are not affected by any of the RETURNor  
CALLinstructions.  
The STKPTR register (Register 5-1) contains the stack  
pointer value, the STKFUL (Stack Full) status bit and  
the STKUNF (Stack Underflow) status bits. The value  
of the stack pointer can be 0 through 31. The stack  
pointer increments before values are pushed onto the  
stack and decrements after values are popped off the  
stack. At Reset, the stack pointer value will be zero.  
The user may read and write the stack pointer value.  
This feature can be used by a Real-Time Operating  
System for return stack maintenance.  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit stack pointer, with the stack pointer initialized to  
00000b after all Resets. There is no RAM associated  
with stack pointer 00000b. This is only a Reset value.  
During a CALLtype instruction, causing a push onto the  
stack, the stack pointer is first incremented and the  
RAM location pointed to by the stack pointer is written  
with the contents of the PC (already pointing to the  
instruction following the CALL). During a RETURNtype  
instruction, causing a pop from the stack, the contents  
of the RAM location pointed to by the STKPTR are  
transferred to the PC and then the stack pointer is  
decremented.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit is cleared by software or by a  
POR.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (Stack Over-  
flow Reset Enable) configuration bit. (Refer to  
Section 23.1 “Configuration Bits” for a description of  
the device configuration bits.) If STVREN is set  
(default), the 31st push will push the (PC + 2) value  
onto the stack, set the STKFUL bit and reset the  
device. The STKFUL bit will remain set and the stack  
pointer will be set to zero.  
The stack space is not part of either program or data  
space. The stack pointer is readable and writable and  
the address on the top of the stack is readable and writ-  
able through the top-of-stack Special File Registers.  
Data can also be pushed to, or popped from, the stack  
using the top-of-stack SFRs. Status bits indicate if the  
stack is full, has overflowed or underflowed.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the stack pointer will increment to 31.  
Any additional pushes will not overwrite the 31st push,  
and STKPTR will remain at 31.  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit, while the stack  
pointer remains at zero. The STKUNF bit will remain  
set until cleared by software or a POR occurs.  
5.2.1  
TOP-OF-STACK ACCESS  
The top of the stack is readable and writable. Three  
register locations, TOSU, TOSH and TOSL, hold the  
contents of the stack location pointed to by the  
STKPTR register (Figure 5-3). This allows users to  
implement a software stack if necessary. After a CALL,  
RCALLor interrupt, the software can read the pushed  
value by reading the TOSU, TOSH and TOSL registers.  
These values can be placed on a user defined software  
stack. At return time, the software can replace the  
TOSU, TOSH and TOSL and do a return.  
Note:  
Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the Reset vector, where the  
stack conditions can be verified and  
appropriate actions can be taken. This is  
not the same as a Reset, as the contents  
of the SFRs are not affected.  
The user must disable the global interrupt enable bits  
while accessing the stack to prevent inadvertent stack  
corruption.  
FIGURE 5-3:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack  
11111  
11110  
11101  
STKPTR<4:0>  
TOSU  
00h  
TOSH  
1Ah  
TOSL  
34h  
00010  
00011  
001A34h 00010  
000D58h 00001  
00000  
Top-of-Stack  
DS39599C-page 54  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 5-1:  
STKPTR REGISTER  
R/C-0 R/C-0  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
STKFUL STKUNF  
bit 7  
bit 0  
bit 7(1)  
bit 6(1)  
STKFUL: Stack Full Flag bit  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SP4:SP0: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented  
‘0’ = Bit is cleared  
C = Clearable only bit  
x = Bit is unknown  
- n = Value at POR  
5.2.3  
PUSH AND POP INSTRUCTIONS  
5.2.4  
STACK FULL/UNDERFLOW RESETS  
Since the Top-of-Stack (TOS) is readable and writable,  
the ability to push values onto the stack and pull values  
off the stack, without disturbing normal program execu-  
tion, is a desirable option. To push the current PC value  
onto the stack, a PUSH instruction can be executed.  
This will increment the stack pointer and load the cur-  
rent PC value onto the stack. TOSU, TOSH and TOSL  
can then be modified to place data or a return address  
on the stack.  
These Resets are enabled by programming the  
STVREN bit in Configuration Register 4L. When the  
STVREN bit is cleared, a full or underflow condition will  
set the appropriate STKFUL or STKUNF bit but not  
cause a device Reset. When the STVREN bit is set, a  
full or underflow condition will set the appropriate  
STKFUL or STKUNF bit and then cause a device  
Reset. The STKFUL or STKUNF bits are cleared by the  
user software or a POR Reset.  
The ability to pull the TOS value off of the stack and  
replace it with the value that was previously pushed  
onto the stack, without disturbing normal execution, is  
achieved by using the POPinstruction. The POPinstruc-  
tion discards the current TOS by decrementing the  
stack pointer. The previous value pushed onto the  
stack then becomes the TOS value.  
2003 Microchip Technology Inc.  
DS39599C-page 55  
PIC18F2220/2320/4220/4320  
5.3  
Fast Register Stack  
5.4  
PCL, PCLATH and PCLATU  
A “fast return” option is available for interrupts. A Fast  
Register Stack is provided for the Status, WREG and  
BSR registers and are only one in depth. The stack is  
not readable or writable and is loaded with the current  
value of the corresponding register when the processor  
vectors for an interrupt. The values in the registers are  
then loaded back into the working registers if the  
RETFIE, FASTinstruction is used to return from the  
interrupt.  
The Program Counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21-bits  
wide. The low byte, known as the PCL register, is both  
readable and writable. The high byte, or PCH register,  
contains the PC<15:8> bits and is not directly readable  
or writable. Updates to the PCH register may be per-  
formed through the PCLATH register. The upper byte is  
called PCU. This register contains the PC<20:16> bits  
and is not directly readable or writable. Updates to the  
PCU register may be performed through the PCLATU  
register.  
All interrupt sources will push values into the stack reg-  
isters. If both low and high priority interrupts are  
enabled, the stack registers cannot be used reliably to  
return from low priority interrupts. If a high priority inter-  
rupt occurs while servicing a low priority interrupt, the  
stack register values stored by the low priority interrupt  
will be overwritten. Users must save the key registers  
in software during a low priority interrupt.  
The contents of PCLATH and PCLATU will be trans-  
ferred to the program counter by any operation that  
writes PCL. Similarly, the upper two bytes of the pro-  
gram counter will be transferred to PCLATH and  
PCLATU by an operation that reads PCL. This is useful  
for computed offsets to the PC (see Section 5.8.1  
“Computed GOTO).  
If interrupt priority is not used, all interrupts may use the  
Fast Register Stack for returns from interrupt.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the LSB of PCL is fixed to a value of ‘0’.  
The PC increments by 2 to address sequential  
instructions in the program memory.  
If no interrupts are used, the Fast Register Stack can be  
used to restore the Status, WREG and BSR registers at  
the end of a subroutine call. To use the Fast Register  
Stack for a subroutine call, a CALL label, FAST  
instruction must be executed to save the Status,  
WREG and BSR registers to the Fast Register Stack. A  
RETURN, FASTinstruction is then executed to restore  
these registers from the Fast Register Stack.  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
Example 5-1 shows a source code example that uses  
the Fast Register Stack during a subroutine call and  
return.  
EXAMPLE 5-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
CALL SUB1, FAST  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
SUB1  
RETURN FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
DS39599C-page 56  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
5.5  
Clocking Scheme/Instruction  
Cycle  
5.6  
Instruction Flow/Pipelining  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute take another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
then two cycles are required to complete the instruction  
(Example 5-2).  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the Pro-  
gram Counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
are shown in Figure 5-4.  
A fetch cycle begins with the Program Counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register” (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 5-4:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
Phase  
Clock  
Q4  
PC  
PC+2  
PC  
PC+4  
OSC2/CLKO  
(RC mode)  
Execute INST (PC-2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+2)  
Fetch INST (PC+4)  
EXAMPLE 5-2:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
Execute 2  
Fetch 3  
3. BRA  
4. BSF  
SUB_1  
PORTA, BIT3 (Forced NOP)  
Execute 3  
Fetch 4  
Flush (NOP)  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction  
is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
2003 Microchip Technology Inc.  
DS39599C-page 57  
PIC18F2220/2320/4220/4320  
The CALLand GOTOinstructions have the absolute pro-  
gram memory address embedded into the instruction.  
Since instructions are always stored on word bound-  
aries, the data contained in the instruction is a word  
address. The word address is written to PC<20:1>,  
which accesses the desired byte address in program  
memory. Instruction #2 in Figure 5-5 shows how the  
instruction ‘GOTO 000006h’ is encoded in the program  
memory. Program branch instructions, which encode a  
relative address offset, operate in the same manner.  
The offset value stored in a branch instruction repre-  
sents the number of single-word instructions that the  
PC will be offset by. Section 24.0 “Instruction Set  
Summary” provides further details of the instruction  
set.  
5.7  
Instructions in Program Memory  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte of an instruction  
word is always stored in a program memory location  
with an even address (LSB = 0). Figure 5-5 shows an  
example of how instruction words are stored in the pro-  
gram memory. To maintain alignment with instruction  
boundaries, the PC increments in steps of 2 and the  
LSB will always read ‘0’ (see Section 5.4 “PCL,  
PCLATH and PCLATU”).  
FIGURE 5-5:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations →  
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1:  
Instruction 2:  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
MOVLW  
GOTO  
055h  
000006h  
Instruction 3:  
MOVFF  
123h, 456h  
second word of the instruction is executed by itself (first  
word was skipped), it will execute as a NOP. This action  
is necessary when the two-word instruction is preceded  
by a conditional instruction that results in a skip opera-  
tion. A program example that demonstrates this con-  
cept is shown in Example 5-3. Refer to Section 24.0  
“Instruction Set Summary” for further details of the  
instruction set.  
5.7.1  
TWO-WORD INSTRUCTIONS  
PIC18F2X20/4X20 devices have four two-word instruc-  
tions: MOVFF, CALL, GOTOand LFSR. The second  
word of these instructions has the 4 MSBs set to ‘1’s  
and is decoded as a NOPinstruction. The lower 12 bits  
of the second word contain data to be used by the  
instruction. If the first word of the instruction is exe-  
cuted, the data in the second word is accessed. If the  
EXAMPLE 5-3:  
CASE 1:  
TWO-WORD INSTRUCTIONS  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
REG1  
; is RAM location 0?  
; No, skip this word  
; Execute this word as a NOP  
; continue code  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
MOVFF  
REG1, REG2  
ADDWF  
REG3  
CASE 2:  
Object Code  
Source Code  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
TSTFSZ  
MOVFF  
REG1  
; is RAM location 0?  
; Yes, execute this word  
; 2nd word of instruction  
; continue code  
REG1, REG2  
REG3  
ADDWF  
DS39599C-page 58  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
5.8  
Look-up Tables  
5.9  
Data Memory Organization  
Look-up tables are implemented two ways:  
The data memory is implemented as static RAM. Each  
register in the data memory has a 12-bit address,  
allowing up to 4096 bytes of data memory. Figure 5-6  
shows the data memory organization for the  
PIC18F2X20/4X20 devices.  
• Computed GOTO  
Table Reads  
5.8.1  
COMPUTED GOTO  
The data memory map is divided into as many as 16  
banks that contain 256 bytes each. The lower 4 bits of  
the Bank Select Register (BSR<3:0>) select which  
bank will be accessed. The upper 4 bits of the BSR are  
not implemented.  
A computed GOTOis accomplished by adding an offset  
to the program counter. An example is shown in  
Example 5-4.  
A look-up table can be formed with an ADDWF PCL  
instruction and a group of RETLW 0xnn instructions.  
WREG is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCLinstruction. The next  
instruction executed will be one of the RETLW 0xnn  
instructions that returns the value 0xnn to the calling  
function.  
The data memory contains Special Function Registers  
(SFR) and General Purpose Registers (GPR). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratch pad operations in the user’s appli-  
cation. The SFRs start at the last location of Bank 15  
(FFFh) and extend towards F80h. Any remaining space  
beyond the SFRs in the bank may be implemented as  
GPRs. GPRs start at the first location of Bank 0 and  
grow upwards. Any read of an unimplemented location  
will read as ‘0’s.  
The offset value (in WREG) specifies the number of  
bytes that the program counter should advance and  
should be multiples of 2 (LSB = 0).  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
The entire data memory may be accessed directly or  
indirectly. Direct addressing may require the use of the  
BSR register. Indirect addressing requires the use of a  
File Select Register (FSRn) and a corresponding Indi-  
rect File Operand (INDFn). Each FSR holds a 12-bit  
address value that can be used to access any location  
in the data memory map without banking. See  
Section 5.12 “Indirect Addressing, INDF and FSR  
Registers” for indirect addressing details.  
EXAMPLE 5-4:  
COMPUTED GOTO USING  
AN OFFSET VALUE  
MOVFW  
CALL  
OFFSET  
TABLE  
ORG  
0xnn00  
TABLE ADDWF  
PCL  
RETLW  
RETLW  
RETLW  
0xnn  
0xnn  
0xnn  
The instruction set and architecture allow operations  
across all banks. This may be accomplished by indirect  
addressing or by the use of the MOVFFinstruction. The  
MOVFF instruction is a two-word/two-cycle instruction  
that moves a value from one register to another.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle,  
regardless of the current BSR values, an Access Bank  
is implemented. A segment of Bank 0 and a segment of  
Bank 15 comprise the Access RAM. Section 5.10  
“Access Bank” provides a detailed description of the  
Access RAM.  
5.8.2  
TABLE READS/TABLE WRITES  
A better method of storing data in program memory  
allows two bytes of data to be stored in each instruction  
location.  
Look-up table data may be stored two bytes per pro-  
gram word by using table reads and writes. The table  
pointer (TBLPTR) specifies the byte address and the  
table latch (TABLAT) contains the data that is read  
from, or written to program memory. Data is transferred  
to/from program memory, one byte at a time.  
5.9.1  
GENERAL PURPOSE  
REGISTER FILE  
Enhanced MCU devices may have banked memory in  
the GPR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other Resets.  
The Table Read/Table Write operation is discussed  
further in Section 6.1 “Table Reads and Table  
Writes”.  
Data RAM is available for use as GPR registers by all  
instructions. The second half of Bank 15 (F80h to  
FFFh) contains SFRs. All other banks of data memory  
contain GPRs, starting with Bank 0.  
2003 Microchip Technology Inc.  
DS39599C-page 59  
PIC18F2220/2320/4220/4320  
FIGURE 5-6:  
BSR<3:0>  
= 0000  
DATA MEMORY MAP FOR PIC18F2X20/4X20 DEVICES  
Data Memory Map  
000h  
00h  
Access RAM  
GPR  
07Fh  
080h  
0FFh  
100h  
Bank 0  
Bank 1  
FFh  
00h  
= 0001  
GPR  
1FFh  
200h  
FFh  
Access Bank  
00h  
Access RAM Low  
7Fh  
80h  
= 0010  
= 1110  
Access RAM High  
(SFRs)  
Bank 2  
to  
Bank 14  
Unused  
Read ‘00h’  
FFh  
When a = 0:  
The BSR is ignored and the  
Access Bank is used.  
The first 128 bytes are  
general purpose RAM  
(from Bank 0).  
EFFh  
F00h  
F7Fh  
F80h  
FFFh  
00h  
FFh  
Unused  
SFR  
= 1111  
The second 128 bytes are  
Special Function Registers  
(from Bank 15).  
Bank 15  
When a = 1:  
The BSR specifies the bank  
used by the instruction.  
DS39599C-page 60  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
“core” are described in this section, while those related  
to the operation of the peripheral features are  
described in the section of that peripheral feature.  
5.9.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 5-1 and Table 5-2.  
The SFRs are typically distributed among the  
peripherals whose functions they control.  
The unused SFR locations will be unimplemented and  
read as ‘0’s.  
The SFRs can be classified into two sets: those asso-  
ciated with the “core” function and those related to the  
peripheral functions. Those registers related to the  
TABLE 5-1:  
SPECIAL FUNCTION REGISTER MAP FOR PIC18F2X20/4X20 DEVICES  
Address  
FFFh  
FFEh  
FFDh  
FFCh  
FFBh  
FFAh  
FF9h  
FF8h  
FF7h  
FF6h  
FF5h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
Name  
TOSU  
Address  
Name  
INDF2(2)  
Address  
FBFh  
FBEh  
FBDh  
FBCh  
FBBh  
FBAh  
FB9h  
Name  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
Address  
F9Fh  
F9Eh  
F9Dh  
F9Ch  
F9Bh  
F9Ah  
F99h  
F98h  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
F88h  
F87h  
F86h  
F85h  
F84h  
F83h  
F82h  
F81h  
F80h  
Name  
IPR1  
PIR1  
PIE1  
FDFh  
TOSH  
FDEh POSTINC2(2)  
FDDh POSTDEC2(2)  
FDCh PREINC2(2)  
FDBh PLUSW2(2)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
OSCTUNE  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FD3h  
FD2h  
FD1h  
FD0h  
FCFh  
FCEh  
FCDh  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FC7h  
FC6h  
FC5h  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
FSR2H  
FSR2L  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0(2)  
STATUS  
TMR0H  
TMR0L  
FB8h  
FB7h PWM1CON(1)  
FB6h ECCPAS(1)  
TRISE(1)  
TRISD(1)  
TRISC  
TRISB  
TRISA  
T0CON  
FB5h  
FB4h  
FB3h  
FB2h  
FB1h  
FB0h  
FAFh  
FAEh  
FADh  
FACh  
FABh  
FAAh  
FA9h  
FA8h  
FA7h  
FA6h  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
CVRCON  
CMCON  
TMR3H  
TMR3L  
T3CON  
OSCCON  
LVDCON  
WDTCON  
RCON  
TMR1H  
TMR1L  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
FEEh POSTINC0(2)  
FEDh POSTDEC0(2)  
FECh PREINC0(2)  
FEBh PLUSW0(2)  
T1CON  
TMR2  
LATE(1)  
LATD(1)  
LATC  
LATB  
LATA  
PR2  
FEAh  
FE9h  
FE8h  
FE7h  
FE6h POSTINC1(2)  
FE5h POSTDEC1(2)  
FE4h PREINC1(2)  
FE3h PLUSW1(2)  
FSR0H  
FSR0L  
WREG  
INDF1(2)  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
EEADR  
EEDATA  
EECON2  
EECON1  
PORTE  
PORTD(1)  
PORTC  
PORTB  
PORTA  
FE2h  
FE1h  
FE0h  
FSR1H  
FSR1L  
BSR  
IPR2  
PIR2  
PIE2  
Legend: — = Unimplemented registers, read as ‘0’.  
Note 1: This register is not available on PIC18F2X20 devices.  
2: This is not a physical register.  
2003 Microchip Technology Inc.  
DS39599C-page 61  
PIC18F2220/2320/4220/4320  
TABLE 5-2:  
File Name  
TOSU  
REGISTER FILE SUMMARY (PIC18F2220/2320/4220/4320)  
Value on  
POR, BOR  
Details on  
page:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 -1-1  
11-0 0-00  
n/a  
46, 54  
46, 54  
46, 54  
46, 55  
46, 56  
46, 56  
46, 56  
46, 74  
46, 74  
46, 74  
46, 74  
46, 85  
46, 85  
46, 89  
46, 90  
46, 91  
46, 66  
46, 66  
46, 66  
46, 66  
46, 66  
46, 66  
46, 66  
46  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
bit 21(3)  
Return Stack Pointer  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
bit 21  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
GIE/GIEH PEIE/GIEL  
TMR0IE  
INTEDG1  
INT0IE  
INTEDG2  
INT2IE  
RBIE  
TMR0IF  
TMR0IP  
INT0IF  
RBIF  
RBIP  
RBPU  
INTEDG0  
INT1IP  
INT2IP  
INT1IE  
INT2IF  
INT1IF  
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)  
POSTINC0  
n/a  
POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)  
n/a  
PREINC0  
PLUSW0  
FSR0H  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 offset by W (not a physical register)  
n/a  
n/a  
Indirect Data Memory Address Pointer 0 High  
---- 0000  
xxxx xxxx  
xxxx xxxx  
n/a  
FSR0L  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
WREG  
INDF1  
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)  
46, 66  
46, 66  
46, 66  
46, 66  
46, 66  
47, 66  
47, 66  
47, 65  
47, 66  
47, 66  
47, 66  
47, 66  
47, 66  
47, 66  
47, 66  
47, 68  
47, 119  
47, 119  
47, 117  
POSTINC1  
n/a  
POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)  
n/a  
PREINC1  
PLUSW1  
FSR1H  
FSR1L  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 offset by W (not a physical register)  
n/a  
n/a  
Indirect Data Memory Address Pointer 1 High  
---- 0000  
xxxx xxxx  
---- 0000  
n/a  
Indirect Data Memory Address Pointer 1 Low Byte  
BSR  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)  
POSTINC2  
n/a  
POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)  
n/a  
PREINC2  
PLUSW2  
FSR2H  
FSR2L  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 offset by W (not a physical register)  
n/a  
n/a  
Indirect Data Memory Address Pointer 2 High  
---- 0000  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
Indirect Data Memory Address Pointer 2 Low Byte  
STATUS  
TMR0H  
TMR0L  
T0CON  
N
OV  
Z
DC  
C
Timer0 Register High Byte  
Timer0 Register Low Byte  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
T0PS2  
T0PS1  
T0PS0  
Legend:  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1:  
RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator mode only and read  
0’ in all other oscillator modes.  
2:  
3:  
4:  
RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read ‘0’ in all other modes.  
Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
If PBADEN = 0, PORTB<4:0> are configured as digital input and read unknown and if PBADEN = 1, PORTB<4:0> are configured as  
analog input and read ‘0’ following a Reset.  
5:  
6:  
These registers and/or bits are not implemented on the PIC18F2X20 devices and read as ‘0’.  
The RE3 port bit is only available when MCLRE fuse (CONFIG3H<7>) is programmed to ‘0’. Otherwise, RE3 reads ‘0’. This bit is  
read-only.  
DS39599C-page 62  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 5-2:  
REGISTER FILE SUMMARY (PIC18F2220/2320/4220/4320) (CONTINUED)  
Value on  
POR, BOR  
Details on  
page:  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OSCCON  
LVDCON  
WDTCON  
IDLEN  
IRCF2  
IRCF1  
IRVST  
IRCF0  
LVDEN  
OSTS  
LVDL3  
IOFS  
LVDL2  
SCS1  
LVDL1  
SCS0  
LVDL0  
0000 q000  
--00 0101  
--- ---0  
26, 47  
47, 233  
47, 246  
SWDTEN  
RCON  
IPEN  
RI  
TO  
PD  
POR  
BOR  
0--1 11q0 45, 69, 98  
TMR1H  
TMR1L  
T1CON  
TMR2  
Timer1 Register High Byte  
Timer1 Register Low Byte  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
47, 125  
47, 125  
47, 121  
47, 127  
47, 127  
47, 127  
RD16  
T1RUN  
T1CKPS1  
T1CKPS0 T1OSCEN  
T1SYNC  
TMR2ON  
TMR1CS  
T2CKPS1  
TMR1ON  
Timer2 Register  
PR2  
Timer2 Period Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0  
SSP Receive Buffer/Transmit Register  
T2CON  
SSPBUF  
T2CKPS0 -000 0000  
xxxx xxxx  
47, 156,  
164  
SSPADD  
SSPSTAT  
SSP Address Register in I2C Slave mode. SSP Baud Rate Reload Register in I2C Master mode.  
0000 0000  
47, 164  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
0000 0000  
47, 156,  
165  
SSPCON1  
SSPOV  
SSPEN  
CKP  
SSPM3  
RCEN  
SSPM1  
RSEN  
SSPM0  
SEN  
0000 0000  
47, 157,  
166  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
ACKSTAT  
ACKDT  
ACKEN  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
--00 0000  
0-00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
47, 167  
48, 220  
48, 220  
48, 211  
48, 212  
48, 213  
48, 134  
48, 134  
A/D Result Register High Byte  
A/D Result Register Low Byte  
CHS3  
VCFG1  
ACQT2  
CHS2  
VCFG0  
ACQT1  
CHS1  
PCFG3  
ACQT0  
CHS0  
PCFG2  
ADCS2  
GO/DONE  
PCFG1  
ADON  
PCFG0  
ADCS0  
ADFM  
ADCS1  
Capture/Compare/PWM Register 1 High Byte  
Capture/Compare/PWM Register 1 Low Byte  
P1M1(5)  
P1M0(5)  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2  
CCP1M1  
CCP1M0  
48, 133,  
141  
CCPR2H  
CCPR2L  
CCP2CON  
PWM1CON(5)  
ECCPAS(5)  
CVRCON  
CMCON  
TMR3H  
Capture/Compare/PWM Register 2 High Byte  
Capture/Compare/PWM Register 2 Low Byte  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
0000 0000  
000- 0000  
0000 0111  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
48, 134  
48, 134  
48, 133  
48, 149  
48, 150  
48, 227  
48, 221  
48, 131  
48, 131  
48, 129  
48, 198  
DC2B1  
PDC5  
DC2B0  
PDC4  
CCP2M3  
PDC3  
CCP2M2  
PDC2  
CCP2M1  
PDC1  
CCP2M0  
PDC0  
PRSEN  
PDC6  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0  
PSSAC1  
CVR3  
PSSAC0  
CVR2  
PSSBD1  
CVR1  
PSSBD0  
CVR0  
CVREN  
C2OUT  
CVROE  
C1OUT  
CVRR  
C2INV  
C1INV  
CIS  
CM2  
CM1  
CM0  
Timer3 Register High Byte  
Timer3 Register Low Byte  
TMR3L  
T3CON  
RD16  
T3CCP2  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON  
SPBRG  
USART Baud Rate Generator  
USART Receive Register  
RCREG  
48, 204,  
203  
TXREG  
USART Transmit Register  
0000 0000  
48, 202,  
203  
TXSTA  
RCSTA  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
0000 -010  
0000 000x  
48, 196  
48, 197  
ADDEN  
Legend:  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1:  
RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator mode only and read  
0’ in all other oscillator modes.  
2:  
3:  
4:  
RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read ‘0’ in all other modes.  
Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
If PBADEN = 0, PORTB<4:0> are configured as digital input and read unknown and if PBADEN = 1, PORTB<4:0> are configured as  
analog input and read ‘0’ following a Reset.  
5:  
6:  
These registers and/or bits are not implemented on the PIC18F2X20 devices and read as ‘0’.  
The RE3 port bit is only available when MCLRE fuse (CONFIG3H<7>) is programmed to ‘0’. Otherwise, RE3 reads ‘0’. This bit is  
read-only.  
2003 Microchip Technology Inc.  
DS39599C-page 63  
PIC18F2220/2320/4220/4320  
TABLE 5-2:  
REGISTER FILE SUMMARY (PIC18F2220/2320/4220/4320) (CONTINUED)  
Value on  
POR, BOR  
Details on  
page:  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR2  
EEPROM Address Register  
EEPROM Data Register  
0000 0000  
0000 0000  
48, 81  
48, 84  
EEPROM Control Register 2 (not a physical register)  
0000 0000 48, 72, 81  
xx-0 x000 48, 73, 82  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
PSPIP(5)  
PSPIF(5)  
PSPIE(5)  
CFGS  
CMIP  
CMIF  
CMIE  
ADIP  
ADIF  
ADIE  
FREE  
EEIP  
WRERR  
BCLIP  
BCLIF  
BCLIE  
SSPIP  
SSPIF  
SSPIE  
TUN3  
WREN  
LVDIP  
WR  
RD  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
TUN1  
CCP2IP  
CCP2IF  
CCP2IE  
TMR1IP  
TMR1IF  
TMR1IE  
TUN0  
11-1 1111  
00-0 0000  
00-0 0000  
1111 1111  
0000 0000  
0000 0000  
--00 0000  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
---- -xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- xxxx  
49, 97  
49, 93  
PIR2  
EEIF  
LVDIF  
PIE2  
EEIE  
LVDIE  
49, 95  
IPR1  
RCIP  
RCIF  
RCIE  
TUN5  
IBOV  
TXIP  
CCP1IP  
CCP1IF  
CCP1IE  
TUN2  
49, 96  
PIR1  
TXIF  
49, 92  
PIE1  
TXIE  
49, 94  
OSCTUNE  
TRISE(5)  
TRISD(5)  
TRISC  
TRISB  
TRISA  
LATE(5)  
LATD(5)  
LATC  
TUN4  
PSPMODE  
23, 49  
IBF  
OBF  
Data Direction bits for PORTE(5)  
49, 112  
49, 110  
49, 108  
49, 106  
49, 103  
49, 113  
49, 110  
49, 108  
49, 106  
49, 103  
49, 113  
Data Direction Control Register for PORTD  
Data Direction Control Register for PORTC  
Data Direction Control Register for PORTB  
TRISA7(2)  
TRISA6(1) Data Direction Control Register for PORTA  
Read/Write PORTE Data Latch  
Read/Write PORTD Data Latch  
Read/Write PORTC Data Latch  
Read/Write PORTB Data Latch  
LATB  
LATA  
LATA<7>(2) LATA<6>(1) Read/Write PORTA Data Latch  
RE3(6)  
PORTE  
Read PORTE pins,  
Write PORTE Data Latch(5)  
PORTD  
PORTC  
PORTB  
PORTA  
Read PORTD pins, Write PORTD Data Latch  
Read PORTC pins, Write PORTC Data Latch  
Read PORTB pins, Write PORTB Data Latch(4)  
RA7(2) RA6(1)  
Read PORTA pins, Write PORTA Data Latch  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xx0x 0000  
49, 110  
49, 108  
49, 106  
49, 103  
Legend:  
Note 1:  
RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator mode only and read  
0’ in all other oscillator modes.  
2:  
3:  
4:  
RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read ‘0’ in all other modes.  
Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
If PBADEN = 0, PORTB<4:0> are configured as digital input and read unknown and if PBADEN = 1, PORTB<4:0> are configured as  
analog input and read ‘0’ following a Reset.  
5:  
6:  
These registers and/or bits are not implemented on the PIC18F2X20 devices and read as ‘0’.  
The RE3 port bit is only available when MCLRE fuse (CONFIG3H<7>) is programmed to ‘0’. Otherwise, RE3 reads ‘0’. This bit is  
read-only.  
DS39599C-page 64  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
5.10  
Access Bank  
5.11 Bank Select Register (BSR)  
The Access Bank is an architectural enhancement  
which is very useful for C compiler code optimization.  
The techniques used by the C compiler may also be  
useful for programs written in assembly.  
The need for a large general purpose memory space  
dictates a RAM banking scheme. The data memory is  
partitioned into as many as sixteen banks. When using  
direct addressing, the BSR should be configured for the  
desired bank.  
This data memory region can be used for:  
BSR<3:0> holds the upper 4 bits of the 12-bit RAM  
address. The BSR<7:4> bits will always read ‘0’s and  
writes will have no effect (see Figure 5-7).  
• Intermediate computational values  
• Local variables of subroutines  
• Faster context saving/switching of variables  
• Common variables  
A
MOVLB instruction has been provided in the  
instruction set to assist in selecting banks.  
• Faster evaluation/control of SFRs (no banking)  
If the currently selected bank is not implemented, any  
read will return all ‘0’s and all writes are ignored. The  
Status register bits will be set/cleared as appropriate for  
the instruction performed.  
The Access Bank is comprised of the last 128 bytes in  
Bank 15 (SFRs) and the first 128 bytes in Bank 0.  
These two sections will be referred to as Access RAM  
High and Access RAM Low, respectively. Figure 5-6  
indicates the Access RAM areas.  
Each Bank extends up to FFh (256 bytes). All data  
memory is implemented as static RAM.  
A bit in the instruction word specifies if the operation is  
to occur in the bank specified by the BSR register or in  
the Access Bank. This bit is denoted as the ‘a’ bit (for  
access bit).  
A MOVFFinstruction ignores the BSR since the 12-bit  
addresses are embedded into the instruction word.  
Section 5.12 “Indirect Addressing, INDF and FSR  
Registers” provides a description of indirect address-  
ing which allows linear addressing of the entire RAM  
space.  
When forced in the Access Bank (a = 0), the last  
address in Access RAM Low is followed by the first  
address in Access RAM High. Access RAM High maps  
the Special Function Registers, so these registers can  
be accessed without any software overhead. This is  
useful for testing status flags and modifying control bits.  
FIGURE 5-7:  
DIRECT ADDRESSING  
Direct Addressing  
(3)  
From Opcode  
BSR<7:4>  
BSR<3:0>  
7
0
0
0
0
0
(2)  
(3)  
Bank Select  
Location Select  
00h  
000h  
01h  
100h  
0Eh  
E00h  
0Fh  
F00h  
Data  
Memory(1)  
0FFh  
Bank 0  
1FFh  
Bank 1  
EFFh  
FFFh  
Bank 14  
Bank 15  
Note 1: For register file map detail, see Table 5-1.  
2: The access bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to the  
registers of the Access Bank.  
3: The MOVFFinstruction embeds the entire 12-bit address in the instruction.  
2003 Microchip Technology Inc.  
DS39599C-page 65  
PIC18F2220/2320/4220/4320  
If INDF0, INDF1 or INDF2 are read indirectly via an  
5.12 Indirect Addressing, INDF and  
FSR Registers  
FSR, all ‘0’s are read (zero bit is set). Similarly, if  
INDF0, INDF1 or INDF2 are written to indirectly, the  
operation will be equivalent to a NOPinstruction and the  
status bits are not affected.  
Indirect addressing is a mode of addressing data mem-  
ory, where the data memory address in the instruction  
is not fixed. An FSR register is used as a pointer to the  
data memory location that is to be read or written. Since  
this pointer is in RAM, the contents can be modified by  
the program. This can be useful for data tables in the  
data memory and for software stacks. Figure 5-8  
shows how the fetched instruction is modified prior to  
being executed.  
5.12.1  
INDIRECT ADDRESSING  
OPERATION  
Each FSR register has an INDF register associated  
with it, plus four additional register addresses. Perform-  
ing an operation using one of these five registers  
determines how the FSR will be modified during  
indirect addressing.  
Indirect addressing is possible by using one of the  
INDF registers. Any instruction using the INDF register  
actually accesses the register pointed to by the File  
Select Register, FSR. Reading the INDF register itself,  
indirectly (FSR = 0), will read 00h. Writing to the INDF  
register indirectly, results in a no operation. The FSR  
register contains a 12-bit address which is shown in  
Figure 5-9.  
When data access is performed using one of the five  
INDFn locations, the address selected will configure  
the FSRn register to:  
• Do nothing to FSRn after an indirect access (no  
change) – INDFn  
• Auto-decrement FSRn after an indirect access  
(post-decrement) – POSTDECn  
The INDFn register is not a physical register. Address-  
ing INDFn actually addresses the register whose  
address is contained in the FSRn register (FSRn is a  
pointer); this is indirect addressing.  
• Auto-increment FSRn after an indirect access  
(post-increment) – POSTINCn  
• Auto-increment FSRn before an indirect access  
(pre-increment) – PREINCn  
Example 5-5 shows a simple use of indirect addressing  
to clear the RAM in Bank 1 (locations 100h-1FFh) in a  
minimum number of instructions.  
• Use the value in the WREG register as an offset  
to FSRn. Do not modify the value of the WREG or  
the FSRn register after an indirect access (no  
change) – PLUSWn  
EXAMPLE 5-5:  
HOW TO CLEAR RAM  
(BANK 1) USING  
When using the auto-increment or auto-decrement  
features, the effect on the FSR is not reflected in the  
Status register. For example, if the indirect address  
causes the FSR to equal ‘0’, the Z bit will not be set.  
INDIRECT ADDRESSING  
LFSR FSR0,0x100 ;  
NEXT  
CLRF POSTINC0  
; Clear INDF  
; register then  
; inc pointer  
; All done with  
; Bank1?  
; NO, clear next  
; YES, continue  
Auto-incrementing or auto-decrementing an FSR  
affects all 12 bits. That is, when FSRnL overflows from  
an increment, FSRnH will be incremented  
automatically.  
BTFSS FSR0H, 1  
GOTO NEXT  
CONTINUE  
Adding these features allows the FSRn to be used as a  
stack pointer, in addition to its use for table operations  
in data memory.  
There are three indirect addressing registers. To  
address the entire data memory space (4096 bytes),  
these registers are 12 bits wide. To store the 12 bits of  
addressing information, two 8-bit registers are  
required:  
Each FSR has an address associated with it that per-  
forms an indexed indirect access. When a data access  
to this INDFn location (PLUSWn) occurs, the FSRn is  
configured to add the signed value in the WREG regis-  
ter and the value in FSR to form the address before an  
indirect access. The FSR value is not changed. The  
WREG offset range is -128 to +127.  
1. FSR0: composed of FSR0H:FSR0L  
2. FSR1: composed of FSR1H:FSR1L  
3. FSR2: composed of FSR2H:FSR2L  
If an FSR register contains a value that points to one of  
the INDFn, an indirect read will read 00h (zero bit is set)  
while an indirect write will be equivalent to a NOP  
(status bits are not affected).  
In addition, there are registers INDF0, INDF1 and  
INDF2, which are not physically implemented. Reading  
or writing to these registers activates indirect address-  
ing with the value in the corresponding FSR register  
being the address of the data. If an instruction writes a  
value to INDF0, the value will be written to the address  
pointed to by FSR0H:FSR0L. A read from INDF1 reads  
the data from the address pointed to by  
FSR1H:FSR1L. INDFn can be used in code anywhere  
an operand can be used.  
If an indirect addressing write is performed when the  
target address is an FSRnH or FSRnL register, the  
data is written to the FSR register but no pre- or  
post-increment/decrement is performed.  
DS39599C-page 66  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 5-8:  
INDIRECT ADDRESSING OPERATION  
0h  
RAM  
Instruction  
Executed  
Opcode  
Address  
12  
FFFh  
File Address = access of an indirect addressing register  
BSR<3:0>  
12  
12  
Instruction  
Fetched  
4
8
Opcode  
File  
FSR  
FIGURE 5-9:  
INDIRECT ADDRESSING  
Indirect Addressing  
FSRnH:FSRnL  
3
0
7
0
0
11  
Location Select  
0000h  
Data  
Memory(1)  
0FFFh  
Note 1: For register file map detail, see Table 5-1.  
2003 Microchip Technology Inc.  
DS39599C-page 67  
PIC18F2220/2320/4220/4320  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the Status register  
5.13 Status Register  
The Status register, shown in Register 5-2, contains the  
arithmetic status of the ALU. The Status register can be  
the operand for any instruction as with any other regis-  
ter. If the Status register is the destination for an instruc-  
tion that affects the Z, DC, C, OV or N bits, then the  
write to these five bits is disabled. These bits are set or  
cleared according to the device logic. Therefore, the  
result of an instruction with the Status register as  
destination may be different than intended.  
as 000u u1uu(where u= unchanged).  
It is recommended, therefore, that only BCF, BSF,  
SWAPF, MOVFF and MOVWF instructions are used to  
alter the Status register, because these instructions do  
not affect the Z, C, DC, OV or N bits in the Status reg-  
ister. For other instructions not affecting any status bits,  
see Table 24-2.  
Note:  
The C and DC bits operate as a borrow  
and digit borrow bit respectively, in  
subtraction.  
REGISTER 5-2:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
N
bit 7  
bit 0  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
N: Negative bit  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was  
negative (ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the 7-bit  
magnitude which causes the sign bit (bit 7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions.  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the bit 4 or bit 3 of the source register.  
bit 0  
C: Carry/borrow bit  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions.  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high or low order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39599C-page 68  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
5.14 RCON Register  
Note 1: If the BOREN configuration bit is set  
(Brown-out Reset enabled), the BOR bit  
The Reset Control (RCON) register contains flag bits  
that allow differentiation between the sources of a  
device Reset. These flags include the TO, PD, POR,  
BOR and RI bits. This register is readable and writable.  
is ‘1’ on a Power-on Reset. After a Brown-  
out Reset has occurred, the BOR bit will  
be cleared and must be set by firmware to  
indicate the occurrence of the next  
Brown-out Reset.  
2: It is recommended that the POR bit be set  
after  
a Power-on Reset has been  
detected so that subsequent Power-on  
Resets may be detected.  
REGISTER 5-3:  
RCON REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6-5 Unimplemented: Read as ‘0’  
bit 4  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed (set by firmware only)  
0= The RESETinstruction was executed causing a device Reset (must be set in software after  
a Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= Set by power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1= Set by power-up or by the CLRWDTinstruction  
0= Cleared by execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred (set by firmware only)  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred (set by firmware only)  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 69  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 70  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
The program memory space is 16 bits wide while the  
6.0  
FLASH PROGRAM MEMORY  
data RAM space is 8 bits wide. Table reads and table  
writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
The Flash program memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
Table read operations retrieve data from program  
memory and place it into TABLAT in the data RAM  
space. Figure 6-1 shows the operation of a table read  
with program memory and data RAM.  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 8 bytes at a time. Program memory is erased  
in blocks of 64 bytes at a time. A bulk erase operation  
may not be issued from user code.  
Table write operations store data from TABLAT in the  
data memory space into holding registers in program  
memory. The procedure to write the contents of the  
holding registers into program memory is detailed in  
Section 6.5 “Writing to Flash Program Memory”.  
Figure 6-2 shows the operation of a table write with  
program memory and data RAM.  
While writing or erasing program memory, instruction  
fetches cease until the operation is complete. The  
program memory cannot be accessed during the write  
or erase, therefore, code cannot execute. An internal  
programming timer terminates program memory writes  
and erases.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word aligned. Therefore, a table block  
can start and end at any byte address. If a table write is  
being used to write executable code into program  
memory, program instructions will need to be word  
aligned (TBLPTRL<0> = 0).  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
6.1  
Table Reads and Table Writes  
The EEPROM on-chip timer controls the write and  
erase times. The write and erase voltages are gener-  
ated by an on-chip charge pump rated to operate over  
the voltage range of the device for byte or word  
operations.  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data  
RAM:  
Table Read (TBLRD)  
Table Write (TBLWT)  
FIGURE 6-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer points to a byte in program memory.  
2003 Microchip Technology Inc.  
DS39599C-page 71  
PIC18F2220/2320/4220/4320  
FIGURE 6-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer actually points to one of eight holding registers, the address of which is determined by  
TBLPTRL<2:0>. The process for physically writing data to the program memory array is discussed in  
Section 6.5 “Writing to Flash Program Memory”.  
The WREN bit enables and disables erase and write  
operations. When set, erase and write operations are  
allowed. When clear, erase and write operations are  
disabled – the WR bit cannot be set while the WREN bit  
is clear. This process helps to prevent accidental writes  
to memory due to errant (unexpected) code execution.  
6.2  
Control Registers  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
Firmware should keep the WREN bit clear at all times  
except when starting erase or write operations. Once  
firmware has set the WR bit, the WREN bit may be  
cleared. Clearing the WREN bit will not affect the  
operation in progress.  
6.2.1  
EECON1 AND EECON2 REGISTERS  
EECON1 is the control register for memory accesses.  
The WRERR bit is set when a write operation is inter-  
rupted by a Reset. In these situations, the user can  
check the WRERR bit and rewrite the location. It will be  
necessary to reload the data and address registers  
(EEDATA and EEADR) as these registers have cleared  
as a result of the Reset.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the memory write and erase sequences.  
Control bit, EEPGD, determines if the access will be to  
program or data EEPROM memory. When clear,  
operations will access the data EEPROM memory.  
When set, program memory is accessed.  
Control bits, RD and WR, start read and erase/write  
operations, respectively. These bits are set by firmware  
and cleared by hardware at the completion of the  
operation.  
Control bit, CFGS, determines if the access will be to  
the configuration registers or to program memory/data  
EEPROM memory. When set, subsequent operations  
access configuration registers. When CFGS is clear,  
the EEPGD bit selects either program Flash or data  
EEPROM memory.  
The RD bit cannot be set when accessing program  
memory (EEPGD = 1). Program memory is read using  
table read instructions. See Section 6.3 “Reading the  
Flash Program Memory” regarding table reads.  
The FREE bit controls program memory erase opera-  
tions. When the FREE bit is set, the erase operation is  
initiated on the next WR command. When FREE is  
clear, only writes are enabled.  
Note:  
Interrupt flag bit, EEIF in the PIR2 register,  
is set when the write is complete. It must  
be cleared in software.  
DS39599C-page 72  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 6-1:  
EECON1 REGISTER  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access program Flash memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EE or Configuration Select bit  
1= Access configuration registers  
0= Access program Flash or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation – TBLPTR<5:0> are ignored)  
0= Perform write only  
bit 3  
WRERR: EEPROM Error Flag bit  
1= A write operation was prematurely terminated (any Reset during self-timed programming)  
0= The write operation completed normally  
Note:  
When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Write Enable bit  
1= Allows erase or write cycles  
0= Inhibits erase or write cycles  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write  
cycle. (The operation is self-timed and the bit is cleared by hardware once write is  
complete. The WR bit can only be set (not cleared) in software.)  
0= Write cycle completed  
bit 0  
RD: Read Control bit  
1= Initiates a memory read (Read takes one cycle. RD is cleared in hardware. The RD bit can  
only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1.)  
0= Read completed  
Legend:  
R = Readable bit  
S = Settable only  
U = Unimplemented bit, read as ‘0’ W = Writable bit  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR ‘1’ = Bit is set  
2003 Microchip Technology Inc.  
DS39599C-page 73  
PIC18F2220/2320/4220/4320  
6.2.2  
TABLAT – TABLE LATCH REGISTER  
6.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch register is used to  
hold 8-bit data during data transfers between program  
memory and data RAM.  
TBLPTR is used in reads, writes and erases of the  
Flash program memory.  
When a TBLRD is executed, all 22 bits of the Table  
Pointer determine which byte is read from program or  
configuration memory into TABLAT.  
6.2.3  
TBLPTR – TABLE POINTER  
REGISTER  
When a TBLWTis executed, the three LSbs of the Table  
Pointer (TBLPTR<2:0>) determine which of the eight  
program memory holding registers is written to. When  
the timed write to program memory (long write) begins,  
the 19 MSbs of the TBLPTR (TBLPTR<21:3>) will deter-  
mine which program memory block of 8 bytes is written  
to (TBLPTR<2:0> are ignored). For more detail, see  
Section 6.5 “Writing to Flash Program Memory”.  
The Table Pointer (TBLPTR) register addresses a byte  
within the program memory. The TBLPTR is comprised  
of three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low order  
21 bits allow the device to address up to 2 Mbytes of  
program memory space. Setting the 22nd bit allows  
access to the device ID, the user ID and the  
configuration bits.  
When an erase of program memory is executed, the  
16 MSbs of the Table Pointer (TBLPTR<21:6>) point to  
the 64-byte block that will be erased. The Least  
Significant bits (TBLPTR<5:0>) are ignored.  
The table pointer, TBLPTR, is used by the TBLRDand  
TBLWTinstructions. These instructions can update the  
TBLPTR in one of four ways based on the table opera-  
tion. These operations are shown in Table 6-1. These  
operations on the TBLPTR only affect the low order  
21 bits.  
Figure 6-3 describes the relevant boundaries of  
TBLPTR based on Flash program memory operations.  
TABLE 6-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 6-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
ERASE – TBLPTR<21:6>  
LONG WRITE – TBLPTR<21:3>  
READ or WRITE – TBLPTR<21:0>  
DS39599C-page 74  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 6-4  
6.3  
Reading the Flash Program  
Memory  
The TBLRD instruction is used to retrieve data from  
program memory and place it into data RAM. Table  
reads from program memory are performed one byte at  
a time.  
shows the interface between the internal program  
memory and the TABLAT.  
TBLPTR points to a byte address in program space.  
Executing a TBLRDinstruction places the byte pointed  
to into TABLAT. In addition, TBLPTR can be modified  
automatically for the next table read operation.  
FIGURE 6-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
Odd (High) Byte  
Even (Low) Byte  
TBLPTR  
TBLPTR  
LSB = 0  
LSB = 1  
Instruction Register  
(IR)  
TABLAT  
Read Register  
EXAMPLE 6-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
READ_WORD  
TBLRD*+  
MOVFW  
; read into TABLAT and increment TBLPTR  
; get data  
TABLAT  
MOVWF  
WORD_EVEN  
TBLRD*+  
MOVFW  
; read into TABLAT and increment TBLPTR  
; get data  
TABLAT  
MOVWF  
WORD_ODD  
2003 Microchip Technology Inc.  
DS39599C-page 75  
PIC18F2220/2320/4220/4320  
6.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
6.4  
Erasing Flash Program Memory  
The minimum erase block size is 32 words or 64 bytes  
under firmware control. Only through the use of an  
external programmer, or through ICSP control, can  
larger blocks of program memory be bulk erased. Word  
erase in Flash memory is not supported.  
The sequence of events for erasing a block of internal  
program memory location is:  
1. Load Table Pointer with address of row being  
erased.  
When initiating an erase sequence from the micro-  
controller itself, a block of 64 bytes of program memory  
is erased. The Most Significant 16 bits of the  
TBLPTR<21:6> point to the block being erased;  
TBLPTR<5:0> are ignored.  
2. Set the EECON1 register for the erase operation:  
• set EEPGD bit to point to program  
memory;  
• clear the CFGS bit to access program  
memory;  
The EECON1 register commands the erase operation.  
The EEPGD bit must be set to point to the Flash pro-  
gram memory. The CFGS bit must be clear to access  
program Flash and data EEPROM memory. The  
WREN bit must be set to enable write operations. The  
FREE bit is set to select an erase operation. The WR  
bit is set as part of the required instruction sequence  
(as shown in Example 6-2) and starts the actual erase  
operation. It is not necessary to load the TABLAT  
register with any data as it is ignored.  
• set WREN bit to enable writes;  
• set FREE bit to enable the erase.  
3. Disable interrupts.  
4. Write 55h to EECON2.  
5. Write AAh to EECON2.  
6. Set the WR bit. This will begin the row erase  
cycle.  
7. The CPU will stall for duration of the erase  
(about 2 ms using internal timer).  
For protection, the write initiate sequence using  
EECON2 must be used.  
8. Execute a NOP.  
9. Re-enable interrupts.  
A long write is necessary for erasing the internal Flash.  
Instruction execution is halted while in a long write  
cycle. The long write will be terminated by the internal  
programming timer.  
EXAMPLE 6-2:  
ERASING A FLASH PROGRAM MEMORY ROW  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_ROW  
BSF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1,EEPGD  
EECON1,WREN  
EECON1,FREE  
INTCON,GIE  
55h  
EECON2  
AAh  
EECON2  
EECON2,WR  
; point to Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
; write 55H  
Required  
Sequence  
; write AAH  
; start erase (CPU stall)  
NOP  
BSF  
INTCON,GIE  
; re-enable interrupts  
DS39599C-page 76  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Since the Table Latch (TABLAT) is only a single byte,  
6.5  
Writing to Flash Program Memory  
the TBLWT instruction has to be executed 8 times for  
each programming operation. All of the table write  
operations will essentially be short writes because only  
the holding registers are written. At the end of updating  
8 registers, the EECON1 register must be written to, to  
start the programming operation with a long write.  
The programming block size is 4 words or 8 bytes.  
Word or byte programming is not supported.  
Table writes are used internally to load the holding reg-  
isters needed to program the Flash memory. There are  
8 holding registers used by the table writes for  
programming.  
The long write is necessary for programming the inter-  
nal Flash. Instruction execution is halted while in a long  
write cycle. The long write will be terminated by the  
internal programming timer.  
FIGURE 6-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx2  
TBLPTR = xxxxx7  
Holding Register  
TBLPTR = xxxxx1  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
8. Disable interrupts.  
6.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
9. Write 55h to EECON2.  
10. Write AAh to EECON2.  
The sequence of events for programming an internal  
program memory location should be:  
11. Set the WR bit. This will begin the write cycle.  
12. The CPU will stall for duration of the write (about  
2 ms using internal timer).  
1. Read 64 bytes into RAM.  
2. Update data values in RAM as necessary.  
3. Load Table Pointer with address being erased.  
13. Execute a NOP.  
14. Re-enable interrupts.  
4. Do the row erase procedure (see Section 6.4.1  
“Flash Program Memory Erase Sequence”).  
15. Repeat steps 6-14 seven times, to write 64  
bytes.  
5. Load Table Pointer with address of first byte  
being written.  
16. Verify the memory (table read).  
This procedure will require about 18 ms to update one  
row of 64 bytes of memory. An example of the required  
code is given in Example 6-3.  
6. Write the first 8 bytes into the holding registers  
with auto-increment.  
7. Set the EECON1 register for the write operation:  
• set EEPGD bit to point to program  
memory;  
• clear the CFGS bit to access program  
memory;  
• set WREN bit to enable byte writes.  
2003 Microchip Technology Inc.  
DS39599C-page 77  
PIC18F2220/2320/4220/4320  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
D'64  
; number of bytes in erase block  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
COUNTER  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; point to buffer  
; Load TBLPTR with the base  
; address of the memory block  
; 6 LSB = 0  
READ_BLOCK  
TBLRD*+  
MOVFW  
; read into TABLAT, and inc  
; get data  
TABLAT  
MOVWF  
DECFSZ COUNTER  
POSTINC0  
; store data and increment FSR0  
; done?  
GOTO  
READ_BLOCK  
; repeat  
MODIFY_WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
DATA_ADDR_HIGH  
FSR0H  
DATA_ADDR_LOW  
FSR0L  
NEW_DATA_LOW  
POSTINC0  
NEW_DATA_HIGH  
INDF0  
; point to buffer  
; update buffer word and increment FSR0  
; update buffer word  
ERASE_BLOCK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
BSF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
EECON1,CFGS  
EECON1,EEPGD  
EECON1,WREN  
EECON1,FREE  
INTCON,GIE  
55h  
; load TBLPTR with the base  
; address of the memory block  
; 6 LSB = 0  
; point to PROG/EEPROM memory  
; point to Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
; Required sequence  
; write 55H  
EECON2  
AAh  
EECON2  
EECON1,WR  
; write AAH  
; start erase (CPU stall)  
NOP  
BSF  
INTCON,GIE  
; re-enable interrupts  
WRITE_BUFFER_BACK  
MOVLW  
8
; number of write buffer groups of 8 bytes  
; point to buffer  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
COUNTER_HI  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
PROGRAM_LOOP  
MOVLW  
MOVWF  
8
; number of bytes in holding register  
COUNTER  
WRITE_WORD_TO_HREGS  
MOVFW  
MOVWF  
TBLWT+*  
POSTINC0  
TABLAT  
; get low byte of buffer data and increment FSR0  
; present data to table latch  
; short write  
; to internal TBLWT holding register, increment  
TBLPTR  
DECFSZ COUNTER  
GOTO WRITE_WORD_TO_HREGS  
; loop until buffers are full  
DS39599C-page 78  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY (CONTINUED)  
PROGRAM_MEMORY  
BCF  
INTCON,GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1,WR  
; disable interrupts  
; required sequence  
; write 55H  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
; write AAH  
; start program (CPU stall)  
NOP  
BSF  
INTCON,GIE  
; re-enable interrupts  
; loop until done  
DECFSZ COUNTER_HI  
GOTO  
BCF  
PROGRAM_LOOP  
EECON1,WREN  
; disable write to memory  
6.5.2  
WRITE VERIFY  
6.6  
Flash Program Operation During  
Code Protection  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
See Section 23.0 “Special Features of the CPU”  
(Section 23.5 “Program Verification and Code Pro-  
tection”) for details on code protection of Flash  
program memory.  
6.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected Reset, the memory  
location just programmed should be verified and repro-  
grammed if needed. The WRERR bit is set when a  
write operation is interrupted by a MCLR Reset, or a  
WDT Time-out Reset, during normal operation. In  
these situations, users can check the WRERR bit and  
rewrite the location.  
TABLE 6-2:  
Name  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Value on  
Value on:  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
TBLPTRU  
bit 21 Program Memory Table Pointer Upper Byte  
(TBLPTR<20:16>)  
--00 0000 --00 0000  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer High Byte (TBLPTR<7:0>)  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000u  
TABLAT  
INTCON  
EECON2  
EECON1  
IPR2  
Program Memory Table Latch  
GIE/GIEH PEIE/GIEL TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
RD  
EEPROM Control Register 2 (not a physical register)  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
CMIP  
CMIF  
CMIE  
FREE  
EEIP  
EEIF  
EEIE  
WRERR WREN  
WR  
xx-0 x000 uu-0 u000  
BCLIP  
BCLIF  
BCLIE  
LVDIP  
LVDIF  
LVDIE  
TMR3IP  
TMR3IF  
TMR3IE  
CCP2IP 11-1 1111 ---1 1111  
CCP2IF 00-0 0000 ---0 0000  
CCP2IE 00-0 0000 ---0 0000  
PIR2  
PIE2  
Legend:  
x= unknown, u= unchanged, r = reserved, -= unimplemented, read as ‘0’.  
Shaded cells are not used during Flash/EEPROM access.  
2003 Microchip Technology Inc.  
DS39599C-page 79  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 80  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Control bit CFGS determines if the access will be to the  
configuration registers or to program memory/data  
EEPROM memory. When set, subsequent operations  
access configuration registers. When CFGS is clear,  
the EEPGD bit selects either program Flash or data  
EEPROM memory.  
7.0  
DATA EEPROM MEMORY  
The data EEPROM is readable and writable during nor-  
mal operation over the entire VDD range. The data  
memory is not directly mapped in the register file  
space. Instead, it is indirectly addressed through the  
Special Function Registers (SFR).  
The WREN bit enables and disables erase and write  
operations. When set, erase and write operations are  
allowed. When clear, erase and write operations are  
disabled; the WR bit cannot be set while the WREN bit  
is clear. This mechanism helps to prevent accidental  
writes to memory due to errant (unexpected) code  
execution.  
There are four SFRs used to read and write the  
program and data EEPROM memory. These registers  
are:  
• EECON1  
• EECON2  
• EEDATA  
• EEADR  
Firmware should keep the WREN bit clear at all times  
except when starting erase or write operations. Once  
firmware has set the WR bit, the WREN bit may be  
cleared. Clearing the WREN bit will not affect the  
operation in progress.  
The EEPROM data memory allows byte read and write.  
When interfacing to the data memory block, EEDATA  
holds the 8-bit data for read/write and EEADR holds the  
address of the EEPROM location being accessed.  
These devices have 256 bytes of data EEPROM with  
an address range from 00h to FFh.  
The WRERR bit is set when a write operation is inter-  
rupted by a Reset. In these situations, the user can  
check the WRERR bit and rewrite the location. It is nec-  
essary to reload the data and address registers  
(EEDATA and EEADR), as these registers have  
cleared as a result of the Reset.  
The EEPROM data memory is rated for high erase/write  
cycle endurance. A byte write automatically erases the  
location and writes the new data (erase-before-write). The  
write time is controlled by an on-chip timer. The write time  
will vary with voltage and temperature, as well as from  
chip to chip. Please refer to parameter D122 (Table 26-1  
in Section 26.0 “Electrical Characteristics”) for exact  
limits.  
Control bits, RD and WR, start read and erase/write  
operations, respectively. These bits are set by firmware  
and cleared by hardware at the completion of the  
operation.  
The RD bit cannot be set when accessing program  
memory (EEPGD = 1). Program memory is read using  
table read instructions. See Section 6.1 “Table Reads  
and Table Writes” regarding table reads.  
7.1  
EEADR  
The address register can address 256 bytes of data  
EEPROM.  
Note:  
Interrupt flag bit, EEIF in the PIR2 register,  
is set when write is complete. It must be  
cleared in software.  
7.2  
EECON1 and EECON2 Registers  
EECON1 is the control register for memory accesses.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the memory write and erase sequences.  
Control bit EEPGD determines if the access will be to  
program or data EEPROM memory. When clear, oper-  
ations will access the data EEPROM memory. When  
set, program memory is accessed.  
2003 Microchip Technology Inc.  
DS39599C-page 81  
PIC18F2220/2320/4220/4320  
REGISTER 7-1:  
EECON1 REGISTER  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access program Flash memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EE or Configuration Select bit  
1= Access configuration or calibration registers  
0= Access program Flash or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command (cleared  
by completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: EEPROM Error Flag bit  
1= A write operation was prematurely terminated  
(MCLR or WDT Reset during self-timed erase or program operation)  
0= The write operation completed normally  
Note:  
When a WRERR occurs, the EEPGD or FREE bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Erase/Write Enable bit  
1= Allows erase/write cycles  
0= Inhibits erase/write cycles  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle is completed  
bit 0  
RD: Read Control bit  
1= Initiates a memory read (Read takes one cycle. RD is cleared in hardware. The RD bit can  
only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1.)  
0= Read completed  
Legend:  
R = Readable bit  
S = Settable only U = Unimplemented bit, read as ‘0’ W = Writable bit  
- n = Value at POR ‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
DS39599C-page 82  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
After a write sequence has been initiated, EECON1,  
EEADR and EEDATA cannot be modified. The WR bit  
will be inhibited from being set unless the WREN bit is  
7.3  
Reading the Data EEPROM  
Memory  
To read a data memory location, the user must write the  
address to the EEADR register, clear the EEPGD con-  
trol bit (EECON1<7>) and then set control bit, RD  
(EECON1<0>). The data is available for the very next  
instruction cycle; therefore, the EEDATA register can  
be read by the next instruction. EEDATA will hold this  
value until another read operation or until it is written to  
by the user (during a write operation).  
set. The WREN bit must be set on a previous instruc-  
tion. Both WR and WREN cannot be set with the same  
instruction.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EEPROM Interrupt Flag bit  
(EEIF) is set. The user may either enable this interrupt  
or poll this bit. EEIF must be cleared by software.  
7.5  
Write Verify  
7.4  
Writing to the Data EEPROM  
Memory  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
To write an EEPROM data location, the address must  
first be written to the EEADR register and the data  
written to the EEDATA register. The sequence in  
Example 7-2 must be followed to initiate the write cycle.  
The write will not begin if this sequence is not exactly  
followed (write 55h to EECON2, write AAh to EECON2,  
then set WR bit) for each byte. It is strongly recom-  
mended that interrupts be disabled during this  
code segment.  
7.6  
Protection Against Spurious Write  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared.  
Also, the Power-up Timer (72 ms duration) prevents  
EEPROM write.  
Additionally, the WREN bit in EECON1 must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code exe-  
cution (i.e., runaway programs). The WREN bit should  
be kept clear at all times except when updating the  
EEPROM. The WREN bit is not cleared by hardware.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch, or software malfunction.  
EXAMPLE 7-1:  
DATA EEPROM READ  
MOVLW  
MOVWF  
BCF  
BSF  
MOVF  
DATA_EE_ADDR  
EEADR  
EECON1, EEPGD  
EECON1, RD  
EEDATA, W  
;
; Data Memory Address to read  
; Point to DATA memory  
; EEPROM Read  
; W = EEDATA  
EXAMPLE 7-2:  
DATA EEPROM WRITE  
MOVLW  
MOVWF  
DATA_EE_ADDR  
EEADR  
;
; Data Memory Address to write  
MOVLW  
MOVWF  
BCF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
DATA_EE_DATA  
EEDATA  
EECON1, EEPGD  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
;
; Data Memory Value to write  
; Point to DATA memory  
; Enable writes  
; Disable Interrupts  
;
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; Enable Interrupts  
Required  
Sequence  
BSF  
SLEEP  
BCF  
; Wait for interrupt to signal write complete  
; Disable writes  
EECON1, WREN  
2003 Microchip Technology Inc.  
DS39599C-page 83  
PIC18F2220/2320/4220/4320  
7.7  
Operation During Code-Protect  
7.8  
Using the Data EEPROM  
Data EEPROM memory has its own code-protect bits in  
configuration words. External read and write opera-  
tions are disabled if either of these mechanisms are  
enabled.  
The data EEPROM is a high-endurance, byte address-  
able array that has been optimized for the storage of  
frequently changing information (e.g., program vari-  
ables or other data that are updated often). Frequently  
changing values will typically be updated more often  
than specification D124 or D124A. If this is not the  
case, an array refresh must be performed. For this  
reason, variables that change infrequently (such as  
constants, IDs, calibration, etc.) should be stored in  
Flash program memory.  
The microcontroller itself can both read and write to the  
internal Data EEPROM regardless of the state of the  
code-protect configuration bit. Refer to Section 23.0  
“Special Features of the CPU” for additional  
information.  
A simple data EEPROM refresh routine is shown in  
Example 7-3.  
Note:  
If data EEPROM is only used to store  
constants and/or data that changes rarely,  
an array refresh is likely not required. See  
specification D124 or D124A.  
EXAMPLE 7-3:  
DATA EEPROM REFRESH ROUTINE  
CLRF  
BCF  
BCF  
BCF  
BSF  
EEADR  
; Start at address 0  
; Set for memory  
; Set for Data EEPROM  
; Disable interrupts  
; Enable writes  
; Loop to refresh array  
; Read current address  
;
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; Wait for write to complete  
EECON1, CFGS  
EECON1, EEPGD  
INTCON, GIE  
EECON1, WREN  
LOOP  
BSF  
EECON1, RD  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
EECON1, WR  
$-2  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BTFSC  
BRA  
INCFSZ EEADR, F  
; Increment address  
BRA  
Loop  
; Not zero, do it again  
BCF  
BSF  
EECON1, WREN  
INTCON, GIE  
; Disable writes  
; Enable interrupts  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
EEADR  
EEDATA  
GIE/GIEH PEIE/GIEL TMR0IE  
EEPROM Address Register  
EEPROM Data Register  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
EECON2 EEPROM Control Register 2 (not a physical register)  
EECON1  
IPR2  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
CMIP  
CMIF  
CMIE  
FREE  
EEIP  
EEIF  
EEIE  
WRERR WREN  
WR  
RD  
xx-0 x000 uu-0 u000  
BCLIP  
BCLIF  
BCLIE  
LVDIP  
LVDIF  
LVDIE  
TMR3IP CCP2IP 11-1 1111 ---1 1111  
TMR3IF CCP2IF 00-0 0000 ---0 0000  
TMR3IE CCP2IE 00-0 0000 ---0 0000  
PIR2  
PIE2  
Legend:  
x= unknown, u= unchanged, r= reserved, -= unimplemented, read as ‘0’.  
Shaded cells are not used during Flash/EEPROM access.  
DS39599C-page 84  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Making the 8 x 8 multiplier execute in a single-cycle  
gives the following advantages:  
8.0  
8.1  
8 X 8 HARDWARE MULTIPLIER  
• Higher computational throughput  
Introduction  
• Reduces code size requirements for multiply  
algorithms  
An 8 x 8 hardware multiplier is included in the ALU of  
the PIC18F2X20/4X20 devices. By making the multiply  
a hardware operation, it completes in a single instruc-  
tion cycle. This is an unsigned multiply that gives a  
16-bit result. The result is stored into the 16-bit product  
register pair (PRODH:PRODL). The multiplier does not  
affect any flags in the Status register.  
The performance increase allows the device to be used  
in applications previously reserved for Digital Signal  
Processors.  
Table 8-1 shows a performance comparison between  
enhanced devices using the single-cycle hardware  
multiply and performing the same function without the  
hardware multiply.  
TABLE 8-1:  
Routine  
PERFORMANCE COMPARISON  
Program  
Time  
Cycles  
(Max)  
Multiply Method  
Memory  
(Words)  
@ 40 MHz @ 10 MHz @ 4 MHz  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 µs  
100 ns  
9.1 µs  
600 ns  
24.2 µs  
2.8 µs  
25.4 µs  
4.0 µs  
27.6 µs  
400 ns  
36.4 µs  
2.4 µs  
69 µs  
1 µs  
91 µs  
6 µs  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
Without hardware multiply  
Hardware multiply  
21  
28  
52  
35  
242  
28  
254  
40  
96.8 µs  
11.2 µs  
102.6 µs  
16.0 µs  
242 µs  
28 µs  
254 µs  
40 µs  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
EXAMPLE 8-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
8.2  
Operation  
Example 8-1 shows the sequence to do an 8 x 8  
unsigned multiply. Only one instruction is required  
when one argument of the multiply is already loaded in  
the WREG register.  
MOVF  
ARG1, W  
ARG2  
;
MULWF  
; ARG1 * ARG2 ->  
;
PRODH:PRODL  
Example 8-2 shows the sequence to do an 8 x 8 signed  
multiply. To account for the sign bits of the arguments,  
each argument’s Most Significant bit (MSb) is tested  
and the appropriate subtractions are done.  
EXAMPLE 8-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
MOVF  
ARG1, W  
ARG2  
MULWF  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG1  
MOVF  
BTFSC  
SUBWF  
ARG2, W  
ARG1, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
2003 Microchip Technology Inc.  
DS39599C-page 85  
PIC18F2220/2320/4220/4320  
Example 8-3 shows the sequence to do a 16 x 16  
unsigned multiply. Equation 8-1 shows the algorithm  
that is used. The 32-bit result is stored in four registers,  
RES3:RES0.  
EQUATION 8-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
(ARG1H ARG2H 216) +  
EQUATION 8-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
(ARG1H ARG2L 28) +  
(ARG1L ARG2H ² 28) +  
(ARG1L ARG2L) +  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
(ARG1H ARG2H 216) +  
(ARG1H ARG2L 28) +  
(ARG1L ARG2H 28) +  
(ARG1L ARG2L)  
(-1 ARG2H<7> ARG1H:ARG1L 216) +  
(-1 ARG1H<7> ARG2H:ARG2L 216)  
EXAMPLE 8-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
EXAMPLE 8-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
;
;
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1L, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1L, W  
ARG2H  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H, 7  
SIGN_ARG1  
ARG1L, W  
RES2  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
ARG1H, W  
Example 8-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 8-2 shows the algorithm  
used. The 32-bit result is stored in four registers,  
RES3:RES0. To account for the sign bits of the argu-  
ments, each argument pairs’ Most Significant bit (MSb)  
is tested and the appropriate subtractions are done.  
SUBWFB RES3  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H, 7  
CONT_CODE  
ARG2L, W  
RES2  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
MOVF  
SUBWF  
MOVF  
ARG2H, W  
SUBWFB RES3  
;
CONT_CODE  
:
DS39599C-page 86  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
When the IPEN bit is cleared (default state), the  
interrupt priority feature is disabled and interrupts are  
9.0  
INTERRUPTS  
compatible with PICmicro® mid-range devices. In Com-  
patibility mode, the interrupt priority bits for each source  
have no effect. INTCON<6> is the PEIE bit which  
enables/disables all peripheral interrupt sources.  
INTCON<7> is the GIE bit which enables/disables all  
interrupt sources. All interrupts branch to address  
000008h in Compatibility mode.  
The PIC18F2320/4320 devices have multiple interrupt  
sources and an interrupt priority feature that allows  
each interrupt source to be assigned a high priority  
level or a low priority level. The high priority interrupt  
vector is at 000008h and the low priority interrupt vector  
is at 000018h. High priority interrupt events will  
interrupt any low priority interrupts that may be in  
progress.  
When an interrupt is responded to, the global interrupt  
enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH or GIEL bit.  
High priority interrupt sources can interrupt a low  
priority interrupt. Low priority interrupts are not  
processed while high priority interrupts are in progress.  
There are ten registers which are used to control  
interrupt operation. These registers are:  
• RCON  
• INTCON  
• INTCON2  
• INTCON3  
• PIR1, PIR2  
• PIE1, PIE2  
• IPR1, IPR2  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address  
(000008h or 000018h). Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt  
flag bits must be cleared in software before re-enabling  
interrupts to avoid recursive interrupts.  
It is recommended that the Microchip header files  
supplied with MPLAB® IDE be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used) which re-enables interrupts.  
In general, each interrupt source has three bits to  
control its operation. The functions of these bits are:  
For external interrupt events, such as the INT pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set regardless of the  
status of their corresponding enable bit or the GIE bit.  
• Flag bit to indicate that an interrupt event  
occurred  
• Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
• Priority bit to select high priority or low priority  
(most interrupt sources have priority bits)  
Note:  
Do not use the MOVFFinstruction to modify  
any of the interrupt control registers while  
any interrupt is enabled. Doing so may  
cause erratic microcontroller behavior.  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts  
globally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set (high priority).  
Setting the GIEL bit (INTCON<6>) enables all inter-  
rupts that have the priority bit cleared (low priority).  
When the interrupt flag, enable bit and appropriate  
global interrupt enable bit are set, the interrupt will vec-  
tor immediately to address 000008h or 000018h,  
depending on the priority bit setting. Individual inter-  
rupts can be disabled through their corresponding  
enable bits.  
2003 Microchip Technology Inc.  
DS39599C-page 87  
PIC18F2220/2320/4220/4320  
FIGURE 9-1:  
INTERRUPT LOGIC  
Wake-up if in  
Power Managed Mode  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0IF  
INT0IE  
Interrupt to CPU  
Vector to Location  
0008h  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
PSPIF  
PSPIE  
PSPIP  
GIEH/GIE  
ADIF  
ADIE  
ADIP  
IPE  
IPEN  
RCIF  
RCIE  
RCIP  
GIEL/PEIE  
IPEN  
Additional Peripheral Interrupts  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
PSPIF  
PSPIE  
PSPIP  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
ADIF  
ADIE  
ADIP  
RBIF  
RBIE  
RBIP  
RCIF  
RCIE  
RCIP  
GIEL\PEIE  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
Additional Peripheral Interrupts  
INT2IF  
INT2IE  
INT2IP  
DS39599C-page 88  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
9.1  
INTCON Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit. User software should ensure  
the appropriate interrupt flag bits are clear  
prior to enabling an interrupt. This feature  
allows for software polling.  
The INTCON registers are readable and writable  
registers which contain various enable, priority and flag  
bits.  
REGISTER 9-1:  
INTCON REGISTER  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF  
GIE/GIEH PEIE/GIEL  
bit 7  
TMR0IE  
INT0IE  
TMR0IF  
bit 0  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN = 1:  
1= Enables all high priority interrupts  
0= Disables all high priority interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low priority peripheral interrupts  
0= Disables all low priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Note:  
A mismatch condition will continue to set this bit. Reading PORTB will end the  
mismatch condition and allow the bit to be cleared.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 89  
PIC18F2220/2320/4220/4320  
REGISTER 9-2:  
INTCON2 REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
U-0  
R/W-1  
U-0  
R/W-1  
RBIP  
INTEDG0 INTEDG1 INTEDG2  
TMR0IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
DS39599C-page 90  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 9-3:  
INTCON3 REGISTER  
R/W-1  
R/W-1  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT2IE  
INT1IE  
bit 7  
bit 0  
bit 7  
bit 6  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
bit 3  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
bit 0  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
2003 Microchip Technology Inc.  
DS39599C-page 91  
PIC18F2220/2320/4220/4320  
9.2  
PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are two Peripheral Interrupt  
Flag registers (PIR1, PIR2).  
2: User software should ensure the appropri-  
ate interrupt flag bits are cleared prior to  
enabling an interrupt and after servicing  
that interrupt.  
REGISTER 9-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
R/W-0  
PSPIF(1)  
bit 7  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 0  
bit 7  
PSPIF(1): Parallel Slave Port Read/Write Interrupt Flag bit  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
Note 1: This bit is reserved on PIC18F2X20 devices; always maintain this bit clear.  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer, RCREG, is full (cleared when RCREG is read)  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer, TXREG, is empty (cleared when TXREG is written)  
0= The USART transmit buffer is full  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39599C-page 92  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 9-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
R/W-0  
OSCFIF  
bit 7  
R/W-0  
CMIF  
U-0  
R/W-0  
EEIF  
R/W-0  
BCLIF  
R/W-0  
LVDIF  
R/W-0  
R/W-0  
TMR3IF  
CCP2IF  
bit 0  
bit 7  
bit 6  
OSCFIF: Oscillator Fail Interrupt Flag bit  
1= System oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= System clock operating  
CMIF: Comparator Interrupt Flag bit  
1= Comparator input has changed (must be cleared in software)  
0= Comparator input has not changed  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit  
1= The write operation is complete (must be cleared in software)  
0= The write operation is not complete, or has not been started  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision occurred (must be cleared in software)  
0= No bus collision occurred  
LVDIF: Low-Voltage Detect Interrupt Flag bit  
1= A low-voltage condition occurred (must be cleared in software)  
0= The device voltage is above the Low-Voltage Detect trip point  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared in software)  
0= TMR3 register did not overflow  
CCP2IF: CCPx Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 93  
PIC18F2220/2320/4220/4320  
9.3  
PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of periph-  
eral interrupt sources, there are two Peripheral Inter-  
rupt Enable registers (PIE1, PIE2). When IPEN = 0, the  
PEIE bit must be set to enable any of these peripheral  
interrupts.  
REGISTER 9-6:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
PSPIE(1)  
bit 7  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
TMR1IE  
bit 0  
CCP1IE  
TMR2IE  
bit 7  
PSPIE(1): Parallel Slave Port Read/Write Interrupt Enable bit  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
Note 1: This bit is reserved on PIC18F2X20 devices; always maintain this bit clear.  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Master Synchronous Serial Port Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39599C-page 94  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 9-7:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0  
OSCFIE  
bit 7  
R/W-0  
CMIE  
U-0  
R/W-0  
EEIE  
R/W-0  
BCLIE  
R/W-0  
LVDIE  
R/W-0  
R/W-0  
TMR3IE  
CCP2IE  
bit 0  
bit 7  
bit 6  
OSCFIE: Oscillator Fail Interrupt Enable bit  
1= Enabled  
0= Disabled  
CMIE: Comparator Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enabled  
0= Disabled  
LVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enabled  
0= Disabled  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enabled  
0= Disabled  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 95  
PIC18F2220/2320/4220/4320  
9.4  
IPR Registers  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to the number of periph-  
eral interrupt sources, there are two Peripheral Inter-  
rupt Priority registers (IPR1, IPR2). Using the priority  
bits requires that the Interrupt Priority Enable (IPEN) bit  
be set.  
REGISTER 9-8:  
IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
R/W-1  
PSPIP(1)  
bit 7  
R/W-1  
ADIP  
R/W-1  
RCIP  
R/W-1  
TXIP  
R/W-1  
SSPIP  
R/W-1  
R/W-1  
R/W-1  
TMR1IP  
bit 0  
CCP1IP  
TMR2IP  
bit 7  
PSPIP(1): Parallel Slave Port Read/Write Interrupt Priority bit  
1= High priority  
0= Low priority  
Note 1: This bit is reserved on PIC18F2X20 devices; always maintain this bit set.  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
RCIP: USART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TXIP: USART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
SSPIP: Master Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39599C-page 96  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 9-9:  
IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
R/W-1  
OSCFIP  
bit 7  
R/W-1  
CMIP  
U-0  
R/W-1  
EEIP  
R/W-1  
BCLIP  
R/W-1  
LVDIP  
R/W-1  
R/W-1  
TMR3IP  
CCP2IP  
bit 0  
bit 7  
bit 6  
OSCFIP: Oscillator Fail Interrupt Priority bit  
1= High priority  
0= Low priority  
CMIP: Comparator Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIP: Data EEPROM/Flash Write Operation Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIP: Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
LVDIP: Low-Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP2IP: CCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 97  
PIC18F2220/2320/4220/4320  
9.5  
RCON Register  
The RCON register contains bits used to determine the  
cause of the last Reset or wake-up from power man-  
aged mode. RCON also contains the bit that enables  
interrupt priorities (IPEN).  
REGISTER 9-10: RCON REGISTER  
R/W-0  
IPEN  
bit 7  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6-5 Unimplemented: Read as ‘0’  
bit 4  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed (set by firmware only)  
0= The RESETinstruction was executed causing a device Reset (must be set in software after  
a Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= Set by power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-Down Detection Flag bit  
1= Set by power-up or by the CLRWDTinstruction  
0= Cleared by execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred (set by firmware only)  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred (set by firmware only)  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39599C-page 98  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
9.6  
INTn Pin Interrupts  
9.8  
PORTB Interrupt-on-Change  
External interrupts on the RB0/INT0, RB1/INT1 and  
RB2/INT2 pins are edge triggered: either rising if the  
corresponding INTEDGx bit is set in the INTCON2 reg-  
ister, or falling if the INTEDGx bit is clear. When a valid  
edge appears on the RBx/INTx pin, the corresponding  
flag bit, INTxF, is set. This interrupt can be disabled by  
clearing the corresponding enable bit, INTxE. Flag bit,  
INTxF, must be cleared in software in the Interrupt Ser-  
vice Routine before re-enabling the interrupt. All exter-  
nal interrupts (INT0, INT1 and INT2) can wake-up the  
processor from the power managed modes if bit INTxE  
was set prior to going into power managed modes. If  
the global interrupt enable bit GIE is set, the processor  
will branch to the interrupt vector following wake-up.  
An input change on PORTB<7:4> sets flag bit, RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<3>).  
Interrupt priority for PORTB interrupt-on-change is  
determined by the value contained in the interrupt  
priority bit, RBIP (INTCON2<0>).  
9.9  
Context Saving During Interrupts  
During interrupts, the return PC address is saved on the  
stack. Additionally, the WREG, Status and BSR registers  
are saved on the fast return stack. If a fast return from  
interrupt is not used (See Section 5.3 “Fast Register  
Stack”), the user may need to save the WREG, Status  
and BSR registers on entry to the Interrupt Service Rou-  
tine. Depending on the user’s application, other registers  
may also need to be saved. Example 9-1 saves and  
restores the WREG, Status and BSR registers during an  
Interrupt Service Routine.  
Interrupt priority for INT1 and INT2 is determined by the  
value contained in the Interrupt Priority bits, INT1IP  
(INTCON3<6>) and INT2IP (INTCON3<7>). There is  
no priority bit associated with INT0. It is always a high  
priority interrupt source.  
9.7  
TMR0 Interrupt  
In 8-bit mode (which is the default), an overflow  
(FFh 00h) in the TMR0 register will set flag bit  
TMR0IF. In 16-bit mode, an overflow (FFFFh 0000h)  
in the TMR0H:TMR0L registers will set flag bit TMR0IF.  
The interrupt can be enabled/disabled by setting/clear-  
ing enable bit, TMR0IE (INTCON<5>). Interrupt priority  
for Timer0 is determined by the value contained in the  
interrupt priority bit, TMR0IP (INTCON2<2>). See  
Section 11.0 “Timer0 Module” for further details on  
the Timer0 module.  
EXAMPLE 9-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR_TMEP located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
2003 Microchip Technology Inc.  
DS39599C-page 99  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 100  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
10.1 PORTA, TRISA and LATA  
Registers  
10.0 I/O PORTS  
Depending on the device selected and features  
enabled, there are up to five ports available. Some pins  
of the I/O ports are multiplexed with an alternate func-  
tion from the peripheral features on the device. In gen-  
eral, when a peripheral is enabled, that pin may not be  
used as a general purpose I/O pin.  
PORTA is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
High-Impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Each port has three registers for its operation. These  
registers are:  
Reading the PORTA register reads the status of the  
pins, whereas writing to it, will write to the port latch.  
• TRIS register (Data Direction register)  
• PORT register (reads the levels on the pins of the  
device)  
The Data Latch register (LATA) is also memory mapped.  
Read-modify-write operations on the LATA register read  
and write the latched output value for PORTA.  
• LAT register (Data Latch)  
The Data Latch (LAT register) is useful for read-modify-  
write operations on the value that the I/O pins are  
driving.  
The RA4 pin is multiplexed with the Timer0 module  
clock input and one of the comparator outputs to  
become the RA4/T0CKI/C1OUT pin. Pins RA6 and  
RA7 are multiplexed with the main oscillator pins; they  
are enabled as oscillator or I/O pins by the selection of  
the main oscillator in Configuration Register 1H (see  
Section 23.1 “Configuration Bits” for details). When  
they are not used as port pins, RA6 and RA7 and their  
associated TRIS and LAT bits are read as ‘0’.  
A simplified model of a generic I/O port without the  
interfaces to other peripherals is shown in Figure 10-1.  
FIGURE 10-1:  
GENERIC I/O PORT  
OPERATION  
The other PORTA pins are multiplexed with analog  
inputs, the analog VREF+ and VREF- inputs and the com-  
parator voltage reference output. The operation of pins,  
RA3:RA0 and RA5, as A/D converter inputs is selected  
by clearing/setting the control bits in the ADCON1 reg-  
ister (A/D Control Register 1). Pins RA0 through RA5  
may also be used as comparator inputs or outputs by  
setting the appropriate bits in the CMCON register.  
RD LAT  
Data  
Bus  
D
Q
WR LAT  
I/O pin(1)  
or  
Port  
CK  
Data Latch  
D
Q
Note:  
On a Power-on Reset, RA5 and RA3:RA0  
are configured as analog inputs and read  
as ‘0’. RA4 is configured as a digital input.  
WR TRIS  
RD TRIS  
CK  
TRIS Latch  
Input  
Buffer  
The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input  
and an open-drain output. All other PORTA pins have  
TTL input levels and full CMOS output drivers.  
The TRISA register controls the direction of the RA pins  
even when they are being used as analog inputs. The  
user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Q
D
EN  
RD Port  
EXAMPLE 10-1:  
INITIALIZING PORTA  
Note 1: I/O pins have diode protection to VDD and VSS.  
CLRF  
PORTA  
LATA  
0x07  
; Initialize PORTA by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
CLRF  
MOVLW  
MOVWF  
MOVLW  
; Configure A/D  
ADCON1 ; for digital inputs  
0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF  
TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
2003 Microchip Technology Inc.  
DS39599C-page 101  
PIC18F2220/2320/4220/4320  
FIGURE 10-2:  
BLOCK DIAGRAM OF  
RA3:RA0 AND RA5 PINS  
FIGURE 10-4:  
BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
RD LATA  
RD LATA  
Data  
Bus  
Data  
Bus  
D
Q
D
Q
WR LATA  
or  
PORTA  
VDD  
WR LATA  
or  
PORTA  
Q
I/O pin(1)  
Q
Data Latch  
CK  
CK  
P
N
Data Latch  
I/O pin(1)  
N
D
Q
Q
VSS  
D
Q
WR TRISA  
RD TRISA  
Schmitt  
Trigger  
Input  
WR TRISA  
CK  
VSS  
Q
CK  
Analog  
Input  
Mode  
TRIS Latch  
TRIS Latch  
Buffer  
RD TRISA  
TTL  
Input  
Buffer  
Q
D
Q
D
EN  
EN  
RD PORTA  
RD PORTA  
SS Input (RA5 only)  
TMR0 Clock Input  
Note 1: I/O pins have protection diodes to VDD and VSS.  
To A/D Converter and LVD Modules  
Note 1: I/O pins have protection diodes to VDD and VSS.  
FIGURE 10-5:  
BLOCK DIAGRAM OF  
RA7 PIN  
FIGURE 10-3:  
BLOCK DIAGRAM OF  
RA6 PIN  
RA6 Enable  
RA7 Enable  
To Oscillator  
Data  
Bus  
Data  
Bus  
RD LATA  
RD LATA  
D
D
Q
Q
Q
Q
VDD  
P
VDD  
P
WR LATA  
WR LATA  
or  
or  
PORTA  
PORTA  
CK  
CK  
Data Latch  
Data Latch  
I/O pin(1)  
I/O pin(1)  
N
N
D
Q
D
Q
WR  
WR  
TRISA  
TRISA  
VSS  
VSS  
CK  
CK  
Q
Q
TRIS Latch  
TRIS Latch  
RD  
RD  
TRISA  
TTL  
Input  
Buffer  
TTL  
Input  
Buffer  
TRISA  
ECIO or  
RCIO  
RA7  
Enable  
Enable  
Q
D
Q
D
EN  
EN  
RD PORTA  
RD PORTA  
Note 1: I/O pins have protection diodes to VDD and VSS.  
2003 Microchip Technology Inc.  
Note 1: I/O pins have protection diodes to VDD and VSS.  
DS39599C-page 102  
PIC18F2220/2320/4220/4320  
TABLE 10-1: PORTA FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
Input/output or analog input.  
RA0/AN0  
RA1/AN1  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input.  
RA2/AN2/VREF-/CVREF  
RA3/AN3/VREF+  
Input/output, analog input, VREF- or Comparator VREF output.  
Input/output, analog input or VREF+.  
RA4/T0CKI/C1OUT  
Input/output, external clock input for Timer0 or Comparator 1  
output. Output is open-drain type.  
RA5/AN4/SS/LVDIN/C2OUT  
bit 5  
TTL  
Input/output, analog input, Slave Select input for Synchronous  
Serial Port, Low-Voltage Detect input or Comparator 2 output.  
OSC2/CLKO/RA6  
OSC1/CLKI/RA7  
bit 6  
bit 7  
TTL  
TTL  
OSC2, clock output or I/O pin.  
OSC1, clock input or I/O pin.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(1)  
PORTA  
RA7  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
xx0x 0000 uu0u 0000  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
(1)  
(1)  
LATA  
LATA7  
LATA6  
LATA Data Latch Register  
(1)  
(1)  
TRISA  
TRISA7  
TRISA6  
PORTA Data Direction Register  
ADCON1  
CMCON  
CVRCON  
VCFG1  
C2INV  
CVRR  
VCFG0  
C1INV  
PCFG3  
CIS  
PCFG2  
CM2  
PCFG1  
CM1  
PCFG0 --00 0000 --00 0000  
C2OUT  
CVREN  
C1OUT  
CVROE  
CM0  
0000 0111 0000 0111  
000- 0000 000- 0000  
CVR3  
CVR2  
CVR1  
CVR0  
Legend: x= unknown, u= unchanged, - = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
Note 1: RA7:RA6 and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration;  
otherwise, they are read as ‘0’.  
2003 Microchip Technology Inc.  
DS39599C-page 103  
PIC18F2220/2320/4220/4320  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
10.2 PORTB, TRISB and LATB  
Registers  
PORTB is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a High-Impedance mode). Clearing a TRISB bit (= 0)  
will make the corresponding PORTB pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
a) Any read or write of PORTB (except with the  
MOVFF (ANY), PORTB instruction). This will  
end the mismatch condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
The Data Latch register (LATB) is also memory  
mapped. Read-modify-write operations on the LATB  
register read and write the latched output value for  
PORTB.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
EXAMPLE 10-2:  
INITIALIZING PORTB  
CLRF  
PORTB  
LATB  
0x0F  
; Initialize PORTB by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
RB3 can be configured by the configuration bit,  
CCP2MX, as the alternate peripheral pin for the CCP2  
module (CCP2MX = 0).  
CLRF  
FIGURE 10-6:  
BLOCK DIAGRAM OF  
RB7:RB5 PINS  
MOVLW  
MOVWF  
; Set RB<4:0> as  
ADCON1 ; digital I/O pins  
; (required if config bit  
VDD  
RBPU(2)  
Data Bus  
Weak  
Pull-up  
; PBADEN is set)  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
P
MOVLW  
MOVWF  
0xCF  
Data Latch  
D
Q
WR LATB  
or PORTB  
I/O pin(1)  
TRISB  
CK  
TRIS Latch  
D
Q
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
WR TRISB  
TTL  
Input  
Buffer  
CK  
ST  
Buffer  
RD TRISB  
RD LATB  
Note:  
On a Power-on Reset, RB4:RB0 are con-  
figured as analog inputs by default and  
read as ‘0’; RB7:RB5 are configured as  
digital inputs.  
Latch  
Q
Q
D
RD PORTB  
Set RBIF  
EN  
Q1  
By programming the configuration bit,  
PBADEN (CONFIG3H<1>), RB4:RB0 will  
alternatively be configured as digital inputs  
on POR.  
D
RD PORTB  
Q3  
From other  
RB7:RB5 and  
RB4 pins  
EN  
Four of the PORTB pins (RB7:RB4) have an interrupt-  
on-change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the interrupt-  
on-change comparison). The input pins (of RB7:RB4)  
are compared with the old value latched on the last  
read of PORTB. The “mismatch” outputs of RB7:RB4  
are OR’ed together to generate the RB Port Change  
Interrupt with Flag bit, RBIF (INTCON<0>).  
RB7:RB5 in Serial Programming Mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (INTCON2<7>).  
DS39599C-page 104  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 10-7:  
BLOCK DIAGRAM OF  
RB2:RB0 PINS  
FIGURE 10-8:  
BLOCK DIAGRAM OF  
RB4 PIN  
VDD  
VDD  
RBPU(2)  
Analog Input Mode  
RBPU(2)  
Data Bus  
Weak  
Pull-up  
Weak  
Pull-up  
P
P
Data Latch  
D
Q
Data Bus  
D
Q
I/O pin(1)  
WR LATB  
or PORTB  
I/O pin(1)  
WR LATB  
or PORTB  
CK  
TRIS Latch  
CK  
Data Latch  
D
Q
D
Q
WR TRISB  
TTL  
Input  
Buffer  
CK  
WR TRISB  
CK  
TRIS Latch  
TTL  
Input  
Buffer  
RD TRISB  
RD LATB  
RD TRISB  
RD LATB  
Latch  
Q
Q
D
RD PORTB  
Set RBIF  
Q
D
EN  
Q1  
EN  
RD PORTB  
D
Schmitt Trigger  
Buffer  
RD PORTB  
Q3  
INTx  
From RB7:RB5  
EN  
To A/D Converter  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (INTCON2<7>).  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (INTCON2<7>).  
FIGURE 10-9:  
BLOCK DIAGRAM OF RB3/CCP2 PIN  
VDD  
Port/CCP2 Select  
CCP2 Data Out  
RBPU  
Weak  
P
Analog Input Mode  
Pull-up  
0
1
RD LATC  
VDD  
P
Data Bus  
D
Q
WR LATB  
or PORTB  
CK  
Data Latch  
RB3 pin(1)  
TTL Input  
Buffer  
D
Q
N
WR TRISB  
RD TRISC  
CK  
TRIS Latch  
VSS  
Q
D
EN  
Schmitt  
Trigger  
RD PORTB  
CCP2 Input  
Analog Input Mode  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
2003 Microchip Technology Inc.  
DS39599C-page 105  
PIC18F2220/2320/4220/4320  
TABLE 10-3: PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RB0/AN12/INT0  
bit 0  
TTL(1)/ST(2) Input/output pin, analog input or external interrupt input 0.  
Internal software programmable weak pull-up.  
RB1/AN10/INT1  
RB2/AN8/INT2  
RB3/AN9/CCP2  
bit 1  
bit 2  
bit 3  
TTL(1)/ST(2) Input/output pin, analog input or external interrupt input 1.  
Internal software programmable weak pull-up.  
TTL(1)/ST(2) Input/output pin, analog input or external interrupt input 2.  
Internal software programmable weak pull-up.  
TTL(1)/ST(3) Input/output pin or analog input. Capture2 input/Compare2 output/  
PWM output when CCP2MX configuration bit is set(4)  
Internal software programmable weak pull-up.  
.
RB4/AN11/KBI0  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
bit 4  
bit 5  
bit 6  
bit 7  
TTL  
Input/output pin (with interrupt-on-change) or analog input.  
Internal software programmable weak pull-up.  
TTL/ST(5) Input/output pin (with interrupt-on-change). Internal software  
programmable weak pull-up. Low-voltage ICSP enable pin.  
TTL/ST(5) Input/output pin (with interrupt-on-change). Internal software  
programmable weak pull-up. Serial programming clock.  
TTL/ST(5) Input/output pin (with interrupt-on-change). Internal software  
programmable weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a TTL input when configured as digital I/O.  
2: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
3: This buffer is a Schmitt Trigger input when configured as the CCP2 input.  
4: A device configuration bit selects which I/O pin the CCP2 pin is multiplexed on.  
5: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTB  
LATB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxq qqqq  
xxxx xxxx  
1111 1111  
0000 000x  
1111 -1-1  
uuuu uuuu  
uuuu uuuu  
1111 1111  
0000 000u  
1111 -1-1  
11-0 0-00  
--00 0000  
LATB Data Latch Register  
TRISB  
PORTB Data Direction Register  
GIE/GIEH PEIE/GIEL TMR0IE  
INTCON  
INTCON2  
INTCON3  
ADCON1  
Legend:  
INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
RBIP  
RBPU  
INT2IP  
INTEDG0 INTEDG1 INTEDG2  
TMR0IP  
INT1IP  
INT2IE  
VCFG0  
INT1IE  
INT2IF  
INT1IF 11-0 0-00  
VCFG1  
PCFG3 PCFG2 PCFG1 PCFG0 --00 0000  
x= unknown, u= unchanged, q= value depends on condition. Shaded cells are not used by PORTB.  
DS39599C-page 106  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
10.3 PORTC, TRISC and LATC  
Registers  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
PORTC is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a High-Impedance mode). Clearing a TRISC bit (= 0)  
will make the corresponding PORTC pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
The contents of the TRISC register are affected by  
peripheral overrides. Reading TRISC always returns  
the current contents even though a peripheral device  
may be overriding one or more of the pins.  
EXAMPLE 10-3:  
INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
The Data Latch register (LATC) is also memory  
mapped. Read-modify-write operations on the LATC  
register read and write the latched output value for  
PORTC.  
CLRF  
LATC  
; Alternate method  
; to clear output  
; data latches  
PORTC is multiplexed with several peripheral functions  
(Table 10-5). The pins have Schmitt Trigger input buff-  
ers. RC1 is normally configured by configuration bit,  
CCP2MX (CONFIG3H<0>), as the default peripheral  
pin of the CCP2 module (default/erased state,  
CCP2MX = 1).  
MOVLW  
MOVWF  
0xCF  
; Value used to  
;initializedata  
; direction  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
TRISC  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an output,  
while other peripherals override the TRIS bit to make a  
pin an input. The user should refer to the corresponding  
peripheral section for the correct TRIS bit settings.  
FIGURE 10-10:  
PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)  
Port/Peripheral Select(2)  
VDD  
Peripheral Data Out  
RD LATC  
0
Data Bus  
D
Q
Q
P
WR LATC or  
WR PORTC  
1
CK  
I/O pin(1)  
Data Latch  
D
Q
WR TRISC  
RD TRISC  
N
Q
CK  
TRIS Latch  
Schmitt  
Trigger  
VSS  
Peripheral Output  
Enable(3)  
Q
D
EN  
RD PORTC  
Peripheral Data In  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral Select signal selects between port data (output) and peripheral output.  
3: Peripheral Output Enable is only active if Peripheral Select is active.  
2003 Microchip Technology Inc.  
DS39599C-page 107  
PIC18F2220/2320/4220/4320  
TABLE 10-5: PORTC FUNCTIONS  
Name  
Bit# Buffer Type  
Function  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
bit 0  
bit 1  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input.  
Input/output port pin, Timer1 oscillator input or Capture2 input/  
Compare2 output/PWM output when CCP2MX configuration bit is  
disabled.  
RC2/CCP1/P1A(1)  
RC3/SCK/SCL  
bit 2  
bit 3  
ST  
ST  
Input/output port pin, Capture1 input/Compare1 output/PWM1 output  
or enhanced PWM output A(1)  
.
RC3 can also be the synchronous serial clock for both SPI and I2C  
modes.  
RC4/SDI/SDA  
RC5/SDO  
bit 4  
bit 5  
bit 6  
ST  
ST  
ST  
RC4 can also be the SPI Data In (SPI mode) or Data I/O (I2C mode).  
Input/output port pin or Synchronous Serial Port data output.  
RC6/TX/CK  
Input/output port pin, Addressable USART Asynchronous Transmit or  
Addressable USART Synchronous Clock.  
RC7/RX/DT  
bit 7  
ST  
Input/output port pin, Addressable USART Asynchronous Receive or  
Addressable USART Synchronous Data.  
Legend: ST = Schmitt Trigger input  
Note 1: Enhanced PWM output is available only on PIC18F4X20 devices.  
TABLE 10-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTC  
LATC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
LATC Data Latch Register  
PORTC Data Direction Register  
TRISC  
Legend: x= unknown, u= unchanged  
DS39599C-page 108  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
PORTD can also be configured as an 8-bit wide micro-  
processor port (Parallel Slave Port) by setting control  
bit, PSPMODE (TRISE<4>). In this mode, the input  
10.4 PORTD, TRISD and LATD  
Registers  
buffers are TTL. See Section 10.6 “Parallel Slave  
Port” for additional information on the Parallel Slave  
Port (PSP).  
Note:  
PORTD is only available on PIC18F4X20  
devices.  
PORTD is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISD. Setting a  
TRISD bit (= 1) will make the corresponding PORTD  
pin an input (i.e., put the corresponding output driver in  
a High-Impedance mode). Clearing a TRISD bit (= 0)  
will make the corresponding PORTD pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
Note:  
When the enhanced PWM mode is used  
with either dual or quad outputs, the PSP  
functions of PORTD are automatically  
disabled.  
EXAMPLE 10-4:  
INITIALIZING PORTD  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
The Data Latch register (LATD) is also memory mapped.  
Read-modify-write operations on the LATD register read  
and write the latched output value for PORTD.  
CLRF  
LATD  
All pins on PORTD are implemented with Schmitt Trig-  
ger input buffers. Each pin is individually configurable  
as an input or output.  
MOVLW  
MOVWF  
0xCF  
Three of the PORTD pins are multiplexed with outputs  
P1B, P1C and P1D of the Enhanced CCP module. The  
operation of these additional PWM output pins is  
covered in greater detail in Section 16.0 “Enhanced  
Capture/Compare/PWM (ECCP) Module”.  
TRISD  
:
Set RD<3:0> as inputs  
; RD<5:4> as outputs  
; RD<7:6> as inputs  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
FIGURE 10-11:  
BLOCK DIAGRAM OF RD7:RD5 PINS  
PORTD/CCP1 Select  
CCP Data Out  
PSPMODE  
RD LATD  
Data Bus  
WR LATD  
0
1
D
Q
Q
VDD  
P
or  
PORTD  
CK  
Data Latch  
D
Q
I/O pin(1)  
WR TRISD  
PSP Read  
RD TRISD  
Q
CK  
0
1
N
TRIS Latch  
VSS  
TTL Buffer  
1
0
Q
D
EN  
RD PORTD  
PSP Write  
Schmitt Trigger  
Input Buffer  
0
1
Note 1: I/O pins have diode protection to VDD and VSS.  
2003 Microchip Technology Inc.  
DS39599C-page 109  
PIC18F2220/2320/4220/4320  
FIGURE 10-12:  
BLOCK DIAGRAM OF RD4:RD0 PINS  
PORTD/CCP1 Select  
PSPMODE  
RD LATD  
Data Bus  
VDD  
P
D
Q
Q
WR LATD  
or  
PORTD  
CK  
Data Latch  
D
Q
I/O pin(1)  
WR TRISD  
PSP Read  
RD TRISD  
Q
CK  
0
1
N
TRIS Latch  
VSS  
TTL Buffer  
1
0
Q
D
EN  
RD PORTD  
PSP Write  
Schmitt Trigger  
Input Buffer  
0
1
Note 1: I/O pins have diode protection to VDD and VSS.  
TABLE 10-7: PORTD FUNCTIONS  
Name  
Bit# Buffer Type  
Function  
RD0/PSP0  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
ST/TTL(1) Input/output port pin or Parallel Slave Port bit 0.  
ST/TTL(1) Input/output port pin or Parallel Slave Port bit 1.  
ST/TTL(1) Input/output port pin or Parallel Slave Port bit 2.  
ST/TTL(1) Input/output port pin or Parallel Slave Port bit 3.  
ST/TTL(1) Input/output port pin or Parallel Slave Port bit 4.  
ST/TTL(1) Input/output port pin, Parallel Slave Port bit 5 or enhanced PWM output P1B.  
ST/TTL(1) Input/output port pin, Parallel Slave Port bit 6 or enhanced PWM output P1C.  
ST/TTL(1) Input/output port pin, Parallel Slave Port bit 7 or enhanced PWM output P1D.  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5/P1B  
RD6/PSP6/P1C  
RD7/PSP7/P1D  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
PORTD  
LATD  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx  
xxxx xxxx  
1111 1111  
0000 -111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
0000 -111  
0000 0000  
LATD Data Latch Register  
TRISD  
PORTD Data Direction Register  
TRISE  
IBF  
OBF  
IBOV  
PSPMODE  
DC1B0  
PORTE Data Direction bits  
CCP1CON  
Legend:  
P1M1  
P1M0  
DC1B1  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000  
x= unknown, u= unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by PORTD.  
DS39599C-page 110  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
10.5.1  
PORTE IN 28-PIN DEVICES  
10.5 PORTE, TRISE and LATE  
Registers  
For PIC18F2X20 devices, PORTE is only available  
when Master Clear functionality is disabled  
(CONFIG3H<7> = 0). In these cases, PORTE is a  
single bit, input only port comprised of RE3 only. The  
pin operates as previously described.  
Depending on the particular PIC18F2X20/4X20 device  
selected, PORTE is implemented in two different ways.  
For PIC18F4X20 devices, PORTE is a 4-bit wide port.  
Three pins (RE0/AN5/RD, RE1/AN6/WR and RE2/  
AN7/CS) are individually configurable as inputs or out-  
puts. These pins have Schmitt Trigger input buffers.  
When selected as an analog input, these pins will read  
as ‘0’s.  
FIGURE 10-13:  
BLOCK DIAGRAM OF  
RE2:RE0 PINS  
RD LATE  
Data  
The corresponding data direction register is TRISE.  
Setting a TRISE bit (= 1) will make the corresponding  
PORTE pin an input (i.e., put the corresponding output  
driver in a High-Impedance mode). Clearing a TRISE  
bit (= 0) will make the corresponding PORTE pin an  
output (i.e., put the contents of the output latch on the  
selected pin).  
Bus  
D
Q
WR LATE  
or  
PORTE  
I/O pin(1)  
CK  
Data Latch  
TRISE controls the direction of the RE pins even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
D
Q
WR TRISE  
RD TRISE  
Schmitt  
Trigger  
Input  
CK  
TRIS Latch  
Note:  
On a Power-on Reset, RE2:RE0 are  
configured as analog inputs.  
Buffer  
The upper four bits of the TRISE register also control  
the operation of the Parallel Slave Port. Their operation  
is explained in Register 10-1.  
Q
D
The Data Latch register (LATE) is also memory  
mapped. Read-modify-write operations on the LATE  
register read and write the latched output value for  
PORTE.  
EN  
RD PORTE  
To Analog Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
The fourth pin of PORTE (MCLR/VPP/RE3) is an input  
only pin. Its operation is controlled by the MCLRE con-  
figuration bit in Configuration Register 3H  
(CONFIG3H<7>). When selected as a port pin  
(MCLRE = 0), it functions as a digital input only pin; as  
such, it does not have TRIS or LAT bits associated with  
its operation. Otherwise, it functions as the device’s  
Master Clear input. In either configuration, RE3 also  
functions as the programming voltage input during  
programming.  
FIGURE 10-14:  
BLOCK DIAGRAM OF  
MCLR/VPP/RE3 PIN  
MCLRE  
Data Bus  
MCLR/VPP/  
RE3  
Note:  
On a Power-on Reset, RE3 is enabled as  
digital input only if Master Clear  
functionality is disabled.  
RD TRISE  
RD LATE  
a
Schmitt  
Trigger  
EXAMPLE 10-5:  
CLRF  
INITIALIZING PORTE  
Latch  
D
PORTE  
LATE  
0x0A  
; Initialize PORTE by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
Q
EN  
CLRF  
RD PORTE  
MOVLW  
MOVWF  
MOVLW  
; Configure A/D  
ADCON1 ; for digital inputs  
High-Voltage Detect  
HV  
0x03  
; Value used to  
; initialize data  
; direction  
Internal MCLR  
Filter  
MOVWF  
TRISC  
; Set RE<0> as inputs  
; RE<1> as outputs  
; RE<2> as inputs  
Low-Level  
MCLR Detect  
2003 Microchip Technology Inc.  
DS39599C-page 111  
PIC18F2220/2320/4220/4320  
REGISTER 10-1: TRISE REGISTER  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
OBF  
PSPMODE  
TRISE2  
TRISE1  
TRISE0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
IBF: Input Buffer Full Status bit  
1= A word has been received and waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)  
1= A write occurred when a previously input word has not been read (must be cleared in  
software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0= General Purpose I/O mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TRISE2: RE2 Direction Control bit  
1= Input  
0= Output  
bit 1  
bit 0  
TRISE1: RE1 Direction Control bit  
1= Input  
0= Output  
TRISE0: RE0 Direction Control bit  
1= Input  
0= Output  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39599C-page 112  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 10-9:  
Name  
PORTE FUNCTIONS  
Bit#  
Buffer Type  
Function  
RE0/AN5/RD  
RE1/AN6/WR  
RE2/AN7/CS  
MCLR/VPP/RE3  
bit 0  
ST/TTL(1)  
Input/output port pin, analog input or read control input in Parallel Slave  
Port mode.  
For RD (PSP Control mode):  
1= PSP is Idle  
0= Read operation. Reads PORTD register (if chip selected).  
bit 1  
bit 2  
bit 3  
ST/TTL(1)  
ST/TTL(1)  
ST  
Input/output port pin, analog input or write control input in Parallel  
Slave Port mode.  
For WR (PSP Control mode):  
1= PSP is Idle  
0= Write operation. Writes PORTD register (if chip selected).  
Input/output port pin, analog input or chip select control input in Parallel  
Slave Port mode.  
For CS (PSP Control mode):  
1= PSP is Idle  
0= External device is selected  
Input only port pin or programming voltage input (if MCLR is disabled);  
Master Clear input or programming voltage input (if MCLR is enabled).  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
TABLE 10-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
(1)  
PORTE  
LATE  
RE3  
RE2  
RE1  
RE0  
---- q000 ---- q000  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
LATE Data Latch Register  
PORTE Data Direction bits  
TRISE  
IBF  
OBF  
IBOV  
VCFG1  
PSPMODE  
VCFG0  
ADCON1  
Legend:  
PCFG3  
PCFG2  
PCFG1  
PCFG0 --00 0000 --00 0000  
x= unknown, u= unchanged, - = unimplemented, read as ‘0’, q = value depends on condition.  
Shaded cells are not used by PORTE.  
Note 1: Implemented only when Master Clear functionality is disabled (CONFIG3H<7> = 0).  
2003 Microchip Technology Inc.  
DS39599C-page 113  
PIC18F2220/2320/4220/4320  
The timing for the control signals in Write and Read  
modes is shown in Figure 10-16 and Figure 10-17,  
respectively.  
10.6 Parallel Slave Port  
Note:  
The Parallel Slave Port is only available on  
PIC18F4X20 devices.  
FIGURE 10-15:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLEL SLAVE PORT)  
In addition to its function as a general I/O port, PORTD  
can also operate as an 8-bit wide Parallel Slave Port  
(PSP) or microprocessor port. PSP operation is con-  
trolled by the 4 upper bits of the TRISE register  
(Register 10-1). Setting control bit, PSPMODE  
(TRISE<4>), enables PSP operation, as long as the  
Enhanced CCP module is not operating in dual output  
or quad output PWM mode. In Slave mode, the port is  
asynchronously readable and writable by the external  
world.  
One bit of PORTD  
Data Bus  
D
Q
RDx pin  
WR LATD  
or  
WR PORTD  
CK  
Data Latch  
TTL  
The PSP can directly interface to an 8-bit micro-  
processor data bus. The external microprocessor can  
read or write the PORTD latch as an 8-bit latch. Setting  
the control bit, PSPMODE, enables the PORTE I/O  
pins to become control inputs for the microprocessor  
port. When set, port pin RE0 is the RD input, RE1 is the  
WR input and RE2 is the CS (Chip Select) input. For  
this functionality, the corresponding data direction bits  
of the TRISE register (TRISE<2:0>) must be config-  
ured as inputs (set). The A/D port configuration bits  
PFCG3:PFCG0 (ADCON1<3:0>) must also be set to  
1010’.  
Q
D
RD PORTD  
RD LATD  
EN  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
A write to the PSP occurs when both the CS and WR  
lines are first detected low and ends when either are  
detected high. The PSPIF and IBF flag bits are both set  
when the write ends.  
PORTE Pins  
Read  
RD  
CS  
WR  
TTL  
Chip Select  
TTL  
A read from the PSP occurs when both the CS and RD  
lines are first detected low. The data in PORTD is read  
out and the OBF bit is set. If the user writes new data  
to PORTD to set OBF, the data is immediately read out;  
however, the OBF bit is not set.  
Write  
TTL  
When either the CS or RD lines are detected high, the  
PORTD pins return to the input state and the PSPIF bit is  
set. User applications should wait for PSPIF to be set  
before servicing the PSP; when this happens, the IBF and  
OBF bits can be polled and the appropriate action taken.  
Note:  
I/O pins have diode protection to VDD and VSS.  
DS39599C-page 114  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 10-16:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
FIGURE 10-17:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 10-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
Port Data Latch when written; Port pins when read  
LATD Data Latch bits  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
---- 0000 ---- 0000  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
0000 000x 0000 000u  
TRISD  
PORTE  
LATE  
PORTD Data Direction bits  
RE3  
RE2  
RE1  
RE0  
LATE Data Latch bits  
PORTE Data Direction bits  
TMR0IF INT0IF RBIF  
TRISE  
INTCON  
IBF  
OBF  
IBOV  
TMR0IF  
PSPMODE  
INT0IE  
GIE/  
GIEH  
PEIE/  
GIEL  
RBIE  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
SSPIP  
CCP1IF TMR2IF  
TMR1IF 0000 0000 0000 0000  
PIE1  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
IPR1  
RCIP  
TXIP  
ADCON1  
Legend:  
VCFG1  
VCFG0  
PCFG3 PCFG2  
PCFG1  
PCFG0  
--00 0000 --00 0000  
x= unknown, u= unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by the Parallel Slave Port.  
2003 Microchip Technology Inc.  
DS39599C-page 115  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 116  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Figure 11-1 shows a simplified block diagram of the  
Timer0 module in 8-bit mode and Figure 11-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
11.0 TIMER0 MODULE  
The Timer0 module has the following features:  
• Software selectable as an 8-bit or 16-bit  
timer/counter  
The T0CON register (Register 11-1) is a readable and  
writable register that controls all the aspects of Timer0,  
• Readable and writable  
including the prescale selection.  
• Dedicated 8-bit software programmable prescaler  
• Clock source selectable to be external or internal  
• Interrupt-on-overflow from FFh to 00h in 8-bit  
mode and FFFFh to 0000h in 16-bit mode  
• Edge select for external clock  
REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
TMR0ON  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
bit 0  
T08BIT  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is not assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
bit 2-0 T0PS2:T0PS0: Timer0 Prescaler Select bits  
111= 1:256 prescale value  
110= 1:128 prescale value  
101= 1:64 prescale value  
100= 1:32 prescale value  
011= 1:16 prescale value  
010= 1:8 prescale value  
001= 1:4 prescale value  
000= 1:2 prescale value  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 117  
PIC18F2220/2320/4220/4320  
FIGURE 11-1:  
TIMER0 BLOCK DIAGRAM IN 8-BIT MODE  
Data Bus  
8
FOSC/4  
0
1
RA4/T0CKI/C1OUT  
pin  
0
Sync with  
Internal  
Clocks  
TMR0  
Programmable  
Prescaler  
1
(2 TCY delay)  
T0SE  
3
PSA  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
T0PS2, T0PS1, T0PS0  
T0CS  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI maximum prescale.  
FIGURE 11-2:  
TIMER0 BLOCK DIAGRAM IN 16-BIT MODE  
RA4/T0CKI/C1OUT  
pin  
FOSC/4  
0
1
0
1
Sync with  
Internal  
Clocks  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
TMR0  
High Byte  
TMR0L  
Programmable  
Prescaler  
8
(2 TCY delay)  
T0SE  
3
Read TMR0L  
Write TMR0L  
T0PS2, T0PS1, T0PS0  
T0CS  
PSA  
8
8
TMR0H  
8
Data Bus<7:0>  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI maximum prescale.  
DS39599C-page 118  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
11.2.1  
SWITCHING PRESCALER  
ASSIGNMENT  
11.1 Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
The prescaler assignment is fully under software  
control (i.e., it can be changed “on-the-fly” during  
program execution).  
Timer mode is selected by clearing the T0CS bit. In  
Timer mode, the Timer0 module will increment every  
instruction cycle (without prescaler). If the TMR0 regis-  
ter is written, the increment is inhibited for the following  
two instruction cycles. The user can work around this  
by writing an adjusted value to the TMR0 register.  
11.3 Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0  
register overflows from FFh to 00h in 8-bit mode, or  
FFFFh to 0000h in 16-bit mode. This overflow sets the  
TMR0IF bit. The interrupt can be masked by clearing  
the TMR0IE bit. The TMR0IF bit must be cleared in  
software by the Timer0 module Interrupt Service  
Routine before re-enabling this interrupt. The TMR0  
interrupt cannot awaken the processor from Sleep  
mode, since the timer requires clock cycles, even when  
T0CS is set.  
Counter mode is selected by setting the T0CS bit. In  
Counter mode, Timer0 will increment, either on every  
rising or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit (T0SE). Clearing the T0SE bit selects the  
rising edge.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
11.4 16-Bit Mode Timer Reads and  
Writes  
11.2 Prescaler  
TMR0H is not the high byte of the timer/counter in  
16-bit mode but is actually a buffered version of the  
high byte of Timer0 (refer to Figure 11-2). The high byte  
of the Timer0 counter/timer is not directly readable nor  
writable. TMR0H is updated with the contents of the  
high byte of Timer0 during a read of TMR0L. This pro-  
vides the ability to read all 16 bits of Timer0, without  
having to verify that the read of the high and low byte  
were valid, due to a rollover between successive reads  
of the high and low byte.  
An 8-bit counter is available as a prescaler for the Timer0  
module. The prescaler is not readable or writable.  
The PSA and T0PS2:T0PS0 bits determine the  
prescaler assignment and prescale ratio.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4,..., 1:256 are  
selectable.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0, x....etc.) will clear the prescaler  
count.  
A write to the high byte of Timer0 must also take place  
through the TMR0H Buffer register. Timer0 high byte is  
updated with the contents of TMR0H when a write  
occurs to TMR0L. This allows all 16 bits of Timer0 to be  
updated at once.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count but will not change the prescaler  
assignment.  
TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0L  
TMR0H  
INTCON  
T0CON  
TRISA  
Timer0 Module Low Byte Register  
Timer0 Module High Byte Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 000x 0000 000u  
1111 1111 1111 1111  
1111 1111 1111 1111  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
PSA  
TMR0IF INT0IF  
T0PS2 T0PS1  
RBIF  
TMR0ON  
T08BIT  
T0CS  
T0SE  
T0PS0  
(1)  
(1)  
RA7  
RA6  
PORTA Data Direction Register  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by Timer0.  
Note 1: RA6 and RA7 are enabled as I/O pins depending on the oscillator mode selected in Configuration Word 1H.  
2003 Microchip Technology Inc.  
DS39599C-page 119  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 120  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Register 12-1 details the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module and contains the Timer1 Oscillator Enable bit  
(T1OSCEN). Timer1 can be enabled or disabled by  
setting or clearing control bit, TMR1ON (T1CON<0>).  
12.0 TIMER1 MODULE  
The Timer1 module timer/counter has the following  
features:  
• 16-bit timer/counter (two 8-bit registers: TMR1H  
and TMR1L)  
The Timer1 oscillator can be used as a secondary clock  
source in power managed modes. When the T1RUN bit  
is set, the Timer1 oscillator is providing the system clock.  
If the Fail-Safe Clock Monitor is enabled and the Timer1  
oscillator fails while providing the system clock, polling  
the T1RUN bit will indicate whether the clock is being  
provided by the Timer1 oscillator or another source.  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• Reset from CCP module special event trigger  
• Status of system clock operation  
Figure 12-1 is a simplified block diagram of the Timer1  
module.  
Timer1 can also be used to provide Real-Time Clock  
(RTC) functionality to applications with only a minimal  
addition of external components and code overhead.  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7  
bit 6  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of TImer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
T1RUN: Timer1 System Clock Status bit  
1= System clock is derived from Timer1 oscillator  
0= System clock is derived from another source  
bit 5-4 T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 prescale value  
10= 1:4 prescale value  
01= 1:2 prescale value  
00= 1:1 prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut-off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1(External Clock):  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0(Internal Clock):  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 121  
PIC18F2220/2320/4220/4320  
When TMR1CS = 0, Timer1 increments every instruc-  
12.1 Timer1 Operation  
tion cycle. When TMR1CS = 1, Timer1 increments on  
every rising edge of the external clock input, or the  
Timer1 oscillator, if enabled.  
Timer1 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI  
pins become inputs. The TRISC1:TRISC0 values are  
ignored and the pins read as ‘0’.  
The operating mode is determined by the Clock Select  
bit, TMR1CS (T1CON<1>).  
Timer1 also has an internal “Reset input”. This Reset  
can be generated by the CCP module (see  
Section 15.4.4 “Special Event Trigger”).  
FIGURE 12-1:  
TIMER1 BLOCK DIAGRAM  
CCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Flag bit  
Synchronized  
TMR1  
CLR  
0
Clock Input  
TMR1L  
TMR1H  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
1
T1CKI/T1OSO  
T1OSI  
Synchronize  
det  
T1OSCEN  
Enable  
Prescaler  
1, 2, 4, 8  
(1)  
FOSC/4  
Internal  
Clock  
Oscillator  
0
2
Peripheral Clocks  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 12-2:  
TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR1H  
8
8
Write TMR1L  
Read TMR1L  
CCP Special Event Trigger  
0
TMR1IF  
Overflow  
Interrupt  
Synchronized  
Clock Input  
TMR1  
8
CLR  
Timer 1  
High Byte  
TMR1L  
Flag bit  
1
TMR1ON  
on/off  
T1SYNC  
T1OSC  
T1CKI/T1OSO  
1
Synchronize  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
det  
FOSC/4  
Internal  
Clock  
Enable  
0
(1)  
T1OSI  
Oscillator  
2
Peripheral Clocks  
TMR1CS  
T1CKPS1:T1CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39599C-page 122  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
12.2 Timer1 Oscillator  
12.3 Timer1 Oscillator Layout  
Considerations  
A crystal oscillator circuit is built-in between pins,  
T1OSI (input) and T1OSO (amplifier output). It is  
enabled by setting control bit, T1OSCEN (T1CON<3>).  
The oscillator is a low-power oscillator rated for 32 kHz  
crystals. It will continue to run during all power man-  
aged modes. The circuit for a typical LP oscillator is  
shown in Figure 12-3. Table 12-1 shows the capacitor  
selection for the Timer1 oscillator.  
The Timer1 oscillator circuit draws very little power  
during operation. Due to the low power nature of the  
oscillator, it may also be sensitive to rapidly changing  
signals in close proximity.  
The oscillator circuit, shown in Figure 12-3, should be  
located as close as possible to the microcontroller.  
There should be no circuits passing within the oscillator  
circuit boundaries other than VSS or VDD.  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
If a high-speed circuit must be located near the oscilla-  
tor (such as the CCP1 pin in output compare or PWM  
mode, or the primary oscillator using the OSC2 pin), a  
grounded guard ring around the oscillator circuit, as  
shown in Figure 12-4, may be helpful when used on a  
single-sided PCB or in addition to a ground plane.  
FIGURE 12-3:  
EXTERNAL COMPONENTS  
FOR THE TIMER1 LP  
OSCILLATOR  
C1  
33 pF  
PIC18FXXXX  
T1OSI  
FIGURE 12-4:  
OSCILLATOR CIRCUIT  
WITH GROUNDED GUARD  
RING  
XTAL  
32.768 kHz  
VDD  
VSS  
T1OSO  
C2  
33 pF  
OSC1  
OSC2  
Note:  
See the Notes with Table 12-1 for additional  
information about capacitor selection.  
RC0  
RC1  
TABLE 12-1: CAPACITOR SELECTION FOR  
THETIMEROSCILLATOR(2,3,4)  
Osc Type  
Freq  
C1  
C2  
27 pF(1)  
27 pF(1)  
RC2  
LP  
32 kHz  
Note: Not drawn to scale.  
Note 1: Microchip suggests this value as a starting  
point in validating the oscillator circuit.  
2: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
components.  
4: Capacitor values are for design guidance  
only.  
2003 Microchip Technology Inc.  
DS39599C-page 123  
PIC18F2220/2320/4220/4320  
A write to the high byte of Timer1 must also take place  
12.4 Timer1 Interrupt  
through the TMR1H Buffer register. Timer1 high byte is  
updated with the contents of TMR1H when a write  
occurs to TMR1L. This allows a user to write all 16 bits  
to both the high and low bytes of Timer1 at once.  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
Timer1 interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit, TMR1IF  
(PIR1<0>). This interrupt can be enabled/disabled by  
setting/clearing Timer1 interrupt enable bit, TMR1IE  
(PIE1<0>).  
The high byte of Timer1 is not directly readable or writ-  
able in this mode. All reads and writes must take place  
through the Timer1 High Byte Buffer register. Writes to  
TMR1H do not clear the Timer1 prescaler. The  
prescaler is only cleared on writes to TMR1L.  
12.5 Resetting Timer1 Using a CCP  
Trigger Output  
12.7 Using Timer1 as a Real-Time  
Clock  
If the CCP module is configured in Compare mode to  
generate a “special event trigger” (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer1 and start an A/D  
conversion if the A/D module is enabled (see  
Section 15.4.4 “Special Event Trigger” for more  
information).  
Adding an external LP oscillator to Timer1 (such as the  
one described in Section 12.2 “Timer1 Oscillator”  
above), gives users the option to include RTC function-  
ality to their applications. This is accomplished with an  
inexpensive watch crystal to provide an accurate time  
base and several lines of application code to calculate  
the time. When operating in Sleep mode and using a  
battery or supercapacitor as a power source, it can  
completely eliminate the need for a separate RTC  
device and battery backup.  
Note:  
The special event triggers from the CCP1  
module will not set interrupt flag bit,  
TMR1IF (PIR1<0>).  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
The application code routine, RTCisr, shown in  
Example 12-1, demonstrates a simple method to  
increment a counter at one-second intervals using an  
Interrupt Service Routine. Incrementing the TMR1 reg-  
ister pair to overflow, triggers the interrupt and calls the  
routine, which increments the seconds counter by one;  
additional counters for minutes and hours are  
incremented as the previous counter overflow.  
In the event that a write to Timer1 coincides with a  
special event trigger from CCP1, the write will take  
precedence.  
In this mode of operation, the CCPR1H:CCPR1L  
register pair effectively becomes the period register for  
Timer1.  
Since the register pair is 16 bits wide, counting up to  
overflow the register directly from a 32.768 kHz clock  
would take 2 seconds. To force the overflow at the  
required one-second intervals, it is necessary to pre-  
load it; the simplest method is to set the MSbit of  
TMR1H with a BSF instruction. Note that the TMR1L  
register is never preloaded or altered; doing so may  
introduce cumulative error over many cycles.  
12.6 Timer1 16-Bit Read/Write Mode  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 12-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 high byte buffer. This provides  
the user with the ability to accurately read all 16 bits of  
Timer1 without having to determine whether a read of  
the high byte, followed by a read of the low byte, is valid  
due to a rollover between reads.  
For this method to be accurate, Timer1 must operate in  
Asynchronous mode and the Timer1 overflow interrupt  
must be enabled (PIE1<0> = 1) as shown in the rou-  
tine, RTCinit. The Timer1 oscillator must also be  
enabled and running at all times.  
DS39599C-page 124  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
EXAMPLE 12-1:  
IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE  
RTCinit  
MOVLW  
MOVWF  
CLRF  
0x80  
TMR1H  
TMR1L  
; Preload TMR1 register pair  
; for 1 second overflow  
MOVLW  
MOVWF  
CLRF  
b’00001111’  
T1OSC  
secs  
; Configure for external clock,  
; Asynchronous operation, external oscillator  
; Initialize timekeeping registers  
;
CLRF  
mins  
MOVLW  
MOVWF  
BSF  
.12  
hours  
PIE1, TMR1IE  
; Enable Timer1 interrupt  
RETURN  
RTCisr  
BSF  
BCF  
INCF  
MOVLW  
TMR1H,7  
PIR1,TMR1IF  
secs,F  
; Preload for 1 sec overflow  
; Clear interrupt flag  
; Increment seconds  
.59  
; 60 seconds elapsed?  
CPFSGT secs  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
secs  
mins,F  
.59  
; Clear seconds  
; Increment minutes  
; 60 minutes elapsed?  
CPFSGT mins  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
mins  
hours,F  
.23  
; clear minutes  
; Increment hours  
; 24 hours elapsed?  
CPFSGT hours  
RETURN  
; No, done  
MOVLW  
MOVWF  
RETURN  
.01  
hours  
; Reset hours to 1  
; Done  
TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
(1)  
(1)  
PIE1  
TXIE  
TXIP  
IPR1  
TMR1L  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
T1CON RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 u0uu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.  
2003 Microchip Technology Inc.  
DS39599C-page 125  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 126  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
13.1 Timer2 Operation  
13.0 TIMER2 MODULE  
Timer2 can be used as the PWM time base for the  
PWM mode of the CCP module. The TMR2 register is  
readable and writable and is cleared on any device  
Reset. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits,  
T2CKPS1:T2CKPS0 (T2CON<1:0>). The match out-  
put of TMR2 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a  
TMR2 interrupt (latched in flag bit, TMR2IF (PIR1<1>)).  
The Timer2 module timer has the following features:  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match with PR2  
• SSP module optional use of TMR2 output to  
generate clock shift  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 has a control register shown in Register 13-1.  
TMR2 can be shut-off by clearing control bit, TMR2ON  
(T2CON<2>), to minimize power consumption.  
Figure 13-1 is a simplified block diagram of the Timer2  
module. Register 13-1 shows the Timer2 Control regis-  
ter. The prescaler and postscaler selection of Timer2  
are controlled by this register.  
• A write to the TMR2 register  
• A write to the T2CON register  
• Any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3 TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 postscale  
0001= 1:2 postscale  
1111= 1:16 postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 127  
PIC18F2220/2320/4220/4320  
13.2 Timer2 Interrupt  
13.3 Output of TMR2  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon Reset.  
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module which optionally uses  
it to generate the shift clock.  
FIGURE 13-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
TMR2  
bit TMR2IF  
(1)  
Output  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS1:T2CKPS0  
4
TOUTPS3:TOUTPS0  
Note 1: TMR2 register output can be software selected by the SSP module as a baud clock.  
TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF  
CCP1IE TMR2IE  
CCP1IP TMR2IP  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 1111 1111 1111 1111  
0000 0000 0000 0000  
(1)  
(1)  
PIE1  
TXIE  
TXIP  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Module Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register  
IDLEN IRCF2  
1111 1111 1111 1111  
0000 qq00 0000 qq00  
OSCCON  
IRCF1  
IRCF0  
OSTS  
IOFS  
SCS1  
SCS0  
Legend: x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X2 devices; always maintain these bits clear.  
DS39599C-page 128  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Figure 14-1 is a simplified block diagram of the Timer3  
module.  
14.0 TIMER3 MODULE  
The Timer3 module timer/counter has the following  
features:  
Register 14-1 shows the Timer3 Control register. This  
register controls the operating mode of the Timer3  
module and sets the CCP clock source.  
• 16-bit timer/counter (two 8-bit registers: TMR3H  
and TMR3L)  
Register 12-1 shows the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module, as well as contains the Timer1 Oscillator  
Enable bit (T1OSCEN) which can be a clock source for  
Timer3.  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• Reset from CCP module trigger  
REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer3 in one 16-bit operation  
0= Enables register read/write of Timer3 in two 8-bit operations  
bit 6, 3 T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits  
1x= Timer3 is the clock source for compare/capture CCP modules  
01= Timer3 is the clock source for compare/capture of CCP2,  
Timer1 is the clock source for compare/capture of CCP1  
00= Timer1 is the clock source for compare/capture CCP modules  
bit 5-4 T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits  
11= 1:8 prescale value  
10= 1:4 prescale value  
01= 1:2 prescale value  
00= 1:1 prescale value  
bit 2  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the system clock comes from Timer1/Timer3.)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T1CKI (on the rising edge after the first  
falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 129  
PIC18F2220/2320/4220/4320  
When TMR3CS = 0, Timer3 increments every instruc-  
14.1 Timer3 Operation  
tion cycle. When TMR3CS = 1, Timer3 increments on  
every rising edge of the Timer1 external clock input or  
the Timer1 oscillator if enabled.  
Timer3 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI  
pins become inputs. That is, the TRISC1:TRISC0 value  
is ignored and the pins are read as ‘0’.  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON<1>).  
Timer3 also has an internal “Reset input”. This Reset  
can be generated by the CCP module (see  
Section 15.4.4 “Special Event Trigger”).  
FIGURE 14-1:  
TIMER3 BLOCK DIAGRAM  
CCP Special Event Trigger  
T3CCPx  
TMR3IF  
Overflow  
Interrupt  
Synchronized  
Clock Input  
0
Flag bit  
CLR  
TMR3L  
TMR3H  
T1OSC  
1
TMR3ON  
On/Off  
T3SYNC  
T1OSO/  
T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
Oscillator  
2
Peripheral Clocks  
TMR3CS  
T3CKPS1:T3CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 14-2:  
TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR3H  
8
8
Write TMR3L  
Read TMR3L  
CCP Special Event Trigger  
T3CCPx  
Synchronized  
Clock Input  
8
TMR3  
Set TMR3IF Flag bit  
on Overflow  
0
CLR  
Timer3  
High Byte  
TMR3L  
1
To Timer1 Clock Input  
TMR3ON  
On/Off  
T3SYNC  
T1OSC  
T1OSO/  
T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
Peripheral Clocks  
T3CKPS1:T3CKPS0  
TMR3CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39599C-page 130  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
14.2 Timer1 Oscillator  
14.4 Resetting Timer3 Using a CCP  
Trigger Output  
The Timer1 oscillator may be used as the clock source  
for Timer3. The Timer1 oscillator is enabled by setting  
the T1OSCEN (T1CON<3>) bit. The oscillator is a low-  
power oscillator rated for 32 kHz crystals. See  
Section 12.2 “Timer1 Oscillator” for further details.  
If the CCP module is configured in Compare mode  
to generate “special event trigger”  
a
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer3. See Section 15.4.4 “Special Event Trigger”  
for more information.  
14.3 Timer3 Interrupt  
Note:  
The special event triggers from the CCP  
module will not set interrupt flag bit,  
TMR3IF (PIR1<0>).  
The TMR3 register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR3 interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit, TMR3IF  
(PIR2<1>). This interrupt can be enabled/disabled by  
setting/clearing TMR3 Interrupt Enable bit, TMR3IE  
(PIE2<1>).  
Timer3 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer3 is running in Asynchronous Counter mode,  
this Reset operation may not work. In the event that a  
write to Timer3 coincides with a special event trigger  
from CCP1, the write will take precedence. In this mode  
of operation, the CCPR1H:CCPR1L register pair  
effectively becomes the period register for Timer3.  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR2  
OSCIF  
OSCIE  
OSCIP  
CMIF  
CMIE  
CMIP  
EEIF  
EEIE  
EEIP  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
TMR3IE  
TMR3IP  
CCP2IF 00-0 0000 00-0 0000  
CCP2IE 00-0 0000 00-0 0000  
CCP2IP 11-1 1111 11-1 1111  
xxxx xxxx uuuu uuuu  
PIE2  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
RD16  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 u0uu uuuu  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the Timer3 module.  
2003 Microchip Technology Inc.  
DS39599C-page 131  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 132  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
15.0 CAPTURE/COMPARE/PWM  
(CCP) MODULES  
Note:  
In 28-pin devices, both CCP1 and CCP2  
function as standard CCP modules. In  
40-pin devices, CCP1 is implemented as  
an Enhanced CCP module, offering addi-  
tional capabilities in PWM mode. Capture  
and Compare modes are identical in all  
modules regardless of the device.  
The standard CCP (Capture/Compare/PWM) module  
contains a 16-bit register that can operate as a 16-bit  
Capture register, a 16-bit Compare register or a PWM  
Master/Slave Duty Cycle register. Table 15-1 shows  
the timer resources required for each of the CCP  
module modes.  
Please see Section 16.0 “Enhanced  
Capture/Compare/PWM (ECCP) Mod-  
ule” for a discussion of the enhanced  
PWM capabilities of the CCP1 module.  
The operation of CCP1 is identical to that of CCP2, with  
the exception of the special event trigger. Therefore,  
operation of a CCP module is described with respect to  
CCP1 except where noted. Table 15-2 shows the  
interaction of the CCP modules.  
REGISTER 15-1: CCPxCON: CCP MODULE CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3 CCPxM2 CCPxM1 CCPxM0  
bit 0  
bit 7  
bit 7-6 Reserved: Read as ‘0’.  
See Section 16.0 “Enhanced Capture/Compare/PWM (ECCP) Module”.  
bit 5-4 DCxB1:DCxB0: PWM Duty Cycle bit 1 and bit 0  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The upper eight bits  
(DCx9:DCx2) of the duty cycle are found in CCPRxL.  
bit 3-0 CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match (CCPxIF bit is set)  
0011= Reserved  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, initialize CCP pin Low; on compare match, force CCP pin High  
(CCPxIF bit is set)  
1001= Compare mode, initialize CCP pin High; on compare match, force CCP pin Low  
(CCPxIF bit is set)  
1010= Compare mode, generate software interrupt on compare match (CCPxIF bit is set, CCP  
pin operates as a port pin for input and output)  
1011= Compare mode, trigger special event (CCP2IF bit is set)  
11xx= PWM mode  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 133  
PIC18F2220/2320/4220/4320  
15.1 CCP1 Module  
15.2 CCP2 Module  
Capture/Compare/PWM Register 1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
Capture/Compare/PWM Register 2 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. All are readable and writable.  
CCP2 functions identically to CCP1 except for the  
enhanced PWM modes offered by CCP2  
TABLE 15-1: CCP MODE - TIMER  
RESOURCE  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
TABLE 15-2: INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Capture  
TMR1 or TMR3 time base. Time base can be different for each CCP.  
Compare The compare could be configured for the special event trigger which clears either TMR1  
or TMR3 depending upon which time base is used.  
Compare  
Compare The compare(s) could be configured for the special event trigger which clears TMR1 or  
TMR3 depending upon which time base is used.  
PWM  
PWM  
PWM  
PWM  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
None.  
Capture  
Compare None.  
DS39599C-page 134  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
15.3.3  
SOFTWARE INTERRUPT  
15.3 Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit, CCP1IF, following any such  
change in operating mode.  
In Capture mode, CCPR1H:CCPR1L captures the 16-bit  
value of the TMR1 or TMR3 registers when an event  
occurs on pin RC2/CCP1/P1A. An event is defined as  
one of the following:  
• every falling edge  
• every rising edge  
15.3.4  
CCP PRESCALER  
• every 4th rising edge  
• every 16th rising edge  
There are four prescaler settings specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
Reset will clear the prescaler counter.  
The event is selected by control bits, CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit, CCP1IF (PIR1<2>), is set; it must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value is overwritten by the new captured value.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
a non-zero prescaler. Example 15-1 shows the recom-  
mended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
15.3.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1/P1A pin should be  
configured as an input by setting the TRISC<2> bit.  
Note:  
If the RC2/CCP1/P1A is configured as an  
output, a write to the port can cause a  
capture condition.  
EXAMPLE 15-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
CLRF  
CCP1CON, F  
; Turn CCP module off  
; Load WREG with the  
; new prescaler mode  
; value and CCP ON  
; Load CCP1CON with  
; this value  
MOVLW  
NEW_CAPT_PS  
CCP1CON  
15.3.2  
TIMER1/TIMER3 MODE SELECTION  
The timers that are to be used with the capture feature  
(either Timer1 and/or Timer3) must be running in Timer  
mode or Synchronized Counter mode. In Asynchro-  
nous Counter mode, the capture operation may not  
work. The timer to be used with each CCP module is  
selected in the T3CON register.  
MOVWF  
FIGURE 15-1:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
CCPR1L  
TMR1L  
Set Flag bit CCP1IF  
T3CCP2  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
CCP1 pin  
CCPR1H  
TMR1  
and  
Edge Detect  
T3CCP2  
Enable  
TMR1H  
CCP1CON<3:0>  
Q’s  
Set Flag bit CCP2IF  
T3CCP1  
TMR3H  
TMR3L  
CCPR2L  
TMR1L  
T3CCP2  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
CCP2 pin  
CCPR2H  
TMR1  
and  
Edge Detect  
Enable  
T3CCP2  
T3CCP1  
TMR1H  
CCP2CON<3:0>  
Q’s  
2003 Microchip Technology Inc.  
DS39599C-page 135  
PIC18F2220/2320/4220/4320  
15.4.2  
TIMER1/TIMER3 MODE SELECTION  
15.4 Compare Mode  
Timer1 and/or Timer3 must be running in Timer mode,  
or Synchronized Counter mode, if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
In Compare mode, the 16-bit CCPR1 (CCPR2) register  
value is constantly compared against either the  
TMR1 register pair value, or the TMR3 register pair  
value. When a match occurs, the RC2/CCP1/P1A  
(RC1/T1OSI/CCP2) pin:  
15.4.3  
SOFTWARE INTERRUPT MODE  
• Is driven High  
When generate software interrupt is chosen, the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
• Is driven Low  
Toggles output (High to Low or Low to High)  
• Remains unchanged (interrupt only)  
15.4.4  
SPECIAL EVENT TRIGGER  
The action on the pin is based on the value of control  
bits, CCP1M3:CCP1M0 (CCP2M3:CCP2M0). At the  
same time, interrupt flag bit, CCP1IF (CCP2IF), is set.  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
15.4.1  
CCP PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRISC bit.  
The special trigger output of CCP2 resets either the  
TMR1 or TMR3 register pair. Additionally, the CCP2  
special event trigger will start an A/D conversion if the  
A/D module is enabled.  
Note:  
Clearing the CCP1CON register will force  
the RC2/CCP1/P1A compare output latch  
to the default low level. This is not the  
PORTC I/O data latch.  
Note:  
The special event trigger from the CCP2  
module will not set the Timer1 or Timer3  
interrupt flag bits.  
FIGURE 15-2:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger will:  
Reset Timer1 or Timer3 but not set Timer1 or Timer3 interrupt flag bit  
and set bit GO/DONE (ADCON0<2>) which starts an A/D conversion (CCP2 only)  
Special Event Trigger  
Set Flag bit CCP1IF  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
Match  
RC2/CCP1/P1A  
pin  
TRISC<2>  
Output Enable  
1
0
CCP1CON<3:0>  
Mode Select  
T3CCP2  
TMR1H TMR1L  
TMR3H TMR3L  
Special Event Trigger  
Set Flag bit CCP2IF  
T3CCP1  
T3CCP2  
0
1
Q
S
R
Output  
Logic  
Comparator  
Match  
RC1/T1OSI/CCP2  
pin  
TRISC<1>  
Output Enable  
CCPR2H CCPR2L  
CCP2CON<3:0>  
Mode Select  
DS39599C-page 136  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
1111 1111 1111 1111  
(1)  
(1)  
PIE1  
TXIE  
TXIP  
IPR1  
TRISC  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
PORTC Data Direction Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu  
Capture/Compare/PWM Register 1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR1H Capture/Compare/PWM Register 1 (MSB)  
CCP1CON  
CCPR2L  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
Capture/Compare/PWM Register 2 (LSB)  
CCPR2H Capture/Compare/PWM Register 2 (MSB)  
xxxx xxxx uuuu uuuu  
CCP2CON  
PIR2  
DC2B1  
DC2B0  
EEIF  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
OSCFIF  
OSCFIE  
OSCFIP  
CMIF  
CMIE  
CMIP  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF CCP2IF 00-0 0000 00-0 0000  
TMR3IE CCP2IE 00-0 0000 00-0 0000  
TMR3IP CCP2IP 11-1 1111 11-1 1111  
PIE2  
EEIE  
EEIP  
IPR2  
TMR3L  
TMR3H  
T3CON  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
Legend: x= unknown, u= unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by Capture and Timer1.  
Note 1: These bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.  
2003 Microchip Technology Inc.  
DS39599C-page 137  
PIC18F2220/2320/4220/4320  
15.5.1  
PWM PERIOD  
15.5 PWM Mode  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
following equation.  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
EQUATION 15-1:  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
Note:  
Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1/[PWM period]. When  
TMR2 is equal to PR2, the following three events occur  
on the next increment cycle:  
Figure 15-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
• TMR2 is cleared  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 15.5.3  
“Setup for PWM Operation”.  
• The CCP1 pin is set (if PWM duty cycle = 0%, the  
CCP1 pin will not be set)  
• The PWM duty cycle is copied from CCPR1L into  
CCPR1H  
FIGURE 15-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note:  
The Timer2 postscaler (see Section 13.0  
“Timer2 Module”) is not used in the  
determination of the PWM frequency. The  
postscaler could be used to have a servo  
update rate at a different frequency than  
the PWM output.  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
15.5.2  
PWM DUTY CYCLE  
CCPR1H (Slave)  
Comparator  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The PWM duty cycle is  
calculated by the following equation.  
Q
R
S
RC2/CCP1/P1A  
(Note 1)  
TMR2  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
EQUATION 15-2:  
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
Note: 8-bit timer is concatenated with 2-bit internal Q clock or  
2 bits of the prescaler to create 10-bit time base.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time but the duty cycle value is not copied into  
CCPR1H until a match between PR2 and TMR2 occurs  
(i.e., the period is complete). In PWM mode, CCPR1H  
is a read-only register.  
A PWM output (Figure 15-4) has a time base (period)  
and a time that the output is high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
FIGURE 15-4:  
PWM OUTPUT  
Period  
Duty Cycle  
TMR2 = PR2  
TMR2 = Duty Cycle  
TMR2 = PR2  
DS39599C-page 138  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
The CCPR1H register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM opera-  
tion. When the CCPR1H and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or two bits  
of the TMR2 prescaler, the CCP1 pin is cleared. The  
maximum PWM resolution (bits) for a given PWM  
frequency is given by the following equation.  
15.5.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2 register.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and the CCP1CON<5:4> bits.  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
EQUATION 15-3:  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
FOSC  
FPWM  
log  
5. Configure the CCP1 module for PWM operation.  
bits  
PWM Resolution (max) =  
log(2)  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
TABLE 15-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR2IF  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 1111 1111 1111 1111  
1111 1111 1111 1111  
(1)  
(1)  
PIE1  
TXIE  
TXIP  
CCP1IE TMR2IE  
CCP1IP TMR2IP  
IPR1  
TRISC  
TMR2  
PR2  
PORTC Data Direction Register  
Timer2 Module Register  
0000 0000 0000 0000  
Timer2 Module Period Register  
1111 1111 1111 1111  
T2CON  
CCPR1L  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Capture/Compare/PWM Register 1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR1H Capture/Compare/PWM Register 1 (MSB)  
CCP1CON  
CCPR2L  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
Capture/Compare/PWM Register 2 (LSB)  
CCPR2H Capture/Compare/PWM Register 2 (MSB)  
xxxx xxxx uuuu uuuu  
CCP2CON  
OSCCON  
DC2B1  
IRCF1  
DC2B0  
IRCF0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
IDLEN  
IRCF2  
OSTS  
IOFS  
SCS1  
SCS0  
0000 qq00 0000 qq00  
Legend: x= unknown, u= unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by PWM and Timer2.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.  
2003 Microchip Technology Inc.  
DS39599C-page 139  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 140  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
The ECCP module differs from the CCP with the addi-  
tion of an enhanced PWM mode which allows for 2 or  
4 output channels, user-selectable polarity, dead band  
control and automatic shutdown and restart. These  
features are discussed in detail in Section 16.4  
16.0 ENHANCED CAPTURE/  
COMPARE/PWM (ECCP)  
MODULE  
Note:  
The ECCP (Enhanced Capture/ Compare/  
“Enhanced PWM Mode”.  
PWM) module is only available on  
PIC18F4X20 devices.  
The control register for CCP1 is shown in Register 16-1.  
It differs from the CCP1CON register of PIC18F2X20  
devices in that the two Most Significant bits are  
implemented to control enhanced PWM functionality.  
In 40 and 44-pin devices, the CCP1 module is  
implemented as standard CCP module with  
a
enhanced PWM capabilities. Operation of the Capture,  
Compare and standard single output PWM modes is  
described in Section 15.0 “Capture/Compare/PWM  
(CCP) Modules”. Discussion in that section relating to  
PWM frequency and duty cycle also apply to the  
enhanced PWM mode.  
REGISTER 16-1: CCP1CON REGISTER FOR ENHANCED CCP OPERATION (PIC18F4X20 ONLY)  
R/W-0  
P1M1  
R/W-0  
P1M0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC1B1  
DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit 0  
bit 7  
bit 7-6  
P1M1:P1M0: PWM Output Configuration bits  
If CCP1M<3:2> = 00, 01, 10(Capture, Compare, or disabled):  
xx=P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins  
If CCP1M<3:2> = 11(PWM modes):  
00=Single output; P1A modulated; P1B, P1C, P1D assigned as port pins  
01=Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive  
10= Half-bridge output; P1A, P1B modulated with dead band control; P1C, P1D assigned as port pins  
11=Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive  
bit 5-4  
DC1B1:DC1B0: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0  
CCP1M3:CCP1M0: ECCP1 Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCP module)  
0001= Unused (reserved)  
0010= Compare mode, toggle output on match (ECCP1IF bit is set)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (ECCP1IF bit is set)  
1001= Compare mode, clear output on match (ECCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (ECCP1IF bit is set, ECCP1 pin  
operates as a port pin for input and output)  
1011= Compare mode, trigger special event (ECCP1IF bit is set, ECCP resets TMR1or TMR2  
and starts an A/D conversion if the A/D module is enabled)  
1100= PWM mode, P1A, P1C active-high, P1B, P1D active-high  
1101= PWM mode, P1A, P1C active-high, P1B, P1D active-low  
1110= PWM mode, P1A, P1C active-low, P1B, P1D active-high  
1111= PWM mode, P1A, P1C active-low, P1B, P1D active-low  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 141  
PIC18F2220/2320/4220/4320  
In addition to the expanded functions of the CCP1CON  
16.2 Capture and Compare Modes  
register, the ECCP module has two additional registers  
associated with enhanced PWM operation and  
Auto-Shutdown features:  
The Capture and Compare modes of the ECCP module  
are identical in operation to that of CCP1, as discussed  
in Section 15.3 “Capture Mode” and Section 15.4  
“Compare Mode”. No changes are required when  
moving between these modules on PIC18F2X20 and  
PIC18F4X20 devices.  
• PWM1CON  
• ECCPAS  
All other registers associated with the ECCP module  
are identical to those used for the CCP1 module in  
PIC18F2X20 devices, including register and individual  
bit names. Likewise, the timer assignments and inter-  
actions between the two CCP modules are identical,  
regardless of whether CCP1 is a standard or enhanced  
module.  
16.3 Standard PWM Mode  
When configured in Single Output mode, the ECCP  
module functions identically to the standard CCP  
module in PWM mode, as described in Section 15.4  
“Compare Mode”.  
Note:  
When setting up single output PWM opera-  
tions, users are free to use either of the pro-  
cesses described in Section 15.5.3 “Setup  
for PWM Operation” or Section 16.4.7  
“Setup for PWM Operation”. The latter is  
more generic but will work for either single  
or multi output PWM.  
16.1 ECCP Outputs  
The Enhanced CCP module may have up to four outputs  
depending on the selected operating mode. These out-  
puts, designated P1A through P1D, are multiplexed with  
I/O pins on PORTC and PORTD. The pin assignments  
are summarized in Table 16-1.  
To configure I/O pins as PWM outputs, the proper PWM  
mode must be selected by setting the P1Mn and  
CCP1Mn bits (CCP1CON<7:6> and <3:0>, respec-  
tively). The appropriate TRISC and TRISD direction  
bits for the port pins must also be set as outputs.  
TABLE 16-1: PIN ASSIGNMENTS FOR VARIOUS ECCP MODES  
CCP1CON  
ECCP Mode  
RC2  
RD5  
RD6  
RD7  
Configuration  
Compatible CCP  
00xx11xx  
10xx11xx  
x1xx11xx  
CCP1  
P1A  
RD5/PSP5  
P1B  
RD6/PSP6  
RD6/PSP6  
P1C  
RD7/PSP7  
RD6/PSP6  
P1D  
Dual PWM  
Quad PWM  
P1A  
P1B  
Legend: x= Don’t care. Shaded cells indicate pin assignments not used by ECCP in a given mode.  
Note 1: TRIS register values must be configured appropriately.  
2: With ECCP in Dual or Quad PWM mode, the PSP input/output control of PORTD is overridden by P1B,  
P1C and P1D.  
DS39599C-page 142  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
waveforms do not exactly match the standard PWM  
waveforms but are instead offset by one full instruction  
cycle (4 TOSC).  
16.4 Enhanced PWM Mode  
The Enhanced PWM mode provides additional PWM  
output options for a broader range of control applica-  
tions. The module is an upwardly compatible version of  
the standard CCP module and offers up to four outputs,  
designated P1A through P1D. Users are also able to  
select the polarity of the signal (either active-high or  
active-low). The module’s output mode and polarity are  
configured by setting the P1M1:P1M0 and  
CCP1M3:CCP1M0 bits of the CCP1CON register  
(CCP1CON<7:6> and CCP1CON<3:0>, respectively).  
As before, the user must manually configure the  
appropriate TRISD bits for output.  
16.4.1  
PWM OUTPUT CONFIGURATIONS  
The P1M1:P1M0 bits in the CCP1CON register allow  
one of four configurations:  
• Single Output  
• Half-Bridge Output  
Figure 16-1 shows a simplified block diagram of PWM  
operation. All control registers are double-buffered and  
are loaded at the beginning of a new PWM cycle (the  
period boundary when Timer2 resets) in order to pre-  
vent glitches on any of the outputs. The exception is the  
PWM Delay register, ECCP1DEL, which is loaded at  
either the duty cycle boundary or the boundary period  
(whichever comes first). Because of the buffering, the  
module waits until the assigned timer resets instead of  
starting immediately. This means that enhanced PWM  
• Full-Bridge Output, Forward mode  
• Full-Bridge Output, Reverse mode  
The Single Output mode is the Standard PWM mode  
discussed in Section 15.5 “PWM Mode”. The Half-  
Bridge and Full-Bridge Output modes are covered in  
detail in the sections that follow.  
The general relationship of the outputs in all  
configurations is summarized in Figure 16-2.  
FIGURE 16-1:  
SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE  
CCP1CON<5:4>  
P1M1<1:0>  
CCP1M<3:0>  
4
Duty Cycle Registers  
2
CCPR1L  
CCP1/P1A  
RC2/CCP1/P1A  
TRISD<4>  
TRISD<5>  
TRISD<6>  
TRISD<7>  
CCPR1H (Slave)  
Comparator  
P1B  
RD5/PSP5/P1B  
RD6/PSP6/P1C  
Output  
Controller  
R
S
Q
P1C  
(Note 1)  
TMR2  
P1D  
RD7/PSP7/P1D  
Comparator  
PR2  
Clear Timer,  
set CCP1 pin and  
latch D.C.  
PWM1CON  
Note: The 8-bit timer TMR2 register is concatenated with the 2-bit internal Q clock or 2 bits of the prescaler to create the 10-bit time base.  
2003 Microchip Technology Inc.  
DS39599C-page 143  
PIC18F2220/2320/4220/4320  
FIGURE 16-2:  
PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)  
0
PR2+1  
Duty  
Cycle  
SIGNAL  
CCP1CON  
<7:6>  
Period  
P1A Modulated  
(Single Output)  
00  
10  
(1)  
(1)  
Delay  
Delay  
P1A Modulated  
P1B Modulated  
(Half-Bridge)  
P1A Active  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Forward)  
01  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
FIGURE 16-3:  
PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)  
0
PR2+1  
Duty  
Cycle  
SIGNAL  
CCP1CON  
<7:6>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
00  
10  
(1)  
(1)  
Delay  
Delay  
(Half-Bridge)  
P1B Inactive  
(Full-Bridge,  
Forward)  
01  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Duty Cycle = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (PWM1CON<6:0>)  
Note 1: Dead band delay is programmed using the PWM1CON register (see Section 16.4.4 “Programmable Dead Band Delay”).  
DS39599C-page 144  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
16.4.2  
HALF-BRIDGE MODE  
FIGURE 16-4:  
HALF-BRIDGE PWM  
OUTPUT  
In the Half-Bridge Output mode, two pins are used as  
outputs to drive push-pull loads. The PWM output sig-  
nal is output on the RC2/CCP1/P1A pin, while the com-  
plementary PWM output signal is output on the RD5/  
PSP5/P1B pin (Figure 16-4). This mode can be used  
for half-bridge applications, as shown in Figure 16-5, or  
for full-bridge applications where four power switches  
are being modulated with two PWM signals.  
Period  
Period  
Duty Cycle  
(2)  
(2)  
P1A  
td  
td  
P1B  
In Half-Bridge Output mode, the programmable dead  
band delay can be used to prevent shoot-through  
current in half-bridge power devices. The value of bits  
PDC6:PDC0 sets the number of instruction cycles  
before the output is driven active. If the value is greater  
than the duty cycle, the corresponding output remains  
inactive during the entire cycle. See Section 16.4.4  
“Programmable Dead Band Delay” for more details  
of the dead band delay operations.  
(1)  
(1)  
(1)  
td = Dead Band Delay  
Note 1: At this time, the TMR2 register is equal to the PR2  
register.  
2: Output signals are shown as active-high.  
Since the P1A and P1B outputs are multiplexed with  
the PORTC<2> and PORTD<5> data latches, the  
TRISC<2> and TRISD<5> bits must be cleared to  
configure P1A and P1B as outputs.  
FIGURE 16-5:  
EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (“Push-Pull”)  
PIC18F4220/4320  
FET  
Driver  
+
V
-
P1A  
Load  
FET  
Driver  
+
V
-
P1B  
V-  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
PIC18F4220/4320  
FET  
Driver  
FET  
Driver  
P1A  
Load  
FET  
FET  
Driver  
Driver  
P1B  
V-  
2003 Microchip Technology Inc.  
DS39599C-page 145  
PIC18F2220/2320/4220/4320  
P1A, P1B, P1C and P1D outputs are multiplexed with  
the PORTC<2> and PORTD<5:7> data latches. The  
TRISC<2> and TRISD<5:7> bits must be cleared to  
make the P1A, P1B, P1C and P1D pins output.  
16.4.3  
FULL-BRIDGE MODE  
In Full-Bridge Output mode, four pins are used as out-  
puts; however, only two outputs are active at a time. In  
the Forward mode, pin RC2/CCP1/P1A is continuously  
active and pin RD7/PSP7/P1D is modulated. In the  
Reverse mode, RD6/PSP6/P1C pin is continuously  
active and RD5/PSP5/P1B pin is modulated. These are  
illustrated in Figure 16-6.  
FIGURE 16-6:  
FULL-BRIDGE PWM OUTPUT  
FORWARD MODE  
Period  
(2)  
P1A  
Duty Cycle  
(2)  
(2)  
P1B  
P1C  
(2)  
P1D  
(1)  
(1)  
REVERSE MODE  
Period  
Duty Cycle  
(2)  
P1A  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
Note 2: Output signal is shown as active-high.  
DS39599C-page 146  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 16-7:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
PIC18F4220/4320  
QC  
QA  
FET  
Driver  
FET  
Driver  
P1A  
Load  
P1B  
FET  
Driver  
FET  
Driver  
P1C  
P1D  
QD  
QB  
V-  
Figure 16-9 shows an example where the PWM direc-  
tion changes from forward to reverse at a near 100%  
duty cycle. At time t1, the outputs P1A and P1D  
become inactive, while output P1C becomes active. In  
this example, since the turn-off time of the power  
devices is longer than the turn-on time, a shoot-through  
current may flow through power devices QC and QD  
(see Figure 16-7) for the duration of ‘t’. The same  
phenomenon will occur to power devices QA and QB  
for PWM direction change from reverse to forward.  
16.4.3.1  
Direction Change in Full-Bridge  
Mode  
In the Full-Bridge Output mode, the P1M1 bit in the  
CCP1CON register allows users to control the forward/  
reverse direction. When the application firmware  
changes this direction control bit, the module will  
assume the new direction on the next PWM cycle.  
Just before the end of the current PWM period, the mod-  
ulated outputs (P1B and P1D) are placed in their inactive  
state, while the unmodulated outputs (P1A and P1C) are  
switched to drive in the opposite direction. This occurs in  
a time interval of 4 TOSC * (Timer2 Prescale Value)  
before the next PWM period begins. The Timer2  
prescaler will be either 1, 4 or 16, depending on the  
value of the T2CKPS bit (T2CON<1:0>). During the  
interval from the switch of the unmodulated outputs to  
the beginning of the next period, the modulated outputs  
(P1B and P1D) remain inactive. This relationship is  
shown in Figure 16-8.  
If changing PWM direction at high duty cycle is required  
for an application, one of the following requirements  
must be met:  
1. Reduce PWM for  
changing directions.  
a PWM period before  
2. Use switch drivers that can drive the switches off  
faster than they can drive them on.  
Other options to prevent shoot-through current may  
exist.  
Note that in the Full-Bridge Output mode, the ECCP  
module does not provide any dead band delay. In gen-  
eral, since only one output is modulated at all times,  
dead band delay is not required. However, there is a  
situation where a dead band delay might be required.  
This situation occurs when both of the following  
conditions are true:  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn-off time of the power switch, including  
the power device and driver circuit, is greater  
than the turn-on time.  
2003 Microchip Technology Inc.  
DS39599C-page 147  
PIC18F2220/2320/4220/4320  
FIGURE 16-8:  
PWM DIRECTION CHANGE  
(1)  
Period  
Period  
SIGNAL  
P1A (Active High)  
P1B (Active High)  
DC  
P1C (Active High)  
P1D (Active High)  
(Note 2)  
DC  
Note 1: The direction bit in the CCP1 Control register (CCP1CON<7>) is written any time during the PWM cycle.  
2: When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle at intervals of  
4 TOSC, 16 TOSC or 64 TOSC, depending on the Timer2 prescaler value. The modulated P1B and P1D signals are  
inactive at this time.  
FIGURE 16-9:  
PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE(1)  
Forward Period  
Reverse Period  
t1  
P1A  
P1B  
DC  
P1C  
P1D  
DC  
(2)  
t
on  
External Switch C  
External Switch D  
(3)  
t
off  
(2,3)  
Potential  
Shoot-Through  
Current  
t = t – t  
off  
on  
Note 1: All signals are shown as active-high.  
2: t is the turn-on delay of power switch QC and its driver.  
on  
3: t is the turn-off delay of power switch QD and its driver.  
off  
DS39599C-page 148  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
A shutdown event can be caused by either of the two  
comparator modules or the INT0 pin (or any combina-  
tion of these three sources). The comparators may be  
used to monitor a voltage input proportional to a current  
being monitored in the bridge circuit. If the voltage  
exceeds a threshold, the comparator switches state  
and triggers a shutdown. Alternatively, a digital signal  
on the INT0 pin can also trigger a shutdown. The auto-  
shutdown feature can be disabled by not selecting any  
auto-shutdown sources. The auto-shutdown sources to  
be used are selected using the ECCPAS2:ECCPAS0  
bits (ECCPAS<6:4>).  
16.4.4  
PROGRAMMABLE DEAD BAND  
DELAY  
In half-bridge applications, where all power switches  
are modulated at the PWM frequency at all times, the  
power switches normally require more time to turn off  
than to turn on. If both the upper and lower power  
switches are switched at the same time (one turned on  
and the other turned off), both switches may be on for  
a short period of time until one switch completely turns  
off. During this brief interval, a very high current (shoot-  
through current) may flow through both power  
switches, shorting the bridge supply. To avoid this  
potentially destructive shoot-through current from flow-  
ing during switching, turning on either of the power  
switches is normally delayed to allow the other switch  
to completely turn off.  
When a shutdown occurs, the output pins are asyn-  
chronously placed in their shutdown states, specified  
by the PSSAC1:PSSAC0 and PSSBD1:PSSBD0 bits  
(ECCPAS<3:0>). Each pin pair (P1A/P1C and P1B/  
P1D) may be set to drive high, drive low or be tri-stated  
(not driving). The ECCPASE bit (ECCPAS<7>) is also  
set to hold the enhanced PWM outputs in their  
shutdown states.  
In the Half-Bridge Output mode, a digitally program-  
mable dead band delay is available to avoid shoot-  
through current from destroying the bridge power  
switches. The delay occurs at the signal transition from  
the non-active state to the active state. See Figure 16-4  
for illustration. The lower seven bits of the PWM1CON  
register (Register 16-2) set the delay period in terms of  
microcontroller instruction cycles (TCY or 4 TOSC).  
The ECCPASE bit is set by hardware when a shutdown  
event occurs. If automatic restarts are not enabled, the  
ECCPASE bit is cleared by firmware when the cause of  
the shutdown clears. If automatic restarts are enabled,  
the ECCPASE bit is automatically cleared when the  
cause of the auto-shutdown has cleared.  
16.4.5  
ENHANCED PWM  
AUTO-SHUTDOWN  
If the ECCPASE bit is set when a PWM period begins,  
the PWM outputs remain in their shutdown state for that  
entire PWM period. When the ECCPASE bit is cleared,  
the PWM outputs will return to normal operation at the  
beginning of the next PWM period.  
When the ECCP is programmed for any of the  
enhanced PWM modes, the active output pins may be  
configured for auto-shutdown. Auto-shutdown immedi-  
ately places the enhanced PWM output pins into a  
defined shutdown state when a shutdown event  
occurs.  
Note:  
Writing to the ECCPASE bit is disabled  
while a shutdown condition is active.  
REGISTER 16-2: PWM1CON: PWM CONFIGURATION REGISTER  
R/W-0  
R/W-0  
PDC6  
R/W-0  
PDC5  
R/W-0  
PDC4  
R/W-0  
PDC3  
R/W-0  
PDC2  
R/W-0  
PDC1  
R/W-0  
PDC0  
PRSEN  
bit 7  
bit 0  
bit 7  
PRSEN: PWM Restart Enable bit  
1= Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event  
goes away; the PWM restarts automatically  
0= Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM  
bit 6-0  
PDC<6:0>: PWM Delay Count bits  
Number of FOSC/4 (4 * TOSC) cycles between the scheduled time when a PWM signal should  
transition active and the actual time it transitions active.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 149  
PIC18F2220/2320/4220/4320  
REGISTER 16-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN  
CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0  
bit 7  
bit 0  
bit 7  
ECCPASE: ECCP Auto-Shutdown Event Status bit  
0= ECCP outputs are operating  
1= A shutdown event has occurred; ECCP outputs are in shutdown state  
bit 6-4  
ECCPAS<2:0>: ECCP Auto-Shutdown Source Select bits  
000= Auto-shutdown is disabled  
001= Comparator 1 output  
010= Comparator 2 output  
011= Either Comparator 1 or 2  
100= INT0  
101= INT0 or Comparator 1  
110= INT0 or Comparator 2  
111= INT0 or Comparator 1 or Comparator 2  
bit 3-2  
bit 1-0  
PSSAC<1:0>: Pin A and C Shutdown State Control bits  
00= Drive Pins A and C to ‘0’  
01= Drive Pins A and C to ‘1’  
1x= Pins A and C tri-state  
PSSBD<1:0>: Pin B and D Shutdown State Control bits  
00= Drive Pins B and D to ‘0’  
01= Drive Pins B and D to ‘1’  
1x= Pins B and D tri-state  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39599C-page 150  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
16.4.5.1  
Auto-Shutdown and Automatic  
Restart  
16.4.6  
START-UP CONSIDERATIONS  
When the ECCP module is used in the PWM mode, the  
application hardware must use the proper external pull-  
up and/or pull-down resistors on the PWM output pins.  
When the microcontroller is released from Reset, all of  
the I/O pins are in the high-impedance state. The exter-  
nal circuits must keep the power switch devices in the  
off state until the microcontroller drives the I/O pins with  
the proper signal levels or activates the PWM output(s).  
The auto-shutdown feature can be configured to allow  
automatic restarts of the module following a shutdown  
event. This is enabled by setting the PRSEN bit of the  
PWM1CON register (PWM1CON<7>).  
In Shutdown mode with PRSEN = 1(Figure 16-10), the  
ECCPASE bit will remain set for as long as the cause  
of the shutdown continues. When the shutdown condi-  
tion clears, the ECCPASE bit is cleared. If PRSEN = 0  
(Figure 16-11), once a shutdown condition occurs, the  
ECCPASE bit will remain set until it is cleared by firm-  
ware. Once ECCPASE is cleared, the enhanced PWM  
will resume at the beginning of the next PWM period.  
The CCP1M1:CCP1M0 bits (CCP1CON<1:0>) allow  
the user to choose whether the PWM output signals are  
active-high or active-low for each pair of PWM output  
pins (P1A/P1C and P1B/P1D). The PWM output polar-  
ities must be selected before the PWM pins are config-  
ured as outputs. Changing the polarity configuration  
while the PWM pins are configured as outputs is not  
recommended since it may result in damage to the  
application circuits.  
Note:  
Writing to the ECCPASE bit is disabled  
while a shutdown condition is active.  
Independent of the PRSEN bit setting, if the auto-  
shutdown source is one of the comparators, the shut-  
down condition is a level. The ECCPASE bit cannot be  
cleared as long as the cause of the shutdown persists.  
The P1A, P1B, P1C and P1D output latches may not be  
in the proper states when the PWM module is initialized.  
Enabling the PWM pins for output at the same time as  
the ECCP module may cause damage to the application  
circuit. The ECCP module must be enabled in the proper  
output mode and complete a full PWM cycle before con-  
figuring the PWM pins as outputs. The completion of a  
full PWM cycle is indicated by the TMR2IF bit being set  
as the second PWM period begins.  
The Auto-Shutdown mode can be forced by writing a ‘1’  
to the ECCPASE bit.  
FIGURE 16-10:  
PWM AUTO-SHUTDOWN (PRSEN = 1, AUTO-RESTART ENABLED)  
PWM Period  
PWM Period  
PWM Period  
PWM Activity  
Dead Time  
Duty Cycle  
Dead Time  
Duty Cycle  
Dead Time  
Duty Cycle  
Shutdown Event  
ECCPASE bit  
FIGURE 16-11:  
PWM AUTO-SHUTDOWN (PRSEN = 0, AUTO-RESTART DISABLED)  
PWM Period  
PWM Period  
PWM Period  
PWM Activity  
Dead Time  
Duty Cycle  
Dead Time  
Duty Cycle  
Dead Time  
Duty Cycle  
Shutdown Event  
ECCPASE bit  
ECCPASE  
Cleared by Firmware  
2003 Microchip Technology Inc.  
DS39599C-page 151  
PIC18F2220/2320/4220/4320  
16.4.7  
SETUP FOR PWM OPERATION  
16.4.8  
OPERATION IN POWER MANAGED  
MODES  
The following steps should be taken when configuring  
the ECCP1 module for PWM operation:  
In Sleep mode, all clock sources are disabled. Timer2  
will not increment and the state of the module will not  
change. If the ECCP pin is driving a value, it will con-  
tinue to drive that value. When the device wakes up, it  
will continue from this state. If Two-Speed Start-ups are  
enabled, the initial start-up frequency from INTOSC  
and the postscaler may not be stable immediately.  
1. Configure the PWM pins P1A and P1B (and  
P1C and P1D, if used) as inputs by setting the  
corresponding TRISC and TRISD bits.  
2. Set the PWM period by loading the PR2 register.  
3. Configure the ECCP module for the desired  
PWM mode and configuration by loading the  
CCP1CON register with the appropriate values:  
In PRI_IDLE mode, the primary clock will continue to  
clock the ECCP module without change.  
• Select one of the available output  
configurations and direction with the  
P1M1:P1M0 bits.  
In all other power managed modes, the selected power  
managed mode clock will clock Timer2. Other power  
managed mode clocks will most likely be different than  
the primary clock frequency.  
• Select the polarities of the PWM output  
signals with the CCP1M3:CCP1M0 bits.  
4. Set the PWM duty cycle by loading the CCPR1L  
register and CCP1CON<5:4> bits.  
16.4.8.1  
OPERATION WITH FAIL-SAFE  
CLOCK MONITOR  
5. For Half-Bridge Output mode, set the dead band  
delay by loading PWM1CON<6:0> with the  
appropriate value.  
If the Fail-Safe Clock Monitor is enabled  
(CONFIG1H<6> is programmed), a clock failure will  
force the device into the RC_RUN Power Managed  
mode and the OSCFIF bit (PIR2<7>) will be set. The  
ECCP will then be clocked from the internal oscillator  
clock source which may have a different clock  
frequency than the primary clock. By loading the  
IRCF2:IRCF0 bits on Resets, the user can obtain a  
frequency higher than the default INTRC clock source  
in the event of a clock failure.  
6. If auto-shutdown operation is required, load the  
ECCPAS register:  
• Select the auto-shutdown sources using the  
ECCPAS<2:0> bits.  
• Select the shutdown states of the PWM  
output pins using PSSAC1:PSSAC0 and  
PSSBD1:PSSBD0 bits.  
• Set the ECCPASE bit (ECCPAS<7>).  
See the previous section for additional details.  
• Configure the comparators using the CMCON  
register.  
16.4.9  
EFFECTS OF A RESET  
• Configure the comparator inputs as analog  
inputs.  
Both Power-on and subsequent Resets will force all  
ports to Input mode and the CCP registers to their  
Reset states.  
7. If auto-restart operation is required, set the  
PRSEN bit (PWM1CON<7>).  
This forces the Enhanced CCP module to reset to a  
state compatible with the standard CCP module.  
8. Configure and start TMR2:  
• Clear the TMR2 interrupt flag bit by clearing  
the TMR2IF bit (PIR1<1>).  
• Set the TMR2 prescale value by loading the  
T2CKPS bits (T2CON<1:0>).  
• Enable Timer2 by setting the TMR2ON bit  
(T2CON<2>).  
9. Enable PWM outputs after a new PWM cycle  
has started:  
• Wait until TMR2 overflows (TMR2IF bit is set).  
• Enable the CCP1/P1A, P1B, P1C and/or P1D  
pin outputs by clearing the respective TRISC  
and TRISD bits.  
• Clear the ECCPASE bit (ECCPAS<7>).  
DS39599C-page 152  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 16-2: REGISTERS ASSOCIATED WITH ENHANCED PWM AND TIMER2  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
0000 000x 0000 000u  
0--1 11qq 0--q qquu  
IPEN  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
0000 0000 0000 0000  
PIE1  
IPR1  
TMR2  
Timer2 Module Register  
Timer2 Module Period Register  
PR2  
1111 1111 1111 1111  
T2CON  
TRISC  
TRISD  
CCPR1H  
CCPR1L  
CCP1CON  
ECCPAS  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
PORTC Data Direction Register  
1111 1111 1111 1111  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
PORTD Data Direction Register  
Enhanced Capture/Compare/PWM Register 1 High Byte  
Enhanced Capture/Compare/PWM Register 1 Low Byte  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 0000 0000 0000 0000  
PWM1CON PRSEN  
PDC6  
IRCF2  
PDC5  
IRCF1  
PDC4  
IRCF0  
PDC3  
OSTS  
PDC2  
IOFS  
PDC1  
SCS1  
PDC0 0000 0000 0000 0000  
SCS0 0000 q000 0000 q000  
OSCCON  
IDLEN  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’.  
Shaded cells are not used by the ECCP module in enhanced PWM mode.  
2003 Microchip Technology Inc.  
DS39599C-page 153  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 154  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
17.3 SPI Mode  
17.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received, simultaneously. All four  
modes of SPI are supported. To accomplish  
communication, typically three pins are used:  
17.1 Master SSP (MSSP) Module  
Overview  
• Serial Data Out (SDO) – RC5/SDO  
• Serial Data In (SDI) – RC4/SDI/SDA  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
• Serial Clock (SCK) – RC3/SCK/SCL  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Slave Select (SS) – RA5/AN4/SS/LVDIN/C2OUT  
Register 17-1 shows the block diagram of the MSSP  
module when operating in SPI mode.  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
- Full Master mode  
FIGURE 17-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
Internal  
Data Bus  
Read  
Write  
• Master mode  
• Multi-Master mode  
• Slave mode  
SSPBUF reg  
SSPSR reg  
17.2 Control Registers  
The MSSP module has three associated registers.  
These include a status register (SSPSTAT) and two  
control registers (SSPCON1 and SSPCON2). The use  
of these registers and their individual configuration bits  
differ significantly, depending on whether the MSSP  
module is operated in SPI or I2C mode.  
RC4/SDI/SDA  
RC5/SDO  
Shift  
Clock  
bit 0  
Control  
Enable  
SS  
Additional details are provided under the individual  
sections.  
RA5/AN4/SS/  
LVDIN/C2OUT  
Edge  
Select  
2
Clock Select  
SSPM3:SSPM0  
SMP:CKE  
2
4
TMR2 Output  
(
)
2
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
RC3/SCK/  
SCL  
Data to TX/RX in SSPSR  
TRIS bit  
2003 Microchip Technology Inc.  
DS39599C-page 155  
PIC18F2220/2320/4220/4320  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
17.3.1  
REGISTERS  
The MSSP module has four registers for SPI mode  
operation. These are:  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
During transmission, the SSPBUF is not double-  
buffered. A write to SSPBUF will write to both SSPBUF  
and SSPSR.  
SSPCON1 and SSPSTAT are the control and status  
registers in SPI mode operation. The SSPCON1 regis-  
ter is readable and writable. The lower six bits of the  
SSPSTAT are read-only. The upper two bits of the  
SSPSTAT are read/write.  
REGISTER 17-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
bit 6  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode.  
CKE: SPI Clock Edge Select bit  
When CKP = 0:  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
When CKP = 1:  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D/A: Data/Address bit  
Used in I2C mode only.  
P: Stop bit  
Used in I2C mode only.  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write bit information  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit (Receive mode only)  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39599C-page 156  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 17-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
bit 6  
WCOL: Write Collision Detect bit (Transmit mode only)  
1= The SSPBUF register is written while it is still transmitting the previous word (must be  
cleared in software)  
0= No collision  
SSPOV: Receive Overflow Indicator bit  
SPI Slave mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case  
of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode.The user  
must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be  
cleared in software).  
0= No overflow  
Note:  
In Master mode, the overflow bit is not set since each new reception (and  
transmission) is initiated by writing to the SSPBUF register.  
bit 5  
bit 4  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables serial port and configures SCK, SDO, SDI and SS as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Note:  
When the MSSP is enabled in SPI mode, these pins must be properly configured  
as input or output.  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0101= SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin  
0100= SPI Slave mode, clock = SCK pin, SS pin control enabled  
0011= SPI Master mode, clock = TMR2 output/2  
0010= SPI Master mode, clock = FOSC/64  
0001= SPI Master mode, clock = FOSC/16  
0000= SPI Master mode, clock = FOSC/4  
Note:  
Bit combinations not specifically listed here are either reserved or implemented in  
I2C mode only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 157  
PIC18F2220/2320/4220/4320  
SSPBUF register during transmission/reception of data  
will be ignored and the Write Collision Detect bit,  
WCOL (SSPCON1<7>), will be set. User software  
must clear the WCOL bit so that it can be determined if  
the following write(s) to the SSPBUF register  
completed successfully.  
17.3.2  
OPERATION  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON1<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
Full bit, BF (SSPSTAT<0>), indicates when SSPBUF  
has been loaded with the received data (transmission  
is complete). When the SSPBUF is read, the BF bit is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. Generally, the MSSP interrupt is used to  
determine when the transmission/reception has com-  
pleted. The SSPBUF must be read and/or written. If the  
interrupt method is not going to be used, then software  
polling can be done to ensure that a write collision does  
not occur. Example 17-1 shows the loading of the  
SSPBUF (SSPSR) for data transmission.  
• Data Input Sample Phase (middle or end of data  
output time)  
• Clock Edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
• Slave Select mode (Slave mode only)  
The MSSP consists of a Transmit/Receive Shift regis-  
ter (SSPSR) and a Buffer register (SSPBUF). The  
SSPSR shifts the data in and out of the device, MSb  
first. The SSPBUF holds the data that was written to the  
SSPSR until the received data is ready. Once the 8 bits  
of data have been received, that byte is moved to the  
SSPBUF register. Then the Buffer Full Detect bit, BF  
(SSPSTAT<0>), and the interrupt flag bit, SSPIF, are  
set. This double-buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
reading the data that was just received. Any write to the  
The SSPSR is not directly readable or writable and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the MSSP Status register (SSPSTAT)  
indicates the various status conditions.  
EXAMPLE 17-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP  
BTFSS  
BRA  
SSPSTAT, BF  
LOOP  
;Has data been received(transmit complete)?  
;No  
MOVF  
SSPBUF, W  
;WREG reg = contents of SSPBUF  
MOVWF  
RXDATA  
;Save in user RAM, if data is meaningful  
MOVF  
MOVWF  
TXDATA, W  
SSPBUF  
;W reg = contents of TXDATA  
;New data to xmit  
DS39599C-page 158  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
17.3.3  
ENABLING SPI I/O  
17.3.4  
TYPICAL CONNECTION  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON1<5>), must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, re-initialize the  
SSPCON registers and then set the SSPEN bit. This  
configures the SDI, SDO, SCK and SS pins as serial  
port pins. For the pins to behave as the serial port func-  
tion, some must have their data direction bits (in the  
TRIS register) appropriately programmed. That is:  
Register 17-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge and latched on the opposite edge  
of the clock. Both processors should be programmed to  
the same Clock Polarity (CKP), then both controllers  
would send and receive data at the same time.  
Whether the data is meaningful (or dummy data)  
depends on the application software. This leads to  
three scenarios for data transmission:  
• SDI must have TRISC<4> bit set  
• SDO must have TRISC<5> bit cleared  
• SCK (Master mode) must have TRISC<3> bit  
cleared  
• Master sends data – Slave sends dummy data  
• Master sends data – Slave sends data  
• SCK (Slave mode) must have TRISC<3> bit set  
• SS must have TRISC<5> bit set  
• Master sends dummy data – Slave sends data  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
FIGURE 17-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM3:SSPM0 = 00xxb  
SPI Slave SSPM3:SSPM0 = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
2003 Microchip Technology Inc.  
DS39599C-page 159  
PIC18F2220/2320/4220/4320  
Figure 17-3, Figure 17-5 and Figure 17-6, where the  
MSB is transmitted first. In Master mode, the SPI clock  
rate (bit rate) is user programmable to be one of the  
following:  
17.3.5  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 17-2) is to  
broadcast data by the software protocol.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• (Timer2 output)/2  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
The maximum data rate is approximately 3.0 Mbps,  
limited by timing requirements (see Table 26-14  
through Table 26-17).  
Figure 17-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
The clock polarity is selected by appropriately program-  
ming the CKP bit (SSPCON1<4>). This then, would  
give waveforms for SPI communication as shown in  
FIGURE 17-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
SDO  
(CKE = 0)  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS39599C-page 160  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
is tri-stated, even if in the middle of a transmitted byte.  
External pull-up/pull-down resistors may be desirable,  
depending on the application.  
17.3.6  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
Note 1: When the SPI is in Slave mode with SS pin  
control enabled (SSPCON1<3:0> = 0100),  
the SPI module will reset when the SS pin is  
set high.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: If the SPI is used in Slave mode with CKE  
set, then the SS pin control must be  
enabled.  
While in power managed modes, the slave can trans-  
mit/receive data. When a byte is received, the device  
will wake-up from power managed modes.  
When the SPI module resets, SSPSR is cleared. This  
can be done by either driving the SS pin to a high level  
or clearing the SSPEN bit.  
17.3.7  
SLAVE SELECT CONTROL  
The SS pin allows a master controller to select one of  
several slave controllers for communications in sys-  
tems with more than one slave. The SPI must be in  
Slave mode with SS pin control enabled  
(SSPCON1<3:0> = 04h). The SS pin is configured for  
input by setting TRISA<5>. When the SS pin is low,  
transmission and reception are enabled and the SDO  
pin is driven. When the SS pin goes high, the SDO pin  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver the SDO pin can be configured as  
an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
FIGURE 17-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 7  
bit 7  
bit 0  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
2003 Microchip Technology Inc.  
DS39599C-page 161  
PIC18F2220/2320/4220/4320  
FIGURE 17-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 17-6:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS39599C-page 162  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
17.3.8  
MASTER IN POWER MANAGED  
MODES  
17.3.8.1  
Slave in Power Managed Modes  
In Slave mode, the SPI Transmit/Receive Shift register  
operates asynchronously to the device. This allows the  
device to be placed in any power managed mode and  
data to be shifted into the SPI Transmit/Receive Shift  
register. When all 8 bits have been received, the MSSP  
interrupt flag bit will be set and if MSSP interrupts are  
enabled, will wake the device from a power managed  
mode.  
In Master mode, module clocks may be operating at a  
different speed than when in full power mode, or in the  
case of the Sleep Power Managed mode, all clocks are  
halted.  
In most power managed modes, a clock is provided to  
the peripherals and is derived from the primary clock  
source, the secondary clock (Timer1 oscillator at 32.768  
kHz) or the internal oscillator block (one of eight frequen-  
cies between 31 kHz and 8 MHz). See Section 2.7  
“Clock Sources and Oscillator Switching” for  
additional information.  
17.3.9  
EFFECTS OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
In most cases, the speed that the master clocks SPI  
data is not important; however, this should be  
evaluated for each system.  
17.3.10 BUS MODE COMPATIBILITY  
Table 17-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
If MSSP interrupts are enabled, they can wake the con-  
troller from a power managed mode when the master  
completes sending data. If an exit from a power  
managed mode is not desired, MSSP interrupts should  
be disabled.  
TABLE 17-1: SPI BUS MODES  
Control Bits State  
Standard SPI Mode  
Terminology  
If the Sleep mode is selected, all module clocks are  
halted and the transmission/reception will pause until  
the device wakes from the power managed mode. After  
the device returns to full power mode, the module will  
resume transmitting and receiving data.  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
There is also an SMP bit which controls when the data  
is sampled.  
TABLE 17-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/GIEH  
PEIE/  
GIEL  
TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
1111 1111 1111 1111  
(1)  
PIE1  
PSPIE  
(1)  
IPR1  
PSPIP  
TRISC  
SSPBUF  
SSPCON1  
TRISA  
SSPSTAT  
PORTC Data Direction Register  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
PORTA Data Direction Register  
D/A  
xxxx xxxx uuuu uuuu  
SSPM2  
SSPM1  
SSPM0 0000 0000 0000 0000  
(1)  
(1)  
TRISA7  
SMP  
TRISA6  
CKE  
--11 1111 --11 1111  
P
S
R/W  
UA  
BF  
0000 0000 0000 0000  
Legend: x= unknown, u= unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP in SPI mode.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.  
2003 Microchip Technology Inc.  
DS39599C-page 163  
PIC18F2220/2320/4220/4320  
2
17.4.1  
REGISTERS  
17.4 I C Mode  
The MSSP module has six registers for I2C operation.  
These are:  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on Start and Stop bits in  
hardware to determine a free bus (multi-master func-  
tion). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Control Register 2 (SSPCON2)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
Two pins are used for data transfer:  
• Serial Clock (SCL) – RC3/SCK/SCL  
• Serial Data (SDA) – RC4/SDI/SDA  
• MSSP Address Register (SSPADD)  
SSPCON1, SSPCON2 and SSPSTAT are the control  
and status registers in I2C mode operation. The  
SSPCON1 and SSPCON2 registers are readable and  
writable. The lower six bits of the SSPSTAT are  
read-only. The upper two bits of the SSPSTAT are  
read/write.  
The user must configure these pins as inputs using the  
TRISC<4:3> bits.  
FIGURE 17-7:  
MSSP BLOCK DIAGRAM  
(I2C MODE)  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
Internal  
Data Bus  
Read  
Write  
SSPADD register holds the slave device address  
when the SSP is configured in I2C Slave mode. When  
the SSP is configured in Master mode, the lower  
seven bits of SSPADD act as the Baud Rate  
Generator reload value.  
SSPBUF reg  
Shift  
Clock  
RC3/SCK/  
SCL  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
SSPSR reg  
RC4/SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match Detect  
SSPADD reg  
During transmission, the SSPBUF is not double-  
buffered. A write to SSPBUF will write to both SSPBUF  
and SSPSR.  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit Detect  
DS39599C-page 164  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 17-3: SSPSTAT: MSSP STATUS REGISTER (I2C MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SMP: Slew Rate Control bit  
In Master or Slave mode:  
1 = Slew rate control disabled  
0 = Slew rate control enabled  
CKE: SMBus Select bit  
In Master or Slave mode:  
1= Enable SMBus specific inputs  
0= Disable SMBus specific inputs  
D/A: Data/Address bit  
In Master mode:  
Reserved.  
In Slave mode:  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Note:  
This bit is cleared on Reset when SSPEN is cleared or a Start bit has been detected.  
S: Start bit  
1= Indicates that a Start bit has been detected last  
0= Start bit was not detected last  
Note:  
This bit is cleared on Reset when SSPEN is cleared or a Stop bit has been detected.  
R/W: Read/Write bit Information (I2C mode only)  
In Slave mode:  
1= Read  
0= Write  
Note:  
This bit holds the R/W bit information following the last address match. This bit is  
only valid from the address match to the next Start bit, Stop bit or not ACK bit.  
In Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
Note:  
OR’ing this bit with the SSPCON2 bits, SEN, RSEN, PEN, RCEN or ACKEN will  
indicate if the MSSP is in Idle mode.  
bit 1  
bit 0  
UA: Update Address (10-bit Slave mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
In Transmit mode:  
1= Data transmit in progress (does not include the ACK and Stop bits), SSPBUF is full  
0= Data transmit complete (does not include the ACK and Stop bits), SSPBUF is empty  
In Receive mode:  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 165  
PIC18F2220/2320/4220/4320  
REGISTER 17-4: SSPCON1: MSSP CONTROL REGISTER 1 (I2C MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
In Master Transmit mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for  
a transmission to be started (must be cleared in software)  
0= No collision  
In Slave Transmit mode:  
1= The SSPBUF register is written while it is still transmitting the previous word (must be  
cleared in software)  
0= No collision  
In Receive mode (Master or Slave modes):  
This is a “don’t care” bit.  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In Receive mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte (must be  
cleared in software)  
0= No overflow  
In Transmit mode:  
This is a “don’t care” bit in Transmit mode.  
bit 5  
bit 4  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables the serial port and configures the SDA and SCL pins as the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Note:  
When enabled, the SDA and SCL pins must be configured as input pins.  
CKP: SCK Release Control bit  
In Slave mode:  
1= Release clock  
0= Holds clock low (clock stretch), used to ensure data setup time  
In Master mode:  
Unused in this mode.  
bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1011= I2C Firmware Controlled Master mode (Slave Idle)  
1000= I2C Master mode, clock = FOSC/(4 * (SSPADD + 1))  
0111= I2C Slave mode, 10-bit address  
0110= I2C Slave mode, 7-bit address  
Note:  
Bit combinations not specifically listed here are either reserved, or implemented in  
SPI mode only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39599C-page 166  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 17-5: SSPCON2: MSSP CONTROL REGISTER 2 (I2C MODE)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT  
ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
GCEN: General Call Enable bit (Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (Master Transmit mode only)  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
ACKDT: Acknowledge Data bit (Master Receive mode only)  
1= Not Acknowledge  
0= Acknowledge  
Note:  
Value that will be transmitted when the user initiates an Acknowledge sequence at  
the end of a receive.  
bit 4  
ACKEN: Acknowledge Sequence Enable bit (Master Receive mode only)  
1= Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence Idle  
bit 3  
bit 2  
RCEN: Receive Enable bit (Master mode only)  
1= Enables Receive mode for I2C  
0= Receive Idle  
PEN: Stop Condition Enable bit (Master mode only)  
1= Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Stop condition Idle  
bit 1  
bit 0  
RSEN: Repeated Start Condition Enabled bit (Master mode only)  
1= Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
SEN: Start Condition Enabled/Stretch Enabled bit  
In Master mode:  
1= Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Start condition Idle  
In Slave mode:  
1= Clock stretching is enabled for both Slave Transmit and Slave Receive (stretch enabled)  
0= Clock stretching is disabled  
Note:  
For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode,  
this bit may not be set (no spooling) and the SSPBUF may not be written (or writes  
to the SSPBUF are disabled).  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 167  
PIC18F2220/2320/4220/4320  
17.4.2  
OPERATION  
17.4.3.1  
Addressing  
The MSSP module functions are enabled by setting  
MSSP Enable bit, SSPEN (SSPCON1<5>).  
The SSPCON1 register allows control of the I2C oper-  
ation. Four mode selection bits (SSPCON1<3:0>) allow  
one of the following I2C modes to be selected:  
• I2C Master mode, clock = FOSC/(4 * (SSPADD + 1))  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
Once the MSSP module has been enabled, it waits for  
a Start condition to occur. Following the Start condition,  
the 8 bits are shifted into the SSPSR register. All incom-  
ing bits are sampled with the rising edge of the clock  
(SCL) line. The value of register SSPSR<7:1> is com-  
pared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match and the BF  
and SSPOV bits are clear, the following events occur:  
• I2C Slave mode (7-bit address), with Start and  
Stop bit interrupts enabled  
• I2C Slave mode (10-bit address), with Start and  
Stop bit interrupts enabled  
• I2C Firmware Controlled Master mode,  
slave is Idle  
Selection of any I2C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open-drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits. To ensure proper operation  
of the module, pull-up resistors must be provided  
externally to the SCL and SDA pins.  
1. The SSPSR register value is loaded into the  
SSPBUF register.  
2. The Buffer Full bit, BF, is set.  
3. An ACK pulse is generated.  
4. MSSP Interrupt Flag bit, SSPIF (PIR1<3>), is  
set (interrupt is generated if enabled) on the  
falling edge of the ninth SCL pulse.  
In 10-bit Address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write  
so the slave device will receive the second address  
byte. For a 10-bit address, the first byte would equal  
11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the two  
MSbs of the address. The sequence of events for  
10-bit address is as follows, with steps 7 through 9 for  
the slave-transmitter:  
17.4.3  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The MSSP module  
will override the input state with the output data when  
required (slave-transmitter).  
The I2C Slave mode hardware will always generate an  
interrupt on an address match. Through the mode  
select bits, the user can also choose to interrupt on  
Start and Stop bits.  
1. Receive first (high) byte of address (bits SSPIF,  
BF and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
When an address is matched, or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse and  
load the SSPBUF register with the received value  
currently in the SSPSR register.  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of address (bits  
SSPIF, BF and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of address. If match releases SCL line, this  
will clear bit UA.  
Any combination of the following conditions will cause  
the MSSP module not to give this ACK pulse:  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
• The Buffer Full bit, BF (SSPSTAT<0>), was set  
before the transfer was received.  
7. Receive Repeated Start condition.  
• The overflow bit, SSPOV (SSPCON1<6>), was  
set before the transfer was received.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
In this case, the SSPSR register value is not loaded  
into the SSPBUF but bit SSPIF (PIR1<3>) is set. The  
BF bit is cleared by reading the SSPBUF register, while  
bit SSPOV is cleared by software.  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter #100  
and parameter #101.  
DS39599C-page 168  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
17.4.3.2  
Reception  
17.4.3.3  
Transmission  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register and the SDA line is held low  
(ACK).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin RC3/SCK/SCL is held  
low regardless of SEN (see Section 17.4.4 “Clock  
Stretching” for more detail). By stretching the clock,  
the master will be unable to assert another clock pulse  
until the slave is done preparing the transmit data. The  
transmit data must be loaded into the SSPBUF register  
which also loads the SSPSR register. Then pin RC3/  
SCK/SCL should be enabled by setting bit, CKP  
(SSPCON1<4>). The eight data bits are shifted out on  
the falling edge of the SCL input. This ensures that the  
SDA signal is valid during the SCL high time  
(Figure 17-9).  
When the address byte overflow condition exists, then  
the no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit, BF (SSPSTAT<0>), is  
set or bit, SSPOV (SSPCON1<6>), is set.  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit, SSPIF (PIR1<3>), must be cleared in  
software. The SSPSTAT register is used to determine  
the status of the byte.  
If SEN is enabled (SSPCON2<0> = 1), RC3/SCK/SCL  
will be held low (clock stretch) following each data  
transfer. The clock must be released by setting bit,  
CKP (SSPCON1<4>). See Section 17.4.4 “Clock  
Stretching” for more detail.  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCL input pulse. If the SDA  
line is high (not ACK), then the data transfer is com-  
plete. In this case, when the ACK is latched by the  
slave, the slave logic is reset (resets SSPSTAT regis-  
ter) and the slave monitors for another occurrence of  
the Start bit. If the SDA line was low (ACK), the next  
transmit data must be loaded into the SSPBUF register.  
Again, pin RC3/SCK/SCL must be enabled by setting  
bit CKP.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
2003 Microchip Technology Inc.  
DS39599C-page 169  
PIC18F2220/2320/4220/4320  
2
FIGURE 17-8:  
I C SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 7-BIT ADDRESS)  
DS39599C-page 170  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
2
FIGURE 17-9:  
I C SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESS)  
2003 Microchip Technology Inc.  
DS39599C-page 171  
PIC18F2220/2320/4220/4320  
FIGURE 17-10:  
I2C SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS)  
DS39599C-page 172  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
2
FIGURE 17-11:  
I C SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESS)  
2003 Microchip Technology Inc.  
DS39599C-page 173  
PIC18F2220/2320/4220/4320  
17.4.4  
CLOCK STRETCHING  
17.4.4.3  
Clock Stretching for 7-bit Slave  
Transmit Mode  
Both 7 and 10-bit Slave modes implement automatic  
clock stretching during a transmit sequence.  
7-bit Slave Transmit mode implements clock stretching  
by clearing the CKP bit after the falling edge of the  
ninth clock if the BF bit is clear. This occurs regardless  
of the state of the SEN bit.  
The SEN bit (SSPCON2<0>) allows clock stretching to  
be enabled during receives. Setting SEN will cause  
the SCL pin to be held low at the end of each data  
receive sequence.  
The user’s ISR must set the CKP bit before transmis-  
sion is allowed to continue. By holding the SCL line  
low, the user has time to service the ISR and load the  
contents of the SSPBUF before the master device can  
initiate another transmit sequence (see Figure 17-9).  
17.4.4.1  
Clock Stretching for 7-bit Slave  
Receive Mode (SEN = 1)  
In 7-bit Slave Receive mode, on the falling edge of the  
ninth clock at the end of the ACK sequence if the BF bit  
is set, the CKP bit in the SSPCON1 register is automat-  
ically cleared, forcing the SCL output to be held low.  
The CKP being cleared to ‘0’ will assert the SCL line  
low. The CKP bit must be set in the user’s ISR before  
reception is allowed to continue. By holding the SCL  
line low, the user has time to service the ISR and read  
the contents of the SSPBUF before the master device  
can initiate another receive sequence. This will prevent  
buffer overruns from occurring (see Figure 17-13).  
Note 1: If the user loads the contents of SSPBUF,  
setting the BF bit before the falling edge of  
the ninth clock, the CKP bit will not be  
cleared and clock stretching will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit.  
17.4.4.4  
Clock Stretching for 10-bit Slave  
Transmit Mode  
In 10-bit Slave Transmit mode, clock stretching is con-  
trolled during the first two address sequences by the  
state of the UA bit, just as it is in 10-bit Slave Receive  
mode. The first two addresses are followed by a third  
address sequence which contains the high order bits  
of the 10-bit address and the R/W bit set to ‘1’. After  
the third address sequence is performed, the UA bit is  
not set, the module is now configured in Transmit  
mode and clock stretching is controlled by the BF flag  
as in 7-bit Slave Transmit mode (see Figure 17-11).  
Note 1: If the user reads the contents of the  
SSPBUF before the falling edge of the  
ninth clock, thus clearing the BF bit, the  
CKP bit will not be cleared and clock  
stretching will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit. The  
user should be careful to clear the BF bit  
in the ISR before the next receive  
sequence in order to prevent an overflow  
condition.  
17.4.4.2  
Clock Stretching for 10-bit Slave  
Receive Mode (SEN = 1)  
In 10-bit Slave Receive mode, during the address  
sequence, clock stretching automatically takes place  
but the CKP bit is not cleared. During this time, if the  
UA bit is set after the ninth clock, clock stretching is  
initiated. The UA bit is set after receiving the upper  
byte of the 10-bit address and following the receive of  
the second byte of the 10-bit address with the R/W bit  
cleared to ‘0’. The release of the clock line occurs  
upon updating SSPADD. Clock stretching will occur on  
each data receive sequence as described in 7-bit  
mode.  
Note:  
If the user polls the UA bit and clears it by  
updating the SSPADD register before the  
falling edge of the ninth clock occurs and if  
the user hasn’t cleared the BF bit by read-  
ing the SSPBUF register before that time,  
then the CKP bit will still NOT be asserted  
low. Clock stretching on the basis of the  
state of the BF bit only occurs during a  
data sequence, not an address sequence.  
DS39599C-page 174  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
remain low until the CKP bit is set and all other  
devices on the I2C bus have deasserted SCL. This  
ensures that a write to the CKP bit will not violate the  
minimum high time requirement for SCL (see  
Figure 17-12).  
17.4.4.5  
Clock Synchronization and  
the CKP bit (SEN = 1)  
The SEN bit is also used to synchronize writes to the  
CKP bit. If a user clears the CKP bit, the SCL output is  
forced to ‘0’. When the SEN bit is set to ‘1’, setting the  
CKP bit will not assert the SCL output low until the  
SCL output is already sampled low. If the user  
attempts to drive SCL low, the CKP bit will not assert  
the SCL line until an external I2C master device has  
already asserted the SCL line. The SCL output will  
Note:  
If the SEN bit is ‘0’, clearing the CKP bit  
will result in immediately driving the SCL  
output to ‘0’ regardless of the current  
state.  
FIGURE 17-12:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX-1  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPCON1  
2003 Microchip Technology Inc.  
DS39599C-page 175  
PIC18F2220/2320/4220/4320  
2
FIGURE 17-13:  
I C SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 7-BIT ADDRESS)  
DS39599C-page 176  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 17-14:  
I2C SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 10-BIT ADDRESS)  
2003 Microchip Technology Inc.  
DS39599C-page 177  
PIC18F2220/2320/4220/4320  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag bit is set (eighth  
bit) and on the falling edge of the ninth bit (ACK bit), the  
SSPIF interrupt flag bit is set.  
17.4.5  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the Start condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address,  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when the GCEN bit is set while the slave is  
configured in 10-bit Address mode, then the second  
half of the address is not necessary, the UA bit will not  
be set and the slave will begin receiving data after the  
Acknowledge (Figure 17-15).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R/W = 0.  
The general call address is recognized when the  
General Call Enable bit (GCEN) is enabled  
(SSPCON2<7> set). Following a Start bit detect, 8 bits  
are shifted into the SSPSR and the address is com-  
pared against the SSPADD. It is also compared to the  
general call address and fixed in hardware.  
FIGURE 17-15:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
(7 OR 10-BIT ADDRESS MODE)  
Address is compared to general call address  
after ACK, set interrupt  
Receiving Data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
General Call Address  
ACK  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
9
S
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV (SSPCON1<6>)  
GCEN (SSPCON2<7>)  
0’  
1’  
DS39599C-page 178  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
17.4.6  
MASTER MODE  
Note:  
The MSSP module, when configured in  
I2C Master mode, does not allow queueing  
of events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPBUF register to  
initiate transmission before the Start condi-  
tion is complete. In this case, the SSPBUF  
will not be written to and the WCOL bit will  
be set, indicating that a write to the  
SSPBUF did not occur.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON1 and by setting the  
SSPEN bit. In Master mode, the SCL and SDA lines  
are manipulated by the MSSP hardware.  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop con-  
ditions. The Stop (P) and Start (S) bits are cleared from  
a Reset or when the MSSP module is disabled. Control  
of the I2C bus may be taken when the P bit is set or the  
bus is Idle, with both the S and P bits clear.  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP interrupt if enabled):  
In Firmware Controlled Master mode, user code  
conducts all I2C bus operations based on Start and  
Stop bit conditions.  
• Start Condition  
• Stop Condition  
Once Master mode is enabled, the user has six  
options.  
• Data Transfer Byte Transmitted/Received  
• Acknowledge Transmit  
• Repeated Start  
1. Assert a Start condition on SDA and SCL.  
2. Assert a Repeated Start condition on SDA and  
SCL.  
3. Write to the SSPBUF register initiating  
transmission of data/address.  
4. Configure the I2C port to receive data.  
5. Generate an Acknowledge condition at the end  
of a received byte of data.  
6. Generate a Stop condition on SDA and SCL.  
2
FIGURE 17-16:  
MSSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA In  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit Detect  
Stop bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
end of XMIT/RCV  
SCL In  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
2003 Microchip Technology Inc.  
DS39599C-page 179  
PIC18F2220/2320/4220/4320  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
17.4.6.1  
1. The user generates a Start condition by setting  
the Start enable bit, SEN (SSPCON2<0>).  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
2. SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
3. The user loads the SSPBUF with the slave  
address to transmit.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
4. Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
5. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
6. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ‘1’ to indicate the receive bit.  
Serial data is received via SDA, while SCL outputs the  
serial clock. Serial data is received 8 bits at a time. After  
each byte is received, an Acknowledge bit is transmit-  
ted. Start and Stop conditions indicate the beginning  
and end of transmission.  
7. The user loads the SSPBUF with eight bits of  
data.  
8. Data is shifted out the SDA pin until all 8 bits are  
transmitted.  
9. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
10. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The Baud Rate Generator used for the SPI mode  
operation is used to set the SCL clock frequency for  
either 100 kHz, 400 kHz or 1 MHz I2C operation. See  
Section 17.4.7 “Baud Rate” for more detail.  
11. The user generates a Stop condition by setting  
the Stop Enable bit, PEN (SSPCON2<2>).  
12. Interrupt is generated once the Stop condition is  
complete.  
DS39599C-page 180  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
17.4.7  
BAUD RATE  
17.4.7.1  
Baud Rate Generation in Power  
Managed Modes  
In I2C Master mode, the Baud Rate Generator (BRG)  
reload value is placed in the lower 7 bits of the  
SSPADD register (Figure 17-17). When a write occurs  
to SSPBUF, the Baud Rate Generator will automatically  
begin counting. The BRG counts down to ‘0’ and stops  
until another reload has taken place. The BRG count is  
decremented twice per instruction cycle (TCY) on the  
Q2 and Q4 clocks. In I2C Master mode, the BRG is  
reloaded automatically.  
When the device is operating in a power managed  
mode, the clock source to the Baud Rate Generator  
may change frequency or stop, depending on the  
power managed mode and clock source selected.  
In most power modes, the Baud Rate Generator  
continues to be clocked but may be clocked from the  
primary clock (selected in a configuration word), the  
secondary clock (Timer1 oscillator at 32.768 kHz) or  
the internal oscillator block (one of eight frequencies  
between 31 kHz and 8 MHz). If the Sleep mode is  
selected, all clocks are stopped and the Baud Rate  
Generator will not be clocked.  
Once the given operation is complete (i.e., transmis-  
sion of the last data bit is followed by ACK), the internal  
clock will automatically stop counting and the SCL pin  
will remain in its last state.  
Table 17-3 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPADD.  
FIGURE 17-17:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
SSPM3:SSPM0  
SCL  
Reload  
Reload  
Control  
BRG Down Counter  
CLKO  
FOSC/4  
TABLE 17-3: I2C CLOCK RATE W/BRG  
SSPADD VALUE  
(See Register 17-4,  
Mode 1000)  
(2)  
FSCL  
FOSC  
FCY  
FCY*2  
(2 Rollovers of BRG)  
40 MHz  
40 MHz  
40 MHz  
16 MHz  
16 MHz  
16 MHz  
4 MHz  
10 MHz  
10 MHz  
10 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
1 MHz  
20 MHz  
20 MHz  
20 MHz  
8 MHz  
8 MHz  
8 MHz  
2 MHz  
2 MHz  
2 MHz  
18h  
1Fh  
63h  
09h  
0Bh  
27h  
02h  
09h  
00h  
400 kHz(1)  
312.5 kHz  
100 kHz  
400 kHz(1)  
308 kHz  
100 kHz  
333 kHz(1)  
4 MHz  
100kHz  
1 MHz(1)  
4 MHz  
Note 1: The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than  
100 kHz) in all details, but may be used with care where higher rates are required by the application.  
2: Actual clock rate will depend on bus conditions. Bus capacitance can increase rise time and extend the low  
time of the clock period, reducing the effective clock frequency (see Section 17.4.7.2 “Clock Arbitration”).  
2003 Microchip Technology Inc.  
DS39599C-page 181  
PIC18F2220/2320/4220/4320  
SCL pin is sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPADD<6:0> and  
begins counting. This ensures that the SCL high time  
will always be at least one BRG rollover count in the  
event that the clock is held low by an external device  
(Figure 17-18).  
17.4.7.2  
Clock Arbitration  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
deasserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the Baud  
Rate Generator (BRG) is suspended from counting  
until the SCL pin is actually sampled high. When the  
FIGURE 17-18:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL allowed to transition high  
SCL deasserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
DS39599C-page 182  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
17.4.8  
I2C MASTER MODE START  
CONDITION TIMING  
17.4.8.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Start sequence  
is in progress, the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
To initiate a Start condition, the user sets the Start  
Condition Enable bit, SEN (SSPCON2<0>). If the SDA  
and SCL pins are sampled high, the Baud Rate Gener-  
ator is reloaded with the contents of SSPADD<6:0>  
and starts its count. If SCL and SDA are both sampled  
high when the Baud Rate Generator times out (TBRG),  
the SDA pin is driven low. The action of the SDA being  
driven low while SCL is high is the Start condition and  
causes the S bit (SSPSTAT<3>) to be set. Following  
this, the Baud Rate Generator is reloaded with the con-  
tents of SSPADD<6:0> and resumes its count. When  
the Baud Rate Generator times out (TBRG), the SEN bit  
(SSPCON2<0>) will be automatically cleared by  
hardware, the Baud Rate Generator is suspended,  
leaving the SDA line held low and the Start condition is  
complete.  
Note:  
Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the Start  
condition is complete.  
Note:  
If at the beginning of the Start condition,  
the SDA and SCL pins are already sam-  
pled low or if during the Start condition, the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs,  
the Bus Collision Interrupt Flag, BCLIF, is  
set, the Start condition is aborted and the  
I2C module is reset into its Idle state.  
FIGURE 17-19:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
At completion of Start bit,  
Write to SEN bit occurs here  
SDA = 1,  
SCL = 1  
hardware clears SEN bit  
and sets SSPIF bit  
TBRG  
TBRG  
Write to SSPBUF occurs here  
2nd bit  
1st bit  
SDA  
TBRG  
SCL  
TBRG  
S
2003 Microchip Technology Inc.  
DS39599C-page 183  
PIC18F2220/2320/4220/4320  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Immediately following the SSPIF bit getting set, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode) or eight bits of data (7-bit  
mode).  
17.4.9  
A Repeated Start condition occurs when the RSEN bit  
(SSPCON2<1>) is programmed high and the I2C logic  
module is in the Idle state. When the RSEN bit is set,  
the SCL pin is asserted low. When the SCL pin is sam-  
pled low, the Baud Rate Generator is loaded with the  
contents of SSPADD<5:0> and begins counting. The  
SDA pin is released (brought high) for one Baud Rate  
Generator count (TBRG). When the Baud Rate Genera-  
tor times out, if SDA is sampled high, the SCL pin will  
be deasserted (brought high). When SCL is sampled  
high, the Baud Rate Generator is reloaded with the  
contents of SSPADD<6:0> and begins counting. SDA  
and SCL must be sampled high for one TBRG. This  
action is then followed by assertion of the SDA pin  
(SDA = 0) for one TBRG while SCL is high. Following  
this, the RSEN bit (SSPCON2<1>) will be automatically  
cleared and the Baud Rate Generator will not be  
reloaded, leaving the SDA pin held low. As soon as a  
Start condition is detected on the SDA and SCL pins,  
the S bit (SSPSTAT<3>) will be set. The SSPIF bit will  
notbesetuntiltheBaudRateGeneratorhastimedout.  
17.4.9.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
Note:  
Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes  
from low to high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data ‘1’.  
FIGURE 17-20:  
REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
occurs here.  
SDA = 1,  
SCL (no change).  
SDA = 1,  
SCL = 1  
At completion of Start bit,  
hardware clears RSEN bit  
and sets SSPIF  
TBRG  
TBRG  
TBRG  
1st bit  
SDA  
Write to SSPBUF occurs here  
TBRG  
Falling edge of ninth clock,  
end of Xmit  
SCL  
TBRG  
Sr = Repeated Start  
DS39599C-page 184  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
17.4.10 I2C MASTER MODE  
TRANSMISSION  
17.4.10.3 ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an Acknowledge  
(ACK = 0) and is set when the slave does not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call)  
or when the slave has properly received its data.  
Transmission of a data byte, a 7-bit address or the  
other half of a 10-bit address is accomplished by simply  
writing a value to the SSPBUF register. This action will  
set the Buffer Full Flag bit, BF, and allow the Baud Rate  
Generator to begin counting and start the next  
transmission. Each bit of address/data will be shifted  
out onto the SDA pin after the falling edge of SCL is  
asserted (see data hold time specification parameter  
#106). SCL is held low for one Baud Rate Generator  
rollover count (TBRG). Data should be valid before SCL  
is released high (see data setup time specification  
parameter #107). When the SCL pin is released high, it  
is held that way for TBRG. The data on the SDA pin  
must remain stable for that duration and some hold  
time after the next falling edge of SCL. After the eighth  
bit is shifted out (the falling edge of the eighth clock),  
the BF flag is cleared and the master releases SDA.  
This allows the slave device being addressed to  
respond with an ACK bit, during the ninth bit time, if an  
address match occurred or if data was received prop-  
erly. The status of ACK is written into the ACKDT bit on  
the falling edge of the ninth clock. If the master receives  
an Acknowledge, the Acknowledge Status bit,  
ACKSTAT, is cleared; if not, the bit is set. After the ninth  
clock, the SSPIF bit is set and the master clock (Baud  
Rate Generator) is suspended until the next data byte  
is loaded into the SSPBUF, leaving SCL low and SDA  
unchanged (Figure 17-21).  
17.4.11 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (SSPCON2<3>).  
Note:  
The MSSP module must be in an Idle state  
before the RCEN bit is set or the RCEN bit  
will be disregarded.  
The Baud Rate Generator begins counting and on each  
rollover, the state of the SCL pin changes (high to low/  
low to high) and data is shifted into the SSPSR. After  
the falling edge of the eighth clock, the receive enable  
flag is automatically cleared, the contents of the  
SSPSR are loaded into the SSPBUF, the BF flag bit is  
set, the SSPIF flag bit is set and the Baud Rate  
Generator is suspended from counting, holding SCL  
low. The MSSP is now in Idle state, awaiting the next  
command. When the buffer is read by the CPU, the BF  
flag bit is automatically cleared. The user can then  
send an Acknowledge bit at the end of reception by  
setting the Acknowledge Sequence Enable bit, ACKEN  
(SSPCON2<4>).  
17.4.11.1 BF Status Flag  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL until all seven  
address bits and the R/W bit are completed. On the fall-  
ing edge of the eighth clock, the master will deassert  
the SDA pin, allowing the slave to respond with an  
Acknowledge. On the falling edge of the ninth clock, the  
master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT status bit (SSPCON2<6>).  
Following the falling edge of the ninth clock transmis-  
sion of the address, the SSPIF is set, the BF flag is  
cleared and the Baud Rate Generator is turned off until  
another write to the SSPBUF takes place, holding SCL  
low and allowing SDA to float.  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
17.4.11.2 SSPOV Status Flag  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPSR and the BF flag bit is  
already set from a previous reception.  
17.4.11.3 WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
17.4.10.1 BF Status Flag  
In Transmit mode, the BF bit (SSPSTAT<0>) is set  
when the CPU writes to SSPBUF and is cleared when  
all 8 bits are shifted out.  
17.4.10.2 WCOL Status Flag  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared in software.  
2003 Microchip Technology Inc.  
DS39599C-page 185  
PIC18F2220/2320/4220/4320  
2
FIGURE 17-21:  
I C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
DS39599C-page 186  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
2
FIGURE 17-22:  
I C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
2003 Microchip Technology Inc.  
DS39599C-page 187  
PIC18F2220/2320/4220/4320  
17.4.12  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit, ACKEN  
ACKNOWLEDGE SEQUENCE TIMING  
17.4.13 STOP CONDITION TIMING  
A Stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN (SSPCON2<2>). At the end of a receive/  
transmit, the SCL line is held low after the falling edge  
of the ninth clock. When the PEN bit is set, the master  
will assert the SDA line low. When the SDA line is sam-  
pled low, the Baud Rate Generator is reloaded and  
counts down to 0. When the Baud Rate Generator  
times out, the SCL pin will be brought high and one  
TBRG (Baud Rate Generator rollover count) later, the  
SDA pin will be deasserted. When the SDA pin is sam-  
pled high while SCL is high, the P bit (SSPSTAT<4>) is  
set. A TBRG later, the PEN bit is cleared and the SSPIF  
bit is set (Figure 17-24).  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The Baud Rate  
Generator then counts for one rollover period (TBRG) and  
the SCL pin is deasserted (pulled high). When the SCL  
pin is sampled high (clock arbitration), the Baud Rate  
Generator counts for TBRG. The SCL pin is then pulled  
low. Following this, the ACKEN bit is automatically  
cleared, the Baud Rate Generator is turned off and the  
MSSP module then goes into Idle mode (Figure 17-23).  
17.4.13.1 WCOL Status Flag  
17.4.12.1 WCOL Status Flag  
If the user writes the SSPBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 17-23:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
write to SSPCON2,  
ACKEN automatically cleared  
TBRG  
ACKEN = 1, ACKDT = 0  
TBRG  
SDA  
SCL  
D0  
ACK  
8
9
SSPIF  
Cleared in software  
Set SSPIF at the end  
Set SSPIF at the end  
of receive  
Cleared in  
software  
of Acknowledge sequence  
Note: TBRG = one Baud Rate Generator period.  
FIGURE 17-24:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1for TBRG, followed by SDA = 1for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set.  
Write to SSPCON2,  
set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
ACK  
SDA  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup Stop condition  
Note: TBRG = one Baud Rate Generator period.  
DS39599C-page 188  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
17.4.14 POWER MANAGED MODE  
OPERATION  
17.4.17 MULTI -MASTER COMMUNICATION,  
BUS COLLISION AND BUS  
While in any power managed mode, the I2C module  
can receive addresses or data and when an address  
match or complete byte transfer occurs, wake the  
processor from Sleep (if the MSSP interrupt is  
enabled).  
ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a ‘1’ on SDA by letting SDA float high and  
another master asserts a ‘0’. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a ‘1’ and the data sampled on the SDA pin = 0,  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag, BCLIF, and reset the  
I2C port to its Idle state (Figure 17-25).  
17.4.15 EFFECT OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
17.4.16 MULTI-MASTER MODE  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are deasserted and the  
SSPBUF can be written to. When the user services the  
bus collision Interrupt Service Routine and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the  
MSSP module is disabled. Control of the I2C bus may  
be taken when the P bit (SSPSTAT<4>) is set or the  
bus is idle with both the S and P bits clear. When the  
bus is busy, enabling the SSP interrupt will generate  
the interrupt when the Stop condition occurs.  
If a Start, Repeated Start, Stop or Acknowledge condition  
was in progress when the bus collision occurred, the con-  
dition is aborted, the SDA and SCL lines are deasserted,  
and the respective control bits in the SSPCON2 register  
are cleared. When the user services the bus collision  
Interrupt Service Routine and if the I2C bus is free, the  
user can resume communication by asserting a Start  
condition.  
In multi-master operation, the SDA line must be moni-  
tored for arbitration to see if the signal level is the  
expected output level. This check is performed in  
hardware with the result placed in the BCLIF bit.  
The states where arbitration can be lost are:  
• Address Transfer  
The master will continue to monitor the SDA and SCL  
pins. If a Stop condition occurs, the SSPIF bit will be set.  
• Data Transfer  
• A Start Condition  
A write to the SSPBUF will start the transmission of  
data at the first data bit regardless of where the  
transmitter left off when the bus collision occurred.  
• A Repeated Start Condition  
• An Acknowledge Condition  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the determi-  
nation of when the bus is free. Control of the I2C bus can  
be taken when the P bit is set in the SSPSTAT register or  
the bus is Idle and the S and P bits are cleared.  
FIGURE 17-25:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
data doesn’t match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set Bus Collision  
Interrupt Flag (BCLIF)  
BCLIF  
2003 Microchip Technology Inc.  
DS39599C-page 189  
PIC18F2220/2320/4220/4320  
If the SDA pin is sampled low during this count, the  
17.4.17.1 Bus Collision During a Start  
Condition  
BRG is reset and the SDA line is asserted early  
(Figure 17-28). If, however, a ‘1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The Baud Rate Generator is then reloaded and  
counts down to 0 and during this time, if the SCL pins  
are sampled as ‘0’, a bus collision does not occur. At  
the end of the BRG count, the SCLpin is asserted low.  
During a Start condition, a bus collision occurs if:  
a) SDA or SCL is sampled low at the beginning of  
the Start condition (Figure 17-26).  
b) SCL is sampled low before SDA is asserted low  
(Figure 17-27).  
During a Start condition, both the SDA and the SCL  
pins are monitored.  
Note:  
The reason that bus collision is not a factor  
during a Start condition is that no two bus  
masters can assert a Start condition at the  
exact same time. Therefore, one master  
will always assert SDA before the other.  
This condition does not cause a bus colli-  
sion because the two masters must be  
allowed to arbitrate the first address fol-  
lowing the Start condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or Stop conditions.  
If the SDA pin is already low or the SCL pin is already  
low, then all of the following occur:  
• The Start condition is aborted  
• The BCLIF flag is set  
The MSSP module is reset to its Idle state  
(Figure 17-26)  
The Start condition begins with the SDA and SCL pins  
deasserted. When the SDA pin is sampled high, the  
Baud Rate Generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs because it is  
assumed that another master is attempting to drive a  
data ‘1’ during the Start condition.  
FIGURE 17-26:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable Start  
condition if SDA = 1, SCL = 1  
SEN cleared automatically because of bus collision.  
SSP module reset into Idle state.  
SDA sampled low before  
Start condition. Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software  
DS39599C-page 190  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 17-27:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
SCL  
SEN  
SCL = 0before SDA = 0,  
bus collision occurs. Set BCLIF.  
SCL = 0before BRG time-out,  
bus collision occurs. Set BCLIF.  
BCLIF  
Interrupt cleared  
in software  
S
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 17-28:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
S
SCL pulled low after BRG  
Time-out  
SEN  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
BCLIF  
0’  
S
SSPIF  
SDA = 0, SCL = 1,  
set SSPIF  
Interrupts cleared  
in software  
2003 Microchip Technology Inc.  
DS39599C-page 191  
PIC18F2220/2320/4220/4320  
If SDA is low, a bus collision has occurred (i.e., another  
17.4.17.2 Bus Collision During a Repeated  
Start Condition  
master is attempting to transmit a data ‘0’, Figure 17-29).  
If SDA is sampled high, the BRG is reloaded and begins  
counting. If SDA goes from high to low before the BRG  
times out, no bus collision occurs because no two  
masters can assert SDA at exactly the same time.  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
If SCL goes from high to low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ‘1’ during the Repeated Start condition  
(see Figure 17-30).  
b) SCL goes low before SDA is asserted low, indi-  
cating that another master is attempting to  
transmit a data ‘1’.  
When the user deasserts SDA and the pin is allowed to  
float high, the BRG is loaded with SSPADD<6:0> and  
counts down to 0. The SCL pin is then deasserted and  
when sampled high, the SDA pin is sampled.  
If at the end of the BRG time-out, both SCL and SDA  
are still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is  
complete.  
FIGURE 17-29:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software  
0’  
S
0’  
SSPIF  
FIGURE 17-30:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
BCLIF  
RSEN  
set BCLIF. Release SDA and SCL.  
Interrupt cleared  
in software  
0’  
S
SSPIF  
DS39599C-page 192  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
The Stop condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ‘0’ (Figure 17-31). If the SCL pin is sam-  
pled low before SDA is allowed to float high, a bus col-  
lision occurs. This is another case of another master  
attempting to drive a data ‘0’ (Figure 17-32).  
17.4.17.3 Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDA pin has been deasserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is deasserted, SCL is sampled  
low before SDA goes high.  
FIGURE 17-31:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
FIGURE 17-32:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
2003 Microchip Technology Inc.  
DS39599C-page 193  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 194  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
18.1 Asynchronous Operation in Power  
Managed Modes  
18.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
The USART may operate in Asynchronous mode while  
the peripheral clocks are being provided by the internal  
oscillator block. This mode makes it possible to remove  
the crystal or resonator that is commonly connected as  
the primary clock on the OSC1 and OSC2 pins.  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules available in the PIC18F2X20/4X20 family  
of microcontrollers. (USART is also known as a Serial  
Communications Interface or SCI.) The USART can be  
configured as a full-duplex asynchronous system that  
can communicate with peripheral devices, such as  
CRT terminals and personal computers, or it can be  
configured as a half-duplex synchronous system that  
can communicate with peripheral devices, such as A/D  
or D/A integrated circuits, serial EEPROMs, etc.  
The factory calibrates the internal oscillator block out-  
put (INTOSC) for 8 MHz. However, this frequency may  
drift as VDD or temperature changes and this directly  
affects the asynchronous baud rate. Two methods may  
be used to adjust the baud rate clock, but both require  
a reference clock source of some kind.  
The first (preferred) method uses the OSCTUNE regis-  
ter to adjust the INTOSC output back to 8 MHz. Adjust-  
ing the value in the OSCTUNE register allows for fine  
resolution changes to the system clock source (see  
Section 3.6 “INTOSC Frequency Drift” for more  
information).  
The USART can be configured in the following modes:  
• Asynchronous (full-duplex)  
• Synchronous – Master (half-duplex)  
• Synchronous – Slave (half-duplex)  
The other method adjusts the value in the Baud Rate  
Generator since there may be not be fine enough res-  
olution when adjusting the Baud Rate Generator to  
compensate for a gradual change in the peripheral  
clock frequency.  
The RC6/TX/CK and RC7/RX/DT pins must be config-  
ured as shown for use with the Universal Synchronous  
Asynchronous Receiver Transmitter:  
• SPEN (RCSTA<7>) bit must be set (= 1)  
• TRISC<7> bit must be set (= 1)  
• TRISC<6> bit must be cleared (= 0)  
Register 18-1 shows the Transmit Status and Control  
register (TXSTA) and Register 18-2 shows the Receive  
Status and Control register (RCSTA).  
2003 Microchip Technology Inc.  
DS39599C-page 195  
PIC18F2220/2320/4220/4320  
REGISTER 18-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note:  
SREN/CREN overrides TXEN in Sync mode.  
bit 4  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data  
Can be address/data bit or a parity bit.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39599C-page 196  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enable address detection, enable interrupt and load the receive buffer when RSR<8>  
is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receiving next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 197  
PIC18F2220/2320/4220/4320  
It may be advantageous to use the high baud rate  
18.2 USART Baud Rate Generator (BRG)  
(BRGH = 1), even for slower baud clocks, because the  
FOSC/(16 (X + 1)) equation can reduce the baud rate  
error in some cases.  
The BRG supports both the Asynchronous and  
Synchronous modes of the USART. It is a dedicated  
8-bit Baud Rate Generator. The SPBRG register  
controls the period of a free-running 8-bit timer. In  
Asynchronous mode, bit BRGH (TXSTA<2>) also con-  
trols the baud rate. In Synchronous mode, bit BRGH is  
ignored. Table 18-1 shows the formula for computation  
of the baud rate for different USART modes which only  
apply in Master mode (internal clock).  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before  
outputting the new baud rate.  
18.2.1  
POWER MANAGED MODE  
OPERATION  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRG register can be calculated  
using the formula in Table 18-1. From this, the error in  
baud rate can be determined.  
The system clock is used to generate the desired baud  
rate; however, when a power managed mode is  
entered, the clock source may be operating at a differ-  
ent frequency than in PRI_RUN mode. In Sleep mode,  
no clocks are present and in PRI_IDLE, the primary  
clock source continues to provide clocks to the baud  
rate generator; however, in other power managed  
modes, the clock frequency will probably change. This  
may require the value in SPBRG to be adjusted.  
Example 18-1 shows the calculation of the baud rate  
error for the following conditions:  
• FOSC = 16 MHz  
• Desired Baud Rate = 9600  
• BRGH = 0  
• SYNC = 0  
18.2.2  
SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
EXAMPLE 18-1:  
CALCULATING BAUD RATE ERROR  
Desired Baud Rate  
= FOSC/(64 (X + 1))  
Solving for X:  
X
X
X
= ((FOSC/Desired Baud Rate)/64) – 1  
= ((16000000/9600)/64) – 1  
= [25.042] = 25  
Calculated Baud Rate = 16000000/(64 (25 + 1))  
= 9615  
Error  
= (Calculated Baud Rate – Desired Baud Rate)  
Desired Baud Rate  
= (9615 – 9600)/9600  
= 0.16%  
TABLE 18-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
Baud Rate = FOSC/(16 (X + 1))  
N/A  
0(Asynchronous)  
1(Synchronous)  
Baud Rate = FOSC/(64 (X + 1))  
Baud Rate = FOSC/(4 (X + 1))  
Legend: X = value in SPBRG (0 to 255)  
TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTA  
RCSTA  
SPBRG  
CSRC  
SPEN  
TX9  
RX9  
TXEN SYNC  
BRGH TRMT TX9D 0000 -010  
0000 -010  
0000 -00x  
0000 0000  
SREN CREN ADDEN FERR OERR RX9D 0000 -00x  
0000 0000  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
DS39599C-page 198  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0, LOW SPEED)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 16.000 MHz  
FOSC = 10.000 MHz  
BAUD  
RATE Actual  
Actual  
Rate  
(K)  
Actual  
Rate  
(K)  
Actual  
Rate  
(K)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
%
Error  
(K)  
Rate  
(K)  
0.3  
1.2  
255  
64  
32  
15  
10  
7
1.22  
2.40  
9.47  
19.53  
39.06  
62.50  
78.13  
104.17  
1.73  
0.16  
-1.36  
1.73  
1.73  
8.51  
1.73  
8.51  
255  
129  
32  
15  
7
0.98  
1.20  
2.40  
9.62  
19.23  
35.71  
62.50  
83.33  
225.52  
0.16  
0.16  
0.16  
0.16  
-6.99  
8.51  
8.51  
255  
207  
103  
25  
12  
6
0.61  
1.20  
2.40  
9.77  
19.53  
39.06  
52.08  
78.13  
103.45  
0.16  
0.16  
1.73  
1.73  
1.73  
-9.58  
1.73  
255  
129  
64  
15  
7
2.4  
2.44  
1.73  
0.16  
-1.36  
1.73  
-1.36  
1.73  
-6.99  
8.51  
-16.67  
4.17  
0.00  
9.6  
9.62  
19.2  
38.4  
57.6  
76.8  
96.0  
115.2  
18.94  
39.06  
56.82  
78.13  
89.29  
125.00  
3
4
3
2
3
2
1
6
2
1
1
4
125.00  
250.00  
8.51  
0.00  
78.13  
-32.18  
250.0 208.33  
300.0 312.50  
625.0 625.00  
2
0
1
312.50  
4.17  
0
0
FOSC = 8.000000 MHz  
FOSC = 7.159090 MHz  
FOSC = 5.068800 MHz  
FOSC = 4.000000 MHz  
BAUD  
RATE Actual  
Actual  
Rate  
(K)  
Actual  
Rate  
(K)  
Actual  
Rate  
(K)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
%
Error  
(K)  
Rate  
(K)  
0.3  
1.2  
0.49  
1.20  
62.76  
0.16  
0.16  
0.16  
-6.99  
8.51  
8.51  
255  
103  
51  
12  
6
0.44  
1.20  
45.65  
0.23  
-0.83  
-2.90  
-2.90  
-2.90  
-2.90  
255  
92  
46  
11  
5
0.31  
1.20  
2.40  
9.90  
19.80  
39.60  
3.13  
0.00  
0.00  
3.13  
3.13  
3.13  
255  
65  
32  
7
0.30  
1.20  
2.40  
8.93  
20.83  
31.25  
62.50  
0.16  
0.16  
0.16  
-6.99  
8.51  
-18.62  
8.51  
207  
51  
25  
6
2.4  
2.40  
2.38  
9.6  
9.62  
9.32  
19.2  
38.4  
57.6  
17.86  
41.67  
62.50  
18.64  
37.29  
55.93  
3
2
2
2
1
1
1
1
0
0
0
0
79.20  
3.13  
115.2  
125.00  
8.51  
111.86  
-2.90  
FOSC = 3.579545 MHz  
FOSC = 2.000000 MHz  
FOSC = 1.000000 MHz  
FOSC = 0.032768 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
Actual  
Rate  
(K)  
Actual  
Rate  
(K)  
Actual  
Rate  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
%
Error  
Error  
Error  
Error  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
0.30  
1.19  
2.43  
9.32  
18.64  
0.23  
-0.83  
1.32  
-2.90  
-2.90  
185  
46  
22  
5
0.30  
1.20  
2.40  
10.42  
15.63  
31.25  
0.16  
0.16  
0.16  
8.51  
-18.62  
-18.62  
103  
25  
12  
2
0.30  
1.20  
2.23  
7.81  
15.63  
0.16  
0.16  
-6.99  
-18.62  
-18.62  
51  
12  
6
0.26  
-14.67  
1
2.4  
9.6  
1
19.2  
38.4  
57.6  
2
1
0
0
0
55.93  
-2.90  
2003 Microchip Technology Inc.  
DS39599C-page 199  
PIC18F2220/2320/4220/4320  
TABLE 18-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1, HIGH SPEED)  
FOSC = 40.000 MHz  
SPBRG  
FOSC = 20.000 MHz  
SPBRG  
FOSC = 16.000 MHz  
SPBRG  
FOSC = 10.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG  
value  
Actual  
%
Actual  
%
Actual  
%
%
value  
value  
value  
Rate (K) Error  
Rate (K) Error  
Rate (K) Error  
Error  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
2.4  
9.6  
1.73  
0.16  
0.16  
0.94  
-1.36  
0.16  
-1.36  
0.00  
4.17  
0.00  
0.00  
-16.67  
0.00  
255  
129  
64  
42  
32  
25  
21  
9
4.88  
9.62  
103.45  
0.16  
0.16  
-1.36  
-1.36  
1.73  
0.16  
-1.36  
0.00  
4.17  
-16.67  
0.00  
255  
129  
64  
32  
21  
15  
12  
10  
4
3.91  
9.62  
62.76  
0.16  
0.16  
0.16  
2.12  
0.16  
4.17  
-3.55  
0.00  
11.11  
0.00  
255  
103  
51  
25  
16  
12  
9
2.44  
9.63  
1.73  
0.16  
-1.36  
1.73  
-1.36  
1.73  
-6.99  
8.51  
255  
64  
32  
15  
10  
7
9.77  
19.2  
19.23  
38.46  
58.14  
75.76  
96.15  
113.64  
250.00  
312.50  
500.00  
625.00  
833.33  
19.23  
37.88  
56.82  
78.13  
96.15  
113.64  
250.00  
312.50  
416.67  
625.00  
19.23  
38.46  
58.82  
76.92  
100.00  
111.11  
250.00  
333.33  
500.00  
18.94  
39.06  
56.82  
78.13  
89.29  
125.00  
38.4  
57.6  
76.8  
96.0  
6
115.2  
250.0  
300.0  
500.0  
625.0  
1000.0  
8
4
3
208.33 -16.67  
2
7
3
2
312.50  
4.17  
1
4
2
1
0
3
1
0
625.00  
0.00  
2
0
1000.00  
0.00  
1250.0 1250.00  
1
1250.00  
0.00  
FOSC = 8.000000 MHz  
SPBRG  
FOSC = 7.159090 MHz  
SPBRG  
FOSC = 5.068800 MHz  
SPBRG  
FOSC = 4.000 MHz  
SPBRG  
BAUD  
RATE  
(K)  
Actual  
%
Actual  
%
Actual  
%
Actual  
%
value  
value  
value  
value  
Rate (K) Error  
Rate (K) Error  
Rate (K) Error  
Rate (K) Error  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
255  
207  
51  
25  
12  
8
255  
185  
46  
22  
11  
7
1.24  
2.40  
9.60  
18.64  
39.60  
52.80  
79.20  
3.13  
0.00  
0.00  
-2.94  
3.13  
-8.33  
3.13  
255  
131  
32  
16  
7
0.98  
1.20  
2.40  
9.62  
19.23  
35.71  
62.50  
83.33  
225.52  
0.16  
0.16  
0.16  
0.16  
-6.99  
8.51  
8.51  
255  
207  
103  
25  
12  
6
1.95  
62.76  
0.16  
0.16  
0.16  
0.16  
-3.55  
-6.99  
4.17  
8.51  
0.00  
1.75  
45.65  
0.23  
2.4  
2.40  
2.41  
9.6  
9.62  
9.52  
-0.83  
1.32  
19.2  
38.4  
57.6  
76.8  
96.0  
115.2  
250.0  
300.0  
500.0  
19.23  
38.46  
55.56  
71.43  
100.00  
125.00  
250.00  
19.45  
37.29  
55.93  
74.57  
89.49  
111.86  
223.72  
-2.90  
-2.90  
-2.90  
-6.78  
-2.90  
-10.51  
5
3
6
5
3
2
4
4
2
1
3
3
105.60  
-8.33  
125.00  
250.00  
8.51  
0.00  
1
1
0
0
0
0
316.80  
5.60  
500.00  
0.00  
447.44  
-10.51  
FOSC = 3.579545 MHz  
SPBRG  
FOSC = 2.000000 MHz  
SPBRG  
FOSC = 1.000000 MHz  
SPBRG  
FOSC = 0.032768 MHz  
SPBRG  
BAUD  
RATE  
(K)  
Actual  
%
Actual  
%
Actual  
%
Actual  
%
value  
value  
value  
value  
Rate (K) Error  
Rate (K) Error  
Rate (K) Error  
Rate (K) Error  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
0.87  
1.20  
191.30  
0.23  
255  
185  
92  
22  
11  
5
0.49  
1.20  
2.40  
9.62  
17.86  
41.67  
62.50  
62.76  
0.16  
0.16  
0.16  
-6.99  
8.51  
8.51  
255  
103  
51  
12  
6
0.30  
1.20  
2.40  
8.93  
20.83  
31.25  
62.50  
0.16  
0.16  
0.16  
-6.99  
8.51  
-18.62  
8.51  
207  
51  
25  
6
0.29  
1.02  
2.05  
-2.48  
-14.67  
-14.67  
6
1
2.4  
2.41  
0.23  
0
9.6  
9.73  
1.32  
19.2  
38.4  
57.6  
76.8  
115.2  
250.0  
18.64  
37.29  
55.93  
74.57  
111.86  
223.72  
-2.90  
-2.90  
-2.90  
-2.90  
-2.90  
-10.51  
2
2
1
3
1
0
2
0
1
125.00  
8.51  
0
DS39599C-page 200  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 18-5: BAUD RATES FOR SYNCHRONOUS MODE (SYNC = 1)  
FOSC = 40.000 MHz  
SPBRG  
FOSC = 20.000 MHz  
SPBRG  
FOSC = 16.000 MHz  
SPBRG  
FOSC = 10.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG  
value  
Actual  
%
Actual  
%
Actual  
%
%
value  
value  
value  
Rate (K) Error  
Rate (K) Error  
Rate (K) Error  
Error  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
9.6  
255  
129  
86  
64  
51  
19  
16  
9
15.63  
19.23  
62.76  
0.16  
0.16  
0.64  
0.16  
-0.79  
0.00  
2.56  
0.00  
6.67  
0.00  
6.67  
255  
207  
103  
68  
51  
41  
15  
12  
7
9.77  
19.23  
38.46  
58.14  
75.76  
96.15  
250.00  
312.50  
500.00  
625.00  
1.73  
0.16  
0.16  
0.94  
-1.36  
0.16  
0.00  
4.17  
0.00  
0.00  
255  
129  
64  
42  
32  
25  
9
19.2  
19.53  
1.73  
0.16  
-0.22  
0.16  
0.16  
0.00  
-1.96  
0.00  
0.00  
0.00  
0.00  
38.4  
39.06  
57.47  
76.92  
96.15  
250.00  
303.03  
500.00  
625.00  
1.73  
-0.22  
0.16  
0.16  
0.00  
1.01  
0.00  
0.00  
0.00  
0.00  
255  
173  
129  
103  
39  
32  
19  
15  
9
38.46  
38.46  
57.6  
57.47  
57.97  
76.8  
76.92  
76.92  
96.0  
96.15  
95.24  
250.0  
300.0  
500.0  
625.0  
250.00  
294.12  
500.00  
625.00  
1000.00  
1250.00  
250.00  
307.69  
500.00  
666.67  
1000.00  
1333.33  
7
4
7
5
3
1000.0 1000.00  
1250.0 1250.00  
4
3
833.33 -16.67  
1250.00 0.00  
2
7
3
2
1
FOSC = 8.000000 MHz  
SPBRG  
FOSC = 7.159090 MHz  
SPBRG  
FOSC = 5.068800 MHz  
SPBRG  
FOSC = 4.000 MHz  
SPBRG  
BAUD  
RATE  
(K)  
Actual  
%
Actual  
%
Actual  
%
Actual  
%
value  
value  
value  
value  
Rate (K) Error  
Rate (K) Error  
Rate (K) Error  
Rate (K) Error  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
2.4  
9.6  
7.81  
9.62  
225.52  
0.16  
0.16  
0.16  
-0.79  
0.16  
-0.79  
0.00  
-4.76  
0.00  
6.67  
0.00  
255  
207  
103  
51  
34  
25  
20  
7
6.99  
9.62  
191.30  
0.23  
255  
185  
92  
46  
30  
22  
18  
6
4.95  
9.60  
106.25  
0.00  
0.00  
0.00  
0.00  
-2.94  
1.54  
1.38  
5.60  
-15.52  
1.38  
255  
131  
65  
32  
21  
16  
12  
4
3.91  
9.62  
62.76  
0.16  
0.16  
0.16  
2.12  
0.16  
4.17  
0.00  
11.11  
0.00  
255  
103  
51  
25  
16  
12  
9
19.2  
38.4  
57.6  
76.8  
96.0  
250.0  
300.0  
500.0  
625.0  
19.23  
38.46  
57.14  
76.92  
95.24  
250.00  
285.71  
500.00  
666.67  
19.24  
0.23  
19.20  
38.40  
57.60  
74.54  
97.48  
253.44  
316.80  
422.40  
633.60  
19.23  
38.46  
58.82  
76.92  
100.00  
250.00  
333.33  
500.00  
38.08  
-0.83  
0.23  
57.73  
77.82  
1.32  
94.20  
-1.88  
2.27  
255.68  
298.30  
447.44  
596.59  
894.89  
1789.77  
3
6
-0.57  
-10.51  
-4.55  
-10.51  
43.18  
5
3
2
3
3
2
1
2
2
1
0
1000.0 1000.00  
1
1
0
1000.00  
0.00  
1250.0  
0
1267.20  
1.38  
FOSC = 3.579545 MHz  
SPBRG  
FOSC = 2.000000 MHz  
SPBRG  
FOSC = 1.000000 MHz  
SPBRG  
FOSC = 0.032768 MHz  
SPBRG  
BAUD  
RATE  
(K)  
Actual  
%
Actual  
%
Actual  
%
Actual  
%
value  
value  
value  
value  
Rate (K) Error  
Rate (K) Error  
Rate (K) Error  
Rate (K) Error  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
255  
92  
46  
22  
15  
11  
8
255  
207  
51  
25  
12  
8
0.98  
1.20  
225.52  
0.16  
0.16  
0.16  
0.16  
-6.99  
8.51  
8.51  
255  
207  
103  
25  
12  
6
0.30  
1.17  
2.73  
8.19  
1.14  
-2.48  
13.78  
-14.67  
26  
6
1.95  
62.76  
0.16  
0.16  
0.16  
0.16  
-3.55  
-6.99  
4.17  
0.00  
0.00  
2.4  
3.50  
45.65  
0.23  
2.40  
2.40  
2
9.6  
9.62  
9.62  
9.62  
0
19.2  
38.4  
57.6  
76.8  
96.0  
250.0  
500.0  
19.04  
38.91  
55.93  
74.57  
99.43  
223.72  
447.44  
-0.83  
1.32  
19.23  
38.46  
55.56  
71.43  
100.00  
250.00  
500.00  
19,.23  
35.71  
62.50  
83.33  
-2.90  
-2.90  
3.57  
3
6
2
4
0
-10.51  
-10.51  
3
1
250.00  
0.00  
1
0
2003 Microchip Technology Inc.  
DS39599C-page 201  
PIC18F2220/2320/4220/4320  
18.3.1  
USART ASYNCHRONOUS  
TRANSMITTER  
18.3 USART Asynchronous Mode  
In this mode, the USART uses standard Non-Return-  
to-Zero (NRZ) format (one Start bit, eight or nine data  
bits and one Stop bit). The most common data format  
is 8 bits. An on-chip dedicated 8-bit Baud Rate Gener-  
ator can be used to derive standard baud rate frequen-  
cies from the oscillator. The USART transmits and  
receives the LSb first. The USART’s transmitter and  
receiver are functionally independent but use the same  
data format and baud rate. The Baud Rate Generator  
produces a clock, either x16 or x64 of the bit shift rate,  
depending on bit BRGH (TXSTA<2>). Parity is not sup-  
ported by the hardware but can be implemented in soft-  
ware (and stored as the ninth data bit). Asynchronous  
mode functions in all power managed modes except  
Sleep mode when call clock sources are stopped.  
When in PRI_IDLE mode, no changes to the Baud  
Rate Generator values are required; however, other  
power managed mode clocks may operate at another  
frequency than the primary clock. Therefore, the Baud  
Rate generator values may need adjusting.  
The USART transmitter block diagram is shown in  
Figure 18-1. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The shift register obtains  
its data from the Read/Write Transmit Buffer, TXREG.  
The TXREG register is loaded with data in software.  
The TSR register is not loaded until the Stop bit has  
been transmitted from the previous load. As soon as  
the Stop bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG register is empty and  
flag bit, TXIF (PIR1<4>), is set. This interrupt can be  
enabled/disabled by setting/clearing enable bit, TXIE  
(PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. Flag bit TXIF is not cleared immediately upon  
loading the Transmit Buffer register, TXREG. TXIF  
becomes valid in the second instruction cycle following  
the load instruction. Polling TXIF immediately following  
a load of TXREG will return invalid results. While flag bit  
TXIF indicated the status of the TXREG register,  
another bit, TRMT (TXSTA<1>), shows the status of  
the TSR register. Status bit TRMT is a read-only bit  
which is set when the TSR register is empty. No inter-  
rupt logic is tied to this bit, therefore, the user must poll  
this bit in order to determine whether the TSR register  
is empty.  
Asynchronous mode is selected by clearing bit, SYNC  
(TXSTA<4>).  
The USART Asynchronous module consists of the  
following important elements:  
• Baud Rate Generator  
• Sampling Circuit  
• Asynchronous Transmitter  
• Asynchronous Receiver  
Note 1: The TSR register is not mapped in data  
memory so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
is set.  
FIGURE 18-1:  
USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG Register  
8
TXIE  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• •  
TSR Register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
SPBRG  
TRMT  
SPEN  
TX9  
TX9D  
Baud Rate Generator  
DS39599C-page 202  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 18-2:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 18-3:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
TXIF bit  
(Interrupt Reg. Flag)  
1 TCY  
Word 1  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1)  
PSPIE(1)  
PSPIP(1)  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
PIE1  
IPR1  
RCSTA  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
0000 0000 0000 0000  
TXREG USART Transmit Register  
TXSTA CSRC TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
BRGH TRMT  
TX9D 0000 -010 0000 -010  
0000 0000 0000 0000  
Legend: x = unknown, - = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.  
2003 Microchip Technology Inc.  
DS39599C-page 203  
PIC18F2220/2320/4220/4320  
18.3.2  
USART ASYNCHRONOUS  
RECEIVER  
18.3.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 18-4.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high-speed shifter, operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate or at FOSC. This mode would  
typically be used in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with address  
detect enable:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is required,  
set the BRGH bit.  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
To set up an Asynchronous Reception:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit BRGH (Section 18.2 “USART Baud  
Rate Generator (BRG)”).  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCIP bit.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
7. The RCIF bit will be set when reception is  
complete. The interrupt will be Acknowledged if  
the RCIE and GIE bits are set.  
3. If interrupts are desired, set enable bit RCIE.  
4. If 9-bit reception is desired, set bit RX9.  
5. Enable the reception by setting bit CREN.  
8. Read the RCSTA register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
9. Read RCREG to determine if the device is being  
addressed.  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
10. If any error occurred, clear the CREN bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
8. Read the 8-bit received data by reading the  
RCREG register.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 18-4:  
USART RECEIVE BLOCK DIAGRAM  
CREN  
FERR  
OERR  
x64 Baud Rate CLK  
÷ 64  
or  
÷ 16  
RSR Register  
MSb  
Stop  
LSb  
SPBRG  
0
7
1
Start  
(8)  
• • •  
Baud Rate Generator  
RX9  
Pin Buffer  
and Control  
Data  
Recovery  
RC7/RX/DT  
RX9D  
RCREG Register  
FIFO  
SPEN  
8
Interrupt  
RCIF  
RCIE  
Data Bus  
DS39599C-page 204  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
To set up an Asynchronous Transmission:  
5. Enable the transmission by setting bit TXEN  
which will also set bit TXIF.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit BRGH (Section 18.2 “USART Baud  
Rate Generator (BRG)”).  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts  
transmission).  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set Transmit bit,  
TX9. Can be used as address/data bit.  
FIGURE 18-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX (pin)  
bit 0 bit 1  
bit 7/8  
bit 7/8 Stop  
bit  
bit 7/8 Stop  
bit  
Stop  
bit  
bit 0  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (Receive Buffer) is read after the third word,  
causing the OERR (Overrun) bit to be set.  
TABLE 18-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1)  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
ADIF  
RCIF  
RCIE  
RCIP  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIE1  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN ADDEN FERR OERR RX9D 0000 -00x 0000 -00x  
RCREG USART Receive Register  
0000 0000 0000 0000  
TX9D 0000 -010 0000 -010  
0000 0000 0000 0000  
TXSTA  
CSRC  
TX9  
TXEN SYNC  
BRGH TRMT  
SPBRG  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.  
2003 Microchip Technology Inc.  
DS39599C-page 205  
PIC18F2220/2320/4220/4320  
(PIE1<4>). Flag bit TXIF will be set regardless of the  
18.4 USART Synchronous Master  
Mode  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit, TRMT (TXSTA<1>),  
shows the status of the TSR register. TRMT is a read-  
only bit which is set when the TSR is empty. No inter-  
rupt logic is tied to this bit so the user has to poll this bit  
in order to determine if the TSR register is empty. The  
TSR is not mapped in data memory so it is not available  
to the user.  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner (i.e., transmission and reception  
do not occur at the same time). When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit, SYNC (TXSTA<4>). In  
addition, enable bit, SPEN (RCSTA<7>), is set in order  
to configure the RC6/TX/CK and RC7/RX/DT I/O pins  
to CK (clock) and DT (data) lines, respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit, CSRC (TXSTA<7>).  
To set up a Synchronous Master Transmission:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 18.2 “USART Baud Rate  
Generator (BRG)”).  
18.4.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
The USART transmitter block diagram is shown in  
Figure 18-1. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCYCLE), the TXREG is empty and inter-  
rupt bit, TXIF (PIR1<4>), is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit, TXIE  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 18-6:  
SYNCHRONOUS TRANSMISSION  
Q1 Q2 Q3Q4 Q1 Q2Q3 Q4 Q1 Q2Q3 Q4 Q1 Q2Q3 Q4Q1 Q2 Q3Q4  
Q3 Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4  
RC7/RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
RC6/TX/CK  
pin  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note: Sync Master mode, SPBRG = 0; continuous transmission of two 8-bit words.  
DS39599C-page 206  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 18-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
RC6/TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIE1  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN ADDEN FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
TXREG USART Transmit Register  
TXSTA CSRC TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
BRGH  
TRMT  
TX9D  
Legend: x= unknown, - = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.  
2003 Microchip Technology Inc.  
DS39599C-page 207  
PIC18F2220/2320/4220/4320  
4. If interrupts are desired, set enable bit RCIE.  
5. If 9-bit reception is desired, set bit RX9.  
18.4.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
Once Synchronous mode is selected, reception is  
enabled by setting either enable bit, SREN  
(RCSTA<5>), or enable bit, CREN (RCSTA<4>). Data  
is sampled on the RC7/RX/DT pin on the falling edge of  
the clock. If enable bit SREN is set, only a single word  
is received. If enable bit CREN is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
the enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
To set up a Synchronous Master Reception:  
9. Read the 8-bit received data by reading the  
RCREG register.  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 18.2 “USART Baud Rate  
Generator (BRG)”).  
10. If any error occurred, clear the error by clearing  
bit CREN.  
11. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
FIGURE 18-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
Value on  
all other  
Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
PIE1  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
0000 0000 0000 0000  
RCREG USART Receive Register  
TXSTA CSRC TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
0000 0000 0000 0000  
Legend: x= unknown, - = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.  
DS39599C-page 208  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
To set up a Synchronous Slave Transmission:  
18.5 USART Synchronous Slave Mode  
1. Enable the synchronous slave serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
Synchronous Slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the RC6/TX/CK pin (instead of being supplied internally  
in Master mode). This allows the device to transfer or  
receive data while in any power managed mode. Slave  
mode is entered by clearing bit, CSRC (TXSTA<7>).  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
18.5.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
The operation of the Synchronous Master and Slave  
modes are identical, except in the case of the Sleep  
mode.  
7. Start transmission by loading data to the TXREG  
register.  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will now be  
set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 18-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
Value on  
all other  
Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
RCIF  
RCIE  
RCIP  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
PIE1  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
0000 0000 0000 0000  
TXREG USART Transmit Register  
TXSTA CSRC TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
0000 0000 0000 0000  
Legend: x= unknown, - = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.  
2003 Microchip Technology Inc.  
DS39599C-page 209  
PIC18F2220/2320/4220/4320  
To set up a Synchronous Slave Reception:  
18.5.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of Sleep or any  
Idle mode and bit SREN, which is a “don't care” in  
Slave mode.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
If receive is enabled by setting bit CREN prior to enter-  
ing Sleep or any Idle mode, then a word may be  
received while in this power managed mode. Once the  
word is received, the RSR register will transfer the data  
to the RCREG register and if enable bit RCIE bit is set,  
the interrupt generated will wake the chip from the  
power managed mode. If the global interrupt is  
enabled, the program will branch to the interrupt vector.  
5. Flag bit RCIF will be set when reception is  
complete. An interrupt will be generated if  
enable bit RCIE was set.  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 18-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
Value on  
all other  
Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE  
GIEL  
RBIE TMR0IF INT0IF  
RBIF 0000 000x 0000 000u  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
PIE1  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
0000 0000 0000 0000  
RCREG USART Receive Register  
TXSTA CSRC TX9 TXEN  
SPBRG Baud Rate Generator Register  
SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
0000 0000 0000 0000  
Legend: x= unknown, - = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.  
DS39599C-page 210  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
The module has five registers:  
19.0 10-BIT ANALOG-TO-DIGITAL  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
CONVERTER (A/D) MODULE  
The Analog-to-Digital (A/D) converter module has 10  
inputs for the PIC18F2X20 devices and 13 for the  
PIC18F4X20 devices. This module allows conversion  
of an analog input signal to a corresponding 10-bit  
digital number.  
The ADCON0 register, shown in Register 19-1,  
controls the operation of the A/D module. The  
ADCON1 register, shown in Register 19-2, configures  
the functions of the port pins. The ADCON2 register,  
shown in Register 19-3, configures the A/D clock  
source, programmed acquisition time and justification.  
A new feature for the A/D converter is the addition of  
programmable acquisition time. This feature allows the  
user to select a new channel for conversion and setting  
the GO/DONE bit immediately. When the GO/DONE bit is  
set, the selected channel is sampled for the programmed  
acquisition time before a conversion is actually started.  
This removes the firmware overhead that may have been  
required to allow for an acquisition (sampling) period (see  
Register 19-3 and Section 19.3 “Selecting and  
Configuring Automatic Acquisition Time”).  
REGISTER 19-1: ADCON0 REGISTER  
U-0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 7  
bit 0  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5-3 CHS3:CHS0: Analog Channel Select bits  
0000= Channel 0 (AN0)  
0001= Channel 1 (AN1)  
0010= Channel 2 (AN2)  
0011= Channel 3 (AN3)  
0100= Channel 4 (AN4)  
0101= Channel 5 (AN5)(1,2)  
0110= Channel 6 (AN6)(1,2)  
0111= Channel 7 (AN7)(1,2)  
1000= Channel 8 (AN8)  
1001= Channel 9 (AN9)  
1010= Channel 10 (AN10)  
1011= Channel 11 (AN11)  
1100= Channel 12 (AN12)  
1101= Unimplemented(2)  
1110= Unimplemented(2)  
1111= Unimplemented(2)  
Note 1: These channels are not implemented on the PIC18F2X20 (28-pin) devices.  
2: Performing a conversion on unimplemented channels returns full-scale results.  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress  
0= A/D Idle  
ADON: A/D On bit  
1= A/D converter module is enabled  
0= A/D converter module is disabled  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 211  
PIC18F2220/2320/4220/4320  
REGISTER 19-2: ADCON1 REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-q(1) R/W-q(1) R/W-q(1) R/W-q(1)  
VCFG1  
VCFG0  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 0  
bit 7  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
VCFG1: Voltage Reference Configuration bit, VREFL Source  
1= VREF- (AN2)  
0= AVSS  
bit 4  
VCFG0: Voltage Reference Configuration bit, VREFH Source  
1= VREF+ (AN3)  
0= AVDD  
bit 3-0  
PCFG3:PCFG0: A/D Port Configuration Control bits  
PCFG3:  
PCFG0  
0000(1)  
0001  
0010  
0011  
0100  
0101  
0110  
A
A
A
D
D
D
D
D
A
A
A
A
D
D
D
D
A
A
A
A
A
D
D
D
A
A
A
A
A
A
D
D
A
A
A
A
A
A
A
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
0111(1)  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
D
A
A
A
D
D
D
D
D
A
A
A
A
D
D
D
D
A
A
A
A
A
D
D
D
A
A
A
A
A
A
D
D
A
A
A
A
A
A
A
D
A = Analog input  
D = Digital I/O  
Note 1: The POR value of the PCFG bits depends on the value of the PBAD bit in  
Configuration Register 3H. When PBAD = 1, PCFG<3:0> = 0000; when PBAD = 0,  
PCFG<3:0> = 0111.  
2: AN5 through AN7 are available only in PIC18F4X20 devices.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39599C-page 212  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 19-3: ADCON2 REGISTER  
R/W-0  
ADFM  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ACQT2  
ACQT1  
ACQT0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-3  
ACQT2:ACQT0: A/D Acquisition Time Select bits  
111= 20 TAD  
110= 16 TAD  
101= 12 TAD  
100= 8 TAD  
011= 6 TAD  
010= 4 TAD  
001= 2 TAD  
(1)  
000= 0 TAD  
bit 2-0  
ADCS1:ADCS0: A/D Conversion Clock Select bits  
111= FRC (clock derived from A/D RC oscillator)(1)  
110= FOSC/64  
101= FOSC/16  
100= FOSC/4  
011= FRC (clock derived from A/D RC oscillator)(1)  
010= FOSC/32  
001= FOSC/8  
000= FOSC/2  
Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is  
added before the A/D clock starts. This allows the SLEEPinstruction to be executed  
before starting a conversion.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 213  
PIC18F2220/2320/4220/4320  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(AVDD and AVSS), or the voltage level on the RA3/AN3/  
VREF+ and RA2/AN2/VREF-/CVREF pins.  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off and any  
conversion in progress is aborted.  
Each port pin associated with the A/D converter can be  
configured as an analog input or as a digital I/O. The  
ADRESH and ADRESL registers contain the result of  
the A/D conversion. When the A/D conversion is com-  
plete, the result is loaded into the ADRESH/ADRESL  
registers, the GO/DONE bit (ADCON0 register) is  
cleared and A/D Interrupt Flag bit, ADIF, is set. The block  
diagram of the A/D module is shown in Figure 19-1.  
The A/D converter has a unique feature of being able  
to operate while the device is in Sleep mode. To oper-  
ate in SLEEP, the A/D conversion clock must be  
derived from the A/D’s internal RC oscillator.  
The output of the sample and hold is the input into the  
converter which generates the result via successive  
approximation.  
FIGURE 19-1:  
A/D BLOCK DIAGRAM  
CHS3:CHS0  
1100  
AN12(2)  
1011  
AN11  
1010  
AN10  
1001  
AN9  
1000  
AN8  
0111  
AN7(1)  
0110  
AN6(1)  
0101  
AN5(1)  
0100  
AN4  
VAIN  
0011  
(Input Voltage)  
10-bit  
Converter  
A/D  
AN3/VREF+  
0010  
AN2/VREF-  
0001  
VCFG1:VCFG0  
AN1  
0000  
AVDD  
AN0  
X0  
X1  
1X  
0X  
VREFH  
VREFL  
Reference  
Voltage  
AVSS  
Note 1: Channels AN5 through AN7 are not available on PIC18F2X20 devices.  
2: I/O pins have diode protection to VDD and VSS.  
DS39599C-page 214  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
The value in the ADRESH/ADRESL registers is not  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
modified for a Power-on Reset. The ADRESH/  
ADRESL registers will contain unknown data after a  
Power-on Reset.  
• Set ADIE bit  
• Set GIE bit  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 19.1  
“A/D Acquisition Requirements”. After this acquisi-  
tion time has elapsed, the A/D conversion can be  
started. An acquisition time can be programmed to  
occur between setting the GO/DONE bit and the actual  
start of the conversion.  
3. Wait the required acquisition time (if required).  
4. Start conversion:  
• Set GO/DONE bit (ADCON0 register)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result registers (ADRESH:ADRESL);  
clear bit ADIF if required.  
The following steps should be followed to do an A/D  
conversion:  
7. For next conversion, go to step 1 or step 2, as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before next acquisition starts.  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D acquisition time (ADCON2)  
• Select A/D conversion clock (ADCON2)  
• Turn on A/D module (ADCON0)  
FIGURE 19-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CPIN  
VAIN  
ILEAKAGE  
± 500 nA  
CHOLD = 120 pF  
VT = 0.6 V  
5 pF  
VSS  
Legend: CPIN  
= input capacitance  
= threshold voltage  
6V  
VT  
5V  
VDD 4V  
3V  
ILEAKAGE = leakage current at the pin due to  
various junctions  
RIC  
= interconnect resistance  
= sampling switch  
2V  
SS  
CHOLD  
RSS  
= sample/hold capacitance (from DAC)  
= sampling switch resistance  
5
6
7
8 9 10 11  
Sampling Switch (k)  
2003 Microchip Technology Inc.  
DS39599C-page 215  
PIC18F2220/2320/4220/4320  
19.1 A/D Acquisition Requirements  
19.2 A/D VREF+ and VREF- References  
For the A/D converter to meet its specified accuracy, the  
Charge Holding Capacitor (CHOLD) must be allowed to  
fully charge to the input channel voltage level. The ana-  
log input model is shown in Figure 19-2. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge the  
capacitor CHOLD. The sampling switch (RSS) impedance  
varies over the device voltage (VDD). The source imped-  
ance affects the offset voltage at the analog input (due to  
pin leakage current). The maximum recommended  
impedance for analog sources is 2.5 k. After the  
analog input channel is selected (changed), the channel  
must be sampled for at least the minimum acquisition  
time before starting a conversion.  
If external voltage references are used instead of the  
internal AVDD and AVSS sources, the source imped-  
ance of the VREF+ and VREF- voltage sources must be  
considered. During acquisition, currents supplied by  
these sources are insignificant. However, during con-  
version, the A/D module sinks and sources current  
through the reference sources.  
In order to maintain the A/D accuracy, the voltage ref-  
erence source impedances should be kept low to  
reduce voltage changes. These voltage changes occur  
as reference currents flow through the reference  
source impedance. The maximum recommended  
impedance of the VREF+ and VREF- external  
reference voltage sources is 75.  
Note:  
When the conversion is started, the holding  
capacitor is disconnected from the input pin.  
Note:  
When using external references, the  
source impedance of the external voltage  
references must be less than 75in order  
to achieve the specified ADC resolution. A  
higher reference source impedance will  
increase the ADC offset and gain errors.  
Resistive voltage dividers will not provide a  
low enough source impedance. To ensure  
the best possible ADC performance, exter-  
nal VREF inputs should be buffered with an  
op amp or other low-impedance circuit.  
To calculate the minimum acquisition time,  
Equation 19-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
Example 19-1 shows the calculation of the minimum  
required acquisition time TACQ. This calculation is based  
on the following application system assumptions:  
CHOLD  
RS  
Conversion Error  
VDD  
Temperature  
VHOLD  
=
=
=
=
=
120 pF  
2.5 kΩ  
1/2 LSb  
5V Rss = 7 kΩ  
50°C (system max.)  
0V @ time = 0  
EQUATION 19-1: ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 19-2: MINIMUM A/D HOLDING CAPACITOR  
VHOLD  
or  
=
(VREF – (VREF/2048)) • (1 – e(-Tc/CHOLD(RIC + RSS + RS))  
)
TC  
=
-(CHOLD)(RIC + RSS + RS) ln(1/2048)  
EXAMPLE 19-1:  
CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
TAMP  
TCOFF  
=
=
=
TAMP + TC + TCOFF  
5 µs  
(Temp – 25°C)(0.05 µs/°C)  
(50°C – 25°C)(0.05 µs/°C)  
1.25 µs  
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 µs.  
TC  
-(CHOLD)(RIC + RSS + RS) ln(1/2047) µs  
-(120 pF) (1 k+ 7 k+ 2.5 k) ln(0.0004883) µs  
9.61 µs  
TACQ  
=
5 µs + 1.25 µs + 9.61 µs  
12.86 µs  
DS39599C-page 216  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
19.3 Selecting and Configuring  
Automatic Acquisition Time  
19.4 Selecting the A/D Conversion Clock  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 11 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. There are seven possible options for TAD:  
The ADCON2 register allows the user to select an  
acquisition time that occurs each time the GO/DONE  
bit is set.  
• 2 TOSC  
When the GO/DONE bit is set, sampling is stopped and  
a conversion begins. The user is responsible for ensur-  
ing the required acquisition time has passed between  
selecting the desired input channel and setting the  
GO/DONE bit. This occurs when the ACQT2:ACQT0  
bits (ADCON2<5:3>) remain in their Reset state (‘000’)  
and is compatible with devices that do not offer  
programmable acquisition times.  
• 4 TOSC  
• 8 TOSC  
• 16 TOSC  
• 32 TOSC  
• 64 TOSC  
• Internal RC Oscillator  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be as short as possible, but greater than the  
minimum TAD (approximately 2 µs, see parameter #130  
for more information).  
If desired, the ACQT bits can be set to select a  
programmable acquisition time for the A/D module.  
When the GO/DONE bit is set, the A/D module contin-  
ues to sample the input for the selected acquisition  
time, then automatically begins a conversion. Since the  
acquisition time is programmed, there may be no need  
to wait for an acquisition time between selecting a  
channel and setting the GO/DONE bit.  
Table 19-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
In either case, when the conversion is completed, the  
GO/DONE bit is cleared, the ADIF flag is set and the  
A/D begins sampling the currently selected channel  
again. If an acquisition time is programmed, there is  
nothing to indicate if the acquisition time has ended or  
if the conversion has begun.  
TABLE 19-1: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Maximum Device Frequency  
Operation  
ADCS2:ADCS0  
PIC18FXX20  
PIC18LFXX20(4)  
2 TOSC  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC(3)  
000  
100  
001  
101  
010  
110  
x11  
1.25 MHz  
2.50 MHz  
5.00 MHz  
10.0 MHz  
20.0 MHz  
40.0 MHz  
1.00 MHz(1)  
666 kHz  
1.33 MHz  
2.66 MHz  
5.33 MHz  
10.65 MHz  
21.33 MHz  
1.00 MHz(2)  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: The RC source has a typical TAD time of 6 µs.  
3: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or the A/D  
accuracy may be out of specification.  
4: Low-power devices only.  
2003 Microchip Technology Inc.  
DS39599C-page 217  
PIC18F2220/2320/4220/4320  
19.5 Operation in Power Managed  
Modes  
19.6 Configuring Analog Port Pins  
The ADCON1, TRISA, TRISB and TRISE registers all  
configure the A/D port pins. The port pins needed as  
analog inputs must have their corresponding TRIS bits  
set (input). If the TRIS bit is cleared (output), the digital  
output level (VOH or VOL) will be converted.  
The selection of the automatic acquisition time and A/D  
conversion clock is determined in part by the clock  
source and frequency while in a power managed mode.  
If the A/D is expected to operate while the device is in  
a power managed mode, the ACQT2:ACQT0 and  
ADCS2:ADCS0 bits in ADCON2 should be updated in  
accordance with the power managed mode clock that  
will be used. After the power managed mode is entered  
(either of the power managed Run modes), an A/D  
acquisition or conversion may be started. Once an  
acquisition or conversion is started, the device should  
continue to be clocked by the same power managed  
mode clock source until the conversion has been com-  
pleted. If desired, the device may be placed into the  
corresponding power managed Idle mode during the  
conversion.  
The A/D operation is independent of the state of the  
CHS3:CHS0 bits and the TRIS bits.  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an ana-  
log input. Analog levels on a digitally  
configured input will be accurately  
converted.  
2: Analog levels on any pin defined as a  
digital input may cause the digital input  
buffer to consume current out of the  
device’s specification limits.  
If the power managed mode clock frequency is less  
than 1 MHz, the A/D RC clock source should be  
selected.  
3: The PBADEN bit in the Configuration  
register configures PORTB pins to reset  
as analog or digital pins by controlling  
how the PCFG0 bits in ADCON1 are  
reset.  
Operation in Sleep mode requires the A/D RC clock to  
be selected. If bits ACQT2:ACQT0 are set to ‘000’ and  
a conversion is started, the conversion will be delayed  
one instruction cycle to allow execution of the SLEEP  
instruction and entry to Sleep mode. The IDLEN and  
SCS bits in the OSCCON register must have already  
been cleared prior to starting the conversion.  
DS39599C-page 218  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Clearing the GO/DONE bit during a conversion will abort  
the current conversion. The A/D Result register pair will  
19.7 A/D Conversions  
Figure 19-3 shows the operation of the A/D converter  
after the GO bit has been set and the ACQT2:ACQT0  
bits are cleared. A conversion is started after the follow-  
ing instruction to allow entry into Sleep mode before the  
conversion begins.  
NOT be updated with the partially completed A/D  
conversion sample. This means the ADRESH:ADRESL  
registers will continue to contain the value of the last  
completed conversion (or the last value written to the  
ADRESH:ADRESL registers).  
Figure 19-4 shows the operation of the A/D converter  
after the GO bit has been set and the ACQT2:ACQT0  
bits are set to ‘010’ and selecting a 4 TAD acquisition  
time before the conversion starts.  
After the A/D conversion is completed or aborted, a  
2 TAD wait is required before the next acquisition can  
be started. After this wait, acquisition on the selected  
channel is automatically started.  
Note:  
The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
FIGURE 19-3:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)  
TCY - TAD  
TAD7 TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6  
b7  
b6  
b4  
b1  
b0  
b2  
b9  
b8  
b5  
b3  
Conversion starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
Next Q4: ADRESH/ADRESL are loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
FIGURE 19-4:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)  
TAD Cycles  
TACQT Cycles  
7
8
9
10  
b1  
11  
b0  
1
2
3
4
1
2
3
4
5
6
b7  
b6  
b3  
b2  
b8  
b5  
b4  
b9  
Automatic  
Acquisition  
Time  
Conversion starts  
(Holding capacitor is disconnected)  
Set GO bit  
(Holding capacitor continues  
acquiring input)  
Next Q4: ADRESH:ADRESL are loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is reconnected to analog input.  
2003 Microchip Technology Inc.  
DS39599C-page 219  
PIC18F2220/2320/4220/4320  
desired location). The appropriate analog input chan-  
19.8 Use of the CCP2 Trigger  
nel must be selected and the minimum acquisition  
period is either timed by the user or an appropriate  
TACQ time, selected before the “special event trigger”,  
sets the GO/DONE bit (starts a conversion).  
An A/D conversion can be started by the “special event  
trigger” of the CCP2 module. This requires that the  
CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be pro-  
grammed as ‘1011’ and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the GO/  
DONE bit will be set, starting the A/D acquisition and  
conversion and the Timer1 (or Timer3) counter will be  
reset to zero. Timer1 (or Timer3) is reset to automati-  
cally repeat the A/D acquisition period with minimal  
software overhead (moving ADRESH/ADRESL to the  
If the A/D module is not enabled (ADON is cleared), the  
“special event trigger” will be ignored by the A/D  
module but will still reset the Timer1 (or Timer3)  
counter.  
TABLE 19-2: SUMMARY OF A/D REGISTERS  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
PIR1  
PIE1  
IPR1  
PIR2  
PIE2  
IPR2  
PSPIF  
PSPIE  
ADIF  
ADIE  
ADIP  
CMIF  
CMIE  
CMIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
EEIF  
EEIE  
EEIP  
SSPIF CCP1IF  
SSPIE CCP1IE  
SSPIP CCP1IP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR3IF  
TMR3IE  
TMR3IP  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 1111 1111 1111 1111  
CCP2IF 00-0 0000 00-0 0000  
CCP2IE 00-0 0000 00-0 0000  
CCP2IP 11-1 1111 11-1 1111  
xxxx xxxx uuuu uuuu  
PSPIP  
OSCFIF  
OSCFIE  
OSCFIP  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
ADRESH A/D Result Register High Byte  
ADRESL A/D Result Register Low Byte  
xxxx xxxx uuuu uuuu  
ADCON0  
ADCON1  
ADCON2  
PORTA  
TRISA  
CHS3  
VCFG1  
ACQT2  
RA5  
CHS3  
VCFG0  
ACQT1  
RA4  
CHS1  
CHS0 GO/DONE ADON  
--00 0000 --00 0000  
PCFG0 --00 qqqq --00 qqqq  
ADCS0 0-00 0000 0-00 0000  
PCFG3 PCFG2  
ACQT0 ADCS2  
PCFG1  
ADCS1  
RA1  
ADFM  
(4)  
(4)  
RA7  
RA6  
RA3  
RA2  
RA0  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
---- xxxx ---- uuuu  
0000 -111 0000 -111  
---- -xxx ---- -uuu  
(4)  
(4)  
TRISA7  
TRISA6  
PORTB  
TRISB  
Read PORTB pins, Write LATB Latch  
PORTB Data Direction Register  
PORTB Output Data Latch  
LATB  
(2)  
(4)  
PORTE  
IBF  
OBE  
IBOV  
PSPMODE  
RE3  
Read PORTE pins, Write LATE  
PORTE Data Direction  
(3)  
TRISE  
(3)  
LATE  
PORTE Output Data Latch  
Legend:  
x= unknown, u= unchanged, - = unimplemented, read as ‘0’, q= value depends on condition.  
Shaded cells are not used for A/D conversion.  
Note 1: RE3 port bit is available only as an input pin when MCLRE bit in configuration register is ‘0’.  
2: This register is not implemented on PIC18F2X20 devices.  
3: These bits are not implemented on PIC18F2X20 devices.  
4: These pins may be configured as port pins depending on the oscillator mode selected.  
DS39599C-page 220  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
20.1 Comparator Configuration  
20.0 COMPARATOR MODULE  
There are eight modes of operation for the comparators.  
The CM bits (CMCON<2:0>) are used to select these  
modes. Figure 20-1 shows the eight possible modes.  
The TRISA register controls the data direction of the  
comparator pins for each mode. If the Comparator mode  
is changed, the comparator output level may not be valid  
for the specified mode change delay shown in the  
Electrical Specifications (see Section 26.0 “Electrical  
Characteristics”).  
The comparator module contains two analog compara-  
tors. The inputs and outputs for the comparators are  
multiplexed with the RA0 through RA5 pins. The on-  
chip voltage reference (Section 21.0 “Comparator  
Voltage Reference Module”) can also be an input to  
the comparators.  
The CMCON register, shown as Register 20-1,  
controls the comparator module’s input and output  
multiplexers.  
A
block diagram of the various  
comparator configurations is shown in Figure 20-1.  
Note:  
Comparator interrupts should be disabled  
during Comparator mode change.  
Otherwise, a false interrupt may occur.  
a
REGISTER 20-1: CMCON REGISTER  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-1  
CM2  
R/W-1  
CM1  
R/W-1  
CM0  
C2OUT  
C1OUT  
bit 7  
bit 0  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
CIS: Comparator Input Switch bit  
When CM2:CM0 = 110:  
1= C1 VIN- connects to RA3/AN3  
C2 VIN- connects to RA2/AN2  
0= C1 VIN- connects to RA0/AN0  
C2 VIN- connects to RA1/AN1  
bit 2-0  
CM2:CM0: Comparator Mode bits  
Figure 20-1 shows the Comparator modes and CM2:CM0 bit settings.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
2003 Microchip Technology Inc.  
DS39599C-page 221  
PIC18F2220/2320/4220/4320  
FIGURE 20-1:  
COMPARATOR I/O OPERATING MODES  
Comparators RESET  
Comparators Off (POR Default Value)  
CM<2:0> = 000  
CM<2:0> = 111  
D
D
VIN-  
VIN-  
RA0/AN0  
RA0/AN0  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
D
D
RA3/AN3/  
VREF+  
RA3/AN3/  
VREF+  
D
D
D
VIN-  
VIN-  
RA1/AN1  
RA2/AN2/  
RA1/AN1  
VIN+  
VIN+  
D
RA2/AN2/  
VREF-/CVREF  
VREF-/CVREF  
Two Independent Comparators with Outputs  
CM<2:0> = 011  
Two Independent Comparators  
CM<2:0> = 010  
A
VIN-  
A
VIN-  
RA0/AN0  
RA0/AN0  
C1OUT  
C2OUT  
C1  
VIN+  
A
C1OUT  
C2OUT  
C1  
C2  
VIN+  
RA3/AN3/  
VREF+  
A
RA3/AN3/  
VREF+  
(1)  
RA4/T0CKI/C1OUT  
A
A
VIN-  
RA1/AN1  
RA2/AN2/  
A
VIN-  
RA1/AN1  
RA2/AN2/  
VIN+  
C2  
VIN+  
A
VREF-/CVREF  
VREF-/CVREF  
(1)  
RA5/AN4/SS/LVDIN/C2OUT  
Two Common Reference Comparators  
Two Common Reference Comparators with Outputs  
CM<2:0> = 100  
CM<2:0> = 101  
A
A
A
VIN-  
VIN-  
RA0/AN0  
RA0/AN0  
C1OUT  
C2OUT  
C1OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
RA3/AN3/  
VREF+  
RA3/AN3/  
VREF+  
(1)  
RA4/T0CKI/C1OUT  
A
D
VIN-  
RA1/AN1  
RA2/AN2/  
A
D
VIN-  
VIN+  
VIN+  
RA1/AN1  
C2OUT  
VREF-/CVREF  
RA2/AN2/  
VREF-/CVREF  
(1)  
RA5/AN4/SS/LVDIN/C2OUT  
Four Inputs Multiplexed to Two Comparators  
One Independent Comparator with Output  
CM<2:0> = 110  
CM<2:0> = 001  
A
A
A
VIN-  
RA0/AN0  
RA0/AN0  
CIS = 0  
CIS = 1  
VIN-  
A
C1OUT  
C1  
C2  
VIN+  
RA3/AN3/  
VREF+  
C1OUT  
C1  
C2  
RA3/AN3/  
VREF+  
VIN+  
A
A
(1)  
RA4/T0CKI/C1OUT  
RA1/AN1  
RA2/AN2/  
VIN-  
CIS = 0  
CIS = 1  
C2OUT  
VIN+  
D
D
VIN-  
RA1/AN1  
RA2/AN2/  
VREF-/CVREF  
CVROE = 0  
CVROE = 1  
Off (Read as ‘0’)  
VIN+  
CVREF  
From VREF Module  
VREF-/CVREF  
(2)  
A = Analog Input, port reads zeros always, overrides TRISA bit  
D = Digital Input.  
.
CIS (CMCON<3>) is the Comparator Input Switch; CVROE (CVRCON<6>) is the Voltage Reference Output Switch.  
Note 1: RA4 must be configured as an output pin in TRISA<4> when used to output C1OUT. RA5 ignores TRISA<5> when  
used as an output for C2OUT.  
2: Mode 110 is exception. Comparator input pins obey TRISA bits.  
DS39599C-page 222  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
20.3.2  
INTERNAL REFERENCE SIGNAL  
20.2 Comparator Operation  
The comparator module also allows the selection of an  
internally generated voltage reference for the compara-  
tors. Section 21.0 “Comparator Voltage Reference  
Module” contains a detailed description of the compar-  
ator voltage reference module that provides this signal.  
The internal reference signal is used when comparators  
are in mode, CM2:CM0 = 110 (Figure 20-1). In this  
mode, the internal voltage reference is applied to the  
VIN+ pin of both comparators.  
A single comparator is shown in Figure 20-2, along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure 20-2 represent  
the uncertainty due to input offsets and response time.  
Depending on the setting of the CVROE bit  
(CVRCON<6>), the voltage reference may also be  
available on pin RA2.  
20.3 Comparator Reference  
An external or internal reference signal may be used  
depending on the comparator operating mode. The  
analog signal present at VIN- is compared to the signal  
at VIN+ and the digital output of the comparator is  
adjusted accordingly (Figure 20-2).  
20.4 Comparator Response Time  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output has a valid level. If the internal ref-  
erence is changed, the maximum delay of the internal  
voltage reference must be considered when using the  
comparator outputs. Otherwise, the maximum delay of  
the comparators should be used (see Table 26-2 in  
Section 26.0 “Electrical Characteristics”).  
FIGURE 20-2:  
SINGLE COMPARATOR  
VIN+  
VIN-  
+
Output  
20.5 Comparator Outputs  
The comparator outputs are read through the CMCON  
register. These bits are read-only. The comparator  
outputs may also be directly output to the RA4 and RA5  
I/O pins. When enabled, multiplexers in the output path  
of the RA4 and RA5 pins will switch and the output of  
each pin will be the unsynchronized output of the com-  
parator. The uncertainty of each of the comparators is  
related to the input offset voltage and the response time  
given in the specifications. Figure 20-3 shows the  
comparator output block diagram.  
VIN-  
VIN+  
Output  
The TRISA bits will still function as an output enable/  
disable for the RA4 and RA5 pins while in this mode.  
The polarity of the comparator outputs can be changed  
using the C2INV and C1INV bits (CMCON<4:5>).  
20.3.1  
EXTERNAL REFERENCE SIGNAL  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD and can be applied to either  
pin of the comparator(s).  
Note 1: When reading the Port register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert an analog input according to the  
Schmitt Trigger input specification.  
2: Analog levels on any pin defined as a  
digital input may cause the input buffer to  
consume more current than is specified.  
2003 Microchip Technology Inc.  
DS39599C-page 223  
PIC18F2220/2320/4220/4320  
FIGURE 20-3:  
COMPARATOR OUTPUT BLOCK DIAGRAM  
Port Pins  
MULTIPLEX  
+
-
CxINV  
To RA4 or  
RA5 Pin  
Bus  
Data  
Q
D
Read CMCON  
EN  
Q
Set  
CMIF  
bit  
D
From  
other  
Comparator  
EN  
CL  
Read CMCON  
Reset  
20.6 Comparator Interrupts  
Note:  
If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR  
registers) interrupt flag may not get set.  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that occurred. The CMIF  
bit (PIR registers) is the Comparator Interrupt Flag. The  
CMIF bit is cleared by firmware. Since it is also possible  
to write a ‘1’ to this register, a simulated interrupt may  
be initiated.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON will end the  
mismatch condition.  
b) Clear flag bit CMIF.  
The CMIE bit (PIE registers) and the PEIE bit (INTCON  
register) must be set to enable the interrupt. In addition,  
the GIE bit must also be set. If any of these bits are  
clear, the interrupt is not enabled, though the CMIF bit  
will still be set if an interrupt condition occurs.  
A mismatch condition will continue to set flag bit CMIF.  
Reading CMCON will end the mismatch condition and  
allow flag bit CMIF to be cleared.  
DS39599C-page 224  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
20.7 Comparator Operation in Power  
20.9 Analog Input Connection  
Considerations  
Managed Modes  
When a comparator is active and the device is placed  
in a power managed mode, the comparator remains  
active and the interrupt is functional if enabled. This  
interrupt will wake-up the device from a power  
managed mode when enabled. Each operational com-  
parator will consume additional current, as shown in  
the comparator specifications. To minimize power  
consumption while in a power managed mode, turn off  
the comparators (CM<2:0> = 111) before entering the  
power managed modes. If the device wakes up from a  
power managed mode, the contents of the CMCON  
register are not affected.  
A simplified circuit for an analog input is shown in  
Figure 20-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. Therefore, the analog input must be between  
VSS and VDD. If the input voltage exceeds this range by  
more than 0.6V, one of the diodes is forward biased  
and a latch-up condition may occur. A maximum source  
impedance of 10 kis recommended for the analog  
sources.  
20.8 Effects of a Reset  
A device Reset forces the CMCON register to its Reset  
state, causing the comparator module to be in the Com-  
parator Reset mode (CM<2:0> = 111). This ensures  
that all potential inputs are analog inputs. Device cur-  
rent is minimized when digital inputs are present at  
Reset time. The comparators will be powered down  
during the Reset interval.  
FIGURE 20-4:  
COMPARATOR ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC  
RS < 10k  
AIN  
Comparator  
Input  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
VSS  
Legend: CPIN  
=
Input Capacitance  
VT  
= Threshold Voltage  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
=
=
=
Interconnect Resistance  
Source Impedance  
Analog Voltage  
2003 Microchip Technology Inc.  
DS39599C-page 225  
PIC18F2220/2320/4220/4320  
TABLE 20-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Value on  
all other  
Resets  
Value on  
POR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON C2OUT C1OUT C2INV C1INV  
CVRCON CVREN CVROE CVRR  
CIS  
CM2  
CM1  
CM0  
0000 0111 0000 0111  
CVR3  
CVR2  
CVR1  
CVR0 000- 0000 000- 0000  
RBIF 0000 0000 0000 0000  
INTCON  
GIE/  
PEIE/ TMR0IE INT0IE  
GIEL  
RBIE TMR0IF INT0IF  
GIEH  
PIR2  
CMIF  
CMIE  
CMIP  
RA6(1)  
BCLIF  
BCLIE  
BCLIP  
RA3  
LVDIF TMR3IF CCP2IF -0-- 0000 -0-- 0000  
LVDIE TMR3IE CCP2IE -0-- 0000 -0-- 0000  
LVDIP TMR3IP CCP2IP -1-- 1111 -1-- 1111  
PIE2  
IPR2  
RA7(1)  
PORTA  
LATA  
TRISA  
RA5  
RA4  
RA2  
RA1  
RA0  
xx0x 0000 xx0x 0000  
xxxx xxxx xxxx xxxx  
1111 1111 1111 1111  
LATA Data Output Register  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, - = unimplemented, read as ‘0’.  
Shaded cells are unused by the comparator module.  
Note 1: These pins are enabled based on oscillator configuration (see Configuration Register 1H).  
DS39599C-page 226  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
21.1 Configuring the Comparator  
Voltage Reference  
21.0 COMPARATOR VOLTAGE  
REFERENCE MODULE  
The comparator voltage reference can output 16 distinct  
voltage levels for each range. The equations used to cal-  
culate the output of the comparator voltage reference  
are as follows:  
The comparator voltage reference is a 16-tap resistor  
ladder network that provides a selectable voltage refer-  
ence. The resistor ladder is segmented to provide two  
ranges of CVREF values and has a power-down func-  
tion to conserve power when the reference is not being  
used. The CVRCON register controls the operation of  
the reference as shown in Register 21-1. The block  
diagram is given in Figure 21-1.  
EQUATION 21-1:  
If CVRR = 1:  
CVREF = (CVR<3:0>) •  
VDD  
24  
The comparator reference supply voltage comes from  
VDD and VSS.  
If CVRR = 0:  
CVREF = (CVR<3:0> + 8) •  
VDD  
32  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF  
output (see Table 26-2 in Section 26.0 “Electrical  
Characteristics”).  
REGISTER 21-1:  
CVRCON REGISTER  
R/W-0  
R/W-0  
R/W-0  
CVRR  
U-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVROE  
bit 7  
bit 0  
bit 7  
bit 6  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
CVROE: Comparator VREF Output Enable bit  
1= CVREF voltage level is also output on the RA2/AN2/VREF-/CVREF(1) pin  
0= CVREF voltage is disconnected from the RA2/AN2/VREF-/CVREF pin  
Note 1: CVROE overrides the TRISA<2> bit setting.  
bit 5  
CVRR: Comparator VREF Range Selection bit  
1= 0.00 VDD to 0.75 VDD, with VDD/24 step size  
0= 0.25 VDD to 0.75 VDD, with VDD/32 step size  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
CVR3:CVR0: Comparator VREF Value Selection 0 VR3:VR0 15 bits  
When CVRR = 1:  
VDD  
CVREF = (CVR<3:0>) •  
24  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (CVR<3:0> + 8) •  
VDD  
32  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 227  
PIC18F2220/2320/4220/4320  
FIGURE 21-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
VDD  
16 Stages  
CVREN  
R
R
R
R
8R  
CVRR  
RA2/AN2/VREF-/CVREF  
8R  
CVROE  
CVR3  
(From CVRCON<3:0>)  
CVR0  
CVREF  
16-1 Analog Mux  
21.2 Voltage Reference Accuracy/Error  
21.4 Effects of a Reset  
The full range of voltage reference cannot be realized  
due to the construction of the module. The transistors  
on the top and bottom of the resistor ladder network  
(Figure 21-1) keep CVREF from approaching the refer-  
ence source rails. The voltage reference is derived  
from VDD; therefore, the CVREF output changes with  
fluctuations in VDD. The tested absolute accuracy of  
the voltage reference can be found in Section 26.0  
“Electrical Characteristics”.  
A device Reset disables the voltage reference by clear-  
ing the CVRCON register. This also disconnects the  
reference from the RA2 pin, selects the high-voltage  
range and selects the lowest voltage tap from the  
resistor divider.  
21.5 Connection Considerations  
The voltage reference module operates independently  
of the comparator module. The output of the reference  
generator may be output using the RA2 pin if the  
CVROE bit is set. Enabling the voltage reference out-  
put onto the RA2 pin, with an input signal present, will  
increase current consumption.  
21.3 Operation in Power Managed  
Modes  
The contents of the CVRCON register are not affected  
by entry to or exit from power managed modes. To min-  
imize current consumption in power managed modes,  
the voltage reference module should be disabled; how-  
ever, this can cause an interrupt from the comparators  
so the comparator interrupt should also be disabled  
while the CVRCON register is being modified.  
The RA2 pin can be used as a simple D/A output with  
limited drive capability. Due to the limited current drive  
capability, an external buffer must be used on the  
voltage reference output for external connections to  
VREF. Figure 21-2 shows an example buffering  
technique.  
DS39599C-page 228  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 21-2:  
VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
(1)  
R
RA2  
CVREF  
Module  
+
CVREF Output  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the voltage reference configuration bits (CVRCON<3:0> and CVRCON<5>).  
TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE  
Value on  
all other  
Resets  
Value on  
POR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CVRCON CVREN CVROE CVRR  
CVR3  
CIS  
CVR2  
CM2  
RA2  
CVR1  
CM1  
RA1  
CVR0 000- 0000 000- 0000  
CMCON  
TRISA  
C2OUT C1OUT C2INV C1INV  
RA7(1) RA6(1)  
RA5 RA4  
CM0  
RA0  
0000 0111 0000 0111  
1111 1111 1111 1111  
RA3  
Legend: x= unknown, u = unchanged, - = unimplemented, read as ‘0’.  
Shaded cells are not used with the comparator voltage reference.  
Note 1: These pins are enabled based on oscillator configuration (see Configuration Register 1H).  
2003 Microchip Technology Inc.  
DS39599C-page 229  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 230  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
time TA. The application software then has the time,  
until the device voltage is no longer in valid operating  
range, to shut down the system. Voltage point VB is the  
minimum valid operating voltage specification. This  
occurs at time TB. The difference, TB TA, is the total  
time for shutdown.  
22.0 LOW-VOLTAGE DETECT  
In many applications, the ability to determine if the  
device voltage (VDD) is below a specified voltage level  
is a desirable feature. A window of operation for the  
application can be created, where the application soft-  
ware can do “housekeeping tasks” before the device  
voltage exits the valid operating range. This can be  
done using the Low-Voltage Detect (LVD) module.  
The block diagram for the LVD module is shown in  
Figure 22-2. A comparator uses an internally gener-  
ated reference voltage as the set point. When the  
selected tap output of the device voltage crosses the  
set point (is lower than), the LVDIF bit is set.  
This module is a software programmable circuitry,  
where a device voltage trip point can be specified.  
When the voltage of the device becomes lower then the  
specified point, an interrupt flag is set. If the interrupt is  
enabled, the program execution will branch to the inter-  
rupt vector address and the software can then respond  
to that interrupt source.  
Each node in the resistor divider represents a “trip  
point” voltage. The “trip point” voltage is the minimum  
supply voltage level at which the device can operate  
before the LVD module asserts an interrupt. When the  
supply voltage is equal to the trip point, the voltage  
tapped off of the resistor array is equal to the 1.2V  
internal reference voltage generated by the voltage ref-  
erence module. The comparator then generates an  
interrupt signal setting the LVDIF bit. This voltage is  
software programmable to any one of 16 values (see  
Figure 22-2). The trip point is selected by programming  
the LVDL3:LVDL0 bits (LVDCON<3:0>).  
The Low-Voltage Detect circuitry is completely under  
software control. This allows the circuitry to be turned  
off by the software which minimizes the current  
consumption for the device.  
Figure 22-1 shows a possible application voltage curve  
(typically for batteries). Over time, the device voltage  
decreases. When the device voltage equals voltage VA,  
the LVD logic generates an interrupt. This occurs at  
FIGURE 22-1:  
TYPICAL LOW-VOLTAGE DETECT APPLICATION  
VA  
VB  
Legend:  
VA = LVD trip point  
VB = Minimum valid device  
operating voltage  
TB  
TA  
Time  
2003 Microchip Technology Inc.  
DS39599C-page 231  
PIC18F2220/2320/4220/4320  
FIGURE 22-2:  
LOW-VOLTAGE DETECT (LVD) BLOCK DIAGRAM  
VDD  
LVDIN  
LVD Control  
Register  
LVDIF  
Internally Generated  
LVDEN  
Reference Voltage  
1.2V  
The LVD module has an additional feature that allows  
the user to supply the sense voltage to the module  
from an external source. This mode is enabled when  
bits LVDL3:LVDL0 are set to ‘1111’. In this state, the  
comparator input is multiplexed from the external input  
pin, LVDIN (Figure 22-3). This gives users flexibility  
because it allows them to configure the Low-Voltage  
Detect interrupt to occur at any voltage in the valid  
operating range.  
FIGURE 22-3:  
LOW-VOLTAGE DETECT (LVD) WITH EXTERNAL INPUT BLOCK DIAGRAM  
VDD  
VDD  
LVD Control  
Register  
LVDIN  
LVDEN  
Externally Generated  
Trip Point  
LVD  
VxEN  
BODEN  
EN  
BGAP  
DS39599C-page 232  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
22.1 Control Register  
The Low-Voltage Detect Control register controls the  
operation of the Low-Voltage Detect circuitry.  
REGISTER 22-1: LVDCON REGISTER  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
LVDL3  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-1  
LVDL0  
IRVST  
LVDEN  
bit 7  
bit 0  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5  
bit 4  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the Low-Voltage Detect logic will generate the interrupt flag at the specified  
voltage range  
0= Indicates that the Low-Voltage Detect logic will not generate the interrupt flag at the  
specified voltage range and the LVD interrupt should not be enabled  
LVDEN: Low-Voltage Detect Power Enable bit  
1= Enables LVD, powers up LVD circuit  
0= Disables LVD, powers down LVD circuit  
bit 3-0 LVDL3:LVDL0: Low-Voltage Detection Limit bits  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= 4.50V-4.78V  
1101= 4.20V-4.46V  
1100= 4.00V-4.26V  
1011= 3.80V-4.04V  
1010= 3.60V-3.84V  
1001= 3.50V-3.72V  
1000= 3.30V-3.52V  
0111= 3.00V-3.20V  
0110= 2.80V-2.98V  
0101= 2.70V-2.86V  
0100= 2.50V-2.66V  
0011= 2.40V-2.55V  
0010= 2.20V-2.34V  
0001= 2.00V-2.12V  
0000= Reserved  
Note:  
LVDL3:LVDL0 modes which result in a trip point below the valid operating voltage  
of the device are not tested.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39599C-page 233  
PIC18F2220/2320/4220/4320  
The following steps are needed to set up the LVD  
module:  
22.2 Operation  
Depending on the power source for the device voltage,  
the voltage normally decreases relatively slowly. This  
means that the LVD module does not need to be  
constantly operating. To decrease the current require-  
ments, the LVD circuitry only needs to be enabled for  
short periods where the voltage is checked. After doing  
the check, the LVD module may be disabled.  
1. Write the value to the LVDL3:LVDL0 bits  
(LVDCON register) which selects the desired  
LVD trip point.  
2. Ensure that LVD interrupts are disabled (the  
LVDIE bit is cleared or the GIE bit is cleared).  
3. Enable the LVD module (set the LVDEN bit in  
the LVDCON register).  
Each time that the LVD module is enabled, the circuitry  
requires some time to stabilize. After the circuitry has  
stabilized, all status flags may be cleared. The module  
will then indicate the proper state of the system.  
4. Wait for the LVD module to stabilize (the IRVST  
bit to become set).  
5. Clear the LVD interrupt flag, which may have  
falsely become set, until the LVD module has  
stabilized (clear the LVDIF bit).  
6. Enable the LVD interrupt (set the LVDIE and the  
GIE bits).  
Figure 22-4 shows typical waveforms that the LVD  
module may be used to detect.  
FIGURE 22-4:  
LOW-VOLTAGE DETECT WAVEFORMS  
CASE 1:  
LVDIF may not be set  
VDD  
VLVD  
LVDIF  
Enable LVD  
Internally Generated  
Reference Stable  
TIVRST  
LVDIF cleared in software  
CASE 2:  
VDD  
VLVD  
LVDIF  
Enable LVD  
TIVRST  
Internally Generated  
Reference Stable  
LVDIF cleared in software  
LVDIF cleared in software,  
LVDIF remains set since LVD condition still exists  
DS39599C-page 234  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
22.2.1  
REFERENCE VOLTAGE SET POINT  
22.3 Operation During Sleep  
The internal reference voltage of the LVD module may  
be used by other internal circuitry (the Programmable  
Brown-out Reset). If these circuits are disabled (lower  
current consumption), the reference voltage circuit  
requires a time to become stable before a low-voltage  
condition can be reliably detected. This time is invariant  
of system clock speed. This start-up time is specified in  
electrical specification parameter #36. The low-voltage  
interrupt flag will not be enabled until a stable reference  
voltage is reached. Refer to the waveform in Figure 22-4.  
When enabled, the LVD circuitry continues to operate  
during Sleep. If the device voltage crosses the trip  
point, the LVDIF bit will be set and the device will wake-  
up from Sleep. Device execution will continue from the  
interrupt vector address if interrupts have been globally  
enabled.  
22.4 Effects of a Reset  
A device Reset forces all registers to their Reset state.  
This forces the LVD module to be turned off.  
22.2.2  
CURRENT CONSUMPTION  
When the module is enabled, the LVD comparator and  
voltage divider are enabled and will consume static cur-  
rent. The voltage divider can be tapped from multiple  
places in the resistor array. Total current consumption,  
when enabled, is specified in electrical specification  
parameter #D022B.  
2003 Microchip Technology Inc.  
DS39599C-page 235  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 236  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
The inclusion of an internal RC oscillator also provides  
23.0 SPECIAL FEATURES OF THE  
the additional benefits of a Fail-Safe Clock Monitor  
(FSCM) and Two-Speed Start-up. FSCM provides for  
background monitoring of the peripheral clock and  
automatic switchover in the event of its failure. Two-  
Speed Start-up enables code to be executed almost  
immediately on start-up while the primary clock source  
completes its start-up delays.  
CPU  
PIC18F2X20/4X20 devices include several features  
intended to maximize system reliability and minimize  
cost through elimination of external components.  
These are:  
• Oscillator Selection  
• Resets:  
All of these features are enabled and configured by  
setting the appropriate configuration register bits.  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
23.1 Configuration Bits  
The configuration bits can be programmed (read as ‘0’)  
or left unprogrammed (read as ‘1’) to select various  
device configurations. These bits are mapped starting  
at program memory location 300000h.  
• Watchdog Timer (WDT)  
• Fail-Safe Clock Monitor  
• Two-Speed Start-up  
• Code Protection  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h-3FFFFFh)  
which can only be accessed using table reads and  
table writes.  
• ID Locations  
• In-Circuit Serial Programming  
Programming the configuration registers is done in a  
manner similar to programming the Flash memory. The  
EECON1 register WR bit starts a self-timed write to the  
configuration register. In normal operation mode, a  
TBLWTinstruction with the TBLPTR pointing to the con-  
figuration register sets up the address and the data for  
the configuration register write. Setting the WR bit  
starts a long write to the configuration register. The con-  
figuration registers are written a byte at a time. To write  
or erase a configuration cell, a TBLWTinstruction can  
write a ‘1’ or a ‘0’ into the cell. For additional details on  
Flash programming, refer to Section 6.5 “Writing to  
Flash Program Memory”.  
The oscillator can be configured for the application  
depending on frequency, power, accuracy and cost. All  
of the options are discussed in detail in Section 2.0  
“Oscillator Configurations”.  
A complete discussion of device Resets and interrupts  
is available in previous sections of this data sheet.  
In addition to their Power-up and Oscillator Start-up  
Timers provided for Resets, PIC18F2X20/4X20  
devices have a Watchdog Timer which is either perma-  
nently enabled via the configuration bits or software  
controlled (if configured as disabled).  
TABLE 23-1: CONFIGURATION BITS AND DEVICE IDS  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
IESO  
FSCM  
FOSC3  
FOSC2  
FOSC1  
BOR  
FOSC0  
PWRT  
WDT  
CCP2MX  
STVR  
CP0  
11-- 1111  
---- 1111  
---1 1111  
1--- --11  
1--- -1-1  
---- 1111  
11-- ----  
---- 1111  
111- ----  
---- 1111  
-1-- ----  
BORV1  
BORV0  
WDTPS3 WDTPS2 WDTPS1 WDTPS0  
300005h CONFIG3H MCLRE  
300006h CONFIG4L DEBUG  
LVP  
PBAD  
300008h CONFIG5L  
300009h CONFIG5H  
30000Ah CONFIG6L  
CPD  
CP3  
CP2  
CP1  
CPB  
WRT3  
WRT2  
WRT1  
WRT0  
30000Bh CONFIG6H WRTD  
WRTB  
WRTC  
30000Ch CONFIG7L  
30000Dh CONFIG7H  
EBTR3  
EBTR2  
EBTR1  
EBTR0  
EBTRB  
DEV1  
DEV9  
(1)  
(1)  
3FFFFEh DEVID1  
DEV2  
DEV10  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
REV0  
DEV3  
xxxx xxxx  
(1)  
3FFFFFh DEVID2  
0000 0101  
Legend:  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition.  
Shaded cells are unimplemented, read as ‘0’.  
Note 1: See Register 23-14 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.  
2003 Microchip Technology Inc.  
DS39599C-page 237  
PIC18F2220/2320/4220/4320  
REGISTER 23-1: CONFIG1H:CONFIGURATIONREGISTER1HIGH(BYTEADDRESS300001h)  
R/P-1  
IESO  
R/P-1  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
FSCM  
FOSC3  
FOSC2  
FOSC1  
FOSC0  
bit 7  
bit 0  
bit 7  
bit 6  
IESO: Internal External Switch Over bit  
1= Internal External Switch Over mode enabled  
0= Internal External Switch Over mode disabled  
FSCM: Fail-Safe Clock Monitor enable bit  
1= Fail-Safe Clock Monitor enabled  
0= Fail-Safe Clock Monitor disabled  
bit 5-4 Unimplemented: Read as ‘0’  
bit 3-0 FOSC<3:0>: Oscillator Selection bits  
11xx= External RC oscillator, CLKO function on RA6  
1001= Internal oscillator block, CLKO function on RA6 and port function on RA7  
1000= Internal oscillator block, port function on RA6 and port function on RA7  
0111= External RC oscillator, port function on RA6  
0110= HS oscillator, PLL enabled (clock frequency = 4 x FOSC1)  
0101= EC oscillator, port function on RA6  
0100= EC oscillator, CLKO function on RA6  
0010= HS oscillator  
0001= XT oscillator  
0000= LP oscillator  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
DS39599C-page 238  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 23-2: CONFIG2L:CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS300002h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
BOR  
R/P-1  
BORV1  
BORV0  
PWRT  
bit 7  
bit 0  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3-2 BORV1:BORV0: Brown-out Reset Voltage bits  
11= VBOR set to 2.0V  
10= VBOR set to 2.7V  
01= VBOR set to 4.2V  
00= VBOR set to 4.5V  
bit 1  
bit 0  
BOR: Brown-out Reset enable bit(1)  
1= Brown-out Reset enabled  
0= Brown-out Reset disabled  
PWRT: Power-up Timer enable bit(1)  
1= PWRT disabled  
0= PWRT enabled  
Note 1: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to  
be independently controlled.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 23-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDT  
WDTPS3 WDTPS2 WDTPS1 WDTPS0  
bit 7  
bit 0  
bit 7-5 Unimplemented: Read as ‘0’  
bit 4-1 WDPS<3:0>: Watchdog Timer Postscale Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
bit 0  
WDT: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2003 Microchip Technology Inc.  
DS39599C-page 239  
PIC18F2220/2320/4220/4320  
REGISTER 23-4: CONFIG3H:CONFIGURATIONREGISTER3HIGH(BYTEADDRESS300005h)  
R/P-1  
MCLRE  
bit 7  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
PBAD  
R/P-1  
CCP2MX  
bit 0  
bit 7  
MCLRE: MCLR Pin Enable bit  
1= MCLR pin enabled; RE3 input pin disabled  
0= RE3 input pin enabled; MCLR disabled  
bit 6-2 Unimplemented: Read as ‘0’  
bit 1  
PBAD: PORTB A/D Enable bit (Affects ADCON1 Reset state. ADCON1 controls PORTB<4:0>  
pin configuration.)  
1= PORTB<4:0> pins are configured as analog input channels on Reset  
0= PORTB<4:0> pins are configured as digital I/O on Reset  
bit 0  
CCP2MX: CCP2 Mux bit  
1= CCP2 input/output is multiplexed with RC1  
0= CCP2 input/output is multiplexed with RB3  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 23-5: CONFIG4L:CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS300006h)  
R/P-1  
DEBUG  
bit 7  
U-0  
U-0  
U-0  
U-0  
R/P-1  
LVP  
U-0  
R/P-1  
STVR  
bit 0  
bit 7  
DEBUG: Background Debugger Enable bit  
1= Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins  
0= Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug  
bit 6-3 Unimplemented: Read as ‘0’  
bit 2  
LVP: Low-Voltage ICSP Enable bit  
1= Low-voltage ICSP enabled  
0= Low-voltage ICSP disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
STVR: Stack Full/Underflow Reset Enable bit  
1= Stack full/underflow will cause Reset  
0= Stack full/underflow will not cause Reset  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39599C-page 240  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 23-6: CONFIG5L:CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS300008h)  
U-0  
U-0  
U-0  
U-0  
R/C-1  
CP3(1)  
R/C-1  
CP2(1)  
R/C-1  
CP1  
R/C-1  
CP0  
bit 7  
bit 0  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3  
bit 2  
bit 1  
bit 0  
CP3: Code Protection bit(1)  
1= Block 3 (001800-001FFFh) not code-protected  
0= Block 3 (001800-001FFFh) code-protected  
CP2: Code Protection bit(1)  
1= Block 2 (001000-0017FFh) not code-protected  
0= Block 2 (001000-0017FFh) code-protected  
CP1: Code Protection bit  
1= Block 1 (000800-000FFFh) not code-protected  
0= Block 1 (000800-000FFFh) code-protected  
CP0: Code Protection bit  
1= Block 0 (000200-0007FFh) not code-protected  
0= Block 0 (000200-0007FFh) code-protected  
Note 1: Unimplemented in PIC18FX220 devices; maintain this bit set.  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 23-7: CONFIG5H:CONFIGURATIONREGISTER5HIGH(BYTEADDRESS300009h)  
R/C-1  
CPD  
R/C-1  
CPB  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
bit 6  
CPD: Data EEPROM Code Protection bit  
1= Data EEPROM not code-protected  
0= Data EEPROM code-protected  
CPB: Boot Block Code Protection bit  
1= Boot block (000000-0001FFh) not code-protected  
0= Boot block (000000-0001FFh) code-protected  
bit 5-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
2003 Microchip Technology Inc.  
DS39599C-page 241  
PIC18F2220/2320/4220/4320  
REGISTER 23-8: CONFIG6L:CONFIGURATIONREGISTER6LOW(BYTE ADDRESS30000Ah)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
WRT3(1) WRT2(1)  
R/P-1  
R/P-1  
R/P-1  
WRT1  
WRT0  
bit 7  
bit 0  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3  
bit 2  
bit 1  
bit 0  
WRT3: Write Protection bit(1)  
1= Block 3 (001800-001FFFh) not write-protected  
0= Block 3 (001800-001FFFh) write-protected  
WRT2: Write Protection bit(1)  
1= Block 2 (001000-0017FFh) not write-protected  
0= Block 2 (001000-0017FFh) write-protected  
WRT1: Write Protection bit  
1= Block 1 (000800-000FFFh) not write-protected  
0= Block 1 (000800-000FFFh) write-protected  
WRT0: Write Protection bit  
1= Block 0 (000200-0007FFh) not write-protected  
0= Block 0 (000200-0007FFh) write-protected  
Note 1: Unimplemented in PIC18FX220 devices; maintain this bit set.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 23-9: CONFIG6H:CONFIGURATION REGISTER6 HIGH(BYTEADDRESS30000Bh)  
R/P-1  
R/P-1  
R-1  
U-0  
U-0  
U-0  
U-0  
U-0  
WRTD  
WRTB  
WRTC  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
WRTD: Data EEPROM Write Protection bit  
1= Data EEPROM not write-protected  
0= Data EEPROM write-protected  
WRTB: Boot Block Write Protection bit  
1= Boot block (000000-0001FFh) not write-protected  
0= Boot block (000000-0001FFh) write-protected  
WRTC: Configuration Register Write Protection bit  
1= Configuration registers (300000-3000FFh) not write-protected  
0= Configuration registers (300000-3000FFh) write-protected  
Note:  
This bit is read-only in normal execution mode; it can be written only in Program  
mode.  
bit 4-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39599C-page 242  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
REGISTER 23-10: CONFIG7L:CONFIGURATIONREGISTER7LOW(BYTEADDRESS30000Ch)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
EBTR3(1) EBTR2(1)  
R/P-1  
R/P-1  
R/P-1  
EBTR1  
EBTR0  
bit 7  
bit 0  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3  
bit 2  
bit 1  
bit 0  
EBTR3: Table Read Protection bit(1)  
1= Block 3 (001800-001FFFh) not protected from table reads executed in other blocks  
0= Block 3 (001800-001FFFh) protected from table reads executed in other blocks  
EBTR2: Table Read Protection bit(1)  
1= Block 2 (001000-0017FFh) not protected from table reads executed in other blocks  
0= Block 2 (001000-0017FFh) protected from table reads executed in other blocks  
EBTR1: Table Read Protection bit  
1= Block 1 (000800-000FFFh) not protected from table reads executed in other blocks  
0= Block 1 (000800-000FFFh) protected from table reads executed in other blocks  
EBTR0: Table Read Protection bit  
1= Block 0 (000200-0007FFh) not protected from table reads executed in other blocks  
0= Block 0 (000200-0007FFh) protected from table reads executed in other blocks  
Note 1: Unimplemented in PIC18FX220 devices; maintain this bit set.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 23-11: CONFIG7H:CONFIGURATION REGISTER7 HIGH(BYTEADDRESS30000Dh)  
U-0  
R/P-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
EBTRB  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
EBTRB: Boot Block Table Read Protection bit  
1= Boot block (000000-0001FFh) not protected from table reads executed in other blocks  
0= Boot block (000000-0001FFh) protected from table reads executed in other blocks  
bit 5-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2003 Microchip Technology Inc.  
DS39599C-page 243  
PIC18F2220/2320/4220/4320  
REGISTER 23-12: DEVICE ID REGISTER 1 FOR PIC18F2220/2320/4220/4320 DEVICES  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
bit 7-5 DEV2:DEV0: Device ID bits  
000= PIC18F4220  
001= PIC18F4320  
100= PIC18F2220  
101= PIC18F2320  
bit 4-0 REV4:REV0: Revision ID bits  
These bits are used to indicate the device revision.  
Legend:  
R = Read-only bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 23-13: DEVICE ID REGISTER 2 FOR PIC18F2220/2320/4220/4320 DEVICES  
R
R
R
R
R
R
R
R
DEV10  
DEV9  
DEV8  
DEV7  
DEV6  
DEV5  
DEV4  
DEV3  
bit 7  
bit 0  
bit 7-0 DEV10:DEV3: Device ID bits  
These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the  
part number.  
0000 0101= PIC18F2220/2320/4220/4320 devices  
Note:  
These values for DEV10:DEV3 may be shared with other devices. The specific  
device is always identified by using the entire DEV10:DEV0 bit sequence.  
Legend:  
R = Read-only bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39599C-page 244  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
23.2 Watchdog Timer (WDT)  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and postscaler counts  
when executed.  
For PIC18F2X20/4X20 devices, the WDT is driven by  
the INTRC source. When the WDT is enabled, the  
clock source is also enabled. The nominal WDT period  
is 4 ms and has the same stability as the INTRC  
oscillator.  
2: Changing the setting of the IRCF bits  
(OSCCON<6:4> clears the WDT and  
postscaler counts.  
The 4 ms period of the WDT is multiplied by a 16-bit  
postscaler. Any output of the WDT postscaler is  
selected by a multiplexer, controlled by bits in Configu-  
ration Register 2H. Available periods range from 4 ms  
to 131.072 seconds (2.18 minutes). The WDT and  
postscaler are cleared when any of the following events  
occur: execute a SLEEP or CLRWDT instruction, the  
IRCF bits (OSCCON<6:4>) are changed or a clock  
failure has occurred.  
3: When a CLRWDTinstruction is executed,  
the postscaler count will be cleared.  
23.2.1  
CONTROL REGISTER  
Register 23-14 shows the WDTCON register. This is a  
readable and writable register which contains a control  
bit that allows software to override the WDT enable  
configuration bit, but only if the configuration bit has  
disabled the WDT.  
Adjustments to the internal oscillator clock period using  
the OSCTUNE register also affect the period of the  
WDT by the same factor. For example, if the INTRC  
period is increased by 3%, then the WDT period is  
increased by 3%.  
FIGURE 23-1:  
WDT BLOCK DIAGRAM  
Enable WDT  
SWDTEN  
WDTEN  
INTRC Control  
WDT Counter  
÷125  
Wake-up  
from Sleep  
INTRC Source  
Change on IRCF bits  
CLRWDT  
WDT  
Reset  
Reset  
Programmable Postscaler  
1:1 to 1:32,768  
All Device Resets  
WDT  
4
WDTPS<3:0>  
Sleep  
2003 Microchip Technology Inc.  
DS39599C-page 245  
PIC18F2220/2320/4220/4320  
REGISTER 23-14: WDTCON REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN  
bit 0  
bit 7  
bit 7-1 Unimplemented: Read as ‘0’  
bit 0  
SWDTEN: Software Controlled Watchdog Timer Enable bit  
1= Watchdog Timer is on  
0= Watchdog Timer is off  
Note 1: This bit has no effect if the configuration bit, WDTEN (CONFIG2H<0>), is enabled.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
TABLE 23-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG2H  
RCON  
IPEN  
WDTPS3 WDTPS2 WDTPS2 WDTPS0  
WDTEN  
BOR  
RI  
TO  
PD  
POR  
WDTCON  
SWDTEN  
Legend: Shaded cells are not used by the Watchdog Timer.  
DS39599C-page 246  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Reset. For wake-ups from Sleep, the INTOSC or  
postscaler clock sources can be selected by setting  
IFRC2:IFRC0 prior to entering Sleep mode.  
23.3 Two-Speed Start-up  
The Two-Speed Start-up feature helps to minimize the  
latency period from oscillator start-up to code execution  
by allowing the microcontroller to use the INTRC oscil-  
lator as a clock source until the primary clock source is  
available. It is enabled by setting the IESO bit in  
Configuration Register 1H (CONFIG1H<7>).  
In all other power managed modes, Two-Speed Start-up  
is not used. The device will be clocked by the currently  
selected clock source until the primary clock source  
becomes available. The setting of the IESO bit is  
ignored.  
Two-Speed Start-up is available only if the primary oscil-  
lator mode is LP, XT, HS or HSPLL (Crystal-based  
modes). Other sources do not require a OST start-up  
delay; for these, Two-Speed Start-up is disabled.  
23.3.1  
SPECIAL CONSIDERATIONS FOR  
USING TWO-SPEED START-UP  
While using the INTRC oscillator in Two-Speed Start-up,  
the device still obeys the normal command sequences  
for entering power managed modes, including serial  
SLEEP instructions (refer to Section 3.1.3 “Multiple  
Sleep Commands”). In practice, this means that user  
code can change the SCS1:SCS0 bit settings and issue  
SLEEPcommands before the OST times out. This would  
allow an application to briefly wake-up, perform routine  
“housekeeping” tasks and return to Sleep before the  
device starts to operate from the primary oscillator.  
When enabled, Resets and wake-ups from Sleep mode  
cause the device to configure itself to run from the inter-  
nal oscillator block as the clock source, following the  
time-out of the Power-up Timer after a POR Reset is  
enabled. This allows almost immediate code execution  
while the primary oscillator starts and the OST is run-  
ning. Once the OST times out, the device automatically  
switches to PRI_RUN mode.  
Because the OSCCON register is cleared on Reset  
events, the INTOSC (or postscaler) clock source is not  
initially available after a Reset event; the INTRC clock  
is used directly at its base frequency. To use a higher  
clock speed on wake-up, the INTOSC or postscaler  
clock sources can be selected to provide a higher clock  
speed by setting bits IFRC2:IFRC0 immediately after  
User code can also check if the primary clock source is  
currently providing the system clocking by checking the  
status of the OSTS bit (OSCCON<3>). If the bit is set,  
the primary oscillator is providing the system clock.  
Otherwise, the internal oscillator block is providing the  
clock during wake-up from Reset or Sleep mode.  
FIGURE 23-2:  
TIMING TRANSITION FOR TWO-SPEED START-UP (INTOSC TO HSPLL)  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2  
INTOSC  
Multiplexer  
OSC1  
(1)  
TOST  
(1)  
TPLL  
PLL Clock  
Output  
1
2
3
4
5
6
7
8
Clock Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC  
PC + 2  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
PC + 6  
Wake from Interrupt Event  
2003 Microchip Technology Inc.  
DS39599C-page 247  
PIC18F2220/2320/4220/4320  
Since the postscaler frequency from the internal oscil-  
23.4 Fail-Safe Clock Monitor  
lator block may not be sufficiently stable, it may be  
desirable to select another clock configuration and  
enter an alternate power managed mode (see  
Section 23.3.1 “Special Considerations for Using  
Two-Speed Start-up” and Section 3.1.3 “Multiple  
Sleep Commands” for more details). This can be  
done to attempt a partial recovery or execute a  
controlled shutdown.  
The Fail-Safe Clock Monitor (FSCM) allows the micro-  
controller to continue operation, in the event of an  
external oscillator failure, by automatically switching  
the system clock to the internal oscillator block. The  
FSCM function is enabled by setting the Fail-Safe  
Clock Monitor Enable bit, FCMEN (CONFIG1H<6>).  
When FSCM is enabled, the INTRC oscillator runs at  
all times to monitor clocks to peripherals and provide  
an instant backup clock in the event of a clock failure.  
Clock monitoring (shown in Figure 23-3) is accom-  
plished by creating a sample clock signal, which is the  
INTRC output divided by 64. This allows ample time  
between FSCM sample clocks for a peripheral clock  
edge to occur. The peripheral system clock and the  
sample clock are presented as inputs to the Clock Mon-  
itor latch (CM). The CM is set on the falling edge of the  
system clock source but cleared on the rising edge of  
the sample clock.  
To use a higher clock speed on wake-up, the INTOSC  
or postscaler clock sources can be selected to provide  
a higher clock speed by setting bits IFRC2:IFRC0  
immediately after Reset. For wake-ups from Sleep, the  
INTOSC or postscaler clock sources can be selected  
by setting IFRC2:IFRC0 prior to entering Sleep mode.  
Adjustments to the internal oscillator block using the  
OSCTUNE register also affect the period of the FSCM  
by the same factor. This can usually be neglected, as  
the clock frequency being monitored is generally much  
higher than the sample clock frequency.  
The FSCM will detect failures of the primary or second-  
ary clock sources only. If the internal oscillator block  
fails, no failure would be detected, nor would any action  
be possible.  
FIGURE 23-3:  
FSCM BLOCK DIAGRAM  
Clock Monitor  
Latch (CM)  
(edge-triggered)  
Peripheral  
Clock  
S
Q
23.4.1  
FSCM AND THE WATCHDOG TIMER  
Both the FSCM and the WDT are clocked by the  
INTRC oscillator. Since the WDT operates with a sep-  
arate divider and counter, disabling the WDT has no  
effect on the operation of the INTRC oscillator when the  
FSCM is enabled.  
INTRC  
Source  
C
Q
÷ 64  
(32 µs)  
488 Hz  
(2.048 ms)  
As already noted, the clock source is switched to the  
INTOSC clock when a clock failure is detected.  
Depending on the frequency selected by the  
IRCF2:IRCF0 bits, this may mean a substantial change  
in the speed of code execution. If the WDT is enabled  
with a small prescale value, a decrease in clock speed  
allows a WDT time-out to occur and a subsequent  
device Reset. For this reason, fail-safe clock events  
also reset the WDT and postscaler, allowing it to start  
timing from when execution speed was changed and  
decreasing the likelihood of an erroneous time-out.  
Clock  
Failure  
Detected  
Clock failure is tested on the falling edge of the sample  
clock. If a sample clock falling edge occurs while CM is  
still set, a clock failure has been detected (Figure 23-4).  
This causes the following:  
• The FSCM generates an oscillator fail interrupt by  
setting bit, OSCFIF (PIR2<7>)  
• The system clock source is switched to the  
internal oscillator block (OSCCON is not updated  
to show the current clock source – this is the  
fail-safe condition)  
• The WDT is reset  
DS39599C-page 248  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
The primary clock source may never become ready dur-  
ing start-up. In this case, operation is clocked by the  
INTOSC multiplexer. The OSCCON register will remain in  
its Reset state until a power managed mode is entered.  
23.4.2  
EXITING FAIL-SAFE OPERATION  
The fail-safe condition is terminated by either a device  
Reset or by entering a power managed mode. On Reset,  
the controller starts the primary clock source specified in  
Configuration Register 1H (with any required start-up  
delays that are required for the oscillator mode, such as  
OST or PLL timer). The INTOSC multiplexer provides the  
system clock until the primary clock source becomes  
ready (similar to a Two-speed Start-up). The clock system  
source is then switched to the primary clock (indicated by  
the OSTS bit in the OSCCON register becoming set). The  
Fail-Safe Clock Monitor then resumes monitoring the  
peripheral clock.  
Entering a power managed mode by loading the  
OSCCON register and executing a SLEEP instruction  
will clear the fail-safe condition. When the fail-safe  
condition is cleared, the clock monitor will resume  
monitoring the peripheral clock.  
FIGURE 23-4:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
CM Output  
(Q)  
Failure  
Detected  
OSCFIF  
CM Test  
CM Test  
CM Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
2003 Microchip Technology Inc.  
DS39599C-page 249  
PIC18F2220/2320/4220/4320  
23.4.3  
FSCM INTERRUPTS IN POWER  
MANAGED MODES  
23.4.4  
POR OR WAKE FROM SLEEP  
The FSCM is designed to detect oscillator failure at any  
point after the device has exited Power-on Reset  
(POR) or Low-Power Sleep mode. When the primary  
system clock is EC, RC or INTRC modes, monitoring  
can begin immediately following these events.  
As previously mentioned, entering a power managed  
mode clears the fail-safe condition. By entering a  
power managed mode, the clock multiplexer selects  
the clock source selected by the OSCCON register.  
Fail-safe monitoring of the power managed clock  
source resumes in the power managed mode.  
For oscillator modes involving a crystal or resonator  
(HS, HSPLL, LP or XT), the situation is somewhat dif-  
ferent. Since the oscillator may require a start-up time  
considerably longer than the FCSM sample clock time,  
a false clock failure may be detected. To prevent this,  
the internal oscillator block is automatically configured  
as the system clock and functions until the primary  
clock is stable (the OST and PLL timers have timed  
out). This is identical to Two-Speed Start-up mode.  
Once the primary clock is stable, the INTRC returns to  
its role as the FSCM source.  
If an oscillator failure occurs during power managed  
operation, the subsequent events depend on whether  
or not the oscillator failure interrupt is enabled. If  
enabled (OSCFIF = 1), code execution will be clocked  
by the INTOSC multiplexer. An automatic transition  
back to the failed clock source will not occur.  
If the interrupt is disabled, the device will not exit the  
power managed mode on oscillator failure. Instead, the  
device will continue to operate as before but clocked by  
the INTOSC multiplexer. While in Idle mode, subse-  
quent interrupts will cause the CPU to begin executing  
instructions while being clocked by the INTOSC multi-  
plexer. The device will not transition to a different clock  
source until the fail-safe condition is cleared.  
Note:  
The same logic that prevents false oscilla-  
tor failure interrupts on POR or wake from  
Sleep will also prevent the detection of the  
oscillator’s failure to start at all following  
these events. This can be avoided by  
monitoring the OSTS bit and using a tim-  
ing routine to determine if the oscillator is  
taking too long to start. Even so, no  
oscillator failure interrupt will be flagged.  
As noted in Section 23.3.1 “Special Considerations  
for Using Two-Speed Start-up”, it is also possible to  
select another clock configuration and enter an alter-  
nate power managed mode while waiting for the pri-  
mary system clock to become stable. When the new  
powered managed mode is selected, the primary clock  
is disabled.  
DS39599C-page 250  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Each of the five blocks has three code protection bits  
associated with them. They are:  
23.5 Program Verification and  
Code Protection  
• Code-Protect bit (CPn)  
The overall structure of the code protection on the  
PIC18 Flash devices differs significantly from other  
PICmicro® devices.  
• Write-Protect bit (WRTn)  
• External Block Table Read bit (EBTRn)  
Figure 23-5 shows the program memory organization  
for 4 and 8-Kbyte devices and the specific code protec-  
tion bit associated with each block. The actual locations  
of the bits are summarized in Table 23-3.  
The user program memory is divided into five blocks.  
One of these is a boot block of 512 bytes. The remain-  
der of the memory is divided into four blocks on binary  
boundaries.  
FIGURE 23-5:  
CODE-PROTECTED PROGRAM MEMORY FOR PIC18F2X20/4X20  
MEMORY SIZE/DEVICE  
Block Code Protection  
4 Kbytes  
(PIC18F2220/4220)  
8 Kbytes  
(PIC18F2320/4320)  
Address  
Range  
Controlled By:  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
000000h  
0001FFh  
Boot Block  
Boot Block  
Block 0  
000200h  
Block 0  
Block 1  
0007FFh  
000800h  
Block 1  
Block 2  
Block 3  
CP1, WRT1, EBTR1  
CP2, WRT2, EBTR2  
CP3, WRT3, EBTR3  
000FFFh  
001000h  
Unimplemented  
Read ‘0’s  
0017FFh  
001800h  
Unimplemented  
Read ‘0’s  
001FFFh  
002000h  
Unimplemented  
Unimplemented  
Read ‘0’s  
Read ‘0’s  
(Unimplemented Memory Space)  
1FFFFFh  
TABLE 23-3: SUMMARY OF CODE PROTECTION REGISTERS  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300008h  
300009h  
CONFIG5L  
CONFIG5H  
CPD  
CPB  
CP3  
CP2  
CP1  
CP0  
30000Ah CONFIG6L  
WRT3  
WRT2  
WRT1  
WRT0  
30000Bh CONFIG6H WRTD  
WRTB  
WRTC  
30000Ch CONFIG7L  
30000Dh CONFIG7H  
EBTR3  
EBTR2  
EBTR1  
EBTR0  
EBTRB  
Legend: Shaded cells are unimplemented.  
2003 Microchip Technology Inc.  
DS39599C-page 251  
PIC18F2220/2320/4220/4320  
A table read instruction that executes from a location  
outside of that block is not allowed to read and will  
result in reading ‘0’s. Figures 23-6 through 23-8  
illustrate table write and table read protection.  
23.5.1  
PROGRAM MEMORY  
CODE PROTECTION  
The program memory may be read to or written from  
any location using the table read and table write  
instructions. The device ID may be read with table  
reads. The configuration registers may be read and  
written with the table read and table write instructions.  
Note:  
Code protection bits may only be written to  
a ‘0’ from a ‘1’ state. It is not possible to  
write a ‘1’ to a bit in the ‘0’ state. Code pro-  
tection bits are only set to ‘1’ by a full chip  
erase or block erase function. The full chip  
erase and block erase functions can only  
be initiated via ICSP or an external  
programmer.  
In normal execution mode, the CPn bits have no direct  
effect. CPn bits inhibit external reads and writes. A  
block of user memory may be protected from table  
writes if the WRTn configuration bit is ‘0’. The EBTRn  
bits control table reads. For a block of user memory  
with the EBTRn bit set to ‘0’, a table read instruction  
that executes from within that block is allowed to read.  
FIGURE 23-6:  
TABLE WRITE (WRTn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB, EBTRB = 11  
0001FFh  
000200h  
TBLPTR = 0002FFh  
PC = 0007FEh  
WRT0, EBTR0 = 01  
TBLWT *  
TBLWT *  
0007FFh  
000800h  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
000FFFh  
001000h  
PC = 0017FEh  
0017FFh  
001800h  
001FFFh  
Results: All table writes disabled to Blockn whenever WRTn = 0.  
DS39599C-page 252  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 23-7:  
EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED  
Program Memory Configuration Bit Settings  
Register Values  
000000h  
WRTB, EBTRB = 11  
WRT0, EBTR0 = 10  
0001FFh  
000200h  
TBLPTR = 0002FFh  
0007FFh  
000800h  
TBLRD *  
PC = 000FFEh  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
000FFFh  
001000h  
0017FFh  
001800h  
WRT3, EBTR3 = 11  
001FFFh  
Results: All table reads from external blocks to Blockn are disabled whenever EBTRn = 0.  
TABLAT register returns a value of ‘0’.  
FIGURE 23-8:  
EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB, EBTRB = 11  
WRT0, EBTR0 = 10  
0001FFh  
000200h  
TBLPTR = 0002FFh  
PC = 0007FEh  
TBLRD *  
0007FFh  
000800h  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
000FFFh  
001000h  
0017FFh  
001800h  
001FFFh  
Results: Table reads permitted within Blockn, even when EBTRBn = 0.  
TABLAT register returns the value of the data at the location TBLPTR.  
2003 Microchip Technology Inc.  
DS39599C-page 253  
PIC18F2220/2320/4220/4320  
To use the In-Circuit Debugger function of the micro-  
controller, the design must implement In-Circuit Serial  
Programming connections to MCLR/VPP, VDD, VSS,  
RB7 and RB6. This will interface to the In-Circuit  
Debugger module available from Microchip or one of  
the third party development tool companies.  
23.5.2  
DATA EEPROM  
CODE PROTECTION  
The entire data EEPROM is protected from external  
reads and writes by two bits: CPD and WRTD. CPD  
inhibits external reads and writes of data EEPROM.  
WRTD inhibits external writes to data EEPROM. The  
CPU can continue to read and write data EEPROM  
regardless of the protection bit settings.  
23.9 Low-Voltage ICSP Programming  
The LVP bit in Configuration Register 4L  
(CONFIG4L<2>) enables Low-Voltage ICSP Program-  
ming (LVP). When LVP is enabled, the microcontroller  
can be programmed without requiring high voltage  
being applied to the MCLR/VPP pin, but the RB5/PGM  
pin is then dedicated to controlling Program mode entry  
and is not available as a general purpose I/O pin.  
23.5.3  
CONFIGURATION REGISTER  
PROTECTION  
The configuration registers can be write-protected. The  
WRTC bit controls protection of the configuration  
registers. In normal execution mode, the WRTC bit is  
readable only. WRTC can only be written via ICSP or  
an external programmer.  
LVP is enabled in erased devices.  
While programming using LVP, VDD is applied to the  
MCLR/VPP pin as in normal execution mode. To enter  
Programming mode, VDD is applied to the PGM pin.  
23.6 ID Locations  
Eight memory locations (200000h-200007h) are desig-  
nated as ID locations, where the user can store check-  
sum or other code identification numbers. These  
locations are both readable and writable during normal  
execution through the TBLRDand TBLWTinstructions,  
or during program/verify. The ID locations can be read  
when the device is code-protected.  
Note 1: High-voltage programming is always  
available, regardless of the state of the  
LVP bit or the PGM pin, by applying VIHH  
to the MCLR pin.  
2: When Low-Voltage Programming is  
enabled, the RB5 pin can no longer be  
used as a general purpose I/O pin.  
23.7  
In-Circuit Serial Programming  
3: When LVP is enabled, externally pull the  
PGM pin to VSS to allow normal program  
execution.  
PIC18F2X20/4X20 microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed (see Table 23-5).  
If Low-Voltage ICSP Programming mode will not be  
used, the LVP bit can be cleared and RB5/PGM  
becomes available as the digital I/O pin, RB5. The LVP  
bit may be set or cleared only when using standard  
high-voltage programming (VIHH applied to the MCLR/  
VPP pin). Once LVP has been disabled, only the stan-  
dard high-voltage programming is available and must  
be used to program the device.  
23.8 In-Circuit Debugger  
Memory that is not code-protected can be erased using  
either a block erase, or erased row by row, then written  
at any specified VDD. If code-protected memory is to be  
erased, a block erase is required. If a block erase is to  
be performed when using Low-Voltage Programming,  
the device must be supplied with VDD of 4.5V to 5.5V.  
When the DEBUG bit in configuration register,  
CONFIG4L, is programmed to a ‘0’, the In-Circuit  
Debugger functionality is enabled. This function allows  
simple debugging functions when used with MPLAB®  
IDE. When the microcontroller has this feature  
enabled, some resources are not available for general  
use. Table 23-4 shows which resources are required by  
the background debugger.  
TABLE 23-5: ICSP/ICD CONNECTIONS  
Signal  
Pin  
Notes  
TABLE 23-4: DEBUGGER RESOURCES  
PGD  
PGC  
MCLR  
VDD  
RB7  
RB6  
MCLR  
VDD  
I/O pins:  
RB6, RB7  
May require isolation from  
application circuits  
Stack:  
2 levels  
Program Memory:  
Data Memory:  
512 bytes  
10 bytes  
VSS  
VSS  
PGM  
RB5  
Pull RB5 low if LVP is enabled  
DS39599C-page 254  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
The control instructions may use some of the following  
operands:  
24.0 INSTRUCTION SET SUMMARY  
The PIC18 instruction set adds many enhancements to  
the previous PICmicro instruction sets, while maintain-  
ing an easy migration from these PICmicro instruction  
sets.  
• A program memory address (specified by ‘n’)  
• The mode of the CALLor RETURNinstructions  
(specified by ‘s’)  
• The mode of the table read and table write  
instructions (specified by ‘m’)  
Most instructions are a single program memory word  
(16 bits) but there are three instructions that require two  
program memory locations.  
• No operand required  
(specified by ‘—’)  
Each single-word instruction is a 16-bit word divided  
into an opcode, which specifies the instruction type and  
one or more operands, which further specify the oper-  
ation of the instruction.  
All instructions are a single word except for three dou-  
ble word instructions. These three instructions were  
made double word instructions so that all the required  
information is available in these 32 bits. In the second  
word, the 4 MSbs are ‘1’s. If this second word is  
executed as an instruction (by itself), it will execute as  
a NOP.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP.  
Control operations  
The PIC18 instruction set summary in Table 24-2 lists  
byte-oriented, bit-oriented, literal and control opera-  
tions. Table 24-1 shows the opcode field descriptions.  
The double word instructions execute in two instruction  
cycles.  
Most byte-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 µs. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 µs.  
Two-word branch instructions (if true) would take 3 µs.  
2. The destination of the result  
(specified by ‘d’)  
3. The accessed memory  
(specified by ‘a’)  
The file register designator ‘f’ specifies which file  
register is to be used by the instruction.  
Figure 24-1 shows the general formats that the  
instructions can have.  
The destination designator ‘d’ specifies where the  
result of the operation is to be placed. If ‘d’ is zero, the  
result is placed in the WREG register. If ‘d’ is one, the  
result is placed in the file register specified in the  
instruction.  
All examples use the format ‘nnh’ to represent a hexa-  
decimal number, where ‘h’ signifies a hexadecimal  
digit.  
The Instruction Set Summary, shown in Table 24-2,  
lists the instructions recognized by the Microchip  
Assembler (MPASMTM). Section 24.2 “Instruction  
Set” provides a description of each instruction.  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
2. The bit in the file register  
(specified by ‘b’)  
24.1 READ-MODIFY-WRITE OPERATIONS  
3. The accessed memory  
(specified by ‘a’)  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified and  
the result is stored according to either the instruction or  
the destination designator ‘d’. A read operation is per-  
formed on a register even if the instruction writes to that  
register.  
The bit field designator ‘b’ selects the number of the bit  
affected by the operation, while the file register desig-  
nator ‘f’ represents the number of the file in which the  
bit is located.  
The literal instructions may use some of the following  
operands:  
For example, a “BCF PORTB,1” instruction will read  
PORTB, clear bit 1 of the data, then write the result  
back to PORTB. The read operation would have the  
unintended result that any condition that sets the RBIF  
flag would be cleared. The R-M-W operation may also  
copy the level of an input pin to its corresponding output  
latch.  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
• No operand required  
(specified by ‘—’)  
2003 Microchip Technology Inc.  
DS39599C-page 255  
PIC18F2220/2320/4220/4320  
TABLE 24-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit:  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
BSR  
d
Bit address within an 8-bit file register (0 to 7).  
Bank Select Register. Used to select the current RAM bank.  
Destination select bit:  
d = 0: store result in WREG  
d = 1: store result in file register f  
dest  
f
Destination either the WREG register or the specified register file location.  
8-bit register file address (0x00 to 0xFF).  
fs  
12-bit register file address (0x000 to 0xFFF). This is the source address.  
12-bit register file address (0x000 to 0xFFF). This is the destination address.  
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).  
Label name.  
fd  
k
label  
mm  
The mode of the TBLPTR register for the table read and table write instructions.  
Only used with table read and table write instructions:  
*
No Change to register (such as TBLPTR with table reads and writes).  
Post-Increment register (such as TBLPTR with table reads and writes).  
Post-Decrement register (such as TBLPTR with table reads and writes).  
Pre-Increment register (such as TBLPTR with table reads and writes).  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions, or the direct address for  
Call/Branch and Return instructions.  
PRODH  
PRODL  
s
Product of Multiply High Byte.  
Product of Multiply Low Byte.  
Fast Call/Return mode select bit:  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
u
Unused or Unchanged.  
WREG  
x
Working register (accumulator).  
Don't care (‘0’ or ‘1’) .  
The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all  
Microchip software tools.  
TBLPTR  
TABLAT  
TOS  
21-bit Table Pointer (points to a Program Memory location).  
8-bit Table Latch.  
Top-of-Stack.  
PC  
Program Counter.  
PCL  
Program Counter Low Byte.  
Program Counter High Byte.  
Program Counter High Byte Latch.  
Program Counter Upper Byte Latch.  
Global Interrupt Enable bit.  
Watchdog Timer.  
PCH  
PCLATH  
PCLATU  
GIE  
WDT  
TO  
Time-out bit.  
PD  
Power-down bit.  
C, DC, Z, OV, N  
ALU status bits Carry, Digit Carry, Zero, Overflow, Negative.  
Optional.  
[
]
)
(
Contents.  
< >  
Assigned to.  
Register bit field.  
In the set of.  
italics  
User defined term (font is courier).  
DS39599C-page 256  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 24-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
15 10  
OPCODE  
Example Instruction  
9
8
7
0
d
a
f (FILE #)  
ADDWF MYREG, W, B  
d = 0for result destination to be WREG register  
d = 1for result destination to be file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 0x7F  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
0
n<19:8> (literal)  
S = Fast bit  
11 10  
15  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
15  
OPCODE  
8 7  
n<7:0> (literal)  
2003 Microchip Technology Inc.  
DS39599C-page 257  
PIC18F2220/2320/4220/4320  
TABLE 24-2: PIC18FXXX INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF f, d, a Add WREG and f  
ADDWFC f, d, a Add WREG and Carry bit to f  
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
1
1
1
1
ANDWF  
CLRF  
COMF  
f, d, a AND WREG with f  
f, a Clear f  
f, d, a Complement f  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
1,2  
2
1, 2  
4
CPFSEQ  
CPFSGT  
CPFSLT  
DECF  
DECFSZ  
DCFSNZ  
INCF  
f, a  
f, a  
f, a  
Compare f with WREG, skip = 1 (2 or 3) 0110 001a ffff ffff None  
Compare f with WREG, skip > 1 (2 or 3) 0110 010a ffff ffff None  
Compare f with WREG, skip < 1 (2 or 3) 0110 000a ffff ffff None  
4
1, 2  
f, d, a Decrement f  
f, d, a Decrement f, Skip if 0  
f, d, a Decrement f, Skip if Not 0  
f, d, a Increment f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1
1, 2, 3, 4  
1, 2  
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
fs, fd Move fs (source) to 1st word  
fd (destination) 2nd word  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
MOVWF  
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
f, a  
f, a  
f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N 1, 2  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
1, 2  
RRNCF  
SETF  
f, a  
Set f  
SUBFWB f, d, a Subtract f from WREG with  
borrow  
0101 01da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N  
0101 10da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWFB f, d, a Subtract WREG from f with  
borrow  
SWAPF  
TSTFSZ  
XORWF  
f, d, a Swap nibbles in f  
f, a Test f, skip if 0  
f, d, a Exclusive OR WREG with f  
1
0011 10da ffff ffff None  
4
1, 2  
1 (2 or 3) 0110 011a ffff ffff None  
1
0001 10da ffff ffff Z, N  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, d, a Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared  
if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39599C-page 258  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 24-2: PIC18FXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
1 (2)  
2
CALL  
Call subroutine 1st word  
2nd word  
CLRWDT  
DAW  
GOTO  
n
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to address 1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111 C, DC  
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation (Note 4)  
Pop top of return stack (TOS)  
Push top of return stack (TOS) 1  
Relative Call  
1
1
1
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
2
1
2
Software device Reset  
Return from interrupt enable  
s
RETLW  
RETURN  
SLEEP  
k
s
Return with literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared  
if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
2003 Microchip Technology Inc.  
DS39599C-page 259  
PIC18F2220/2320/4220/4320  
TABLE 24-2: PIC18FXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add literal and WREG  
AND literal with WREG  
Inclusive OR literal with WREG  
Move literal (12-bit) 2nd word  
to FSRx 1st word  
Move literal to BSR<3:0>  
Move literal to WREG  
Multiply literal with WREG  
Return with literal in WREG  
Subtract WREG from literal  
Exclusive OR literal with  
WREG  
1
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
1
1
2
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
1
1
1
2
1
1
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with post-increment  
Table Read with post-decrement  
Table Read with pre-increment  
Table Write  
Table Write with post-increment  
Table Write with post-decrement  
Table Write with pre-increment  
2 (5)  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared  
if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39599C-page 260  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
24.2 Instruction Set  
ADDLW  
ADD literal to W  
ADDWF  
ADD W to f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] ADDWF  
f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + k W  
N, OV, C, DC, Z  
Operation:  
(W) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
The contents of W are added to the  
8-bit literal ‘k’ and the result is  
placed in W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected. If ‘a’ is ‘1’,  
the BSR is used.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Q Cycle Activity:  
Q1  
ADDLW  
0x15  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
W
=
0x10  
After Instruction  
W
=
0x25  
ADDWF  
REG, W  
Example:  
Before Instruction  
W
REG  
=
=
0x17  
0xC2  
After Instruction  
W
REG  
=
=
0xD9  
0xC2  
2003 Microchip Technology Inc.  
DS39599C-page 261  
PIC18F2220/2320/4220/4320  
ADDWFC  
ADD W and Carry bit to f  
ANDLW  
AND literal with W  
Syntax:  
[ label ] ADDWFC  
f [,d [,a]]  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(W) .AND. k W  
N, Z  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
The contents of W are ANDed with  
the 8-bit literal ‘k’. The result is  
placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry flag and data  
memory location ‘f’. If ‘d’ is ‘0’, the  
result is placed in W. If ‘d’ is ‘1’, the  
result is placed in data memory loca-  
tion ‘f’. If ‘a’ is ‘0’, the Access Bank  
will be selected. If ‘a’ is ‘1’, the BSR  
will not be overridden.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
ANDLW  
0x5F  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
W
=
0xA3  
0x03  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
ADDWFC  
REG, W  
Example:  
Before Instruction  
Carry bit =  
1
REG  
W
=
=
0x02  
0x4D  
After Instruction  
Carry bit =  
0
0x02  
REG  
=
W
=
0x50  
DS39599C-page 262  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
ANDWF  
AND W with f  
BC  
Branch if Carry  
[ label ] BC  
Syntax:  
[ label ] ANDWF  
f [,d [,a]]  
Syntax:  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if carry bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ‘1’, then the  
Description:  
The contents of W are AND’ed with  
register ‘f’. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank will be  
selected. If ‘a’ is ‘1’, the BSR will  
not be overridden (default).  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
ANDWF  
REG, W  
Example:  
Before Instruction  
If No Jump:  
Q1  
W
REG  
=
=
0x17  
0xC2  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
After Instruction  
W
REG  
=
=
0x02  
0xC2  
HERE  
BC JUMP  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Carry  
=
=
=
=
1;  
PC  
address (JUMP)  
If Carry  
PC  
0;  
address (HERE+2)  
2003 Microchip Technology Inc.  
DS39599C-page 263  
PIC18F2220/2320/4220/4320  
BCF  
Bit Clear f  
BN  
Branch if Negative  
[ label ] BN  
Syntax:  
[ label ] BCF f,b[,a]  
Syntax:  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if negative bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ‘1’, then the  
program will branch.  
Description:  
Bit ‘b’ in register ‘f’ is cleared. If ‘a’  
is ‘0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
Q1  
Q2  
Q3  
Q4  
register ‘f’  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
BCF  
FLAG_REG,  
7
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction  
FLAG_REG = 0xC7  
If No Jump:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
FLAG_REG = 0x47  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BN Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
=
=
=
=
1;  
PC  
address (Jump)  
If Negative  
PC  
0;  
address (HERE+2)  
DS39599C-page 264  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
[ label ] BNC  
-128 n 127  
if carry bit is ’0’  
n
Syntax:  
[ label ] BNN  
-128 n 127  
n
Operands:  
Operation:  
Operands:  
Operation:  
if negative bit is ’0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ‘0’, then the  
program will branch.  
Description:  
If the Negative bit is ‘0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BNC Jump  
HERE  
BNN Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
=
=
=
=
0;  
If Negative  
=
=
=
=
0;  
PC  
address (Jump)  
PC  
address (Jump)  
If Carry  
PC  
1;  
If Negative  
PC  
1;  
address (HERE+2)  
address (HERE+2)  
2003 Microchip Technology Inc.  
DS39599C-page 265  
PIC18F2220/2320/4220/4320  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
[ label ] BNOV  
-128 n 127  
n
Syntax:  
[ label ] BNZ  
-128 n 127  
if zero bit is ’0’  
n
Operands:  
Operation:  
Operands:  
Operation:  
if overflow bit is ’0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ‘0’, then the  
program will branch.  
Description:  
If the Zero bit is ‘0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BNOV Jump  
HERE  
BNZ Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Overflow  
=
=
=
=
0;  
If Zero  
=
=
=
=
0;  
PC  
address (Jump)  
PC  
address (Jump)  
If Overflow  
PC  
1;  
If Zero  
PC  
1;  
address (HERE+2)  
address (HERE+2)  
DS39599C-page 266  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
BRA  
Unconditional Branch  
[ label ] BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
[ label ] BSF f,b[,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1 f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Description:  
Add the 2’s complement number  
‘2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is a  
two-cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit ‘b’ in register ‘f’ is set. If ‘a’ is ‘0’,  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
BSF  
FLAG_REG, 7  
Example:  
Before Instruction  
HERE  
BRA Jump  
Example:  
FLAG_REG  
=
=
0x0A  
0x8A  
Before Instruction  
After Instruction  
FLAG_REG  
PC  
=
=
address (HERE)  
address (Jump)  
After Instruction  
PC  
2003 Microchip Technology Inc.  
DS39599C-page 267  
PIC18F2220/2320/4220/4320  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
[ label ] BTFSC f,b[,a]  
Syntax:  
[ label ] BTFSS f,b[,a]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
None  
Operation:  
skip if (f<b>) = 1  
None  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, then the  
next instruction is skipped.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, then the  
next instruction is skipped.  
If bit ‘b’ is ‘0’, then the next instruc-  
tion fetched during the current  
If bit ‘b’ is ‘1’, then the next instruc-  
tion fetched during the current  
instruction execution is discarded  
and a NOPis executed instead, mak-  
ing this a two-cycle instruction. If ‘a’  
is ‘0’, the Access Bank will be  
instruction execution is discarded  
and a NOPis executed instead, mak-  
ing this a two-cycle instruction. If ‘a’  
is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’ = 1, then the bank will be selected  
as per the BSR value (default).  
selected, overriding the BSR value. If  
‘a’ = 1, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
Process Data  
No  
Decode  
Read  
Process Data  
No  
register ‘f’  
operation  
register ‘f’  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1  
Example:  
Example:  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
=
=
=
=
0;  
If FLAG<1>  
=
=
=
=
0;  
PC  
address (TRUE)  
1;  
PC  
address (FALSE)  
1;  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
address (FALSE)  
address (TRUE)  
DS39599C-page 268  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
[ label ] BTG f,b[,a]  
Syntax:  
[ label ] BOV  
-128 n 127  
n
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
if overflow bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ‘1’, then the  
program will branch.  
Description:  
Bit ‘b’ in data memory location ‘f’ is  
inverted. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
Q1  
Q2  
Q3  
Q4  
register ‘f’  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
BTG  
PORTC,  
4
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction:  
PORTC  
=
0111 0101 [0x75]  
If No Jump:  
Q1  
After Instruction:  
Q2  
Q3  
Q4  
PORTC  
=
0110 0101 [0x65]  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BOV JUMP  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
=
=
=
=
1;  
PC  
address (JUMP)  
If Overflow  
PC  
0;  
address (HERE+2)  
2003 Microchip Technology Inc.  
DS39599C-page 269  
PIC18F2220/2320/4220/4320  
BZ  
Branch if Zero  
[ label ] BZ  
CALL  
Subroutine Call  
Syntax:  
n
Syntax:  
[ label ] CALL k [,s]  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if Zero bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>,  
if s = 1  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Description:  
If the Zero bit is ‘1’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then a  
two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2 Mbyte  
memory range. First, return  
Words:  
Cycles:  
1
address (PC+ 4) is pushed onto the  
return stack. If ‘s’ = 1, the W, Status  
and BSR registers are also pushed  
into their respective shadow regis-  
ters, WS, STATUSS and BSRS. If  
‘s’ = 0, no update occurs (default).  
Then, the 20-bit value ‘k’ is loaded  
into PC<20:1>. CALLis a two-cycle  
instruction.  
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
operation  
No  
operation  
No  
operation  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
HERE  
BZ Jump  
Example:  
‘k’<7:0>,  
stack  
‘k’<19:8>,  
Write to PC  
Before Instruction  
PC  
=
address (HERE)  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
After Instruction  
If Zero  
=
=
=
=
1;  
PC  
address (Jump)  
HERE  
CALL THERE,FAST  
Example:  
If Zero  
PC  
0;  
address (HERE+2)  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
PC  
=
=
=
=
address (THERE)  
TOS  
WS  
address (HERE + 4)  
W
BSR  
STATUS  
BSRS  
STATUSS=  
DS39599C-page 270  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CLRF f [,a]  
Syntax:  
[ label ] CLRWDT  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
None  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits  
TO and PD are set.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
CLRWDT  
Example:  
CLRF  
FLAG_REG  
Example:  
Before Instruction  
WDT Counter  
=
?
Before Instruction  
FLAG_REG  
=
=
0x5A  
0x00  
After Instruction  
WDT Counter  
WDT Postscaler  
TO  
=
=
=
=
0x00  
After Instruction  
FLAG_REG  
0
1
1
PD  
2003 Microchip Technology Inc.  
DS39599C-page 271  
PIC18F2220/2320/4220/4320  
COMF  
Complement f  
CPFSEQ  
Compare f with W, skip if f = W  
Syntax:  
[ label ] COMF f [,d [,a]]  
Syntax:  
[ label ] CPFSEQ f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (W),  
Operation:  
(f) dest  
skip if (f) = (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
Compares the contents of data  
memory location ‘f’ to the contents  
of W by performing an unsigned  
subtraction.  
If ‘f’ = W, then the fetched instruc-  
tion is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
1(2)  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
COMF  
REG, W  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
0x13  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
REG  
=
0x13  
W
=
0xEC  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
CPFSEQ REG  
Example:  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
HERE  
W
REG  
=
=
?
?
After Instruction  
If REG  
PC  
=
=
W;  
Address (EQUAL)  
If REG  
PC  
=
W;  
Address (NEQUAL)  
DS39599C-page 272  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
CPFSGT  
Compare f with W, skip if f > W  
CPFSLT  
Compare f with W, skip if f < W  
Syntax:  
[ label ] CPFSGT f [,a]  
Syntax:  
[ label ] CPFSLT f [,a]  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) − (W),  
Operation:  
(f) – (W),  
skip if (f) > (W)  
(unsigned comparison)  
skip if (f) < (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data  
memory location 'f' to the contents  
of the W by performing an  
Description:  
Compares the contents of data  
memory location ‘f’ to the contents  
of W by performing an unsigned  
subtraction.  
unsigned subtraction.  
If the contents of ‘f’ are greater than  
the contents of WREG, then the  
fetched instruction is discarded and  
a NOPis executed instead, making  
this a two-cycle instruction. If ‘a’ is  
0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
If the contents of ‘f’ are less than  
the contents of W, then the fetched  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected. If ’a’  
is ‘1’, the BSR will not be  
overridden (default).  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
If skip:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
If skip and followed by 2-word instruction:  
No  
No  
No  
No  
Q1  
Q2  
Q3  
Q4  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NLESS  
LESS  
CPFSLT REG  
:
:
Example:  
HERE  
CPFSGT REG  
Example:  
NGREATER  
GREATER  
:
:
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Before Instruction  
After Instruction  
PC  
W
=
=
Address (HERE)  
?
If REG  
PC  
If REG  
PC  
<
=
=
W;  
Address (LESS)  
W;  
Address (NLESS)  
After Instruction  
If REG  
PC  
>
=
W;  
Address (GREATER)  
If REG  
PC  
=
W;  
Address (NGREATER)  
2003 Microchip Technology Inc.  
DS39599C-page 273  
PIC18F2220/2320/4220/4320  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
[ label ] DAW  
Syntax:  
[ label ] DECF f [,d [,a]]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [W<3:0> >9] or [DC = 1] then  
(W<3:0>) + 6 W<3:0>;  
else  
(W<3:0>) W<3:0>;  
Operation:  
(f) – 1 dest  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> >9] or [C = 1] then  
(W<7:4>) + 6 W<7:4>;  
else  
Description:  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in register  
‘f’ (default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
(W<7:4>) W<7:4>;  
Status Affected:  
Encoding:  
C, DC  
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the eight-bit value in  
W, resulting from the earlier addi-  
tion of two variables (each in  
packed BCD format) and produces  
a correct packed BCD result. The  
carry bit may be set by DAWregard-  
less of its setting prior to the DAW  
execution.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Words:  
Cycles:  
1
1
DECF  
CNT,  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
CNT  
Z
=
=
0x01  
0
Decode  
Read  
register W  
Process  
Data  
Write  
W
After Instruction  
CNT  
Z
=
=
0x00  
1
DAW  
Example1:  
Before Instruction  
W
=
0xA5  
C
DC  
=
=
0
0
After Instruction  
W
=
0x05  
C
DC  
=
=
1
0
Example 2:  
Before Instruction  
W
=
0xCE  
C
DC  
=
=
0
0
After Instruction  
W
=
0x34  
C
DC  
=
=
1
0
DS39599C-page 274  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
DECFSZ  
Decrement f, skip if 0  
DCFSNZ  
Decrement f, skip if not 0  
Syntax:  
[ label ] DECFSZ f [,d [,a]]  
Syntax:  
[ label ] DCFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest,  
skip if result = 0  
Operation:  
(f) – 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
If the result is ‘0’, the next instruc-  
tion which is already fetched is dis-  
carded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
If the result is not ‘0’, the next  
instruction which is already fetched  
is discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
DECFSZ  
GOTO  
CNT  
LOOP  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP  
:
:
Example:  
Example:  
CONTINUE  
Before Instruction  
Before Instruction  
TEMP  
PC  
=
Address (HERE)  
=
?
After Instruction  
After Instruction  
CNT  
=
=
=
=
CNT - 1  
0;  
TEMP  
If TEMP  
PC  
If TEMP  
PC  
=
=
=
=
TEMP - 1,  
0;  
If CNT  
PC  
Address (CONTINUE)  
0;  
Address (ZERO)  
0;  
If CNT  
PC  
Address (HERE+2)  
Address (NZERO)  
2003 Microchip Technology Inc.  
DS39599C-page 275  
PIC18F2220/2320/4220/4320  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO k  
0 k 1048575  
k PC<20:1>  
None  
Syntax:  
[ label ] INCF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
1111  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional  
branch anywhere within entire  
2-Mbyte memory range. The 20-bit  
value ‘k’ is loaded into PC<20:1>.  
GOTOis always a two-cycle  
instruction.  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’<7:0>,  
No  
operation  
Read literal  
‘k’<19:8>,  
Write to PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
GOTO THERE  
Example:  
INCF  
CNT,  
Example:  
After Instruction  
Before Instruction  
PC  
=
Address (THERE)  
CNT  
=
0xFF  
Z
=
=
=
0
?
?
C
DC  
After Instruction  
CNT  
=
=
=
=
0x00  
Z
1
1
1
C
DC  
DS39599C-page 276  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
INCFSZ  
Increment f, skip if 0  
INFSNZ  
Increment f, skip if not 0  
Syntax:  
[ label ] INCFSZ f [,d [,a]]  
Syntax:  
[ label ] INFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
skip if result = 0  
Operation:  
(f) + 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0011  
11da  
ffff  
ffff  
0100  
10da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
If the result is ‘0’, the next  
If the result is not ‘0’, the next  
instruction which is already fetched  
is discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
instruction which is already fetched  
is discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT  
HERE  
ZERO  
NZERO  
INFSNZ REG  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
Address (HERE)  
PC  
=
Address (HERE)  
After Instruction  
After Instruction  
CNT  
If CNT  
PC  
If CNT  
PC  
=
=
=
=
CNT + 1  
REG  
If REG  
PC  
If REG  
PC  
=
=
=
=
REG + 1  
0;  
Address (NZERO)  
0;  
Address (ZERO)  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
2003 Microchip Technology Inc.  
DS39599C-page 277  
PIC18F2220/2320/4220/4320  
IORLW  
Inclusive OR literal with W  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
[ label ] IORWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) .OR. k W  
N, Z  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of W are OR’ed with  
the eight-bit literal ‘k’. The result is  
placed in W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register ‘f’. If  
‘d’ is ‘0’, the result is placed in W. If  
‘d’ is ‘1’, the result is placed back in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
IORLW  
0x35  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
W
=
0x9A  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
0xBF  
IORWF RESULT, W  
Example:  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
After Instruction  
RESULT =  
0x13  
0x93  
W
=
DS39599C-page 278  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
[ label ] LFSR f,k  
Syntax:  
[ label ] MOVF f [,d [,a]]  
Operands:  
0 f 2  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
0 k 4095  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
11  
kkkk  
k kkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ‘k’ is loaded into  
the file select register pointed to  
by ‘f’.  
Description:  
The contents of register ‘f’ are  
moved to a destination dependent  
upon the status of ‘d’. If ‘d’ is ‘0’, the  
result is placed in W. If ‘d’ is ‘1’, the  
result is placed back in register ‘f’  
(default). Location ‘f’ can be any-  
where in the 256-byte bank. If ‘a’ is  
0’, the Access Bank will be  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Decode  
Read literal  
‘k’ MSB  
Process  
Data  
Write  
literal ‘k’  
MSB to  
FSRfH  
Decode  
Read literal  
‘k’ LSB  
Process  
Data  
Write literal  
‘k’ to FSRfL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
LFSR 2, 0x3AB  
Example:  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write W  
FSR2H  
FSR2L  
=
=
0x03  
0xAB  
MOVF  
REG, W  
Example:  
Before Instruction  
REG  
W
=
=
0x22  
0xFF  
After Instruction  
REG  
W
=
=
0x22  
0x22  
2003 Microchip Technology Inc.  
DS39599C-page 279  
PIC18F2220/2320/4220/4320  
MOVFF  
Move f to f  
MOVLB  
Move literal to low nibble in BSR  
Syntax:  
[ label ] MOVFF fs,fd  
Syntax:  
[ label ] MOVLB k  
0 k 255  
k BSR  
Operands:  
0 fs 4095  
0 fd 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operation:  
(fs) fd  
None  
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
Description:  
The 8-bit literal ‘k’ is loaded into  
the Bank Select Register (BSR).  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffffs  
ffffd  
Words:  
Cycles:  
1
1
Description:  
The contents of source register ‘fs’  
are moved to destination register  
‘fd’. Location of source ‘fs’ can be  
anywhere in the 4096-byte data  
space (000h to FFFh) and location  
of destination ‘fd’ can also be  
anywhere from 000h to FFFh.  
Either source or destination can be  
W (a useful special situation).  
MOVFFis particularly useful for  
transferring a data memory location  
to a peripheral register (such as the  
transmit buffer or an I/O port).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write  
literal ‘k’ to  
BSR  
MOVLB  
5
Example:  
Before Instruction  
BSR register  
=
=
0x02  
0x05  
After Instruction  
BSR register  
The MOVFFinstruction cannot use  
the PCL, TOSU, TOSH or TOSL as  
the destination register.  
The MOVFFinstruction should not  
be used to modify interrupt settings  
while any interrupt is enabled (see  
Page 87).  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
No dummy  
read  
MOVFF  
REG1, REG2  
Example:  
Before Instruction  
REG1  
REG2  
=
=
0x33  
0x11  
After Instruction  
REG1  
REG2  
=
=
0x33,  
0x33  
DS39599C-page 280  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
MOVLW  
Move literal to W  
MOVWF  
Move W to f  
Syntax:  
[ label ] MOVLW k  
0 k 255  
k W  
Syntax:  
[ label ] MOVWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(W) f  
None  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
Description:  
The eight-bit literal ‘k’ is loaded into  
W.  
Description:  
Move data from W to register ‘f’.  
Location ‘f’ can be anywhere in the  
256-byte bank. If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
MOVLW  
0x5A  
Example:  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
=
0x5A  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
MOVWF  
REG  
Example:  
Before Instruction  
W
REG  
=
=
0x4F  
0xFF  
After Instruction  
W
REG  
=
=
0x4F  
0x4F  
2003 Microchip Technology Inc.  
DS39599C-page 281  
PIC18F2220/2320/4220/4320  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
[ label ] MULLW  
0 k 255  
k
Syntax:  
[ label ] MULWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
a [0,1]  
(W) x k PRODH:PRODL  
Operation:  
(W) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
Description:  
An unsigned multiplication is  
carried out between the contents  
of W and the 8-bit literal ‘k’. The  
16-bit result is placed in  
PRODH:PRODL register pair.  
PRODH contains the high byte.  
W is unchanged.  
None of the status flags are  
affected.  
Note that neither overflow nor  
carry is possible in this opera-  
tion. A zero result is possible but  
not detected.  
Description:  
An unsigned multiplication is  
carried out between the contents  
of W and the register file location  
‘f’. The 16-bit result is stored in  
the PRODH:PRODL register  
pair. PRODH contains the high  
byte.  
Both W and ‘f’ are unchanged.  
None of the status flags are  
affected.  
Note that neither overflow nor  
carry is possible in this opera-  
tion. A zero result is possible but  
not detected. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If  
‘a’= 1, then the bank will be  
selected as per the BSR value  
(default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
MULLW  
0xC4  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
W
PRODH  
PRODL  
=
=
=
0xE2  
registers  
PRODH:  
PRODL  
?
?
After Instruction  
W
=
0xE2  
0xAD  
0x08  
MULWF  
REG  
Example:  
PRODH  
PRODL  
=
=
Before Instruction  
W
=
0xC4  
REG  
PRODH  
PRODL  
=
=
=
0xB5  
?
?
After Instruction  
W
=
0xC4  
REG  
PRODH  
PRODL  
=
=
=
0xB5  
0x8A  
0x94  
DS39599C-page 282  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
[ label ] NEGF f [,a]  
Syntax:  
[ label ] NOP  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
No operation  
None  
Operation:  
( f ) + 1 f  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Words:  
No operation.  
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in  
the data memory location ‘f’. If ‘a’  
is ‘0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value.  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
None.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
NEGF  
REG, 1  
Example:  
Before Instruction  
REG  
=
0011 1010 [0x3A]  
1100 0110 [0xC6]  
After Instruction  
REG  
=
2003 Microchip Technology Inc.  
DS39599C-page 283  
PIC18F2220/2320/4220/4320  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
[ label ] POP  
None  
Syntax:  
[ label ] PUSH  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(TOS) bit bucket  
None  
(PC+2) TOS  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
Description:  
The TOS value is pulled off the  
return stack and is discarded. The  
TOS value then becomes the previ-  
ous value that was pushed onto the  
return stack.  
This instruction is provided to  
enable the user to properly manage  
the return stack to incorporate a  
software stack.  
Description:  
The PC+2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows to implement  
a software stack by modifying TOS,  
and then push it onto the return  
stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
PUSH PC+2  
onto return  
stack  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
PUSH  
Example:  
POP  
GOTO  
Example:  
Before Instruction  
NEW  
TOS  
PC  
=
=
0x00345A  
0x000124  
Before Instruction  
TOS  
=
=
0x0031A2  
0x014332  
After Instruction  
Stack (1 level down)  
PC  
=
=
=
0x000126  
0x000126  
0x00345A  
TOS  
After Instruction  
Stack (1 level down)  
TOS  
PC  
=
=
0x014332  
NEW  
DS39599C-page 284  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
[ label ] RCALL  
-1024 n 1023  
(PC) + 2 TOS,  
n
Syntax:  
[ label ] RESET  
Operands:  
Operation:  
Operands:  
Operation:  
None  
Reset all registers and flags that  
are affected by a MCLR Reset.  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to  
1K from the current location. First,  
return address (PC+2) is pushed  
onto the stack. Then, add the 2’s  
complement number ‘2n’ to the PC.  
Since the PC will have incremented  
to fetch the next instruction, the  
new address will be PC+2+2n. This  
instruction is a two-cycle  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
reset  
No  
operation  
No  
operation  
instruction.  
Words:  
Cycles:  
1
2
RESET  
Example:  
After Instruction  
Registers =  
Reset Value  
Reset Value  
Q Cycle Activity:  
Q1  
Flags*  
=
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Push PC to  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
RCALL  
Jump  
Example:  
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
PC  
=
Address (Jump)  
Address (HERE+2)  
TOS =  
2003 Microchip Technology Inc.  
DS39599C-page 285  
PIC18F2220/2320/4220/4320  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
Syntax:  
[ label ] RETFIE [s]  
s [0,1]  
Syntax:  
[ label ] RETLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
(TOS) PC,  
1 GIE/GIEH or PEIE/GIEL,  
if s = 1  
k W,  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged.  
Description:  
W is loaded with the eight-bit literal  
‘k’. The program counter is loaded  
from the top of the stack (the return  
address). The high address latch  
(PCLATH) remains unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from Interrupt. Stack is  
popped and Top-of-Stack (TOS) is  
loaded into the PC. Interrupts are  
enabled by setting either the high  
or low priority global interrupt  
enable bit. If ‘s’ = 1, the contents of  
the shadow registers WS,  
STATUSS and BSRS are loaded  
into their corresponding registers,  
W, Status and BSR. If ‘s’ = 0, no  
update of these registers occurs  
(default).  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
pop PC from  
stack, Write  
to W  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
CALL TABLE ; W contains table  
; offset value  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
; W now has  
; table value  
Decode  
No  
operation  
No  
operation  
pop PC from  
stack  
:
TABLE  
ADDWF PCL ; W = offset  
Set GIEH or  
GIEL  
RETLW k0  
RETLW k1  
:
; Begin table  
;
No  
operation  
No  
operation  
No  
operation  
No  
operation  
:
RETLW kn  
; End of table  
RETFIE  
1
Example:  
After Interrupt  
Before Instruction  
PC  
W
=
=
=
=
=
TOS  
WS  
W
=
0x07  
BSR  
STATUS  
GIE/GIEH, PEIE/GIEL  
BSRS  
STATUSS  
1
After Instruction  
W
=
value of kn  
DS39599C-page 286  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
[ label ] RETURN [s]  
s [0,1]  
Syntax:  
[ label ] RLCF f [,d [,a]]  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC,  
if s = 1  
(WS) W,  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) C,  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
(C) dest<0>  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry Flag. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
Return from subroutine. The stack  
is popped and the top of the stack  
(TOS) is loaded into the program  
counter. If ‘s’= 1, the contents of the  
shadow registers WS, STATUSS  
and BSRS are loaded into their cor-  
responding registers, W, Status  
and BSR. If ‘s’ = 0, no update of  
these registers occurs (default).  
Words:  
Cycles:  
1
2
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
No  
operation  
Process  
Data  
pop PC from  
stack  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
RLCF  
REG, W  
Example:  
RETURN  
Example:  
Before Instruction  
REG  
C
=
=
1110 0110  
0
After Interrupt  
PC = TOS  
After Instruction  
REG  
=
1110 0110  
W
C
=
=
1100 1100  
1
2003 Microchip Technology Inc.  
DS39599C-page 287  
PIC18F2220/2320/4220/4320  
RLNCF  
Rotate Left f (no carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
[ label ] RLNCF f [,d [,a]]  
Syntax:  
[ label ] RRCF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
rotated one bit to the left. If ‘d’ is ‘0’,  
the result is placed in W. If ‘d’ is ‘1’,  
the result is stored back in register  
‘f’ (default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry Flag. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
register f  
Words:  
Cycles:  
1
1
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
RLNCF  
REG  
Example:  
Before Instruction  
RRCF  
REG, W  
Example:  
REG  
=
1010 1011  
0101 0111  
After Instruction  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
=
1110 0110  
W
C
=
=
0111 0011  
0
DS39599C-page 288  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
RRNCF  
Rotate Right f (no carry)  
SETF  
Set f  
Syntax:  
[ label ] RRNCF f [,d [,a]]  
Syntax:  
[ label ] SETF f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified regis-  
ter are set to FFh. If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as  
per the BSR value (default).  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
rotated one bit to the right. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is  
1’, the result is placed back in reg-  
ister ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Words:  
Cycles:  
1
1
SETF  
REG  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
=
0x5A  
0xFF  
Q2  
Q3  
Q4  
After Instruction  
REG  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
RRNCF  
REG, 1, 0  
Example 1:  
Before Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, W  
After Instruction  
REG  
=
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
2003 Microchip Technology Inc.  
DS39599C-page 289  
PIC18F2220/2320/4220/4320  
SLEEP  
Enter SLEEP mode  
SUBFWB  
Subtract f from W with borrow  
Syntax:  
[ label ] SLEEP  
Syntax:  
[ label ] SUBFWB f [,d [,a]]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0 WDT postscaler,  
1 TO,  
Operation:  
(W) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register ‘f’ and carry flag  
(borrow) from W (2’s complement  
method). If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored in register ‘d’ (default). If ‘a’  
is ‘0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ is ‘1’, then the bank will be  
selected as per the BSR value  
(default).  
Description:  
The power-down status bit (PD) is  
cleared. The time-out status bit  
(TO) is set. Watchdog Timer and  
its postscaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
Go to  
Sleep  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
SLEEP  
Example:  
Before Instruction  
SUBFWB REG  
Example 1:  
TO  
PD  
=
?
=
?
Before Instruction  
After Instruction  
REG  
W
C
=
=
=
0x03  
0x02  
0x01  
TO  
PD  
=
=
1 †  
0
After Instruction  
† If WDT causes wake-up, this bit is cleared.  
REG  
=
0xFF  
0x02  
W
=
C
Z
N
=
=
=
0x00  
0x00  
0x01 ; result is negative  
SUBFWB  
REG, 0, 0  
Example 2:  
Before Instruction  
REG  
=
2
W
C
=
=
5
1
After Instruction  
REG  
W
=
=
2
3
C
Z
N
=
=
=
1
0
0
; result is positive  
SUBFWB  
REG, 1, 0  
Example 3:  
Before Instruction  
REG  
=
1
W
C
=
=
2
0
After Instruction  
REG  
W
=
=
0
2
C
Z
N
=
=
=
1
1
0
; result is zero  
DS39599C-page 290  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
SUBLW  
Subtract W from literal  
SUBWF  
Syntax:  
Subtract W from f  
Syntax:  
[ label ] SUBLW k  
0 k 255  
[ label ] SUBWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
W is subtracted from the eight-bit  
literal ‘k’. The result is placed in  
W.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register ‘f’ (2’s  
complement method). If ‘d’ is ‘0’,  
the result is stored in W. If ‘d’ is  
1’, the result is stored back in  
register ‘f’ (default). If = ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1’, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
SUBLW 0x02  
Example 1:  
Words:  
Cycles:  
1
1
Before Instruction  
W
C
=
=
1
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
W
=
1
C
=
=
=
1
0
0
; result is positive  
Z
SUBWF REG  
Example 1:  
N
SUBLW 0x02  
Example 2:  
Before Instruction  
REG  
W
C
=
=
=
3
2
?
Before Instruction  
W
C
=
=
2
?
After Instruction  
After Instruction  
REG  
W
=
=
1
2
W
=
0
C
Z
N
=
=
=
1
0
0
; result is positive  
C
Z
N
=
=
=
1
1
0
; result is zero  
SUBWF REG, W  
Example 2:  
SUBLW 0x02  
Example 3:  
Before Instruction  
Before Instruction  
REG  
=
2
2
?
W
C
=
=
3
?
W
C
=
=
After Instruction  
After Instruction  
W
=
FF ; (2’s complement)  
REG  
=
2
0
C
Z
N
=
=
=
0
0
1
; result is negative  
W
=
C
Z
N
=
=
=
1
1
0
; result is zero  
SUBWF REG  
Example 3:  
Before Instruction  
REG  
=
0x01  
W
C
=
=
0x02  
?
After Instruction  
REG  
W
=
=
0xFFh ;(2’s complement)  
0x02  
C
Z
N
=
=
=
0x00 ; result is negative  
0x00  
0x01  
2003 Microchip Technology Inc.  
DS39599C-page 291  
PIC18F2220/2320/4220/4320  
SUBWFB  
Syntax:  
Subtract W from f with Borrow  
SUBWFB REG, 1, 0  
Example 1:  
Before Instruction  
[ label ] SUBWFB f [,d [,a]]  
REG  
W
C
=
=
=
0x19  
0x0D  
0x01  
(0001 1001)  
(0000 1101)  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
After Instruction  
REG  
W
C
Z
N
=
=
=
=
=
0x0C  
0x0D  
(0000 1011)  
(0000 1101)  
Operation:  
(f) – (W) – (C) dest  
Status Affected: N, OV, C, DC, Z  
0x01  
0x00  
0x00  
Encoding:  
0101  
10da  
ffff  
ffff  
; result is positive  
Description:  
Subtract W and the carry flag (bor-  
row) from register ‘f’ (2’s complement  
method). If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default). If  
‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’ is ‘1’, then the bank will be  
selected as per the BSR value  
(default).  
SUBWFB REG, 0, 0  
Example 2:  
Before Instruction  
REG  
W
C
=
=
=
0x1B  
0x1A  
0x00  
(0001 1011)  
(0001 1010)  
After Instruction  
REG  
W
C
Z
N
=
=
=
=
=
0x1B  
0x00  
(0001 1011)  
0x01  
0x01  
0x00  
; result is zero  
Words:  
Cycles:  
1
1
SUBWFB REG, 1, 0  
Example 3:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
W
C
=
=
=
0x03  
0x0E  
0x01  
(0000 0011)  
(0000 1101)  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
REG  
=
0xF5  
0x0E  
(1111 0100)  
; [2’s comp]  
(0000 1101)  
W
=
C
Z
N
=
=
=
0x00  
0x00  
0x01  
; result is negative  
DS39599C-page 292  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
SWAPF  
Swap f  
Syntax:  
[ label ] SWAPF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Status Affected:  
Encoding:  
None  
0011  
10da  
ffff  
ffff  
Description:  
The upper and lower nibbles of reg-  
ister ‘f’ are exchanged. If ‘d’ is ‘0’,  
the result is placed in W. If ‘d’ is ‘1’,  
the result is placed in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
SWAPF  
REG  
Example:  
Before Instruction  
REG  
=
0x53  
0x35  
After Instruction  
REG  
=
2003 Microchip Technology Inc.  
DS39599C-page 293  
PIC18F2220/2320/4220/4320  
TBLRD  
Table Read  
TBLRD  
Table Read (cont’d)  
TBLRD *+ ;  
Syntax:  
[ label ] TBLRD ( *; *+; *-; +*)  
Example1:  
Operands:  
Operation:  
None  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(0x00A356)  
=
=
=
0x55  
0x00A356  
0x34  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR - No Change;  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) +1 TBLPTR;  
if TBLRD *-,  
After Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
0x00A357  
TBLRD +* ;  
Example2:  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) -1 TBLPTR;  
if TBLRD +*,  
(TBLPTR) +1 TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT;  
Before Instruction  
TABLAT  
TBLPTR  
=
=
=
=
0xAA  
0x01A357  
0x12  
MEMORY(0x01A357)  
MEMORY(0x01A358)  
0x34  
After Instruction  
Status Affected:None  
TABLAT  
TBLPTR  
=
=
0x34  
0x01A358  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Encoding:  
Description:  
This instruction is used to read the  
contents of Program Memory (P.M.). To  
address the program memory, a pointer  
called Table Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2 Mbyte address range.  
TBLPTR[0] = 0: Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1: Most Significant  
Byte of Program  
Memory Word  
The TBLRDinstruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
operation (Read Program operation (Write TABLAT)  
Memory)  
DS39599C-page 294  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TBLWT  
Table Write  
TBLWT Table Write (Continued)  
Syntax:  
[ label ]  
TBLWT ( *; *+; *-; +*)  
Words: 1  
Cycles: 2  
Q Cycle Activity:  
Q1  
Operands:  
Operation:  
None  
if TBLWT*,  
(TABLAT) Holding Register;  
TBLPTR - No Change;  
if TBLWT*+,  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
(TABLAT) Holding Register;  
(TBLPTR) +1 TBLPTR;  
if TBLWT*-,  
(TABLAT) Holding Register;  
(TBLPTR) -1 TBLPTR;  
if TBLWT+*,  
No  
operation  
No  
operation  
(Read  
No  
operation  
No  
operation  
(Write to  
Holding  
Register )  
TABLAT)  
(TBLPTR) +1 TBLPTR;  
(TABLAT) Holding Register;  
Example1:  
TBLWT *+;  
Status Affected: None  
Before Instruction  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Encoding:  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x00A356)  
=
=
0x55  
0x00A356  
=
0xFF  
After Instructions (table write completion)  
TABLAT  
=
0x55  
Description:  
This instruction uses the 3 LSBs of  
TBLPTR to determine which of the 8  
holding registers the TABLAT is written  
to. The holding registers are used to  
program the contents of Program  
Memory (P.M.). (Refer to Section 6.0  
“Flash Program Memory” for  
additional details on programming  
Flash memory.)  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2 MBtye address  
range. The LSb of the TBLPTR selects  
which byte of the program memory  
location to access.  
TBLPTR  
=
0x00A357  
HOLDING REGISTER  
(0x00A356)  
=
0x55  
Example 2:  
TBLWT +*;  
Before Instruction  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0x34  
0x01389A  
=
=
0xFF  
0xFF  
After Instruction (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0x34  
0x01389B  
=
=
0xFF  
0x34  
TBLPTR[0] = 0:Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1:Most Significant  
Byte of Program  
Memory Word  
The TBLWT instruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
2003 Microchip Technology Inc.  
DS39599C-page 295  
PIC18F2220/2320/4220/4320  
TSTFSZ  
Test f, skip if 0  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] TSTFSZ f [,a]  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(W) .XOR. k W  
N, Z  
Operation:  
skip if f = 0  
None  
Status Affected:  
Encoding:  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
Description:  
The contents of W are XOR’ed  
with the 8-bit literal ‘k’. The result  
is placed in W.  
Description:  
If ‘f’ = 0, the next instruction,  
fetched during the current instruc-  
tion execution is discarded and a  
NOPis executed, making this a two-  
cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1(2)  
Example:  
XORLW 0xAF  
= 0xB5  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Before Instruction  
W
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
=
0x1A  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
TSTFSZ CNT  
:
Example:  
:
Before Instruction  
PC = Address (HERE)  
After Instruction  
If CNT  
=
=
=
0x00,  
PC  
Address (ZERO)  
0x00,  
If CNT  
PC  
Address (NZERO)  
DS39599C-page 296  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] XORWF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W  
with register ‘f’. If ‘d’ is ‘0’, the result  
is stored in W. If ‘d’ is ‘1’, the result  
is stored back in the register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
XORWF  
REG  
Example:  
Before Instruction  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
2003 Microchip Technology Inc.  
DS39599C-page 297  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 298  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
25.1 MPLAB Integrated Development  
Environment Software  
25.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• An interface to debugging tools  
- simulator  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor with color coded context  
• A multiple project manager  
- MPLAB C30 C Compiler  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB SIM Software Simulator  
- MPLAB dsPIC30 Software Simulator  
• Emulators  
• High-level source code debugging  
• Mouse over variable inspection  
• Extensive on-line help  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB ICE 4000 In-Circuit Emulator  
• In-Circuit Debugger  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
- MPLAB ICD 2  
• One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools  
(automatically updates all project information)  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Development Programmer  
• Low-Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM.netTM Demonstration Board  
- PICDEM 2 Plus Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 4 Demonstration Board  
- PICDEM 17 Demonstration Board  
- PICDEM 18R Demonstration Board  
- PICDEM LIN Demonstration Board  
- PICDEM USB Demonstration Board  
• Evaluation Kits  
• Debug using:  
- source files (assembly or C)  
- absolute listing file (mixed assembly and C)  
- machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increasing flexibility  
and power.  
25.2 MPASM Assembler  
®
- KEELOQ  
The MPASM assembler is a full-featured, universal  
macro assembler for all PICmicro MCUs.  
- PICDEM MSC  
- microID®  
- CAN  
The MPASM assembler generates relocatable object  
files for the MPLINK object linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol ref-  
erence, absolute LST files that contain source lines and  
generated machine code and COFF files for  
debugging.  
- PowerSmart®  
- Analog  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects  
• User defined macros to streamline assembly code  
• Conditional assembly for multi-purpose source  
files  
• Directives that allow complete control over the  
assembly process  
2003 Microchip Technology Inc.  
DS39599C-page299  
PIC18F2220/2320/4220/4320  
25.3 MPLAB C17 and MPLAB C18  
C Compilers  
25.6 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPLAB C17 and MPLAB C18 Code Development  
MPLAB ASM30 assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 compiler uses the  
assembler to produce it’s object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC17CXXX and PIC18CXXX family of  
microcontrollers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
25.4 MPLINK Object Linker/  
MPLIB Object Librarian  
• Rich directive set  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can link  
relocatable objects from precompiled libraries, using  
directives from a linker script.  
• Flexible macro language  
• MPLAB IDE compatibility  
25.7 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any pin. The execu-  
tion can be performed in Single-Step, Execute Until  
Break or Trace mode.  
The MPLIB object librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The MPLAB SIM simulator fully supports symbolic  
debugging using the MPLAB C17 and MPLAB C18  
C Compilers, as well as the MPASM assembler. The  
software simulator offers the flexibility to develop and  
debug code outside of the laboratory environment,  
making it an excellent, economical software  
development tool.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
25.5 MPLAB C30 C Compiler  
25.8 MPLAB SIM30 Software Simulator  
The MPLAB C30 C compiler is a full-featured, ANSI  
compliant, optimizing compiler that translates standard  
ANSI C programs into dsPIC30F assembly language  
source. The compiler also supports many command-  
line options and language extensions to take full  
advantage of the dsPIC30F device hardware capabili-  
ties and afford fine control of the compiler code  
generator.  
The MPLAB SIM30 software simulator allows code  
development in a PC hosted environment by simulating  
the dsPIC30F series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any of the pins.  
The MPLAB SIM30 simulator fully supports symbolic  
debugging using the MPLAB C30 C Compiler and  
MPLAB ASM30 assembler. The simulator runs in either  
a Command Line mode for automated tasks, or from  
MPLAB IDE. This high-speed simulator is designed to  
debug, analyze and optimize time intensive DSP  
routines.  
MPLAB C30 is distributed with a complete ANSI C  
standard library. All library functions have been vali-  
dated and conform to the ANSI C library standard. The  
library includes functions for string manipulation,  
dynamic memory allocation, data conversion, time-  
keeping and math functions (trigonometric, exponential  
and hyperbolic). The compiler provides symbolic  
information for high-level source debugging with the  
MPLAB IDE.  
DS39599C-page 300  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
25.9 MPLAB ICE 2000  
High-Performance Universal  
In-Circuit Emulator  
25.11 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
The MPLAB ICE 2000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers. Software control of the  
MPLAB ICE 2000 in-circuit emulator is advanced by  
the MPLAB Integrated Development Environment,  
which allows editing, building, downloading and source  
debugging from a single environment.  
USB interface. This tool is based on the Flash  
PICmicro MCUs and can be used to develop for these  
and other PICmicro microcontrollers. The MPLAB  
ICD 2 utilizes the in-circuit debugging capability built  
into the Flash devices. This feature, along with  
Microchip’s In-Circuit Serial ProgrammingTM (ICSPTM  
)
protocol, offers cost effective in-circuit Flash debugging  
from the graphical user interface of the MPLAB Inte-  
grated Development Environment. This enables a  
designer to develop and debug source code by setting  
breakpoints, single-stepping and watching variables,  
CPU status and peripheral registers. Running at full  
speed enables testing hardware and applications in  
real-time. MPLAB ICD 2 also serves as a development  
programmer for selected PICmicro devices.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLAB ICE 2000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
25.12 PRO MATE II Universal Device  
Programmer  
The PRO MATE II is a universal, CE compliant device  
programmer with programmable voltage verification at  
VDDMIN and VDDMAX for maximum reliability. It features  
an LCD display for instructions and error messages  
and a modular detachable socket assembly to support  
various package types. In Stand-Alone mode, the  
PRO MATE II device programmer can read, verify and  
program PICmicro devices without a PC connection. It  
can also set code protection in this mode.  
25.10 MPLAB ICE 4000  
High-Performance Universal  
In-Circuit Emulator  
The MPLAB ICE 4000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for high-  
end PICmicro microcontrollers. Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment, which  
allows editing, building, downloading and source  
debugging from a single environment.  
25.13 PICSTART Plus Development  
Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low-cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus development programmer supports  
most PICmicro devices up to 40 pins. Larger pin count  
devices, such as the PIC16C92X and PIC17C76X,  
may be supported with an adapter socket. The  
PICSTART Plus development programmer is CE  
compliant.  
The MPLAB ICD 4000 is a premium emulator system,  
providing the features of MPLAB ICE 2000, but with  
increased emulation memory and high-speed perfor-  
mance for dsPIC30F and PIC18XXXX devices. Its  
advanced emulator features include complex triggering  
and timing, up to 2 Mb of emulation memory and the  
ability to view variables in real-time.  
The MPLAB ICE 4000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
2003 Microchip Technology Inc.  
DS39599C-page301  
PIC18F2220/2320/4220/4320  
25.14 PICDEM 1 PICmicro  
Demonstration Board  
25.17 PICDEM 3 PIC16C92X  
Demonstration Board  
The PICDEM 1 demonstration board demonstrates the  
capabilities of the PIC16C5X (PIC16C54 to  
PIC16C58A), PIC16C61, PIC16C62X, PIC16C71,  
PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All  
necessary hardware and software is included to run  
basic demo programs. The sample microcontrollers  
provided with the PICDEM 1 demonstration board can  
be programmed with a PRO MATE II device program-  
mer or a PICSTART Plus development programmer.  
The PICDEM 1 demonstration board can be connected  
to the MPLAB ICE in-circuit emulator for testing. A  
prototype area extends the circuitry for additional appli-  
cation components. Features include an RS-232  
interface, a potentiometer for simulated analog input,  
push button switches and eight LEDs.  
The PICDEM 3 demonstration board supports the  
PIC16C923 and PIC16C924 in the PLCC package. All  
the necessary hardware and software is included to run  
the demonstration programs.  
25.18 PICDEM 4 8/14/18-Pin  
Demonstration Board  
The PICDEM 4 can be used to demonstrate the capa-  
bilities of the 8, 14 and 18-pin PIC16XXXX and  
PIC18XXXX MCUs, including the PIC16F818/819,  
PIC16F87/88, PIC16F62XA and the PIC18F1320 fam-  
ily of microcontrollers. PICDEM 4 is intended to show-  
case the many features of these low pin count parts,  
including LIN and Motor Control using ECCP. Special  
provisions are made for low-power operation with the  
supercapacitor circuit and jumpers allow on-board  
hardware to be disabled to eliminate current draw in  
this mode. Included on the demo board are provisions  
for Crystal, RC or Canned Oscillator modes, a five volt  
regulator for use with a nine volt wall adapter or battery,  
DB-9 RS-232 interface, ICD connector for program-  
ming via ICSP and development with MPLAB ICD 2,  
2x16 liquid crystal display, PCB footprints for H-Bridge  
motor driver, LIN transceiver and EEPROM. Also  
included are: header for expansion, eight LEDs, four  
potentiometers, three push buttons and a prototyping  
area. Included with the kit is a PIC16F627A and a  
PIC18F1320. Tutorial firmware is included along with  
the User’s Guide.  
25.15 PICDEM.net Internet/Ethernet  
Demonstration Board  
The PICDEM.net demonstration board is an Internet/  
Ethernet demonstration board using the PIC18F452  
microcontroller and TCP/IP firmware. The board  
supports any 40-pin DIP device that conforms to the  
standard pinout used by the PIC16F877 or  
PIC18C452. This kit features a user friendly TCP/IP  
stack, web server with HTML, a 24L256 Serial  
EEPROM for Xmodem download to web pages into  
Serial EEPROM, ICSP/MPLAB ICD 2 interface con-  
nector, an Ethernet interface, RS-232 interface and a  
16 x 2 LCD display. Also included is the book and  
CD-ROM “TCP/IP Lean, Web Servers for Embedded  
Systems,” by Jeremy Bentham  
25.19 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. A pro-  
grammed sample is included. The PRO MATE II device  
programmer, or the PICSTART Plus development pro-  
grammer, can be used to reprogram the device for user  
tailored application development. The PICDEM 17  
demonstration board supports program download and  
execution from external on-board Flash memory. A  
generous prototype area is available for user hardware  
expansion.  
25.16 PICDEM 2 Plus  
Demonstration Board  
The PICDEM 2 Plus demonstration board supports  
many 18, 28 and 40-pin microcontrollers, including  
PIC16F87X and PIC18FXX2 devices. All the neces-  
sary hardware and software is included to run the dem-  
onstration programs. The sample microcontrollers  
provided with the PICDEM 2 demonstration board can  
be programmed with a PRO MATE II device program-  
mer, PICSTART Plus development programmer, or  
MPLAB ICD 2 with a Universal Programmer Adapter.  
The MPLAB ICD 2 and MPLAB ICE in-circuit emulators  
may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area extends the  
circuitry for additional application components. Some  
of the features include an RS-232 interface, a 2 x 16  
LCD display, a piezo speaker, an on-board temperature  
sensor, four LEDs and sample PIC18F452 and  
PIC16F877 Flash microcontrollers.  
DS39599C-page 302  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
25.20 PICDEM 18R PIC18C601/801  
Demonstration Board  
25.23 PICDEM USB PIC16C7X5  
Demonstration Board  
The PICDEM 18R demonstration board serves to assist  
development of the PIC18C601/801 family of Microchip  
microcontrollers. It provides hardware implementation  
of both 8-bit Multiplexed/Demultiplexed and 16-bit  
Memory modes. The board includes 2 Mb external  
Flash memory and 128 Kb SRAM memory, as well as  
serial EEPROM, allowing access to the wide range of  
memory types supported by the PIC18C601/801.  
The PICDEM USB Demonstration Board shows off the  
capabilities of the PIC16C745 and PIC16C765 USB  
microcontrollers. This board provides the basis for  
future USB products.  
25.24 Evaluation and  
Programming Tools  
In addition to the PICDEM series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
for these products.  
25.21 PICDEM LIN PIC16C43X  
Demonstration Board  
• KEELOQ evaluation and programming tools for  
Microchip’s HCS Secure Data Products  
The powerful LIN hardware and software kit includes a  
series of boards and three PICmicro microcontrollers.  
The small footprint PIC16C432 and PIC16C433 are  
used as slaves in the LIN communication and feature  
• CAN developers kit for automotive network  
applications  
• Analog design boards and filter design software  
on-board LIN transceivers.  
A PIC16F874 Flash  
• PowerSmart battery charging evaluation/  
calibration kits  
• IrDA® development kit  
microcontroller serves as the master. All three micro-  
controllers are programmed with firmware to provide  
LIN bus communication.  
• microID development and rfLabTM development  
software  
25.22 PICkitTM 1 Flash Starter Kit  
• SEEVAL® designer kit for memory evaluation and  
endurance calculations  
A complete “development system in a box”, the PICkit  
Flash Starter Kit includes a convenient multi-section  
board for programming, evaluation and development of  
8/14-pin Flash PIC® microcontrollers. Powered via  
USB, the board operates under a simple Windows GUI.  
The PICkit 1 Starter Kit includes the user's guide (on  
CD ROM), PICkit 1 tutorial software and code for vari-  
ous applications. Also included are MPLAB® IDE (Inte-  
grated Development Environment) software, software  
and hardware “Tips 'n Tricks for 8-pin Flash PIC®  
Microcontrollers” Handbook and a USB Interface  
Cable. Supports all current 8/14-pin Flash PIC  
microcontrollers, as well as many future planned  
devices.  
• PICDEM MSC demo boards for Switching mode  
power supply, high-power IR driver, delta sigma  
ADC and flow rate sensor  
Check the Microchip web page and the latest Product  
Line Card for the complete list of demonstration and  
evaluation kits.  
2003 Microchip Technology Inc.  
DS39599C-page303  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 304  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
26.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR and RA4) .......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to VSS............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD).............................................................................................................. 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2003 Microchip Technology Inc.  
DS39599C-page 305  
PIC18F2220/2320/4220/4320  
FIGURE 26-1:  
PIC18F2220/2320/4220/4320 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18F2X20/4X20  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
40 MHz  
Frequency  
FIGURE 26-2:  
PIC18F2220/2320/4220/4320 VOLTAGE-FREQUENCY GRAPH (EXTENDED)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18F2X20/4X20  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
25 MHz  
Frequency  
DS39599C-page 306  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 26-3:  
PIC18LF2220/2320/4220/4320 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18LF2X20/4X20  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
40 MHz  
4 MHz  
Frequency  
FMAX = (16.36 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz  
Note: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
2003 Microchip Technology Inc.  
DS39599C-page 307  
PIC18F2220/2320/4220/4320  
26.1 DC Characteristics: Supply Voltage  
PIC18F2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2220/2320/4220/4320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Symbol  
Characteristic  
Supply Voltage  
Min  
Typ  
Max Units  
Conditions  
VDD  
D001  
PIC18LF2X20/4X20 2.0  
PIC18F2X20/4X20 4.2  
5.5  
5.5  
V
V
V
HS, XT, RC and LP Osc mode  
D002  
D003  
VDR  
RAM Data Retention  
Voltage  
1.5  
(1)  
VPOR  
VDD Start Voltage  
to ensure internal  
0.7  
V
See section on Power-on Reset for details  
Power-on Reset signal  
D004  
SVDD  
VBOR  
VDD Rise Rate  
0.05  
V/ms See section on Power-on Reset for details  
to ensure internal  
Power-on Reset signal  
Brown-out Reset Voltage  
PIC18LF2X20/4X20 Industrial Low Voltage  
D005  
BORV1:BORV0 = 11  
BORV1:BORV0 = 10  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
NA  
NA  
V
V
V
V
Reserved  
2.50  
3.88  
4.18  
2.72 2.94  
4.22 4.56  
4.54 4.90  
D005  
PIC18F2X20/4X20 Industrial  
BORV1:BORV0 = 1x  
NA  
NA  
V
V
V
Not in operating voltage range of device  
Not in operating voltage range of device  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
3.88  
4.18  
4.22 4.56  
4.54 4.90  
D005E  
PIC18F2X20/4X20 Extended  
BORV1:BORV0 = 1x  
NA  
NA  
V
V
V
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
3.71  
4.00  
4.22 4.73  
4.54 5.08  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.  
DS39599C-page 308  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2220/2320/4220/4320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(1)  
Power-down Current (IPD)  
PIC18LF2X20/4X20 0.1  
0.5  
0.5  
1.7  
0.5  
0.5  
1.7  
2.0  
2.0  
6.5  
50  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
+25°C  
+85°C  
-40°C  
VDD = 2.0V,  
(Sleep mode)  
0.1  
0.2  
PIC18LF2X20/4X20 0.1  
VDD = 3.0V,  
(Sleep mode)  
0.1  
+25°C  
+85°C  
-40°C  
0.3  
All devices 0.1  
0.1  
0.4  
+25°C  
+85°C  
+125°C  
VDD = 5.0V,  
(Sleep mode)  
Extended devices 11.2  
(2,3)  
Supply Current (IDD)  
PIC18LF2X20/4X20  
11  
13  
14  
34  
28  
25  
77  
62  
53  
50  
25  
25  
25  
40  
40  
40  
80  
80  
80  
80  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
PIC18LF2X20/4X20  
All devices  
FOSC = 31 kHz  
(RC_RUN mode,  
+25°C  
+85°C  
-40°C  
internal oscillator source)  
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
Extended devices  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
2003 Microchip Technology Inc.  
DS39599C-page 309  
PIC18F2220/2320/4220/4320  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320 (Industrial) (Continued)  
PIC18LF2220/2320/4220/4320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2220/2320/4220/4320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD)  
PIC18LF2X20/4X20 100  
220  
220  
220  
330  
330  
330  
550  
550  
550  
650  
600  
600  
600  
900  
900  
900  
1.8  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
-40°C  
110  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
120  
PIC18LF2X20/4X20 180  
FOSC = 1 MHz  
(RC_RUN mode,  
180  
170  
internal oscillator source)  
All devices 340  
330  
VDD = 5.0V  
310  
Extended devices 410  
PIC18LF2X20/4X20 350  
360  
VDD = 2.0V  
VDD = 3.0V  
370  
PIC18LF2X20/4X20 580  
FOSC = 4 MHz  
(RC_RUN mode,  
580  
560  
internal oscillator source)  
All devices 1.1  
1.1  
1.0  
1.8  
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
1.8  
Extended devices 1.2  
1.8  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39599C-page 310  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320 (Industrial) (Continued)  
PIC18LF2220/2320/4220/4320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2220/2320/4220/4320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD)  
PIC18LF2X20/4X20 4.7  
8
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
4.6  
8
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
VDD = 2.0V  
VDD = 3.0V  
5.1  
11  
PIC18LF2X20/4X20 6.9  
11  
FOSC = 31 kHz  
(RC_IDLE mode,  
6.3  
6.8  
11  
15  
internal oscillator source)  
All devices  
12  
10  
10  
25  
49  
52  
56  
73  
77  
77  
16  
16  
VDD = 5.0V  
22  
Extended devices  
75  
PIC18LF2X20/4X20  
150  
150  
150  
180  
180  
180  
300  
300  
300  
435  
VDD = 2.0V  
VDD = 3.0V  
PIC18LF2X20/4X20  
FOSC = 1 MHz  
(RC_IDLE mode,  
internal oscillator source)  
All devices 130  
130  
130  
VDD = 5.0V  
Extended devices 350  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
2003 Microchip Technology Inc.  
DS39599C-page 311  
PIC18F2220/2320/4220/4320  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320 (Industrial) (Continued)  
PIC18LF2220/2320/4220/4320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2220/2320/4220/4320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD)  
PIC18LF2X20/4X20 140  
275  
275  
275  
375  
375  
375  
800  
800  
800  
800  
250  
250  
250  
350  
350  
350  
1.0  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
-40°C  
140  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
150  
PIC18LF2X20/4X20 220  
FOSC = 4 MHz  
(RC_IDLE mode,  
220  
210  
internal oscillator source)  
All devices 390  
400  
VDD = 5.0V  
380  
Extended devices 410  
PIC18LF2X20/4X20 150  
150  
VDD = 2.0V  
VDD = 3.0V  
160  
PIC18LF2X20/4X20 340  
FOSC = 1 MHZ  
(PRI_RUN,  
300  
280  
All devices 0.72  
0.63  
EC oscillator)  
1.0  
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
0.57  
1.0  
Extended devices 0.53  
1.0  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39599C-page 312  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320 (Industrial) (Continued)  
PIC18LF2220/2320/4220/4320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2220/2320/4220/4320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD)  
PIC18LF2X20/4X20 440  
600  
600  
600  
1.0  
1.0  
1.0  
2.0  
2.0  
2.0  
2.0  
9.0  
µA  
µA  
-40°C  
450  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
460  
µA  
PIC18LF2X20/4X20 0.80  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
FOSC = 4 MHz  
(PRI_RUN,  
0.78  
+25°C  
+85°C  
-40°C  
0.77  
All devices 1.6  
1.5  
EC oscillator)  
+25°C  
+85°C  
+125°C  
+125°C  
VDD = 5.0V  
1.5  
Extended devices 1.5  
Extended devices 6.3  
FOSC = 25 MHZ  
(PRI_RUN,  
EC oscillator)  
VDD = 4.2V  
VDD = 5.0V  
7.9  
10.0  
mA  
+125°C  
All devices 9.5  
12  
12  
12  
15  
15  
15  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
9.7  
VDD = 4.2V  
VDD = 5.0V  
FOSC = 40 MHZ  
(PRI_RUN,  
EC oscillator)  
9.9  
All devices 11.9  
12.1  
12.3  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
2003 Microchip Technology Inc.  
DS39599C-page 313  
PIC18F2220/2320/4220/4320  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320 (Industrial) (Continued)  
PIC18LF2220/2320/4220/4320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2220/2320/4220/4320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD)  
PIC18LF2X20/4X20  
37  
37  
38  
58  
59  
60  
50  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
-40°C  
50  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
60  
PIC18LF2X20/4X20  
80  
FOSC = 1 MHz  
(PRI_IDLE mode,  
EC oscillator)  
80  
+25°C  
+85°C  
-40°C  
100  
180  
180  
180  
300  
180  
180  
180  
280  
280  
280  
525  
525  
525  
800  
3.0  
All devices 110  
110  
+25°C  
+85°C  
+125°C  
-40°C  
VDD = 5.0V  
110  
Extended devices 125  
PIC18LF2X20/4X20 140  
140  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
140  
PIC18LF2X20/4X20 220  
FOSC = 4 MHz  
(PRI_IDLE mode,  
EC oscillator)  
230  
+25°C  
+85°C  
-40°C  
230  
All devices 410  
420  
+25°C  
+85°C  
+125°C  
+125°C  
VDD = 5.0V  
430  
Extended devices 450  
Extended devices 2.2  
FOSC = 25 MHZ  
(PRI_IDLE,  
EC oscillator)  
VDD = 4.2V  
VDD = 5.0V  
2.7  
3.5  
mA  
+125°C  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39599C-page 314  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320 (Industrial) (Continued)  
PIC18LF2220/2320/4220/4320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2220/2320/4220/4320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD)  
All devices 3.1  
4.1  
4.1  
4.1  
5.1  
5.1  
5.1  
15  
15  
18  
30  
30  
35  
80  
80  
85  
9
mA  
mA  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
3.2  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 4.2 V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
FOSC = 40 MHz  
(PRI_IDLE mode,  
EC oscillator)  
3.3  
All devices 4.4  
4.6  
4.6  
PIC18LF2X20/4X20  
9
10  
13  
22  
21  
20  
50  
50  
45  
(4)  
PIC18LF2X20/4X20  
All devices  
FOSC = 32 kHz  
(SEC_RUN mode,  
Timer1 as clock)  
PIC18LF2X20/4X20 5.1  
5.8  
9
7.9  
11  
12  
12  
14  
20  
20  
25  
(4)  
PIC18LF2X20/4X20 7.9  
FOSC = 32 kHz  
8.9  
(SEC_IDLE mode,  
Timer1 as clock)  
10.5  
All devices  
13  
16  
18  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
2003 Microchip Technology Inc.  
DS39599C-page 315  
PIC18F2220/2320/4220/4320  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320 (Industrial) (Continued)  
PIC18LF2220/2320/4220/4320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2220/2320/4220/4320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
Module Differential Currents (IWDT, IBOR, ILVD, IOSCB, IAD)  
D022  
(IWDT)  
Watchdog Timer 1.5  
3.8  
3.8  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
+25°C  
2.2  
VDD = 2.0V  
VDD = 3.0V  
2.7  
4.0  
+85°C  
2.3  
4.6  
-40°C  
2.7  
4.6  
+25°C  
3.1  
4.8  
+85°C  
3.0  
10.0  
10.0  
10.0  
13.0  
35.0  
45.0  
50.0  
25.0  
35.0  
45.0  
50.0  
-40°C  
3.3  
3.9  
+25°C  
VDD = 5.0V  
+85°C  
Extended devices only 4.0  
+125°C  
-40°C to +85°C  
-40°C to +85°C  
D022A  
Brown-out Reset  
17  
47  
48  
14  
18  
21  
24  
VDD = 3.0V  
VDD = 5.0V  
(IBOR)  
Extended devices only  
µA -40°C to +125°C  
D022B  
Low-Voltage Detect  
µA  
µA  
µA  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
VDD = 2.0V  
VDD = 3.0V  
(ILVD)  
VDD = 5.0V  
Extended devices only  
µA -40°C to +125°C  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39599C-page 316  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320 (Industrial) (Continued)  
PIC18LF2220/2320/4220/4320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2220/2320/4220/4320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
D025  
Timer1 Oscillator 2.1  
2.2  
2.2  
2.2  
3.8  
3.8  
3.8  
6.0  
6.0  
7.0  
2.0  
2.0  
2.0  
8.0  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
(4)  
(4)  
(4)  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
32 kHz on Timer1  
32 kHz on Timer1  
32 kHz on Timer1  
(IOSCB)  
1.8  
+25°C  
+85°C  
2.1  
2.2  
-40°C  
2.6  
+25°C  
2.9  
+85°C  
3.0  
-40°C  
3.2  
+25°C  
3.4  
+85°C  
D026  
(IAD)  
A/D Converter 1.0  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 5.0V  
1.0  
1.0  
A/D on, not converting  
Extended devices only 1.0  
µA -40°C to +125°C  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
2003 Microchip Technology Inc.  
DS39599C-page 317  
PIC18F2220/2320/4220/4320  
26.3 DC Characteristics: PIC18F2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
VIH  
IIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
VSS  
0.15 VDD  
0.8  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
D032  
MCLR  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
V
V
D032A  
OSC1 and T1OSI  
LP, XT, HS, HSPLL  
modes(1)  
EC mode(1)  
D033  
OSC1  
VSS  
0.2 VDD  
V
Input High Voltage  
I/O ports:  
D040  
D040A  
D041  
with TTL buffer  
0.25 VDD + 0.8V  
2.0  
VDD  
VDD  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
D042  
MCLR  
0.8 VDD  
1.6  
VDD  
VDD  
V
V
D042A  
OSC1 and T1OSI  
LP, XT, HS, HSPLL  
modes(1)  
EC mode(1)  
D043  
D060  
OSC1  
0.8 VDD  
VDD  
0.2  
V
Input Leakage Current(2,3)  
I/O ports  
µA VSS VPIN VDD,  
Pin at high-impedance  
D061  
D063  
MCLR, RA4  
1.0  
1.0  
µA Vss VPIN VDD  
µA Vss VPIN VDD  
OSC1  
IPU  
Weak Pull-up Current  
PORTB weak pull-up current  
D070  
IPURB  
50  
400  
µA VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
DS39599C-page 318  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
26.3 DC Characteristics: PIC18F2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VOL  
VOH  
VOD  
Output Low Voltage  
I/O ports  
D080  
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D080A  
D083  
OSC2/CLKO  
(RC mode)  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
D083A  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
Output High Voltage(3)  
D090  
I/O ports  
VDD – 0.7  
VDD – 0.7  
VDD – 0.7  
VDD – 0.7  
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
D090A  
D092  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKO  
(RC mode)  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D092A  
D150  
Open-Drain High Voltage  
8.5  
RA4 pin  
Capacitive Loading Specs  
on Output Pins  
D100(4) COSC2 OSC2 pin  
15  
pF In XT, HS and LP modes  
when external clock is  
used to drive OSC1  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2  
(in RC mode)  
50  
pF To meet the AC Timing  
Specifications  
pF In I2C mode  
SCL, SDA  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
2003 Microchip Technology Inc.  
DS39599C-page 319  
PIC18F2220/2320/4220/4320  
TABLE 26-1: MEMORY PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
DC Characteristics  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Internal Program Memory  
Programming Specifications  
D110  
D112  
D113  
VPP  
IPP  
Voltage on MCLR/VPP pin  
Current into MCLR/VPP pin  
9.00  
13.25  
300  
V
(Note 2)  
µA  
mA  
IDDP  
Supply Current during  
Programming  
1.0  
Data EEPROM Memory  
D120  
ED  
Byte Endurance  
100K  
10K  
1M  
100K  
E/W -40°C to +85°C  
E/W -40°C to +125°C  
D121 VDRW VDD for Read/Write  
VMIN  
5.5  
V
Using EECON to read/write  
VMIN = Minimum operating  
voltage  
D122 TDEW Erase/Write Cycle Time  
D123 TRETD Characteristic Retention  
4
ms  
40  
Year Provided no other  
specifications are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh(1)  
1M  
100K  
10M  
1M  
E/W -40°C to +85°C  
E/W -40°C to +125°C  
Program Flash Memory  
D130  
D131  
D132  
EP  
Cell Endurance  
10K  
1K  
100K  
10K  
E/W -40°C to +85°C  
E/W -40°C to +125°C  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
VIE  
VDD for Block Erase  
4.5  
4.5  
5.5  
5.5  
V
V
Using ICSP port  
Using ICSP port  
D132A VIW  
VDD for Externally Timed Erase  
or Write  
D132B VPEW VDD for Self-timed Write  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D133  
TIE  
ICSP Block Erase Cycle Time  
1
4
ms VDD > 4.5V  
ms VDD > 4.5V  
D133A TIW  
ICSP Erase or Write Cycle Time  
(externally timed)  
D133A TIW  
Self-timed Write Cycle Time  
2
ms  
D134 TRETD Characteristic Retention  
40  
Year Provided no other  
specifications are violated  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Refer to Section 7.8 “Using the Data EEPROM” for a more detailed discussion on data EEPROM  
endurance.  
2: Required only if Low-Voltage Programming is disabled.  
DS39599C-page 320  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 26-2: COMPARATOR SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C, unless otherwise stated.  
Param  
No.  
Sym  
Characteristics  
Input Offset Voltage  
Min  
Typ  
Max  
Units  
Comments  
D300  
VIOFF  
0
± 5.0  
± 10  
VDD – 1.5  
mV  
V
D301  
D302  
VICM  
Input Common Mode Voltage*  
Common Mode Rejection Ratio*  
Response Time(1)*  
CMRR  
TRESP  
55  
dB  
300  
300A  
150  
400  
600  
ns  
ns  
PIC18FXX20  
PIC18LFXX20  
301  
TMC2OV Comparator Mode Change to  
Output Valid*  
10  
µs  
*
These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at (VDD 1.5)/2, while the other input transitions  
from VSS to VDD.  
TABLE 26-3: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C, unless otherwise stated.  
Param  
No.  
Sym  
Characteristics  
Resolution  
Min  
Typ  
Max  
Units  
Comments  
D310  
VRES  
VDD/24  
VDD/32  
LSb  
D311  
VRAA  
Absolute Accuracy  
1/2  
1/2  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
D312  
310  
VRUR  
TSET  
Unit Resistor Value (R)*  
Settling Time(1)*  
2k  
10  
µs  
*
These parameters are characterized but not tested.  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from ‘0000’ to ‘1111’.  
2003 Microchip Technology Inc.  
DS39599C-page 321  
PIC18F2220/2320/4220/4320  
FIGURE 26-4:  
LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
(LVDIF can be  
cleared in software)  
VLVD  
(LVDIF set by hardware)  
LVDIF  
TABLE 26-4: LOW-VOLTAGE DETECT CHARACTERISTICS  
PIC18LF2220/2320/4220/4320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2220/2320/4220/4320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
D420  
LVD Voltage on VDD Transition High to Low  
PIC18LF2X20/4X20 LVDL<3:0> = 0000  
LVDL<3:0> = 0001  
Industrial  
N/A  
N/A  
N/A  
N/A  
N/A  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Reserved  
Reserved  
N/A  
LVDL<3:0> = 0010  
2.15  
2.26  
2.45  
2.55  
2.77  
2.87  
3.07  
3.36  
3.57  
3.67  
3.87  
4.07  
4.28  
4.60  
2.37  
2.58  
2.68  
2.91  
3.01  
3.22  
3.53  
3.75  
3.85  
4.07  
4.28  
4.49  
4.82  
LVDL<3:0> = 0011  
2.33  
LVDL<3:0> = 0100  
2.43  
LVDL<3:0> = 0101  
2.63  
LVDL<3:0> = 0110  
2.73  
LVDL<3:0> = 0111  
2.91  
LVDL<3:0> = 1000  
3.20  
LVDL<3:0> = 1001  
3.39  
LVDL<3:0> = 1010  
3.49  
LVDL<3:0> = 1011  
3.68  
LVDL<3:0> = 1100  
3.87  
LVDL<3:0> = 1101  
4.06  
LVDL<3:0> = 1110  
4.37  
D420  
LVD Voltage on VDD Transition High to Low  
PIC18F2X20/4X20 LVDL<3:0> = 1011  
LVDL<3:0> = 1100  
Industrial  
3.68  
3.87  
4.07  
4.28  
4.60  
4.07  
4.28  
4.49  
4.82  
V
V
V
V
3.87  
LVDL<3:0> = 1101  
4.06  
LVDL<3:0> = 1110  
4.37  
D420E  
Legend:  
LVD Voltage on VDD Transition High to Low  
PIC18F2X20/4X20 LVDL<3:0> = 1011  
LVDL<3:0> = 1100  
Extended  
3.48  
3.87  
4.07  
4.28  
4.60  
4.25  
4.48  
4.70  
5.05  
V
V
V
V
3.66  
LVDL<3:0> = 1101  
3.85  
LVDL<3:0> = 1110  
4.14  
Shading of rows is to assist in readability of the table.  
Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.  
DS39599C-page 322  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
26.4 AC (Timing) Characteristics  
26.4.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
Fall  
P
R
V
Z
Period  
H
High  
Rise  
I
L
Invalid (High-impedance)  
Low  
Valid  
High-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
Start condition  
STO  
Stop condition  
2003 Microchip Technology Inc.  
DS39599C-page 323  
PIC18F2220/2320/4220/4320  
26.4.2  
TIMING CONDITIONS  
Note:  
Because of space limitations, the generic  
terms “PIC18FXX20” and “PIC18LFXX20”  
are used throughout this section to refer  
to the PIC18F2220/2320/4220/4320 and  
PIC18LF2220/2320/4220/4320 families of  
devices specifically and only those  
devices.  
The temperature and voltages specified in Table 26-5  
apply to all timing specifications unless otherwise  
noted. Figure 26-5 specifies the load conditions for the  
timing specifications.  
TABLE 26-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
AC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 26.1 and  
Section 26.3.  
LF parts operate up to industrial temperatures only.  
FIGURE 26-5:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 Load Condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKO  
and including D and E outputs as ports  
VSS  
DS39599C-page 324  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
26.4.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 26-6:  
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
CLKO  
3
4
3
2
TABLE 26-6: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
1A  
FOSC  
External CLKI Frequency(1)  
DC  
DC  
DC  
0.1  
4
40  
25  
4
MHz EC, ECIO (industrial)  
MHz EC, ECIO (extended)  
MHz RC osc  
Oscillator Frequency(1)  
1
MHz XT osc  
25  
10  
6.25  
33  
MHz HS osc  
4
MHz HS + PLL osc (industrial)  
MHz HS + PLL osc (extended)  
4
5
kHz  
ns  
LP Osc mode  
EC, ECIO (industrial)  
EC, ECIO (extended)  
RC osc  
1
TOSC  
External CLKI Period(1)  
Oscillator Period(1)  
25  
40  
250  
1
ns  
ns  
µs  
XT osc  
40  
100  
250  
250  
ns  
ns  
HS osc  
HS + PLL osc (industrial)  
160  
30  
250  
ns  
HS + PLL osc (extended)  
LP osc  
µs  
2
3
TCY  
Instruction Cycle Time(1)  
100  
160  
ns  
ns  
TCY = 4/FOSC (industrial)  
TCY = 4/FOSC (extended)  
TOSL,  
TOSH  
External Clock in (OSC1)  
High or Low Time  
30  
2.5  
10  
ns  
µs  
ns  
ns  
ns  
ns  
XT osc  
LP osc  
HS osc  
XT osc  
LP osc  
HS osc  
4
TOSR,  
TOSF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
50  
7.5  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations  
except PLL. All specified values are based on characterization data for that particular oscillator type under  
standard operating conditions with the device executing code. Exceeding these specified limits may result  
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested  
to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock  
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
2003 Microchip Technology Inc.  
DS39599C-page 325  
PIC18F2220/2320/4220/4320  
TABLE 26-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
F10  
FOSC Oscillator Frequency Range  
4
10  
40  
2
MHz HS mode only  
F11  
F12  
F13  
FSYS On-Chip VCO System Frequency  
16  
-2  
MHz HS mode only  
tPLL  
PLL Start-up Time (Lock Time)  
ms  
%
CLK CLKO Stability (Jitter)  
+2  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
TABLE 26-8: INTERNAL RC ACCURACY: PIC18F2220/2320/4220/4320 (Industrial)  
PIC18LF2220/2320/4220/4320 (Industrial, Extended)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Min  
Typ  
Max  
Units  
Conditions  
(1)  
INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz  
F14  
PIC18LF2220/2320/4220/4320  
PIC18F2220/2320/4220/4320  
-2  
-5  
+/-1  
2
5
%
%
%
%
%
%
+25°C  
VDD = 2.7-3.3V  
F15  
F16  
F17  
F18  
F19  
-10°C to +85°C VDD = 2.7-3.3V  
-40°C to +85°C VDD = 2.7-3.3V  
-10  
-2  
10  
2
+/-1  
+25°C  
VDD = 4.5-5.5V  
-5  
5
-10°C to +85°C VDD = 4.5-5.5V  
-40°C to +85°C VDD = 4.5-5.5V  
-10  
10  
(2)  
INTRC Accuracy @ Freq = 31 kHz  
PIC18LF2220/2320/4220/4320 26.562  
PIC18F2220/2320/4220/4320 26.562  
F20  
35.938  
35.938  
kHz -40°C to +85°C VDD = 2.7-3.3V  
kHz -40°C to +85°C VDD = 4.5-5.5V  
F21  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.  
2: INTRC frequency after calibration.  
3: Change of INTRC frequency as VDD changes.  
DS39599C-page 326  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 26-7:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
13  
12  
19  
18  
14  
16  
I/O pin  
(Input)  
15  
17  
I/O pin  
(Output)  
New Value  
Old Value  
20, 21  
Refer to Figure 26-5 for load conditions.  
Note:  
TABLE 26-9: CLKO AND I/O TIMING REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
10  
TOSH2CKL OSC1 to CLKO ↓  
TOSH2CKH OSC1 to CLKO ↑  
75  
75  
35  
35  
50  
200  
200  
100  
100  
ns  
ns  
ns  
ns  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
11  
12  
13  
14  
15  
16  
17  
18  
18A  
TCKR  
TCKF  
CLKO Rise Time  
CLKO Fall Time  
TCKL2IOV CLKO to Port Out Valid  
0.5 TCY + 20 ns  
TIOV2CKH Port In Valid before CLKO ↑  
TCKH2IOI Port In Hold after CLKO ↑  
0.25 TCY + 25  
ns  
ns  
ns  
ns  
ns  
0
TOSH2IOV OSC1(Q1 cycle) to Port Out Valid  
TOSH2IOI OSC1(Q2 cycle) to Port PIC18FXX20  
150  
100  
200  
Input Invalid  
(I/O in hold time)  
PIC18LFXX20  
19  
TIOV2OSH Port Input Valid to OSC1(I/O in setup time)  
0
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
20  
TIOR  
Port Output Rise Time  
Port Output Fall Time  
PIC18FXX20  
PIC18LFXX20  
PIC18FXX20  
PIC18LFXX20  
20A  
21  
TIOF  
21A  
Note 1: Measurements are taken in RC mode, where CLKO output is 4 x TOSC.  
2003 Microchip Technology Inc.  
DS39599C-page 327  
PIC18F2220/2320/4220/4320  
FIGURE 26-8:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O pins  
Note:  
Refer to Figure 26-5 for load conditions.  
FIGURE 26-9:  
BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
VBGAP = 1.2V  
VIRVST  
Enable Internal  
Reference Voltage  
Internal Reference  
Voltage Stable  
36  
TABLE 26-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TMCL  
TWDT  
TOST  
MCLR Pulse Width (low)  
2
3.48  
4.00  
4.71  
µs  
ms  
31  
32  
33  
34  
Watchdog Timer Time-out Period (no postscaler)  
Oscillation Start-up Timer Period  
Power-up Timer Period  
1024 TOSC  
57.0  
1024 TOSC  
77.2  
TOSC = OSC1 period  
TPWRT  
65.5  
2
ms  
µs  
TIOZ  
I/O High-Impedance from MCLR Low or  
Watchdog Timer Reset  
35  
36  
TBOR  
Brown-out Reset Pulse Width  
200  
µs  
µs  
VDD BVDD (see D005)  
VDD VLVD  
TIVRST  
Time for Internal Reference Voltage to become  
stable  
20  
50  
37  
TLVD  
Low-Voltage Detect Pulse Width  
200  
µs  
DS39599C-page 328  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 26-10:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note:  
Refer to Figure 26-5 for load conditions.  
TABLE 26-11: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
40  
TT0H  
T0CKI High Pulse Width  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4,..., 256)  
45  
46  
TT1H  
TT1L  
T1CKI  
High Time  
Synchronous, no prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Synchronous,  
with prescaler  
PIC18FXX20  
10  
PIC18LFXX20  
25  
Asynchronous PIC18FXX20  
PIC18LFXX20  
30  
50  
T1CKI  
Low Time  
Synchronous, no prescaler  
0.5 TCY + 5  
Synchronous,  
with prescaler  
PIC18FXX20  
10  
25  
30  
50  
PIC18LFXX20  
Asynchronous PIC18FXX20  
PIC18LFXX20  
47  
48  
TT1P  
FT1  
T1CKI  
Input  
Period  
Synchronous  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T1CKI Oscillator Input Frequency Range  
TCKE2TMRI Delay from External T1CKI Clock Edge to  
Timer Increment  
2 TOSC  
7 TOSC  
2003 Microchip Technology Inc.  
DS39599C-page 329  
PIC18F2220/2320/4220/4320  
FIGURE 26-11:  
CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Refer to Figure 26-5 for load conditions.  
Note:  
TABLE 26-12: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
50  
TCCL  
CCPx Input Low  
Time  
No prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
With  
PIC18FXX20  
10  
prescaler  
PIC18LFXX20  
20  
51  
TCCH  
CCPx Input High No prescaler  
Time  
0.5 TCY + 20  
With  
PIC18FXX20  
10  
20  
prescaler  
PIC18LFXX20  
52  
53  
TCCP  
TCCR  
CCPx Input Period  
3 TCY + 40  
N
N = prescale  
value (1,4 or 16)  
CCPx Output Fall Time  
CCPx Output Fall Time  
PIC18FXX20  
PIC18LFXX20  
PIC18FXX20  
PIC18LFXX20  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54  
TCCF  
DS39599C-page 330  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 26-12:  
PARALLEL SLAVE PORT TIMING (PIC18F4X20)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note:  
Refer to Figure 26-5 for load conditions.  
TABLE 26-13: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F4X20)  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
62  
TDTV2WRH Data in valid before WR or CS ↑  
20  
ns  
(setup time)  
63  
TWRH2DTI WR or CS to data–in invalid PIC18FXX20  
20  
35  
10  
ns  
ns  
ns  
ns  
(hold time)  
PIC18LFXX20  
64  
65  
66  
TRDL2DTV RD and CS to data–out valid  
TRDH2DTI RD or CS to data–out invalid  
80  
30  
TIBFINH  
Inhibit of the IBF flag bit being cleared from  
3 TCY  
WR or CS ↑  
2003 Microchip Technology Inc.  
DS39599C-page 331  
PIC18F2220/2320/4220/4320  
FIGURE 26-13:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
73  
Note: Refer to Figure 26-5 for load conditions.  
TABLE 26-14: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
TSSL2SCL  
TCY  
ns  
71  
TSCH  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TSCL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
ns  
75  
TDOR  
SDO Data Output Rise Time PIC18FXX20  
PIC18LFXX20  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
78  
TDOF  
TSCR  
SDO Data Output Fall Time  
SCK Output Rise Time  
(Master mode)  
PIC18FXX20  
PIC18LFXX20  
79  
80  
TSCF  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after PIC18FXX20  
TSCL2DOV SCK Edge  
PIC18LFXX20  
Note 1: Requires the use of Parameter # 73A.  
2: Only if Parameter # 71A and # 72A are used.  
DS39599C-page 332  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 26-14:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
bit 6 - - - - - -1  
SDO  
SDI  
75, 76  
MSb In  
74  
LSb In  
bit 6 - - - -1  
Note: Refer to Figure 26-5 for load conditions.  
TABLE 26-15: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
No.  
Symbol  
TSCH  
Characteristic  
Min  
Max Units Conditions  
71  
SCK Input High Time  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
(Slave mode)  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TSCL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
ns  
75  
TDOR  
SDO Data Output Rise Time PIC18FXX20  
PIC18LFXX20  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
78  
TDOF  
TSCR  
SDO Data Output Fall Time  
SCK Output Rise Time  
(Master mode)  
PIC18FXX20  
PIC18LFXX20  
79  
80  
TSCF  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after PIC18FXX20  
TSCL2DOV SCK Edge  
PIC18LFXX20  
81  
TDOV2SCH, SDO Data Output Setup to SCK Edge  
TDOV2SCL  
TCY  
Note 1: Requires the use of Parameter # 73A.  
2: Only if Parameter # 71A and # 72A are used.  
2003 Microchip Technology Inc.  
DS39599C-page 333  
PIC18F2220/2320/4220/4320  
FIGURE 26-15:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
80  
78  
MSb  
LSb  
SDO  
SDI  
bit 6 - - - - - -1  
77  
75, 76  
LSb In  
MSb In  
74  
bit 6 - - - -1  
73  
Note:  
Refer to Figure 26-5 for load conditions.  
TABLE 26-16: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
TSSL2SCL  
TCY  
ns  
71  
TSCH  
SCK Input High Time (Slave mode)  
SCK Input Low Time (Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TSCL  
ns  
72A  
73  
ns (Note 1)  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
ns  
75  
TDOR  
SDO Data Output Rise Time  
PIC18FXX20  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LFXX20  
76  
77  
78  
TDOF  
SDO Data Output Fall Time  
10  
TSSH2DOZ SS to SDO Output High-Impedance  
TSCR  
SCK Output Rise Time (Master mode) PIC18FXX20  
PIC18LFXX20  
79  
80  
TSCF  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after SCK Edge PIC18FXX20  
TSCL2DOV  
PIC18LFXX20  
83  
TscH2ssH, SS after SCK Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: Requires the use of Parameter # 73A.  
2: Only if Parameter # 71A and # 72A are used.  
DS39599C-page 334  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 26-16:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
bit 6 - - - -1  
LSb In  
Note: Refer to Figure 26-5 for load conditions.  
TABLE 26-17: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
TSSL2SCL  
TCY  
ns  
71  
TSCH  
TSCL  
TB2B  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
ns  
SCK Input Low Time  
(Slave mode)  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
75  
TDOR  
SDO Data Output Rise Time  
PIC18FXX20  
25  
45  
25  
50  
25  
45  
25  
50  
100  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LFXX20  
76  
77  
78  
TDOF  
SDO Data Output Fall Time  
TSSH2DOZ SSto SDO Output High-Impedance  
10  
TSCR  
SCK Output Rise Time  
(Master mode)  
PIC18FXX20  
PIC18LFXX20  
79  
80  
TSCF  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after SCK PIC18FXX20  
TSCL2DOV Edge  
PIC18LFXX20  
82  
83  
TSSL2DOV SDO Data Output Valid after SS PIC18FXX20  
Edge  
PIC18LFXX20  
TscH2ssH, SS after SCK edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: Requires the use of Parameter # 73A.  
2: Only if Parameter # 71A and # 72A are used.  
2003 Microchip Technology Inc.  
DS39599C-page 335  
PIC18F2220/2320/4220/4320  
FIGURE 26-17:  
I2C BUS START/STOP BITS TIMING  
SCL  
SDA  
91  
93  
90  
92  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 26-5 for load conditions.  
TABLE 26-18: I2C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
TSU:STA Start condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for Repeated  
Start condition  
91  
92  
93  
THD:STA Start condition  
Hold time  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
TSU:STO Stop condition  
Setup time  
4700  
600  
THD:STO Stop condition  
Hold time  
4000  
600  
FIGURE 26-18:  
I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 26-5 for load conditions.  
DS39599C-page 336  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 26-19: I2C BUS DATA REQUIREMENTS (SLAVE MODE)  
Param.  
No.  
Symbol  
Characteristic  
100 kHz mode  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock High Time  
4.0  
µs  
PIC18FXX20 must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
µs  
PIC18FXX20 must operate at a  
minimum of 10 MHz  
SSP module  
1.5 TCY  
4.7  
101  
TLOW  
Clock Low Time  
100 kHz mode  
µs  
µs  
PIC18FXX20 must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
PIC18FXX20 must operate at a  
minimum of 10 MHz  
SSP module  
1.5 TCY  
1000  
300  
300  
300  
102  
103  
90  
TR  
TF  
SDA and SCL Rise  
Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
pF  
20 + 0.1 CB  
CB is specified to be from 10 to 400 pF  
CB is specified to be from 10 to 400 pF  
SDA and SCL Fall  
Time  
20 + 0.1 CB  
TSU:STA Start Condition Setup 100 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
Only relevant for Repeated  
Start condition  
Time  
400 kHz mode  
91  
THD:STA Start Condition Hold 100 kHz mode  
After this period, the first clock pulse is  
generated  
Time  
400 kHz mode  
106  
107  
92  
THD:DAT Data Input Hold Time 100 kHz mode  
400 kHz mode  
0
0.9  
TSU:DAT Data Input Setup  
Time  
100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
(Note 2)  
TSU:STO Stop Condition Setup 100 kHz mode  
Time  
400 kHz mode  
109  
110  
D102  
TAA  
TBUF  
CB  
Output Valid from  
Clock  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
3500  
(Note 1)  
Bus Free Time  
4.7  
1.3  
Time the bus must be free before a  
new transmission can start  
Bus Capacitive Loading  
400  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns)  
of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2
2
2: A fast mode I C bus device can be used in a standard mode I C bus system but the requirement, TSU:DAT 250 ns,  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If  
such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line,  
2
TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I C bus specification), before the SCL line  
is released.  
2003 Microchip Technology Inc.  
DS39599C-page 337  
PIC18F2220/2320/4220/4320  
FIGURE 26-19:  
MASTER SSP I2C BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
SDA  
93  
91  
90  
92  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 26-5 for load conditions.  
TABLE 26-20: MASTER SSP I2C BUS START/STOP BITS REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA Start condition 100 kHz mode  
Setup time 400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns Only relevant for  
Repeated Start condition  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
91  
92  
93  
THD:STA Start condition 100 kHz mode  
Hold time 400 kHz mode  
2(TOSC)(BRG + 1)  
ns After this period, the first  
clock pulse is generated  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
TSU:STO Stop condition 100 kHz mode  
Setup time 400 kHz mode  
2(TOSC)(BRG + 1)  
ns  
ns  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
THD:STO Stop condition 100 kHz mode  
Hold time 400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
FIGURE 26-20:  
MASTER SSP I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 26-5 for load conditions.  
DS39599C-page 338  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 26-21: MASTER SSP I2C BUS DATA REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
100  
101  
102  
103  
90  
THIGH  
Clock High Time  
Clock Low Time  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ms  
ms  
ms  
TLOW  
TR  
SDA and SCL  
Rise Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
1000  
300  
300  
300  
300  
100  
ns CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
ns  
ns  
TF  
SDA and SCL  
Fall Time  
20 + 0.1 CB  
ns CB is specified to be from  
10 to 400 pF  
ns  
ns  
TSU:STA Start Condition  
Setup Time  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms Only relevant for  
Repeated Start condition  
ms  
ms  
91  
THD:STA Start Condition  
Hold Time  
ms After this period, the first  
clock pulse is generated  
ms  
ms  
106  
107  
92  
THD:DAT Data Input  
Hold Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
0
ns  
0
0.9  
ms  
TBD  
250  
100  
TBD  
ns  
TSU:DAT Data Input  
Setup Time  
ns (Note 2)  
ns  
ns  
TSU:STO Stop Condition  
Setup Time  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ms  
ms  
109  
110  
D102  
TAA  
TBUF  
CB  
Output Valid from  
Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
3500  
1000  
ns  
ns  
ns  
Bus Free Time  
4.7  
1.3  
TBD  
ms Time the bus must be free  
before a new transmission  
ms  
can start  
ms  
Bus Capacitive Loading  
400  
pF  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
2: A fast mode I2C bus device can be used in a standard mode I2C bus system, but parameter #107 250 ns,  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit  
to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the  
SCL line is released.  
2003 Microchip Technology Inc.  
DS39599C-page 339  
PIC18F2220/2320/4220/4320  
FIGURE 26-21:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
Note: Refer to Figure 26-5 for load conditions.  
122  
TABLE 26-22: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TCKH2DTV SYNC XMIT (MASTER & SLAVE)  
Clock High to Data Out Valid  
PIC18FXX20  
40  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LFXX20  
121  
122  
TCKRF  
TDTRF  
Clock Out Rise Time and Fall Time PIC18FXX20  
(Master mode)  
PIC18LFXX20  
PIC18FXX20  
PIC18LFXX20  
50  
Data Out Rise Time and Fall Time  
20  
50  
FIGURE 26-22:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
125  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 26-5 for load conditions.  
TABLE 26-23: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TDTV2CKL SYNC RCV (MASTER & SLAVE)  
Data Hold before CK (DT hold time)  
TCKL2DTL Data Hold after CK (DT hold time)  
10  
15  
ns  
ns  
126  
DS39599C-page 340  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
TABLE 26-24: A/D CONVERTER CHARACTERISTICS: PIC18F2220/2320/4220/4320 (INDUSTRIAL)  
PIC18F2220/2320/4220/4320 (EXTENDED)  
PIC18LF2220/2320/4220/4320 (INDUSTRIAL)  
Param  
No.  
Symbol  
Characteristic  
Resolution  
Min  
Typ  
Max  
Units  
Conditions  
A01  
NR  
10  
bit VREF 3.0V  
A03  
A04  
A06  
A07  
EIL  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
<±1  
<±1  
<±1  
<±1  
LSb VREF 3.0V  
LSb VREF 3.0V  
LSb VREF 3.0V  
LSb VREF 3.0V  
EDL  
EOFF  
EGN  
Gain Error  
A10  
A20  
Monotonicity  
guaranteed(2)  
VREF Reference Voltage Range  
3
AVDD – AVSS  
V
For 10-bit resolution  
(VREFH – VREFL)  
A21  
A22  
A25  
A28  
A29  
A30  
VREFH Reference Voltage High  
VREFL Reference Voltage Low  
AVSS + 3.0V  
AVSS – 0.3V  
VREFL  
AVDD + 0.3V  
AVDD – 3.0V  
VREFH  
V
V
For 10-bit resolution  
For 10-bit resolution  
VAIN  
Analog Input Voltage  
Analog Supply Voltage  
Analog Supply Voltage  
V
AVDD  
AVSS  
ZAIN  
VDD – 0.3  
VSS – 0.3  
VDD + 0.3  
VSS + 0.3  
2.5(4)  
V
Tie to VDD  
Tie to VSS  
V
Recommended Impedance of  
Analog Voltage Source  
kΩ  
A40  
A50  
IAD  
A/D Current  
from VDD  
PIC18FXX20  
180(5)  
90(5)  
µA Average current during  
conversion(1)  
PIC18LFXX20  
µA  
IREF  
VREF Input Current (3)  
±5(5)  
µA During VAIN acquisition.  
µA During A/D conversion  
cycle.  
±150(5)  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current  
spec includes any such leakage from the A/D module.  
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing  
codes.  
3: VREFH current is from RA3/AN3/VREF+ pin or AVDD, whichever is selected as the VREFH source.  
VREFL current is from RA2/AN2/VREF- pin or AVSS, whichever is selected as the VREFL source.  
4: Assume quiet environment. If adjacent pins have high-frequency signals (analog or digital), ZAIN may need  
to be reduced to as low as 1 kto fight crosstalk effects.  
5: For guidance only.  
2003 Microchip Technology Inc.  
DS39599C-page 341  
PIC18F2220/2320/4220/4320  
FIGURE 26-23:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
TCY  
OLD_DATA  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEPinstruction to be  
executed.  
2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
TABLE 26-25: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
130  
TAD  
A/D Clock Period  
PIC18FXX20  
1.6  
3.0  
2.0  
3.0  
11  
20(2)  
20(2)  
6.0  
µs TOSC based, VREF 3.0V  
µs TOSC based, VREF full range  
µs A/D RC mode  
PIC18LFXX20  
PIC18FXX20  
PIC18LFXX20  
9.0  
µs A/D RC mode  
131  
TCNV  
Conversion Time  
12  
TAD  
(not including acquisition time)(1)  
Note 1: ADRES register may be read on the following TCY cycle.  
2: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
DS39599C-page 342  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
27.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean – 3σ)  
respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 27-1:  
TYPICAL IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, +25°C  
0.5  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.4  
0.3  
0.2  
0.1  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
FIGURE 27-2:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, -40°C TO +85°C  
0.7  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
2003 Microchip Technology Inc.  
DS39599C-page 343  
PIC18F2220/2320/4220/4320  
FIGURE 27-3:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, -40°C TO +125°C  
0.7  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
FIGURE 27-4:  
TYPICAL IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, +25°C  
2.0  
Typical:  
statistical mean @ 25°C  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
1.0  
1.5  
2.0  
2.5  
(MHz)  
3.0  
3.5  
4.0  
F
OSC  
DS39599C-page 344  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 27-5:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, -40°C TO +125°C  
2.5  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
2.0  
1.5  
1.0  
0.5  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
FIGURE 27-6:  
TYPICAL IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, +25°C  
16  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
14  
12  
10  
8
5.5V  
5.0V  
4.5V  
4.0V  
6
3.5V  
4
3.0V  
2
2.5V  
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
F
(MHz)  
OSC  
2003 Microchip Technology Inc.  
DS39599C-page 345  
PIC18F2220/2320/4220/4320  
FIGURE 27-7:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, -40°C TO +125°C  
16  
Typical:  
statistical mean @ 25°C  
14  
12  
10  
8
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.5V  
5.0V  
4.0V  
4.5V  
3.5V  
6
4
3.0V  
2
2.5V  
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
FIGURE 27-8:  
TYPICAL IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, +25°C  
0.035  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.5V  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.000  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
DS39599C-page 346  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 27-9:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, -40°C TO +85°C  
0.045  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.000  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
FIGURE 27-10:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, -40°C TO +125°C  
0.100  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.090  
0.080  
0.070  
0.060  
0.050  
0.040  
0.030  
0.020  
0.010  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.000  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
2003 Microchip Technology Inc.  
DS39599C-page 347  
PIC18F2220/2320/4220/4320  
FIGURE 27-11:  
TYPICAL IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, +25°C  
600  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
500  
400  
300  
200  
100  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
1.0  
1.5  
2.0  
2.5  
(MHz)  
3.0  
3.5  
4.0  
F
OSC  
FIGURE 27-12:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, -40°C TO +125°C  
600  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.5V  
500  
400  
300  
200  
100  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
DS39599C-page 348  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 27-13:  
TYPICAL IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, +25°C  
6.0  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
4
8
12  
16  
20  
24  
28  
32  
36  
40  
F
(MHz)  
OSC  
FIGURE 27-14:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, -40°C TO +125°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
5.5V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
2003 Microchip Technology Inc.  
DS39599C-page 349  
PIC18F2220/2320/4220/4320  
FIGURE 27-15:  
TYPICAL IPD vs. VDD (+25°C), 125 kHz TO 8 MHz RC_RUN MODE,  
ALL PERIPHERALS DISABLED  
3000  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
8 MHz  
2500  
2000  
1500  
1000  
500  
250 kHz and 500 kHz curves are  
bounded by 125 kHz and 1 MHz  
4 MHz  
2 MHz  
1 MHz  
125 kHz  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 27-16:  
MAXIMUM IPD vs. VDD (-40°C TO +125°C), 125 kHz TO 8 MHz RC_RUN,  
ALL PERIPHERALS DISABLED  
3500  
8 MHz  
3000  
2500  
250 kHz and 500 kHz curves are  
bounded by 125 kHz and 1 MHz  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
2000  
1500  
1000  
500  
0
4 MHz  
2 MHz  
1 MHz  
125 kHz  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39599C-page 350  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 27-17:  
TYPICAL AND MAXIMUM IPD vs. VDD (-40°C TO +125°C), 31.25 kHz RC_RUN,  
ALL PERIPHERALS DISABLED  
100  
Max (+125°C)  
Max (+85°C)  
Typ (+25°C)  
10  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 27-18:  
TYPICAL IPD vs. VDD (+25°C), 125 kHz TO 8 MHz RC_IDLE MODE,  
ALL PERIPHERALS DISABLED  
800  
750  
700  
650  
250 kHz and 500 kHz curves are  
bounded by 125 kHz and 1 MHz  
8 MHz  
4 MHz  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
2 MHz  
1 MHz  
125 kHz  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2003 Microchip Technology Inc.  
DS39599C-page 351  
PIC18F2220/2320/4220/4320  
FIGURE 27-19:  
MAXIMUM IPD vs. VDD (-40°C TO +125°C), 125 kHz TO 8 MHz RC_IDLE,  
ALL PERIPHERALS DISABLED  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
8 MHz  
4 MHz  
250 kHz and 500 kHz curves are  
bounded by 125 kHz and 1 MHz  
2 MHz  
1 MHz  
125 kHz  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
100  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 27-20:  
TYPICAL AND MAXIMUM IPD vs. VDD (-40°C TO +125°C), 31.25 kHz RC_IDLE,  
ALL PERIPHERALS DISABLED  
100  
Max (+125°C)  
Max (+85°C)  
Typ (+25°C)  
10  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39599C-page 352  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 27-21:  
IPD SEC_RUN MODE, -10°C TO +70°C 32.768 kHz XTAL 2 X 22 pF,  
ALL PERIPHERALS DISABLED  
80  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
70  
60  
50  
40  
30  
20  
10  
0
Max (+70°C)  
Typ (+25°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 27-22:  
IPD SEC_IDLE, -10°C TO +70°C 32.768 kHz 2 X 22 pF,  
ALL PERIPHERALS DISABLED  
20  
18  
16  
14  
12  
10  
8
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max (+70°C)  
Typ (+25°C)  
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2003 Microchip Technology Inc.  
DS39599C-page 353  
PIC18F2220/2320/4220/4320  
FIGURE 27-23:  
TOTAL IPD, -40°C TO +125°C SLEEP MODE, ALL PERIPHERALS DISABLED  
100  
Max (+125°C)  
Max (+85°C)  
10  
1
0.1  
0.01  
Typ (+25°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.001  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 27-24:  
VOH vs. IOH OVER TEMPERATURE (-40°C TO +125°C), VDD = 3.0V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (+125°C)  
Typ (+25°C)  
Min (+125°C)  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
DS39599C-page 354  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 27-25:  
VOH vs. IOH OVER TEMPERATURE (-40°C TO +125°C), VDD = 5.0V  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (+125°C)  
Typ (+25°C)  
Min (+125°C)  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
FIGURE 27-26:  
VOL vs. IOL OVER TEMPERATURE (-40°C TO +125°C), VDD = 3.0V  
3.0  
Max (+125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (+85°C)  
Typ (+25°C)  
Min (+125°C)  
0.0  
0
5
10  
15  
20  
25  
IOL (-mA)  
2003 Microchip Technology Inc.  
DS39599C-page 355  
PIC18F2220/2320/4220/4320  
FIGURE 27-27:  
VOL vs. IOL OVER TEMPERATURE (-40°C TO +125°C), VDD = 5.0V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Max (+125°C)  
Max (+85°C)  
Typ (+25°C)  
Min (+125°C)  
0.0  
0
5
10  
15  
20  
25  
IOL (-mA)  
FIGURE 27-28:  
IPD TIMER1 OSCILLATOR, -10°C TO +70°C SLEEP MODE,  
TMR1 COUNTER DISABLED  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (-10°C to +70°C)  
Typ (+25°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39599C-page 356  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 27-29:  
IPD FSCM vs. VDD OVER TEMPERATURE PRI_IDLE, EC OSCILLATOR AT 32 kHz,  
-40°C TO +125°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (-40°C)  
Typ (+25°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD  
(V)  
FIGURE 27-30:  
IPD WDT, -40°C TO +125°C SLEEP MODE, ALL PERIPHERALS DISABLED  
14  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
12  
10  
8
Max (+125°C)  
6
Max (+85°C)  
Typ (+25°C)  
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD  
(V)  
2003 Microchip Technology Inc.  
DS39599C-page 357  
PIC18F2220/2320/4220/4320  
FIGURE 27-31:  
IPD LVD vs. VDD SLEEP MODE, LVD = 2.00V-2.12V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max (+125°C)  
Max (+85°C)  
Typ (+25°C)  
Low-Voltage Detection Range  
5
0
Normal Operating Range  
3.5 4.0  
2.0  
2.5  
3.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 27-32:  
IPD BOR vs. VDD, -40°C TO +125°C SLEEP MODE,  
BOR ENABLED AT 2.00V-2.16V  
40  
35  
30  
25  
20  
15  
10  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max (+125°C)  
Typ (+25°C)  
Device may be in Reset  
5
0
Device is Operating  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD (V)  
DS39599C-page 358  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
FIGURE 27-33:  
IPD A/D, -40°C TO +125°C SLEEP MODE, A/D ENABLED (NOT CONVERTING)  
10  
Max (+125°C)  
1
Max (+85°C)  
0.1  
0.01  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Typ (+25°C)  
0.001  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 27-34:  
AVERAGE FOSC vs. VDD FOR VARIOUS R'S EXTERNAL RC MODE,  
C = 20 pF, TEMPERATURE = +25°C  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Operation above 4 MHz is not recomended  
5.1K  
10K  
33K  
100K  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD  
(V)  
2003 Microchip Technology Inc.  
DS39599C-page 359  
PIC18F2220/2320/4220/4320  
FIGURE 27-35:  
AVERAGE FOSC vs. VDD FOR VARIOUS R'S EXTERNAL RC MODE,  
C = 100 pF, TEMPERATURE = +25°C  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
5.1K  
10K  
33K  
100K  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD  
(V)  
FIGURE 27-36:  
AVERAGE FOSC vs. VDD FOR VARIOUS R'S EXTERNAL RC MODE,  
C = 300 pF, TEMPERATURE = +25°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
5.1K  
10K  
33K  
100K  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD  
(V)  
DS39599C-page 360  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
28.0 PACKAGING INFORMATION  
28.1 Package Marking Information  
28-Lead SPDIP  
Example  
PIC18F2220-I/SP  
0310017  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC18F2320-E/SO  
0310017  
YYWWNNN  
40-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC18F4220-I/P  
0310017  
Legend: XX...X Customer specific information*  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
2003 Microchip Technology Inc.  
DS39599C-page 361  
PIC18F2220/2320/4220/4320  
Package Marking Information (Continued)  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F4320  
-I/PT  
0310017  
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F4220  
-I/ML  
0310017  
DS39599C-page 362  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
28.2 Package Details  
The following sections give the technical details of the packages.  
28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
L
A
c
B1  
β
A1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.150  
.130  
2.54  
3.81  
3.30  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
A2  
A1  
E
.140  
.160  
3.56  
4.06  
.125  
.015  
.300  
.275  
1.345  
.125  
.008  
.040  
.016  
.320  
.135  
3.18  
0.38  
7.62  
6.99  
34.16  
3.18  
0.20  
1.02  
3.43  
.310  
.285  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.295  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.87  
7.24  
8.26  
7.49  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
34.67  
3.30  
Tip to Seating Plane  
Lead Thickness  
L
c
0.29  
Upper Lead Width  
B1  
B
1.33  
Lower Lead Width  
0.41  
8.13  
5
0.48  
8.89  
10  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
5
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
2003 Microchip Technology Inc.  
DS39599C-page 363  
PIC18F2220/2320/4220/4320  
28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
E1  
p
D
B
2
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.050  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle Top  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
DS39599C-page 364  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
40-Lead Plastic Dual In-line (P) – 600 mil (PDIP)  
E1  
D
2
1
α
n
E
A2  
A
L
c
B1  
B
β
A1  
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
40  
MAX  
n
p
Number of Pins  
Pitch  
40  
.100  
.175  
.150  
2.54  
Top to Seating Plane  
A
.160  
.190  
.160  
4.06  
3.56  
4.45  
3.81  
4.83  
4.06  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.140  
.015  
.595  
.530  
2.045  
.120  
.008  
.030  
.014  
.620  
5
0.38  
15.11  
13.46  
51.94  
3.05  
0.20  
0.76  
0.36  
15.75  
5
.600  
.545  
2.058  
.130  
.012  
.050  
.018  
.650  
10  
.625  
.560  
2.065  
.135  
.015  
.070  
.022  
.680  
15  
15.24  
13.84  
52.26  
3.30  
0.29  
1.27  
0.46  
16.51  
10  
15.88  
14.22  
52.45  
3.43  
0.38  
1.78  
0.56  
17.27  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
§
eB  
α
β
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
5
10  
15  
5
10  
15  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-011  
Drawing No. C04-016  
2003 Microchip Technology Inc.  
DS39599C-page 365  
PIC18F2220/2320/4220/4320  
44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
°
CH x 45  
α
A
c
φ
β
A1  
A2  
L
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.031  
11  
0.80  
11  
Pins per Side  
Overall Height  
n1  
A
.039  
.037  
.002  
.018  
.043  
.039  
.004  
.024  
.039  
3.5  
.047  
1.00  
0.95  
1.10  
1.00  
0.10  
0.60  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.041  
.006  
.030  
1.05  
0.15  
0.75  
§
0.05  
0.45  
1.00  
0
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.004  
.012  
.025  
5
7
.482  
.482  
.398  
.398  
.008  
.017  
.045  
15  
3.5  
12.00  
12.00  
10.00  
10.00  
0.15  
0.38  
0.89  
10  
7
12.25  
12.25  
10.10  
10.10  
0.20  
0.44  
1.14  
15  
Overall Width  
E
D
.472  
.472  
.394  
.394  
.006  
.015  
.035  
10  
11.75  
11.75  
9.90  
9.90  
0.09  
0.30  
0.64  
5
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-076  
DS39599C-page 366  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
44-Lead Plastic Quad Flat No Lead Package (ML) 8x8 mm Body (QFN)  
EXPOSED  
METAL  
PAD  
E
p
D
D2  
2
1
B
n
PIN 1  
INDEX ON  
EXPOSED PAD  
OPTIONAL PIN 1  
INDEX ON  
TOP MARKING  
E2  
L
(PROFILE MAY VARY)  
TOP VIEW  
BOTTOM VIEW  
DETAIL: CONTACT VARIANTS  
A
A1  
(A3)  
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Contacts  
44  
1
2
1
Pitch  
.026 BSC  
.035  
.001  
.010 REF  
0.65 BSC  
Overall Height  
Standoff  
A
A1  
(A3)  
E
.031  
.039  
0.80  
0.90  
1.00  
.000  
.002  
0
0.02  
0.05  
2
Base Thickness  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
0.25 REF  
.309  
.246  
.309  
.246  
.008  
.014  
.315  
.268  
.315  
.268  
.013  
.016  
.321  
.274  
.321  
.274  
.013  
.019  
7.85  
6.25  
7.85  
6.25  
0.20  
0.35  
8.00  
6.80  
8.00  
6.80  
0.33  
0.40  
8.15  
6.95  
8.15  
6.95  
0.35  
0.48  
E2  
D
D2  
B
L
*Controlling Parameter  
Notes:  
1. BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
2. REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
3. Contact profiles may vary.  
4. JEDEC equivalent: M0-220  
Drawing No. C04-103  
2003 Microchip Technology Inc.  
DS39599C-page 367  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 368  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
APPENDIX A: REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
Revision A (June 2002)  
The differences between the devices listed in this data  
sheet are shown in Table B-1.  
Original data sheet for PIC18F2X20/4X20 devices.  
Revision B (October 2002)  
This revision includes major changes to Section 2.0  
“Oscillator Configurations” and Section 3.0 “Power  
Managed Modes”, updates to the Electrical Specifica-  
tions in Section 26.0 “Electrical Characteristics”  
and minor corrections to the data sheet text.  
Revision C (October 2003)  
This revision includes updates to the Electrical Specifi-  
cations in Section 26.0 “Electrical Characteristics”  
and to the DC Characteristics Graphs and Charts in  
Section 27.0 “DC and AC Characteristics Graphs  
and Tables” and minor corrections to the data sheet  
text.  
TABLE B-1:  
DEVICE DIFFERENCES  
Features  
PIC18F2220  
PIC18F2320  
PIC18F4220  
PIC18F4320  
Program Memory (Bytes)  
Program Memory (Instructions)  
Interrupt Sources  
4096  
8192  
4096  
19  
4096  
2048  
20  
8192  
4096  
20  
2048  
19  
I/O Ports  
Ports A, B, C, (E)  
2
Ports A, B, C, (E) Ports A, B, C, D, E Ports A, B, C, D, E  
Capture/Compare/PWM Modules  
2
1
1
Enhanced Capture/Compare/  
PWM Modules  
0
0
1
1
Parallel Communications (PSP)  
10-bit Analog-to-Digital Module  
No  
No  
Yes  
Yes  
10 input channels 10 input channels 13 input channels 13 input channels  
40-pin PDIP  
44-pin TQFP  
44-pin QFN  
40-pin PDIP  
44-pin TQFP  
44-pin QFN  
28-pin SPDIP  
28-pin SOIC  
28-pin SPDIP  
28-pin SOIC  
Packages  
2003 Microchip Technology Inc.  
DS39599C-page 369  
PIC18F2220/2320/4220/4320  
APPENDIX C: CONVERSION  
CONSIDERATIONS  
APPENDIX D: MIGRATION FROM  
BASELINE TO  
ENHANCED DEVICES  
This appendix discusses the considerations for con-  
verting from previous versions of a device to the ones  
listed in this data sheet. Typically, these changes are  
due to the differences in the process technology used.  
An example of this type of conversion is from a  
PIC16C74A to a PIC16C74B.  
This section discusses how to migrate from a Baseline  
device (i.e., PIC16C5X) to an Enhanced MCU device  
(i.e., PIC18FXXX).  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
Not Applicable  
Not Currently Available  
DS39599C-page 370  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
APPENDIX E: MIGRATION FROM  
APPENDIX F: MIGRATION FROM  
HIGH-END TO  
MID-RANGE TO  
ENHANCED DEVICES  
ENHANCED DEVICES  
A detailed discussion of the differences between the  
mid-range MCU devices (i.e., PIC16CXXX) and the  
enhanced devices (i.e., PIC18FXXX) is provided in  
AN716, “Migrating Designs from PIC16C74A/74B to  
PIC18C442.” The changes discussed, while device  
specific, are generally applicable to all mid-range to  
enhanced device migrations.  
A detailed discussion of the migration pathway and  
differences between the high-end MCU devices (i.e.,  
PIC17CXXX) and the enhanced devices (i.e.,  
PIC18FXXX) is provided in AN726, “PIC17CXXX to  
PIC18CXXX Migration.” This Application Note is  
available as Literature Number DS00726.  
This Application Note is available as Literature Number  
DS00716.  
2003 Microchip Technology Inc.  
DS39599C-page 371  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 372  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
INDEX  
Compare Mode Operation ....................................... 136  
External Power-on Reset Circuit  
A
A/D ................................................................................... 211  
A/D Converter Interrupt, Configuring ....................... 215  
Acquisition Requirements ........................................ 216  
ADCON0 Register .................................................... 211  
ADCON1 Register .................................................... 211  
ADCON2 Register .................................................... 211  
ADRESH Register ............................................ 211, 214  
ADRESL Register .................................................... 211  
Analog Port Pins, Configuring .................................. 218  
Associated Registers ............................................... 220  
Automatic Acquisition Time ...................................... 217  
Calculating the Minimum Required  
Acquisition Time ............................................... 216  
Configuring the Module ............................................ 215  
Conversion Clock (TAD) ........................................... 217  
Conversion Status (GO/DONE Bit) .......................... 214  
Conversions ............................................................. 219  
Converter Characteristics ........................................ 341  
Operation in Power Managed Modes ...................... 218  
Special Event Trigger (CCP) ............................ 136, 220  
Use of the CCP2 Trigger .......................................... 220  
VREF+ and VREF- References .................................. 216  
Absolute Maximum Ratings ............................................. 305  
AC (Timing) Characteristics ............................................. 323  
Load Conditions for Device  
Timing Specifications ....................................... 324  
Parameter Symbology ............................................. 323  
Temperature and Voltage Specifications ................. 324  
Timing Conditions .................................................... 324  
Access Bank ...................................................................... 65  
ACKSTAT Status Flag ..................................................... 185  
ADCON0 Register ............................................................ 211  
GO/DONE Bit ........................................................... 214  
ADCON1 Register ............................................................ 211  
ADCON2 Register ............................................................ 211  
ADDLW ............................................................................ 261  
Addressable Universal Synchronous Asynchronous  
Receiver Transmitter. See USART.  
(Slow VDD Power-up) ........................................ 44  
Fail-Safe Clock Monitor ........................................... 248  
Generic I/O Port Operation ...................................... 101  
Interrupt Logic ............................................................ 88  
Low-Voltage Detect (LVD) ....................................... 232  
Low-Voltage Detect (LVD) with External Input ........ 232  
MCLR/VPP/RE3 Pin ................................................. 111  
2
MSSP (I C Master Mode) ........................................ 179  
2
MSSP (I C Mode) .................................................... 164  
MSSP (SPI Mode) ................................................... 155  
On-Chip Reset Circuit ................................................ 43  
PIC18F2220/2320 ....................................................... 9  
PIC18F4220/4320 ..................................................... 10  
PLL ............................................................................ 20  
PORTC (Peripheral Output Override) ...................... 107  
PORTD and PORTE (Parallel Slave Port) ............... 114  
PWM (Enhanced) .................................................... 143  
PWM (Standard) ...................................................... 138  
RA3:RA0 and RA5 Pins ........................................... 102  
RA4/T0CKI Pin ........................................................ 102  
RA6 Pin ................................................................... 102  
RA7 Pin ................................................................... 102  
RB2:RB0 Pins .......................................................... 105  
RB3/CCP2 Pin ......................................................... 105  
RB4 Pin ................................................................... 105  
RB7:RB5 Pins .......................................................... 104  
RD4:RD0 Pins ......................................................... 110  
RD7:RD5 Pins ......................................................... 109  
RE2:RE0 Pins .......................................................... 111  
Reads from Flash Program Memory .......................... 75  
System Clock ............................................................. 25  
Table Read Operation ............................................... 71  
Table Write Operation ................................................ 72  
Table Writes to Flash Program Memory .................... 77  
Timer0 in 16-bit Mode .............................................. 118  
Timer0 in 8-bit Mode ................................................ 118  
Timer1 ..................................................................... 122  
Timer1 (16-bit Read/Write Mode) ............................ 122  
Timer2 ..................................................................... 128  
Timer3 ..................................................................... 130  
Timer3 (16-bit Read/Write Mode) ............................ 130  
USART Receive ....................................................... 204  
USART Transmit ...................................................... 202  
Watchdog Timer ...................................................... 245  
BN .................................................................................... 264  
BNC ................................................................................. 265  
BNN ................................................................................. 265  
BNOV ............................................................................... 266  
BNZ .................................................................................. 266  
BOR. See Brown-out Reset.  
ADDWF ............................................................................ 261  
ADDWFC ......................................................................... 262  
ADRESH Register ............................................................ 211  
ADRESL Register .................................................... 211, 214  
Analog-to-Digital Converter. See A/D.  
ANDLW ............................................................................ 262  
ANDWF ............................................................................ 263  
Assembler  
MPASM Assembler .................................................. 299  
B
Bank Select Register (BSR) ............................................... 65  
Baud Rate Generator ....................................................... 181  
BC .................................................................................... 263  
BCF .................................................................................. 264  
BF Status Flag ................................................................. 185  
Block Diagrams  
BOV ................................................................................. 269  
BRA ................................................................................. 267  
BRG. See Baud Rate Generator.  
Brown-out Reset (BOR) ..............................................44, 237  
BSF .................................................................................. 267  
BTFSC ............................................................................. 268  
BTFSS ............................................................................. 268  
BTG ................................................................................. 269  
BZ .................................................................................... 270  
A/D ........................................................................... 214  
Analog Input Model .................................................. 215  
Baud Rate Generator ............................................... 181  
Capture Mode Operation ......................................... 135  
Comparator I/O Operating Modes ............................ 222  
Comparator Output .................................................. 224  
Comparator Voltage Reference ............................... 228  
2003 Microchip Technology Inc.  
DS39599C-page 373  
PIC18F2220/2320/4220/4320  
Comparator ...................................................................... 221  
C
Analog Input Connection Considerations ................ 225  
Associated Registers ............................................... 226  
Configuration ........................................................... 221  
Effects of a Reset .................................................... 225  
Interrupts .................................................................. 224  
Operation ................................................................. 223  
Operation in Power Managed Modes ...................... 225  
Outputs .................................................................... 223  
Reference ................................................................ 223  
Response Time ........................................................ 223  
Comparator Specifications ............................................... 321  
Comparator Voltage Reference ....................................... 227  
Accuracy and Error .................................................. 228  
Associated Registers ............................................... 229  
Configuring .............................................................. 227  
Connection Considerations ...................................... 228  
Effects of a Reset .................................................... 228  
Operation in Power Managed Modes ...................... 228  
Compare (CCP Module) .................................................. 136  
Associated Registers ............................................... 137  
CCP Pin Configuration ............................................. 136  
CCPR1 Register ...................................................... 136  
Software Interrupt .................................................... 136  
Special Event Trigger .......................................136, 220  
Timer1/Timer3 Mode Selection ................................ 136  
Compare (ECCP Mode) ................................................... 142  
Computed GOTO ............................................................... 59  
Configuration Bits ............................................................ 237  
Configuration Register Protection .................................... 254  
Context Saving During Interrupts ....................................... 99  
Control Registers  
C Compilers  
MPLAB C17 .............................................................300  
MPLAB C18 .............................................................300  
MPLAB C30 .............................................................300  
CALL ................................................................................270  
Capture (CCP Module) .....................................................135  
Associated Registers ...............................................137  
CCP Pin Configuration .............................................135  
CCPR1H:CCPR1L Registers ...................................135  
Software Interrupt .....................................................135  
Timer1/Timer3 Mode Selection ................................135  
Capture (ECCP Module) ..................................................142  
Capture/Compare/PWM (CCP) ........................................133  
Capture Mode. See Capture.  
CCP1 ........................................................................134  
CCPR1H Register ............................................134  
CCPR1L Register ............................................134  
CCP2 ........................................................................134  
CCPR2H Register ............................................134  
CCPR2L Register ............................................134  
Compare Mode. See Compare.  
Interaction of Two CCP Modules .............................134  
PWM Mode. See PWM.  
Timer Resources ......................................................134  
Clock Sources ....................................................................24  
Selection Using OSCCON Register ...........................24  
Clocking Scheme/Instruction Cycle ....................................57  
CLRF ................................................................................271  
CLRWDT ..........................................................................271  
Code Examples  
16 x 16 Signed Multiply Routine .................................86  
16 x 16 Unsigned Multiply Routine .............................86  
8 x 8 Signed Multiply Routine .....................................85  
8 x 8 Unsigned Multiply Routine .................................85  
Changing Between Capture Prescalers ...................135  
Computed GOTO Using an Offset Value ...................59  
Data EEPROM Read .................................................83  
Data EEPROM Refresh Routine ................................84  
Data EEPROM Write ..................................................83  
Erasing a Flash Program Memory Row .....................76  
Fast Register Stack ....................................................56  
How to Clear RAM (Bank 1) Using  
EECON1 and EECON2 ............................................. 72  
Conversion Considerations .............................................. 370  
CPFSEQ .......................................................................... 272  
CPFSGT .......................................................................... 273  
CPFSLT ........................................................................... 273  
Crystal Oscillator/Ceramic Resonator ................................ 19  
D
Data EEPROM Code Protection ...................................... 254  
Data EEPROM Memory ..................................................... 81  
Associated Registers ................................................. 84  
EEADR Register ........................................................ 81  
EECON1 and EECON2 Registers ............................. 81  
Operation During Code-Protect ................................. 84  
Protection Against Spurious Write ............................. 83  
Reading ..................................................................... 83  
Using .......................................................................... 84  
Write Verify ................................................................ 83  
Writing ........................................................................ 83  
Data Memory ..................................................................... 59  
General Purpose Registers ....................................... 59  
Map for PIC18F2X20/4X20 ........................................ 60  
Special Function Registers ........................................ 61  
DAW ................................................................................ 274  
DC and AC Characteristics  
Graphs and Tables .................................................. 343  
DC Characteristics ........................................................... 318  
Power-Down and Supply Current ............................ 309  
Supply Voltage ......................................................... 308  
DCFSNZ .......................................................................... 275  
DECF ............................................................................... 274  
DECFSZ .......................................................................... 275  
Indirect Addressing ............................................66  
Implementing a Real-Time Clock Using a  
Timer1 Interrupt Service ..................................125  
Initializing PORTA ....................................................101  
Initializing PORTB ....................................................104  
Initializing PORTC ....................................................107  
Initializing PORTD ....................................................109  
Initializing PORTE ....................................................111  
Loading the SSPBUF (SSPSR) Register .................158  
Reading a Flash Program Memory Word ...................75  
Saving Status, WREG and BSR Registers  
in RAM ...............................................................99  
Writing to Flash Program Memory ....................... 7879  
Code Protection ....................................................... 237, 251  
COMF ...............................................................................272  
DS39599C-page 374  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Demonstration Boards  
G
PICDEM 1 ................................................................ 302  
PICDEM 17 .............................................................. 302  
PICDEM 18R PIC18C601/801 ................................. 303  
PICDEM 2 Plus ........................................................ 302  
PICDEM 3 PIC16C92X ............................................ 302  
PICDEM 4 ................................................................ 302  
PICDEM LIN PIC16C43X ........................................ 303  
PICDEM USB PIC16C7X5 ....................................... 303  
PICDEM.net Internet/Ethernet ................................. 302  
Development Support ...................................................... 299  
Device Differences ........................................................... 369  
Device Overview .................................................................. 7  
Features (table) ............................................................ 8  
New Core Features ...................................................... 7  
Other Special Features ................................................ 7  
Direct Addressing ............................................................... 67  
GOTO .............................................................................. 276  
H
Hardware Multiplier ............................................................ 85  
Introduction ................................................................ 85  
Operation ................................................................... 85  
Performance Comparison .......................................... 85  
HSPLL ............................................................................... 20  
I
I/O Ports ........................................................................... 101  
2
I C Mode  
ACK Pulse ........................................................168, 169  
Acknowledge Sequence Timing .............................. 188  
Baud Rate Generator .............................................. 181  
Bus Collision During a Repeated  
Start Condition ................................................. 192  
Bus Collision During a Start Condition ..................... 190  
Bus Collision During a Stop Condition ..................... 193  
Clock Arbitration ...................................................... 182  
Clock Stretching ....................................................... 174  
Effect of a Reset ...................................................... 189  
General Call Address Support ................................. 178  
Master Mode ............................................................ 179  
Master Mode (Reception, 7-bit Address) ................. 187  
Master Mode Operation ........................................... 180  
Master Mode Reception ........................................... 185  
Master Mode Repeated Start  
E
ECCP ............................................................................... 141  
Auto-Shutdown ........................................................ 149  
and Automatic Restart ..................................... 151  
Capture and Compare Modes .................................. 142  
Outputs .................................................................... 142  
Standard PWM Mode ............................................... 142  
Start-up Considerations ........................................... 151  
Effects of Power Managed Modes on  
Various Clock Sources ............................................... 27  
Electrical Characteristics .................................................. 305  
Enhanced Capture/Compare/PWM (ECCP) .................... 141  
Capture Mode. See Capture (ECCP Module).  
Condition Timing .............................................. 184  
Master Mode Start Condition Timing ....................... 183  
Master Mode Transmission ..................................... 185  
Multi-Master Communication, Bus Collision  
PWM Mode. See PWM (ECCP Module).  
Enhanced CCP Auto-Shutdown ....................................... 149  
Enhanced PWM Mode. See PWM (ECCP Module).  
Equations  
16 x 16 Signed Multiplication Algorithm ..................... 86  
16 x 16 Unsigned Multiplication Algorithm ................. 86  
A/D Acquisition Time ................................................ 216  
A/D Minimum Holding Capacitor .............................. 216  
Errata ................................................................................... 5  
Evaluation and Programming Tools ................................. 303  
External Clock Input ........................................................... 21  
and Bus Arbitration .......................................... 189  
Multi-Master Mode ................................................... 189  
Operation ................................................................. 168  
Operation in Power Managed Mode ........................ 189  
Read/Write Bit Information (R/W Bit) ................168, 169  
Registers ................................................................. 164  
Serial Clock (RC3/SCK/SCL) ................................... 169  
Slave Mode .............................................................. 168  
Addressing ....................................................... 168  
Reception ........................................................ 169  
Transmission ................................................... 169  
Stop Condition Timing ............................................. 188  
ID Locations ..............................................................237, 254  
INCF ................................................................................ 276  
INCFSZ ............................................................................ 277  
In-Circuit Debugger .......................................................... 254  
In-Circuit Serial Programming (ICSP) .......................237, 254  
Indirect Addressing  
INDF and FSR Registers ........................................... 66  
Operation ................................................................... 66  
Indirect Addressing Operation ........................................... 67  
Indirect File Operand ......................................................... 59  
INFSNZ ............................................................................ 277  
Initialization Conditions for all Registers .......................4649  
Instruction Cycle ................................................................ 57  
Instruction Flow/Pipelining ................................................. 57  
Instruction Format ............................................................ 257  
F
Fail-Safe Clock Monitor ............................................ 237, 248  
Interrupts in Power Managed Modes ....................... 250  
POR or Wake-up from Sleep ................................... 250  
WDT During Oscillator Failure ................................. 248  
Fast Register Stack ............................................................ 56  
Firmware Instructions ....................................................... 255  
Flash Program Memory ...................................................... 71  
Associated Registers ................................................. 79  
Control Registers ....................................................... 72  
Erase Sequence ........................................................ 76  
Erasing ....................................................................... 76  
Operation During Code-Protect ................................. 79  
Reading ...................................................................... 75  
TABLAT Register ....................................................... 74  
Table Pointer .............................................................. 74  
Boundaries Based on Operation ........................ 74  
Table Pointer Boundaries .......................................... 74  
Table Reads and Table Writes .................................. 71  
Unexpected Termination of Write Operation .............. 79  
Write Verify ................................................................ 79  
Writing to .................................................................... 77  
FSCM. See Fail-Safe Clock Monitor.  
2003 Microchip Technology Inc.  
DS39599C-page 375  
PIC18F2220/2320/4220/4320  
Instruction Set ..................................................................255  
ADDLW ....................................................................261  
ADDWF ....................................................................261  
ADDWFC .................................................................262  
ANDLW ....................................................................262  
ANDWF ....................................................................263  
BC ............................................................................263  
BCF ..........................................................................264  
BN ............................................................................264  
BNC ..........................................................................265  
BNN ..........................................................................265  
BNOV .......................................................................266  
BNZ ..........................................................................266  
BOV ..........................................................................269  
BRA ..........................................................................267  
BSF ..........................................................................267  
BTFSC .....................................................................268  
BTFSS ......................................................................268  
BTG ..........................................................................269  
BZ .............................................................................270  
CALL ........................................................................270  
CLRF ........................................................................271  
CLRWDT ..................................................................271  
COMF .......................................................................272  
CPFSEQ ..................................................................272  
CPFSGT ...................................................................273  
CPFSLT ...................................................................273  
DAW .........................................................................274  
DCFSNZ ...................................................................275  
DECF .......................................................................274  
DECFSZ ...................................................................275  
GOTO .......................................................................276  
INCF .........................................................................276  
INCFSZ ....................................................................277  
INFSNZ ....................................................................277  
IORLW .....................................................................278  
IORWF .....................................................................278  
LFSR ........................................................................279  
MOVF .......................................................................279  
MOVFF .....................................................................280  
MOVLB .....................................................................280  
MOVLW ....................................................................281  
MOVWF ...................................................................281  
MULLW ....................................................................282  
MULWF ....................................................................282  
NEGF .......................................................................283  
NOP .........................................................................283  
POP ..........................................................................284  
PUSH .......................................................................284  
RCALL ......................................................................285  
Reset ........................................................................285  
RETFIE ....................................................................286  
RETLW .....................................................................286  
RETURN ..................................................................287  
RLCF ........................................................................287  
RLNCF .....................................................................288  
RRCF .......................................................................288  
RRNCF .....................................................................289  
SETF ........................................................................289  
SLEEP ......................................................................290  
SUBFWB ..................................................................290  
SUBLW .................................................................... 291  
SUBWF .................................................................... 291  
SUBWFB ................................................................. 292  
SWAPF .................................................................... 293  
TBLRD ..................................................................... 294  
TBLWT ..................................................................... 295  
TSTFSZ ................................................................... 296  
XORLW .................................................................... 296  
XORWF ................................................................... 297  
Summary Table ....................................................... 258  
INTCON Register  
RBIF Bit ................................................................... 104  
INTCON Registers ............................................................. 89  
2
Inter-Integrated Circuit. See I C.  
Internal Oscillator Block ..................................................... 22  
Adjustment ................................................................. 22  
INTIO Modes ............................................................. 22  
INTRC Output Frequency .......................................... 22  
OSCTUNE Register ................................................... 22  
Internal RC Oscillator  
Use with WDT .......................................................... 245  
Interrupt Sources ............................................................. 237  
A/D Conversion Complete ....................................... 215  
Capture Complete (CCP) ......................................... 135  
Compare Complete (CCP) ....................................... 136  
Interrupt-on-Change (RB7:RB4) .............................. 104  
INTn Pin ..................................................................... 99  
PORTB, Interrupt-on-Change .................................... 99  
TMR0 ......................................................................... 99  
TMR1 Overflow ........................................................ 121  
TMR2 to PR2 Match ................................................ 128  
TMR2 to PR2 Match (PWM) .............................127, 138  
TMR3 Overflow .................................................129, 131  
USART Receive/Transmit Complete ....................... 195  
Interrupts ............................................................................ 87  
Interrupts, Enable Bits  
CCP1 Enable (CCP1IE Bit) ..................................... 135  
Interrupts, Flag Bits  
CCP1 Flag (CCP1IF Bit) .......................................... 135  
CCP1IF Flag (CCP1IF Bit) ....................................... 136  
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) ..... 104  
INTOSC Frequency Drift .................................................... 40  
INTOSC, INTRC. See Internal Oscillator Block.  
IORLW ............................................................................. 278  
IORWF ............................................................................. 278  
IPR Registers ..................................................................... 96  
L
LFSR ................................................................................ 279  
Look-up Tables .................................................................. 59  
Low-Voltage Detect ......................................................... 231  
Characteristics ......................................................... 322  
Effects of a Reset .................................................... 235  
Operation ................................................................. 234  
Current Consumption ....................................... 235  
Reference Voltage Set Point ........................... 235  
Operation During Sleep ........................................... 235  
Low-Voltage ICSP Programming ..................................... 254  
LVD. See Low-Voltage Detect.  
DS39599C-page 376  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Oscillator Start-up Timer (OST) ............................27, 44, 237  
Oscillator Switching ........................................................... 24  
Oscillator Transitions ......................................................... 27  
Oscillator, Timer1 ......................................................121, 131  
Oscillator, Timer3 ............................................................. 129  
M
Master Synchronous Serial Port (MSSP). See MSSP.  
Memory Organization ......................................................... 53  
Data Memory ............................................................. 59  
Program Memory ....................................................... 53  
Memory Programming Requirements .............................. 320  
Migration from Baseline to Enhanced Devices ................ 370  
Migration from High-End to Enhanced Devices ............... 371  
Migration from Mid-Range to Enhanced Devices ............. 371  
MOVF ............................................................................... 279  
MOVFF ............................................................................. 280  
MOVLB ............................................................................. 280  
MOVLW ............................................................................ 281  
MOVWF ........................................................................... 281  
MPLAB ASM30 Assembler, Linker, Librarian .................. 300  
MPLAB ICD 2 In-Circuit Debugger ................................... 301  
MPLAB ICE 2000 High Performance  
Universal In-Circuit Emulator ................................... 301  
MPLAB ICE 4000 High Performance  
Universal In-Circuit Emulator ................................... 301  
MPLAB Integrated Development  
Environment Software .............................................. 299  
MPLINK Object Linker/MPLIB Object Librarian ............... 300  
MSSP ............................................................................... 155  
Control Registers (General) ..................................... 155  
Enabling SPI I/O ...................................................... 159  
P
Packaging Information ..................................................... 361  
Marking .............................................................361, 362  
Parallel Slave Port (PSP) ..........................................109, 114  
Associated Registers ............................................... 115  
CS (Chip Select) ...............................................113, 114  
PORTD .................................................................... 114  
RD (Read Input) ................................................113, 114  
RE0/AN5/RD Pin ..................................................... 113  
RE1/AN6/WR Pin ..................................................... 113  
RE2/AN7/CS Pin ...................................................... 113  
Select (PSPMODE Bit) .....................................109, 114  
WR (Write Input) ...............................................113, 114  
PICkit 1 Flash Starter Kit ................................................. 303  
PICSTART Plus Development Programmer .................... 301  
PIE Registers ..................................................................... 94  
Pin Functions  
MCLR/VPP/RE3 ....................................................11, 14  
OSC1/CLKI/RA7 ...................................................11, 14  
OSC2/CLKO/RA6 .................................................11, 14  
RA0/AN0 ...............................................................11, 14  
RA1/AN1 ...............................................................11, 14  
RA2/AN2/VREF-/CVREF .........................................11, 14  
RA3/AN3/VREF+ ...................................................11, 14  
RA4/T0CKI/C1OUT ..............................................11, 14  
RA5/AN4/SS/LVDIN/C2OUT ................................11, 14  
RB0/AN12/INT0 ....................................................12, 15  
RB1/AN10/INT1 ....................................................12, 15  
RB2/AN8/INT2 ......................................................12, 15  
RB3/AN9/CCP2 ....................................................12, 15  
RB4/AN11/KBI0 ....................................................12, 15  
RB5/KBI1/PGM .....................................................12, 15  
RB6/KBI2/PGC .....................................................12, 15  
RB7/KBI3/PGD .......................................................... 12  
RB7/PGD ................................................................... 15  
RC0/T1OSO/T1CKI ..............................................13, 16  
RC1/T1OSI/CCP2 .................................................13, 16  
RC2/CCP1/P1A ....................................................13, 16  
RC3/SCK/SCL ......................................................13, 16  
RC4/SDI/SDA .......................................................13, 16  
RC5/SDO ..............................................................13, 16  
RC6/TX/CK ...........................................................13, 16  
RC7/RX/DT ...........................................................13, 16  
RD0/PSP0 ................................................................. 17  
RD1/PSP1 ................................................................. 17  
RD2/PSP2 ................................................................. 17  
RD3/PSP3 ................................................................. 17  
RD4/PSP4 ................................................................. 17  
RD5/PSP5/P1B ......................................................... 17  
RD6/PSP6/P1C ......................................................... 17  
RD7/PSP7/P1D ......................................................... 17  
RE0/AN5/RD .............................................................. 18  
RE1/AN6/WR ............................................................. 18  
RE2/AN7/CS .............................................................. 18  
RE3 ............................................................................ 18  
VDD .......................................................................13, 18  
VSS .......................................................................13, 18  
2
I C Master Mode ...................................................... 179  
2
I C Mode  
2
I C Slave Mode ........................................................ 168  
Operation ................................................................. 158  
Overview .................................................................. 155  
Slave Select Control ................................................ 161  
SPI Master Mode ..................................................... 160  
SPI Master/Slave Connection .................................. 159  
SPI Mode ................................................................. 155  
SPI Slave Mode ....................................................... 161  
Typical Connection .................................................. 159  
MULLW ............................................................................ 282  
MULWF ............................................................................ 282  
N
NEGF ............................................................................... 283  
NOP ................................................................................. 283  
O
Opcode Field Descriptions ............................................... 256  
OPTION_REG Register  
PSA Bit ..................................................................... 119  
T0CS Bit ................................................................... 119  
T0PS2:T0PS0 Bits ................................................... 119  
T0SE Bit ................................................................... 119  
Oscillator Configuration ...................................................... 19  
EC .............................................................................. 19  
ECIO .......................................................................... 19  
HS .............................................................................. 19  
HSPLL ........................................................................ 19  
Internal Oscillator Block ............................................. 22  
INTIO1 ....................................................................... 19  
INTIO2 ....................................................................... 19  
LP ............................................................................... 19  
RC .............................................................................. 19  
RCIO .......................................................................... 19  
XT .............................................................................. 19  
Oscillator Selection .......................................................... 237  
2003 Microchip Technology Inc.  
DS39599C-page 377  
PIC18F2220/2320/4220/4320  
Pinout I/O Descriptions  
Program Memory  
PIC18F2220/2320 ......................................................11  
PIC18F4220/4320 ......................................................14  
PIR Registers .....................................................................92  
PLL Lock Time-out .............................................................44  
Pointer, FSRn .....................................................................66  
POP ..................................................................................284  
POR. See Power-on Reset.  
Instructions ................................................................ 58  
Two-Word .......................................................... 58  
Interrupt Vector .......................................................... 53  
Map and Stack for PIC18F2220/4220 ....................... 53  
Map and Stack for PIC18F2320/4320 ....................... 53  
Reset Vector .............................................................. 53  
Program Memory Code Protection .................................. 252  
Program Verification ........................................................ 251  
Program Verification and Code Protection  
Associated Registers ............................................... 251  
Programming, Device Instructions ................................... 255  
PSP. See Parallel Slave Port.  
Pulse Width Modulation. See PWM (CCP Module)  
and PWM (ECCP Module).  
PUSH ............................................................................... 284  
PUSH and POP Instructions .............................................. 55  
PWM (CCP Module) ........................................................ 138  
Associated Registers ............................................... 139  
CCPR1H:CCPR1L Registers ................................... 138  
Duty Cycle ............................................................... 138  
Example Frequencies/Resolutions .......................... 139  
Period ...................................................................... 138  
Setup for PWM Operation ........................................ 139  
TMR2 to PR2 Match .........................................127, 138  
PWM (ECCP Module) ...................................................... 143  
Associated Registers ............................................... 153  
Direction Change in Full-Bridge Output Mode ......... 147  
Effects of a Reset .................................................... 152  
Full-Bridge Application Example .............................. 147  
Full-Bridge Mode ..................................................... 146  
Half-Bridge Mode ..................................................... 145  
Half-Bridge Output Mode Applications Example ...... 145  
Operation in Power Managed Modes ...................... 152  
Operation with Fail-Safe Clock Monitor ................... 152  
Output Configurations .............................................. 143  
Output Relationships (Active-High State) ................ 144  
Output Relationships (Active-Low State) ................. 144  
Programmable Dead Band Delay ............................ 149  
Setup for Operation ................................................. 152  
Shoot-Through Current ............................................ 149  
Start-up Considerations ........................................... 151  
PORTA  
Associated Registers ...............................................103  
LATA Register ..........................................................101  
PORTA Register ......................................................101  
TRISA Register ........................................................101  
PORTB  
Associated Registers ...............................................106  
LATB Register ..........................................................104  
PORTB Register ......................................................104  
RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) ........104  
TRISB Register ........................................................104  
PORTC  
Associated Registers ...............................................108  
LATC Register ..........................................................107  
PORTC Register ......................................................107  
TRISC Register ........................................................107  
PORTD  
Associated Registers ...............................................110  
LATD Register ..........................................................109  
Parallel Slave Port (PSP) Function ..........................109  
PORTD Register ......................................................109  
TRISD Register ........................................................109  
PORTE  
Analog Port Pins ......................................................113  
Associated Registers ...............................................113  
LATE Register ..........................................................111  
PORTE Register ......................................................111  
PSP Mode Select (PSPMODE Bit) ..........................109  
RE0/AN5/RD Pin ......................................................113  
RE1/AN6/WR Pin .....................................................113  
RE2/AN7/CS Pin ......................................................113  
TRISE Register ........................................................111  
Postscaler, WDT  
Assignment (PSA Bit) ...............................................119  
Rate Select (T0PS2:T0PS0 Bits) .............................119  
Power Managed Modes .....................................................29  
Entering ......................................................................30  
Idle Modes ..................................................................31  
Run Modes .................................................................36  
Selecting ....................................................................29  
Sleep Mode ................................................................31  
Summary (table) .........................................................29  
Wake-up from .............................................................38  
Power-on Reset (POR) .............................................. 44, 237  
Power-up Delays ................................................................27  
Power-up Timer (PWRT) ...................................... 27, 44, 237  
Prescaler, Capture ...........................................................135  
Prescaler, Timer0 .............................................................119  
Assignment (PSA Bit) ...............................................119  
Rate Select (T0PS2:T0PS0 Bits) .............................119  
Prescaler, Timer2 .............................................................139  
PRO MATE II Universal Device Programmer ...................301  
Product Identification System ...........................................385  
Program Counter  
Q
Q Clock ............................................................................ 139  
R
RAM. See Data Memory.  
RC Oscillator ...................................................................... 21  
RCIO Oscillator Mode ................................................ 21  
RCALL ............................................................................. 285  
RCON Register  
Bit Status During Initialization .................................... 45  
Bits and Positions ...................................................... 45  
RCSTA Register  
SPEN Bit .................................................................. 195  
Register File ....................................................................... 59  
Registers  
ADCON0 (A/D Control 0) ......................................... 211  
ADCON1 (A/D Control 1) ......................................... 212  
ADCON2 (A/D Control 2) ......................................... 213  
CCP1CON (Enhanced CCP  
Operation Control 1) ........................................ 141  
CCPxCON (Capture/Compare/PWM Control) ......... 133  
CMCON (Comparator Control) ................................ 221  
CONFIG1H (Configuration 1 High) .......................... 238  
PCL Register ..............................................................56  
PCLATH Register .......................................................56  
PCLATU Register .......................................................56  
DS39599C-page 378  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
CONFIG2H (Configuration 2 High) .......................... 239  
S
CONFIG2L (Configuration 2 Low) ............................ 239  
CONFIG3H (Configuration 3 High) .......................... 240  
CONFIG4L (Configuration 4 Low) ............................ 240  
CONFIG5H (Configuration 5 High) .......................... 241  
CONFIG5L (Configuration 5 Low) ............................ 241  
CONFIG6H (Configuration 6 High) .......................... 242  
CONFIG6L (Configuration 6 Low) ............................ 242  
CONFIG7H (Configuration 7 High) .......................... 243  
CONFIG7L (Configuration 7 Low) ............................ 243  
CVRCON (Comparator Voltage  
SCI. See USART.  
SCK ................................................................................. 155  
SDI ................................................................................... 155  
SDO ................................................................................. 155  
Serial Clock (SCK) Pin ..................................................... 155  
Serial Communication Interface. See USART.  
Serial Data In (SDI) Pin ................................................... 155  
Serial Data Out (SDO) Pin ............................................... 155  
Serial Peripheral Interface. See SPI Mode.  
SETF ................................................................................ 289  
Shoot-Through Current .................................................... 149  
Slave Select (SS) Pin ...................................................... 155  
SLEEP ............................................................................. 290  
Sleep  
Reference Control) ........................................... 227  
Device ID Register 1 ................................................ 244  
Device ID Register 2 ................................................ 244  
ECCPAS (Enhanced CCP  
Auto-Shutdown Control) ................................... 150  
EECON1 (Data EEPROM Control 1) ................... 73, 82  
INTCON (Interrupt Control) ........................................ 89  
INTCON2 (Interrupt Control 2) ................................... 90  
INTCON3 (Interrupt Control 3) ................................... 91  
IPR1 (Peripheral Interrupt Priority 1) .......................... 96  
IPR2 (Peripheral Interrupt Priority 2) .......................... 97  
LVDCON (LVD Control) ........................................... 233  
OSCCON (Oscillator Control) .................................... 26  
OSCTUNE (Oscillator Tuning) ................................... 23  
PIE1 (Peripheral Interrupt Enable 1) .......................... 94  
PIE2 (Peripheral Interrupt Enable 2) .......................... 95  
PIR1 (Peripheral Interrupt Request  
OSC1 and OSC2 Pin States ...................................... 27  
Software Simulator (MPLAB SIM) ................................... 300  
Software Simulator (MPLAB SIM30) ............................... 300  
Special Event Trigger. See Compare  
(CCP Module)  
Special Features of the CPU ........................................... 237  
Special Function Registers ................................................ 61  
Map ............................................................................ 61  
SPI Mode  
Associated Registers ............................................... 163  
Bus Mode Compatibility ........................................... 163  
Effects of a Reset .................................................... 163  
Master in Power Managed Modes ........................... 163  
Master Mode ............................................................ 160  
Master/Slave Connection ......................................... 159  
Registers ................................................................. 156  
Serial Clock .............................................................. 155  
Serial Data In ........................................................... 155  
Serial Data Out ........................................................ 155  
Slave in Power Managed Modes ............................. 163  
Slave Mode .............................................................. 161  
Slave Select ............................................................. 155  
SPI Clock ................................................................. 160  
SS .................................................................................... 155  
SSP  
(Flag) 1) ............................................................. 92  
PIR2 (Peripheral Interrupt Request  
(Flag) 2) ............................................................. 93  
PWM1CON (Enhanced PWM Configuration) ........... 149  
RCON (Reset Control) ......................................... 69, 98  
RCSTA (Receive Status and Control) ...................... 197  
2
SSPCON1 (MSSP Control 1, I C Mode) ................. 166  
SSPCON1 (MSSP Control 1, SPI Mode) ................. 157  
2
SSPCON2 (MSSP Control 2, I C Mode) ................. 167  
2
SSPSTAT (MSSP Status, I C Mode) ....................... 165  
SSPSTAT (MSSP Status, SPI Mode) ...................... 156  
Status ......................................................................... 68  
STKPTR (Stack Pointer) ............................................ 55  
Summary .............................................................. 6264  
T0CON (Timer0 Control) .......................................... 117  
T1CON (Timer 1 Control) ......................................... 121  
T2CON (Timer 2 Control) ......................................... 127  
T3CON (Timer3 Control) .......................................... 129  
TRISE ...................................................................... 112  
TXSTA (Transmit Status and Control) ..................... 196  
WDTCON (Watchdog Timer Control) ....................... 246  
Reset .......................................................................... 43, 285  
Resets .............................................................................. 237  
RETFIE ............................................................................ 286  
RETLW ............................................................................. 286  
RETURN .......................................................................... 287  
Return Address Stack ........................................................ 54  
Return Stack Pointer (STKPTR) ........................................ 54  
Revision History ............................................................... 369  
RLCF ................................................................................ 287  
RLNCF ............................................................................. 288  
RRCF ............................................................................... 288  
RRNCF ............................................................................. 289  
2
2
I C Mode. See I C.  
SSPBUF Register .................................................... 160  
SSPSR Register ...................................................... 160  
TMR2 Output for Clock Shift .............................127, 128  
SSPOV Status Flag ......................................................... 185  
SSPSTAT Register  
R/W Bit .............................................................168, 169  
Stack Full/Underflow Resets .............................................. 55  
SUBFWB ......................................................................... 290  
SUBLW ............................................................................ 291  
SUBWF ............................................................................ 291  
SUBWFB ......................................................................... 292  
SWAPF ............................................................................ 293  
T
TABLAT Register ............................................................... 74  
Table Pointer Operations (table) ........................................ 74  
Table Reads/Table Writes ................................................. 59  
TBLPTR Register ............................................................... 74  
TBLRD ............................................................................. 294  
TBLWT ............................................................................. 295  
Time-out in Various Situations (table) ................................ 45  
Time-out Sequence ........................................................... 44  
2003 Microchip Technology Inc.  
DS39599C-page 379  
PIC18F2220/2320/4220/4320  
Timer0 ..............................................................................117  
16-bit Mode Timer Reads and Writes ......................119  
Associated Registers ...............................................119  
Clock Source Edge Select (T0SE Bit) ......................119  
Clock Source Select (T0CS Bit) ...............................119  
Interrupt ....................................................................119  
Operation .................................................................119  
Prescaler. See Prescaler, Timer0.  
Switching Prescaler Assignment ..............................119  
Timer1 ..............................................................................121  
16-bit Read/Write Mode ...........................................124  
Associated Registers ...............................................125  
Interrupt ....................................................................124  
Operation .................................................................122  
Oscillator .......................................................... 121, 123  
Oscillator Layout Considerations .............................123  
Overflow Interrupt .....................................................121  
Resetting, Using a Special Event  
Trigger Output (CCP) .......................................124  
Special Event Trigger (CCP) ....................................136  
TMR1H Register ......................................................121  
TMR1L Register .......................................................121  
Use as a Real-Time Clock .......................................124  
Timer2 ..............................................................................127  
Associated Registers ...............................................128  
Operation .................................................................127  
Postscaler. See Postscaler, Timer2.  
Capture/Compare/PWM (CCP) ............................... 330  
CLKO and I/O .......................................................... 327  
Clock Synchronization ............................................. 175  
Clock, Instruction Cycle ............................................. 57  
Example SPI Master Mode (CKE = 0) ..................... 332  
Example SPI Master Mode (CKE = 1) ..................... 333  
Example SPI Slave Mode (CKE = 0) ....................... 334  
Example SPI Slave Mode (CKE = 1) ....................... 335  
External Clock (All Modes except PLL) ................... 325  
Fail-Safe Clock Monitor (FSCM) .............................. 249  
First Start Bit ............................................................ 183  
Full-Bridge PWM Output .......................................... 146  
Half-Bridge PWM Output ......................................... 145  
2
I C Bus Data ............................................................ 336  
2
I C Bus Start/Stop Bits ............................................ 336  
2
I C Master Mode (Transmission,  
7 or 10-bit Address) ......................................... 186  
I C Slave Mode (Transmission, 10-bit Address) ...... 173  
I C Slave Mode (Transmission, 7-bit Address) ........ 171  
I C Slave Mode with SEN = 0  
2
2
2
(Reception, 10-bit Address) ............................. 172  
I C Slave Mode with SEN = 0  
2
(Reception, 7-bit Address) ............................... 170  
I C Slave Mode with SEN = 1  
2
(Reception, 10-bit Address) ............................. 177  
I C Slave Mode with SEN = 1  
2
(Reception, 7-bit Address) ............................... 176  
Low-Voltage Detect ................................................. 234  
Low-Voltage Detect Characteristics ......................... 322  
PR2 Register .................................................... 127, 138  
Prescaler. See Prescaler, Timer2.  
2
SSP Clock Shift ................................................ 127, 128  
TMR2 Register .........................................................127  
TMR2 to PR2 Match Interrupt .................. 127, 128, 138  
Timer3 ..............................................................................129  
Associated Registers ...............................................131  
Operation .................................................................130  
Oscillator .......................................................... 129, 131  
Overflow Interrupt ............................................. 129, 131  
Resetting, Using a Special Event  
Trigger Output (CCP) .......................................131  
TMR3H Register ......................................................129  
TMR3L Register .......................................................129  
Timing Diagrams  
Master SSP I C Bus Data ........................................ 338  
2
Master SSP I C Bus Start/Stop Bits ........................ 338  
Parallel Slave Port (PIC18F4X20) ........................... 331  
Parallel Slave Port (PSP) Read ............................... 115  
Parallel Slave Port (PSP) Write ............................... 115  
PWM Auto-Shutdown (PRSEN = 0,  
Auto-Restart Disabled) .................................... 151  
PWM Auto-Shutdown (PRSEN = 1,  
Auto-Restart Enabled) ..................................... 151  
PWM Direction Change ........................................... 148  
PWM Direction Change at Near  
100% Duty Cycle ............................................. 148  
PWM Output ............................................................ 138  
Repeat Start Condition ............................................ 184  
Reset, Watchdog Timer (WDT),  
Oscillator Start-up Timer (OST),  
Power-up Timer (PWRT) ................................. 328  
Slave Mode General Call Address  
Sequence (7 or 10-bit Address Mode) ............. 178  
Slave Synchronization ............................................. 161  
Slow Rise Time (MCLR Tied to VDD,  
VDD Rise > TPWRT) ............................................ 51  
SPI Mode (Master Mode) ......................................... 160  
SPI Mode (Slave Mode with CKE = 0) ..................... 162  
SPI Mode (Slave Mode with CKE = 1) ..................... 162  
Stop Condition Receive or Transmit Mode .............. 188  
Synchronous Transmission ..................................... 206  
Synchronous Transmission (Through TXEN) .......... 207  
Time-out Sequence on POR w/  
A/D Conversion ........................................................342  
Acknowledge Sequence ...........................................188  
Asynchronous Reception .........................................205  
Asynchronous Transmission ....................................203  
Asynchronous Transmission (Back to Back) ............203  
Baud Rate Generator with Clock Arbitration ............182  
BRG Reset Due to SDA Arbitration  
During Start Condition ......................................191  
Brown-out Reset (BOR) ...........................................328  
Bus Collision During a Repeated  
Start Condition (Case 1) ..................................192  
Bus Collision During a Repeated  
Start Condition (Case 2) ..................................192  
Bus Collision During a Stop Condition  
(Case 1) ...........................................................193  
Bus Collision During a Stop Condition  
(Case 2) ...........................................................193  
Bus Collision During Start Condition  
PLL Enabled (MCLR Tied to VDD) ..................... 51  
Time-out Sequence on Power-up  
(SCL = 0) ..........................................................191  
Bus Collision During Start Condition  
(MCLR Not Tied to VDD): Case 1 ....................... 50  
Time-out Sequence on Power-up  
(SDA Only) .......................................................190  
Bus Collision for Transmit and  
(MCLR Not Tied to VDD): Case 2 ....................... 50  
Time-out Sequence on Power-up  
Acknowledge ....................................................189  
(MCLR Tied to VDD, VDD Rise TPWRT) .............. 50  
DS39599C-page 380  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
Timer0 and Timer1 External Clock .......................... 329  
U
Transition for Entry to SEC_IDLE Mode .................... 34  
Transition for Entry to SEC_RUN Mode .................... 36  
Transition for Entry to Sleep Mode ............................ 32  
Transition for Two-Speed Start-up  
USART ............................................................................. 195  
Asynchronous Mode ................................................ 202  
Associated Registers, Receive ........................ 205  
Associated Registers, Transmit ....................... 203  
Receiver .......................................................... 204  
Transmitter ...................................................... 202  
Baud Rate Generator (BRG) ................................... 198  
Associated Registers ....................................... 198  
Baud Rate Formula ......................................... 198  
Baud Rates, Asynchronous Mode  
(INTOSC to HSPLL) ......................................... 247  
Transition for Wake from PRI_IDLE Mode ................. 33  
Transition for Wake from RC_RUN Mode  
(RC_RUN to PRI_RUN) ..................................... 35  
Transition for Wake from SEC_RUN Mode  
(HSPLL) ............................................................. 34  
Transition for Wake from Sleep (HSPLL) ................... 32  
Transition to PRI_IDLE Mode .................................... 33  
Transition to RC_IDLE Mode ..................................... 35  
Transition to RC_RUN Mode ..................................... 37  
USART Synchronous Receive  
(BRGH = 0, Low Speed) .......................... 199  
Baud Rates, Asynchronous Mode  
(BRGH = 1, High Speed) ......................... 200  
Baud Rates, Synchronous Mode  
(SYNC = 1) .............................................. 201  
High Baud Rate Select (BRGH Bit) ................. 198  
Operation in Power Managed Mode ................ 198  
Sampling .......................................................... 198  
Serial Port Enable (SPEN Bit) ................................. 195  
Setting Up 9-bit Mode with Address Detect ............. 204  
Synchronous Master Mode ...................................... 206  
Associated Registers, Reception ..................... 208  
Associated Registers, Transmit ....................... 207  
Reception ........................................................ 208  
Transmission ................................................... 206  
Synchronous Slave Mode ........................................ 209  
Associated Registers, Receive ........................ 210  
Associated Registers, Transmit ....................... 209  
Reception ........................................................ 210  
Transmission ................................................... 209  
(Master/Slave) .................................................. 340  
USART Synchronous Reception  
(Master Mode, SREN) ...................................... 208  
USART SynchronousTransmission  
(Master/Slave) .................................................. 340  
Timing Diagrams and Specifications ................................ 325  
A/D Conversion Requirements ................................ 342  
Capture/Compare/PWM Requirements ................... 330  
CLKO and I/O Requirements ................................... 327  
DC Characteristics - Internal RC Accuracy .............. 326  
Example SPI Mode Requirements  
(Master Mode, CKE = 0) .................................. 332  
Example SPI Mode Requirements  
(Master Mode, CKE = 1) .................................. 333  
Example SPI Mode Requirements  
(Slave Mode, CKE = 0) .................................... 334  
Example SPI Slave Mode Requirements  
V
(CKE = 1) ......................................................... 335  
External Clock Requirements .................................. 325  
Voltage Reference Specifications .................................... 321  
2
W
I C Bus Data Requirements (Slave Mode) .............. 337  
2
Master SSP I C Bus Data Requirements ................ 339  
Watchdog Timer (WDT) ............................................237, 245  
Associated Registers ............................................... 246  
Control Register ....................................................... 245  
During Oscillator Failure .......................................... 248  
Programming Considerations .................................. 245  
WCOL .............................................................................. 183  
WCOL Status Flag ............................................183, 185, 188  
WWW, On-Line Support ...................................................... 5  
2
Master SSP I C Bus Start/Stop Bits  
Requirements ................................................... 338  
Parallel Slave Port Requirements (PIC18F4X20) .... 331  
PLL Clock ................................................................. 326  
Reset, Watchdog Timer, Oscillator  
Start-up Timer, Power-up Timer  
and Brown-out Reset Requirements ................ 328  
Timer0 and Timer1 External Clock  
X
Requirements ................................................... 329  
USART Synchronous Receive  
XORLW ............................................................................ 296  
XORWF ........................................................................... 297  
Requirements ................................................... 340  
USART Synchronous Transmission  
Requirements ................................................... 340  
Top-of-Stack Access .......................................................... 54  
TRISE Register  
PSPMODE Bit .......................................................... 109  
TSTFSZ ............................................................................ 296  
Two-Speed Start-up ................................................. 237, 247  
Two-Word Instructions  
Example Cases .......................................................... 58  
TXSTA Register  
BRGH Bit ................................................................. 198  
2003 Microchip Technology Inc.  
DS39599C-page 381  
PIC18F2220/2320/4220/4320  
NOTES:  
DS39599C-page 382  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
ON-LINE SUPPORT  
SYSTEMS INFORMATION AND  
UPGRADE HOT LINE  
Microchip provides on-line support on the Microchip  
World Wide Web site.  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive the most current upgrade kits. The Hot Line  
Numbers are:  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape® or Microsoft®  
Internet Explorer. Files are also available for FTP  
download from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
Connecting to the Microchip Internet  
Web Site  
042003  
The Microchip web site is available at the following  
URL:  
www.microchip.com  
The file transfer site is available by using an FTP  
service to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
2003 Microchip Technology Inc.  
DS39599C-page 383  
PIC18F2220/2320/4220/4320  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC18F2220/2320/4220/4320  
DS39599C  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39599C-page 384  
2003 Microchip Technology Inc.  
PIC18F2220/2320/4220/4320  
PIC18F2220/2320/4220/4320 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
Examples:  
Temperature Package  
Range  
Pattern  
a) PIC18LF4320-I/P 301 = Industrial temp.,  
PDIP package, Extended VDD limits,  
QTP pattern #301.  
b) PIC18LF2220-I/SO = Industrial temp.,  
SOIC package, Extended VDD limits.  
c) PIC18F4220-I/P = Industrial temp., PDIP  
package, normal VDD limits.  
(1)  
Device  
PIC18F2220/2320/4220/4320  
PIC18F2220/2320/4220/4320T  
VDD range 4.2V to 5.5V  
,
(1,2)  
;
(1)  
PIC18LF2220/2320/4220/4320  
PIC18LF2220/2320/4220/4320T  
VDD range 2.0V to 5.5V  
,
(1,2)  
;
Temperature  
Range  
I
=
-40°C to +85°C (Industrial)  
Note 1:  
2:  
F
= Standard Voltage Range  
LF = Wide Voltage Range  
T
= in tape and reel – SOIC  
and TQFP packages only.  
Package  
PT  
SO  
SP  
P
=
=
=
=
=
TQFP (Thin Quad Flatpack)  
SOIC  
Skinny Plastic DIP  
PDIP  
QFN  
ML  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
2003 Microchip Technology Inc.  
DS39599C-page 385  
WORLDWIDE SALES AND SERVICE  
Korea  
AMERICAS  
ASIA/PACIFIC  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or  
82-2-558-5934  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Singapore  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
China - Beijing  
Unit 915  
Bei Hai Wan Tai Bldg.  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100  
Fax: 86-10-85282104  
Atlanta  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034  
Fax: 770-640-0307  
Taiwan  
Kaohsiung Branch  
30F - 1 No. 8  
Min Chuan 2nd Road  
Kaohsiung 806, Taiwan  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Boston  
China - Chengdu  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848  
Fax: 978-692-3821  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-86766200  
Taiwan  
Taiwan Branch  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071  
Fax: 630-285-0075  
Fax: 86-28-86766599  
China - Fuzhou  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Dallas  
Fuzhou 350001, China  
Tel: 86-591-7503506  
Fax: 86-591-7503521  
EUROPE  
Austria  
Durisolstrasse 2  
A-4600 Wels  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Regus Business Centre  
Lautrup hoj 1-3  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Hong Kong SAR  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250  
China - Shanghai  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700  
Fax: 86-21-6275-5060  
China - Shenzhen  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Tel: 86-755-82901380  
Fax: 86-755-8295-1393  
China - Shunde  
Fax: 248-538-2260  
Ballerup DK-2750 Denmark  
Tel: 45-4420-9895 Fax: 45-4420-9910  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, IN 46902  
Tel: 765-864-8360  
Fax: 765-864-8387  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Los Angeles  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888  
Fax: 949-263-1338  
Germany  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Phoenix  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966  
Fax: 480-792-4338  
Room 401, Hongjian Building  
No. 2 Fengxiangnan Road, Ronggui Town  
Shunde City, Guangdong 528303, China  
Tel: 86-765-8395507 Fax: 86-765-8395571  
Italy  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
China - Qingdao  
Rm. B505A, Fullhope Plaza,  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
Tel: 86-532-5027355 Fax: 86-532-5027205  
San Jose  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Netherlands  
P. A. De Biesbosch 14  
NL-5152 SC Drunen, Netherlands  
Tel: 31-416-690399  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950  
Fax: 408-436-7955  
India  
Toronto  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Japan  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699  
Fax: 31-416-690340  
United Kingdom  
505 Eskdale Road  
Winnersh Triangle  
Fax: 905-673-6509  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
07/28/03  
DS39599C-page 386  
2003 Microchip Technology Inc.  

相关型号:

PIC18F2320-I/ML

28/40/44-Pin High-Performance, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F2320-I/P

28/40/44-Pin High-Performance, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F2320-I/PT

28/40/44-Pin High-Performance, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F2320-I/SO

28/40/44-Pin High-Performance, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F2320-I/SOG

8-BIT, FLASH, 40 MHz, RISC MICROCONTROLLER, PDSO28, 0.300 INCH, PLASTIC, MS-013, SO-28
MICROCHIP

PIC18F2320-I/SP

28/40/44-Pin High-Performance, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F2320-I/SPREL

8-BIT, FLASH, 40 MHz, RISC MICROCONTROLLER, PDIP28, 0.300 INCH, SKINNY, PLASTIC, DIP-28
MICROCHIP

PIC18F2320T

28/40/44-Pin High-Performance, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F2320T-E/SO

8-BIT, FLASH, 25 MHz, MICROCONTROLLER, PDSO28, 0.300 INCH, PLASTIC, MS-013, SO-28
MICROCHIP

PIC18F2320T-E/SOG

8-BIT, FLASH, 25 MHz, RISC MICROCONTROLLER, PDSO28, 0.300 INCH, PLASTIC, MS-013, SO-28
MICROCHIP

PIC18F2320T-I/ML

28/40/44-Pin High-Performance, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F2320T-I/P

28/40/44-Pin High-Performance, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP